Science.gov

Sample records for rocks reservoir bitterroot

  1. Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.

    SciTech Connect

    Lere, Mark E.

    1984-11-01

    Baseline fisheries and habitat data were gathered during 1983 and 1984 to evaluate the effectiveness of supplemental water releases from Painted Rocks Reservoir in improving the fisheries resource in the Bitterroot River. Discharge relationships among main stem gaging stations varied annually and seasonally. Flow relationships in the river were dependent upon rainfall events and the timing and duration of the irrigation season. Daily discharge monitored during the summers of 1983 and 1984 was greater than median values derived at the U.S.G.S. station near Darby. Supplemental water released from Painted Rocks Reservoir totaled 14,476 acre feet in 1983 and 13,958 acre feet in 1984. Approximately 63% of a 5.66 m{sup 3}/sec test release of supplemental water conducted during April, 1984 was lost to irrigation withdrawals and natural phenomena before passing Bell Crossing. A similar loss occurred during a 5.66 m{sup 3}/sec test release conducted in August, 1984. Daily maximum temperature monitored during 1984 in the Bitterroot River averaged 11.0, 12.5, 13.9 and 13.6 C at the Darby, Hamilton, Bell and McClay stations, respectively. Chemical parameters measured in the Bitterroot River were favorable to aquatic life. Population estimates conducted in the Fall, 1983 indicated densities of I+ and older rainbow trout (Salmo gairdneri) were significantly greater in a control section than in a dewatered section (p < 0.20). Numbers of I+ and older brown trout (Salmo trutta) were not significantly different between the control and dewatered sections (p > 0.20). Population and biomass estimates for trout in the control section were 631/km and 154.4 kg/km. In the dewatered section, population and biomass estimates for trout were 253/km and 122.8 kg/km. The growth increments of back-calculated length for rainbow trout averaged 75.6 mm in the control section and 66.9mm in the dewatered section. The growth increments of back-calculated length for brown trout averaged 79.5 mm in the

  2. Evaluation of Management of Water Releases for Painted Rocks Reservoir, Bitterroot River, Montana, 1983-1986, Final Report.

    SciTech Connect

    Spoon, Ronald L.

    1987-06-01

    This study was initiated in July, 1983 to develop a water management plan for the release of water purchased from Painted Rocks Reservoir. Releases were designed to provide optimum benefits to the Bitterroot River fishery. Fisheries, habitat, and stream flow information was gathered to evaluate the effectiveness of these supplemental releases in improving trout populations in the Bitterroot River. The study was part of the Northwest Power Planning Council's Fish and Wildlife Program and was funded by the Bonneville Power Administration. This report presents data collected from 1983 through 1986.

  3. Evaluation of Management of Water Releases for Painted Rocks Rexervoir, Bitterroot River, Montana, 1985 Annual Report.

    SciTech Connect

    Lere, Mark E.

    1985-12-01

    The Bitterroot River, located in western Montana, is an important and heavily used resource, providing water for agriculture and a source for diversified forms of recreation. Water shortages in the river, however, have been a persistent problem for both irrigators and recreational users. Five major diversions and numerous smaller canals remove substantial quantities of water from the river during the irrigation season. Historically, the river has been severely dewatered between the towns of Hamilton and Stevensville as a result of these withdrawals. Demands for irrigation water from the Bitterroot River have often conflicted with the instream flow needs for trout. Withdrawals of water can decrease suitable depths, velocities, substrates and cover utilized by trout (Stalnaker and Arnette 1976, Wesche 1976). Losses in habitat associated with dewatering have been shown to diminish the carrying capacities for trout populations (Nelson 1980). Additionally, dewatering of the Bitterroot River has forced irrigators to dike or channelize the streambed to obtain needed flows. These alterations reduce aquatic habitat and degrade channel stability. Odell (personal communication) found a substantial reduction in the total biomass of aquatic insects within a section of the Bitterroot River that had been bulldozed for irrigation purposes. The Montana Department of Fish, Wildlife and Parks (MDFWP) has submitted a proposal to the Northwest Power Planning Council for the purchase of 10,000 acre-feet (AF) of stored water in Painted Rocks Reservoir to augment low summer flows in the Bitterroot River. This supplemental water potentially would enhance the fishery in the river and reduce degradation of the channel due to diversion activities. The present study was undertaken to: (1) develop an implementable water management plan for supplemental releases from Painted Rocks Reservoir which would provide optimum benefits to the river: (2) gather fisheries and habitat information to

  4. Tertiary epizonal plutonic rocks of the Selway-Bitterroot Wilderness, Idaho County, Idaho

    SciTech Connect

    Motzer, W.E.

    1996-01-01

    Geologic mapping in the Selway-Bitterroot Wilderness identified approximately 731 kmS of epizonal plutonic granitic rocks within the Bitterroot lobe of the Idaho batholith. From north to south, the intrusions are the Rock Lake Creek stock and the Whistling Pig, Running Creek, Bad Luck and Painted Rocks plutons. The stock and plutons consist of medium- to coarse-grained biotite and hornblende-biotite syenorgranite to monzogranite and quartz syenite capped by fine-grained biotite leucogranite. These rocks are intruded by late-synplutonic leucogranite dikes and post plutonic porphyritic rhyolite to rhyodacite and basalt dikes. The medium-grained granitic rocks are high in SiO2, K2O, Na2O, Ga, Th, U, W and Zr, but low in Al7O3, CaO, MgO, Cr, Ni, Co and V. Most of the granites are peraluminous. Rare-earth element (REE) plots (rock sample/chondrite) show enrichment in light REE over heavy REE with strong EU depletions. K-Ar biotite radiometric age determinations for medium-grained granites in all of the plutons range from approximately 51 Ma (Whistling Pig pluton) to 43.7 Ma (Painted Rocks pluton). Petrogenetic studies suggest that the plutons were rapidly emplaced to within 3.0 km of the paleosurface. The types, textures and color of the rocks result from devolatilization of the crystallizing melt and very low-grade hydrothermal alteration. The fluorine-rich melts are the fractionated with accumulate residue; they are considered to be anorogenic (A-type) granites intruded into the center of a metamorphic core complex.

