These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Infrared Imagery of Solid Rocket Exhaust Plumes  

NASA Technical Reports Server (NTRS)

The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

Moran, Robert P.; Houston, Janice D.

2011-01-01

2

Implementation of microwave transmissions for rocket exhaust plume diagnostics  

NASA Astrophysics Data System (ADS)

Rocket-launched vehicles produce a trail of exhaust that contains ions, free electrons, and soot. The exhaust plume increases the effective conductor length of the rocket. A conductor in the presence of an electric field (e.g. near the electric charge stored within a cloud) can channel an electric discharge. The electrical conductivity of the exhaust plume is related to its concentration of free electrons. The risk of a lightning strike in-flight is a function of both the conductivity of the body and its effective length. This paper presents an approach that relates the electron number density of the exhaust plume to its propagation constant. Estimated values of the collision frequency and electron number density generated from a numerical simulation of a rocket plume are used to guide the design of the experimental apparatus. Test par meters are identified for the apparatus designed to transmit a signal sweep form 4 GHz to 7 GHz through the exhaust plume of a J-class solid rocket motor. Measurements of the scattering parameters imply that the transmission does not penetrate the plume, but instead diffracts around it. The electron density 20 cm downstream from the nozzle exit is estimated to be between 2.7x1014 m--3 and 5.6x10 15 m--3.

Coutu, Nicholas George

3

Bipropellant rocket exhaust plume analysis on the Galileo spacecraft  

NASA Technical Reports Server (NTRS)

This paper describes efforts to quantify the contaminant flow field produced by 10 N thrust bipropellant rocket engines used on the Galileo spacecraft. The prediction of the composition of the rocket exhaust by conventional techniques is found to be inadequate to explain experimental observations of contaminant deposition on moderately cold (200 K) surfaces. It is hypothesized that low volatility contaminants are formed by chemical reactions which occur on the surfaces. The flow field calculations performed using the direct simulation Monte Carlo method give the expected result that the use of line-of-sight plume shields may have very little effect on the flux of vapor phase contaminant species to a surface, especially if the plume shields are located so close to the engine that the interaction of the plume with the shield is in the transition flow regime. It is shown that significant variations in the exhaust plume composition caused by nonequilibrium effects in the flow field lead to very low concentrations of species which have high molecular weights in the more rarefied regions of the flow field. Recommendations for the design of spacecraft plume shields and further work are made.

Guernsey, C. S.; Mcgregor, R. D.

1986-01-01

4

Environmental Effects of Space Shuttle Solid Rocket Motor Exhaust Plumes  

NASA Technical Reports Server (NTRS)

The deposition of NOx and HCl in the stratosphere from the space shuttle solid rocket motors (SRM) and exhaust plume is discussed. A detailed comparison between stratospheric deposition rates using the baseline SRM propellant and an alternate propellant, which replaces ammonium perchlorate by ammonium nitrate, shows the total NOx deposition rate to be approximately the same for each propellant. For both propellants the ratio of the deposition rates of NOx to total chlorine-containing species is negligibly small. Rocket exhaust ground cloud transport processes in the troposphere are also examined. A brief critique of the multilayer diffusion models (presently used for predicting pollutant deposition in the troposphere) is presented, and some detailed cloud rise calculations are compared with data for Titan 3C launches. The results show that, when launch time meteorological data are used as input, the model can reasonably predict measured cloud stabilization heights.

Hwang, B.; Pergament, H. S.

1976-01-01

5

Zone radiometer measurements on a model rocket exhaust plume  

NASA Technical Reports Server (NTRS)

Radiometer for analytical prediction of rocket plume-to-booster thermal radiation and convective heating is described. Applications for engine combustion analysis, incineration, and pollution control by high temperature processing are discussed. Illustrations of equipment are included.

1972-01-01

6

Spectral radiance measurements of exhaust plumes from scale model rocket engines.  

PubMed

A short duration experimental technique for investigating radiative properties of rocket exhaust plumes at high altitudes is described. Experimental measurements of the spectral radiance of two interacting exhaust plumes generated by 1/45 scale F-l engines burning gaseous ethylene and oxygen are presented. In addition, the spectral radiance characteristics of several Saturn auxiliary solid propellant rocket motors have also been measured and these results are included. The measurements were obtained with a rapid scanning ir spectrometer. PMID:20068705

McCaa, D J

1968-05-01

7

Stennis Space Center's approach to liquid rocket engine health monitoring using exhaust plume diagnostics  

NASA Technical Reports Server (NTRS)

Details are presented of the approach used in a comprehensive program to utilize exhaust plume diagnostics for rocket engine health-and-condition monitoring and assessing SSME component wear and degradation. This approach incorporates both spectral and video monitoring of the exhaust plume. Video monitoring provides qualitative data for certain types of component wear while spectral monitoring allows both quantitative and qualitative information. Consideration is given to spectral identification of SSME materials and baseline plume emissions.

Gardner, D. G.; Tejwani, G. D.; Bircher, F. E.; Loboda, J. A.; Van Dyke, D. B.; Chenevert, D. J.

1991-01-01

8

Impact of rocket exhaust plumes on atmospheric composition and climate ? an overview  

NASA Astrophysics Data System (ADS)

Rockets are the only direct anthropogenic emission sources into the upper atmosphere. Gaseous rocket emissions include CO, N2, H2, H2O, and CO2, while solid rocket motors (SRM) additionally inject significant amounts of aluminum oxide (Al2O3) particles and gaseous chlorine species into the atmosphere. These emissions strongly perturb local atmospheric trace gas and aerosol distributions. Here, previous aircraft measurements in various rocket exhaust plumes including several large space shuttle launch vehicles are compiled. The observed changes of the lower stratospheric composition in the near field are summarized. The injection of chlorine species and particles into the stratosphere can lead to ozone loss in rocket exhaust plumes. Local observations are compared with global model simulations of the effects of rocket emissions on stratospheric ozone concentrations. Large uncertainties remain concerning individual ozone loss reaction rates and the impact of small-scale plume effects on global chemistry. Further, remote sensing data from satellite indicate that rocket exhaust plumes regionally increase iron and water vapor concentrations in the mesosphere potentially leading to the formation of mesospheric clouds at 80- to 90-kilometer altitude. These satellite observations are summarized and the rocket emission inventory is compared with other natural and anthropogenic sources to the stratosphere such as volcanism, meteoritic material, and aviation.

Voigt, Ch.; Schumann, U.; Graf, K.; Gottschaldt, K.-D.

2013-03-01

9

Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing  

NASA Technical Reports Server (NTRS)

The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.

Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.

1992-01-01

10

Rocket engine exhaust plume diagnostics and health monitoring/management during ground testing  

NASA Astrophysics Data System (ADS)

The current status of a rocket exhaust plume diagnostics program sponsored by NASA is reviewed. The near-term objective of the program is to enhance test operation efficiency and to provide for safe cutoff of rocket engines prior to incipient failure, thereby avoiding the destruction of the engine and the test complex and preventing delays in the national space program. NASA programs that will benefit from the nonintrusive remote sensed rocket plume diagnostics and related vehicle health management and nonintrusive measurement program are Space Shuttle Main Engine, National Launch System, National Aero-Space Plane, Space Exploration Initiative, Advanced Solid Rocket Motor, and Space Station Freedom. The role of emission spectrometry and other types of remote sensing in rocket plume diagnostics is discussed.

Chenevert, D. J.; Meeks, G. R.; Woods, E. G.; Huseonica, H. F.

1992-08-01

11

Rocket exhaust plume impingement on the Voyager spacecraft  

NASA Technical Reports Server (NTRS)

In connection with the conduction of the long-duration Voyager missions to the outer planets and the sophisticated propulsion systems required, it was necessary to carry out an investigation to avoid exhaust plume impingement problems. The rarefied gas dynamics literature indicates that, for most engineering surfaces, the assumption of diffuse reemission and complete thermal accommodation is warranted in the free molecular flow regime. This assumption was applied to an analysis of a spacecraft plume impingement problem in the near-free molecular flow regime and yielded results to within a few percent of flight data. The importance of a correct treatment of the surface temperature was also demonstrated. Specular reflection, on the other hand, was shown to yield results which may be unconservative by a factor of 2 or 3. It is pointed out that one of the most difficult portions of an exhaust plume impingement analysis is the simulation of the impinged hardware. The geometry involved must be described as accurately and completely as possible.

Baerwald, R. K.

1978-01-01

12

Status report on a real time Engine Diagnostics Console for rocket engine exhaust plume monitoring  

NASA Technical Reports Server (NTRS)

This paper describes the work done on the Engine Diagnostics Console during the past year of development at Stennis Space Center. The Engine Diagnostics Console (EDC) is a hardware and software package which provides near real time monitoring of rocket engine exhaust plume emissions during ground testing. The long range goal of the EDC development program is to develop an instrument that can detect engine degradation leading to catastrophic failure, and respond by taking preventative measures. The immediate goal for the past year's effort is the ability to process spectral data, taken from a rocket engine's exhaust plume, and to identify in an automated and high speed manner, the elemental species and multielemental materials that are present in the exhaust plume.

Bircher, F. E.; Gardner, D. G.; Vandyke, D. B.; Harris, A. B.; Chenevert, D. J.

1990-01-01

13

Hydrazine engine plume contamination mapping. [measuring instruments for rocket exhaust from liquid propellant rocket engines  

NASA Technical Reports Server (NTRS)

Instrumentation for the measurement of plume exhaust specie deposition rates were developed and demonstrated. The instruments, two sets of quartz crystal microbalances, were designed for low temperature operation in the back flow and variable temperature operation in the core flow regions of an exhaust plume. These quartz crystal microbalances performed nominally, and measurements of exhaust specie deposition rates for 8400 number of pulses for a 0.1-lb monopropellant thruster are reported.

Chirivella, J. E.

1975-01-01

14

Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume  

NASA Technical Reports Server (NTRS)

The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more mature stage.

Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

2007-01-01

15

On-board Optical Spectrometry for Detection of Mixture Ratio and Eroded Materials in Rocket Engine Exhaust Plume  

NASA Technical Reports Server (NTRS)

Optical spectrometry can provide means to characterize rocket engine exhaust plume impurities due to eroded materials, as well as combustion mixture ratio without any interference with plume. Fiberoptic probes and cables were designed, fabricated and installed on Space Shuttle Main Engines (SSME), allowing monitoring of the plume spectra in real time with a Commercial of the Shelf (COTS) fiberoptic spectrometer, located in a test-stand control room. The probes and the cables survived the harsh engine environments for numerous hot-fire tests. When the plume was seeded with a nickel alloy powder, the spectrometer was able to successfully detect all the metallic and OH radical spectra from 300 to 800 nanometers.

Barkhoudarian, Sarkis; Kittinger, Scott

2006-01-01

16

Modification of Roberts' Theory for Rocket Exhaust Plumes Eroding Lunar Soil  

NASA Technical Reports Server (NTRS)

In preparation for the Apollo program, Leonard Roberts developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts' assumed that the erosion rate is determined by the "excess shear stress" in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumed a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. He calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumes that only one particle size exists in the soil. He assumed that particle ejection angles are determined entirely by the shape of the terrain, which acts like a ballistic ramp, the particle aerodynamics being negligible. The predicted erosion rate and particle upper size limit appeared to be within an order of magnitude of small-scale terrestrial experiments, but could not be tested more quantitatively at the time. The lower particle size limit and ejection angle predictions were not tested.

Metzger, Philip T.; Lane, John E.; Immer, Christopher D.

2008-01-01

17

Analysis of large solid propellant rocket engine exhaust plumes using the direct simulation Monte Carlo method  

NASA Technical Reports Server (NTRS)

A new solution procedure has been developed to analyze the flowfield properties in the vicinity of the Inertial Upper Stage/Spacecraft during the 1st stage (SRMI) burn. Continuum methods are used to compute the nozzle flow and the exhaust plume flowfield as far as the boundary where the breakdown of translational equilibrium leaves these methods invalid. The Direct Simulation Monte Carlo (DSMC) method is applied everywhere beyond this breakdown boundary. The flowfield distributions of density, velocity, temperature, relative abundance, surface flux density, and pressure are discussed for each species for 2 sets of boundary conditions: vacuum and freestream. The interaction of the exhaust plume and the freestream with the spacecraft and the 2-stream direct interaction are discussed. The results show that the low density, high velocity, counter flowing free-stream substantially modifies the flowfield properties and the flux density incident on the spacecraft. A freestream bow shock is observed in the data, located forward of the high density region of the exhaust plume into which the freestream gas does not penetrate. The total flux density incident on the spacecraft, integrated over the SRM1 burn interval is estimated to be of the order of 10 to the 22nd per sq m (about 1000 atomic layers).

Hueser, J. E.; Brock, F. J.; Melfi, L. T., Jr.; Bird, G. A.

1984-01-01

18

Modification of Roberts' Theory for Rocket Exhaust Plumes Eroding Lunar Soil  

NASA Technical Reports Server (NTRS)

Roberts' model of lunar soil erosion beneath a landing rocket has been updated in several ways to predict the effects of future lunar landings. The model predicts, among other things, the number of divots that would result on surrounding hardware due to the impact of high velocity particulates, the amount and depth of surface material removed, the volume of ejected soil, its velocity, and the distance the particles travel on the Moon. The results are compared against measured results from the Apollo program and predictions are made for mitigating the spray around a future lunar outpost.

Metzger, Philip T.; Lane, John E.; Immer, Christopher D.

2008-01-01

19

Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60K-lb Thrust Fastrac Rocket Engine  

NASA Technical Reports Server (NTRS)

A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location approximately equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal 0.7 microgram/cc, and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal 2,200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

2000-01-01

20

Laser Transmission Measurements of Soot Extinction Coefficients in the Exhaust Plume of the X-34 60k-lb Thrust Fastrac Rocket Engine  

NASA Technical Reports Server (NTRS)

A four-channel laser transmissometer has been used to probe the soot content of the exhaust plume of the X-34 60k-lb thrust Fastrac rocket engine at NASA's Marshall Space Flight Center. The transmission measurements were made at an axial location about equal 1.65 nozzle diameters from the exit plane and are interpreted in terms of homogeneous radial zones to yield extinction coefficients from 0.5-8.4 per meter. The corresponding soot mass density, spatially averaged over the plume cross section, is, for Rayleigh particles, approximately equal to 0.7 micrograms/cubic cm and alternative particle distributions are briefly considered. Absolute plume radiance at the laser wavelength (515 nm) is estimated from the data at approximately equal to 2.200 K equivalent blackbody temperature, and temporal correlations in emission from several spatial locations are noted.

Dobson, C. C.; Eskridge, R. H.; Lee, M. H.

2000-01-01

21

Rocket plume base heating methodology  

NASA Technical Reports Server (NTRS)

A review of radiative transport calculation methods for base heating is presented followed by a description of the current methodology for the Space Shuttle plume radiation predictions and improvements for the Advanced Solid Rocket Booster (ASRB). The calculation methods include empirical methods, the SIRRM code and the forward and reverse Monte Carlo methods. Current plume radiation methods include those used for the Space Shuttle Main Engines and the Solid Rocket Booster (SRB). Methods being developed for the ASRB include changes in plume property prediction methodology and application of the reverse Monte Carlo method in predicting plume radiation models. Results of the prediction methods are compared with experimental measurements on the current SRB and on 1/6-scale motors using both SRB and ASRB propellants. Examples are also presented demonstrating the statistical results available with the reverse Monte Carlo method.

Reardon, John E.; Nelson, H. F.

1993-01-01

22

Empirical Scaling Laws of Rocket Exhaust Cratering  

NASA Technical Reports Server (NTRS)

When launching or landing a space craft on the regolith of a terrestrial surface, special attention needs to be paid to the rocket exhaust cratering effects. If the effects are not controlled, the rocket cratering could damage the spacecraft or other surrounding hardware. The cratering effects of a rocket landing on a planet's surface are not understood well, especially for the lunar case with the plume expanding in vacuum. As a result, the blast effects cannot be estimated sufficiently using analytical theories. It is necessary to develop physics-based simulation tools in order to calculate mission-essential parameters. In this work we test out the scaling laws of the physics in regard to growth rate of the crater depth. This will provide the physical insight necessary to begin the physics-based modeling.

Donahue, Carly M.; Metzger, Philip T.; Immer, Christopher D.

2005-01-01

23

A study of exhaust plume interactions with external flow by the hydraulic analogy  

E-print Network

than the surrounding atmosphere. When the air flow around the rocket separates from the missile, the pressure distribution along the rocket changes, and thrust efficiency and fin effectiveness are reduced. Numerical Simulations of Plume Interactions... difference in pressure causes large exhaust plumes and strong interactions between the external flow and plume. The interactions occurring between the missile's expanding exhaust plume and the air passing the side of the missile can cause changes...

Lawton, Stephen Hayes

1989-01-01

24

Rocket Engine Plume Diagnostics at Stennis Space Center  

NASA Technical Reports Server (NTRS)

The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed.

Tejwani, Gopal D.; Langford, Lester A.; VanDyke, David B.; McVay, Gregory P.; Thurman, Charles C.

2003-01-01

25

10Space Shuttle Atlantis (STS-135) -Exhaust plume This pair of images shows the  

E-print Network

of the rocket motors, would you be able to out-run the exhaust plume if you ran as fast as Olympic sprinter the noise of the rocket motors, would you be able to out-run the exhaust plume if you ran as fast as Olympic ignited. The bottom image was taken at 11:29:14.0 a.m. EDT, and the top image was obtained at 11:29:15.0 a

26

Atmospheric scavenging of solid rocket exhaust effluents  

NASA Technical Reports Server (NTRS)

Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. Two chambers were used to conduct the experiments; a large, rigid walled, spherical chamber stored the exhaust constituents, while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique used. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity. Characterization of the aluminum oxide particles substantiated the similarity between the constituents of the small scale rocket and the full size vehicles.

Fenton, D. L.; Purcell, R. Y.

1978-01-01

27

Exhaust Nozzle Plume and Shock Wave Interaction  

NASA Technical Reports Server (NTRS)

Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

2013-01-01

28

Radiation from advanced solid rocket motor plumes  

NASA Technical Reports Server (NTRS)

The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

1994-01-01

29

DESIGN CRITERIA FOR ROCKET EXHAUST SCRUBBERS  

EPA Science Inventory

The report gives results of an engineering study and design of methods for scrubbing the exhaust of static-tested solid rockets. Pollutants of major concern were hydrogen chloride and hydrogen fluoride gases. The best process for removing these gases was found to be a gas-atomize...

30

Range safety signal propagation through the SRM exhaust plume of the space shuttle  

NASA Technical Reports Server (NTRS)

Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.

Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.

1977-01-01

31

Analysis of the measured effects of the principal exhaust effluents from solid rocket motors  

NASA Technical Reports Server (NTRS)

The feasibility of conducting environmental chamber tests using a small rocket motor to study the physical processes which occur when the exhaust products from solid motors mix with the ambient atmosphere was investigated. Of particular interest was the interaction between hydrogen chloride, aluminum oxide, and water vapor. Several types of instruments for measuring HCl concentrations were evaluated. Under some conditions it was noted that acid aerosols were formed in the ground cloud. These droplets condensed on Al2O3 nuclei and were associated with the rocket exhaust cooling during the period of plume rise to stabilization. Outdoor firings of the solid rocket motors of a 6.4 percent scaled model of the space shuttle were monitored to study the interaction of the exhaust effluents with vegetation downwind of the test site. Data concerning aluminum oxide particles produced by solid rocket motors were evaluated.

Dawbarn, R.; Kinslow, M.; Watson, D. J.

1980-01-01

32

Equations for calculating orbiter surface erosion and breakage rates in IUS and SSUS SRM exhaust plumes  

NASA Technical Reports Server (NTRS)

Equations and coefficients for calculating the flux of solid particles in the exhaust plumes of the interim upper stage and SSUS solid rocket motors (SRM) are considered. Modifications required to account for the independent motions of the orbiter and the SRM, such as will result during an on-orbit SRM firing are described.

Wilson, S. W.

1978-01-01

33

Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust  

PubMed Central

A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505?K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes. PMID:24578655

2014-01-01

34

Stratospheric aircraft exhaust plume and wake chemistry  

NASA Technical Reports Server (NTRS)

Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

1993-01-01

35

Solar rocket plume/mirror interactions  

NASA Technical Reports Server (NTRS)

The extent to which the plume from a solar thermal rocket will impinge on the solar collector is studied by flow field analysis. Such interaction can adversely affect collector performance through fouling, excessive heat loading, or pressure loads that deform the delicate structures. The geometrical shape of the collector is such that only the flow from the nozzle boundary layer can reach it, but the thrust levels of interest lead to very viscous nozzle flows with thick boundary layers. Reasonable accuracy in solving these flows requires a fully coupled viscous-inviscid procedure. Results show that the fraction of the plume that hits the collector can be well estimated by continuum theory, but that transitional and rarefied phenomena will have some impact on how it is distributed over the surface. Initial results for one representative condition show that approx. 4 percent of the total flow in the jet makes its way to the collector. The pressures on the collector, however, remain quite low because of its distance from the engine. Additional work is needed to document the effect of thrust scaling and wall cooling on impingement.

Yu, Sheng-Tao; Chang, Chau-Lyan; Merkle, Charles L.

1991-01-01

36

Assessment of analytical techniques for predicting solid propellant exhaust plumes and plume impingement environments  

NASA Technical Reports Server (NTRS)

An analysis of experimental nozzle, exhaust plume, and exhaust plume impingement data is presented. The data were obtained for subscale solid propellant motors with propellant Al loadings of 2, 10 and 15% exhausting to simulated altitudes of 50,000, 100,000 and 112,000 ft. Analytical predictions were made using a fully coupled two-phase method of characteristics numerical solution and a technique for defining thermal and pressure environments experienced by bodies immersed in two-phase exhaust plumes.

Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

1977-01-01

37

Test data from small solid propellant rocket motor plume measurements (FA-21)  

NASA Technical Reports Server (NTRS)

A program is described for obtaining a reliable, parametric set of measurements in the exhaust plumes of solid propellant rocket motors. Plume measurements included pressures, temperatures, forces, heat transfer rates, particle sampling, and high-speed movies. Approximately 210,000 digital data points and 15,000 movie frames were acquired. Measurements were made at points in the plumes via rake-mounted probes, and on the surface of a large plate impinged by the exhaust plume. Parametric variations were made in pressure altitude, propellant aluminum loading, impinged plate incidence angle and distance from nozzle exit to plate or rake. Reliability was incorporated by continual use of repeat runs. The test setup of the various hardware items is described along with an account of test procedures. Test results and data accuracy are discussed. Format of the data presentation is detailed. Complete data are included in the appendix.

Hair, L. M.; Somers, R. E.

1976-01-01

38

Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure  

NASA Technical Reports Server (NTRS)

This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

Vu, Bruce T.; Oliveira, Justin

2011-01-01

39

Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure  

NASA Technical Reports Server (NTRS)

This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

Vu, Bruce; Oliveira, Justin

2011-01-01

40

Dilution of aircraft exhaust plumes at cruise altitudes  

Microsoft Academic Search

The dilution of jet engine exhaust in the plume behind cruising aircraft is determined from measured plume properties. The data set includes in situ measurements of CO2, NO, NOy, SO2, H2O, temperature, and contrail diameters behind subsonic and supersonic aircraft in the upper troposphere and lower stratosphere, for plume ages of seconds to hours. The set of data is extended

U. Schumann; H. Schlager; F. Arnold; R. Baumann; P. Haschberger; O. Klemm

1998-01-01

41

Monopropellant thruster exhaust plume contamination measurements  

NASA Technical Reports Server (NTRS)

The potential spacecraft contaminants in the exhaust plume of a 0.89N monopropellant hydrazine thruster were measured in an ultrahigh quartz crystal microbalances located at angles of approximately 0 deg, + 15 deg and + or - 30 deg with respect to the nozzle centerline. The crystal temperatures were controlled such that the mass adhering to the crystal surface at temperatures of from 106 K to 256 K could be measured. Thruster duty cycles of 25 ms on/5 seconds off, 100 ms on/10 seconds off, and 200 ms on/20 seconds off were investigated. The change in contaminant production with thruster life was assessed by subjecting the thruster to a 100,000 pulse aging sequence and comparing the before and after contaminant deposition rates. The results of these tests are summarized, conclusions drawn, and recommendations given.

Baerwald, R. K.; Passamaneck, R. S.

1977-01-01

42

Rocket Plume Scaling for Orion Wind Tunnel Testing  

NASA Technical Reports Server (NTRS)

A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.

2011-01-01

43

Noninvasive Detection of Metallic Ions in a Hybrid Rocket Plume  

NASA Astrophysics Data System (ADS)

This project utilizes a system of Gaussian cylinders to detect charged particles in a hybrid rocket plume. The approach is based on the phenomenon that moving charges will induce electric currents in nearby conductive surfaces. Consequently, charged particles in a rocket plume will induce electrical currents in a surrounding conductive cylindrical surface. Since these currents are proportional to the net charge being transported in a plume at any particular time, their measurement provides a method for determining the net charge ejected from the rocket motor. The Gaussian surfaces used in this project were conducting cylinders coated with an insulated material in order to differentiate contact charges from induced charges. Two configurations were used as noninvasive detectors. Single cylinders located around the plume produced results in particle detection. The second configuration consisted of two Gaussian surfaces, which allowed a differential amplifier to measure the potential difference between the cylinders while simultaneously canceling the common electromagnetic noise.

Mack, John Hunter; Dunn, Robert

2000-03-01

44

Rocket-Plume Spectroscopy Simulation for Hydrocarbon-Fueled Rocket Engines  

NASA Technical Reports Server (NTRS)

The UV-Vis spectroscopic system for plume diagnostics monitors rocket engine health by using several analytical tools developed at Stennis Space Center (SSC), including the rocket plume spectroscopy simulation code (RPSSC), to identify and quantify the alloys from the metallic elements observed in engine plumes. Because the hydrocarbon-fueled rocket engine is likely to contain C2, CO, CH, CN, and NO in addition to OH and H2O, the relevant electronic bands of these molecules in the spectral range of 300 to 850 nm in the RPSSC have been included. SSC incorporated several enhancements and modifications to the original line-by-line spectral simulation computer program implemented for plume spectral data analysis and quantification in 1994. These changes made the program applicable to the Space Shuttle Main Engine (SSME) and the Diagnostic Testbed Facility Thruster (DTFT) exhaust plume spectral data. Modifications included updating the molecular and spectral parameters for OH, adding spectral parameter input files optimized for the 10 elements of interest in the spectral range from 320 to 430 nm and linking the output to graphing and analysis packages. Additionally, the ability to handle the non-uniform wavelength interval at which the spectral computations are made was added. This allowed a precise superposition of wavelengths at which the spectral measurements have been made with the wavelengths at which the spectral computations are done by using the line-by-line (LBL) code. To account for hydrocarbon combustion products in the plume, which might interfere with detection and quantification of metallic elements in the spectral region of 300 to 850 nm, the spectroscopic code has been enhanced to include the carbon-based combustion species of C2, CO, and CH. In addition, CN and NO have spectral bands in 300 to 850 nm and, while these molecules are not direct products of hydrocarbon-oxygen combustion systems, they can show up if nitrogen or a nitrogen compound is present as an impurity in the propellants and/or these can form in the boundary layer as a result of interaction of the hot plume with the atmosphere during the ground testing of engines. Ten additional electronic band systems of these five molecules have been included into the code. A comprehensive literature search was conducted to obtain the most accurate values for the molecular and the spectral parameters, including Franck-Cordon factors and electronic transition moments for all ten band systems. For each elemental transition in the RPSSC, six spectral parameters - Doppler broadened line width at half-height, pressure-broadened line width at half-height, electronic multiplicity of the upper state, electronic term energy of the upper state, Einstein transition probability coefficient, and the atomic line center - are required. Input files have been created for ten elements of Ni, Fe, Cr, Co, Cu, Ca, Mn, Al, Ag, and Pd, which retain only relatively moderate to strong transitions in 300 to 430 nm spectral range for each element. The number of transitions in the input files is 68 for Ni; 148 for Fe; 6 for Cr; 87 for Co; 1 for Ca; 3 for Mn; 2 each for Cu, Al, and Ag; and 11 for Pd.

Tejwani, Gopal D.

2010-01-01

45

Plume dispersion of the exhaust from a cryogenic wind tunnel  

NASA Technical Reports Server (NTRS)

An analytical model was developed to predict the behavior of the plume exhausting from the cryogenic National Transonic Facility. Temperature, visibility, oxygen concentration, and flow characteristics of the plume are calculated for distance downwind of the stack exhaust. Negative buoyancy of the cold plume is included in the analysis. Compared to photographic observations, the model predicts the centerline trajectory of the plume fairly accurately, but underpredicts the extent of fogging. The diffusion coefficient is revised to bring the model into better agreement with observations.

Lassiter, William S.

1987-01-01

46

Numerical study on the influence of aluminum on infrared radiation signature of exhaust plume  

NASA Astrophysics Data System (ADS)

The infrared radiation signature of exhaust plume from solid propellant rockets has been widely mentioned for its important realistic meaning. The content of aluminum powder in the propellants is a key factor that affects the infrared radiation signature of the plume. The related studies are mostly on the conical nozzles. In this paper, the influence of aluminum on the flow field of plume, temperature distribution, and the infrared radiation characteristics were numerically studied with an object of 3D quadrate nozzle. Firstly, the gas phase flow field and gas-solid multi phase flow filed of the exhaust plume were calculated using CFD method. The result indicates that the Al203 particles have significant effect on the flow field of plume. Secondly, the radiation transfer equation was solved by using a discrete coordinate method. The spectral radiation intensity from 1000-2400 cm-1 was obtained. To study the infrared radiation characteristics of exhaust plume, an exceptional quadrate nozzle was employed and much attention was paid to the influences of Al203 particles in solid propellants. The results could dedicate the design of the divert control motor in such hypervelocity interceptors or missiles, or be of certain meaning to the improvement of ingredients of solid propellants.

Zhang, Wei; Ye, Qing-qing; Li, Shi-peng; Wang, Ning-fei

2013-09-01

47

Radiation\\/convection coupling in rocket motors and plumes  

Microsoft Academic Search

The three commonly used propellant systems - H2\\/O2, RP-1\\/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study

R. C. Farmer; A. J. Saladino

1993-01-01

48

Further Studies Using a Novel Free Molecule Rocket Plume Model  

NASA Astrophysics Data System (ADS)

This paper describes some recent studies conducted using a set of analytic point source transient free molecule equations generated to model behavior ranging from molecular effusion to rocket plumes. These studies include comparisons to experimental data regarding steady flow from a sonic orifice and generation of a thruster backflow environment, followed by a transient development of plumes due to steady thruster operations and to a single pulse.

Woronowicz, Michael

2003-05-01

49

Base flow and exhaust plume interaction. Part 2: Computational study  

Microsoft Academic Search

A computational study of the flow field along an axi-symmetric body with a single operating exhaust nozzle has been performed in the scope of an investigation on base flow-jet plume interactions. Results of a single nozzle plume with a high supersonic exit Mach number of 4 exhausting in co-flowing supersonic free stream of Mach 2.98 are presented for a number

M. M. J. Schoones; E. M. Houtman

1998-01-01

50

Instrumentation for In-Flight SSME Rocket Engine Plume Spectroscopy  

NASA Technical Reports Server (NTRS)

This paper describes instrumentation that is under development for an in-flight demonstration of a plume spectroscopy system on the space shuttle main engine. The instrumentation consists of a nozzle mounted optical probe for observation of the plume, and a spectrometer for identification and quantification of plume content. This instrumentation, which is intended for use as a diagnostic tool to detect wear and incipient failure in rocket engines, will be validated by a hardware demonstration on the Technology Test Bed engine at the Marshall Space Flight Center.

Madzsar, George C.; Bickford, Randall L.; Duncan, David B.

1994-01-01

51

Stratospheric aluminum oxide. [possibly from solid-fuel rocket exhausts  

NASA Technical Reports Server (NTRS)

Balloons and U-2 aircraft were used to collect micrometer-sized stratospheric aerosols. It was discovered that for the past 6 years at least, aluminum oxide spheres have been the major stratospheric particulate in the size range from 3 to 8 micrometers. The most probable source of the spheres is the exhaust from solid-fuel rockets.

Brownlee, D. E.; Tomandl, D.; Ferry, G. V.

1976-01-01

52

The effects of the exhaust plume on the lightning triggering conditions for launch vehicles  

NASA Technical Reports Server (NTRS)

Apollo 12 and Atlas Centaur 67 are two launch vehicles that have experienced triggered lightning strikes. Serious consequences resulted from the events; in the case of Atlas Centaur 67, the vehicle and the payload were lost. These events indicate that it is necessary to develop launch rules which would prevent such occurrences. In order to develop valid lightning related rules, it is necessary to understand the effects of the plume. Some have assumed that the plume can be treated as a perfect conductor, and have computed electric field enhancement factors on that basis. The authors have looked at the plume, and believe that these models are not correct, because they ignore the fluid motion of the conducting plates. The authors developed a model which includes this flow character. In this model, the external field is excluded from the plume as it would be for any good conductor, but, in addition, the charge must distribute so that the charge density is zero at some location in the exhaust. When this condition is included in the calculation of triggering enhancement factors, they can be two to three times larger than calculated by other methods which include a conductive plume but don't include the correct boundary conditions. Here, the authors review the relevant features of rocket exhausts for the triggered lightning problem, present an approach for including flowing conductive gases, and present preliminary calculations to demonstrate the effect that the plume has on enhancement factors.

Eriksen, Frederick J.; Rudolph, Terence H.; Perala, Rodney A.

1991-01-01

53

Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation  

NASA Technical Reports Server (NTRS)

Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.

Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.

2004-01-01

54

Measurements of Unexpected Ozone Loss in a Nighttime Space Shuttle Exhaust Plume: Implications for Geo-Engineering Projects  

NASA Astrophysics Data System (ADS)

Measurements of ozone, carbon dioxide and particulate water were made in the nighttime exhaust plume of the Space Shuttle (STS-116) on 9 December 2006 as part of the PUMA/WAVE campaign (Plume Ultrafast Measurements Acquisition/WB-57F Ascent Video Experiment). The launch took place from Kennedy Space Center at 8:47 pm (local time) on a moonless night and the WB-57F aircraft penetrated the shuttle plume approximately 25 minutes after launch in the lowermost stratosphere. Ozone loss is not predicted to occur in a nighttime Space Shuttle plume since it has long been assumed that the main ozone loss mechanism associated with rocket emissions requires solar photolysis to drive several chlorine-based catalytic cycles. However, the nighttime in situ observations show an unexpected loss of ozone of approximately 250 ppb in the evolving exhaust plume, inconsistent with model predictions. We will present the observations of the shuttle exhaust plume composition and the results of photochemical models of the Space Shuttle plume. We will show that models constrained by known rocket emission kinetics, including afterburning, and reasonable plume dispersion rates, based on the CO2 observations, cannot explain the observed ozone loss. We will propose potential explanations for the lack of agreement between models and the observations, and will discuss the implications of these explanations for our understanding of the composition of rocket emissions. We will describe the potential consequences of the observed ozone loss for long-term damage to the stratospheric ozone layer should geo-engineering projects based on rocket launches be employed.

Avallone, L. M.; Kalnajs, L. E.; Toohey, D. W.; Ross, M. N.

2008-12-01

55

Atmospheric scavenging of hydrochloric acid. [from rocket exhaust  

NASA Technical Reports Server (NTRS)

The scavenging of hydrogen chloride from a solid rocket exhaust cloud was investigated. Water drops were caused to fall through a confined exhaust cloud and then analyzed to determine the amount of HCl captured during fall. Bubblers were used to measure HCl concentration within the chamber. The measured chamber HCl concentration, together with the measured HCl deposition on the chamber walls, accounted for 81 to 94% of the theoretical HCl. It was found that the amount of HCl captured was approximately one-half of that predicted by the Frossling correlation. No effect of humidity was detected through a range of 69-98% R.H.. The scavenging of HCl from a solid rocket exhaust cloud was calculated using an idealized Kennedy Space Center rain cycle. Results indicate that this cycle would reduce the cloud HCl concentration to 20.6% if its value in the absence of rain.

Knutson, E. O.; Fenton, D. L.

1975-01-01

56

Effects of Rocket Exhaust on Lunar Soil Reflectance Properties  

NASA Astrophysics Data System (ADS)

The Apollo, Surveyor, and Luna spacecraft descent engine plumes affected the regolith at and surrounding their landing sites. Owing to the lack of rapid weathering processes on the Moon, surface alterations are still visible as photometric anomalies in Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images. These areas are interpreted as disturbance of the regolith by rocket exhaust during descent of the spacecraft, which we refer to as "blast zones" (BZs). The BZs consist of an area of lower reflectance (LR-BZ) compared to the surroundings that extends up to a few meters out from the landers, as well as a broader halo of higher reflectance (HR-BZ) that extends tens to hundreds of meters out from the landers. We use phase-ratio images for each landing site to determine the spatial extent of the disturbed regions and to quantify differences in reflectance and backscattering characteristics within the BZs compared to nearby undisturbed regolith. We also compare the reflectance changes and BZ dimensions at the Apollo sites with those at Luna and Surveyor sites. We seek to determine the effects of rocket exhaust in terms of erosion and particle redistribution, as well as the cause(s) of the reflectance variations, i.e., physical changes at the regolith surface. When approximated as an ellipse, the average Apollo BZ area is ~29,000 m2 (~175 ± 60 m by 200 ± 27 m) which is 10x larger than the average Luna BZ, and over 100x larger than the average Surveyor BZ. Moreover, BZ area scales roughly with lander mass (as a proxy for thrust). The LR-BZs are evident at the Apollo sites, especially where astronaut bioturbation has roughened the soil, leading to a 2-14% reduction in reflectance at ~30° phase. The LR-BZs at the Luna and Surveyor sites are less evident and may be mostly confined to the area below the landers. The average normalized reflectance in the HR-BZs for images with a 30° phase angle is 2-16% higher than in the undisturbed surrounding areas; this magnitude is the same, within uncertainty, for all sites, indicating a common process or combination of processes causing differences in reflectance properties of the regolith. Phase-ratio images and photometric data collected over a range of illumination geometries show that a greater separation in reflectance occurs between the HR-BZs and undisturbed areas with increasing phase angle and indicate that the HR-BZs are less backscattering than undisturbed areas. As working hypotheses, we consider the following possibilities to explain BZ reflectance phenomena: change in macroscopic roughness, microscopic modification of surface structure, redistribution of fines (excavation from LR-BZ and deposition in HR-BZ), change in compaction, contamination from fuel, and modification of maturity. The LR-BZ is affected by macroscopic disruption of the surface and increased shadowing. We infer that HR-BZ reflectance has been affected by scouring from particles entrained by exhaust gases with low-angle trajectories. Entrained particles with trajectories greater than a few degrees relative to horizontal travel well beyond the BZ boundary and do not contribute to BZ reflectance variations. Regolith particle interactions with surface soil within HR-BZs may destroy fine-scale surface structure (e.g., "fairy-castle") and decrease macroscopic roughness, contributing to a decrease in backscattering character within the HR-BZ.