  5. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  6. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  7. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  8. Adsorption of water vapor on reservoir rocks

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  9. [sup 40]Ar/[sup 39]Ar thermochronology in the northern Bitterroot mylonite zone, Mt

    SciTech Connect

    House, M.A.; Hodges, K.V. . Dept. of Earth, Atmospheric, and Planetary Sciences)

    1993-04-01

    The extensional Bitterroot mylonite zone defines the eastern and southern border of the Bitterroot metamorphic core complex and is generally interpreted to be the major structure which accommodated unroofing of the metamorphic core. The most commonly cited evidence for the age of mylonitization are [sup 40]Ar/[sup 39]Ar ages for hornblend, muscovite, biotite, and potassium feldspar from the southern Bitterroot mylonite zone that indicate rapid cooling of the core rocks between 45.5 and 43.5 Ma. More recently, an [sup 40]Ar/[sup 39]Ar K-feldspar age of 46.4 [+-] 0.8 Ma for an undeformed rhyolite dike that cuts across the mylonitic fabric places a minimum age constraint on the southern part of the shear zone. The authors have obtained new [sup 40]Ar/[sup 39]Ar data for metapelitic rocks and amphibolites from the northeast border of the Bitterroot metamorphic core complex near an area where mylonitized granitoid rocks yielding 48--52 Ma U-Pb zircon crystallization ages constrain the maximum age of mylonitization. Isochran ages of 47.9 [+-] 0.9 and 49 [+-] 1 Ma for hornblende separated from deformed amphibolite pods in the northeast border zone are within analytical uncertainty of the younger mylonitized granitoid crystallization ages and indicate rapid post-crystallization cooling through temperatures of [approximately]780--800 K. They attribute this cooling to denudation related to shear zone development. Muscovite and biotite isochron ages from metapelitic rocks within the shear zone are significantly younger, between 42 and 44 Ms., and generally agree with mica ages obtained by Garmezy and Sutter for the southern part of the shear zone. However, all mica ages from the Bitterroot shear zone are younger than the minimum age of the shear zone deduced from the age of cross-cutting rhyolite dikes.

  10. Smoke in the Bitterroot Mountains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By late August 2000, severe forest fires had been burning in Montana and Idaho for more than a month. As of Aug. 29, a total of 57 fires were burning in both states. The smoke from these fires is considered a health risk, especially for the very young and very old, and health advisory has been issued for those with respiratory problems who live in the area. This image from the Moderate Resolution Imaging Spectroradiometer (MODIS) shows smoke in the Bitterroot Mountains on the morning of August 21, 2000. Even though forest fires normally taper off overnight, these blazes are burning so fiercely that opaque pillars of smoke are rising into the morning air. More smoke fills the low-lying valleys, with the mountains rising out of the smoke into clear air. In the full size image, note the irrigated fields and ancient basalt lava flows that line the Snake River Plain to the south of the fires. Image by Reto Stockli and the MODIS science team

  11. Summary geologic report on the Missoula/Bitterroot Drilling Project, Missoula/Bitterroot Basins, Montana

    SciTech Connect

    Abramiuk, I.N.

    1980-08-01

    The objective of the drilling project was to obtain information to assess the favorability of the Tertiary sedimentary units in the Missoula and Bitterroot Valleys for uranium potential. The group of Montana Tertiary basins, including the Missoula and Bitterroot Basins, has been assigned a speculative uranium potential of 46,557 tons of U/sub 3/O/sub 8/ at $100/lb by the 1980 National Uranium Resource Evaluation report. The seven drill holes, two in the Missoula Valley and five in the Bitterroot Valley, verified observations made during surface studies and provided additional information about the subsurface that was previously unknown. No uranium was found, although of the two localities the Bitterroot Valley is the more favorable. Three stratigraphic units were tentatively identified on the basis of lithology: pre-Renova clastic units, Renova Formation equivalents, and Sixmile Creek Formation equivalents. Of the three, the Renova Formation equivalents in the Bitterroot Valley appear to be the most favorable for possible uranium occurrences and the pre-Renova clastic units the least favorable.

  12. Seismic attenuation anisotropy in reservoir sedimentary rocks

    SciTech Connect

    Best, A.I.

    1994-12-31

    Seismic attenuation is a fundamental property of reservoir sedimentary rocks; it is strongly related to reservoir permeability. Knowledge of its variation with lithology, with burial depth, and with wave propagation direction is vital for understanding the attenuation mechanism. Given this information, realistic theoretical models may be constructed for predicting attenuation, and hence permeability, over a wide frequency range. Accurate ultrasonic attenuation measurements were made in the laboratory over a range of effective pressures on sandstone samples with different amounts of humic organic matter. The organic matter formed fine laminations along the bedding planes of the sandstones. The results show that the sandstones are highly attenuating at 5 MPa mainly because of the presence of grain contact microcracks giving rise to squirt flow; at 40 MPa, when most of the microcracks are closed, the clean sandstones are poorly attenuating, but the organic-rich sandstones remain highly attenuating. It is postulated that the compliant organic matter is responsible for causing squirt flow at high and at low pressures. The results also show that the maximum attenuation occurs when the particle motion of the propagating wave is perpendicular to the planes of the organic matter laminations. These results are consistent with the squirt flow theory of Akbar et al (1993) for compressional waves.

  13. Multiscale properties of unconventional reservoir rocks

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.

    A multidisciplinary study of unconventional reservoir rocks is presented, providing the theory, forward modeling and Bayesian inverse modeling approaches, and laboratory protocols to characterize clay-rich, low porosity and permeability shales and mudstones within an anisotropic framework. Several physical models characterizing oil and gas shales are developed across multiple length scales, ranging from microscale phenomena, e.g. the effect of the cation exchange capacity of reactive clay mineral surfaces on water adsorption isotherms, and the effects of infinitesimal porosity compaction on elastic and electrical properties, to meso-scale phenomena, e.g. the role of mineral foliations, tortuosity of conduction pathways and the effects of organic matter (kerogen and hydrocarbon fractions) on complex conductivity and their connections to intrinsic electrical anisotropy, as well as the macro-scale electrical and elastic properties including formulations for the complex conductivity tensor and undrained stiffness tensor within the context of effective stress and poroelasticity. Detailed laboratory protocols are described for sample preparation and measurement of these properties using spectral induced polarization (SIP) and ultrasonics for the anisotropic characterization of shales for both unjacketed samples under benchtop conditions and jacketed samples under differential loading. An ongoing study of the effects of kerogen maturation through hydrous pyrolysis on the complex conductivity is also provided in review. Experimental results are catalogued and presented for various unconventional formations in North America including the Haynesville, Bakken, and Woodford shales.