Clegg, R. N.; Jolliff, B. L.; Robinson, M. S.; Hapke, B. W.; Plescia, J. B.

2012-12-01

57

Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil  

NASA Technical Reports Server (NTRS)

This technology development originated from the need to assess the debris threat resulting from soil material erosion induced by landing spacecraft rocket plume impingement on extraterrestrial planetary surfaces. The impact of soil debris was observed to be highly detrimental during NASA s Apollo lunar missions and will pose a threat for any future landings on the Moon, Mars, and other exploration targets. The innovation developed under this program provides a simulation tool that combines modeling of the diverse disciplines of rocket plume impingement gas dynamics, granular soil material liberation, and soil debris particle kinetics into one unified simulation system. The Unified Flow Solver (UFS) developed by CFDRC enabled the efficient, seamless simulation of mixed continuum and rarefied rocket plume flow utilizing a novel direct numerical simulation technique of the Boltzmann gas dynamics equation. The characteristics of the soil granular material response and modeling of the erosion and liberation processes were enabled through novel first principle-based granular mechanics models developed by the University of Florida specifically for the highly irregularly shaped and cohesive lunar regolith material. These tools were integrated into a unique simulation system that accounts for all relevant physics aspects: (1) Modeling of spacecraft rocket plume impingement flow under lunar vacuum environment resulting in a mixed continuum and rarefied flow; (2) Modeling of lunar soil characteristics to capture soil-specific effects of particle size and shape composition, soil layer cohesion and granular flow physics; and (3) Accurate tracking of soil-borne debris particles beginning with aerodynamically driven motion inside the plume to purely ballistic motion in lunar far field conditions. In the earlier project phase of this innovation, the capabilities of the UFS for mixed continuum and rarefied flow situations were validated and demonstrated for lunar lander rocket plume flow impingement under lunar vacuum conditions. Applications and improvements to the granular flow simulation tools contributed by the University of Florida were tested against Earth environment experimental results. Requirements for developing, validating, and demonstrating this solution environment were clearly identified, and an effective second phase execution plan was devised. In this phase, the physics models were refined and fully integrated into a production-oriented simulation tool set. Three-dimensional simulations of Apollo Lunar Excursion Module (LEM) and Altair landers (including full-scale lander geometry) established the practical applicability of the UFS simulation approach and its advanced performance level for large-scale realistic problems.

Liever, Peter; Tosh, Abhijit; Curtis, Jennifer

2012-01-01

58

Base flow and exhaust plume interaction. Part 1: Experimental study  

Microsoft Academic Search

An experimental study of the flow field along an axi-symmetric body with a single operating exhaust nozzle has been performed in the scope of an investigation on base flow-jet plume interactions. The structure of under-expanded jets in a co-flowing supersonic free stream was described using analytical and physical models. Results of a single nozzle plume with a high supersonic exit

M. M. J. Schoones; W. J. Bannink

1998-01-01

59

NTS-spill test facility wind tunnel exhaust plume characterization  

SciTech Connect

The exhaust plume of the NTS-STF wind tunnel has been characterized to demonstrate its suitability as a target for CALIOPE experiments. Smoke from grenades has been released in multiple quantities and at different positions inside the tunnel. The smoke plumes have been recorded on video tape. The wind velocity profile has also been determined with a moveable array of miniature vane anemometers. These measurements will be used to determine the vapor concentration pathlength as part of the ground truth.

Kerr, R.; Goldwire, H.; Smith, D.; Rawlings, J.; Schaffer, T.; Robson, J.

1994-07-01

60

Radiation\\/convection coupling in rocket motor and plume analysis  

Microsoft Academic Search

A method for describing radiation\\/convection coupling to a flow field analysis was developed for rocket motors and plumes. The three commonly used propellant systems (H2\\/O2, RP-1\\/O2, and solid propellants) radiate primarily as: molecular emitters, non-scattering small particles (soot), and scattering larger particles (Al2O3), respectively. For the required solution, the divergence of the radiation heat flux was included in the energy

A. J. Saladino; R. C. Farmer

1993-01-01

61

Ice nucleus activity measurements of solid rocket motor exhaust particles  

NASA Technical Reports Server (NTRS)

The ice Nucleus activity of exhaust particles generated from combustion of Space Shuttle propellant in small rocket motors has been measured. The activity at -20 C was substantially lower than that of aerosols generated by unpressurized combustion of propellant samples in previous studies. The activity decays rapidly with time and is decreased further in the presence of moist air. These tests corroborate the low effectivity ice nucleus measurement results obtained in the exhaust ground cloud of the Space Shuttle. Such low ice nucleus activity implies that Space Shuttle induced inadvertent weather modification via an ice phase process is extremely unlikely.

Keller, V. W. (compiler)

1986-01-01

62

Thermal radiation model for solid rocket booster plumes  

NASA Technical Reports Server (NTRS)

The Monte Carlo method is used to model the thermal radiation field of the plumes for the dual solid rocket boosters astride the Space Shuttle launch configuration. The model accounts for axial and radial variations in radiative properties of the plumes. The plumes are considered to be composed of a dispersion of aluminum oxide (Al2O3) particles immersed in the gaseous products of combustion. The principal emitting gases are taken to be CO, CO2, H2O, and HCl. The thermal model is based on local thermodynamic equilibrium. Scattering of radiant energy by Al2O3 particles may be treated as isotropic or anisotropic. Sample radiant heating rates to the base region of the Space Shuttle are shown. Space Shuttle geometries are simulated as combinations of quadric surfaces.

Watson, G. H.; Lee, A. L.

1977-01-01

63

Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes  

SciTech Connect

Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

2012-10-15

64

Numerical simulation of the Space Shuttle Launch Vehicle flowfield with real gas solid rocket plume effects  

NASA Technical Reports Server (NTRS)

A numerical simulation of the external ascent flowfield of the Space Shuttle Launch Vehicle (SSLV) was carried out at the freestream Mach number 1.25, the angle of attack -5.1 deg, and the flight Reynolds number 3.25 x 10 exp 6/ft. The simulation is an extension of the solution by Kandula et al. (1991) and incorporates variable gamma effects with a high fidelity grid appropriate for a flight Reynolds number flow solution. Three-dimensional SSLV steady-state simulations with either perfect-gas or variable-gamma-gas Redesigned-Solid-Rocket-Motor (RSRM) plumes are computed on a 14-grid overlapping body-conforming grid system, and the influence of the RSRM exhaust plumes on the SSLV component pressure distributions and integrated loads is examined.

Slotnick, J. P.; Kandula, M.; Buning, P. G.; Martin, F. W., Jr.

1993-01-01

65

Prediction of rocket plume radiative heating using backward Monte-Carlo method  

NASA Technical Reports Server (NTRS)

A backward Monte-Carlo plume radiation code has been developed to predict rocket plume radiative heating to the rocket base region. This paper provides a description of this code and provides sample results. The code was used to predict radiative heating to various locations during test firings of 48-inch solid rocket motors at NASA Marshall Space Flight Center. Comparisons with test measurements are provided. Predictions of full scale sea level Redesigned Solid Rocket Motor (RSRM) and Advanced Solid Rocket Motor (ASRM) plume radiative heating to the Space Shuttle external tank (ET) dome center were also made. A comparison with the Development Flight Instrumentation (DFI) measurements is also provided.

Wang, K. C.

1993-01-01

66

Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics  

NASA Technical Reports Server (NTRS)

Lift-off acoustic environments generated by the future Ares I launch vehicle are assessed by the NASA Marshall Space Flight Center (MSFC) acoustics team using several prediction tools. This acoustic environment is directly caused by the Ares I First Stage booster, powered by the five-segment Reusable Solid Rocket Motor (RSRMV). The RSRMV is a larger-thrust derivative design from the currently used Space Shuttle solid rocket motor, the Reusable Solid Rocket Motor (RSRM). Lift-off acoustics is an integral part of the composite launch vibration environment affecting the Ares launch vehicle and must be assessed to help generate hardware qualification levels and ensure structural integrity of the vehicle during launch and lift-off. Available prediction tools that use free field noise source spectrums as a starting point for generation of lift-off acoustic environments are described in the monograph NASA SP-8072: "Acoustic Loads Generated by the Propulsion System." This monograph uses a reference database for free field noise source spectrums which consist of subscale rocket motor firings, oriented in horizontal static configurations. The phrase "subscale" is appropriate, since the thrust levels of rockets in the reference database are orders of magnitude lower than the current design thrust for the Ares launch family. Thus, extrapolation is needed to extend the various reference curves to match Ares-scale acoustic levels. This extrapolation process yields a subsequent amount of uncertainty added upon the acoustic environment predictions. As the Ares launch vehicle design schedule progresses, it is important to take every opportunity to lower prediction uncertainty and subsequently increase prediction accuracy. Never before in NASA s history has plume acoustics been measured for large scale solid rocket motors. Approximately twice a year, the RSRM prime vendor, ATK Launch Systems, static fires an assembled RSRM motor in a horizontal configuration at their test facility in Utah. The remaining RSRM static firings will take place on elevated terrain, with the nozzle exit plume being mostly undeflected and the landscape allowing placement of microphones within direct line of sight to the exhaust plume. These measurements will help assess the current extrapolation process by direct comparison between subscale and full scale solid rocket motor data.

Kenny, Jeremy; Hobbs, Chris; Plotkin, Ken; Pilkey, Debbie

2009-01-01

67

Studies of the exhaust products from solid propellant rocket motors  

NASA Technical Reports Server (NTRS)

This study was undertaken to determine the feasibility of conducting environmental chamber tests on the physical processes which occur when a solid rocket motor exhaust mixes with the ambient atmosphere. Of particular interest was the interaction between hydrogen chloride, aluminum oxide, and water vapor. The program consisted of three phases: (1) building a small rocket motor and using it to provide the exhaust species in a controlled environment; (2) evaluating instruments used to detect and measure HCl concentrations and if possible determining whether the HCl existed in the gaseous state or as an acid aerosol; (3) monitoring a series of 6.4-percent scale space shuttle motor tests and comparing the results to the environmental chamber studies. Eighteen firings were conducted in an environmental chamber with the initial ambient relative humidity set at values from 29 to 100 percent. Two additional firings were made in a large shed, and four were made on an open concrete apron. Six test firings at MSFC were monitored, and the ground level concentrations are reported. Evidence is presented which shows that the larger Al2O3 (5 to 50 micrometers) particles from the rocket motor can act as condensation nuclei. Under appropriate ambient conditions where there is sufficient water vapor this results in the formation of an acid aerosol. Droplets of this acid were detected both in the environmental chamber and in the scaled shuttle engine tests.

Dawbarn, R.; Kinslow, M.

1976-01-01

68

Radiation/convection coupling in rocket motors and plumes  

NASA Technical Reports Server (NTRS)

The three commonly used propellant systems - H2/O2, RP-1/O2, and solid propellants - primarily radiate as molecular emitters, non-scattering small particles, and scattering larger particles, respectively. Present technology has accepted the uncoupling of the radiation analysis from that of the flowfield. This approximation becomes increasingly inaccurate as one considers plumes, interior rocket chambers, and nuclear rocket propulsion devices. This study will develop a hierarchy of methods which will address radiation/convection coupling in all of the aforementioned propulsion systems. The nature of the radiation/convection coupled problem is that the divergence of the radiative heat flux must be included in the energy equation and that the local, volume-averaged intensity of the radiation must be determined by a solution of the radiative transfer equation (RTE). The intensity is approximated by solving the RTE along several lines of sight (LOS) for each point in the flowfield. Such a procedure is extremely costly; therefore, further approximations are needed. Modified differential approximations are being developed for this purpose. It is not obvious which order of approximations are required for a given rocket motor analysis. Therefore, LOS calculations have been made for typical rocket motor operating conditions in order to select the type approximations required. The results of these radiation calculations, and the interpretation of these intensity predictions are presented herein.

Farmer, R. C.; Saladino, A. J.

1993-01-01

69

ASRM subscale plume deflector testing. [advanced solid rocket motor  

NASA Technical Reports Server (NTRS)

This paper reports the results of the scale model (1/22) testing of candidate refractory materials to be used as surface coatings for a solid rocket motor plume deflector structure. Five ROM tests were conducted to acquire data to support the selection, thickness determination, and placement of the materials. All data acquisition was achieved through nonintrusive methods. The tests demonstrated that little or no reductions in performance of the full-scale deflector would be experienced if the most economical materials were selected for construction.

Douglas, Freddie, III; Dawson, Michael C.; Orlin, Peter A.

1992-01-01

70

Analysis of plume backflow around a nozzle lip in a nuclear rocket  

NASA Technical Reports Server (NTRS)

The structure of the flow around a nuclear thermal rocket nozzle lip has been investigated using the direct simulation Monte Carlo method. Special attention has been paid to the behavior of a small amount of harmful particles that may be present in the rocket exhaust gas. The harmful fission product particles are modeled by four inert gases whose molecular weights are in a range of 4 131. Atomic hydrogen, which exists in the flow due to the extremely high nuclear fuel temperature in the reactor, is also included. It is shown that the plume backflow is primarily determined by the thin subsonic fluid layer adjacent to the surface of the nozzle lip, and that the inflow boundary in the plume region has negligible effect on the backflow. It is also shown that a relatively large amount of the lighter species is scattered into the backflow region while the amount of the heavier species becomes negligible in this region due to extreme separation between the species. Results indicate that the backscattered molecules are very energetic and are fast-moving along the surface in the backflow region near the nozzle lip.

Chung, Chan H.; Kim, Suk C.; Stubbs, Robert M.; De Witt, Kenneth J.

1993-01-01

71

Performance of reinforced polymer ablators exposed to a solid rocket motor exhaust. Technical report  

SciTech Connect

Summarized in this report is the effort by the Naval Surface Warfare Center Dahlgren Division (NSWCDD) and FMC Corporation (a launcher manufacturer) to identify new high performance ablators suitable for use on Navy guided missile launchers (GML) and ships' structures. The goal is to reduce ablator erosion by 25 to 50 percent compared to that of the existing ablators such as MXBE350 (rubbermodified phenolic containing glass fiber reinforcement). This reduction in erosion would significantly increase the number of new missiles with higher-thrust, longer burn rocket motors that can be launched prior to ablator refurbishment. In fact, there are a number of new Navy missiles being considered for development and introduction into existing GML: e.g., the Antisatellite Missile (ASM) and the Theater High-Altitude Area Defense (THAAD) Missile. The U.S. Navy experimentally evaluated the eight best fiber-reinforced, polymer composites from a possible field of 25 off-the-shelf ablators previously screened by FMC Corporation. They were tested by the Navy in highly aluminized solid rocket motor exhaust plumes to determine their ability to resist erosion and to insulate.... Ablator, Guided Missile Launchers, Erosion, Tactical missiles, Convective heating, Solid rocket motors, Aluminum oxide particles.

Boyer, C.; Burgess, T.; Bowen, J.; Deloach, K.; Talmy, I.

1992-10-01

72

Injection of Nuclear Rocket Engine Exhaust into Deep Unsaturated Zones  

NASA Astrophysics Data System (ADS)

Nuclear rocket engine technology is being considered as a means of interplanetary vehicle propulsion for a manned mission to Mars. To achieve this, a test and development facility must be constructed to safely run nuclear engines. The testing of nuclear engines in the 1950's and 1960's was accomplished by exhausting the engine gases into the atmosphere, a practice that is no longer acceptable. Injection into deep unsaturated zones of radioactive exhaust gases and water vapor associated with the testing of nuclear rocket engines is being considered as a way of sequestering radionuclides from the environment. Numerical simulations were conducted to determine the ability of an unsaturated zone with the hydraulic properties of Frenchman Flat alluvium at the Nevada Test Site to contain gas-phase radionuclides. Gas and water vapor were injected for two hours at rates of 14.5 kg s-1 and 15 kg s-1, respectively, in an interval between 100 and 430 m below the land surface into alluvium with an intrinsic permeability of 10-11 m2 and porosity of 0.35. The results show that during a test of an engine, radionuclides with at least greater than 10-year half-lives may reach the land surface within several years after injection. Radionuclide transport is primarily controlled by the upward pressure gradient from the point of injection to the lower (atmospheric) pressure boundary condition at the land surface. Radionuclides with half-lives on the order of days should undergo enough decay prior to reaching the land surface. A cooling water vapor injected into the unsaturated zone simultaneously with the exhaust gas will condense within several meters of the injection point and drain downward toward the water table. However, the nearly horizontal hydraulic groundwater gradient present in several of the basins at NTS should limit lateral migration of radionuclides away from the vicinity of injection.

Cooper, C. A.; Decker, D.

2008-05-01

73

Development of a miniature solid propellant rocket motor for use in plume simulation studies  

NASA Technical Reports Server (NTRS)

A miniature solid propellant rocket motor has been developed to be used in a program to determine those parameters which must be duplicated in a cold gas flow to produce aerodynamic effects on an experimental model similar to those produced by hot, particle-laden exhaust plumes. Phenomena encountered during the testing of the miniature solid propellant motors included erosive propellant burning caused by high flow velocities parallel to the propellant surface, regressive propellant burning as a result of exposed propellant edges, the deposition of aluminum oxide on the nozzle surfaces sufficient to cause aerodynamic nozzle throat geometry changes, and thermal erosion of the nozzle throat at high chamber pressures. A series of tests was conducted to establish the stability of the rocket chamber pressure and the repeatibility of test conditions. Data are presented which define the tests selected to represent the final test matrix. Qualitative observations are also presented concerning the phenomena experienced based on the results of a large number or rocket tests not directly applicable to the final test matrix.

Baran, W. J.

1974-01-01

74

Plume flowfield analysis of the shuttle primary Reaction Control System (RCS) rocket engine  

NASA Technical Reports Server (NTRS)

A solution was generated for the physical properties of the Shuttle RCS 4000 N (900 lb) rocket engine exhaust plume flowfield. The modeled exhaust gas consists of the five most abundant molecular species, H2, N2, H2O, CO, and CO2. The solution is for a bare RCS engine firing into a vacuum; the only additional hardware surface in the flowfield is a cylinder (=engine mount) which coincides with the nozzle lip outer corner at X = 0, extends to the flowfield outer boundary at X = -137 m and is coaxial with the negative symmetry axis. Continuum gas dynamic methods and the Direct Simulation Monte Carlo (DSMC) method were combined in an iterative procedure to produce a selfconsistent solution. Continuum methods were used in the RCS nozzle and in the plume as far as the P = 0.03 breakdown contour; the DSMC method was used downstream of this continuum flow boundary. The DSMC flowfield extends beyond 100 m from the nozzle exit and thus the solution includes the farfield flow properties, but substantial information is developed on lip flow dynamics and thus results are also presented for the flow properties in the vicinity of the nozzle lip.

Hueser, J. E.; Brock, F. J.

1990-01-01

75

Radiation/convection coupling in rocket motor and plume analysis  

NASA Technical Reports Server (NTRS)

A method for describing radiation/convection coupling to a flow field analysis was developed for rocket motors and plumes. The three commonly used propellant systems (H2/O2, RP-1/O2, and solid propellants) radiate primarily as: molecular emitters, non-scattering small particles (soot), and scattering larger particles (Al2O3), respectively. For the required solution, the divergence of the radiation heat flux was included in the energy equation, and the local, volume averaged intensity was determined by a solution to the radiative transfer equation. A rigorous solution to this problem is intractable, therefore, solution methods which use the ordinary and improved differential approximation were developed. This radiation model was being incorporated into the FDNS code, a Navier-Stokes flowfield solver for multiphase, turbulent combusting flows.

Saladino, A. J.; Farmer, R. C.

1993-01-01

76

Rocket Exhaust Cratering: Lessons Learned from Viking and Apollo  

NASA Technical Reports Server (NTRS)

During the Apollo and Viking programs NASA expended considerable effort to study the cratering of the regolith when a rocket launches or lands on it. That research ensured the success of those programs but also demonstrated that cratering will be a serious challenge for other mission scenarios. Unfortunately, because three decades have elapsed since NASA last performed a successful retro-rocket landing on a large planetary body - and ironically because Apollo and Viking were successful at minimizing the cratering effects - the space agency has a minimized sense of the seriousness of the issue. The most violent phase of a cratering event is when the static overpressure of the rocket exhaust exceeds the bearing capacity of the soil. This bearing capacity failure (BCF) punches a small and highly concave cup into the surface. The shape of the cup then redirects the supersonic jet - along with a large flux of high-velocity debris - directly toward the spacecraft. This has been observed in terrestrial experiments but never quantified analytically. The blast from such an event will be more than just quantitatively greater than the cratering that occurred in the Apollo and Viking programs. It will be qualitatively different, because BCF had been successfully avoided in all those missions. In fact, the Viking program undertook a significant research and development effort and redesigned the spacecraft specifically for the purpose of avoiding BCF [1]. (See Figure 1.) Because the Apollo and Viking spacecraft were successful at avoiding those cratering effects, it was unnecessary to understand them. As a result, the physics of a BCF-driven cratering event have never been well understood. This is a critical gap in our knowledge because BCF is unavoidable in the Martian environment with the large landers necessary for human exploration, and in Lunar landings it must also be addressed because it may occur depending upon the design specifics of the spacecraft and the weakening of the regolity by gas diffusion.

Metzger, Philip T.; Vu, Bruce T.

2004-01-01

77

Development and Validation of a Computational Model for Predicting the Behavior of Plumes from Large Solid Rocket Motors  

NASA Technical Reports Server (NTRS)

Exhaust plumes from large solid rocket motors fired at ATK's Promontory test site carry particulates to high altitudes and typically produce deposits that fall on regions downwind of the test area. As populations and communities near the test facility grow, ATK has become increasingly concerned about the impact of motor testing on those surrounding communities. To assess the potential impact of motor testing on the community and to identify feasible mitigation strategies, it is essential to have a tool capable of predicting plume behavior downrange of the test stand. A software package, called PlumeTracker, has been developed and validated at ATK for this purpose. The code is a point model that offers a time-dependent, physics-based description of plume transport and precipitation. The code can utilize either measured or forecasted weather data to generate plume predictions. Next-Generation Radar (NEXRAD) data and field observations from twenty-three historical motor test fires at Promontory were collected to test the predictive capability of PlumeTracker. Model predictions for plume trajectories and deposition fields were found to correlate well with the collected dataset.

Wells, Jason E.; Black, David L.; Taylor, Casey L.

2013-01-01

78

Effects of rocket exhaust products in the thermosphere and ionsphere  

SciTech Connect

This paper reviews the current state of understanding of the problem of ionospheric F-layer depletions produced by chemical effects of the exhaust gases from large rockets, with particular emphasis on the Heavy Lift Launch Vehicles (HLLV) proposed for use in the construction of solar power satellites. The currently planned HLLV flight profile calls for main second-stage propulsion confined to altitudes below 124 km, and a brief orbit circularization maneuver at apogee. The second stage engines deposit 9 x 10/sup 31/ H/sub 2/O and H/sub 2/ molecules between 74 and 124 km. Model computations show that they diffuse gradually into the ionospheric F region, where they lead to weak but widespread and persistent depletions of ionization and continuous production of H atoms. The orbit circularization burn deposits 9 x 10/sup 29/ exhaust molecules at about 480-km altitude. These react rapidly with the F2 region 0/sup +/ ions, leading to a substantial (factor-of-three) reduction in plasma density, which extends over a 1000- by 2000-km region and persists for four to five hours. For purposes of computer model verification, a computation is included representing the Skylab I launch, for which observational data exist. The computations and data are compared, and the computer model is described.

Zinn, J.; Sutherland, C.D.

1980-02-01

79

Effect of contamination on the optical properties of transmitting and reflecting materials exposed to a MMH/N2O4 rocket exhaust  

NASA Technical Reports Server (NTRS)

The changes are presented in spectral transmittance, and reflectance due to exposure of various optical materials to the exhaust plume of a 5-pound thrust bipropellant rocket. The engine was fired in a pulsed mode for a total exposure of 223.7 second. Spectral optical properties were measured in air before and after exposure to the exhaust plume in vacuum. The contaminating layer resulted in both absorption and scattering effects which caused changes as large as 30-50% for transmitting elements and 15% for mirrors in the near ultraviolet wavelengths. The changes in spectral properties of materials exposed to the exhaust plume for 44 and 223.7 seconds are compared and found to be similar.

Bowman, R. L.; Spisz, E. W.; Jack, J. R.

1973-01-01

80

Calculation of Free-Atom Fractions in Hydrocarbon-Fueled Rocket Engine Plume  

NASA Technical Reports Server (NTRS)

Free atom fractions (Beta) of nine elements are calculated in the exhaust plume of CH4- oxygen and RP-1-oxygen fueled rocket engines using free energy minimization method. The Chemical Equilibrium and Applications (CEA) computer program developed by the Glenn Research Center, NASA is used for this purpose. Data on variation of Beta in both fuels as a function of temperature (1600 K - 3100 K) and oxygen to fuel ratios (1.75 to 2.25 by weight) is presented in both tabular and graphical forms. Recommendation is made for the Beta value for a tenth element, Palladium. The CEA computer code was also run to compare with experimentally determined Beta values reported in literature for some of these elements. A reasonable agreement, within a factor of three, between the calculated and reported values is observed. Values reported in this work will be used as a first approximation for pilot rocket engine testing studies at the Stennis Space Center for at least six elements Al, Ca, Cr, Cu, Fe and Ni - until experimental values are generated. The current estimates will be improved when more complete thermodynamic data on the remaining four elements Ag, Co, Mn and Pd are added to the database. A critique of the CEA code is also included.

Verma, Satyajit

2006-01-01

81

Active chlorine and nitric oxide formation from chemical rocket plume afterburning  

NASA Technical Reports Server (NTRS)

Chlorine and oxides of nitrogen (NO(x)) released into the atmosphere contribute to acid rain (ground level or low-altitude sources) and ozone depletion from the stratosphere (high-altitude sources). Rocket engines have the potential for forming or activating these pollutants in the rocket plume. For instance, H2/O2 rockets can produce thermal NO(x) in their plumes. Emphasis, in the past, has been placed on determining the impact of chlorine release on the stratosphere. To date, very little, if any, information is available to understand what contribution NO(x) emissions from ground-based engine testing and actual rocket launches have on the atmosphere. The goal of this work is to estimate the afterburning emissions from chemical rocket plumes and determine their local stratospheric impact. Our study focuses on the space shuttle rocket motors, which include both the solid rocket boosters (SRB's) and the liquid propellant main engines (SSME's). Rocket plume afterburning is modeled employing a one-dimensional model incorporating two chemical kinetic systems: chemical and thermal equilibria with overlayed nitric oxide chemical kinetics (semi equilibrium) and full finite-rate chemical kinetics. Additionally, the local atmospheric impact immediately following a launch is modeled as the emissions diffuse and chemically react in the stratosphere.

Leone, D. M.; Turns, S. R.

1994-01-01

82

Laser optogalvanic spectroscopy of neon in a discharge plasma and modeling and analysis of rocket plume RF-line emissions  

NASA Astrophysics Data System (ADS)

The Optogalvanic Effect (OGE) of neon in a hollow cathode discharge lamp has been investigated both experimentally and theoretically. A tunable dye laser was tuned to several 1si -- 2pj neon transitions and the associated time--resolved optogalvanic (OG) spectral waveforms recorded corresponding to the DeltaJ = DeltaK = 0, +/-1 selection rules and modeled using a semi-empirical model. Decay rate constants, amplitudes and the instrumentation time constants were recorded following a good least-squares fit (between the experimental and the theoretical OG data) using the Monte Carlo technique and utilizing both the search and random walk methods. Dominant physical processes responsible for the optogalvanic effect have been analyzed, and the corresponding populations of the laser-excited level and collisional excited levels determined. The behavior of the optogalvanic signal waveform as a function of time, together with the decay rate constants as a function of the discharge current and the instrumentation time constant as a function of current have been studied in detail. The decay times of the OG signals and the population redistributions were also determined. Fairly linear relationships between the decay rate constant and the discharge current, as well as between the instrumental time constant and the discharge current, have been observed. The decay times and the electron collisional rate parameters of the 1s levels involved in the OG transitions have been obtained with accuracy. The excitation temperature of the discharge for neon transitions grouped with the same 1s level have been determined and found to be fairly constant for the neon transitions studied. The experimental optogalvanic effort in the visible region of the electromagnetic spectrum has been complemented by a computation-intensive modeling investigation of rocket plumes in the microwave region. Radio frequency lines of each of the plume species identified were archived utilizing the HITRAN and other databases (e.g. JPL/NASA and Cologne), together with other appropriate spectroscopic data. Hydrazine fuel was selected as the rocket propellant of choice and the plume codes were run by the JHU-APL research group. A representative monopropellant hydrazine plume has been determined to provide exhaust temperature, pressure, velocity, and species number density inputs for model development. A MATLAB code has been developed for computing broadside line-of-sight (LOS) intensities due to line emissions involving ammonia and other plume species. Initially, we assumed Local Thermodynamic Equilibrium (LTE) and included self-absorption contributions due to plume opacity, together with collisional and Doppler broadening, as well as the Doppler shift due to the plume radial velocity towards and away from a stationary detector. The recorded code output was MATLAB coded and an assortment of plume parameters computed, such as the volume emission rate, the absorption coefficient, optical depth and species radiance line-by-line. These parameters were computed both manually utilizing a spread sheet and then automated using the Matlab code. The volume emissions, along with other plume properties, were plotted as a function of the axial distance in the plume for several Radio Frequency (RF) transitions involving various significant plume species. Plume properties, such as the temperature, pressure, number density, and plume particulate speed emanating from the nozzle where analyzed and modeled as the plume drifts away from the rocket nozzle. Both the axial and radial distance dependences were investigated with respect to the various plume properties and parameters. Population distribution of the species (number density) dependence on the plume temperature was investigated and modeled line-by-line for each of the plume species studied at the nozzle exit plane and beyond. In addition, volume emission and absorption coefficients have been analyzed and modeled and solutions to the Radiative Transfer Equation (RTE) applied line-by-line and the radiance determined accurately in the micro

Ogungbemi, Kayode I.

83

Atmospheric measurements of the physical evolution of aircraft exhaust plumes.  

PubMed

Drawing from a series of field measurement activities including the Alternative Aviation Fuels Experiments (AAFEX1 and AAFEX2), we present experimental measurements of particle number, size, and composition-resolved mass that describe the physical and chemical evolution of aircraft exhaust plumes on the time scale of 5 s to 2-3 min. As the plume ages, the particle number emission index initially increases by a factor of 10-50, due to gas-to-particle formation of a nucleation/growth mode, and then begins to fall with increased aging. Increasing the fuel sulfur content causes the initial increase to occur more rapidly. The contribution of the nucleation/growth mode to the overall particle number density is most pronounced at idle power and decreases with increasing engine power. Increasing fuel sulfur content, but not fuel aromatic content causes the nucleation/growth mode to dominate the particle number emissions at higher powers than for a fuel with "normal" sulfur and aromatic content. Particle size measurements indicate that the observed particle number emissions trends are due to continuing gas-to-particle conversion and coagulation growth of the nucleation/growth mode particles, processes which simultaneously increase particle mass and reduce particle number density. Measurements of nucleation/growth mode mass are consistent with the interpretation of particle number and size data and suggest that engine exit plane measurements may underestimate the total particle mass by as much as a factor of between 5 and 10. PMID:23356965

Timko, M T; Fortner, E; Franklin, J; Yu, Z; Wong, H-W; Onasch, T B; Miake-Lye, R C; Herndon, S C

2013-04-01

84

Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle  

NASA Technical Reports Server (NTRS)

Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

Tucker, P. K.; Warsi, S. A.

1993-01-01

85

Effects of rocket exhaust on lunar soil reflectance properties  

NASA Astrophysics Data System (ADS)

High-resolution images of the Surveyor, Luna, and Apollo landing sites obtained by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) show regions around the landers where reflectivity of the surface was modified. We interpret the change in reflectance properties of these regions mainly as disturbance of the regolith by rocket exhaust during descent of the spacecraft and we refer to these areas herein as "blast zones" (BZs). The BZs consist of an area of lower reflectance (LR-BZ) compared to the surroundings that extends up to a few meters out from the landers, as well as a broader halo of higher reflectance (HR-BZ) that extends tens to hundreds of meters away from the landers. When approximated as an ellipse, the average Apollo BZ area is ˜29,000 m2 (˜175 ± 60 m by 200 ± 27 m) which is 10× larger than the average Luna BZ, and over 100× larger than the average Surveyor BZ. The LR-BZs are most evident at the Apollo sites, especially where astronaut activity disturbed the soil, leading to a 15-30% (relative to background undisturbed areas) reduction in reflectance at ˜30° phase angle. The LR-BZs at the Surveyor and Luna sites are less evident and are unresolvable with NAC images. The average reflectance in the HR-BZs as determined for 30° phase angle is 3-12% higher than in the undisturbed surrounding areas; this magnitude is the same, within uncertainty, for all sites, indicating a common process or combination of processes causing differences in reflectance properties of the regolith. Phase-ratio images and photometric data collected over a range of illumination geometries show that a greater separation in reflectance occurs between the HR-BZs and undisturbed areas at phase angles between 0° and 70° and indicates that the HR-BZs are less backscattering than undisturbed areas. The LR-BZs are affected by macroscopic disruption of the surface and astronaut activity (at the Apollo sites). For the HR-BZ areas, reflectance has likely been affected by scouring from particles entrained by exhaust gases with low-angle trajectories. Regolith particle interactions with surface soil within HR-BZs may destroy fine-scale surface structure (e.g., "fairy-castle") and decrease macroscopic roughness, contributing to a decrease in backscattering character within the HR-BZs and an increase in backscattering character within the LR-BZs. Redistribution of fine particles from the LR-BZ to the HR-BZ may have also contributed to the changed reflectance. Photometric modeling is consistent with one or a combination of these processes.

Clegg, Ryan N.; Jolliff, Bradley L.; Robinson, Mark S.; Hapke, Bruce W.; Plescia, Jeffrey B.

2014-01-01

86

ASRM radiation and flowfield prediction status. [Advanced Solid Rocket Motor plume radiation prediction  

NASA Technical Reports Server (NTRS)

Existing and proposed methods for the prediction of plume radiation are discussed in terms of their application to the NASA Advanced Solid Rocket Motor (ASRM) and Space Shuttle Main Engine (SSME) projects. Extrapolations of the Solid Rocket Motor (SRM) are discussed with respect to preliminary predictions of the primary and secondary radiation environments. The methodology for radiation and initial plume property predictions are set forth, including a new code for scattering media and independent secondary source models based on flight data. The Monte Carlo code employs a reverse-evaluation approach which traces rays back to their point of absorption in the plume. The SRM sea-level plume model is modified to account for the increased radiation in the ASRM plume due to the ASRM's propellant chemistry. The ASRM cycle-1 environment predictions are shown to identify a potential reason for the shutdown spike identified with pre-SRM staging.

Reardon, J. E.; Everson, J.; Smith, S. D.; Sulyma, P. R.

1991-01-01

87

Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels  

NASA Technical Reports Server (NTRS)

The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

1980-01-01

88

The role of HOx in super- and subsonic aircraft exhaust plumes  

Microsoft Academic Search

The generation of sulfuric acid aerosols in aircraft exhaust has emerged as a critical issue in determining the impact of supersonic aircraft on stratospheric ozone. It has long been held that the first step in the mechanism of aerosol formation is the oxidation of SO2 emitted from the engine by OH in the exhaust plume. We report in situ measurements

T. F. Hanisco; P. O. Wennberg; R. C. Cohen; J. G. Anderson; D. W. Fahey; E. R. Keim; R. S. Gao; R. C. Wamsley; S. G. Donnelly; L. A. Del Negro; R. J. Salawitch; K. K. Kelly; M. H. Proffitt

1997-01-01

89

Electrets used in measuring rocket exhaust effluents from the space shuttle's solid rocket booster during static test firing, DM-3  

NASA Technical Reports Server (NTRS)

The purpose of this experimental research was to compare Marshall Space Flight Center's electrets with Thiokol's fixed flow air samplers during the Space Shuttle Solid Rocket Booster Demonstration Model-3 static test firing on October 19, 1978. The measurement of rocket exhaust effluents by Thiokol's samplers and MSFC's electrets indicated that the firing of the Solid Rocket Booster had no significant effect on the quality of the air sampled. The highest measurement by Thiokol's samplers was obtained at Plant 3 (site 11) approximately 8 km at a 113 degree heading from the static test stand. At sites 11, 12, and 5, Thiokol's fixed flow air samplers measured 0.0048, 0.00016, and 0.00012 mg/m3 of CI. Alongside the fixed flow measurements, the electret counts from X-ray spectroscopy were 685, 894, and 719 counts. After background corrections, the counts were 334, 543, and 368, or an average of 415 counts. An additional electred, E20, which was the only measurement device at a site approximately 20 km northeast from the test site where no power was available, obtained 901 counts. After background correction, the count was 550. Again this data indicate there was no measurement of significant rocket exhaust effluents at the test site.