  14. Reservoir, seal, and source rock distribution in Essaouira Rift Basin

    SciTech Connect

    Ait Salem, A. )

    1994-07-01

    The Essaouira onshore basin is an important hydrocarbon generating basin, which is situated in western Morocco. There are seven oil and gas-with-condensate fields; six are from Jurassic reservoirs and one from a Triassic reservoir. As a segment of the Atlantic passive continental margin, the Essaouira basin was subjected to several post-Hercynian basin deformation phases, which resulted in distribution, in space and time, of reservoir, seal, and source rock. These basin deformations are synsedimentary infilling of major half grabens with continental red buds and evaporite associated with the rifting phase, emplacement of a thick postrifting Jurassic and Cretaceous sedimentary wedge during thermal subsidence, salt movements, and structural deformations in relation to the Atlas mergence. The widely extending lower Oxfordian shales are the only Jurassic shale beds penetrated and recognized as potential and mature source rocks. However, facies analysis and mapping suggested the presence of untested source rocks in Dogger marine shales and Triassic to Liassic lacustrine shales. Rocks with adequate reservoir characteristics were encountered in Triassic/Liassic fluvial sands, upper Liassic dolomites, and upper Oxfordian sandy dolomites. The seals are provided by Liassic salt for the lower reservoirs and Middle to Upper Jurassic anhydrite for the upper reservoirs. Recent exploration studies demonstrate that many prospective structure reserves remain untested.

  15. Imaging fluid/solid interactions in hydrocarbon reservoir rocks

    SciTech Connect

    Uwins, P.J.R.; Baker, J.C.; Mackinnon, I.D.R. . Centre for Microscopy and Microanalysis)

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoir, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programs. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  16. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    PubMed

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions. PMID:8400441

  17. Hot dry rock fracture propagation and reservoir characterization

    SciTech Connect

    Murphy, H.; Fehler, M.; Robinson, B.; Tester, J.; Potter, R.; Birdsell, S.

    1988-01-01

    North America's largest hydraulic fracturing opeations have been conducted at Fenton hill, New mexico to creae hot dry rock geothermal reservoirs. Microearthquakes induced by these fracturing operations were measured with geophones. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the pre-existing joints are oriented at angles between 30 and 60)degree) to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. Field testing of HDR reservoirs at the Fenton Hill site shows that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area. These temporal increases indicate that augmentation of reservoir heat production capacity in hot dry rock system occurred. For future reservoir testing, Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts. Recent studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene, which can be used in reservoirs as hot as 275)degree)C.

  18. Geophysical and transport properties of reservoir rocks. Summary annual report

    SciTech Connect

    Cook, N.G.W.

    1990-04-29

    Definition of petrophysical properties, such as porosity, permeability and fluid saturation, on the scale of meters, is the key to planning and control of successful Enhanced Oil Recovery techniques for domestic reservoirs. Macroscopic transport properties in reservoir rocks depend critically upon processes at the pore level involving interactions between the pore topology and the physical and chemical properties of the rock minerals and interstitial fluids. Similar interactions at the pore level determine also the macroscopic electrical and seismic properties of reservoir rocks. The objective of this research is to understand, using analysis and experiment, how fluids in pores affect the geophysical and sport properties of reservoir rocks. The goal is to develop equations-relating seismic and electrical properties of rock to the porosity, permeability and fluid saturations so as to invert geophysical images for improved reservoir management. Results from seismic measurements performed so far in this study suggest that even subtle changes in fluid contacts and the in-situ state of effective stress can be detected using geophysical imaging techniques. The experiments using Wood`s metal and wax are revealing the topology and sport properties of the pore space in clastic sedimentary rocks. A deeper understanding of these properties is considered-to be the key to the recovery of much of the mobile oil left in domestic reservoirs and to the effective management of enhanced oil recovery techniques. The results of Wood`s metal percolation tests indicate that most of the permeability of Berea sandstone resides in the critical percolating paths and these paths occupy only a small fraction of the total porosity. This result may have important implications for flooding in terms of override and efficiency as a function of saturation.

  19. Tickborne Relapsing Fever, Bitterroot Valley, Montana, USA

    PubMed Central

    Christensen, Joshua; Fischer, Robert J.; McCoy, Brandi N.; Raffel, Sandra J.

    2015-01-01

    In July 2013, a resident of the Bitterroot Valley in western Montana, USA, contracted tickborne relapsing fever caused by an infection with the spirochete Borrelia hermsii. The patient’s travel history and activities before onset of illness indicated a possible exposure on his residential property on the eastern side of the valley. An onsite investigation of the potential exposure site found the vector, Ornithodoros hermsi ticks, and 1 chipmunk infected with spirochetes, which on the basis of multilocus sequence typing were identical to the spirochete isolated from the patient. Field studies in other locations found additional serologic evidence and an infected tick that demonstrated a wider distribution of spirochetes circulating among the small mammal populations. Our study demonstrates that this area of Montana represents a previously unrecognized focus of relapsing fever and poses a risk for persons of acquiring this tickborne disease. PMID:25625502

  20. Strength measurements of The Geysers reservoir rock

    SciTech Connect

    Lockner, D.A.; Byerlee, J.D.

    1980-09-01

    Rock samples taken from two outcrops and cores from well bores at the Geysers geothermal field were tested at temperatures and pressures similar to those found in the field. Both intact cylinders and cylinders containing 30/sup 0/ sawcuts were deformed at confining pressures of 200 to 1000 bars, pore pressure of 30 bars, and temperatures of 150 to 250/sup 0/C. Constant strain rate tests gave a coefficient of friction of 0.68. Friction was independent of rock type, temperature and strain rate. Most cores taken from the producing zone were highly fractured. For this reason, intact samples were rarely 50% stronger than the frictional strength. At 500 bars confining pressure, P wave velocity of 6.2 km/sec was measured for a sample taken from an outcrop. Porosities and permeabilities were also measured.

  1. Using a hot dry rock geothermal reservoir for load following

    SciTech Connect

    Brown, D.W.; Duteau, R.J.

    1995-01-01

    Field measurements and modeling have shown the potential for using a Hot Dry Rock (HDR) geothermal reservoir for electric load following: either with Power-Peaking from a base-load operating condition, or for Pumped Storage of off-peak electric energy with a very significant thermal augmentation of the stored mechanical energy during periods of power production. For the base-load with power- peaking mode of operation, and HDR reservoir appears capable of producing over twice its nominal power output for short -- 2 to 4 hour -- periods of time. In this mode of operation, the reservoir normally would be produced under a high-backpressure condition with the HDR reservoir region near the production well highly inflated. Upon demand, the production backpressure would be sharply reduced, surging the production flow. The analytical tool used in these investigations has been the transient finite element model of the an HDR reservoir called GEOCRACK, which is being developed by Professor Dan Swenson and his students at Kansas State University. This discrete-element representation of a jointed rock mass has recently been validated for transient operations using the set of cyclic reservoir operating data obtained at the end of the LTFT.

  2. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect

    Davies, D.K.; Vessell, R.K.; Doublet, L.E.

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  3. Rock characterization in reservoirs targeted for horizontal drilling

    SciTech Connect

    Skopec, R.A. )

    1993-12-01

    Achieving the maximum economic benefit from horizontal drilling requires thorough understanding of reservoir characteristics. The direct measurement of rock properties from oriented core is critical in horizontal-wellbore design. This paper outlines the measures and testing necessary to evaluate naturally fractured reservoirs effectively with field and laboratory technologies. Rock mechanical properties, fracture strike, and principal in-situ stress magnitudes and directions should be known before a horizontal wellbore is drilled. These data can then be used to maximize the intersection of natural fractures and to minimize the potential of borehole failure. In exploration wells, a vertical pilot hole must first be drilled. The zone of interest is cored, field tests are performed, laboratory testing is completed, and the reservoir is evaluated. With this information available, decisions can be made to optimize the borehole azimuth and well placement. The authors have used this approach to formation evaluation in several reservoirs where rock characterization is essential in the exploration and drilling program. 72 refs., 10 figs.

  4. Uncertainty quantification in fractured reservoir by considering geological deformation of reservoir and geomechanical accommodation of rocks

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Jung, A.; Mukerji, T.

    2013-12-01

    Geological interpretations on structural deformation of a reservoir are uncertain. How the reservoir rocks have accommodated the deformational loading is also uncertain. The effects of these two on reservoir property modeling and uncertainty of reservoir responses is rarely investigated and used in reservoir forecasting. In this research, the effect of different scenarios on geological deformation history and modes of accommodation of rock deformation on reservoir flow response is investigated. To do that, we develop a geostatistical reservoir property modeling workflow which allows us to generate petrophysical properties (porosity & permeability) such that the properties are consistent with geological deformation. In this workflow, we restore the values of petrophysical properties from hard data into a restored condition using predefined transfer functions. We conduct geostatistical simulations to populate petrophysical properties using the restored property values in a restored grid. By using the inverse relation used to restore petrophysical values of hard data, we deform the simulated property values into a deformed grid with corresponding deformed values. Fracture sets are populated by considering both the populated petrophysical properties in a restored grid and the geomechanical condition derived from the deformation-restoration constraints. By using this workflow, we can compare and distinguish the effects of different modes of geological deformation on the uncertainty of reservoir flow responses. The uncertainty from different modes of accommodation is considered in the workflow by having different transfer relations when conducting restoration-deformation of the values of petrophysical properties. The proposed workflow is applied on a 3D synthetic fractured sandstone reservoir to see the impact on flow responses. Reservoir models from different scenario of deformation and the modes of accommodation for each deformation produce different characteristics on

  5. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  6. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect

    Gary Mavko

    2003-10-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

  7. A new type of reservoir rock in volcaniclastic sequences

    SciTech Connect

    Vernik, L. )

    1990-06-01

    Development of pronounced secondary porosity and permeability, accompanied by dramatic changes in wave propagation velocity and other physical properties, in laumontite tuffs occurs in the oil fields of eastern Georgia, Soviet Union. These rocks originated during intense hydrothermal alterations of andesite tuffs and comprise local (few meters thick), commonly lens-shaped bodies. Hydrothermal alteration was lithologically and structurally controlled, resulting in the formation of specific reservoir rocks identifiable on geophysical logs and capable of producing oil and gas. The considerable relief of the in-situ stress within these bodies was estimated from differential velocity analysis using sonic-log and laboratory data. This stress relief, as well as borehole enlargements (accompanied by the development of zones of nonelastic deformation around the hole) tends to enhance near-well permeability and, hence, the productive potential of these uncommon and poorly studied reservoirs. 6 figs., 3 tabs.

  8. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect

    Gary Mavko

    2004-08-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing well logs and microstructural constraints on seismic signatures. We report results of three studies in this report. The first one deals with fractures and faults that provide the primary control on the underground fluid flow through low permeability massive carbonate rocks. Fault cores often represent lower transmissibility whereas the surrounding damaged rocks and main slip surfaces are high transmissibility elements. We determined the physical properties of fault rocks collected in and around the fault cores of large normal faults in central Italy. After studying the P- and S-wave velocity variation during cycles of confining pressure, we conclude that a rigid pore frame characterizes the fault gouge whereas the fractured limestone comprises pores with a larger aspect ratio. The second study was to characterize the seismic properties of brine as its temperature decreases from 25 C to -21 C. The purpose was to understand how the transmitted wave changes with the onset of freezing. The main practical reason for this experiment was to use partially frozen brine as an analogue for a mixture of methane hydrate and water present in the pore space of a gas hydrate reservoir. In the third study we analyzed variations in dynamic moduli in various carbonate reservoirs. The investigations include log and laboratory data from velocity, porosity, permeability, and attenuation measurements.