Susko, M.

1979-01-01

90

Recent Advances in Studies of Ionospheric Modification Using Rocket Exhaust (Invited)  

Microsoft Academic Search

Rocket exhaust interacts with the ionosphere to produce a wide range of disturbances. A ten second burn of the Orbital Maneuver Subsystem (OMS) engines on the Space Shuttle deposits over 1 Giga Joule of energy into the upper atmosphere. The exhaust vapors travel at speeds between 4.7 and 10.7 km\\/s coupling momentum into the ions by both collisions and charge

P. A. Bernhardt

2009-01-01

91

Inexpensive photodiode arrays for use in rocket plume and hot source monitoring and diagnostics  

Microsoft Academic Search

The spectroscopic analysis of plume emissions is a non-intrusive method which has been used to check for fatigue and possible damage throughout the pumps and other mechanisms in a rocket motor or engine. These components are made of various alloys. Knowing the composition of the alloys and for which parts they are used, one can potentially determine from the emissions

Dallas Snider; Robert Shanks; Reagan Cole; M. Keith Hudson

2003-01-01

92

Chance Encounter with a Stratospheric Kerosene Rocket Plume from Russia over California  

NASA Technical Reports Server (NTRS)

During a routine ER-2 aircraft high-altitude test flight on April 18, 1997, an unusual aerosol cloud was detected at 20 km altitude near the California coast at about 370 degrees N latitude. Not visually observed by the ER-2 pilot, the cloud was characterized bv high concentration of soot and sulfate aerosol in a region over 100 km in horizontal extent indicating that the source of the plume was a large hydrocarbon fueled vehicle, most likely a launch vehicle powered only by rocket motors burning liquid oxygen and kerosene. Two Russian Soyuz rockets could conceivably have produced the plume. The first was launched from the Baikonur Cosmodrome, Kazakhstan on April 6th; the second was launched from Plesetsk, Russia on April 9. Air parcel trajectory calculations and long-lived tracer gas concentrations in the cloud indicate that the Baikonur rocket launch is the most probable source of the plume. The parcel trajectory calculations do not unambiguously trace the transport of the Soyuz plume from Asia to North America, illustrating serious flaws in the point-to-point trajectory calculations. This chance encounter represents the only measurement of the stratospheric effects of emissions from a rocket powered exclusively with hydrocarbon fuel.

Newman, P. A.; Wilson, J. C.; Ross, M. N.; Brock, C.; Sheridan, P.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.; Loewenstein, M.

1999-01-01

93

Program listing for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program  

NASA Technical Reports Server (NTRS)

The program listing for the REEDM Computer Program is provided. A mathematical description of the atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model; vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud and meteorological layering techniques; user's instructions for the REEDM computer program; and worked example problems are contained in NASA CR-3646.

Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.

1982-01-01

94

Recent Advances in Studies of Ionospheric Modification Using Rocket Exhaust (Invited)  

NASA Astrophysics Data System (ADS)

Rocket exhaust interacts with the ionosphere to produce a wide range of disturbances. A ten second burn of the Orbital Maneuver Subsystem (OMS) engines on the Space Shuttle deposits over 1 Giga Joule of energy into the upper atmosphere. The exhaust vapors travel at speeds between 4.7 and 10.7 km/s coupling momentum into the ions by both collisions and charge exchange. Long-lived plasma irregularities are formed by the artificial hypersonic “neutral wind” passing through the ionosphere. Charge exchange between the fast neutrals and the ambient ions yields high-speed ion beams that excite electro-static plasma waves. Ground based radar has been used to detect both field aligned irregularities and electrostatic turbulence driven by the Space Shuttle OMS exhaust. Molecular ions produced by the charge exchange with molecules in the rocket exhaust recombine with a time scale of 10 minutes leaving a residual plasma depression. This ionospheric “hole” fills in by ambipolar diffusion leaving a depleted magnetic flux tube. This large scale reduction in Pedersen conductivity can provide a seed for plasma interchange instabilities. For instance, a rocket firing on the bottom side of the ionosphere near the equator can trigger a Rayleigh-Taylor instability that is naturally seen as equatorial Spread-F. The Naval Research Laboratory has been exploring these phenomena with dedicated burns of the Space Shuttle OMS engines and exhaust releases from rockets. The Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) series of experiments uses ground radars to probe the ionosphere affected by dedicated burns of the Space Shuttle OMS engines. Radars located at Millstone Hill, Massachusetts; Arecibo, Puerto Rico; Jicamarca, Peru; Kwajalein, Marshall Island; and Alice Springs, Australia have participated in the SIMPLEX program. A companion program called Shuttle Exhaust Ionospheric Turbulence Experiment has or will use satellites to fly through the turbulence ionosphere produced by Space Shuttle Exhaust. This program is employing the Air Force Research Laboratory C/NOFS and the Canadian CASSIOPE/EPoP satellites to make in situ measurements of Space Shuttle exhaust effects. Finally, NRL is conducting the Charged Aerosol Release Experiment which employs a solid rocket motor to modify the ionosphere using supersonic particulate injection and dusty plasma formation. Both the theoretic basis for these experiments and as summary of the experimental results will be presented.

Bernhardt, P. A.

2009-12-01

95

Measurement and Characterization of Space Shuttle Solid Rocket Motor Plume Acoustics  

NASA Technical Reports Server (NTRS)

NASA's current models to predict lift-off acoustics for launch vehicles are currently being updated using several numerical and empirical inputs. One empirical input comes from free-field acoustic data measured at three Space Shuttle Reusable Solid Rocket Motor (RSRM) static firings. The measurements were collected by a joint collaboration between NASA - Marshall Space Flight Center, Wyle Labs, and ATK Launch Systems. For the first time NASA measured large-thrust solid rocket motor plume acoustics for evaluation of both noise sources and acoustic radiation properties. Over sixty acoustic free-field measurements were taken over the three static firings to support evaluation of acoustic radiation near the rocket plume, far-field acoustic radiation patterns, plume acoustic power efficiencies, and apparent noise source locations within the plume. At approximately 67 m off nozzle centerline and 70 m downstream of the nozzle exit plan, the measured overall sound pressure level of the RSRM was 155 dB. Peak overall levels in the far field were over 140 dB at 300 m and 50-deg off of the RSRM thrust centerline. The successful collaboration has yielded valuable data that are being implemented into NASA's lift-off acoustic models, which will then be used to update predictions for Ares I and Ares V liftoff acoustic environments.

Kenny, Robert Jeremy

2009-01-01

96

The washout of combustion-generated hydrogen chloride. [rocket exhaust raindrop scavenging quantification  

NASA Technical Reports Server (NTRS)

The coefficient for the washout from a rocket exhaust cloud of HCl generated by the combustion of an ammonium perchlorate-based solid rocket propellant such as that to be used for the Space Shuttle Booster is determined. A mathematical model of HCl scavenging by rain is developed taking into account rain droplet size, fall velocity and concentration under various rain conditions, partitioning of exhaust HCl between liquid and gaseous phases, the tendency of HCl to promote water vapor condensation and the concentration and size of droplets within the exhaust cloud. The washout coefficient is calculated as a function of total cloud water content, total HCl content at 100% relative humidity, condensation nuclei concentration and rain intensity. The model predictions are compared with experimental results obtained in scavenging tests with solid rocket exhaust and raindrops of different sizes, and the large reduction in washout coefficient at high relative humidities predicted by the model is not observed. A washout coefficient equal to 0.0000512 times the -0.176 power of the mass concentration of HCl times the 0.773 power of the rainfall intensity is obtained from the experimental data.

Fenton, D. L.; Purcell, R. Y.; Hrdina, D.; Knutson, E. O.

1980-01-01

97

The Role of HOx in Super-and Subsonic Aircraft Exhaust Plumes  

NASA Technical Reports Server (NTRS)

The generation of sulfuric acid aerosols in aircraft exhaust has emerged as a critical issue in determining the impact of supersonic aircraft on stratospheric ozone. It has long been held that the first step in the mechanism of aerosol formation is the oxidation of SO2 emitted from the engine by OH in the exhaust plume. We report in situ measurements of OH and HO2 in the exhaust plumes of a supersonic (Air France Concorde) and a subsonic (NASA ER-2) aircraft in the lower stratosphere. These measurements imply that reactions with OH are responsible for oxidizing only a small fraction of SO2 (2%), and thus cannot explain the large number of particles observed in the exhaust wake of the Concorde.

Hanisco, T. F.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Keim, E. R.; Gao, R. S.; Wamsley, R. C.; Donnelly, S. G.; DelNegro, L. A.

1997-01-01

98

The Role of HO(x) in Super- and Subsonic Aircraft Exhaust Plumes  

NASA Technical Reports Server (NTRS)

The generation of sulfuric acid aerosols in aircraft exhaust has emerged as a critical issue in determining the impact of supersonic aircraft on stratospheric ozone. It has long been held that the first step in the mechanism of aerosol formation is the oxidation of SO2, emitted from the engine by OH in the exhaust plume. We report in situ measurements of OH and HO, in the exhaust plumes of a supersonic (Air France Concorde) and a subsonic (NASA ER-2) aircraft in the lower stratosphere. These measurements imply that reactions with OH are responsible for oxidizing only a small fraction of SO2 (2%), and thus cannot explain the large number of particles observed in the exhaust wake of the Concorde.

Hanisco, T. F.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Keim, E. R.; Gao, R. S.; Wamsley, R. C.; Donnelly, S. G.; DelNegro, L. A.; Salawitch, R. J.; Kelly, K. K.; Proffitt, M. H.

1997-01-01

99

The Role of HO(x) in Super- and Subsonic Aircraft Exhaust Plumes  

NASA Technical Reports Server (NTRS)

The generation of sulfuric acid aerosols in aircraft exhaust has emerged as a critical issue in determining the impact of supersonic aircraft on stratospheric ozone. It has long been held that the first step in the mechanism of aerosol formation is the oxidation of SO2 emitted from the engine by OH in the exhaust plume. We report in situ measurements of OH and HO2 in the exhaust plumes of a supersonic (Air France Concorde) and a subsonic (NASA ER-2) aircraft in the lower stratosphere. These measurements imply that reactions with OH are responsible for oxidizing only a small fraction of SO2 (2%), and thus cannot explain the large number of particles observed in the exhaust wake of the Concorde.

Hanisco, T. F.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Keim, E. R.; Gao, R. S.; Wamsley, R. C.; Donnelly, S. G.; DelNegro, L. A.; Salawitch, R. J.; Kelly, K. K.; Proffitt, M. H.

1997-01-01

100

Incoherent scatter from space shuttle and rocket engine plumes in the ionosphere  

NASA Astrophysics Data System (ADS)

Enhanced echoes from the 430 MHz radar at Arecibo were observed during burns of the space shuttle orbital maneuver subsystem (OMS) engines near 317 km altitude. Similar radar signatures of enhanced backscatter were also obtained by the Millstone Hill radar observing the plume of a Centaur engine burning in the ionosphere. A theoretical model of incoherent scatter is presented to explain the radar backscatter observations. The theory considers molecular ion beams generated in the exhaust plume as a result of charge exchange between the ambient O+ ions and the high-speed exhaust molecules (primarily H2O). The field-aligned gyromotion of the pickup ions affects the radio wave scattering from the random thermal fluctuations of electron density. Numerical calculations are carried out for plasmas modified by the space shuttle or Centaur engines, and reasonable agreement with observations is found for the total scattered power. Incoherent backscatter spectra respond to characteristics of the exhaust plume such as vector flow velocity, temperature, and composition. The nonequilibrium velocity distributions for the ions in the pickup ion plume are similar to the distributions found in strongly convecting auroral region ionospheres. The incoherent scatter from the plume ions can be used to validate techniques used to study naturally disturbed plasmas. The predictions of our radar scatter calculations will be tested in future experiments using the space shuttle OMS engines over incoherent scatter radars located at equatorial latitudes and midlatitudes.

Bernhardt, P. A.; Huba, J. D.; Swartz, W. E.; Kelley, M. C.

1998-02-01

101

Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors  

NASA Technical Reports Server (NTRS)

Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

Sambamurthi, Jay K.

1995-01-01

102

Cooled Ceramic Matrix Composite Panel Successfully Tested in Rocket Exhaust  

NASA Technical Reports Server (NTRS)

Actively cooled ceramic matrix composite (CMC) components are enabling or enhancing for a broad range of hypersonic and reusable launch vehicle propulsion systems. Teaming with other NASA centers, the Air Force, and industry, the Glenn Ceramics Branch has successfully tested multiple cooled CMC panel concepts in high-heat-flux, high-pressure, flowing rocket engine combustion gas environments. Sub-element components survived multiple cycles and the severe thermal gradients imposed by combustion gas temperatures in excess of 5500 F and cryogenic hydrogen or ambient temperature water internal coolants. These demonstrations are critical for the continued development of this class of materials, and the research is expected to continue with additional concepts and increasingly larger and more complex geometries being fabricated and tested in a broad range of engine operating conditions.

Eckel, Andrew J.

2001-01-01

103

Size-resolved particle emission indices in the stratospheric plume of an Athena II rocket  

Microsoft Academic Search

Simultaneous measurements of carbon dioxide (CO2) mixing ratio and alumina (Al2O3) particle abundances between 0.004 and 1.2 mum were obtained in the stratospheric plume wake of an Athena II solid-fueled rocket motor (SRM). A multimode model of the particle size distribution is used to determine the number (N) and surface area (SA) emission indices as 8.7 +\\/- 2.0 × 1015

O. Schmid; J. M. Reeves; J. C. Wilson; C. Wiedinmyer; C. A. Brock; D. W. Toohey; L. M. Avallone; A. M. Gates; M. N. Ross

2003-01-01

104

Size-resolved particle emission indices in the stratospheric plume of an Athena II rocket  

Microsoft Academic Search

Simultaneous measurements of carbon dioxide (CO2) mixing ratio and alumina (Al2O3) particle abundances between 0.004 and 1.2 ?m were obtained in the stratospheric plume wake of an Athena II solid-fueled rocket motor (SRM). A multimode model of the particle size distribution is used to determine the number (N) and surface area (SA) emission indices as 8.7 ± 2.0 × 1015

O. Schmid; J. M. Reeves; J. C. Wilson; C. Wiedinmyer; C. A. Brock; D. W. Toohey; L. M. Avallone; A. M. Gates; M. N. Ross

2003-01-01

105

Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines: 1. Heterogeneous condensation of combustion products  

NASA Astrophysics Data System (ADS)

Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines during last stages of Proton, Molniya, and Start launchers operating in the upper atmospheric with different types of fuels is considered. Particle heating is taken into account with emission of latent heat of condensation and energy loss due to radiation and heat exchange with combustion products. Using the solution of the heat balance and condensed particle mass equations, the temporal change in the temperature and thickness of the condensate layer is obtained. Practically, no condensation of water vapor and carbon dioxide in the jet exhaust of a Start launcher occurs. In plumes of Proton and Molniya launchers, the condensation of water vapor and carbon dioxide can start at distances of 120-170 m and 450-650 m from the engine nozzle, respectively. In the course of condensation, the thickness of the "water" layer on particles can exceed 100 Å, and the thickness of carbon dioxide can exceed 60 Å.

Platov, Yu. V.; Semenov, A. I.; Filippov, B. V.

2014-01-01

106

Rocket exhaust effluent modeling for tropospheric air quality and environmental assessments  

NASA Technical Reports Server (NTRS)

The various techniques for diffusion predictions to support air quality predictions and environmental assessments for aerospace applications are discussed in terms of limitations imposed by atmospheric data. This affords an introduction to the rationale behind the selection of the National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) Rocket Exhaust Effluent Diffusion (REED) program. The models utilized in the NASA/MSFC REED program are explained. This program is then evaluated in terms of some results from a joint MSFC/Langley Research Center/Kennedy Space Center Titan Exhaust Effluent Prediction and Monitoring Program.

Stephens, J. B.; Stewart, R. B.

1977-01-01

107

Chance Encounter with a Stratospheric Kerosene Rocket Plume From Russia Over California  

NASA Technical Reports Server (NTRS)

A high-altitude aircraft flight on April 18, 1997 detected an enormous aerosol cloud at 20 km altitude near California (37 N). Not visually observed, the cloud had high concentrations of soot and sulfate aerosol, and was over 180 km in horizontal extent. The cloud was probably a large hydrocarbon fueled vehicle, most likely from rocket motors burning liquid oxygen and kerosene. One of two Russian Soyuz rockets could have produced the cloud: a launch from the Baikonur Cosmodrome, Kazakhstan on April 6; or from Plesetsk, Russia on April 9. Parcel trajectories and long-lived trace gas concentrations suggest the Baikonur launch as the cloud source. Cloud trajectories do not trace the Soyuz plume from Asia to North America, illustrating the uncertainties of point-to-point trajectories. This cloud encounter is the only stratospheric measurement of a hydrocarbon fuel powered rocket.

Newman, P. A.; Wilson, J. C.; Ross, M. N.; Brock, C. A.; Sheridan, P. J.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.; Loewenstein, M.; Podolske, J. R.; Einaudi, Franco (Technical Monitor)

2000-01-01

108

Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume  

NASA Technical Reports Server (NTRS)

A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform routine CLEAN-SC created a series of lumped sources which may be unphysical. We believe that the present effort is the first-ever attempt to directly measure noise source distribution in a rocket plume.

Panda, J.; Mosher, R.

2010-01-01

109

Passive ranging of dynamic rocket plumes using infrared and visible oxygen attenuation  

NASA Astrophysics Data System (ADS)

Atmospheric oxygen absorption bands in observed spectra of boost phase missiles can be used to accurately estimate range from sensor to target. One method is to compare observed values of band averaged absorption to radiative transfer models. This is most effective using bands where there is a single absorbing species. This work compares spectral attenuation of two oxygen absorption bands in the near-infrared (NIR) and visible (Vis) spectrum, centered at 762 nm and 690 nm, to passively determine range. Spectra were observed from a static test of a full-scale solid rocket motor at a 900m range. The NIR O2 band provided range estimates accurate to within 3%, while the Vis O2 band had a range error of 15%. A Falcon 9 rocket launch at an initial range of 13km was also tracked and observed for 90 seconds after ignition. The NIR O2 band provided in-flight range estimates accurate to within 2% error for the first 30 seconds of tracked observation. The Vis O2 band also provided accurate range estimates with an error of approximately 4%. Rocket plumes are expected to be significantly brighter at longer wavelengths, but absorption in the NIR band is nearly ten times stronger than the Vis band, causing saturation at shorter path lengths. An atmospheric band is considered saturated when all the in-band frequencies emitted from the rocket plume are absorbed before reaching the sensor.

Vincent, R. Anthony; Hawks, Michael R.

2011-05-01

110

Stratospheric aircraft exhaust plume and wake chemistry studies  

NASA Technical Reports Server (NTRS)

This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

1992-01-01

111

Shuttle primary reaction control system engine exhaust plume contamination effects  

NASA Technical Reports Server (NTRS)

Space Shuttle proximity operations constitute an important part of the SSF induced external environment. The impingement of primary reaction control system (PRCS) engine plumes on SSF functional surfaces during docking or berthing and separation leads to concerns about molecular contamination and high speed particle impact. The Shuttle Plume Impingement flight Experiment (SPIE) was designed to provide a direct measure of both the molecular contamination and particle impact rates produced by Shuttle PRCS engines in the LEO environment. The measured permanent deposition produced by PRCS engine firings was less than that assumed in current SSF programatic assessments. Only two to three possible high velocity particle impact pits were observed on the RMS end effector hardware.

Koontz, Steve; Ehlers, Horst; Pedley, Mike; Cross, John; Hakes, Charles

1993-01-01

112

Optical Measurements on Solid Specimens of Solid Rocket Motor Exhaust and Solid Rocket Motor Slag  

NASA Technical Reports Server (NTRS)

Samples of aluminum slag were investigated to aid the Earth Science and Applications Division at the Marshall Space Flight Center (MSFC). Alumina from space motor propellant exhaust and space motor propellant slag was examined as a component of space refuse. Thermal emittance and solar absorptivity measurements were taken to support their comparison with reflectance measurements derived from actual debris. To determine the similarity between the samples and space motor exhaust or space motor slag, emittance and absorbance results were correlated with an examination of specimen morphology.

Roberts, F. E., III

1991-01-01

113

Range safety signal attenuation by the Space Shuttle main engine exhaust plumes  

NASA Technical Reports Server (NTRS)

An analysis of attenuation of the range safety signal at 416.5 MHz observed after SRB separation and ending at hand over to Bermuda, during which transmission must pass through the LOX/H2 propelled main engine exhaust plumes, is summarized. Absorption by free electrons in the exhaust plume can account for the nearly constant magnitude of the observed attenuation during this period; it does not explain the short term transient increases that occur at one or more times during this portion of the flight. It is necessary to assume that a trace amount (about 0.5 ppm) of easily ionizable impurity must be present in the exhaust flow. Other mechanisms of attenuation, such as scattering by turbulent fluctuations of both free and bound electrons and absorption by water vapor, were examined but found to be inadequate to explain the observations.

Pearce, B. E.

1983-01-01

114

Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag  

NASA Technical Reports Server (NTRS)

Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

1980-01-01

115

Exhausted Plume Flow Field Prediction Near the Afterbody of Hypersonic Flight Vehicles in High Altitudes  

NASA Technical Reports Server (NTRS)

A two-dimensional computer code to solve the Burnett equations has been developed which computes the flow interaction between an exhausted plume and hypersonic external flow near the afterbody of a flight vehicle. This Burnett-2D code extends the capability of Navier-Stokes solver (RPLUS2D code) to include high-order Burnett source terms and slip-wall conditions for velocity and temperature. Higher-order Burnett viscous stress and heat flux terms are discretized using central-differencing and treated as source terms. Blocking logic is adopted in order to overcome the difficulty of grid generation. The computation of exhaust plume flow field is divided into two steps. In the first step, the thruster nozzle exit conditions are computed which generates inflow conditions in the base area near the afterbody. Results demonstrated that at high altitudes, the computations of nozzle exit conditions must include the effects of base flow since significant expansion exists in the base region. In the second step, Burnett equations were solved for exhaust plume flow field near the afterbody. The free stream conditions are set at an altitude equal to 80km and the Mach number is equal to 5.0. The preliminary results show that the plume expansion, as altitude increases, will eventually cause upstream flow separation.

Chou, Lynn Chen; Mach, Kervyn D.; Deng, Zheng-Tao; Liaw, Goang-Shin

1995-01-01

116

The effect of exhaust plume/afterbody interaction on installed Scramjet performance  

NASA Technical Reports Server (NTRS)

Newly emerging aerospace technology points to the feasibility of sustained hypersonic flight. Designing a propulsion system capable of generating the necessary thrust is now the major obstacle. First-generation vehicles will be driven by air-breathing scramjet (supersonic combustion ramjet) engines. Because of engine size limitations, the exhaust gas leaving the nozzle will be highly underexpanded. Consequently, a significant amount of thrust and lift can be extracted by allowing the exhaust gases to expand along the underbody of the vehicle. Predicting how these forces influence overall vehicle thrust, lift, and moment is essential to a successful design. This work represents an important first step toward that objective. The UWIN code, an upwind, implicit Navier-Stokes computer program, has been applied to hypersonic exhaust plume/afterbody flow fields. The capability to solve entire vehicle geometries at hypersonic speeds, including an interacting exhaust plume, has been demonstrated for the first time. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. For moderately underexpanded jets, afterbody forces were found to vary linearly with the nozzle exit pressure, and increasing the exit pressure produced additional nose-down pitching moment. Coupling a species continuity equation to the UWIN code enabled calculations indicating that exhaust gases with low isentropic exponents (gamma) contribute larger afterbody forces than high-gamma exhaust gases. Moderately underexpanded jets, which remain attached to unswept afterbodies, underwent streamwise separation on upswept afterbodies. Highly underexpanded jets produced altogether different flow patterns, however. The highly underexpanded jet creates a strong plume shock, and the interaction of this shock with the afterbody was found to produce complicated patterns of crossflow separation. Finally, the effect of thrust vectoring on vehicle balance has been shown to alter dramatically the vehicle pitching moment.

Edwards, Thomas Alan

1988-01-01

117

Characterization of rocket propellant combustion products: Description of sampling and analysis methods for rocket exhaust characterization studies  

SciTech Connect

A systematic approach has been developed and experimentally validated for the sampling and chemical characterization of the rocket motor exhaust generated from the firing of scaled down test motors at the US Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama. The overall strategy was to sample and analyze major exhaust constituents in near real time, while performing off-site analyses of samples collected for the determination of trace constituents of the particulate and vapor phases. Initial interference studies were performed using atmospheric pressure burns of 1 g quantities of propellants in small chambers at Oak Ridge National Laboratory. Carbon monoxide and carbon dioxide were determined using non-dispersive infrared instrumentation. Hydrogen cyanide, hydrogen chloride, and ammonia determinations were made using ion selective electrode technology. Oxides of nitrogen were determined using chemiluminescence instrumentation. Airborne particulate mass concentration was determined using infrared forward scattering measurements and a tapered element oscillating microbalance, as well as conventional gravimetry. Particulate phase metals were determined by collection on Teflon membrane filters, followed by inductively coupled plasma and atomic absorption analysis. Particulate phase polynuclear aromatic hydrocarbons (PAH) and nitro-PAH were collected using high volume sampling on a two stage filter. Target species were extracted, and quantified by gas chromatography/mass spectrometry (GC/MS). Vapor phase species were collected on multi-sorbent resin traps, and subjected to thermal desorption GC/MS for analysis. 11 refs., 1 fig., 1 tab.

Jenkins, R.A.

1990-06-07

118

An overview of in-flight plume diagnostics for rocket engines  

NASA Technical Reports Server (NTRS)

An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

1992-01-01

119

An overview of in-flight plume diagnostics for rocket engines  

NASA Astrophysics Data System (ADS)

An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

1992-07-01

120

Space Shuttle Solid Rocket Motor Plume Pressure and Heat Rate Measurements  

NASA Technical Reports Server (NTRS)

The Solid Rocket Booster (SRB) Main Flame Deflector (MFD) at Launch Complex 39A was instrumented with sensors to measure heat rates, pressures, and temperatures on the last three Space Shuttle launches. Because the SRB plume is hot and erosive, a robust Tungsten Piston Calorimeter was developed to compliment the measurements made by off-the-shelf sensors. Witness materials were installed and their melting and erosion response to the Mach 2 / 4500 F / 4-second duration plume was observed. The data show that the specification document used for the design of the MFD thermal protection system over-predicted heat rates by a factor of 3 and under-predicted pressures by a factor of 2. These findings will be used to baseline NASA Computational Fluid Dynamics models and develop innovative MFD designs for the Space Launch System (SLS) before this vehicle becomes operational in 2017.

vonEckroth, Wulf; Struchen, Leah; Trovillion, Tom; Perez, Ravael; Nereolich, Shaun; Parlier, Chris

2012-01-01

121

Crew Launch Vehicle Mobile Launcher Solid Rocket Motor Plume Induced Environment  

NASA Technical Reports Server (NTRS)

The plume-induced environment created by the Ares 1 first stage, five-segment reusable solid rocket motor (RSRMV) will impose high heating rates and impact pressures on Launch Complex 39. The extremes of these environments pose a potential threat to weaken or even cause structural components to fail if insufficiently designed. Therefore the ability to accurately predict these environments is critical to assist in specifying structural design requirements to insure overall structural integrity and flight safety. This paper presents the predicted thermal and pressure environments induced by the launch of the Crew Launch Vehicle (CLV) from Launch Complex (LC) 39. Once the environments are predicted, a follow-on thermal analysis is required to determine the surface temperature response and the degradation rate of the materials. An example of structures responding to the plume-induced environment will be provided.

Vu, Bruce T.; Sulyma, Peter

2008-01-01

122

Space shuttle exhaust plumes in the lower thermosphere: Advective transport and diffusive spreading  

NASA Astrophysics Data System (ADS)

The space shuttle main engine plume deposited between 100 and 115 km altitude is a valuable tracer for global-scale dynamical processes. Several studies have shown that this plume can reach the Arctic or Antarctic to form bursts of polar mesospheric clouds (PMCs) within a few days. The rapid transport of the shuttle plume is currently not reproduced by general circulation models and is not well understood. To help delineate the issues, we present the complete satellite datasets of shuttle plume observations by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument and the Sub-Millimeter Radiometer instrument. From 2002 to 2011 these two instruments observed 27 shuttle plumes in over 600 limb scans of water vapor emission, from which we derive both advective meridional transport and diffusive spreading. Each plume is deposited at virtually the same place off the United States east coast so our results are relevant to northern mid-latitudes. We find that the advective transport for the first 6-18 h following deposition depends on the local time (LT) of launch: shuttle plumes deposited later in the day (~13-22 LT) typically move south whereas they otherwise typically move north. For these younger plumes rapid transport is most favorable for launches at 6 and 18 LT, when the displacement is 10° in latitude corresponding to an average wind speed of 30 m/s. For plumes between 18 and 30 h old some show average sustained meridional speeds of 30 m/s. For plumes between 30 and 54 h old the observations suggest a seasonal dependence to the meridional transport, peaking near the beginning of year at 24 m/s. The diffusive spreading of the plume superimposed on the transport is on average 23 m/s in 24 h. The plume observations show large variations in both meridional transport and diffusive spreading so that accurate modeling requires knowledge of the winds specific to each case. The combination of transport and spreading from the STS-118 plume in August 2007 formed bright PMCs between 75 and 85°N a day after launch. These are the highest latitude Arctic PMCs formed by shuttle exhaust reported to date.

Stevens, Michael H.; Lossow, Stefan; Siskind, David E.; Meier, R. R.; Randall, Cora E.; Russell, James M.; Urban, Jo; Murtagh, Donal

2014-02-01

123

Hydrochloric acid aerosol and gaseous hydrogen chloride partitioning in a cloud contaminated by solid rocket exhaust  

NASA Technical Reports Server (NTRS)

Partitioning of hydrogen chloride between hydrochloric acid aerosol and gaseous HCl in the lower atmosphere was experimentally investigated in a solid rocket exhaust cloud diluted with humid ambient air. Airborne measurements were obtained of gaseous HCl, total HCl, relative humidity and temperature to evaluate the conditions under which aerosol formation occurs in the troposphere in the presence of hygroscopic HCl vapor. Equilibrium predictions of HCl aerosol formation accurately predict the measured HCl partitioning over a range of total HCl concentrations from 0.6 to 16 ppm.

Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

1980-01-01

124

The role of sulfur emission in volatile particle formation in jet aircraft exhaust plumes  

Microsoft Academic Search

Recent in-situ emission measurements of the Concorde in the lower stratosphere point to a surprisingly efficient conversion of fuel sulfur to H2SO4 in the exhaust plume. By means of a comprehensive model, the formation and evolution of aerosol particles and precursors are calculated in the diluting aircraft wake. The results provide strong evidence that high levels of SO3 present in

B. Kärcher; D. W. Fahey

1997-01-01

125

Exhaust Plume Effects on Sonic Boom for a Delta Wing and a Swept Wing-Body Model  

NASA Technical Reports Server (NTRS)

Supersonic travel is not allowed over populated areas due to the disturbance caused by the sonic boom. Research has been performed on sonic boom reduction and has included the contribution of the exhaust nozzle plume. Plume effect on sonic boom has progressed from the study of isolated nozzles to a study with four exhaust plumes integrated with a wing-body vehicle. This report provides a baseline analysis of the generic wing-body vehicle to demonstrate the effect of the nozzle exhaust on the near-field pressure profile. Reductions occurred in the peak-to-peak magnitude of the pressure profile for a swept wing-body vehicle. The exhaust plumes also had a favorable effect as the nozzles were moved outward along the wing-span.

Castner, Raymond; Lake, Troy

2012-01-01

126

Temperature, Pressure, and Infrared Image Survey of an Axisymmetric Heated Exhaust Plume  

NASA Technical Reports Server (NTRS)

The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate computational fluid dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte Carlo ray trace algorithm and an infrared band model for exhaust gases. This report describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables.

Nelson, Edward L.; Mahan, J. Robert; Birckelbaw, Larry D.; Turk, Jeffrey A.; Wardwell, Douglas A.; Hange, Craig E.

1996-01-01

127

Rocket engine plume diagnostics using video digitization and image processing - Analysis of start-up  

NASA Technical Reports Server (NTRS)

Video digitization techniques have been developed to analyze the exhaust plume of the Space Shuttle Main Engine. Temporal averaging and a frame-by-frame analysis provide data used to evaluate the capabilities of image processing techniques for use as measurement tools. Capabilities include the determination of the necessary time requirement for the Mach disk to obtain a fully-developed state. Other results show the Mach disk tracks the nozzle for short time intervals, and that dominate frequencies exist for the nozzle and Mach disk movement.

Disimile, P. J.; Shoe, B.; Dhawan, A. P.

1991-01-01

128

Plume particle collection and sizing from static firing of solid rocket motors  

NASA Technical Reports Server (NTRS)

A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.

Sambamurthi, Jay K.

1995-01-01

129

JOURNAL OF SPACECRAFT AND ROCKETS Vol. 42, No. 4, JulyAugust 2005  

E-print Network

solid-propellant rocket motors such as the space shuttle. Traditionally, lidar backscatter cross Particles The principal source of scattering in aluminized solid-propellant rocket exhaust plumes is Al2O3JOURNAL OF SPACECRAFT AND ROCKETS Vol. 42, No. 4, July­August 2005 Lidar Backscatter Properties

130

Analytic model for washout of HCl(g) from dispersing rocket exhaust clouds  

NASA Technical Reports Server (NTRS)

The potential is investigated that precipitation scavenging of HCl from large solid rocket exhaust clouds may result in unacceptably acidic rain in the Cape Canaveral, Florida, area before atmospheric dispersion reduces HCl concentrations to safe limits. Several analytic expressions for HCl(g) and HCl(g + aq) washout are derived; a geometric mean washout coefficient is recommended. A previous HCl washout model is refined and applied to a space shuttle case (70 t HCl exhausted up to 4 km) and eight Titan 3 (60 percent less exhaust) dispersion cases. The vertical column density (sigma) decays were deduced by application of a multilayer Gaussian diffusion model to seven standard meteorological regimes for overland advection. The Titan 3 decays of sigma and initial rain pH differed greatly among regimes; e.g., a range of 2 pH units was spanned at x 100 km downwind and t = 2 hr. Environmentally significant pH's .5 for infrequent exposures were shown possible at X = 50 km and t 5 hr for the two least dispersive Titan 3 cases. Representative examples of downwind rainwater pH and G(X) are analyzed. Factors affecting the validity of the results are discussed.

Pellett, G. L.

1981-01-01

131

Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes  

NASA Technical Reports Server (NTRS)

Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies (that employed parabolic or temporal approximations) and the measured data. Finally to address the major uncertainty in the near-field plume modeling related to the plume processing of sulfur compounds and advanced model was developed to evaluate its impact on the chemical processes in the near wake. A comprehensive aerosol model is developed and it is coupled with chemical kinetics and the axisymmetric turbulent jet flow models. The integrated model is used to simulate microphysical processes in the near-field jet plume, including sulfuric acid and water binary homogeneous nucleation, coagulation, non-equilibrium heteromolecular condensation, and sulfur-induced soot activation. The formation and evolution of aerosols are computed and analyzed. The computed results show that a large number of ultra-fine (0.3--0.6 nm in radius) volatile HSO4 - HO embryos are generated in the near-field plume. These embryos further grow in size by self coagulation and condensation. Soot particles can be activated by both heterogeneous nucleation and scavenging of H2SO4-H2O aerosols. These activated soot particles can serve as water condensation nuclei for contrail formation. Conditions under which ice contrails can form behind aircrafts are studied. The sensitivities of the threshold temperature for contrail formation with respect to aircraft propulsion efficiency, relative humidity, and ambient pressure are evaluated. The computed aerosol properties for different extent of fuel sulfur conversion to S(VI) (SO3 and H2SO4) in engine are examined and the results are found to be sensitive to this conversion fraction.

Menon, Suresh

1998-01-01

132

Exhaust plume and contamination characteristics of a bipropellant (MMH/N2O4) RCS thruster  

NASA Technical Reports Server (NTRS)

Results are presented for three recent tests in a series of thruster contamination experiments made in liquid helium-cooled environmental facility. The contaminating effects encountered on various materials, surfaces, and components, due to the exhaust products from a 5-pound thrust, bipropellant (MMH/N2O4) thruster are investigated. The angular distribution of plume effects around the periphery of the thruster established by transmittance changes of quartz samples over the wavelength range from 0.2 to 2.0 micrometer is studied, along with mass deposition rates at a specific location measured with a quartz crystal microbalance for three different experiments. Quadrupole mass spectrometer measurements of the exhaust products over the mass number range from 12 to 75; infrared transmittance measurements of contaminated samples for the wavelength range from 2.5 to 15 microns; and infrared transmittance measurements of residue from the thruster nozzle are also considered.

Spisz, E. W.; Bowman, R. L.; Jack, J. R.