  9. Mining earth's heat: Development of hot dry rock geothermal reservoirs

    SciTech Connect

    Pettitt, R.A.; Becker, N.A.

    1983-07-01

    Geothermal energy is commonly considered to be available only in areas characterized by hot springs and geysers. However, the rock of the earth is hot at accessible depths everywhere, and this energy source is present beneath the surface in almost any location. The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program as initially developed by the Los Alamos National Laboratory, is to ''mine'' this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large diameter, vertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kw of electricity.

  10. Grain-rimming kaolinite in Permian Rotliegend reservoir rocks

    NASA Astrophysics Data System (ADS)

    Waldmann, Svenja; Gaupp, Reinhard

    2016-04-01

    Upper Rotliegend sediments of Permian age from the northeast Netherlands show moderate to good reservoir qualities. The predominant control is by the presence of authigenic grain-rimming kaolinite, which has a negative, but in some parts also a positive, effect on reservoir quality. To better understand the formation and distribution of grain-rimming kaolinite, reservoir rocks were studied in terms of composition and diagenetic processes. Petrographic evidence, summarized as a paragenetic sequence, is integrated with geochemical modeling results to identify early mesodiagenetic water-rock interactions under the participation of gases, i.e., CO2 and H2S, released from underlying Carboniferous source rocks. The sediments investigated were deposited at varying distance from the southern flank of the Southern Permian Basin. Sediments near the basin margin are mainly attributed to a fluvial environment and comprise medium to coarse-grained sandstones and conglomerates. There, vermicular kaolinite occurs with a lath-like structure. Distal to the basin margin, mainly in sandstones intercalated with fine-grained playa sediments, comparatively high amounts of grain-rimming kaolinite occur. There, the presence of this mineral has a significant influence on the rock properties and the reservoir quality. Geochemical modeling suggests that the formation of such kaolinites cannot be explained exclusively by in situ feldspar dissolution. The modeling results support evidence that kaolinite can be formed from precursor clay minerals under the presence of CO2-rich formation waters. Such clay minerals could be corrensite, smectite-chlorite mixed-layer minerals, or chlorite that is potentially present in Rotliegend sediments during early diagenesis. Furthermore, the geochemical modeling can reflect several mineral reactions that were identified from petrographic analysis such as the formation of illite and kaolinite at the expense of feldspar dissolution and consequent silica

  11. Anisotropic permeabilities evolution of reservoir rocks under pressure

    NASA Astrophysics Data System (ADS)

    Jeremie, D.; Nicolas, G.; Alexandre, D.; Olga, V.

    2006-12-01

    The aim of our study is to measure, to model and to forecast the evolutions of porosity and permeability under anisotropic stresses representative of hydrocarbon reservoir conditions. Reservoir field exploitation induces a decrease of the pore pressure, hence modifying the effective stress-state at the reservoir scale. To optimize production and recovery rates of the reservoir it is of fundamental interest to understand all the physical and mechanical evolutions of the host-rock and their influence on transport properties. In the case of weakly consolidated reservoirs the variations of stresses are modest, yet they can induce significant porosity and permeability changes due to their high compressibility. In the case of deeply buried and consolidated reservoirs the stress variations might be pronounced enough to influence flow properties as well. Because of reservoir boundaries conditions, the fluid pressure drop influences essentially the vertical stress. The recovery rate is a function of horizontal permeability. In order to understand how the anisotropic stress-states induced during production may influence the transport properties experiments must be designed to measure simultaneously both horizontal and vertical permeabilities under deviatoric stresses. For this purpose we developed a specific triaxial cell operating in conditions representative of the field conditions. Preliminary results obtained with low permeability sandstones allowed a coupled observation of deformation and directional permeability evolution. Because of complex geometrical conditions the results required numerical interpretations. A finite-element inversion of our data allowed the determination of the complete permeability tensor. In addition the study aims on the identification of the microphysical mechanics that induce the pore scale microstructural evolution, which is ultimately responsible of the permeability decrease. For this purpose we used synthetic hot-pressed calcite

  12. Water in evolved lunar rocks: Evidence for multiple reservoirs

    NASA Astrophysics Data System (ADS)

    Robinson, Katharine L.; Barnes, Jessica J.; Nagashima, Kazuhide; Thomen, Aurélien; Franchi, Ian A.; Huss, Gary R.; Anand, Mahesh; Taylor, G. Jeffrey

    2016-09-01

    We have measured the abundance and isotopic composition of water in apatites from several lunar rocks representing Potassium (K), Rare Earth Elements (REE), and Phosphorus (P) - KREEP - rich lithologies, including felsites, quartz monzodiorites (QMDs), a troctolite, and an alkali anorthosite. The H-isotope data from apatite provide evidence for multiple reservoirs in the lunar interior. Apatite measurements from some KREEP-rich intrusive rocks display moderately elevated δD signatures, while other samples show δD signatures similar to the range known for the terrestrial upper mantle. Apatite grains in Apollo 15 quartz monzodiorites have the lowest δD values measured from the Moon so far (as low as -749‰), and could potentially represent a D-depleted reservoir in the lunar interior that had not been identified until now. Apatite in all of these intrusive rocks contains <267 ppm H2O, which is relatively low compared to apatites from the majority of studied mare basalts (200 to >6500 ppm H2O). Complexities in partitioning of volatiles into apatite make this comparison uncertain, but measurements of residual glass in KREEP basalt fragments in breccia 15358 independently show that the KREEP basaltic magmas were low in water. The source of 15358 contained ∼10 ppm H2O, about an order of magnitude lower than the source of the Apollo 17 pyroclastic glass beads, suggesting potential variations in the distribution of water in the lunar interior.

  13. Hot Dry Rock Geothermal Reservoir Model Development at Los Alamos

    SciTech Connect

    Robinson, Bruce A.; Birdsell, Stephen A.