1973-01-01

133

First gaseous ion composition measurements in the exhaust plume of a jet aircraft in flight: Implications for gaseous sulfuric acid, aerosols, and chemiions  

Microsoft Academic Search

Mass spectrometric composition measurements of gaseous negative ions have been made in the exhaust plume of a commercial jet aircraft (Airbus A310) in flight at altitudes around 10.4 km and at two plume ages around 3.0 and 3.6 s. Negative ions observed inside the exhaust plume are mostly NO3-(HNO3)m and HSO4-(HNO3)m with m<=2. Outside the plume in the ``background'' atmosphere

F. Arnold; K.-H. Wohlfrom; M. W. Klemm; J. Schneider; K. Gollinger; U. Schumann; R. Busen

1998-01-01

134

First gaseous ion composition measurements in the exhaust plume of a jet aircraft in flight: Implications for gaseous sulfuric acid, aerosols, and chemiions  

Microsoft Academic Search

Mass spectrometric composition measurements of gaseous negative ions have been made in the exhaust plume of a commercial jet aircraft (Airbus A310) in flight at altitudes around 10.4 km and at two plume ages around 3.0 and 3.6 s. Negative ions observed inside the exhaust plume are mostly NO3?(HNO3)m and HSO4?(HNO3)m with m ?2. Outside the plume in the “background”

F. Arnold; K.-H. Wohlfrom; M. W. Klemm; J. Schneider; K. Gollinger; U. Schumann; R. Busen

1998-01-01

135

Optical features of rocket exhaust products interaction with the upper atmosphere  

NASA Astrophysics Data System (ADS)

The launch of powerful rockets and exhaust of space-vehicle engines are accompanied by injection of combustion products with complex structure into the atmosphere. These products contain both gas and dispersed solid components that result in development of gas-dust clouds having certain geometric and dynamic features. The development of such artificial formations in the upper atmosphere is accompanied by rather unusual optical phenomena caused by the scattering of sunlight from the combustion products as well as their interaction with constituents of the upper atmosphere. Investigation of these optical phenomena permits studies of anthropogenic pollution of near-Earth space, interaction processes of pollution with the environment and dynamic processes in the upper atmosphere. The report demonstrates and evaluates experimental data obtained by all-sky photo and TV cameras and by spectral camera S-180-S in the North of Russia.

Chernouss, S. A.; Kirillov, A. S.; Platov, Yu. V.

2005-08-01

136

A field study of solid rocket exhaust impacts on the near-field environment  

NASA Technical Reports Server (NTRS)

Large solid rocket motors release large quantities of hydrogen chloride and aluminum oxide exhaust during launch and testing. Measurements and analysis of the interaction of this material with the deluge water spray and other environmental factors in the near field (within 1 km of the launch or test site) are summarized. Measurements of mixed solid and liquid deposition (typically 2 normal HCl) following space shuttle launches and 6.4 percent scale model tests are described. Hydrogen chloride gas concentrations measured in the hours after the launch of STS 41D and STS 51A are reported. Concentrations of 9 ppm, which are above the 5 ppm exposure limits for workers, were detected an hour after STS 51A. A simplified model which explains the primary features of the gas concentration profiles is included.

Anderson, B. J.; Keller, Vernon W.

1990-01-01

137

Results of an investigation of jet plume effects on an 0.010-scale model (75-OTS) of the space shuttle integrated vehicle in the 9 x 7-foot leg of the NASA/Ames unitary wind tunnel (IA82B), volume 1. [an exhaust flow simulation  

NASA Technical Reports Server (NTRS)

The base pressure environment was investigated for the first and second stage mated vehicle in a supersonic flow field from Mach 1.55 through 2.20 with simulated rocket engine exhaust plumes. The pressure environment was investigated for the orbiter at various vent port locations at these same freestream conditions. The Mach number environment around the base of the model with rocket plumes simulated was examined. Data were obtained at angles of attack from -4 deg through +4 deg at zero yaw, and at yaw angles from -4 deg through +4 deg at zero angle of attack, with rocket plume sizes varying from smaller than nominal to much greater than nominal. Failed orbiter engine data were also obtained. Elevon hinge moments and wing panel load data were obtained during all runs. Photographs of the tested configurations are shown.

Hawthorne, P. J.

1976-01-01

138

Dynamic Analysis of a Building Under Rocket Engine Plume Acoustic Load  

NASA Technical Reports Server (NTRS)

Studies have been performed to develop finite-element modeling and simulation techniques to predict the dynamic structural response of Building 4010 to the acoustic load from the plume of high-thrust rocket motors. The building is the Test Control Center and general office space for the E-complex at Stennis Space Center. It is a large single span; light-structured building located approximately 1,000 feet from the E-1 test stand. A three-dimensional shell/beam combined model of the building was built using Pro/Engineer platform and imported into Pro/Mechanica for analysis. An Equivalent Shell technique was developed to simplify the highly complex building structure so that the calculation is more efficient and accurate. A deterministic approach was used for the dynamic analysis. A pre-stressed modal analysis was performed to simulate the weight stiffening of the structure, through which about 200 modes ranging from 0 to 35 Hz were identified. In an initial dynamic frequency analysis, the maximum response over the model was found. Then the complete 3-D distributions of the displacement, as well as the stresses, were calculated through a final frequency analysis. The results were compared to a strain gage and accelerometer recordings from rocket engine tests and showed reasonable agreement.

Qian, Z.; VanDyke, D.; Wright, S.; Redmond, M.

2001-01-01

139

Search of archived data sources for rocket exhaust-induced modifications of the ionosphere  

SciTech Connect

The emergence of the Satellite Power System (SPS) concept as a way of augmenting the dwindling energy sources available for commercial power usage involved such a large and unprecendented technological program that detailed assessment and feasibility studies were undertaken in an attempt to specify the true impact such a program would have. As part of the issues addressed, a comprehensive environmental impact study was initiated that involved an unprecedented scope of concerns ranging from ground-level noise and weather modifications to possible planetary-scale perturbations caused by SPS activity in distant Earth orbits. This report describes results of a study of an intermediate region of the Earth's environment (the ionosphere) where large-scale perturbations are caused by routine rocket activity. The SPS program calls for vast transportation demands into and out from the ionosphere (h approx. = 200 to 1000 km), and thus the well-known effect of chemical depletions of the ionosphere (so-called ionospheric holes) caused by rocket exhaust signaled a concern over the possible large-scale and long-term consequences of the induced effects.

Chacko, C.C.; Mendillo, M.

1980-09-01

140

Ionospheric effects of rocket exhaust products (HEAO-C, Skylab and SPS-HLLV)  

SciTech Connect

This paper reviews the current state of our understanding of the problem of ionospheric F-layer depletions produced by chemical effects of the exhaust gases from large rockets, with particular emphasis on the Heavy Lift Launch Vehicles (HLLV) proposed for use in the construction of solar power satellites. The currently planned HLLV flight profile calls for main second-stage propulsion confined to altitudes below 124 km, and a brief orbit-circularization maneuver at apogee. The second-stage engines deposit 9 x 10/sup 31/ H/sub 2/O and H/sub 2/ molecules between 56 and 124 km. Model computations show that they diffuse gradually into the ionospheric F region, where they lead to weak but widespread and persistent depletions of ionization and continuous production of H atoms. The orbit-circularization burn deposits 9 x 10/sup 29/ exhaust molecules at about 480-km altitude. These react rapidly with the F2 region 0/sup +/ ions, leading to a substantial (factor-of-three) reduction in plasma density, which extends over a 1000- by 2000-km region and persists for four to five hours. Also described are experimental airglow and incoherent-scatter radar measurements performed in conjunction with the 1979 launch of satellite HEAO-C, together with prelaunch and post-launch computations of the ionospheric effects. Several improvements in the model have been driven by the experimental observations. The computer model is described in some detail.

Zinn, J; Sutherland, D; Stone, S N; Duncan, L M; Behnke, R

1980-10-01

141

Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines: 1. Model calculation of the physical conditions in a jet exhaust  

NASA Astrophysics Data System (ADS)

Model calculations have been performed for the temperature and pressure of combustion products in the jet exhaust of rocket engines of last stages of Proton, Molniya, and Start launchers operating in the upper atmosphere at altitudes above 120 km. It has been shown that the condensation of water vapor and carbon dioxide can begin at distances of 100-150 and 450-650 m away from the engine nozzle, respectively.

Platov, Yu. V.; Alpatov, V. V.; Klyushnikov, V. Yu.

2014-01-01

142

In situ observations in aircraft exhaust plumes in the lower stratosphere at midlatitudes  

NASA Technical Reports Server (NTRS)

Instrumentation on the NASA ER-2 high-altitude aircraft has been used to observe engine exhaust from the same aircraft while operating in the lower stratosphere. Encounters with the exhaust plume occurred approximately 10 min after emission with spatial scales near 2 km and durations of up to 10 s. Measurements include total reactive nitrogen, NO(y), the component species NO and NO2, CO2, H2O, CO, N2O, condensation nuclei, and meteorological parameters. The integrated amounts of CO2 and H2O during the encounters are consistent with the stoichiometry of fuel combustion (1:1 molar). Emission indices (EI) for NO(x) (= NO + NO2), CO, and N2O are calculated using simultaneous measurements of CO2. EI values for NO(x) near 4 g/(kg fuel) are in good agreement with values scaled from limited ground-based tests of the ER-2 engine. Non-NO(x) species comprise less than about 20% of emitted reactive nitrogen, consistent with model evaluations. In addition to demonstrating the feasibility of aircraft plume detection, these results increase confidence in the projection of emissions from current and proposed supersonic aircraft fleets and hence in the assessment of potential long-term changes in the atmosphere.

Fahey, D. W.; Keim, E. R.; Woodbridge, E. L.; Gao, R. S.; Boering, K. A.; Daube, B. C.; Wofsy, S. C.; Lohmann, R. P.; Hintsa, E. J.; Dessler, A. E.

1995-01-01

143

Approach to SSME health monitoring. II - Exhaust plume emission spectroscopy at the DTF  

NASA Technical Reports Server (NTRS)

The Diagnostics Testbed Facility (DTF) located at the Stennis Space Center (SSC) is used for obtaining extensive sets of H2O2 exhaust plume emission spectral data for the SSME critical components related elements and materials. The SSME related elements and materials are simulated by mixing appropriate amounts of compounds of their respective constituent elements in an aqueous solution which is injected into the combustion chamber of the DTFT. Five of the most critical components of the SSME which have experienced very severe wear and tear problems in the past are analyzed. These are high pressure turbopump (HPTP) turbine blades, HPTP turbine disks, HPTP bearing, main injector LOX posts, and the main combustion chamber structural shell. The alloys used in the manufacturing of these components are MAR-M 246 + Hf, Waspaloy X, AISI 440C, Haynes 188, and Inconel 718, respectively. The experimental setup and procedures at the DTF are described; stratospheric data for the five alloys are presented; and strategies for the material identification in the SSME exhaust plume are discussed.

Tejwani, Gopal D.; Loboda, John A.; Wheatley, Joseph S.; Chenevert, Donald J.

1990-01-01

144

Design of Experiments for Both Experimental and Analytical Study of Exhaust Plume Effects on Sonic Boom  

NASA Technical Reports Server (NTRS)

Computational fluid dynamics (CFD) analysis has been performed to study the plume effects on sonic boom signature for isolated nozzle configurations. The objectives of these analyses were to provide comparison to past work using modern CFD analysis tools, to investigate the differences of high aspect ratio nozzles to circular (axisymmetric) nozzles, and to report the effects of under expanded nozzle operation on boom signature. CFD analysis was used to address the plume effects on sonic boom signature from a baseline exhaust nozzle. Nearfield pressure signatures were collected for nozzle pressure ratios (NPRs) between 6 and 10. A computer code was used to extrapolate these signatures to a ground-observed sonic boom N-wave. Trends show that there is a reduction in sonic boom N-wave signature as NPR is increased from 6 to 10. As low boom designs are developed and improved, there will be a need for understanding the interaction between the aircraft boat tail shocks and the exhaust nozzle plume. These CFD analyses will provide a baseline study for future analysis efforts. For further study, a design of experiments has been conducted to develop a hybrid method where both CFD and small scale wind tunnel testing will validate the observed trends. The CFD and testing will be used to screen a number of factors which are important to low boom propulsion integration, including boat tail angle, nozzle geometry, and the effect of spacing and stagger on nozzle pairs. To design the wind tunnel experiment, CFD was instrumental in developing a model which would provide adequate space to observe the nozzle and boat tail shock structure without interference from the wind tunnel walls.

Castner, Raymond S.

2009-01-01

145

Effects of nozzle exit geometry and pressure ratio on plume shape for nozzles exhausting into quiescent air  

NASA Technical Reports Server (NTRS)

The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.

Scallion, William I.

1991-01-01

146

Application of a Gaussian multilayer diffusion model to characterize dispersion of vertical HCl column density in rocket exhaust clouds  

NASA Technical Reports Server (NTRS)

Solid rocket exhaust cloud dispersion cases, based on seven meteorological regimes for overland advection in the Cape Canaveral, Florida, area, are examined for launch vehicle environmental impacts. They include a space shuttle case and all seven meteorological cases for the Titan 3, which exhausts 60% less HC1. The C(HC1) decays are also compared with recent in cloud peak HC1 data from eight Titan 3 launches. It is stipulated that while good overall agreement provides validation of the model, its limitations are considerable and a dynamics model is needed to handle local convective situations.

Pellett, G. L.; Staton, W. L.

1981-01-01

147

Dilution and aerosol dynamics within a diesel car exhaust plume—CFD simulations of on-road measurement conditions  

Microsoft Academic Search

Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol

U. Uhrner; S. von Löwis; H. Vehkamäki; B. Wehner; S. Bräsel; M. Hermann; F. Stratmann; M. Kulmala; A. Wiedensohler

2007-01-01

148

Constraining the heterogeneous loss of O3 on soot particles with observations in jet engine exhaust plumes  

Microsoft Academic Search

In situ measurements in the engine exhaust of a Concorde supersonic aircraft in the lower stratosphere are used to constrain heterogeneous reaction rates on soot particles in a plume model. Upper limit values are obtained for the product of the reactive uptake coefficients of O3 and NO2 and the mean surface area of individual soot particles using the model and

R. S. Gao; B. Kärcher; E. R. Keim; D. W. Fahey

1998-01-01

149

Experimental research in the use of electrets in measuring effluents from rocket exhaust and a review of standard air quality measuring devices  

NASA Technical Reports Server (NTRS)

Seven standard types of measuring devices used to obtain the chemical composition of rocket exhaust effluents were discussed. The electrets, a new measuring device, are investigated and compared with established measuring techniques. The preliminary results obtained show that electrets have multipollutant measuring capabilities, simplicity of deployment, speed of assessment or analysis, and may be an important and valuable tool in measuring pollutants from space vehicle rocket exhaust.

Susko, M.

1976-01-01

150

Space shuttle vehicle rocket plume impingement study for separation analysis. Tasks 2 and 3: Definition and preliminary plume impingement analysis for the MSC booster  

NASA Technical Reports Server (NTRS)

The results are presented of a space shuttle plume impingement study for the Manned Spacecraft Center configuration. This study was conducted as two tasks which were to (1) define the orbiter main stage engine exhaust plume flow field, and (2) define the plume impingement heating, force and resulting moment environments on the booster during the staging maneuver. To adequately define these environments during the staging maneuver and allow for deviation from the nominal separation trajectory, a multitude of relative orbiter/booster positions are analyzed which map the region that contains the separation trajectories. The data presented can be used to determine a separation trajectory which will result in acceptable impingement heating rates, forces, and the resulting moments. The data, presented in graphical form, include the effect of roll, pitch and yaw maneuvers for the booster. Quasi-steady state analysis methods were used with the orbiter engine operating at full thrust. To obtain partial thrust results, simple ratio equations are presented.

Wojciechowski, C. J.; Penny, M. M.; Prozan, R. J.

1970-01-01

151

Size-resolved particle emission indices in the stratospheric plume of an Athena II rocket  

NASA Astrophysics Data System (ADS)

Simultaneous measurements of carbon dioxide (CO2) mixing ratio and alumina (Al2O3) particle abundances between 0.004 and 1.2 ?m were obtained in the stratospheric plume wake of an Athena II solid-fueled rocket motor (SRM). A multimode model of the particle size distribution is used to determine the number (N) and surface area (SA) emission indices as 8.7 ± 2.0 × 1015 per kg and 6.9 ± 2.1 × 1014 ?m2 per kg, respectively. Integration of the size distribution shows that 37% of the total SA and 8% of the total mass (M) are contained in the submicron size range (diameter < 1?m) that most influences the stratospheric impact of alumina particles emitted by SRMs. These values are significantly greater than reported by most previous studies and they imply that the annual global ozone loss associated with SRM alumina emissions is about half of the ozone loss from SRM chlorine emissions alone. Comparison of our results to previous studies raises the possibility that submicron M and SA fraction, and therefore global ozone loss, are inversely related to SRM thrust.

Schmid, O.; Reeves, J. M.; Wilson, J. C.; Wiedinmyer, C.; Brock, C. A.; Toohey, D. W.; Avallone, L. M.; Gates, A. M.; Ross, M. N.

2003-04-01

152

A feasibility study and mission analysis for the Hybrid Plume Plasma Rocket  

NASA Technical Reports Server (NTRS)

The Hybrid Plume Plasma Rocket (HPPR) is a high power electric propulsion concept which is being developed at the MIT Plasma Fusion Center. This paper presents a theoretical overview of the concept as well as the results and conclusions of an independent study which has been conducted to identify and categorize those technologies which require significant development before the HPPR can be considered a viable electric propulsion device. It has been determined that the technologies which require the most development are high power radio-frequency and microwave generation for space applications and the associated power processing units, low mass superconducting magnets, a reliable, long duration, multi-megawatt space nuclear power source, and long term storage of liquid hydrogen propellant. In addition to this, a mission analysis of a one-way transfer from low earth orbit (LEO) to Mars indicates that a constant acceleration thrust profile, which can be obtained using the HPPR, results in faster trip times and greater payload capacities than those afforded by more conventional constant thrust profiles.

Sullivan, Daniel J.; Micci, Michael M.

1990-01-01

153

Coupled turbulence and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model  

NASA Astrophysics Data System (ADS)

This paper presents the development and evaluation of an environmental turbulent reacting flow model, the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model. CTAG is designed to simulate transport and transformation of multiple air pollutants, e.g., from emission sources to ambient background. For the on-road and near-road applications, CTAG explicitly couples the major turbulent mixing processes, i.e., vehicle-induced turbulence (VIT), road-induced turbulence (RIT) and atmospheric boundary layer turbulence with gas-phase chemistry and aerosol dynamics. CTAG's transport model is referred to as CFD-VIT-RIT. This paper presents the evaluation of the CTAG model in simulating the dynamics of individual plumes in the “tailpipe-to-road” stage, i.e., VIT behind a moving van and aerosol dynamics in the wake of a diesel car by comparing the modeling results against the respective field measurements. Combined with sensitivity studies, we analyze the relative roles of VIT, sulfuric acid induced nucleation, condensation of organic compounds and presence of soot-mode particles in capturing the dynamics of exhaust plumes as well as their implications in vehicle emission controls.

Wang, Yan Jason; Zhang, K. Max

2012-11-01

154

Analysis of Exhaust Plume Effects on Sonic Boom for a 59-Degree Wing Body Model  

NASA Technical Reports Server (NTRS)

Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analyses showed how the shock wave formed at the nozzle lip interacted with the nozzle boat-tail expansion wave. The nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion. Lip shock movement caused a favorable change in the observed pressure signature. These results were applied to a simplified supersonic vehicle geometry with no inlets and no tail, in which the goal was to demonstrate how under-expanded nozzle operation reduced the sonic boom signature by twelve percent. A secondary goal was to demonstrate the use of the Cart3D inviscid code for off-body pressure signatures including the nozzle plume effect.

Castner, Raymond S.

2011-01-01

155

Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles  

NASA Technical Reports Server (NTRS)

Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.

Castner, Raymond S.

2011-01-01

156

Experimental measurements of the ground cloud growth during the 11 February 1974, Titan-Centaur launch at Kennedy Space Center. [(measurement of rocket exhaust from rocket launching)  

NASA Technical Reports Server (NTRS)

The Titan-Centaur was launched from Kennedy Space Center on February 11, 1974 at 0948 eastern daylight time. Ground level effluent measurements were obtained from the solid rocket motors for comparison with NASA diffusion models for predicting effluent ground level concentrations and cloud behavior. The results obtained provide a basis for an evaluation of such key model inputs such as cloud rise rate, stabilization altitude, crosswind growth, volume expansion, and cloud trajectory. Ground level effluent measurements were limited because of changing meteorological conditions, incorrect instrument location, and operational problems. Based on the measurement results, operational changes are defined. Photographs of the ground exhaust clouds are shown. The chemical composition of the exhaust gases was analyzed and is given.

Stewart, R. B.; Sentell, R. J.; Gregory, G. L.

1976-01-01

157

Correlative Observations with Space-Borne Direct Doppler Wind Instruments of the Rapid Transport of Shuttle Exhaust Plumes (Invited)  

NASA Astrophysics Data System (ADS)

The Upper Atmosphere Research Satellite (UARS) was launched by Space Shuttle STS-48 on 12 September 1991 and included a direct Doppler experiment, the High Resolution Doppler Imager, HRDI. Ten years later, the TIMED Doppler Interferometer, TIDI, joined HRDI in direct neutral wind observations of the mesosphere and lower thermosphere (MLT). The removal of instrumental artifacts from the raw spectra, complicated by the loss of good attitude knowledge for HRDI and unexpected signal contamination for TIDI has matured to a level where excellent agreement exists for common volume measurements between them. The two experiments were able to perform overlapping measurements of tidal and planetary wave fields for three years permitting unprecedented clarity in the description of the cyclical behaviour of the MLT. The exhaust plume left in the wake of the launch of STS-107 (16 January 2003) provided a stringent test between TIDI, HRDI, and independent imagery, the latter of which showed rapid transport across the equator to the Antarctic. Though TIDI and HRDI observed the atmosphere at the plume’s location at different local solar times, all correlative observations supported the hypothesis indicated by once-a-day images of the plume - rapid southern transport over thousands of kilometers. A simple spectral analysis of simultaneous observations of the neutral winds by HRDI and TIDI indicates that a classical two-day wave (longitudinal wavenumber = 3) exists in the southern hemisphere during the ~80-hour transit time coinciding with the transport of the plume exhaust from launch to the Antarctic. A least-squares fit of the wave in the meridional wind indicates maximum amplitude in the MLT of ~80 m/s southwards. Other shuttle launches have also been accompanied by evidence that implies rapid transport of exhaust plumes to Arctic latitudes. This paper will summarize correlative HRDI and/or TIDI wind observations of these events and associated spectral analysis of the meridional wind in the MLT. There is no question that TIDI and HRDI confirm the rapid implied motion suggested by space-borne imagery of shuttle exhaust plumes. Empirical and first-principle physical models of MLT dynamics fall short in describing the amplitude and long life of strong meridional flow. The consistency between TIDI, HRDI, and independent observations of rapid plume transport indicate that our understanding of MLT dynamics is far from complete.

Niciejewski, R.; Meier, R. R.; Stevens, M. H.; Skinner, W. R.; Cooper, M.; Marshall, A.; Ortland, D. A.; Wu, Q.

2010-12-01

158

Comparison of quick-look plume heating calculations and Monte Carlo direct simulation. [during impingement on rocket nozzle surface  

NASA Technical Reports Server (NTRS)

A quick-look method has been developed for estimating convective heat flux due to plume impingement in the transition flow regime on a concave surface surrounding a rocket nozzle. Comparison with the flowfield and heat fluxes computed by the Monte Carlo Direct Simulation Method show the quick-look method to be conservative. Assumptions regarding the nature of the flowfield based on engineering judgment were shown to be essentially valid. Further, the assumption of free molecular impingement was shown to be non-conservative for portions of the surface. Potential refinements of the quick-look method are discussed.

Guernsey, C. S.; Hrubes, J. D.

1980-01-01

159

Spectroscopic studies of the exhaust plume of a quasi-steady MPD accelerator. Ph.D. Thesis  

NASA Technical Reports Server (NTRS)

Spectroscopic and photographic investigations are reported that reveal a complex azimuthal species structure in the exhaust plume of a quasi-steady argon MPD accelerator. Over a wide range of operating conditions the injected argon remains collimated in discrete jets which are azimuthally in line with the six propellant injector orifices. The regions between these argon jets, including the central core of the exhaust flow, are occupied by impurities such as carbon, hydrogen and oxygen ablated from the Plexiglas back plate of the arc chamber. The features of this plume structure are found to be dependent on the arc current and mass flow rate. It is found that nearly half the observed velocity is attained in an acceleration region well downstream of the region of significant electromagnetic interaction. Recombination calculations show that the ionization energy is essentially frozen.

Bruckner, A. P.

1972-01-01

160

Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Vectored Nozzles  

NASA Technical Reports Server (NTRS)

Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.

Castner, Raymond

2012-01-01

161

Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1-7  

Microsoft Academic Search

The series of SULFUR experiments was performed to determine the aerosol particle and contrail formation properties of aircraft exhaust plumes for different fuel sulfur contents (FSC, from 2 to 5500 mug\\/g), flight conditions, and aircraft (ATTAS, A310, A340, B707, B747, B737, DC8, DC10). This paper describes the experiments and summarizes the results obtained, including new results from SULFUR 7. The

U. Schumann; F. Arnold; R. Busen; J. Curtius; B. Kärcher; A. Kiendler; A. Petzold; H. Schlager; F. Schröder; K.-H. Wohlfrom

2002-01-01

162

Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7  

Microsoft Academic Search

The series of SULFUR experiments was performed to determine the aerosol particle and contrail formation properties of aircraft exhaust plumes for different fuel sulfur contents (FSC, from 2 to 5500 ?g\\/g), flight conditions, and aircraft (ATTAS, A310, A340, B707, B747, B737, DC8, DC10). This paper describes the experiments and summarizes the results obtained, including new results from SULFUR 7. The

U. Schumann; F. Arnold; R. Busen; J. Curtius; B. Kärcher; A. Kiendler; A. Petzold; H. Schlager; F. Schröder; K.-H. Wohlfrom

2002-01-01

163

Transport-property and mass spectral measurements in the plasma exhaust plume of a Hall-effect space propulsion system  

Microsoft Academic Search

This thesis represents a broad study to characterize the heavy-particle structure of the exhaust plume produced from a 1.5-kW-class Hall thruster. The goal of this study was to provide an extensive data base of plasmadynamic quantities to be used as an input to plasma-surface interaction models. Additionally, conclusions drawn from analysis of these quantities yielded insight regarding basic thruster performance

Lyon Bradley King

1998-01-01

164

Validation of Methods to Predict Vibration of a Panel in the Near Field of a Hot Supersonic Rocket Plume  

NASA Technical Reports Server (NTRS)

This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity.

Bremner, P. G.; Blelloch, P. A.; Hutchings, A.; Shah, P.; Streett, C. L.; Larsen, C. E.

2011-01-01

165

Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III  

NASA Astrophysics Data System (ADS)

Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA's planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module's close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm 2. The average entry size of the pits was 83.7 ?m (major diameter) × 74.5 ?m (minor diameter) and the average estimated penetration depth was 88.4 ?m. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.

Immer, Christopher; Metzger, Philip; Hintze, Paul E.; Nick, Andrew; Horan, Ryan

2011-02-01

166

Rockets  

NSDL National Science Digital Library

Students learn how and why engineers design satellites to benefit life on Earth, as well as explore motion, rockets and rocket motion. Through six lessons and 10 associated hands-on activities, students discover that the motion of all objects—everything from the flight of a rocket to the movement of a canoe—is governed by Newton's three laws of motion. This unit introduces students to the challenges of getting into space for the purpose of exploration. The ideas of thrust, weight and control are explored, helping students to fully understand what goes into the design of rockets and the value of understanding these scientific concepts. After learning how and why the experts make specific engineering choices, students also learn about the iterative engineering design process as they design and construct their own model rockets. Then students explore triangulation, a concept that is fundamental to the navigation of satellites and global positioning systems designed by engineers; by investigating these technologies, they learn how people can determine their positions and the locations of others.

Integrated Teaching and Learning Program,

167

Phenomenology of soil erosion due to rocket exhaust on the Moon and the Mauna Kea lunar test site  

NASA Astrophysics Data System (ADS)

The soil-blowing phenomena observed in the Apollo lunar missions have not previously been described in the literature in sufficient detail to elucidate the physical processes and to support the development of physics-based modeling of the plume effects. In part, this is because previous laboratory experiments have used overly simplistic model soils that fail to produce many of the phenomena seen in lunar landings, some of which therefore went unrecognized. Here, the Apollo descent videos, terrain photography, and ascent videos are interpreted with the assistance of field experiments using a more complex regolith. Rocket thruster firings were performed upon the tephra of a lunar test site on Mauna Kea in Hawaii. This tephra possesses embedded rocks, large fractions of gravel and dust, some cohesion, and natural geological lamination. This produced more realistic plume phenomenology. The relevant phenomena include the relationship of dust liberation with overall soil erosion rate, terrain bed forms created by the plume, dust tails associated with the exhumation and blowing of rocks, bed load transport, the removal of discrete layers of soil hypothesized to be the stratigraphic units corresponding to impact events, the total mass of ejected soil during a landing, and the brightening of the regolith around the landing site. This analysis provides insight into the erosion processes and nature of the regolith. This paper also synthesizes theory, experiment, simulation, and observational data to produce a clearer picture of the physical processes of lunar soil erosion.

Metzger, Philip T.; Smith, Jacob; Lane, John E.

2011-06-01

168

Rocket plume spectrometry: A system permitting engine condition monitoring, as applied to the technology test bed engine  

NASA Technical Reports Server (NTRS)

The appearance of visible objects in the exhaust plume of space shuttle main engines (SSME) during test firings is discussed. A program was undertaken to attempt to identify anomalous material resulting from wear, normal or excessive, of internal parts, allowing time monitoring of engine condition or detection of failure precursors. Measurements were taken during test firings at Stennis Space Center and at the Santa Suzanna facility in California. The results indicated that a system having high spectral resolution, a fast time response, and a wide spectral range was required to meet all requirements, thus two special systems have been designed and built. One is the Optical Plume Anomaly Detector (OPAD). The other instrument, which is described in this report, is the superspectrometer, an optical multichannel analyzer having 8,192 channels covering the spectral band 250 to 1,000 nm.

Powers, W. T.

1989-01-01

169

Prediction of the Size of Aluminum-Oxide Particles in Exhaust Plumes of Solid Rocket Motors  

Microsoft Academic Search

The processes of coagulation and aerodynamic fragmentation of liquid particles of aluminum oxide in an accelerating gas flow in the Laval nozzle are analyzed. A formula obtained by an approximate analytical solution of equations of a two-phase flow is proposed to calculate the characteristic particle diameter at the nozzle exit. The limiting particle diameter in the nozzle throat calculated theoretically

O. B. Kovalev

2002-01-01

170

Plume reduction in segmented electrode Hall thruster Y. Raitses,a)  

E-print Network

Plume reduction in segmented electrode Hall thruster Y. Raitses,a) L. A. Dorf, A. A. Litvak, and N segmented electrode. Measured by plume divergence, the performance of Hall thruster operation, even in the propellant mass. Chemical rockets are limited to exhaust speeds of about 3 km/s. The Hall thruster

171

Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1-7  

NASA Astrophysics Data System (ADS)

The series of SULFUR experiments was performed to determine the aerosol particle and contrail formation properties of aircraft exhaust plumes for different fuel sulfur contents (FSC, from 2 to 5500 ?g/g), flight conditions, and aircraft (ATTAS, A310, A340, B707, B747, B737, DC8, DC10). This paper describes the experiments and summarizes the results obtained, including new results from SULFUR 7. The conversion fraction ? of fuel sulfur to sulfuric acid is measured in the range 0.34 to 4.5% for an older (Mk501) and 3.3 +/- 1.8% for a modern engine (CFM56-3B1). For low FSC, ? is considerably smaller than what is implied by the volume of volatile particles in the exhaust. For FSC >= 100 ?g/g and ? as measured, sulfuric acid is the most important precursor of volatile aerosols formed in aircraft exhaust plumes of modern engines. The aerosol measured in the plumes of various aircraft and models suggests ? to vary between 0.5 and 10% depending on the engine and its state of operation. The number of particles emitted from various subsonic aircraft engines or formed in the exhaust plume per unit mass of burned fuel varies from 2 × 1014 to 3 × 1015 kg-1 for nonvolatile particles (mainly black carbon or soot) and is of order 2 × 1017 kg-1 for volatile particles >1.5 nm at plume ages of a few seconds. Chemiions (CIs) formed in kerosene combustion are found to be quite abundant and massive. CIs contain sulfur-bearing molecules and organic matter. The concentration of CIs at engine exit is nearly 109 cm-3. Positive and negative CIs are found with masses partially exceeding 8500 atomic mass units. The measured number of volatile particles cannot be explained with binary homogeneous nucleation theory but is strongly related to the number of CIs. The number of ice particles in young contrails is close to the number of soot particles at low FSC and increases with increasing FSC. Changes in soot particles and FSC have little impact on the threshold temperature for contrail formation (less than 0.4 K).

Schumann, U.; Arnold, F.; Busen, R.; Curtius, J.; Kärcher, B.; Kiendler, A.; Petzold, A.; Schlager, H.; Schröder, F.; Wohlfrom, K.-H.

2002-08-01

172

High altitude chemically reacting gas particle mixtures. Volume 2: Program manual for RAMP2. [rocket nozzle and orbital plume flow fields  

NASA Technical Reports Server (NTRS)

All of the elements used in the Reacting and Multi-Phase (RAMP2) computer code are described in detail. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields.

Smith, S. D.

1984-01-01

173

On the fast zonal transport of the STS-121 space shuttle exhaust plume in the lower thermosphere  

NASA Astrophysics Data System (ADS)

Meier et al. (2011) reported rapid eastward transport of the STS-121 space shuttle (launch: July 4, 2006) main engine plume in the lower thermosphere, observed in hydrogen Lyman ? images by the GUVI instrument onboard the TIMED satellite. In order to study the mechanism of the rapid zonal transport, diagnostic tracer calculations are performed using winds from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) simulation of July, 2006. It is found that the strong eastward jet at heights of 100-110 km, where the exhaust plume was deposited, results in a persistent eastward tracer motion with an average velocity of 45 m/s. This is generally consistent with, though faster than, the prevailing eastward shuttle plume movement with daily mean velocity of 30 m/s deduced from the STS-121 GUVI observation. The quasi-two-day wave (QTDW) was not included in the numerical simulation because it was found not to be large. Its absence, however, might be partially responsible for insufficient meridional transport to move the tracers away from the fast jet in the simulation. The current study and our model results from Yue and Liu (2010) explain two very different shuttle plume transport scenarios (STS-121 and STS-107 (launch: January 16, 2003), respectively): we conclude that lower thermospheric dynamics is sufficient to account for both very fast zonal motion (zonal jet in the case of STS-121) and very fast meridional motion to polar regions (large QTDW in the case of STS-107).

Yue, Jia; Liu, Han-Li; Meier, R. R.; Chang, Loren; Gu, Sheng-Yang; Russell, James, III

2013-03-01

174

Effects of plume-scale versus grid-scale treatment of aircraft exhaust photochemistry  

E-print Network

give results different than treating it at the plume scale [e.g., Meijer et al., 1997; Petry et al., 2008; Cariolle et al., 2009]. [3] Petry et al. [1998], Meijer et al. [1997], Kraabøl et al. [2000% and +5%, similar in magnitude to Meijer [2001]. Multiple overlapping plumes, as in a flight corridor

Jacobson, Mark

175

Dilution and aerosol dynamics within a diesel car exhaust plume—CFD simulations of on-road measurement conditions  

NASA Astrophysics Data System (ADS)

Vehicle particle emissions are studied extensively because of their health effects, contribution to ambient PM levels and possible impact on climate. The aim of this work was to obtain a better understanding of secondary particle formation and growth in a diluting vehicle exhaust plume using 3-d information of simulations together with measurements. Detailed coupled computational fluid dynamics (CFD) and aerosol dynamics simulations have been conducted for H 2SO 4-H 2O and soot particles based on measurements within a vehicle exhaust plume under real conditions on public roads. Turbulent diffusion of soot and nucleation particles is responsible for the measured decrease of number concentrations within the diesel car exhaust plume and decreases coagulation rates. Particle size distribution measurements at 0.45 and 0.9 m distance to the tailpipe indicate a consistent soot mode (particle diameter Dp˜50 nm) at variable operating conditions. Soot mode number concentrations reached up to 10 13 m -3 depending on operating conditions and mixing. For nucleation particles the simulations showed a strong sensitivity to the spatial dilution pattern, related cooling and exhaust H 2SO 4(g). The highest simulated nucleation rates were about 0.05-0.1 m from the axis of the plume. The simulated particle number concentration pattern is in approximate accordance with measured concentrations, along the jet centreline and 0.45 and 0.9 m from the tailpipe. Although the test car was run with ultralow sulphur fuel, high nucleation particle ( Dp?15 nm) concentrations (>10 13 m -3) were measured under driving conditions of strong acceleration or the combination of high vehicle speed (>140 km h -1) and high engine rotational speed (>3800 revolutions per minute (rpm)). Strong mixing and cooling caused rapid nucleation immediately behind the tailpipe, so that the highest particle number concentrations were recorded at a distance, x=0.45 m behind the tailpipe. The simulated growth of H 2SO 4-H 2O nucleation particles was unrealistically low compared with measurements. The possible role of low and semi-volatile organic components on the growth processes is discussed. Simulations for simplified H 2SO 4-H 2O-octane-gasoil aerosol resulted in sufficient growth of nucleation particles.

Uhrner, U.; von Löwis, S.; Vehkamäki, H.; Wehner, B.; Bräsel, S.; Hermann, M.; Stratmann, F.; Kulmala, M.; Wiedensohler, A.

176

A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)  

NASA Technical Reports Server (NTRS)

A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.

Reardon, J. E.; Lee, Y. C.

1979-01-01

177

Multiple dopant injection system for small rocket engines  

NASA Technical Reports Server (NTRS)

The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.

Sakala, G. G.; Raines, N. G.

1992-01-01

178

One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA  

NASA Technical Reports Server (NTRS)

Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet conduction as well as the degrading effect of mass and heat transfer due to the presence of noncondensibles. The one dimension model of the condensing spray chamber makes no presupposition on the pressure profile within the chamber, allowing the implemented droplet physics of heat and mass transfer coupled to the SINDAFLUINT solver to determine a transient pressure profile of the condensing spray chamber. Model results compare well to the RL-10 engine pressure test data.

Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin

2014-01-01

179

One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA  

NASA Technical Reports Server (NTRS)

Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet conduction as well as the degrading effect of mass and heat transfer due to the presence of noncondensibles. The one dimension model of the condensing spray chamber makes no presupposition on the pressure profile within the chamber, allowing the implemented droplet physics of heat and mass transfer coupled to the SINDAFLUINT solver to determine a transient pressure profile of the condensing spray chamber. Model results compare well to the RL-10 engine pressure test data.

Sakowski, Barbara A.; Edwards, Daryl; Dickens, Kevin

2014-01-01

180

Plume primary smoke  

NASA Astrophysics Data System (ADS)

The exhaust from a solid propellant rocket motor usually contains condensed species. These particles, also called 'Primary Smoke', are often prejudicial to missile detectability and to the guidance system. To avoid operational problems it is necessary to know and quantify the effects of particles on all aspects of missile deployment. A brief description of the origin of the primary smoke is given. It continues with details of the interaction between particles and light as function of both particles and light properties (nature, size, wavelength, etc). The effects of particles on plume visibility, attenuation of an optical beam propagated through the plume and the contribution of particles on optical signatures of the plume are also described. Finally, various methods used in NATO countries to quantify the primary smoke effects are discussed.

Chastenet, J. C.

1993-06-01

181

Incoherent scatter from space shuttle and rocket engine plumes in the ionosphere  

Microsoft Academic Search

Enhanced echoes from the 430 MHz radar at Arecibo were observed during burns of the space shuttle orbital maneuver subsystem (OMS) engines near 317 km altitude. Similar radar signatures of enhanced backscatter were also obtained by the Millstone Hill radar observing the plume of a Centaur engine burning in the ionosphere. A theoretical model of incoherent scatter is presented to

P. A. Bernhardt; J. D. Huba; W. E. Swartz; M. C. Kelley

1998-01-01

182

Digital filtering of plume emission spectra  

NASA Technical Reports Server (NTRS)

Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

Madzsar, George C.

1990-01-01

183

The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes  

NASA Technical Reports Server (NTRS)

An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

Hilst, G. R.

1974-01-01

184

Ionospheric shock waves triggered by rockets  

NASA Astrophysics Data System (ADS)

This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC) derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK) Taepodong-2 and 2013 South Korea (SK) Korea Space Launch Vehicle-II (KSLV-II) rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100-600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800-1200 m s-1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800-1200 m s-1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

Lin, C. H.; Lin, J. T.; Chen, C. H.; Liu, J. Y.; Sun, Y. Y.; Kakinami, Y.; Matsumura, M.; Chen, W. H.; Liu, H.; Rau, R. J.

2014-09-01

185

Equations of motion for the variable mass flow-variable exhaust velocity rocket  

NASA Technical Reports Server (NTRS)

An equation of motion for a one dimensional rocket is derived as a function of the mass flow rate into the acceleration chamber and the velocity distribution along the chamber, thereby including the transient flow changes in the chamber. The derivation of the mass density requires the introduction of the special time coordinate. The equation of motion is derived from both classical force and momentum approaches and is shown to be consistent with the standard equation expressed in terms of flow parameters at the exit to the acceleration chamber.

Tempelman, W. H.

1972-01-01

186

First gaseous ion composition measurements in the exhaust plume of a jet aircraft in flight: Implications for gaseous sulfuric acid, aerosols, and chemiions  

NASA Astrophysics Data System (ADS)

Mass spectrometric composition measurements of gaseous negative ions have been made in the exhaust plume of a commercial jet aircraft (Airbus A310) in flight at altitudes around 10.4 km and at two plume ages around 3.0 and 3.6 s. Negative ions observed inside the exhaust plume are mostly NO3-(HNO3)m and HSO4-(HNO3)m with m ?2. Outside the plume in the “background” atmosphere the same negative ion species with the same R = (HSO4-(HNO3)m)/(NO3-(HNO3)m) were observed. This indicates that the ions observed in the plume were entrained ambient atmospheric ions. By contrast no indications for negative chemiions (with masses ?1100 amu) produced by the airbus engines were found in the plume. Furthermore our measurements indicate a modest decrease of the total concentration of entrained negative ions in the plume compared to the ambient atmosphere outside the plume. This decrease may be due to ion-removal by ion-attachment to aerosol-particles and/or ion-recombination with positive chemiions. We propose that the observed entrained ions can serve as probes for important plume components including gaseous sulfuric acid, aerosol particles and chemiions. Making use of this analytical potential we infer upper limits for the gaseous sulfuric acid concentration, total aerosol surface area density, and positive chemiion concentration. We conclude that initially formed gaseous sulfuric acid must have experienced rapid gas-to-particle conversion already in the very early plume at plume ages < 1.6 s.

Arnold, F.; Wohlfrom, K.-H.; Klemm, M. W.; Schneider, J.; Gollinger, K.; Schumann, U.; Busen, R.

187

Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement  

NASA Technical Reports Server (NTRS)

CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

Harris, Michael F.; Vu, Bruce T.

2012-01-01

188

Numerical Simulation of Rarefied Plume Flow Exhausting from a Small Nozzle  

NASA Astrophysics Data System (ADS)

This paper describes the numerical studies of a rarefied plume flow expanding through a nozzle into a vacuum, especially focusing on investigating the nozzle performance, the angular distributions of molecular flux in the nozzle plume and the influence of the backflow contamination for the variation of nozzle geometries and gas/surface interaction models. The direct simulation Monte Carlo (DSMC) method is employed for determining inside the nozzle and in the nozzle plume. The simulation results indicate that the half-angle of the diverging section in the highest thrust coefficient is 25° - 30° and this value varies with the expansion ratio of the nozzle. The descent of the half-angle brings about the increase of the molecules that are scattered in the backflow region.

Hyakutake, Toru; Yamamoto, Kyoji

2003-05-01

189

The dominant effect of alumina on nearfield plume radiation  

Microsoft Academic Search

Solid propellant rocket motors can achieve high specific impulse with metal fuel additives such as aluminum. Combustion of aluminum produces condensed alumina particles. Besides causing performance losses in the nozzle, the condensed Al2O3 particles are the major source of primary smoke in the exhaust plume. The particulate matter can also have major effects upon the plume i.r. signature. High number

David Laredo; David W. Netzer

1993-01-01

190

Recommended launch-hold criteria for protecting public health from hydrogen chloride (HC1) gas produced by rocket exhaust  

SciTech Connect

Solid-fuel rocket motors used by the United States Air Force (USAF) to launch missiles and spacecraft can produce ambient-air concentrations of hydrogen chloride (HCI) gas. The HCI gas is a reaction product exhausted from the rocket motor during normal launch or emitted as a result of a catastrophic abort destroying the launch vehicle. Depending on the concentration in ambient air, the HCI gas can be irritating or toxic to humans. The diagnostic and complex-terrain wind field and particle dispersion model used by the Lawrence Livermore National Laboratory`s (LLNL`s) Atmospheric Release Advisory Capability (ARAC) Program was applied to the launch of a Peacekeeper missile from Vandenberg Air Force Base (VAFB) in California. Results from this deterministic model revealed that under specific meteorological conditions, cloud passage from normal-launch and catastropic-abort situations can yield measureable ground-level air concentrations of HCI where the general public is located. To protect public health in the event of such cloud passage, scientifically defensible, emergency ambient-air concentration limits for HCI were developed and recommended to the USAF for use as launch-hold criteria. Such launch-hold criteria are used to postpone a launch unless the forecasted meteorological conditions favor the prediction of safe ground-level concentrations of HCl for the general public. The recommended concentration limits are a 2 ppM 1-h time-weighted average (TWA) concentration constrained by a 1-min 10-ppM average concentration. This recommended criteria is supported by human dose-response information, including data for sensitive humans (e.g., asthmatics), and the dose response exhibited experimentally by animal models with respiratory physiology or responses considered similar to humans.

Daniels, J.I.; Baskett, R.L.

1995-11-01

191

High altitude chemically reacting gas particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution. [rocket nozzle and orbital plume flow fields  

NASA Technical Reports Server (NTRS)

The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.

Smith, S. D.

1984-01-01

192

Some environmental considerations relating to the interaction of the solid rocket motor exhaust with the atmosphere: Predicted chemical composition of exhaust species and predicted conditions for the formation of HCl aerosol  

NASA Technical Reports Server (NTRS)

The exhaust products of a solid rocket motor using as propellant 14% binder, 16% aluminum, and 70% (wt) ammonium perchlorate consist of hydrogen chloride, water, alumina, and other compounds. The equilibrium and some frozen compositions of the chemical species upon interaction with the atmosphere were computed. The conditions under which hydrogen chloride interacts with the water vapor in humid air to form an aerosol containing hydrochloric acid were computed for various weight ratios of air/exhaust products. These computations were also performed for the case of a combined SRM and hydrogen-oxygen rocket engine. Regimes of temperature and relative humidity where this aerosol is expected were identified. Within these regimes, the concentration of HCL in the aerosol and weight fraction of aerosol to gas phase were plotted. Hydrochloric acid aerosol formation was found to be particularly likely in cool humid weather.

Rhein, R. A.

1973-01-01

193

HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition  

NASA Technical Reports Server (NTRS)

Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

1983-01-01

194

Optical properties of mercury ion thruster exhaust plumes Significance for candidate SEP science instruments. [Solar Electric Propulsion  

NASA Technical Reports Server (NTRS)

Emission from the exhaust plume of a 30 cm mercury ion thruster was measured from 160 to 600 nm as a function of axial and radial distance from the thruster discharge chamber. The spectrally dispersed absolute intensities were used to construct an empirical volume emission rate function. The function was integrated along a typical instrument field of view, and the resulting apparent brightness was compared with instrument sensitivities to evaluate the extent of optical interference. The intensity levels degraded rapidly with distance from the thruster so that optical interference was negligible for fields of view not intercepting the beam axis. The operation of only one instrument, a zodiacal photopolarimeter was considered incompatible with simultaneous thruster operation.

Goldstein, R.; Monahan, K. M.

1975-01-01

195

Wind Tunnel Model Design for the Study of Plume Effects on Sonic Boom for Isolated Exhaust Nozzles  

NASA Technical Reports Server (NTRS)

A low cost test capability was developed at the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT), with a goal to reduce the disturbance caused by supersonic aircraft flight over populated areas. This work focused on the shock wave structure caused by the exhaust nozzle plume. Analysis and design was performed on a new rig to test exhaust nozzle plume effects on sonic boom signature. Test capability included a baseline nozzle test article and a wind tunnel model consisting of a strut, a nosecone and an upper plenum. Analysis was performed on the external and internal aerodynamic configuration, including the shock reflections from the wind tunnel walls caused by the presence of the model nosecone. This wind tunnel model was designed to operate from Mach 1.4 to Mach 3.0 with nozzle pressure ratios from 6 to 12 and altitudes from 30,000 ft (4.36 psia) to 50,000 ft (1.68 psia). The model design was based on a 1 in. outer diameter, was 9 in. in overall length, and was mounted in the wind tunnel on a 3/8 in. wide support strut. For test conditions at 50,000 ft the strut was built to supply 90 psia of pressure, and to achieve 20 psia at the nozzle inlet with a maximum nozzle pressure of 52 psia. Instrumentation was developed to measure nozzle pressure ratio, and an external static pressure probe was designed to survey near field static pressure profiles at one nozzle diameter above the rig centerline. Model layout placed test nozzles between two transparent sidewalls in the 1 1 SWT for Schlieren photography and comparison to CFD analysis.

Castner, Raynold S.

2010-01-01

196

Transport-property and mass spectral measurements in the plasma exhaust plume of a Hall-effect space propulsion system  

NASA Astrophysics Data System (ADS)

This thesis represents a broad study to characterize the heavy-particle structure of the exhaust plume produced from a 1.5-kW-class Hall thruster. The goal of this study was to provide an extensive data base of plasmadynamic quantities to be used as an input to plasma-surface interaction models. Additionally, conclusions drawn from analysis of these quantities yielded insight regarding basic thruster performance mechanisms. The plume characterization study employed the use of a variety of classic plasma diagnostic techniques including Langmuir probes, retarding potential analyzers (RPAs), and Faraday probes. Novel probes were also conceived of and tested to evaluate previously un-obtained information regarding the plasma components. These techniques included the development of a neutral particle flux probe (NPF) to quantify the existence of high-energy neutral atoms and the application of a heat-flux probe technique in the determination of ion and neutral densities. To complement the in-situ probe data, a unique molecular beam mass spectrometer (MBMS) was designed and used to provide great insight into the plasma species and energy structure of the Hall thruster plume. This system provided simultaneous mass and energy measurement through the use of an electrostatic energy analyzer in a time-of- flight mode. The MBMS data enabled the measurement of propellant ionization states and the construction of species-dependent ion energy distribution functions useful for evaluation of basic thruster acceleration mechanisms. Through an evaluation of the probe-based data in addition to the MBMS results a collisional analysis of the ionic portion of the plasma plume was performed. Through models and concepts developed in this thesis the products of both elastic momentum transfer and inelastic charge- exchange collisions were directly identified within the measured ion energy distributions. These results confirmed the existence of both single- and multiple- electron transfers between plume ions and parasitic neutral gas due to ground-test facility interactions in addition to momentum transfer collisions between propellant ionic species.

King, Lyon Bradley

1998-09-01

197

Effect of aircraft exhaust sulfur emissions on near field plume aerosols  

Microsoft Academic Search

A two dimensional, axisymmetric flowfield model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the Concorde engine on the formation and growth of volatile H2SO4\\/H2O aerosols in the near field plume. Rased on estimated exit plane sulfur speciation, results are shown for between 2% and

R. C. Brown; R. C. Miake-Lye; M. R. Anderson; C. E. Kolb

1996-01-01

198

Effect of aircraft exhaust sulfur emissions on near field plume aerosols  

Microsoft Academic Search

A two dimensional, axisymmetric flowfield model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the Concorde engine on the formation and growth of volatile H2SO4\\/H2O aerosols in the near field plume. Based on estimated exit plane sulfur speciation, results are shown for between 2% and

R. C. Brown; R. C. Miake-Lye; M. R. Anderson; C. E. Kolb

1996-01-01

199

Three-dimensional reconstruction method on the PDE exhaust plume flow flame temperature field  

NASA Astrophysics Data System (ADS)

Pulse detonation engine (referred to as PDE) has many advantage about simple structure, high efficiency thermal [1] cycling etc. In the future, it can be widely used in unmanned aircraft, target drone, luring the plane, the imaginary target, target missiles, long-range missiles and other military targets. However, because the exhaust flame of PDE is complicated [2], non-uniform temperature distribution and mutation in real time, its 3-D temperature distribution is difficult to be measured by normal way. As a result, PDE is used in the military project need to face many difficulties and challenges. In order to analyze and improve the working performance of PDE, deep research on the detonation combustion process is necessary. However, its performance characteristic which is in non-steady-state, as well as high temperature, high pressure, transient combustion characteristics put forward high demands about the flow field parameters measurement. In this paper, the PDE exhaust flames temperature field is reconstructed based on the theory of radiation thermometry [3] and Emission Spectral Tomography (referred to as EST) [4~6] which is one branch of Optical CT. It can monitor the detonation wave temperature distribution out of the exhaust flames at different moments, it also provides authentication for the numerical simulation which directs towards PDE work performance, and then it provides the basis for improving the structure of PDE.

Zhang, Zhimin; Wan, Xiong; Luo, Ningning; Li, Shujing

2010-10-01

200

Approach to SSME health monitoring. III - Exhaust plume emission spectroscopy: Recent results and detailed analysis  

NASA Technical Reports Server (NTRS)

Spectral data for two recent A-1 test firings, 901-717 and 901-718, obtained from an Optical Multichannel Analyzer and an Optical Plume Anomaly Detector, are presented. The spectral data encompasses the database of SSME critical components and materials and the spectral database for the SSME related elements and materials. Relatively strong and continuous emissions from Cr and Fe atomic transitions were observed starting at engine start plus 494 s and persisting until the engine shut off at engine start plus 520 s. These emissions are considered to be emanated from the SSME material AISI 440C, which is traced to high pressure turbopump bearings.

Tejwani, Gopal D.; Van Dyke, David B.; Bircher, Felix E.

1993-01-01

201

Low altitude plume impingement handbook  

NASA Technical Reports Server (NTRS)

Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

Smith, Sheldon D.

1991-01-01

202

Hydrocarbon-Fueled Rocket Plume Measurement Using Polarized UV Raman Spectroscopy  

NASA Technical Reports Server (NTRS)

The influence of pressure upon the signal strength and polarization properties of UV Raman signals has been investigated experimentally up to pressures of 165 psia (11 atm). No significant influence of pressure upon the Raman scattering cross section or depolarization ratio of the N2 Raman signal was found. The Raman scattering signal varied linearly with pressure for the 300 K N2 samples examined, thus showing no enhancement of cross section with increasing pressure. However at the highest pressures associated with rocket engine combustion, there could be an increase in the Raman scattering cross section, based upon others' previous work at higher pressures than those examined in this work. The influence of pressure upon thick fused silica windows, used in the NASA Modular Combustion Test Article, was also investigated. No change in the transmission characteristics of the windows occurred as the pressure difference across the windows increased from 0 psig up to 150 psig. A calibration was performed on the UV Raman system at Vanderbilt University, which is similar to the one at the NASA-Marshall Test Stand 115. The results of this calibration are described in the form of temperature-dependent functions, f(T)'s, that account for the increase in Raman scattering cross section with an increase in temperature and also account for the reduction in collected Raman signal if wavelength integration does not occur across the entire wavelength range of the Raman signal. These functions generally vary only by approximately 10% across their respective temperature ranges, except for the case Of CO2, where there is a factor of three difference in its f(T) from 300 K to 2500 K. However this trend for CO2 is consistent with the experimental work of others, and is expected based on the low characteristic vibrational temperature Of CO2. A time-averaged temperature measurement technique has been developed, using the same equipment as for the work mentioned above, that is based upon high-spectral resolution UV Raman scattering. This technique can provide temperature measurements for flows where pressure cannot be measured.

Wehrmeyer, Joseph A.

2002-01-01

203

High altitude chemically reacting gas particle mixtures. Volume 3: Computer code user's and applications manual. [rocket nozzle and orbital plume flow fields  

NASA Technical Reports Server (NTRS)

A users manual for the RAMP2 computer code is provided. The RAMP2 code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. The general structure and operation of RAMP2 are discussed. A user input/output guide for the modified TRAN72 computer code and the RAMP2F code is given. The application and use of the BLIMPJ module are considered. Sample problems involving the space shuttle main engine and motor are included.

Smith, S. D.

1984-01-01

204

Classification of Gas-Dust Structures in the Upper Atmosphere Associated with the Exhausts of Rocket-Engine Combustion Products  

Microsoft Academic Search

This paper presents the results of investigating optical phenomena in the upper atmosphere that accompany rocket launches and are associated with specific features of the structure and dynamics of gas-dust formations in the upper atmosphere. The most intense, large-scale, and dynamic phenomena are induced by specific operation modes of rocket engines, in particular, by the staging and thrust cutoff in

Yu. V. Platov; G. N. Kulikova; S. A. Chernouss

2003-01-01

205

13Space Shuttle Atlantis (STS-135) -Plume speed This sequence of images  

E-print Network

of pounds of gas every second, a rocket motor produces the thrust needed to lift a payload and move it in the opposite direction to its exhaust. The plume of gas is ejected at high speed from the Shuttle main engines and makes a right- angle turn as it is vented horizontally across the gantry platform. The vented gas seen

206

Characterization of rocket propellant combustion products. Chemical characterization and computer modeling of the exhaust products from four propellant formulations: Final report, September 23, 1987--April 1, 1990  

SciTech Connect

The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army`s Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

1991-12-09

207

Navier-Stokes computations with finite-rate chemistry for LO2/LH2 rocket engine plume flow studies  

NASA Technical Reports Server (NTRS)

Computational fluid dynamics methods have been developed and applied to Space Shuttle Main Engine LO2/LH2 plume flow simulation/analysis of airloading and convective base heating effects on the vehicle at high flight velocities and altitudes. New methods are described which were applied to the simulation of a Return-to-Launch-Site abort where the vehicle would fly briefly at negative angles of attack into its own plume. A simplified two-perfect-gases-mixing approach is used where one gas is the plume and the other is air at 180-deg and 135-deg flight angle of attack. Related research has resulted in real gas multiple-plume interaction methods with finite-rate chemistry described herein which are applied to the same high-altitude-flight conditions of 0 deg angle of attack. Continuing research plans are to study Orbiter wake/plume flows at several Mach numbers and altitudes during ascent and then to merge this model with the Shuttle 'nose-to-tail' aerodynamic and SRB plume models for an overall 'nose-to-plume' capability. These new methods are also applicable to future launch vehicles using clustered-engine LO2/LH2 propulsion.

Dougherty, N. Sam; Liu, Baw-Lin

1991-01-01

208

Another Look at Rocket Thrust  

ERIC Educational Resources Information Center

Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

Hester, Brooke; Burris, Jennifer

2012-01-01

209

Parametric studies with an atmospheric diffusion model that assesses toxic fuel hazards due to the ground clouds generated by rocket launches  

NASA Technical Reports Server (NTRS)

Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.

Stewart, R. B.; Grose, W. L.

1975-01-01

210

RANDOM VIBRATION RESPONSE OF A CANTILEVER BEAM TO ACOUSTIC FORCING BY SUPERSONIC ROCKET EXHAUSTS DURING A SPACE SHUTTLE LAUNCH  

Microsoft Academic Search

This paper presents a brief overview of recently completed research in the area of rocket noise and resulting dynamic behavior of launch pad structures. To gain accurate insight into the vibratory behav- ior of these structures, dynamic tests were integrated into the design process. Aspects of the acoustic load characterization procedure and the test-analysis correlation of random vibration structural response

R. N. Margasahayam; R. E. Caimi

211

Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)  

NASA Technical Reports Server (NTRS)

The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

Bowyer, J. M.

1977-01-01

212

Payload dose rate from direct beam radiation and exhaust gas fission products. [for nuclear engine for rocket vehicles  

NASA Technical Reports Server (NTRS)

A study was made to determine the dose rate at the payload position in the NERVA System (1) due to direct beam radiation and (2) due to the possible effect of fission products contained in the exhaust gases for various amounts of hydrogen propellant in the tank. Results indicate that the gamma radiation is more significant than the neutron flux. Under different assumptions the gamma contribution from the exhaust gases was 10 to 25 percent of total gamma flux.

Capo, M. A.; Mickle, R.

1975-01-01

213

An analytical analysis of the dispersion predictions for effluents from the Saturn 5 and Scout-Algol 3 rocket exhausts  

NASA Technical Reports Server (NTRS)

Predictions of the spatial concentration mapping of the potentially toxic constituents of the exhaust effluents from a launch of a Saturn 5 and of a Scout-Algol 3 vehicle utilizing the NASA/MSFC Multilayer Diffusion Program are provided. In the case of the Saturn 5, special attention was given to the concentration fields of carbon monoxide with a correlation of carbon dioxide concentrations. The Scout-Algol 3 provided an example of the centerline concentrations of hydrogen chloride, carbon monoxide, and alumina under typical meteorological conditions. While these results define the specific environmental impact of these two launches under the meteorological conditions existing during launches, they also provide a basis for the empirical monitoring of the constituents of the exhaust effluents of these vehicles.

Stephens, J. B.; Susko, M.; Kaufman, J. W.; Hill, C. K.

1973-01-01

214

COMPARISON OF THE PARTICLE SIZE DISTRIBUTION OF HEAVY-DUTY DIESEL EXHAUST USING A DILUTION TAIL-PIPE SAMPLER AND IN-PLUME SAMPLER DURING ON-ROAD OPERATION  

EPA Science Inventory

The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...

215

A subscale facility for liquid rocket propulsion diagnostics at Stennis Space Center  

NASA Technical Reports Server (NTRS)

The Diagnostics Testbed Facility (DTF) at NASA's John C. Stennis Space Center in Mississippi was designed to provide a testbed for the development of rocket engine exhaust plume diagnostics instrumentation. A 1200-lb thrust liquid oxygen/gaseous hydrogen thruster is used as the plume source for experimentation and instrument development. Theoretical comparative studies have been performed with aerothermodynamic codes to ensure that the DTF thruster (DTFT) has been optimized to produce a plume with pressure and temperature conditions as much like the plume of the Space Shuttle Main Engine as possible. Operation of the DTFT is controlled by an icon-driven software program using a series of soft switches. Data acquisition is performed using the same software program. A number of plume diagnostics experiments have utilized the unique capabilities of the DTF.

Raines, N. G.; Bircher, F. E.; Chenevert, D. J.

1991-01-01

216

Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere  

NASA Technical Reports Server (NTRS)

On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; Earle, G. D.; Kaplan, C. R.; Foster, J. C.; Groves, K. M.; Haaser, R. A.; Heelis, R. A.; Hunton, D. E.; Hysell, D. L.; Klenzing, J. H.; Larsen, M. F.; Lind, F. D.; Pedersen, T. R.; Pfaff, R. F.; Stoneback, R. A.; Roddy, P. A.; Rodriguez, S. P.; San Antonio, G. S.; Schuck, P. W.; Siefring, C. L.; Selcher, C. A.; Smith, S. M.; Talaat, E. R.; Thomason, J. F.; Tsunoda, R. T.; Varney, R. H.

2013-01-01

217

Rocket Engine Clustering and Vehicle Integration as Influenced by Base Thermal Environments  

NASA Technical Reports Server (NTRS)

Clustered rocket engines create severe thermal environments in the base of rocket vehicle stages. Boosters burning hydrocarbon fuels experience severe radiant heating early in flight; as the plumes interact at higher altitudes, convective heating becomes significant. For hydrogen-fueled upper stages radiation is not important, but convective heating is severe during the entire stage operation. Predicted and measured heating rates are discussed. The base region thermal environments of stages with clustered engines present a variety of engine/vehicle interaction problems. Components and structures in the base region, including the rocket engines, cannot survive radiant and convective heating from engine exhausts without such remedies as protective insulation, shielding, air-scooping, and proper disposal of the fuel-rich turbine exhaust gases. Different thermal protection concepts evolve for booster and upper stages due to the differences in ground test and flight environments. Solutions to the engine/vehicle interaction and design integration problems are described.

Hopson, George D.; McAnelly, William B.

1966-01-01

218

Quick Access Rocket Exhaust Rig Testing of Coated GRCop-84 Sheets Used to Aid Coating Selection for Reusable Launch Vehicles  

NASA Technical Reports Server (NTRS)

The design of the next generation of reusable launch vehicles calls for using GRCop-84 copper alloy liners based on a composition1 invented at the NASA Glenn Research Center: Cu-8(at.%)Cr-4%Nb. Many of the properties of this alloy have been shown to be far superior to those of other conventional copper alloys, such as NARloy-Z. Despite this considerable advantage, it is expected that GRCop-84 will suffer from some type of environmental degradation depending on the type of rocket fuel utilized. In a liquid hydrogen (LH2), liquid oxygen (LO2) booster engine, copper alloys undergo repeated cycles of oxidation of the copper matrix and subsequent reduction of the copper oxide, a process termed "blanching". Blanching results in increased surface roughness and poor heat-transfer capabilities, local hot spots, decreased engine performance, and premature failure of the liner material. This environmental degradation coupled with the effects of thermomechanical stresses, creep, and high thermal gradients can distort the cooling channel severely, ultimately leading to its failure.

Raj, Sai V.; Robinson, Raymond C.; Ghosn, Louis J.

2005-01-01

219

Adsorption and chemical reaction of gaseous mixtures of hydrogen chloride and water on aluminum oxide and application to solid-propellant rocket exhaust clouds  

NASA Technical Reports Server (NTRS)

Hydrogen chloride (HCl) and aluminum oxide (Al2O3) are major exhaust products of solid rocket motors (SRM). Samples of calcination-produced alumina were exposed to continuously flowing mixtures of gaseous HCl/H2O in nitrogen. Transient sorption rates, as well as maximum sorptive capacities, were found to be largely controlled by specific surface area for samples of alpha, theta, and gamma alumina. Sorption rates for small samples were characterized linearly with an empirical relationship that accounted for specific area and logarithmic time. Chemisorption occurred on all aluminas studied and appeared to form from the sorption of about a 2/5 HCl-to-H2O mole ratio. The chemisorbed phase was predominantly water soluble, yielding chloride/aluminum III ion mole ratios of about 3.3/1 suggestive of dissolved surface chlorides and/or oxychlorides. Isopiestic experiments in hydrochloric acid indicated that dissolution of alumina led to an increase in water-vapor pressure. Dissolution in aqueous SRM acid aerosol droplets, therefore, might be expected to promote evaporation.

Cofer, W. R., III; Pellett, G. L.

1978-01-01

220

Site Alteration Effects from Rocket Exhaust Impingement During a Simulated Viking Mars Landing. Part 2: Chemical and Biological Site Alteration  

NASA Technical Reports Server (NTRS)

Chemical and biological alteration of a Mars landing site was investigated experimentally and analytically. The experimental testing was conducted using a specially designed multiple nozzle configuration consisting of 18 small bell nozzles. The chemical test results indicate that an engine using standard hydrazine fuel will contaminate the landing site with ammonia (50-500ppm), nitrogen (5-50ppm), aniline (0.01-0.5ppm), hydrogen cyanide (0.01-0.5ppm), and water. A purified fuel, with impurities (mostly aniline) reduced by a factor of 50-100, limits the amount of hydrogen cyanide and aniline to below detectable limits for the Viking science investigations and leaves the amounts of ammonia, nitrogen, and water in the soil unchanged. The large amounts of ammonia trapped in the soil will make interpretation of the organic analysis investigation results more difficult. The biological tests indicate that the combined effects of plume gases, surface heating, surface erosion, and gas composition resulting from the retrorockets will not interfere with the Viking biology investigation.

Husted, R. R.; Smith, I. D.; Fennessey, P. V.

1977-01-01

221

Space Shuttle Plume Simulation Effect on Aerodynamics  

NASA Technical Reports Server (NTRS)

Technology for simulating plumes in wind tunnel tests was not adequate to provide the required confidence in test data where plume induced aerodynamic effects might be significant. A broad research program was undertaken to correct the deficiency. Four tasks within the program are reported. Three of these tasks involve conducting experiments, related to three different aspects of the plume simulation problem: (1) base pressures; (2) lateral jet pressures; and (3) plume parameters. The fourth task involves collecting all of the base pressure test data generated during the program. Base pressures were measured on a classic cone ogive cylinder body as affected by the coaxial, high temperature exhaust plumes of a variety of solid propellant rockets. Valid data were obtained at supersonic freestream conditions but not at transonic. Pressure data related to lateral (separation) jets at M infinity = 4.5, for multiple clustered nozzles canted to the freestream and operating at high dynamic pressure ratios. All program goals were met although the model hardware was found to be large relative to the wind tunnel size so that operation was limited for some nozzle configurations.

Hair, L. M.

1978-01-01

222

An analytical and experimental investigation of resistojet plumes  

NASA Technical Reports Server (NTRS)

As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region.

Zana, Lynnette M.; Hoffman, David J.; Breyley, Loranell R.; Serafini, John S.

1987-01-01

223

An analytical and experimental investigation of resistojet plumes  

NASA Technical Reports Server (NTRS)

As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of G.A. Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region.

Zana, L. M.; Hoffman, D. J.; Breyley, L. R.; Serafini, J. S.

1987-01-01

224

Fluid Gravity Engineering Rocket motor flow analysis  

E-print Network

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External response · Rocket motor plume IR assessments -Plume extent, composition and temperature -Radiation.g. industrial safety, helicopter brown-out etc. · Recruitment -Inspirational mission to attract high quality

Anand, Mahesh

225

Delta 2 Explosion Plume Analysis Report  

NASA Technical Reports Server (NTRS)

A Delta II rocket exploded seconds after liftoff from Cape Canaveral Air Force Station (CCAFS) on 17 January 1997. The cloud produced by the explosion provided an opportunity to evaluate the models which are used to track potentially toxic dispersing plumes and clouds at CCAFS. The primary goal of this project was to conduct a case study of the dispersing cloud and the models used to predict the dispersion resulting from the explosion. The case study was conducted by comparing mesoscale and dispersion model results with available meteorological and plume observations. This study was funded by KSC under Applied Meteorology Unit (AMU) option hours. The models used in the study are part of the Eastern Range Dispersion Assessment System (ERDAS) and include the Regional Atmospheric Modeling System (RAMS), HYbrid Particle And Concentration Transport (HYPACT), and Rocket Exhaust Effluent Dispersion Model (REEDM). The primary observations used for explosion cloud verification of the study were from the National Weather Service's Weather Surveillance Radar 1988-Doppler (WSR-88D). Radar reflectivity measurements of the resulting cloud provided good estimates of the location and dimensions of the cloud over a four-hour period after the explosion. The results indicated that RAMS and HYPACT models performed reasonably well. Future upgrades to ERDAS are recommended.

Evans, Randolph J.

2000-01-01

226

Atmospheric scavenging exhaust  

NASA Technical Reports Server (NTRS)

Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

Fenton, D. L.; Purcell, R. Y.

1977-01-01

227

Rocket Power  

NSDL National Science Digital Library

By making and testing simple balloon rockets, students acquire a basic understanding of Newton's third law of motion as it applies to rockets. Using balloons, string, straws and tape, they see how rockets are propelled by expelling gases, and test their rockets in horizontal and incline conditions. They also learn about the many types of engineers who design rockets and spacecraft.

Integrated Teaching and Learning Program,

228

Position paper on the potential of inadvertent weather modification of the Florida Peninsula resulting from neutralization of space shuttle solid rocket booster exhaust clouds  

NASA Technical Reports Server (NTRS)

A concept of injecting compounds into the exhaust cloud was proposed to neutralize the acidic nature of the low-level stabilized ground cloud (SGC) was studied. The potential Inadvertent Weather Modification caused by exhaust cloud characteristics from three hours to seven days after launch was studied. Possible effects of the neutralized SGC in warm and cloud precipitation processes were discussed. Based on a detailed climatology of the Florida Peninsula, the risk for weather modification under a variety of weather situations was assessed.

Bollay, E.; Bosart, L.; Droessler, E.; Jiusto, J.; Lala, G. G.; Mohnen, V.; Schaefer, V.; Squires, P.

1979-01-01

229

Linear Spectral Analysis of Plume Emissions Using an Optical Matrix Processor  

NASA Technical Reports Server (NTRS)

Plume spectrometry provides a means to monitor the health of a burning rocket engine, and optical matrix processors provide a means to analyze the plume spectra in real time. By observing the spectrum of the exhaust plume of a rocket engine, researchers have detected anomalous behavior of the engine and have even determined the failure of some equipment before it would normally have been noticed. The spectrum of the plume is analyzed by isolating information in the spectrum about the various materials present to estimate what materials are being burned in the engine. Scientists at the Marshall Space Flight Center (MSFC) have implemented a high resolution spectrometer to discriminate the spectral peaks of the many species present in the plume. Researchers at the Stennis Space Center Demonstration Testbed Facility (DTF) have implemented a high resolution spectrometer observing a 1200-lb. thrust engine. At this facility, known concentrations of contaminants can be introduced into the burn, allowing for the confirmation of diagnostic algorithms. While the high resolution of the measured spectra has allowed greatly increased insight into the functioning of the engine, the large data flows generated limit the ability to perform real-time processing. The use of an optical matrix processor and the linear analysis technique described below may allow for the detailed real-time analysis of the engine's health. A small optical matrix processor can perform the required mathematical analysis both quicker and with less energy than a large electronic computer dedicated to the same spectral analysis routine.

Gary, C. K.

1992-01-01

230

Ship plume modelling in EOSTAR  

NASA Astrophysics Data System (ADS)

The EOSTAR model aims at assessing the performance of electro-optical (EO) sensors deployed in a maritime surface scenario, by providing operational performance measures (such as detection ranges) and synthetic images. The target library of EOSTAR includes larger surface vessels, for which the exhaust plume may constitute a significant signature element in the thermal wavelength bands. The main steps of the methodology to include thermal signatures of exhaust plumes in EOSTAR are discussed, and illustrative examples demonstrate the impact of the ship's superstructure, the plume exit conditions, and the environment on the plume behavior and signature.

van Iersel, M.; Mack, A.; Degache, M. A. C.; van Eijk, A. M. J.

2014-10-01

231

Exhaust Simulation Testing of a Hypersonic Airbreathing Model at Transonic Speeds  

NASA Technical Reports Server (NTRS)

An experimental study was performed to examine jet-effects for an airframe-integrated, scramjet-rocket combined-cycle vehicle configuration at transonic test conditions. This investigation was performed by testing an existing exhaust simulation wind tunnel model, known as Model 5B, in the NASA Langley 16-Ft. Transonic Tunnel. Tests were conducted at freestream Mach numbers from 0.7 to 1.2, at angles of attack from 2 to +14 degrees, and at up to seven nozzle static pressure ratio values for a set of horizontal-tail and body-flap deflections. The model aftbody, horizontal tails, and body flaps were extensively pressure instrumented to provide an understanding of jet-effects and control-surface/plume interactions, as well as for the development of analytical methodologies and calibration of computational fluid dynamic codes to predict this type of flow phenomenon. At all transonic test conditions examined, the exhaust flow at the exit of the internal nozzle was over-expanded, generating an exhaust plume that turned toward the aftbody. Pressure contour plots for the aftbody of Model 5B are presented for freestream transonic Mach numbers of 0.70, 0.95, and 1.20. These pressure data, along with shadowgraph images, indicated the impingement of an internal plume shock and at least one reflected shock onto the aftbody for all transonic conditions tested. These results also provided evidence of the highly three-dimensional nature of the aftbody exhaust flowfield. Parametric testing showed that angle-of-attack, static nozzle pressure ratio, and freestream Mach number all affected the exhaust-plume size, exhaust-flowfield shock structure, and the aftbody-pressure distribution, with Mach number having the largest effect. Integration of the aftbody pressure data showed large variations in the pitching moment throughout the transonic regime.

Huebner, Lawrence D.; Witte, David W.; Andrews, Earl H., Jr.

2004-01-01

232

Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics  

NASA Technical Reports Server (NTRS)

The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

2014-01-01

233

Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix B: Liquid rocket booster acoustic and thermal environments  

NASA Technical Reports Server (NTRS)

The ascent thermal environment and propulsion acoustic sources for the Martin-Marietta Corporation designed Liquid Rocket Boosters (LRB) to be used with the Space Shuttle Orbiter and External Tank are described. Two designs were proposed: one using a pump-fed propulsion system and the other using a pressure-fed propulsion system. Both designs use LOX/RP-1 propellants, but differences in performance of the two propulsion systems produce significant differences in the proposed stage geometries, exhaust plumes, and resulting environments. The general characteristics of the two designs which are significant for environmental predictions are described. The methods of analysis and predictions for environments in acoustics, aerodynamic heating, and base heating (from exhaust plume effects) are also described. The acoustic section will compare the proposed exhaust plumes with the current SRB from the standpoint of acoustics and ignition overpressure. The sections on thermal environments will provide details of the LRB heating rates and indications of possible changes in the Orbiter and ET environments as a result of the change from SRBs to LRBs.

1989-01-01

234

Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan  

NASA Astrophysics Data System (ADS)

A dense array of Global Navigation Satellite System (GNSS) receivers is useful to study ionospheric disturbances. Here we report observations by a Japanese GNSS array of an ionospheric hole, i.e., localized electron depletion, made by water vapor molecules in the exhaust plume of the second-stage engine of the Unha-3 rocket launched from North Korea, on 12 December 2012. The Russian GNSS was used for the first time to observe such an ionospheric hole. The hole emerged ~6 min after the launch above the middle of the Yellow Sea, and its size and depth suggest that the Unha-3 is slightly less powerful than the 2009 Taepodong-2 missile, also from North Korea. Smaller-scale electron depletion signatures appeared ~10 min after the launch above the southern East China Sea, which is possibly caused by the exhaust plume of the third-stage engine.

Nakashima, Yuki; Heki, Kosuke

2014-07-01

235

Modelling of thruster plume induced erosion  

Microsoft Academic Search

One source of external induced contamination on the International Space Station (ISS) is thruster plume exhausts. The contamination from these plumes onto ISS sensitive surfaces is due to liquid drops of unreacted or partially reacted propellants. However, the drag acceleration of these particles (drops) from the exhaust gases produces high velocity (~km\\/s) drops that will mechanically damage surfaces in the

John Alred; Paul Boeder; Ron Mikatarian; Courtney Pankop; William Schmidl

2003-01-01

236

Chemical rocket propulsion and the environment  

SciTech Connect

Results are presented from the examination by the Chemical Rocket Propulsion and the Environment Workshop conducted by AIAA in June 1991 of the impact of rocket launches and ground testing on the earth's environment. The major conclusions of this workshop were: (1) at projected rocket launch rates, neither the liquid- nor the solid-rocket motors will significantly impact stratospheric ozone; (2) there is no global acid rain problem associated with rocket exhaust; and (3) the local launch site and static test site acidification is a minor problem and can be managed.

Mcdonald, A.J. (Thiokol Corp., Brigham City, UT (United States))

1992-03-01

237

SAFE Testing Nuclear Rockets Economically  

NASA Astrophysics Data System (ADS)

Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

Howe, Steven D.; Travis, Bryan; Zerkle, David K.

2003-01-01

238

Safe testing nuclear rockets economically  

SciTech Connect

Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

Howe, S. D. (Steven D.); Travis, B. J. (Bryan J.); Zerkle, D. K. (David K.)

2002-01-01

239

Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies  

NASA Technical Reports Server (NTRS)

Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e <1) and underexpanded exhaust plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical importance of testing and modeling plume-surface interactions for descent and ascent of spacecraft and launch vehicles.

Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

2011-01-01

240

Altitude-Compensating Nozzle (ACN) Project: Planning for Dual-Bell Rocket Nozzle Flight Testing on the NASA F-15B  

NASA Technical Reports Server (NTRS)

For more than a half-century, several types of altitude-compensating nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Although the dual-bell rocket nozzle has been thoroughly studied, this nozzle has still not been tested in a relevant flight environment. This poster presents the top-level rationale and preliminary plans for conducting flight research with the dual-bell rocket nozzle, while exhausting the plume into the freestream flow field at various altitudes. The primary objective is to gain a greater understanding of the nozzle plume sensitivity to freestream flight effects, which will also include detailed measurements of the plume mode transition within the nozzle. To accomplish this goal, the NASA F-15B is proposed as the testbed for advancing the technology readiness level of this greatly-needed capability. All proposed tests include the quantitative performance analysis of the dual-bell rocket nozzle as compared with the conventional-bell nozzle.

Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

2013-01-01

241

Torpedo Rockets  

NASA Technical Reports Server (NTRS)

All through the 13th to the 15th Centuries there were reports of many rocket experiments. For example, Joanes de Fontana of Italy designed a surface-rurning, rocket-powered torpedo for setting enemy ships on fire

2004-01-01

242

Pop Rockets  

NSDL National Science Digital Library

Students design and build paper rockets around film canisters, which serve as engines. An antacid tablet and water are put into each canister, reacting to form carbon dioxide gas, and acting as the pop rocket's propellant. With the lid snapped on, the continuous creation of gas causes pressure to build up until the lid pops off, sending the rocket into the air. The pop rockets demonstrate Newton's third law of motion: for every action, there is an equal and opposite reaction.

Integrated Teaching and Learning Program,

243

Rockets Away!  

NSDL National Science Digital Library

In this activity, learners work in teams to construct and test fly drinking straw rockets. Learners explore how changing the rockets' fins affect flight distance. Learners also practice teaching others in a way that lets others learn by doing before being told or shown how. At the end, learners have a "Rocket Blast-Off Contest" to see who can design a rocket that flies the furthest.

University of Wisconsin Extension

2002-01-01

244

Prediction of Acoustic Environments from Horizontal Rocket Firings  

NASA Technical Reports Server (NTRS)

In recent years, advances in research and engineering have led to more powerful launch vehicles which can reach areas of space not yet explored. These more powerful vehicles yield acoustic environments potentially destructive to the vehicle or surrounding structures. Therefore, it has become increasingly important to be able to predict the acoustic environments created by these vehicles in order to avoid structural and/or competent failure. The current industry standard technique for predicting launch-induced acoustic environments was developed by Eldred in the early 1970's and is published in NASA SP-80721. Recent work2 has shown Eldred's technique to be inaccurate for current state-of-the-art launch vehicles. Due to the high cost of full-scale and even sub-scale rocket experiments, very little rocket noise data is available. Furthermore, much of the work thought to be applicable to rocket noise has been done with heated jets. Tam3,4 has done an extensive amount of research on jets of different nozzle exit shape, diameter, velocity, and temperature. Though the values of these parameters, especially exit velocity and temperature, are often very low compared to these values in rockets, a lot can be learned about rocket noise from jet noise literature. The turbulent nature of jet and rocket exhausts is quite similar. Both exhausts contain turbulent structures of varying scale-termed the fine and large scale turbulence by Tam. The finescale turbulence is due to small eddies from the jet plume interacting with the ambient atmosphere. According to Tam et al., the noise radiated by this envelope of small-scale turbulence is statistically isotropic. Hence, one would expect the noise from the small scale turbulence of the jet to be nearly omni-directional. The coherent nature of the large-scale turbulence results in interference of the noise radiated from different spatial locations within the jet. This interference-whether it is constructive or destructive-results in highly directional noise radiation. Tam3 has proposed a model to predict the acoustic environment due to jets and while it works extremely well for jets, it was found to be inappropriate for rockets8. A model to predict the acoustic environment due to a launch vehicle in the far-field which incorporates concepts from both Eldred and Tam was created. This was done using five sets of horizontally fired rocket data, obtained between 2008 and 2012. Three of these rockets use solid propellant and two use liquid propellant. Through scaling analysis, it is shown that liquid and solid rocket motors exhibit similar spectra at similar amplitudes. This model is accurate for these five data sets within 5 dB of the measured data for receiver angles of 30deg to 160deg (with respect to the downstream exhaust centerline). The model uses the following vehicle parameters: nozzle exit diameter and velocity, radial distance from source to receiver, receiver angle, mass flow rate, and acoustic efficiency.

Giacomoni, Clothilde

2014-01-01

245

A tandem mirror plasma source for a hybrid plume plasma propulsion concept  

NASA Technical Reports Server (NTRS)

This paper describes a tandem mirror magnetic plasma confinement device to be considered as a hot plasma source for the hybrid plume rocket concept. The hot plasma from this device is injected into an exhaust duct, which will interact with an annular layer of hypersonic neutral gas. Such a device can be used to study the dynamics of the hybrid plume and to experimentally verify the numerical predictions obtained with computer codes. The basic system design is also geared toward being lightweight and compact, as well as having high power density (i.e., several kW/sq cm) at the exhaust. This feature is aimed toward the feasibility of 'space testing'. The plasma is heated by microwaves. A 50 percent heating efficiency can be obtained by using two half-circle antennas. The preliminary Monte Carlo modeling of test particles result reported here indicates that interaction does take place in the exhaust duct. Neutrals gain energy from the ion, which confirms the hybrid plume concept.

Yang, T. F.; Miller, R. H.; Wenzel, K. W.; Krueger, W. A.; Chang, F. R.

1985-01-01

246

Some problems in communications with relativistic interstellar rockets  

Microsoft Academic Search

The feasibility of interstellar travel with relativistic rockets is discussed and some communications problems that will occur with such rockets are analyzed. For interstellar travel at relativistic velocities, rockets with exhaust velocities exceeding 0.01 times the speed of light are required. The principle effect on communications due to interstellar distances is the time delay between the transmission and reception of

G. M. Anderson

1975-01-01

247

Comparison of the Particle Size Distribution of Heavy-Duty Diesel Exhaust Using a Dilution Tailpipe Sampler and an In-Plume Sampler during On-Road Operation  

Microsoft Academic Search

Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which

J. Edward Brown; Matthew J. Clayton; D. Bruce Harris; Foy G. King Jr

2000-01-01

248

Aerosol number size distributions within the exhaust plume of a diesel and a gasoline passenger car under on-road conditions and determination of emission factors  

NASA Astrophysics Data System (ADS)

A new setup has been developed and built to measure number size distributions of exhaust particles and thermodynamic parameters under real traffic conditions. Measurements have been performed using a diesel and a gasoline passenger car driving with different speeds and engine conditions. Significant number of nucleation mode particles was found only during high load conditions, i.e. high car and engine speeds behind the diesel car. The number concentration of soot mode particles varied within a factor of two for different engine conditions while the concentration of nucleation mode particles varied up to two orders of magnitude. The results show that roadside measurements are still quite different from those behind the tailpipe. Beside dilution transformation processes within the first meter behind the tailpipe also play an important role, such as nucleation and growth. Emission factors were calculated and compared with those obtained by other studies. Emission factors for particles larger than 25 nm (primary emissions) varied within 1.1 × 10 14 km -1 and 2.7 × 10 14 km -1 for the diesel car and between 0.6 × 10 12 km -1 and 3.5 × 10 12 km -1 for the gasoline car. The advantage of these measurements is the exhaust dilution under atmospheric conditions and the size-resolved measurement technique to divide into primary emitted and secondary formed particles.

Wehner, B.; Uhrner, U.; von Löwis, S.; Zallinger, M.; Wiedensohler, A.

249

Ionospheric modification by rocket effluents. Final report  

SciTech Connect

This report describes experimental and theoretical studies related to ionospheric disturbances produced by rocket exhaust vapors. The purpose of our research was to estimate the ionospheric effects of the rocket launches which will be required to place the Satellite Power System (SPS) in operation. During the past year, we have developed computational tools for numerical simulation of ionospheric changes produced by the injection of rocket exhaust vapors. The theoretical work has dealt with (1) the limitations imposed by condensation phenomena in rocket exhaust; (2) complete modeling of the ionospheric depletion process including neutral gas dynamics, plasma physics, chemistry and thermal processes; and (3) the influence of the modified ionosphere on radio wave propagation. We are also reporting on electron content measurements made during the launch of HEAO-C on Sept. 20, 1979. We conclude by suggesting future experiments and areas for future research.

Bernhardt, P.A.; Price, K.M.; da Rosa, A.V.

1980-06-01

250

Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System  

NASA Technical Reports Server (NTRS)

The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.

Anderson, William E.

2005-01-01

251

Solid rocket booster thermal radiation model, volume 1  

NASA Technical Reports Server (NTRS)

A solid rocket booster (SRB) thermal radiation model, capable of defining the influence of the plume flowfield structure on the magnitude and distribution of thermal radiation leaving the plume, was prepared and documented. Radiant heating rates may be calculated for a single SRB plume or for the dual SRB plumes astride the space shuttle. The plumes may be gimbaled in the yaw and pitch planes. Space shuttle surface geometries are simulated with combinations of quadric surfaces. The effect of surface shading is included. The computer program also has the capability to calculate view factors between the SRB plumes and space shuttle surfaces as well as surface-to-surface view factors.

Watson, G. H.; Lee, A. L.

1976-01-01

252

Predicted rocket and shuttle effects on stratospheric ozone  

NASA Technical Reports Server (NTRS)

The major chemical effluents of either solid- or liquid-fueled rockets that can potentially perturb stratospheric ozone include chlorine compounds (HCl), nitrogen compounds (NO(x)), and hydrogen compounds (H2 and H2O). Radicals (Cl, ClO, H, OH, HO2, NO, and NO2) formed directly or indirectly from rocket exhaust can cause the catalytic destruction of ozone. Other exhaust compounds that could presumably lead to ozone destruction either by direct reaction with ozone or by providing a surface for heterogeneous processes include the particulates Al2O3, ice, and soot. These topics are discussed in terms of the possible effects of rocket exhausts on stratospheric ozone.

Harwood, Robert S.; Karol, Igor L.; Jackman, Charles H.; Qiu, Lian-Xiong; Prather, Michael J.; Pyle, John A.

1991-01-01

253

Helping HAN for hybrid rockets  

SciTech Connect

Hydroxyl amine nitrate (HAN) is a powerful oxidizer for hybrid rocket flight motors. Miscible with water up to 95% by mass, it also has high density and has been extensively characterized for materials compatibility, safety, transportation, storage and handling. Before any serious attempt to use the proposed oxidizer in hybrids, though, the usual performance figures must first be obtained. The simplest are time-independent, equilibrium rocket performance numbers that include chamber temperature, temperature at the nozzle throat, and key species in the exhaust. These numbers must be followed by several other important performance evaluation, including burning rates, pressure dependence, susceptibility to instabilities and temperature sensitivity.

Ramohalli, K.; Dowler, W.

1995-01-01

254

Rocket Engines  

NSDL National Science Digital Library

This video from SpaceTEC National Aerospace Technical Education Center explains the theory of rocket engines using Newton's third law of motion. This five minute video is one of the aerospace certification readiness courses.

255

Rocket Launchers  

NSDL National Science Digital Library

In this activity, learners work with an adult to build a rocket and launcher out of a plastic 2-liter bottle, flexible plastic hose, plastic tubing, toilet paper tube, and duct tape. Use this stomp rocket activity to demonstrate that air is something, comprised of molecules that, when acted upon, have the power to move things. This activity guide includes an extension activity and related activity for younger learners.

Chicago Children's Museum

2010-01-01

256

Space shuttle plume simulation application. Results and math model. [Ames unitary plan wind tunnel test  

NASA Technical Reports Server (NTRS)

Pressure and gauge wind tunnel data from a transonic test of a 0.02 scale model of the space shuttle launch vehicle was analyzed to define the aerodynamic influence of the main propulsion system and solid rocket booster plumes during the transonic portion of ascent flight. Air was used as a simulant gas to develop the model exhaust plumes. A math model of the plume induced aerodynamic characteristics was developed for a range of Mach numbers to match the forebody aerodynamic math model. The base aerodynamic characteristics are presented in terms of forces and moments versus attitude. Total vehicle base and forebody aerodynamic characteristics are presented in terms of aerodynamic coefficients for Mach number from 0.6 to 1.4 Element and component base and forebody aerodynamic characteristics are presented for Mach numbers of 0.6, 1.05, 1.1, 1.25 and 1.4. The forebody data is available at Mach 1.55. Tolerances for all plume induced aerodynamic characteristics are developed in terms of a math model.

Boyle, W.; Conine, B.

1978-01-01

257

Experimentation in the low-density plume of a simulated electrothermal thruster for computer code validation  

NASA Astrophysics Data System (ADS)

Pressures and flow angles are measured in the plume of a 20 deg half-angle, conical nozzle in vacuum with Pitot tubes and conical probes. The area of measurement in the plume ranges from the nozzle exit plane to 480 mm axially downstream and from the plume centerline to 60 mm radially. The nozzle has an exit-to-throat area ratio of 100:1 and a throat diameter of 3.2 mm. The nozzle flow exhausts to a vacuum of order 10(exp -2) Pa to simulate a resistojet (an electrothermal rocket of less than 1 N of thrust) operating in space. Experimental data are given for flows of nitrogen at 55 and 68 mg/s, stagnation temperatures between 695 and 921 K, and stagnation pressures ranging from 5600 to 7100 Pa. Data are also given for argon at a rate of 68 mg/s, a stagnation temperature of 648 K, and stagnation pressures of 4500, 4750, and 4770 Pa. Measurements in the nitrogen plume are compared with computational results from a direct-simulation Monte Carlo method.

Meissner, Dana L.

1993-04-01

258

NO sub X Deposited in the Stratosphere by the Space Shuttle Solid Rocket Motors  

NASA Technical Reports Server (NTRS)

The possible effects of the interaction of the plumes from the two solid rocket motors (SRM) from the space shuttles and mixing of the rocket exhaust products and ambient air in the base recirculation region on the total nitrous oxide deposition rate in the stratosphere were investigated. It was shown that these phenomena will not influence the total NOx deposition rate. It was also shown that uncertainties in the particle size of Al2O3, size distributions and particle/gas drag and heat transfer coefficients will not have a significant effect on the predicted NOx deposition rate. The final results show that the total mass flow of NOx leaving the plume at 30 km altitude is 4000 g./sec with a possible error factor of 3. For a vehicle velocity of 1140 meter/sec this yields an NOx deposition rate of about 3.5 g./meter. The corresponding HCl deposition rate at this altitude is about a factor of 500 greater than this value.

Pergament, H. S.; Thorpe, R. D.; Hwang, B.

1975-01-01

259

Axisymmetric Numerical Modeling of Pulse Detonation Rocket Engines  

NASA Technical Reports Server (NTRS)

Pulse detonation rocket engines (PDREs) have generated research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred considerable interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the progress that has been made in comparing the available experimental measurements with analytical and numerical models. In recent work by the author, a quasi-one-dimensional, finite rate chemistry CFD model was utilized to study the gasdynamics and performance characteristics of PDREs over a range of blowdown pressure ratios from 1-1000. Models of this type are computationally inexpensive, and enable first-order parametric studies of the effect of several nozzle and extension geometries on PDRE performance over a wide range of conditions. However, the quasi-one-dimensional approach is limited in that it cannot properly capture the multidimensional blast wave and flow expansion downstream of the PDRE, nor can it resolve nozzle flow separation if present. Moreover, the previous work was limited to single-pulse calculations. In this paper, an axisymmetric finite rate chemistry model is described and utilized to study these issues in greater detail. Example Mach number contour plots showing the multidimensional blast wave and nozzle exhaust plume are shown. The performance results are compared with the quasi-one-dimensional results from the previous paper. Both Euler and Navier-Stokes solutions are calculated in order to determine the effect of viscous effects in the nozzle flowfield. Additionally, comparisons of the model results to performance data from CalTech, as well as experimental flowfield measurements from Stanford University, are also reported.

Morris, Christopher I.

2005-01-01

260

Measuring Fluctuating Pressure Levels and Vibration Response in a Jet Plume  

NASA Technical Reports Server (NTRS)

The characterization of loads due to solid rocket motor plume impingement allows for moreaccurate analyses of components subjected to such an environment. Typically, test verification of predicted loads due to these conditions is widely overlooked or unsuccessful. ATA Engineering, Inc., performed testing during a solid rocket motor firing to obtain acceleration and pressure responses in the hydrodynamic field surrounding the jet plume. The test environment necessitated a robust design to facilitate measurements being made in close proximity to the jet plume. This paper presents the process of designing a test fixture and an instrumentation package that could withstand the solid rocket plume environment and protect the required instrumentation.

Osterholt, Douglas J.; Knox, Douglas M.

2011-01-01

261

A smoke producing rocket motor for atmospheric wind profiling  

SciTech Connect

A composite propellant was developed to produce a dense plume from a rocket motor. The development of this propellant combined the smoke producing capabilities of a smoke generator with a rocket motor, thereby integrating the separate systems into one unit. A rocket motor was designed for use with this propellant to produce a high density particulate plume. This plume could then be used to determine the wind profile in the atmosphere by using a light detection and ranging system. Additionally, this smoke producing propellant could be used for rapid screening or identification. The burn rate characteristics of the propellant were measured and static firings of rocket motors were conducted to determine the performance of the propellant. The results of these tests will be presented as well as theoretical performance predictions of a flight vehicle.

Grubelich, M.C. (Sandia National Labs., Albuquerque, NM (United States)); Rowland, J. (Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.)

1991-01-01

262

A smoke producing rocket motor for atmospheric wind profiling  

SciTech Connect

A composite propellant was developed to produce a dense plume from a rocket motor. The development of this propellant combined the smoke producing capabilities of a smoke generator with a rocket motor, thereby integrating the separate systems into one unit. A rocket motor was designed for use with this propellant to produce a high density particulate plume. This plume could then be used to determine the wind profile in the atmosphere by using a light detection and ranging system. Additionally, this smoke producing propellant could be used for rapid screening or identification. The burn rate characteristics of the propellant were measured and static firings of rocket motors were conducted to determine the performance of the propellant. The results of these tests will be presented as well as theoretical performance predictions of a flight vehicle.

Grubelich, M.C. [Sandia National Labs., Albuquerque, NM (United States); Rowland, J. [Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.

1991-12-31

263

Vertical Landing Aerodynamics of Reusable Rocket Vehicle  

NASA Astrophysics Data System (ADS)

The aerodynamic characteristics of a vertical landing rocket are affected by its engine plume in the landing phase. The influences of interaction of the engine plume with the freestream around the vehicle on the aerodynamic characteristics are studied experimentally aiming to realize safe landing of the vertical landing rocket. The aerodynamic forces and surface pressure distributions are measured using a scaled model of a reusable rocket vehicle in low-speed wind tunnels. The flow field around the vehicle model is visualized using the particle image velocimetry (PIV) method. Results show that the aerodynamic characteristics, such as the drag force and pitching moment, are strongly affected by the change in the base pressure distributions and reattachment of a separation flow around the vehicle.

Nonaka, Satoshi; Nishida, Hiroyuki; Kato, Hiroyuki; Ogawa, Hiroyuki; Inatani, Yoshifumi

264

Analysis of a Nuclear Enhanced Airbreathing Rocket for Earth to Orbit Applications  

NASA Technical Reports Server (NTRS)

The proposed engine concept is the Nuclear Enhanced Airbreathing Rocket (NEAR). The NEAR concept uses a fission reactor to thermally heat a propellant in a rocket plenum. The rocket is shrouded, thus the exhaust mixes with ingested air to provide additional thermal energy through combustion. The combusted flow is then expanded through a nozzle to provide thrust.

Adams, Robert B.; Landrum, D. Brian; Brown, Norman (Technical Monitor)

2001-01-01

265

60. Historic plan of Building 202 exhaust scrubber, June 18, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

60. Historic plan of Building 202 exhaust scrubber, June 18, 1955. NASA GRC drawing no. CD-101261. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

266

Cratering Soil by Impinging Jets of Gas, with Application to Landing Rockets on Planetary Surfaces  

NASA Technical Reports Server (NTRS)

Several physical mechanisms are involved in excavating granular materials beneath a vertical jet of gas. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. A series of experiments and simulations have been performed to provide a detailed view of the complex gas/soil interactions. Measurements have also been taken from the Apollo lunar landing videos and from photographs of the resulting terrain, and these help to demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher-fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from landing spacecraft must be accurately predicted and controlled lest it erosively damage the surrounding hardware.

Metzger, Philip T.; Vu, B. T.; Taylor, D. E.; Kromann, M. J.; Fuchs, M.; Yutko, B.; Dokos, A.; Immer, Christopher D.; Lane, J. E.; Dunkel, Michael B.; Donahue, Carly M.; Latta, R. C., III

2007-01-01

267

Simulation of the Flow Field Associated with a Rocket Thruster Having an Attached Panel  

NASA Technical Reports Server (NTRS)

Two-dimensional inviscid and viscous numerical simulations are performed to predict the flow field induced by a H2-O2 rocket thruster and to provide insight into the heat load on the articles placed in the hot gas exhaust of the thruster under a variety of operating conditions, using the National Combustion Code (NCC). The simulations have captured physical details of the flow field, such as the plume formation and expansion, formation of the shock waves and their effects on the temperature and pressure distributions on the walls of the apparatus and the flat panel. Comparison between the computed results for 2-D and adiabatic walls and the related experimental measurements for 3-D and cooled walls shows that the results of the simulations are consistent with those obtained from the related rig tests.

Davoudzadeh, Farhad; Liu, Nan-Suey

2003-01-01

268

Supplemental final environmental impact statement for advanced solid rocket motor testing at Stennis Space Center  

NASA Technical Reports Server (NTRS)

Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.

1990-01-01

269

Rocket Lab  

NSDL National Science Digital Library

This activity is lab based competition. The students engineer a 2-litter rocket to have the maximum hang time. After the initial launch, the students are given an opportunity to re-engineer to produce a better time. The activity finishes with a lab write-up.

270

Balloon Rocket  

NSDL National Science Digital Library

Experiment with force and pressure by building a balloon rocket. When launched, the balloon will run a track wherever you place the string. All you need is a balloon, clothespin, a straw, some tape, and some string, then get ready for take off!

2012-06-26

271

Space shuttle exhaust cloud properties  

NASA Technical Reports Server (NTRS)

A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

Anderson, B. J.; Keller, V. W.

1983-01-01

272

Atomic hydrogen rocket engine  

NASA Technical Reports Server (NTRS)

A rocket using atomic hydrogen propellant is discussed. An essential feature of the proposed engine is that the atomic hydrogen fuel is used as it is produced, thus eliminating the necessity of storage. The atomic hydrogen flows into a combustion chamber and recombines, producing high velocity molecular hydrogen which flows out an exhaust port. Standard thermodynamics, kinetic theory and wall recombination cross-sections are used to predict a thrust of approximately 1.4 N for a RF hydrogen flow rate of 4 x 10 to the 22nd/sec. Specific impulses are nominally from 1000 to 2000 sec. It is predicted that thrusts on the order of one Newton and specific impulses of up to 2200 sec are attainable with nominal RF discharge fluxes on the order of 10 to the 22nd atoms/sec; further refinements will probably not alter these predictions by more than a factor of two.

Etters, R. D.; Flurchick, K.

1981-01-01

273

Rocket Pinwheel  

NSDL National Science Digital Library

This is an activity about motion, power, air and Newton’s Third Law of Motion, which states that for every action there is an equal and opposite reaction. Learners will harness the power of thrust forces to build a rocket pinwheel. They will do this by making a pinwheel with a balloon, straw and pin. Thrust causes the balloon to spin around in a circular motion.

2012-06-26

274

Rippin' Rockets  

NSDL National Science Digital Library

In this activity, learners work in pairs to conduct a series of experiments using a balloon, drinking straw, and paper. Learners record their observations on an Experiment Log and eventually build and test a balloon rocket. During the tests, learners are asked to compare their findings with the findings of their partner. Although this activity can be used to introduce aerodynamics, learners will also learn how to conduct simple experiments and the value of science in helping to solve problems.

University of Wisconsin Extension

2002-01-01

275

Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests  

NASA Technical Reports Server (NTRS)

A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.

Plencner, R. M.

1977-01-01

276

Jet engine exhaust chemiion measurements  

Microsoft Academic Search

We have made mass spectrometric measurements of negative chemiions (CI) in the exhaust of a jet engine on the ground. The measurements took place at plume ages between 6.6 and 19ms at low- and high-fuel sulfur content (FSC). Total negative CI-number densities reached up to 1.4·107cm-3 corresponding to an emission index for negative CI of 3×1015 CI per kg fuel.

F. ARNOLD; Th. Stilp; R. Busen; U. Schumann

1998-01-01

277

Radiative forcing caused by rocket engine emissions  

NASA Astrophysics Data System (ADS)

Space transportation plays an important and growing role in Earth's economic system. Rockets uniquely emit gases and particles directly into the middle and upper atmosphere where exhaust from hundreds of launches accumulates, changing atmospheric radiation patterns. The instantaneous radiative forcing (RF) caused by major rocket engine emissions CO2, H2O, black carbon (BC), and Al2O3 (alumina) is estimated. Rocket CO2 and H2O emissions do not produce significant RF. BC and alumina emissions, under some scenarios, have the potential to produce significant RF. Absorption of solar flux by BC is likely the main RF source from rocket launches. In a new finding, alumina particles, previously thought to cool the Earth by scattering solar flux back to space, absorb outgoing terrestrial longwave radiation, resulting in net positive RF. With the caveat that BC and alumina microphysics are poorly constrained, we find that the present-day RF from rocket launches equals 16 ± 8 mW m-2. The relative contributions from BC, alumina, and H2O are 70%, 28%, and 2%. respectively. The pace of rocket launches is predicted to grow and space transport RF could become comparable to global aviation RF in coming decades. Improved understanding of rocket emission RF requires more sophisticated modeling and improved data describing particle microphysics.

Ross, Martin N.; Sheaffer, Patti M.

2014-04-01

278

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

E-print Network

?Thermal  plumes  of  kitchen  appliances:   Cooking  mode."vented  kitchen  “range  hoods”   (including  “appliance  kitchen  and  the  residence  as  a  whole.  Exhausting   pollutants  at  the  source—in  this  case  cooking  appliances—

Singer, Brett C.

2011-01-01

279

Dispersion of turbojet engine exhaust in flight  

NASA Technical Reports Server (NTRS)

The dispersion of the exhaust of turbojet engines into the atmosphere is estimated by using a model developed for the mixing of a round jet with a parallel flow. The analysis is appropriate for determining the spread and dilution of the jet exhaust from the engine exit until it is entrained in the aircraft trailing vortices. Chemical reactions are not expected to be important and are not included in the flow model. Calculations of the dispersion of the exhaust plumes of three aircraft turbojet engines with and without afterburning at typical flight conditions are presented. Calculated average concentrations for the exhaust plume from a single engine jet fighter are shown to be in good agreement with measurements made in the aircraft wake during flight.

Holdeman, J. D.

1973-01-01

280

Challenger Rocket Booster  

NASA Technical Reports Server (NTRS)

At about 76 seconds, fragments of the Orbiter can be seen tumbling against a background of fire, smoke and vaporized propellants from the External Tank. The left Solid Rocket Booster (SRB) flys rampant, still thrusting. The reddish-brown cloud envelops the disintergrating Orbiter. The color is indicative of the nitrogen tetroxide oxidizer propellant in the Orbiter Reaction Control System. On January 28, 1986 frigid overnight temperatures caused normally pliable rubber O-ring seals and putty that are designed to seal and establish joint integrity between the Solid Rocket Booster (SRB) joint segments, to become hard and non- flexible. At the instant of SRB ignition, tremendous stresses and pressures occur within the SRB casing and especially at the joint attachment points. The failure of the O-rings and putty to 'seat' properly at motor ignition, caused hot exhaust gases to blow by the seals and putty. During Challenger's ascent, this hot gas 'blow by' ultimately cut a swath completely through the steel booster casing; and like a welder's torch, began cutting into the External Tank (ET). It is believed that the ET was compromised in several locations starting in the aft at the initial point where SRB joint failure occured. The ET hydrogen tank is believed to have been breached first, with continuous rapid incremental failure of both the ET and SRB. The chain reaction of events occurring in milliseconds culminated in a massive explosion. The orbiter Challenger was instantly ejected by the blast and went askew into the supersonic air flow. These aerodynamic forces caused structural shattering and complete destruction of the orbiter. Though it was concluded that the G-forces experienced during orbiter ejection and break-up were survivable, impact with the ocean surface was not. Tragically, all seven crewmembers perished.

1986-01-01

281

Gas Emission Measurements from the RD 180 Rocket Engine  

NASA Technical Reports Server (NTRS)

The Science Laboratory operated by GB Tech was tasked by the Environmental Office at the NASA Marshall Space Flight Center (MSFC) to collect rocket plume samples and to measure gaseous components and airborne particulates from the hot test firings of the Atlas III/RD 180 test article at MSFC. This data will be used to validate plume prediction codes and to assess environmental air quality issues.

Ross, H. R.

2001-01-01

282

Langmuir probe surveys of an arcjet exhaust  

NASA Technical Reports Server (NTRS)

Electrostatic (Langmuir) probes of both spherical and cylindrical geometry have been used to obtain electron number density and temperature in the exhaust of a laboratory arcjet. The arcjet thruster operated on nitrogen and hydrogen mixtures to simulate fully decomposed hydrazine in a vacuum environment with background pressures less than 0.05 Pa. The exhaust appears to be only slightly ionized (less than 1 percent) with local plasma potentials near facility ground. The current-voltage characteristics of the probes indicate a Maxwellian temperature distribution. Plume data are presented as a function of arcjet operating conditions and also position in the exhaust.

Zana, Lynnette M.

1987-01-01

283

Isotopic mapping of groundwater perchlorate plumes.  

PubMed

Analyses of stable isotope ratios of chlorine and oxygen in perchlorate can, in some cases, be used for mapping and source identification of groundwater perchlorate plumes. This is demonstrated here for large, intersecting perchlorate plumes in groundwater from a region having extensive groundwater perchlorate contamination and a large population dependent on groundwater resources. The region contains both synthetic perchlorate derived from rocket fuel manufacturing and testing activities and agricultural perchlorate derived predominantly from imported Chilean (Atacama) nitrate fertilizer, along with a likely component of indigenous natural background perchlorate from local wet and dry atmospheric deposition. Most samples within each plume reflect either a predominantly synthetic or a predominantly agricultural perchlorate source and there is apparently a minor contribution from the indigenous natural background perchlorate. The existence of isotopically distinct perchlorate plumes in this area is consistent with other lines of evidence, including groundwater levels and flow paths as well as the historical land use and areal distribution of potential perchlorate sources. PMID:21352209

Sturchio, Neil C; Hoaglund, John R; Marroquin, Roy J; Beloso, Abelardo D; Heraty, Linnea J; Bortz, Sarah E; Patterson, Thomas L

2012-01-01

284

An experimental study of jet exhaust simulation  

NASA Technical Reports Server (NTRS)

Afterbody drag predictions for jet aircraft are usually made experimentally with the jet exhaust flow simulated. The physical gas properties of the fluid used for the model jet exhaust can affect the accuracy of simulation of the airplane's jet exhaust plume. The effect of the accuracy of this simulation on afterbody drag was investigated by wind-tunnel tests with single engine model. In addition to unheated air as the exhaust gas, the decomposition products of three different concentrations of hydrogen peroxide were utilized. The air jet simulation consistently resulted in higher boattail drag than hydrogen peroxide simulation. The differences in drag for the various exhaust gases are attributed to different plume shapes and entrainment properties of the gases. The largest differences in drag due to exhaust gas properties were obtained for the combination of high transonic Mach numbers and high boattail angles. For these conditions, the current data indicate that the use of air to simulate a nonafterburning turbojet exhaust can result in an increase in afterbody amounting to 20 percent of the nonafterburning turbojet value.

Compton, W. B., III

1975-01-01

285

Contact diagnostics of combustion products of rocket engines, their units, and systems  

NASA Astrophysics Data System (ADS)

This article is devoted to a new block-module device used in the diagnostics of condensed combustion products of rocket engines during research and development with liquid-propellant rocket engines (Glushko NPO Energomash; engines RD-171, RD-180, and RD-191) and solid-propellant rocket motors. Soot samplings from the supersonic high-temperature jet of a high-power liquid-propellant rocket engine were taken by the given device for the first time in practice for closed-exhaust lines. A large quantity of significant results was also obtained during a combustion investigation of solid propellants within solid-propellant rocket motors.

Ivanov, N. N.; Ivanov, A. N.

2013-12-01

286

Crater Formation Due to Lunar Plume Impingement  

NASA Technical Reports Server (NTRS)

Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.

Marsell, Brandon

2011-01-01

287

Performance prediction of a ducted rocket combustor  

NASA Astrophysics Data System (ADS)

The ducted rocket is a supersonic flight propulsion system that takes the exhaust from a solid fuel gas generator, mixes it with air, and burns it to produce thrust. To develop such systems, the use of numerical models based on Computational Fluid Dynamics (CFD) is increasingly popular, but their application to reacting flow requires specific attention and validation. Through a careful examination of the governing equations and experimental measurements, a CFD-based method was developed to predict the performance of a ducted rocket combustor. It uses an equilibrium-chemistry Probability Density Function (PDF) combustion model, with a gaseous and a separate stream of 75 nm diameter carbon spheres to represent the fuel. After extensive validation with water tunnel and direct-connect combustion experiments over a wide range of geometries and test conditions, this CFD-based method was able to predict, within a good degree of accuracy, the combustion efficiency of a ducted rocket combustor.