    1989-03-21

    Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general.

  14. Hot Dry Rock geothermal reservoir model development at Los Alamos

    SciTech Connect

    Robinson, B.A.; Birdsell, S.A.

    1989-01-01

    Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general. 15 refs., 7 figs.

  15. Oxygen isotope geochemistry of The Geysers reservoir rocks, California

    SciTech Connect

    Gunderson, Richard P.; Moore, Joseph N.

    1994-01-20

    Whole-rock oxygen isotopic compositions of Late Mesozoic graywacke, the dominant host rock at The Geysers, record evidence of a large liquid-dominated hydrothermal system that extended beyond the limits of the present steam reservoir. The graywackes show vertical and lateral isotopic variations that resulted from gradients in temperature, permeability, and fluid composition during this early liquid-dominated system. All of these effects are interpreted to have resulted from the emplacement of the granitic "felsite" intrusion 1-2 million years ago. The {delta}{sup 18}O values of the graywacke are strongly zoned around a northwest-southeast trending low located near the center of and similar in shape to the present steam system. Vertical isotopic gradients show a close relationship to the felsite intrusion. The {delta}{sup 18}O values of the graywacke decrease from approximately 15 per mil near the surface to 4-7 per mil 300 to 600 m above the intrusive contact. The {delta}{sup 18}O values then increase downward to 8-10 per mil at the felsite contact, thereafter remaining nearly constant within the intrusion itself. The large downward decrease in {delta}{sup 18}O values are interpreted to be controlled by variations in temperature during the intrusive event, ranging from 150{degree}C near the surface to about 425{degree}C near the intrusive contact. The upswing in {delta}{sup 18}O values near the intrusive contact appears to have been caused by lower rock permeability and/or heavier fluid isotopic composition there. Lateral variations in the isotopic distributions suggests that the effects of temperature were further modified by variations in rock permeability and/or fluid-isotopic composition. Time-integrated water:rock ratios are thought to have been highest within the central isotopic low where the greatest isotopic depletions are observed. We suggest that this region of the field was an area of high permeability within the main upflow zone of the liquid

  16. Characterization of CO2 reservoir rock in Switzerland

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Madonna, Claudio; Zappone, Alba

    2014-05-01

    Anthropogenic emissions of Carbon Dioxide (CO2) are one of the key drivers regarding global climate change (IPCC, 2007). Carbon Dioxide Capture and Storage (CCS) is one valuable technology to mitigate current climate change with an immediate impact. The IPCC special report on CCS predicted a potential capture range of 4.7 to 37.5 Gt of CO2 by 2050. Among several countries, Switzerland has started to investigate its potential for CO2 storage (Chevalier et al., 2010) and is currently performing research on the characterization of the most promising reservoir/seal rocks for CO2 sequestration. For Switzerland, the most feasible option is to store CO2 in saline aquifers, sealed by impermeable formations. One aquifer of regional scale in the Swiss Molasse Basin is a carbonate sequence consisting of reworked shallow marine limestones and accumulations of shell fragments. The upper part of the formation presents the most promising permeability values and storage properties. The storage potential has been estimated of 706 Mt of CO2, based on the specific ranking scheme proposed by Chevalier et al. 2010. In this study, key parameters such as porosity, permeability and acoustic velocities in compressional and shear mode have been measured in laboratory at pressures and temperatures simulating in situ conditions. Reservoir rock samples have been investigated. Permeability has been estimated before and after CO2 injection in supercritical state. The simulation of typical reservoir conditions allows us to go one step further towards a significant evaluation of the reservoir's true capacities for CO2 sequestration. It seems of major importance to notice that the permeability crucially depends on confining pressure, temperature and pore pressure conditions of the sample. Especially at in situ conditions with CO2 being at supercritical state, a substantial loss in permeability have to be taken into consideration when it comes to the calculation of potential injection rates. The

  17. Seismic Characterization of Fractured Reservoirs - Rock Physics Analysis and Modeling of James Limestone Reservoir

    NASA Astrophysics Data System (ADS)

    Sava, D. C.; Florez, J. M.; Mukerji, T.; Mavko, G.

    2002-12-01

    We present the rock physics analysis from well logs of the fractured James Limestone reservoir in the Neuville Field and also the results of our stochastic simulations of various seismic attributes for different models of fractures in the reservoir. Our goal is to determine the optimal combination of seismic attributes, and the uncertainty due to natural variability for delineating the gas filled fractured zones. Geological model based on the logs from horizontal wells suggests that the fractures are controlled by subseismic normal faults. These small faults can generate narrow zones with high fracture density. Between these fracture swarms, the background fracture density may correspond to regularly spaced, vertical joints. Therefore, for fracture modeling we consider both isotropic and anisotropic distributions of fractures. The isotropic distribution corresponds to the fracture swarms in the vicinity of faults, where the cracks are more or less randomly orientated, such as in brecciated zones. The anisotropic distribution corresponds to a single set of vertical joints that generates an azimuthally anisotropic medium with HTI symmetry. For each hypotheses of fracture distribution we stochastically model seismic interval and interface properties such as interval velocities, Poisson's Ratio, impedances, travel time, scattering attenuation, PP reflectivity as a function of angle of incidence and azimuth. The modeling shows that some of these attributes, such as Poisson's Ratio and P Impedance, are more sensitive to the presence of fractures than others. Rock physics analysis of the cross-dipole and FMI logs shows that the fractures are present especially in the clean limestone intervals, characterized by high velocity and small porosity. This observation can be used in fracture delineation from seismic measurements. In summary, rock physics fracture modeling and stochastic simulations for seismic attributes of James Lime reservoir provide a framework for delineating

  18. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  19. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    NASA Astrophysics Data System (ADS)

    Ma, Xiangxian; Zheng, Guodong; Xu, Wang; Liang, Minliang; Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin; Shozugawa, Katsumi; Matsuo, Motoyuki

    2016-12-01

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  20. Diagenesis and reservoir quality of Devonian reservoir rocks of Nevada, Blackburn, and Grant Canyon fields

    SciTech Connect

    Bereskin, S.R.; Little, T.M.; Lord, G.D.

    1989-03-01

    Devonian carbonate rocks of the Basin and Range province are largely responsible for the current enthusiastic search for petroleum in Nevada. Severely dolomitized Givetian and Frasnian rocks, given various formational names, contain numerous marine intertidal to sublittoral facies that are cyclically interbedded. Exploration complications can arise from physical and chemical diagenesis; however, recent advancements in petrology and petrophysics allow evaluation and behavior predictability of fractured reservoirs from the Blackburn 16 and Grant Canyon 4 wells. Complex diagenesis and deformation are common to the hydrocarbon-producing intervals and included numerous cementation, dissolution, and fracturing events. Abundant fractures are dominantly nonpenetrative, partially open types, and such closely spaced fractures resulted from two episodes represented by conjugate sets in each case. Dissolution porosity associated with leached Amphipora is also present. Silica, barite, and kaolinite are the most volumetrically important authigenic fracture-filling minerals. Fluorescence microscopy has revealed shallow burial diagenetic events that are masked by the more severe overprint of solution(.) brecciation of tectonically inspired diagenesis.

  1. Geology and geochronology of the southeast border of the Bitterroot dome: implications for the structural evolution of the mylonitic carapace

    SciTech Connect

    Garmezy, L.

    1983-01-01

    Geologic and geochronologic study of the southeast corner of the Bitterroot dome has delimited the evolution of the shallow-dipping mylonitic carapace that developed on the granitic rocks of the Bitterroot lobe of the Idaho Batholith. Reset hornblende from the zone of mylonitization, in conjunction with /sup 40/Ar//sup 39/Ar age spectra of hornblende, muscovite, biotite, and K-feldspar from non-mylonitic samples, indicates that mylonitization began approx.45.5 Ma ago at a depth of probably greater than 9 to 10 km, and continued for approx.2 Ma, during a period of rapid uplift of the dome (.1 to .3 cm/y). The process of mylonitization caused shear heating of as much as 200/sup 0/C above ambient conditions. With only two exceptions, detailed kinematic analyses of mylonitic fabric indicate eastward tectonic transport of the hanging wall throughout the 500-1000 m-thick mylonitic zone. The extensional origin of the mylonitic carapace is supported by the /sup 40/Ar//sup 39/Ar data that indicate a contemporaneity between mylonitization and regional Eocene volcanism and extension. The data show that mylonitization was not associated with either the development of thrust faults in the Sapphire tectonic block or initial intrusion and crystallization of the batholith.

  2. Sediment discharge in Rock Creek and the effect of sedimentation rate on the proposed Rock Creek Reservoir, northwestern Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1987-01-01

    Sediment data collected from 1976 to 1985 and stream discharge data collected from 1952 to 1980 at gaging station 09060500, Rock Creek near Toponas, Colorado, were used to determine total sediment discharge into the proposed Rock Creek Reservoir. Suspended sediment discharge and bedload discharge were related to stream discharge by using logarithmic regression relations. Mean annual suspended sediment discharge was estimated to be 309 tons/yr, and mean annual bedload discharge was estimated to be 428 tons/yr in Rock Creek at the Toponas gaging station for the 1953 through 1980 water years. The mean annual total sediment discharge into the proposed reservoir was estimated to be 768 tons/yr, which includes 10% addition to the suspended sediment discharge calculated for the Toponas gaging station to account for suspended sediment discharge from Horse Creek. This rate of mean annual total sediment discharge would decrease the long-term water storage capacity of the proposed reservoir by < 1% after 100 years. Suspended sediment discharge/unit-drainage-basin area at gaging station 09060550, Rock Creek at Crater, located about 5 mi downstream for the proposed reservoir site, was equivalent to suspended-sediment discharge/unit-drainage-basin area at the Toponas gaging station during 1985. Long-term sediment data collection at the Crater gaging station could be used for detecting changes in suspended sediment discharge in Rock Creek at the proposed reservoir site. (Author 's abstract)

  3. A rock-physical modeling method for carbonate reservoirs at seismic scale

    NASA Astrophysics Data System (ADS)

    Li, Jing-Ye; Chen, Xiao-Hong

    2013-03-01

    Strong heterogeneity and complex pore systems of carbonate reservoir rock make its rock physics model building and fluid substitution difficult and complex. However, rock physics models connect reservoir parameters with seismic parameters and fluid substitution is the most effective tool for reservoir prediction and quantitative characterization. On the basis of analyzing complex carbonate reservoir pore structures and heterogeneity at seismic scale, we use the gridding method to divide carbonate rock into homogeneous blocks with independent rock parameters and calculate the elastic moduli of dry rock units step by step using different rock physics models based on pore origin and structural feature. Then, the elastic moduli of rocks saturated with different fluids are obtained using fluid substitution based on different pore connectivity. Based on the calculated elastic moduli of rock units, the Hashin-Shtrikman-Walpole elastic boundary theory is adopted to calculate the carbonate elastic parameters at seismic scale. The calculation and analysis of carbonate models with different combinations of pore types demonstrate the effects of pore type on rock elastic parameters. The simulated result is consistent with our knowledge of real data.

  4. Hydro-mechanically coupled modelling of deep-seated rock slides in the surroundings of reservoirs

    NASA Astrophysics Data System (ADS)

    Lechner, Heidrun; Preh, Alexander; Zangerl, Christian

    2016-04-01

    In order to enhance the understanding of the behaviour of deep-seated rock slides in the surroundings of large dam reservoirs, this study concentrates on failure mechanisms, deformation processes and the ability of self-stabilisation of rock slides influenced by reservoirs. Particular focus is put on internal rock mass deformations, progressive topographical slope changes due to reservoir impoundment and shear displacements along the basal shear zone in relation to its shear strength properties. In this study, a two-dimensional numerical rock slide model is designed by means of the Universal Distinct Element Code UDEC and investigated concerning different groundwater flow scenarios. These include: (i) a completely drained rock slide model, (ii) a model with fully saturated rock mass below an inclined groundwater table and (iii) a saturated groundwater model with a reservoir at the slope toe. Slope displacements initiate when the shear strength properties of the basal shear zone are at or below the critical parameters for the limit-equilibrium state and continue until a numerical equilibrium is reached due to deformation- and displacement-based geometrical changes. The study focuses on the influence of a reservoir at the toe of a rock slide and tries to evaluate the degree of displacement which is needed for a re-stabilisation in relation to the geometrical characteristics of the rock slide. Besides, challenges and limitations of applied distinct element methods to simulate large strain and displacements of deep-seated rock slides are discussed. The ongoing study will help to understand the deformation behaviour of deep-seated pre-existing rock slides in fractured rock mass during initial impounding and will be part of a hazard assessment for large reservoirs.