Stowe, Robert

2001-07-01

288

Liquid rocket engine nozzles  

NASA Technical Reports Server (NTRS)

The nozzle is a major component of a rocket engine, having a significant influence on the overall engine performance and representing a large fraction of the engine structure. The design of the nozzle consists of solving simultaneously two different problems: the definition of the shape of the wall that forms the expansion surface, and the delineation of the nozzle structure and hydraulic system. This monography addresses both of these problems. The shape of the wall is considered from immediately upstream of the throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of the methods used to generate nozzle wall shapes are covered for maximum-performance shapes and for nozzle contours based on criteria other than performance. The discussion of structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled extensions, and radiation-cooled extensions. The techniques that best enable the designer to develop the nozzle structure with as little difficulty as possible and at the lowest cost consistent with minimum weight and specified performance are described.

1976-01-01

289

Effects of rocket engines on laser during lunar landing  

NASA Astrophysics Data System (ADS)

In the Chinese moon exploration project “ChangE-3”, the laser telemeter and lidar are important equipments on the lunar landing vehicle. A low-thrust vernier rocket engine works during the soft landing, whose plume may influence on the laser equipments. An experiment has first been accomplished to evaluate the influence of the plume on the propagation characteristics of infrared laser under the vacuum condition. Combination with our theoretical analysis has given an appropriate assessment of the plume's effects on the infrared laser hence providing a valuable basis for the design of lunar landing systems.

Wan, Xiong; Shu, Rong; Huang, Genghua

2013-11-01

290

Magnetic Detachment and Plume Control in Escaping Magnetized Plasma  

SciTech Connect

The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment.

P. F. Schmit and N. J. Fisch

2008-11-05

291

Plume Busters  

NSDL National Science Digital Library

Environmental and earth science students seldom have an opportunity to apply what they learn in class to the solution of real-world problems. With NSF support we have developed the prototype Plume Busters software, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by the spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break through a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.

Allen Macfarlane

292

Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations  

NASA Technical Reports Server (NTRS)

Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.

Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.

1993-01-01

293

The 1991 version of the plume impingement computer program. Volume 2: User's input guide  

NASA Technical Reports Server (NTRS)

The Plume Impingement Program (PLIMP) is a computer code used to predict impact pressures, forces, moments, heating rates, and contamination on surfaces due to direct impingement flowfields. Typically, it has been used to analyze the effects of rocket exhaust plumes on nearby structures from ground level to the vacuum of space. The program normally uses flowfields generated by the MOC, RAMP2, SPF/2, or SFPGEN computer programs. It is capable of analyzing gaseous and gas/particle flows. A number of simple subshapes are available to model the surfaces of any structure. The original PLIMP program has been modified many times of the last 20 years. The theoretical bases for the referenced major changes, and additional undocumented changes and enhancements since 1988 are summarized in volume 1 of this report. This volume is the User's Input Guide and should be substituted for all previous guides when running the latest version of the program. This version can operate on VAX and UNIX machines with NCAR graphics ability.

Bender, Robert L.; Somers, Richard E.; Prendergast, Maurice J.; Clayton, Joseph P.; Smith, Sheldon D.

1991-01-01

294

Solar Thermal Rocket Propulsion  

NASA Technical Reports Server (NTRS)

Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

Sercel, J. C.

1986-01-01

295

Film Canister Rocket  

NSDL National Science Digital Library

In this activity, learners construct and launch rockets using simple materials and their understanding of chemical reactions. Learners can experiment by modifying their rocket designs (shapes) or "fuel packets" (baking soda).

WGBH Boston

2002-01-01

296

Dragonfly directional sensor versus rocket-propelled grenades  

NASA Astrophysics Data System (ADS)

The Dragonfly directional sensor was deployed at the Army's Yuma Proving Grounds for preliminary field tests against rocket-propelled grenades. This wide-field (nonimaging) sensor's purpose was to angularly locate the latter's launch plume. These tests successfully demonstrated proof-of-concept.

Geary, Joseph; Blackwell, Lisa

2015-02-01

297

Building Bottle Rockets  

NSDL National Science Digital Library

You will be investigating the physics behind the launching of a bottle rocket that you will design and build. Go to Air resistance definition and answer the following questions: 1. What is air resistance? 2. How will you design your rocket to reduce the effect of the air resistance? Go to Aerodynamic Forces and list the 4 forces that act on a rocket in motion. Which ones propel the rocket upward and which ...

Mr. Benenati

2008-03-23

298

Pulse Detonation Rocket MHD Power Experiment  

NASA Technical Reports Server (NTRS)

A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent magnet assembly were then installed on Marshall Space Flight Center's (MSFC's) rectangular channel pulse detonation research engine. Magnetohydrodynamic (MHD) electrical power extraction experiments were carried out for a range of load impedances in which cesium hydroxide seed (dissolved in methanol) was sprayed into the gaseous oxygen/hydrogen propellants. Positive power extraction was obtained, but preliminary analysis of the data indicated that the plasma electrical conductivity is lower than anticipated and the near-electrode voltage drop is not negligible. It is believed that the electrical conductivity is reduced due to a large population of negative OH ions. This occurs because OH has a strong affinity for capturing free electrons. The effect of near-electrode voltage drop is associated with the high surface-to-volume ratio of the channel (1-inch by 1-inch cross-section) where surface effects play a dominant role. As usual for MHD devices, higher performance will require larger scale devices. Overall, the gathered data is extremely valuable from the standpoint of understanding plasma behavior and for developing empirical scaling laws.

Litchford, Ron J.; Cook, Stephen (Technical Monitor)

2002-01-01

299

Pop Rocket Variables  

NSDL National Science Digital Library

This is a lesson about the concept of variables in relation to launching pop rockets. Learners will work in teams to test a single variable involved in launching a rocket and learn the variables involved with constructing and launching a water rocket. This is activity 1 of 7 in Dynamic Design: Launch and Propulsion.

2012-08-03

300

Environmentally compatible solid rocket propellants  

NASA Technical Reports Server (NTRS)

Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

Jacox, James L.; Bradford, Daniel J.

1995-01-01

301

Plume Busters  

NSDL National Science Digital Library

This is an interactive simulator in which students take on the role of an environmental consultant to solve a contamination problem (genrally in the Buffalo River valley alluvial aquifer). Students apply ground-water principles to solve a simulated contamination problem. They calculate the average ground-water velocity from the aquifer porosity and the specific discharge, which in turn is calculated from the aquifer hydraulic conductivity and the hydraulic gradient using Darcy's law. The distances traveled away from the spill site by the edges of the plume are calculated from the average ground-water velocity and time since contaminants first and last entered the aquifer. Students use either production wells or a production/injection well couplet placed appropriately with respect to the moving plume. They design the wellfield and need only a qualitative understanding of well hydraulics including the fundamental concepts of cone of depression, cone of impression, capture zone, and zone of influence. Grade 11-12, undergraduate non-hydrogeology major, and undergraduate hydrogeology major versions of the software are currently available.

P. Macfarlane

302

Monitoring Shuttle Burns and Rocket Launches with GPS  

Microsoft Academic Search

We report on different GPS analysis techniques that can be used to examine the effects of rocket exhaust on the upper atmosphere. GPS observations of artificially produced electron density holes created by chemical releases from Space Shuttle Orbital Maneuvering System (OMS) engine burns will be discussed. The percentage drop in total electron content (TEC) and the temporal and spatial scales

A. J. Coster; A. Bhatt; B. O'Hanlon; W. Rideout

2009-01-01

303

Baking Soda and Vinegar Rockets  

Microsoft Academic Search

Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors1,2 that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the experimentally measured rocket height. Baking soda and vinegar rockets present fewer safety

James R. Claycomb; Christopher Zachary; Quoc Tran

2009-01-01

304

The effects of solid rocket motor effluents on selected surfaces and solid particle size, distribution, and composition for simulated shuttle booster separation motors  

NASA Technical Reports Server (NTRS)

A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.

Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.

1976-01-01

305

Rocket Wind Tunnel  

NSDL National Science Digital Library

In this activity, learners evaluate the potential performance of air rockets placed inside a wind tunnel. Learners measure the rocket's resistance to the flow of air in the tunnel and use the data to construct better rockets. The wind tunnel is prepared by the educator before the activity, but can be built by learners with adult supervision. This lesson plan includes instructions on how to build and use a wind tunnel, extensions, and sample data sheets.

NASA

2012-05-15

306

ASSESSMENT OF PLUME DIVING  

EPA Science Inventory

This presentation presents an assessment of plume diving. Observations included: vertical plume delineation at East Patchogue, NY showed BTEX and MTBE plumes sinking on either side of a gravel pit; Lake Druid TCE plume sank beneath unlined drainage ditch; and aquifer recharge/dis...

307

63. Historic detail drawing of inlet duct cone on exhaust ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

63. Historic detail drawing of inlet duct cone on exhaust scrubber at building 202, June 18, 1955. NASA GRC drawing no. CD-101266. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

308

28. Historic view of Building 202 exhaust scrubber stack, detail, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

28. Historic view of Building 202 exhaust scrubber stack, detail, July 31, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45648. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

309

61. Historic elevation and section drawing of Building 202 exhaust ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

61. Historic elevation and section drawing of Building 202 exhaust scrubber, July 18, 1955. NASA GRC drawing no. CD-101263. (On file at NASA Glenn Research Center). - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

310

27. Historic view of Building 202 exhaust scrubber stack, July ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

27. Historic view of Building 202 exhaust scrubber stack, July 31, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45650. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH

311

Mississippi Plumes  

NSDL National Science Digital Library

The MODIS satellite image above, taken on March 5, shows sediment plumes moving into the Gulf of Mexico from the main branch of the Mississippi River as well as through the bayous in its delta region. It's easy to understand how our nation's longest river is often referred to as 'The Big Muddy'. From the end of the last ice age until the mid 1900's, the Mississippi River created more area each year, but the river has been confined in it's levees since a major flood in 1927. The benefits of controlling the Mississippi River extend throughout the watershed because such control reduces the cost of exporting grain from the midwest and importing petroleum from around the world. Such benefits have come at a tremendous ecological cost that are concentrated in coastal Louisiana. Wetland loss there averaged an acre every 20 minutes throughout the 1950's, 1960's and 1970's. The most recent estimates are about an acre every 40 minutes. Before the mid 1900's, natural wetland loss processes were slower than natural wetland building processes, but human activities have accelerated wetland loss processes and virtually eliminated wetland creation processes.

NASA Goddard Space Flight Center

312

Model Rockets and Microchips.  

ERIC Educational Resources Information Center

Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

Fitzsimmons, Charles P.

1986-01-01

313

Postal Rocket Stamps  

NASA Technical Reports Server (NTRS)

In the 19th Century, experiments in America, Europe, and elsewhere attempted to build postal rockets to deliver mail from one location to another. The idea was more novel than successful. Many stamps used in these early postal rockets have become collector's items.

2004-01-01

314

Pop! Rocket Launcher  

NSDL National Science Digital Library

In this activity, learners construct a simple air pressure launcher for paper rockets. Learners stomp or jump on an empty 2-liter bottle and force the air inside through connected plastic pipes to propel a paper rocket. The launching activity should be done in an open space like a gymnasium or cafeteria or can be conducted outside on a calm day.

Deborah A. Shearer

2013-01-30

315

Solid Rocket Propulsion Technology  

Microsoft Academic Search

This book, a translation of the French title Technologie des Propergols Solides, offers otherwise unavailable information on the subject of solid propellants and their use in rocket propulsion. The fundamentals of rocket propulsion are developed in chapter one and detailed descriptions of concepts are covered in the following chapters. Specific design methods and the theoretical physics underlying them are presented,

A. Davenas

1992-01-01

316

Sounding rocket lessons learned  

NASA Technical Reports Server (NTRS)

Programmatic, applicatory, developmental, and operational aspects of sounding rocket utilization for materials processing studies are discussed. Lessons learned through the experience of 10 sounding rocket missions are described. Particular attention is given to missions from the SPAR, Consort, and Joust programs. Successful experiments on Consort include the study of polymer membranes and resins, biological processes, demixing of immiscible liquids, and electrodeposition.

Wessling, Francis C.; Maybee, George W.

1991-01-01

317

Gyrostabilizers of rockets  

Microsoft Academic Search

The present work outlines the principles of operation of gyroscopic stabilizers that are widely used in various fields, including rocket engineering. Examples of gyrostabilizer design are included, along with the requirements to be met by gyrostabilizers devised to operate on rockets. An analysis of typical errors and dynamic properties of gyrostabilizers is presented. Means of reducing the errors and improving

B. I. Nazarov; G. A. Khlebnikov

1975-01-01

318

Alka-Seltzer Rockets  

NSDL National Science Digital Library

This activity is about rocket propulsion. Learners will use use baking soda and vinegar to propel an object across the floor and understand how real rockets propel themselves in space. This activity should be carried out with adult supervision. This is activity 21 of 25 from Mars Activities.

2012-08-03

319

Environment effects from SRB exhaust effluents: Technique development and preliminary assessment  

NASA Technical Reports Server (NTRS)

Techniques to determine the environmental effects from the space shuttle SRB (Solid Rocket Booster) exhaust effluents are used to perform a preliminary climatological assessment. The exhaust effluent chemistry study was performed and the exhaust effluent species were determined. A reasonable exhaust particle size distribution is constructed for use in nozzle analyses and for the deposition model. The preliminary assessment is used to identify problems that are associated with the full-scale assessment; therefore, these preliminary air quality results are used with caution in drawing conclusion regarding the environmental effects of the space shuttle exhaust effluents.

Goldford, A. I.; Adelfang, S. I.; Hickey, J. S.; Smith, S. R.; Welty, R. P.; White, G. L.

1977-01-01

320

Secondary stream and excitation effects on two-dimensional nozzle plume characteristics  

NASA Technical Reports Server (NTRS)

In order to design two-dimensional nozzle/ejector systems for future high performance aircraft, the basic engine exhaust plume velocity and temperature decay as effected by the secondary stream (ejector) and decay augmentation means must be assessed. Included in the assessment of the plume decay characteristics are the effects of nozzle aspect ratio and nozzle/ejector flow conditions. Nozzle/ejector plume decay can be enhanced by suitable excitation of the plume shear layers. Correlation of these factors are developed in a manner similar to those previously developed for conic and dual-flow nozzle plumes.

Vonglahn, Uwe H.

1987-01-01

321

Modification of the Simons model for calculation of nonradial expansion plumes  

NASA Technical Reports Server (NTRS)

The Simons model is a simple model for calculating the expansion plumes of rockets and thrusters and is a widely used engineering tool for the determination of spacecraft impingement effects. The model assumes that the density of the plume decreases radially from the nozzle exit. Although a high degree of success has been achieved in modeling plumes with moderate Mach numbers, the accuracy obtained under certain conditions is unsatisfactory. A modification made to the model that allows effective description of nonradial behavior in plumes is presented, and the conditions under which its use is preferred are prescribed.

Boyd, I. D.; Stark, J. P. W.

1989-01-01

322

Characterization of rocket propellant combustion products  

SciTech Connect

The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

1991-12-09

323

Baking Soda and Vinegar Rockets  

NASA Astrophysics Data System (ADS)

Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors1,2 that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the experimentally measured rocket height. Baking soda and vinegar rockets present fewer safety concerns and require a smaller launch area than rapid combustion chemical rockets. Both kits were of nearly identical design, costing ˜20. The rockets required roughly 30 minutes of assembly time consisting of mostly taping the soft plastic fuselage to the Styrofoam nose cone.

Claycomb, James R.; Zachary, Christopher; Tran, Quoc

2009-02-01

324

Investigation of solid plume simulation criteria to produce flight plume effects on multibody configuration in wind tunnel tests  

NASA Technical Reports Server (NTRS)

An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.

Frost, A. L.; Dill, C. C.

1986-01-01

325

Andoya Rocket Range  

NSDL National Science Digital Library

The National Aeronautic and Space Administration (NASA) has sponsored the Cleft Accelerated Plasma Experimental Rocket, CAPER, campaign. The objective of this mission is to "probe a fountain of ions that is always blowing into space." Scientists have launched this project just after a solar storm tore apart a part of the Earth's upper atmosphere. The CAPER Rocket launch will take place at the Andoya Rocket Range in January, 1999. This Website offers more information about the CAPER project as well as the launch site.

326

HYDROGEN-OXYGEN ROCKETS  

NSDL National Science Digital Library

During this activity students build a plastic pipette rocket. The first concept will to learn how igniting varying mixtures of hydrogen and oxygen will affect how far the rocket will fly. Second students will observe and manipulate variables to better understand the fundamental chemistry concepts: principles of combustion reactions, kinetics, stoichiometry, gas mixtures, rocketry, and different types of chemical reactions. Finally, students will assess their own understanding of these chemistry concepts by investigating how NASA scientists launch real rockets into space. One follow-up activity would be to investigate and collect data on a launching a heavier object at the school football field.

David Reierson

327

Testing the plume theory  

Microsoft Academic Search

The physics of low Reynolds number plumes is well understood, and this allows a number of testable predictions to be made about mantle plumes. Mantle plumes are predicted to originate from the core–mantle boundary and consist of a large head, ? 1000 km in diameter followed by a narrower tail. When the head reaches the top of its ascent it flattens to

Ian H. Campbell

2007-01-01

328

Size and critical supersaturation for condensation of jet engine exhaust particles  

Microsoft Academic Search

In situ measurements of jet engine exhaust from a Sabreliner were made by instruments on board the NCAR Electra during a brief period of coordinated flying. Particle size distribution and critical supersaturation spectra were monitored before, during, and after the encounter with the jet exhaust plume by a condensation nucleus counter, an active scattering aerosol spectrometer probe (ASASP), and a

Marc Pitchford; James G. Hudson; John Hallett

1991-01-01

329

Rocket engine numerical simulator  

NASA Technical Reports Server (NTRS)

The topics are presented in viewgraph form and include the following: a rocket engine numerical simulator (RENS) definition; objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusion.

Davidian, Ken

1993-01-01

330

Rocket engine numerical simulation  

NASA Technical Reports Server (NTRS)

The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

Davidian, Ken

1993-01-01

331

NASA: Rocket Activities  

NSDL National Science Digital Library

There are many things in this world that are described as not being as difficult as rocket science. Then, of course, there is the actual science behind rockets. Understandably, this can be difficult for budding space scientists to grasp. Fortunately, NASA has created these fun and interactive activities which relate both to the science and math of rocketry. These particular activities are taken from the "Rocket Educators Guide", and they include activities related to altitude tracking, the world of pinwheels, balloon staging, and of course the construction of an actual paper rocket. Each activity comes complete with instructions, diagrams, and information on the necessary materials. Taken as a whole, these activities could be equally fun whether outside on a brisk fall day as in a classroom setting.

332

Action-Reaction Rocket!  

NSDL National Science Digital Library

Learners construct a rocket from a balloon propelled along a guide string. They use this model to learn about Newton's three laws of motion, examining the effect of different forces on the motion of the rocket. This activity can be combined with other activities to create a larger lesson. Resource contains vocabulary definitions and suggestions for assessment, extensions, and scaling for different levels of learners.

Sabre Duren

2004-01-01

333

Rocket Motor Microphone Investigation  

NASA Technical Reports Server (NTRS)

At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

2010-01-01

334

Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage  

NASA Technical Reports Server (NTRS)

The quantification of the particulate erosion that occurs as a result of a rocket exhaust plume impinging on soil during extraterrestrial landings is critical for future robotic and human lander mission design. The aerodynamic environment that results from the reflected plumes results in dust lifting, site alteration and saltation, all of which create a potentially erosive and contaminant heavy environment for the lander vehicle and any surrounding structures. The Mars Science Lab (MSL), weighing nearly one metric ton, required higher levels of thrust from its retro propulsive systems and an entirely new descent system to minimize these effects. In this work we seek to quantify plume soil interaction and its resultant soil erosion caused by the MSL's Sky Crane descent stage engines by performing three dimensional digital terrain and elevation mapping of the Curiosity rover's landing site. Analysis of plume soil interaction altitude and time was performed by detailed examination of the Mars Descent Imager (MARDI) still frames and reconstructed inertial measurement unit (IMU) sensor data. Results show initial plume soil interaction from the Sky Crane's eight engines began at ground elevations greater than 60 meters and more than 25 seconds before the rovers' touchdown event. During this time, viscous shear erosion (VSE) was dominant typically resulting in dusting of the surface with flow propagating nearly parallel to the surface. As the vehicle descended and decreased to four powered engines plume-plume and plume soil interaction increased the overall erosion rate at the surface. Visibility was greatly reduced at a height of roughly 20 meters above the surface and fell to zero ground visibility shortly after. The deployment phase of the Sky Crane descent stage hovering at nearly six meters above the surface showed the greatest amount of erosion with several large particles of soil being kicked up, recirculated, and impacting the bottom of the rover chassis. Image data obtained from MSL's navigation camera (NAVCAM) pairs on Sols 002, 003, and 016 were used to virtually recreate local surface topography and features around the rover by means of stereoscopic depth mapping. Images taken simultaneously by the left and right navigation cameras located on the rover's mast assembly spaced 42 centimeters were used to generate a three dimensional depth map from flat, two dimensional images of the same feature at slightly different angles. Image calibration with physical hardware on the rover and known terrain features were used to provide scaling information that accurately sizes features and regions of interest within the images. Digital terrain mapping analysis performed in this work describe the crater geometry (shape, radius, and depth), eroded volume, volumetric erosion rate, and estimated mass erosion rate of the Hepburn, Sleepy Dragon, Burnside, and Goulburn craters. Crater depths ranged from five to ten centimeters deep influencing an area as wide as two meters in some cases. The craters formed were highly asymmetrical and generally oblong primarily due to the underlying bedrock formations underneath the surface. Comparison with ground tests performed at the NASA AMES Planetary Aeolian Laboratory (PAL) by Mehta showed good agreement with volumetric erosion rates and crater sizes of large particle soil simulants, providing validation to Earth based ground tests of Martian regolith.

Vizcaino, Jeffrey; Mehta, Manish

2015-01-01

335

Liquid cooled exhaust flange  

SciTech Connect

This patent describes a liquid-cooled exhaust flange for mating a liquid-jacketed exhaust conduit system to a conventional internal combustion engine turbo charger discharge port. It comprises: a generally cylindrical elongated exhaust conduit member adapted to mate in sandwiched relationship between the turbo charger housing and the liquid-jacketed exhaust conduit system; a cooling liquid-jacket housing internally and concentrically connected to the exhaust conduit member adapted to mate in fluidly communicating relationship with a flow of cooling liquid within the liquid-jacketed exhaust conduit system; the liquid-jacket housing covering a substantial portion of the external surface area of the exhaust conduit member so as to reduce the temperature of the external surface of the exhaust flange.

Woods, W.E.

1990-04-24

336

Infrasound Rocket Signatures  

NASA Astrophysics Data System (ADS)

This presentation reviews the work performed by our research group at the Geophysical Institute as we have applied the tools of infrasound research to rocket studies. This report represents one aspect of the effort associated with work done for the National Consortium for MASINT Research (NCMR) program operated by the National MASINT Office (NMO) of the Defense Intelligence Agency (DIA). Infrasound, the study of acoustic signals and their propagation in a frequency band below 15 Hz, enables an investigator to collect and diagnose acoustic signals from distant sources. Absorption of acoustic energy in the atmosphere decreases as the frequency is reduced. In the infrasound band signals can propagate hundreds and thousands of kilometers with little degradation. We will present an overview of signatures from rockets ranging from small sounding rockets such as the Black Brandt and Orion series to larger rockets such as Delta 2,4 and Atlas V. Analysis of the ignition transients provides information that can uniquely identify the motor type. After the rocket ascends infrasound signals can be used to characterize the rocket and identify the various events that take place along a trajectory such as staging and maneuvering. We have also collected information on atmospheric shocks and sonic booms from the passage of supersonic vehicles such as the shuttle. This review is intended to show the richness of the unique signal set that occurs in the low-frequency infrasound band.

Olson, J.

2012-09-01

337

Dust Plume off Mauritania  

NASA Technical Reports Server (NTRS)

A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

2007-01-01

338

Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array  

NASA Technical Reports Server (NTRS)

A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

2013-01-01

339

Two stage turbine for rockets  

NASA Astrophysics Data System (ADS)

The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

Veres, Joseph P.

1993-11-01

340

Two stage turbine for rockets  

NASA Technical Reports Server (NTRS)

The aerodynamic design and rig test evaluation of a small counter-rotating turbine system is described. The advanced turbine airfoils were designed and tested by Pratt & Whitney. The technology represented by this turbine is being developed for a turbopump to be used in an advanced upper stage rocket engine. The advanced engine will use a hydrogen expander cycle and achieve high performance through efficient combustion of hydrogen/oxygen propellants, high combustion pressure, and high area ratio exhaust nozzle expansion. Engine performance goals require that the turbopump drive turbines achieve high efficiency at low gas flow rates. The low mass flow rates and high operating pressures result in very small airfoil heights and diameters. The high efficiency and small size requirements present a challenging turbine design problem. The shrouded axial turbine blades are 50 percent reaction with a maximum thickness to chord ratio near 1. At 6 deg from the tangential direction, the nozzle and blade exit flow angles are well below the traditional design minimum limits. The blade turning angle of 160 deg also exceeds the maximum limits used in traditional turbine designs.

Veres, Joseph P.

1993-01-01

341

Highlights of Transient Plume Impingement Model Validation and Applications  

NASA Technical Reports Server (NTRS)

This paper describes highlights of an ongoing validation effort conducted to assess the viability of applying a set of analytic point source transient free molecule equations to model behavior ranging from molecular effusion to rocket plumes. The validation effort includes encouraging comparisons to both steady and transient studies involving experimental data and direct simulation Monte Carlo results. Finally, this model is applied to describe features of two exotic transient scenarios involving NASA Goddard Space Flight Center satellite programs.

Woronowicz, Michael

2011-01-01

342

General view of the Solid Rocket Booster's (SRB) Solid Rocket ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

343

The Optimal Bottle Rocket Lauch  

NSDL National Science Digital Library

This is a computer and outdoor lab based activity in which students design two bottle rockets that are designed to reach maximum height. Students will calculate maximum height and terminal velocity for each rocket launched.

Margaret Menzies

344

THE ENVIRONMENT CREATED BY AN OPEN-AIR SOLID ROCKET PROPELLANT FIRE  

Microsoft Academic Search

A 91 kg (200 lbm) block of aluminized solid rocket propellant was burned in open air to simulate an accidental propellant fire. A suite of remote optical instruments measured the temperature and radiative properties of the plume. Solid molybdenum calorimeters provided data for heat flux estimates. Various refractory oxide and metallic witness samples placed in the fire provided temperature benchmarks and insight

L. W. HUNTER; Y. CHANG; H. N. OGUZ; J. T. WILKERSON; A. M. LENNON; R. P. CAIN; B. G. CARKHUFF; M. E. THOMAS; S. C. WALTS; C. A. MITCHELL; D. W. BLODGETT; D. H. TERRY

2007-01-01

345

Laser Rayleigh and Raman Diagnostics for Small Hydrogen/oxygen Rockets  

NASA Technical Reports Server (NTRS)

Localized velocity, temperature, and species concentration measurements in rocket flow fields are needed to evaluate predictive computational fluid dynamics (CFD) codes and identify causes of poor rocket performance. Velocity, temperature, and total number density information have been successfully extracted from spectrally resolved Rayleigh scattering in the plume of small hydrogen/oxygen rockets. Light from a narrow band laser is scattered from the moving molecules with a Doppler shifted frequency. Two components of the velocity can be extracted by observing the scattered light from two directions. Thermal broadening of the scattered light provides a measure of the temperature, while the integrated scattering intensity is proportional to the number density. Spontaneous Raman scattering has been used to measure temperature and species concentration in similar plumes. Light from a dye laser is scattered by molecules in the rocket plume. Raman spectra scattered from major species are resolved by observing the inelastically scattered light with linear array mounted to a spectrometer. Temperature and oxygen concentrations have been extracted by fitting a model function to the measured Raman spectrum. Results of measurements on small rockets mounted inside a high altitude chamber using both diagnostic techniques are reported.

Degroot, Wilhelmus A.; Zupanc, Frank J.

1993-01-01

346

Volcanic Plume Measurements with UAV (Invited)  

NASA Astrophysics Data System (ADS)

Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima volcano operated by ERI, Tokyo University. In all cases, we could estimated volcanic gas compositions, such as CO2/SO2 ratios, but also found out that it is necessary to improve the techniques to avoid the contamination of the exhaust gases and to approach more concentrated part of the plume. It was also revealed that the aerial measurements have an advantage of the stable background. The error of the volcanic gas composition estimates are largely due to the large fluctuation of the atmospheric H2O and CO2 concentrations near the ground. The stable atmospheric background obtained by the UAV measurements enables accurate estimate of the volcanic gas compositions. One of the most successful measurements was that on May 18, 2011 at Shinomoedake, Kirishima volcano during repeating Vulcanian eruption stage. The major component composition was obtained as H2O=97, CO2=1.5, SO2=0.2, H2S=0.24, H2=0.006 mol%; the high CO2 contents suggests relatively deep source of the magma degassing and the apparent equilibrium temperature obtained as 400°C indicates that the gas was cooled during ascent to the surface. The volcanic plume measurement with UAV will become an important tool for the volcano monitoring that provides important information to understand eruption processes.

Shinohara, H.; Kaneko, T.; Ohminato, T.

2013-12-01

347

Mechanical analysis on rocket propellants  

Microsoft Academic Search

The mechanical properties of solid rocket propellants are very important for good functioning of rocket motors. During use\\u000a and storage the mechanical properties of rocket propellants are changing, due to chemical and mechanical influences such as\\u000a thermal reactions, oxidation reactions or vibrations. These influences can result in malfunctioning, leading to an unwanted\\u000a explosion of the rocket motor. Most of modern

G. Herder; F. P. Weterings; W. P. C. de Klerk

2003-01-01

348

Rocket Me into Space  

NSDL National Science Digital Library

One of the exciting challenges for engineers is the idea of exploration. This lesson looks more closely at Spaceman Rohan, Spacewoman Tess, their daughter Maya, and their challenges with getting to space, setting up satellites, and exploring uncharted waters via a canoe. This lesson reinforces rockets as a vehicle that helps us explore outside the Earth's atmosphere (that is, to move without air) by using the principles of Newton's third law of motion. Also, the ideas of thrust, control and weight — all principles that engineers deal with when building a rocket — are introduced.

Integrated Teaching and Learning Program,

349

Advanced liquid rockets  

NASA Technical Reports Server (NTRS)

A program to substitute iridium coated rhenium for silicide coated niobium in thrust chamber fabrications is reviewed. The life limiting phenomena in each of these material systems is also reviewed. Coating cracking and spalling is not a problem with iridium-coated rhenium as in silicide-coated niobium. Use of the new material system enables an 800 K increase in thruster operating temperature from around 1700 K for niobium to 2500 K for rhenium. Specific impulse iridium-coated rhenium rockets is nominally 20 seconds higher than comparable niobium rockets in the 22 N class and nominally 10 seconds higher in the 440 N class.

Schneider, Steven J.

1992-01-01

350

Rockets on a Shoestring Budget  

NSDL National Science Digital Library

In this activity, students revisit the Pop Rockets activity from Lesson 3. This time, however, the design of their pop-rockets will be limited by budgets and supplies. They will get a feel for the limitations of a real engineering project as well as an opportunity to redesign and retest their rockets.

351

Booster rocket range safety system  

Microsoft Academic Search

In response to an abort command, fragmentation of a propellant booster rocket carried on a missile is limited by positioning of annular shaped charges at axially spaced locations on the outer shell of the booster rocket. Detonation of the charges thereby severs an intermediate section of the rocket from forward and aft sections which remain attached to the missile. The

John R. Renzi

1992-01-01

352

Small rocket research and technology  

Microsoft Academic Search

Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion

Steven Schneider; James Biaglow

1993-01-01

353

Baking Soda and Vinegar Rockets  

ERIC Educational Resources Information Center

Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

Claycomb, James R.; Zachary, Christopher; Tran, Quoc

2009-01-01

354

Rockets on a Shoestring Budget  

NSDL National Science Digital Library

In this activity, students revisit the Pop Rockets activity from Lesson 3. This time, however, the design of their pop-rockets will be limited by budgets and supplies. They will get a feel for the limitations of a real engineering project as well as an opportunity to redesign and retest their rockets.

2014-09-18

355

Effect of a Plume Reduction in Segmented Electrode Hall Thruster Y. Raitses, L.A. Dorf, A A. Litvak and N.J. Fisch  

E-print Network

1 Effect of a Plume Reduction in Segmented Electrode Hall Thruster Y. Raitses, L.A. Dorf, A A by plume divergence, the performance of Hall thruster operation, even with only one power supply, can in the propellant mass as compared to chemical rockets (Hall thruster is particularly suited for many

356

Apollo video photogrammetry estimation of plume impingement effects  

NASA Astrophysics Data System (ADS)

Future missions to the Moon may require numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modern photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1°-3°. The lofted particle density is estimated at 10 8-10 13 particles/m 3. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

Immer, Christopher; Lane, John; Metzger, Philip; Clements, Sandra

2011-07-01

357

Exhaust gas purifying device  

SciTech Connect

An exhaust gas purifying device is disclosed for removing harmful solid particles, sparks and flames contained in exhaust gas discharged from an internal combustion engine. The devices consists of a cylindrical body member connected to a muffler in an exhaust gas system of the engine. The cylindrical body member is separated into front and rear chambers by an intermediate partition plate. The front chamber includes an exhaust gas introducing hole in a front wall thereof and displaced with respect to a communicating hole formed in the central portion of the partition plate to thereby effectively remove the harmful particles at low flow rate of the exhaust gas. The rear chamber includes a swirl-generating means on the upstream side thereof and a solid particle collecting chamber on the outer periphery thereof to thereby remove the harmful particles at high flow rates of the exhaust gas.

Haneda, Y.; Hiraoka, S.; Sakuraya, Y.

1980-08-19

358

Exhaust gas purification device  

SciTech Connect

The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

1980-02-19

359

Exhaust gas recirculation apparatus  

SciTech Connect

An exhaust gas recirculation passageway leads from an engine exhaust passageway to an engine induction passageway downstream of a throttle valve. A fuel control member of an injection pump moves the throttle valve in the opening direction to reduce the vacuum in the induction passageway and thereby the amount of exhaust gas recirculation only when the fuel control member is moved beyond a predetermined position in the fuel increasing direction. A stopper limits movement of the throttle valve in the closing direction.

Wake, J.; Matsuda, H.

1980-01-01

360

Rapid Mars transits with exhaust-modulated plasma propulsion  

NASA Technical Reports Server (NTRS)

The operational characteristics of the Exhaust-Modulated Plasma Rocket are described. Four basic human and robotic mission scenarios to Mars are analyzed using numerical optimization techniques at variable specific impulse and constant power. The device is well suited for 'split-sprint' missions, allowing fast, one-way low-payload human transits of 90 to 104 days, as well as slower, 180-day, high-payload robotic precursor flights. Abort capabilities, essential for human missions, are also explored.

Chang-Diaz, Franklin R.; Braden, Ellen; Johnson, Ivan; Hsu, Michael M.; Yang, Tien Fang

1995-01-01

361

Liquid rocket engine turbines  

NASA Technical Reports Server (NTRS)

Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

1974-01-01

362

Thiokol Solid Rocket Motors  

NASA Technical Reports Server (NTRS)

This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

Graves, S. R.

2000-01-01

363

This "Is" Rocket Science!  

ERIC Educational Resources Information Center

Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

2013-01-01

364

Liquid rocket valve components  

NASA Technical Reports Server (NTRS)

A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

1973-01-01

365

Flamenco sounding rocket  

Microsoft Academic Search

The Flamenco system developed by the Spanish government is described. Results of flight trials are incorporated in the general performance data presented. Mechanical details of the two-stage rocket include strong spin motors and alternative dwell times between the stages. Two further launches carrying scientific payloads are scheduled for late 1976.

J. Simon; A. Mateo; M. Vazquez

1976-01-01

366

Dr. Goddard Transports Rocket  

NASA Technical Reports Server (NTRS)

Dr. Robert H. Goddard tows his rocket to the launching tower behind a Model A Ford truck, 15 miles northwest of Roswell, New Mexico. 1930- 1932. Dr. Goddard has been recognized as the 'Father of American Rocketry' and as one of three pioneers in the theoretical exploration of space. Robert Hutchings Goddard was born in Worcester, Massachusetts, on October 15, 1882. He was a theoretical scientist as well as a practical engineer. His dream was the conquest of the upper atmosphere and ultimately space through the use of rocket propulsion. Dr. Goddard, who died in 1945, was probably as responsible for the dawning of the Space Age as the Wright Brothers were for the begining of the Air Age. Yet his work attracted little serious attention during his lifetime. When the United States began to prepare for the conquest of space in the 1950's, American rocket scientists began to recognize the debt owed to the New England professor. They discovered that it was virtually impossible to construct a rocket or launch a satellite without acknowledging the work of Dr. Goddard. This great legacy was covered by more than 200 patents, many of which were issued after his death.

1974-01-01

367

Liquid rocket valve assemblies  

NASA Technical Reports Server (NTRS)

The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

1973-01-01

368

Water Rocket Launch  

NSDL National Science Digital Library

In this activity, learners explore rocketry and the principals of space flight. Learners work in teams with adult supervision and construct and launch a rocket from a soda bottle and everyday materials powered by an air pump. Learners observe their own achievements and challenges, as well as those of other teams, complete a reflection sheet, and present their experiences to the class.

IEEE

2014-06-18

369

Solid Rocket Motor Test  

NASA Technical Reports Server (NTRS)

Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellation/Ares project. This image is extracted from a high definition video file and is the highest resolution available.

2008-01-01

370

Solid Rocket Motor Test  

NASA Technical Reports Server (NTRS)

Shown is a test of the TEM-13 solid rocket motor at the ATK test facility in Utah in support of the Ares/CLV first stage. This image is extracted from high definition video and is the highest resolution available.

2008-01-01

371

Solid Rocket Motor Test  

NASA Technical Reports Server (NTRS)

Shown is a test of the TEM-13 Solid Rocket Motor in support of the Ares/CLV first stage at ATK, Utah . Constellaton/Ares project. This image is extracted from a high definition video file and is the highest resolution available.

2008-01-01

372

Bottle Rockets Mechanical Engineering  

E-print Network

Bottle Rockets Mechanical Engineering Objective This lesson introduces students to forces and how. Empty 20 oz. plastic bottles 5. Card stock for fins 6. Glue (may use a hot glue gun for fast drying) 7. Scissors 8. Protractor Lesson Description Have the students bring an empty 20 oz. bottle to class. Take

Provancher, William

373

This Is Rocket Science!  

NASA Astrophysics Data System (ADS)

Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

2013-09-01

374

The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics  

NASA Technical Reports Server (NTRS)

The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

2014-01-01

375

COOLING TOWER PLUME MODEL  

EPA Science Inventory

A review of recently reported cooling tower plume models yields none that is universally accepted. The entrainment and drag mechanisms and the effect of moisture on the plume trajectory are phenomena which are treated differently by various investigators. In order to better under...

376

Rockets using Liquid Oxygen  

NASA Technical Reports Server (NTRS)

It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

Busemann, Adolf

1947-01-01

377

Stealth Plumes on Io  

NASA Technical Reports Server (NTRS)

We suggest that Io's eruptive activity may include a class of previously undetected SO2 geysers. The thermodynamic models for the eruptive plumes discovered by Voyager 'involve low to moderate entropy SO2 eruptions. The resulting plumes are a mixture of solid and gas which emerge from the vent and follow essentially ballistic trajectories. We show that intrusion of silicate magma into buried SO2 deposits can create the required conditions for high entropy eruptions which proceed entirely in the vapor phase. These purely gaseous plumes would have been invisible to Voyager's instruments. Hence, we call them "stealth" plumes. Such eruptions could explain the "patchy" SO2 atmosphere inferred from recent UV and micro-wave spectral observations. The magma intrusion rate required to support the required gas production for these plumes is a negligible fraction of estimated global magma intrusion rates.

Johnson, T. V.; Matson, Dennis L.; Blaney, Diana L.; Veeder, Glenn J.; Davies, Ashley

1995-01-01

378

Rocket center Peenemünde — Personal memories  

NASA Astrophysics Data System (ADS)

Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

Dannenberg, Konrad; Stuhlinger, Ernst

379

Diesel engine exhaust oxidizer  

SciTech Connect

This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

Kammel, R.A.

1992-06-16

380

Duplex tab exhaust nozzle  

NASA Technical Reports Server (NTRS)

An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

2012-01-01

381

Exhaust gas recirculating apparatus  

Microsoft Academic Search

The design is given of apparatus associated with an engine on a motor vehicle for either stopping the recirculation of exhaust gas through the engine completely or allowing it at a controlled rate, depending upon the operating condition of the engine. A regulating valve provided with a pair of diaphragms is installed in the exhaust gas recirculating circuit, and a

H. Nohira; K. Kobashi

1975-01-01

382

Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors  

NASA Technical Reports Server (NTRS)

The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

2014-01-01

383

Enhanced radar backscatter from space shuttle exhaust in the ionosphere  

NASA Astrophysics Data System (ADS)

Enhancements in the backscatter from the 430-MHz radar at Arecibo were recorded during the Spacelab 2 mission when the space shuttle orbital maneuver system (OMS) engines were fired in the ionosphere. The modifications in the backscatter could have been the result of (1) compression of the electrons to produce higher densities, (2) generation of ion acoustic waves, (3) variations in the electron to ion temperature ratio, (4) enhanced scatter cross section by charging of ice particles in the exhaust, or (5) excitation of dust acoustic waves. Rapid cooling and condensation of the exhaust are important in determining the scattering properties of the modified ionosphere. A dusty plasma is formed when electrons are attached to ice particles in the exhaust plume. The calculated neutral temperature inside the exhaust plume is 120 K. Charge exchange between ambient O+ and the cold exhaust molecules yields low-temperature ion beams that excite weakly damped, ion acoustic waves. The enhanced radar echoes are probably the result of scatter from these waves, but the effects of the dusty plasma may be important. During future experiments, the space shuttle will fire the OMS engines over radars located at Arecibo, Puerto Rico; Jicarmarca, Peru; or Kwajalein, Marshall Islands. Measurements of the spectra from these radars will provide the means to distinguish between the various backscatter processes.

Bernhardt, P. A.; Ganguli, G.; Kelley, M. C.; Swartz, W. E.

1995-12-01

384

Particulate exhaust emissions from an experimental combustor. [gas turbine engine  

NASA Technical Reports Server (NTRS)

The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

Norgren, C. T.; Ingebo, R. D.

1975-01-01

385

Prometheus: Io's wandering plume.  

PubMed

Unlike any volcanic behavior ever observed on Earth, the plume from Prometheus on Io has wandered 75 to 95 kilometers west over the last 20 years since it was first discovered by Voyager and more recently observed by Galileo. Despite the source motion, the geometric and optical properties of the plume have remained constant. We propose that this can be explained by vaporization of a sulfur dioxide and/or sulfur "snowfield" over which a lava flow is moving. Eruption of a boundary-layer slurry through a rootless conduit with sonic conditions at the intake of the melted snow can account for the constancy of plume properties. PMID:10817989

Kieffer, S W; Lopes-Gautier, R; McEwen, A; Smythe, W; Keszthelyi, L; Carlson, R

2000-05-19

386

Sirius-5 experimental rocket  

NASA Astrophysics Data System (ADS)

After giving a historical account of multistage rocket development in Yugoslavia, a status report is presented for the three-stage Sirius-5 program. The rocket is composed of: (1) a solid-propellant first stage, consisting of a cluster of eight standard motors yielding 220 kN thrust for 1.3 sec; (2) a mixed amines/inhibited red fuming nitric acid, bipropellant second stage generating 50 kN thrust; and (3) a third stage of the same design as the second but with only 62 kg of fuel, by contrast to 168 kg. Among the design principles adhered to are: minimization of the number of components, conservative design margins, and specifications for key subsystems based on demonstration programs. The primary use of this system is in amateur rocketry, being able to carry a 20 kg payload to 150 km.

Kerstein, A.; Omersel, P.; Goljuf, L.; Zidaric, M.

1981-09-01

387

Advanced rocket propulsion  

NASA Technical Reports Server (NTRS)

Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

Obrien, Charles J.

1993-01-01

388

Laser rocket system analysis  

NASA Technical Reports Server (NTRS)

The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

1979-01-01

389

Liquid rocket engine injectors  

NASA Technical Reports Server (NTRS)

The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

Gill, G. S.; Nurick, W. H.

1976-01-01

390

ISRO's solid rocket motors  

NASA Astrophysics Data System (ADS)

Solid rocket motors have been the mainstay of ISRO's sounding rockets and the first generation satellite launch vehicles. For the new launch vehicle under development also, the solid rocket motors contribute significantly to the vehicle's total propulsive power. The rocket motors in use and under development have been developed for a variety of applications and range in size from 30 mm dia employing 450 g of solid propellant—employed for providing a spin to the apogee motors—to the giant 2.8 m dia motor employing nearly 130 tonnes of solid propellant. The initial development, undertaken in 1967 was of small calibre motor of 75 mm dia using a double base charge. The development was essentially to understand the technological elements. Extruded aluminium tubes were used as a rocket motor casing. The fore and aft closures were machined from aluminium rods. The grain was a seven-pointed star with an enlargement of the port at the aft end and was charged into the chamber using a polyester resin system. The nozzle was a metallic heat sink type with graphite throat insert. The motor was ignited with a black powder charge and fired for 2.0 s. Subsequent to this, further developmental activities were undertaken using PVC plastisol based propellants. A class of sounding rockets ranging from 125 to 560 mm calibre were realized. These rocket motors employed improved designs and had delivered lsp ranging from 2060 to 2256 Ns/kg. Case bonding could not be adopted due to the higher cure temperatures of the plastisol propellants but improvements were made in the grain charging techniques and in the design of the igniters and the nozzle. Ablative nozzles based on asbestos phenolic and silica phenolic with graphite inserts were used. For the larger calibre rocket motors, the lsp could be improved by metallic additives. In the early 1970s designs were evolved for larger and more efficient motors. A series of 4 motors for the country's first satellite launch vehicle SLV-3 were developed. The first and second stages of 1 and 0.8 m dia respectively used low carbon steel casing and PBAN propellant. The first stage used segmented construction with a total propellant weight of 8600 kg. The second stage employed about 3 tonnes of the same propellant. The third and fourth stages were of GFRP construction and employed respectively 1100 and 275 kg of CTPB type propellants. Nozzle expansion ratios upto 30 were employed and delivered vacuum lsp of 2766 Ns/kg realized. The fourth stage motor was subsequently used as the apogee motor for orbit injection of India's first geosynchronous satellite—APPLE. All these motors have been flight proven a number of times. Further design improvements have been incorporated and these motors continue to be in use. Starting in 1984 design for a large booster was undertaken. This booster employs a nominal propellant weight of 125 tonne in a 2.8 m dia casing. The motor is expected to be qualified for flight test in 1989. Side by side a high performance motor housing nearly 7 tonnes of propellant in composite casing of 2 m dia and having flex nozzle control system is also under development for upper stage application. Details of the development of the motors, their leading specifications and performance are described.

Nagappa, R.; Kurup, M. R.; Muthunayagam, A. E.

1989-08-01

391

EPDM rocket motor insulation  

NASA Technical Reports Server (NTRS)

A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

2008-01-01

392

EPDM rocket motor insulation  

NASA Technical Reports Server (NTRS)

A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components and with appropriate adjustment of curing and other additives functionally-required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g. powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf life characteristics.

Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

2003-01-01

393

EPDM rocket motor insulation  

NASA Technical Reports Server (NTRS)

A novel and improved EPDM formulation for a solid propellant rocket motor is described wherein hexadiene EPDM monomer components are replaced by alkylidene norbornene components, and, with appropriate adjustment of curing and other additives, functionally required rheological and physical characteristics are achieved with the desired compatibility with any one of a plurality of solid filler materials, e.g., powder silica, carbon fibers or aramid fibers, and with appropriate adhesion and extended storage or shelf-life characteristics.

Guillot, David G. (Inventor); Harvey, Albert R. (Inventor)

2004-01-01

394

Small rocket tornado probe  

SciTech Connect

A (less than 1 lb.) paper rock tornado probe was developed and deployed in an attempt to measure the pressure, temperature, ionization, and electric field variations along a trajectory penetrating a tornado funnel. The requirements of weight and materials were set by federal regulations and a one-meter resolution at a penetration velocity of close to Mach 1 was desired. These requirements were achieved by telemetering a strain gage transducer for pressure, micro size thermister and electric field, and ionization sensors via a pulse time telemetry to a receiver on board an aircraft that digitizes a signal and presents it to a Z80 microcomputer for recording on mini-floppy disk. Recording rate was 2 ms for 8 channels of information that also includes telemetry rf field strength, magnetic field for orientation on the rocket, zero reference voltage for the sensor op amps as well as the previously mentioned items also. The absolute pressure was recorded. Tactically, over 120 h were flown in a Cessna 210 in April and May 1981, and one tornado was encountered. Four rockets were fired at this tornado, missed, and there were many equipment problems. The equipment needs to be hardened and engineered to a significant degree, but it is believed that the feasibility of the probe, tactics, and launch platform for future tornado work has been proven. The logistics of thunderstorm chasing from a remote base in New Mexico is a major difficulty and reliability of the equipment another. Over 50 dummy rockets have been fired to prove trajectories, stability, and photographic capability. Over 25 electronically equipped rockets have been fired to prove sensors transmission, breakaway connections, etc. The pressure recovery factor was calibrated in the Air Force Academy blow-down tunnel. There is a need for more refined engineering and more logistic support.

Colgate, S.A.

1982-01-01

395

Compton losses, Compton rockets  

NASA Technical Reports Server (NTRS)

The radiation force on a relativistic plasma is shown to accelerate the plasma to relativistic bulk velocities under certain conditions, thus demonstrating that relativistic bulk motion not only alleviates Compton losses, but can also result from such losses. In order to isolate Compton-rocket effects from hydrodynamical ones, it is assumed that the plasma in its instantaneous rest frame has a temporally constant density and is spatially uniform.

Cheng, A. Y. S.; Odell, S. L.

1981-01-01

396

Newton Rocket Car  

NSDL National Science Digital Library

The purpose of this activity is to demonstrate Newton's third law of motion — which states that every action has an equal and opposite reaction — through a small wooden car. The Newton cars show how action/reaction works and how the mass of a moving object affects the acceleration and force of the system. Subsequently, the Newton cars provide students with an excellent analogy for how rockets actually work.

Integrated Teaching and Learning Program,

397

Infrared Signature Modeling and Analysis of Aircraft Plume  

NASA Astrophysics Data System (ADS)

In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

Rao, Arvind G.

2011-09-01

398

Method of hybrid plume plasma propulsion  

NASA Technical Reports Server (NTRS)

A technique for producing thrust by generating a hybrid plume plasma exhaust is disclosed. A plasma flow is generated and introduced into a nozzle which features one or more inlets positioned to direct a flow of neutral gas about the interior of the nozzle. When such a neutral gas flow is combined with the plasma flow within the nozzle, a hybrid plume is constructed including a flow of hot plasma along the center of the nozzle surrounded by a generally annular flow of neutral gas, with an annular transition region between the pure plasma and the neutral gas. The temperature of the outer gas layer is below that of the pure plasma and generally separates the pure plasma from the interior surfaces of the nozzle. The neutral gas flow both insulates the nozzle walls from the high temperatures of the plasma flow and adds to the mass flow rate of the hybrid exhaust. The rate of flow of neutral gas into the interior of the nozzle may be selectively adjusted to control the thrust and specific impulse of the device.

Chang, Franklin R. (Inventor)

1990-01-01

399

Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream  

NASA Technical Reports Server (NTRS)

In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.

Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.

2011-01-01

400

CHLORINATED SOLVENT PLUME CONTROL  

EPA Science Inventory

This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE)....

401

Sounding rocket developments in Spain  

Microsoft Academic Search

This paper contemplates the efforts and developments in the field of sounding rockets carried out in Spain from the decade of the 1960s to the early 1990s when the use of such vehicles was abandoned worldwide.The initial sounding rocket planning within the National Space Research Programs around 1964 (when Spain joined ESRO) is presented.The status of the rocket technology in

Pedro Sanz-Aránguez; Julián Simón Calero

2009-01-01

402

Sulfur plumes off Namibia  

NASA Technical Reports Server (NTRS)

Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

2002-01-01

403

Space shuttle exhausted aluminum oxide: A measured particle size distribution  

Microsoft Academic Search

Aluminum oxide (A2O3) particles were collected from the space shuttle exhaust plume immediately following the launch of STS-34 on October 18, 1989. A2O3 samples were obtained at 2.4, 3.0, 3.2, and 7.4 km in altitude. The samples were analyzed using scanning electron microscopy to develop particle size distributions. There were no indications that the particle size distribution changed as a

W. R. Cofer; G. C. Purgold; E. L. Winstead; R. A. Edahl

1991-01-01

404

Optimum rocket propulsion for energy-limited transfer  

NASA Technical Reports Server (NTRS)

In order to effect large-scale return of extraterrestrial resources to Earth orbit, it is desirable to optimize the propulsion system to maximize the mass of payload returned per unit energy expended. This optimization problem is different from the conventional rocket propulsion optimization. A rocket propulsion system consists of an energy source plus reaction mass. In a conventional chemical rocket, the energy source and the reaction mass are the same. For the transportation system required, however, the best system performance is achieved if the reaction mass used is from a locally available source. In general, the energy source and the reaction mass will be separate. One such rocket system is the nuclear thermal rocket, in which the energy source is a reactor and the reaction mass a fluid which is heated by the reactor and exhausted. Another energy-limited rocket system is the hydrogen/oxygen rocket where H2/O2 fuel is produced by electrolysis of water using a solar array or a nuclear reactor. The problem is to choose the optimum specific impulse (or equivalently exhaust velocity) to minimize the amount of energy required to produce a given mission delta-v in the payload. The somewhat surprising result is that the optimum specific impulse is not the maximum possible value, but is proportional to the mission delta-v. In general terms, at the beginning of the mission it is optimum to use a very low specific impulse and expend a lot of reaction mass, since this is the most energy efficient way to transfer momentum. However, as the mission progresses, it becomes important to minimize the amount of reaction mass expelled, since energy is wasted moving the reaction mass. Thus, the optimum specific impulse will increase with the mission delta-v. Optimum I(sub sp) is derived for maximum payload return per energy expended for both the case of fixed and variable I(sub sp) engines. Sample missions analyzed include return of water payloads from the moons of Mars and of Saturn.

Zuppero, Anthony; Landis, Geoffrey A.

1991-01-01

405

Gasdynamic approach to small plumes computation  

SciTech Connect

The semi-inverse marching characteristics scheme SIMA was extended to treat rotational flows; it is applied to computation of free plumes, starting out from non-uniform nozzle exit flow that reflects substantial viscous effects. For lack of measurements of exit flow in small nozzles, the exit plane flow is approximated by introducing a Power Law Interpolation (PLI) between the exit plane center and lip values. Exit plane flow variables thus approximated, are Mach number, pressure, flow angle and stagnation temperature. This choice is guided by gasdynamic considerations of exhaust flow from small nozzles into vacuum. The PLI is adjusted so as to obtain a match between computations and measurements at intermediate range from the nozzle. Computed plumes were found to be in good agreement with five different sets of small plume experiments. Comparative computations were performed using two alternate methods: the Boynton-Simons point-source approximation, and SIMA computation that started out from a uniform exit flow. It is demonstrated that for small nozzles having an exit flow dominated by viscous effects, the combined SIMA/PLI computational method is reasonably accurate and is dearly superior to either of the two alternate methods. 14 refs.

Genkin, L.; Baer, M.; Falcovitz, J. (Israel Atomic Energy Commission, Soreq Nuclear Research Centre, Yavne (Israel) Technion - Israel Inst. of Technology, Haifa (Israel))

1993-01-01

406

Simulation of Low-density Nozzle Plumes in Non-zero Ambient Pressures  

NASA Technical Reports Server (NTRS)

The direct simulation Monte-Carlo (DSMC) method was applied to the analysis of low-density nitrogen plumes exhausting from a small converging-diverging nozzle into finite ambient pressures. Two cases were considered that simulated actual test conditions in a vacuum facility. The numerical simulations readily captured the complicated flow structure of the overexpanded plumes adjusting to the finite ambient pressures, including Mach disks and barrel shaped shocks. The numerical simulations compared well to experimental data of Rothe.

Chung, Chan-Hong; Dewitt, Kenneth J.; Stubbs, Robert M.; Penko, Paul F.

1994-01-01

407

Do Plumes Suck?  

NASA Astrophysics Data System (ADS)

Geophysical observations at plumes, ridges, and arcs indicate that the the volcanic accretionary zone is much narrower than the inferred melt production region in the upwelling mantle. For ridges and arcs, lateral pressure gradients induced by advection of viscous asthenospheric mantle have been proposed as a potential mechanism for focusing melts to the accretionary center [Phipps Morgan, 1987; Spiegelman and McKenzie, 1987]. For ridges and arcs with asthenospheric viscosities >=1021 Pa?s, the magnitude of the lateral pressure gradients associated with viscous corner flow are comparable to vertical melt buoyancy (? ? g). Plumes, however, differ from ridges and arcs in that mantle flow is driven primarily by buoyancy of the upwelling solid as opposed to viscous drag induced by surface plate motions. This difference in driving forces changes the relationship between the solid flow field and the resulting pressure gradients. We use numerical models to examine the influence of lateral pressure gradients from solid advection in plumes. We calculate the stream function and pressure field in the solid induced by a buoyant cylinder beneath a stationary lithosphere using the method of Ribe and Christensen [1999] after Pozrikidis [1997]. Initial results suggest that lateral pressure gradients may draw melt into the top of the plume towards the flow stagnation point. However, the largest flow-induced pressure gradients are oriented vertically within the buoyant plume. Compression where the plume impinges on the lithospheric lid has the potential to impede the vertical migration of melt within the plume. The magnitude of the flow-induced pressure gradients scales with the strength of the buoyant upwelling. However, unlike ridges and arcs, asthenospheric viscosity has little effect on the pressure gradients, because velocity and viscosity of plume material are interdependent. We explore the possible role of these pressure gradients in melt migration at plume and ridge-plume environments. Phipps Morgan, J., Melt migration beneath mid-ocean spreading centers, Geophys. Res. Lett., 14 (12), 1238-1241, 1987. Pozrikidis, C., Introduction to theoretical and computational fluid dynamics, 675 pp., Oxford University Press, New York, 1997. Ribe, N.M., and U.R. Christensen, The dynamical origin of Hawaiian volcanism, Earth and Planet. Sci. Lett., 171, 517-531, 1999. Spiegelman, M., and D. McKenzie, Simple 2-D models for melt extraction at mid-ocean ridges and island arcs, Earth and Planetary Science Letters, 83 (1-4), 137-152, 1987.

Braun, M. G.; Sohn, R. A.; Ribe, N. M.

2001-12-01

408

Magellan Aerodynamic Characteristics During the Termination Experiment Including Thruster Plume-Free Stream Interaction  

NASA Technical Reports Server (NTRS)

Results are presented on the aerodynamic characteristics of the Magellan spacecraft during the October 1994 Termination Experiment, including the effects of the thruster engine exhaust plumes upon the molecular free stream around the spacecraft and upon the aerodynamics coefficients. As Magellan passed through the Venusian atmosphere, the solar arrays were turned in opposite directions relative to the free stream creating a torque on the spacecraft. The spacecraft control system was programmed to counter the effects of this torque with attitude control engines to maintain an inertially fixed attitude. The orientation and reaction engine telemetry returned from Magellan are used to create a model of the aerodynamic torques. Geometric models of the Magellan spacecraft are analyzed with the aid of both free molecular and Direct Simulation Monte Carlo codes. The simulated aerodynamic torques determined are compared to the measured torques. The Direct Simulation Monte Carlo method is also used to model the attitude engine exhaust plumes, the free stream disturbance caused by these plumes, and the resulting torques acting on the spacecraft compared to no-exhaust plume cases. The effect of the exhaust plumes was found to be sufficiently large that thrust reversal is possible.

Cestero, Francisco J.; Tolson, Robert H.

1998-01-01

409

Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy  

NASA Astrophysics Data System (ADS)

Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

2014-11-01

410

Catalytic Microtube Rocket Igniter  

NASA Technical Reports Server (NTRS)

Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each approximately 10 cm long and are heated via direct electric resistive heating. This heating brings the gasses to their minimum required ignition temperature, which is lower than the auto-thermal ignition temperature, and causes the onset of both surface and gas phase ignition producing hot temperatures and a highly reacting flame. The combustion products from the catalytic tubes, which are below the melting point of platinum, are injected into the center of another combustion stage, called the primary augmenter. The reactants for this combustion stage come from the same source but the flows of non-premixed methane and oxygen gas are split off to a secondary mixing apparatus and can be mixed in a near-stoichiometric to highly lean mixture ratio. The primary augmenter is a component that has channels venting this mixed gas to impinge on each other in the center of the augmenter, perpendicular to the flow from the catalyst. The total crosssectional area of these channels is on a similar order as that of the catalyst. The augmenter has internal channels that act as a manifold to distribute equally the gas to the inward-venting channels. This stage creates a stable flame kernel as its flows, which are on the order of 0.01 g/s, are ignited by the combustion products of the catalyst. This stage is designed to produce combustion products in the flame kernel that exceed the autothermal ignition temperature of oxygen and methane.

Schneider, Steven J.; Deans, Matthew C.

2011-01-01

411

Monitoring Shuttle Burns and Rocket Launches with GPS  

NASA Astrophysics Data System (ADS)

We report on different GPS analysis techniques that can be used to examine the effects of rocket exhaust on the upper atmosphere. GPS observations of artificially produced electron density holes created by chemical releases from Space Shuttle Orbital Maneuvering System (OMS) engine burns will be discussed. The percentage drop in total electron content (TEC) and the temporal and spatial scales observed in the electron density hole for different Shuttle burn experiments will be compared. We will also report on observations of TEC depletions associated with Titan rocket launches on 8 April 2003 and on 19 October 2005. Finally we will discuss the use of GPS measurements of precipitable water vapor from time periods before, during, and after Shuttle burns.

Coster, A. J.; Bhatt, A.; O'Hanlon, B.; Rideout, W.

2009-12-01

412

Rocket + Science = Dialogue  

NASA Technical Reports Server (NTRS)

It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

Morris,Bruce; Sullivan, Greg; Burkey, Martin

2010-01-01

413

Contamination control and plume assessment of low-energy thrusters  

NASA Technical Reports Server (NTRS)

Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

Scialdone, John J.

1993-01-01

414

Coal-Fired Rocket Engine  

NASA Technical Reports Server (NTRS)

Brief report describes concept for coal-burning hybrid rocket engine. Proposed engine carries larger payload, burns more cleanly, and safer to manufacture and handle than conventional solid-propellant rockets. Thrust changeable in flight, and stops and starts on demand.

Anderson, Floyd A.

1987-01-01

415

Handheld Water Bottle Rocket & Launcher  

NSDL National Science Digital Library

In this activity, learners build handheld rockets and launchers out of PVC pipes and plastic bottles. Use this activity to demonstrate acceleration, air pressure, and Newton's Laws of Motion. Note: a PVC cutter, side cutters, PVC cement glue and other tools are required to build this project.
Safety note: These rockets should only be launched in large, open, outdoor areas.

2014-09-12

416

Viscoelastic rocket grain fracture analysis  

Microsoft Academic Search

A viscoelastic fracture analysis has been developed for rocket grain fracture predictions. The fracture analysis uses a stress intensity factor technique to predict crack velocity histories under thermal and pressurization loading conditions. The theory is compared with two-dimensional pressurized tests of two typical rocket motor geometries using the viscoelastic material, Solithane 113.

E. C. Francis; C. H. Carlton; R. E. Thompson

1974-01-01

417

Air-Breathing Rocket Engines  

NASA Technical Reports Server (NTRS)

This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

1998-01-01

418

Otrag rocket experiments in Africa  

NASA Technical Reports Server (NTRS)

West German rocket manufacturers are testing their products in Zaire. Hundreds of pipes (12 m x 80 cm) are bundled together inside the test missiles, which are fired into Zaire's prairie. The reactions of neighboring nations, as well as leading countries of the world, are presented concerning the rocket tests.

1978-01-01

419

What fuel for a rocket?  

E-print Network

Elementary concepts from general physics and thermodynamics have been used to analyze rocket propulsion. Making some reasonable assumptions, an expression for the exit velocity of the gases is found. From that expression one can conclude what are the desired properties for a rocket fuel.

E. N. Miranda

2012-08-13

420

Numerical Simulations of an Unsteady Rocket Launch from the AH-64D Apache Longbow Helicopter  

NASA Technical Reports Server (NTRS)

Rocket and missile firings from attack helicopters can cause main engine compressor stall. Studies of this phenomenon suggest that the main engine ingests either the plume from the rockets or the rocket blast waves. This creates surges at the inlet face, causing a loss of power in the main engine. The objective of this project is to set-up a computational fluid dynamics (CFD) simulation of the AH-64D Apache Longbow helicopter during a rocket launch, in order to qualitatively study the fluid dynamics of the problem. This project presents a progression of three unsteady Navier-Stokes solutions. The first unsteady solution involves only a rocket launch from its launch canister. The second solution is a launch from a canister mounted on the Apache's wing-pylon assembly. The last solution includes the Apache main engine and fuselage. The computations use a series of structured, overset grid systems, which allow for a rocket moving in a prescribed path. The method implements a Roe upwind scheme with LU-SGS (lower-upper factored symmetric Gauss-Seidel). A rotor pressure disk model approximates the helicopter rotor, while the rocket engine exit properties are applied as a prescribed boundary condition. Although the project is only at the half-way point, the first and second CFD simulations suggest the possibility of pressure wave interference. Sudden surges in pressure occur from two sources: at rocket start-up, and as the rocket leaves the canister. Wave patterns set-up by these sources appear to propagate to the location of the engine inlet. However the simplified geometry simulation with the main engine needs to be performed before coming to a conclusion.

Okamoto, Kevin; Dugue, Earl P. N.; Ahmad, Jasim; Rutkowski, Michael (Technical Monitor)

1998-01-01

421

Density and optical properties of SPARCS plumes  

NASA Technical Reports Server (NTRS)

Propellant gases emitted by attitude control systems such as SPARCS (Solar Pointing Aerobee Rocket Control System) and possible interference with experiments aboard the payloads are discussed. The optical properties of seven actual and potential gases emitted by propellant systems (CF4, N2H4, NH3, N2, CO2, Ar, and He) are presented. A compilation of absorption coefficients from 1 Angstrom to 50 microns and a summary of fluorescent spectra and efficiencies are provided. Since Freon-14 (CF4) is of primary importance to SPARCS, an experimental search for the fluorescent spectrum of CF4 was performed by exciting the gas with 920 Angstrom UV photons. The result was compared with an electron impact induced spectrum of CF4, and conclusions drawn about the nature of the radiating species. A detailed study of the CF4 flow fields and plume densities for typical SPARCS controlled payloads was made using gas dynamic codes which included the effects of vehicle shading and condensation. The importance of the optical properties of CF4 plumes was investigated and it is concluded that absorption is negligible but fluoresence may be significant in some cases.

Brown, W. A.; Kumer, J. B.; Cooper, C. E., Jr.

1972-01-01

422

Rhenium Rocket Manufacturing Technology  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

1997-01-01

423

Thrust vector control by liquid injection for solid propellant rockets  

NASA Technical Reports Server (NTRS)

In liquid injection thrust vector control, a rocket jet is deflected for steering purposed by injecting a liquid into the nozzle exit cone. The liquid is preferably both dense and reactive so that it adds mass and energy and generates shocks in the supersonic exhaust. This behavior increases thrust in the affected part of the jet producing not only a side force for steering but an addition to axial thrust. This paper presents a summary of current liquid injection thrust vector control technology, including procedures for design, development, analysis, testing and evaluation, together with supporting data and references.

Zeamer, R. J.

1975-01-01

424

Facility for cold flow testing of solid rocket motor models  

NASA Astrophysics Data System (ADS)

A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The performance of the self-pumping exhaust diffuser was verified down to exhaust pressures of 1.379 x 10 exp 4 Pa. The facility was successfully operated over the entire range of design pressures and flowrates and is available for national use by industry and government agencies requiring facilities capable of testing SRM cold flow models to support development programs or resolve problems arising on operational flight systems.

Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

1992-02-01

425

Exhaust backpressure tester  

SciTech Connect

This patent describes a method for measuring exhaust backpressure in an internal combustion engine. It comprises: providing a pressure indicating device of the type having an elongate probe which communicates fluid pressure to an interior portion of the device; locating a wall of a manifold, pipe, muffler, catalytic converter or which is in fluid communication with an exhaust port of the internal combustion engine; creating a bore through the wall of a size sufficient to just receive the probe therethrough; inserting the probe in the bore in unsealed and unthreaded relation therewith; reading the backpressure indicated by the device; withdrawing the probe from the bore; and inserting a plug into the bore. The plug having a diameter sufficient to frictionally engage the radially inner surface of the bore thereby plugging the bore against exhaust leakage.

Freeman, F.F.

1989-12-12

426

Production with exhaustible resources  

SciTech Connect

This study is concerned with the examination of efficient and optimal economic planning in the theory of exhaustible resources. In the model, exhaustible resources are incorporated directly into the production function as the constraint on a social welfare function. The social welfare function is then maximized to obtain the optimal program. This study consists of a series of essays testing the optimal program under conditions of certainty and uncertainty. Chapter III presents the basic neoclassical model of optimal growth in a certain world. As an input to the production function, an exhaustible resource is introduced to maximize the discounted utility stream of consumption. In chapter IV the effects of resource reserve uncertainty are investigated. Pindyck's framework for stochastic dynamic programming is used. Finally, exploratory activity is introduced as a means of expanding the quantity of reserves as well as reducing the variance of the stochastic fluctuations in reserves.

Park, J.

1988-01-01

427

Behavior of Mercury Emissions from a Commercial Coal-Fired Utility Boiler: TheRelationship Between Stack Speciation and Near-Field Plume Measurements  

EPA Science Inventory

The reduction of divalent gaseous mercury (HgII) to elemental gaseous mercury (Hg0) in a commercial coal-fired power plant (CFPP)exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S....

428

Crossfire calibrated exhaust system  

SciTech Connect

This patent describes a dual-exhaust system for an internal combustion engine having a pair of spaced-apart pipes channeling exhaust gases from the engine towards a muffler. It comprises first and second additional pipes connected between the pair of spaced-apart pipes at substantially 45[degrees] angles with respect to each of the pair of pipes and at substantially a 90[degrees] angle with respect to each other; and wherein the first and second additional pipes are also interconnected with each other substantially at the midpoints thereof, measured along their respective lengths, and substantially midway between the pair of spaced-apart pipes.

Barth, R.S.

1992-09-08

429

Hyperventilation and exhaustion syndrome  

PubMed Central

Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification – F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called ‘Grounding’, a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients’ average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = ?3.48, df = 42, p < 0.001). The NQ scores correlated strongly with two measures of exhaustion (Karolinska Exhaustion Scale KES r = 0.772, p < 0.01; Shirom Melamed Burnout Measure SMBM r = 0.565, p < 0.01), mental status [Hospital Anxiety and Depression Score (HADS) depression r = 0.414, p < 0.01; HADS anxiety r = 0.627, p < 0.01], sleep disturbances (r = ?0.514, p < 0.01), pain (r = ?.370, p < 0.05) and poor well-being (Medical Outcomes Survey Short Form 36 questionnaire- SR Health r = ?0.529, p < 0.05). In the logistic regression analysis, the variance in the scores from NQ were explained to a high degree (R2 = 0.752) by scores in KES and HADS. The brief Grounding training contributed to a near significant reduction in hyperventilation (F = 2.521, p < 0.124) and to significant reductions in exhaustion scores and scores of depression and anxiety. The conclusion is that hyperventilation is common in exhaustion syndrome patients and that it can be reduced by systematic physical therapy such as Grounding. PMID:24134551

Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

2014-01-01

430

Determination of alloy content from plume spectral measurements  

NASA Technical Reports Server (NTRS)

The mathematical derivation for a method to determine the identities and amounts of alloys present in a flame where numerous alloys may be present is described. This method is applicable if the total number of elemental species from all alloys that may be in the flame is greater than or equal to the total number of alloys. Arranging the atomic spectral line emission equations for the elemental species as a series of simultaneous equations enables solution for identity and amount of the alloy present in the flame. This technique is intended for identification and quantification of alloy content in the plume of a rocket engine. Spectroscopic measurements reveal the atomic species entrained in the plume. Identification of eroding alloys may lead to the identification of the eroding component.

Madzsar, George C.

1991-01-01

431

Dynamic characterization of solid rockets  

NASA Technical Reports Server (NTRS)

The structural dynamics of solid rockets in-general was studied. A review is given of the modes of vibration and bending that can exist for a solid propellant rocket, and a NASTRAN computer model is included. Also studied were the dynamic properties of a solid propellant, polybutadiene-acrylic acid-acrylonitrile terpolymer, which may be used in the space shuttle rocket booster. The theory of viscoelastic materials (i.e, Poisson's ratio) was employed in describing the dynamic properties of the propellant. These studies were performed for an eventual booster stage development program for the space shuttle.

1973-01-01

432

Rocketing into Adaptive Inquiry  

NSDL National Science Digital Library

To ensure that each student achieves success, teachers can tailor activities with students' strengths and weaknesses in mind using the process of adaptive inquiry. Adaptive inquiry is the product of the synergistic relationship between what a student brings to the classroom and the teacher's ability to shape a lesson in response to the needs of the student. The following is an example of an adaptive inquiry activity that uses Launch System Compressor (LCS) Rockets (paper tubes launched by squeezing a plastic bag filled with air). Many divergent outcomes are possible with this activity, but each one can be used to reach the ultimate objective of this lesson--teaching Newton's third law of motion.

Beverly A. Joyce

2002-01-01

433

Buoyant plume calculations  

SciTech Connect

Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

Penner, J.E.; Haselman, L.C.; Edwards, L.L.

1985-01-01

434

COLD WEATHER PLUME STUDY  

EPA Science Inventory

While many studies of power plant plume transport and transformation have been performed during the summer, few studies of these processes during the winter have been carried out. Accordingly, the U.S. Environmental Protection Agency and the Electric Power Research Institute join...

435

Enceladus' Water Vapour Plumes  

NASA Technical Reports Server (NTRS)

A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; Yung, Y.

2006-01-01

436

Chemical Plume Source Localization  

Microsoft Academic Search

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the dispersion of the chemical is dominated by turbulence, resulting in an intermittent chemical signal. The

Shuo Pang; Jay A. Farrell

2006-01-01

437

Dr. Robert H. Goddard and His Rocket  

NASA Technical Reports Server (NTRS)

Goddard rocket with four rocket motors. This rocket attained an altitude of 200 feet in a flight, November 1936, at Roswell, New Mexico. From 1930 to 1941, Dr. Goddard made substantial progress in the development of progressively larger rockets which attained altitudes of 2400 meters, and refined his equipment for guidance and control, his techniques of welding, and his insulation, pumps, and other associated equipment. In many respects, Dr. Goddard laid the essential foundations of practical rocket technology

2004-01-01

438

Sandia Laboratories rocket program - A review  

Microsoft Academic Search

A historical review of Sandia Laboratories rocket programs is presented. From the 60 rocket systems developed at Sandia since 1957, 1225 rockets have been launched at 19 sites, worldwide. Typical rockets developed for the nuclear readiness test program are the Terrier-Sandhawk sounding rocket (boosts a 91-kg, 33-cm-diam payload to an altitude of 427 km) and the Strypi II warhead carrier

G. A. Fowler; R. C. Maydew; W. R. Barton

1976-01-01

439