  5. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    NASA Astrophysics Data System (ADS)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  6. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    NASA Astrophysics Data System (ADS)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  7. Mechanical Behaviour of Reservoir Rock Under Brine Saturation

    NASA Astrophysics Data System (ADS)

    Shukla, Richa; Ranjith, P. G.; Choi, S. K.; Haque, A.; Yellishetty, Mohan; Hong, Li

    2013-01-01

    Acoustic emissions (AE) and stress-strain curve analysis are well accepted ways of analysing crack propagation and monitoring the various failure stages (such as crack closure, crack initiation level during rock failure under compression) of rocks and rock-like materials. This paper presents details and results of experimental investigations conducted for characterizing the brittle failure processes induced in a rock due to monocyclic uniaxial compression on loading of two types of sandstone core samples saturated in NaCl brines of varying concentration (0, 2, 5, 10 and 15 % NaCl by weight). The two types of sandstone samples were saturated under vacuum for more than 45 days with the respective pore fluid to allow them to interact with the rocks. It was observed that the uniaxial compressive strength and stress-strain behaviour of the rock specimens changed with increasing NaCl concentration in the saturating fluid. The acoustic emission patterns also varied considerably for increasing ionic strength of the saturating brines. These observations can be attributed to the deposition of NaCl crystals in the rock's pore spaces as well some minor geo-chemical interactions between the rock minerals and the brine. The AE pattern variations could also be partly related to the higher conductivity of the ionic strength of the high-NaCl concentration brine as it is able to transfer more acoustic energy from the cracks to the AE sensors.

  8. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect

    Gary Mavko

    2003-06-30

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Effects of pore texture on porosity, permeability, and sonic velocity. We show how a relation can be found between porosity, permeability, and velocity by separating the formations of rocks with similar pore textures.

  9. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    PubMed

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores. PMID:15833638

  10. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    SciTech Connect

    Ikwuakor, K.C.

    1994-03-01

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  11. Chemical water/rock interaction under reservoir condition

    SciTech Connect

    Watanabe, K.; Tanifuji, K.; Takahashi, H.; Wang, Y.; Yamasaki, N.; Nakatsuka, K.

    1995-01-26

    A simple model is proposed for water/rock interaction in rock fractures through which geothermal water flows. Water/rock interaction experiments were carried out at high temperature and pressure (200-350 C, 18 MPa) in order to obtain basic solubility and reaction rate data. Based on the experimental data, changes of idealized fracture apertures with time are calculated numerically. The results of the calculations show that the precipitation from water can lead to plugging of the fractures under certain conditions. Finally, the results are compared with the experimental data.

  12. X-ray microtomography application in pore space reservoir rock.

    PubMed

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. PMID:22264795

  13. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect

    Gary Mavko

    2003-06-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Elastic properties of clay minerals using Pulse Transmission experiments. We show measurements of elastic moduli and strain in clay minerals.

  14. Simulation of irreversible rock compaction effects on geopressured reservoir response: Topical report

    SciTech Connect

    Riney, T.D.

    1986-12-01

    A series of calculations are presented which quantitatively demonstrate the effects of nonlinear stress-deformation properties on the behavior of geopressured reservoirs. The range of stress-deformation parameters considered is based on information available from laboratory rock mechanics tests performed at the University of Texas at Austin and at Terra Tek, Inc. on cores recovered from geopressured wells. The effects of irreversible formation rock compaction, associated permeability reduction, and repetitive load/unload cycling are considered. The formation rock and geopressured brine properties are incorporated into an existing reservoir simulator using a bilinear model for the irreversible compaction process. Pressure drawdown and buildup testing of a well producing from the geopressured formation is simulated for a suite of calculations covering the range of formation parameters. The results are presented and discussed in terms of the inference (e.g., permeability and reservoir volume) that would be drawn from the simulated test data by an analyst using conventional methods.

  15. Mechanical rock properties, fracture propagation and permeability development in deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea

    2010-05-01

    Deep geothermal reservoirs are rock units at depths greater than 400 m from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In many geothermal reservoirs, fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites, that is, the percolation threshold must be reached. In "hydrothermal systems", only the natural fracture system (extension and shear fractures) creates the rock or reservoir permeability that commonly exceeds the matrix permeability by far; in "petrothermal systems", by contrast, interconnected fracture systems are formed by creating hydraulic fractures and massive hydraulic stimulation of the existing fracture system in the host rock. Propagation (or termination, that is, arrest) of both natural extension and shear fractures as well as man-made hydraulic fractures is mainly controlled by the mechanical rock properties, particularly rock toughness, stiffness and strengths, of the host rock. Most reservoir rocks are heterogeneous and anisotropic, in particular they are layered. For many layered rocks, the mechanical properties, particularly their Young's moduli (stiffnesses), change between layers, that is, the rocks are mechanically layered. Mechanical layering may coincide with changes in grain size, mineral content, fracture frequencies, or facies. For example, in sedimentary rocks, stiff limestone or sandstone layers commonly alternate with soft shale layers. In geothermal reservoirs fracture termination is important because non-stratabound fractures, that is, fractures not affected by layering, are more likely to form an interconnected fracture network than stratabound fractures, confined to single rock

  16. Seismic monitoring of heavy oil reservoirs: Rock physics and finite element modelling

    NASA Astrophysics Data System (ADS)

    Theune, Ulrich

    In the past decades, remote monitoring of subsurface processes has attracted increasing attention in geophysics. With repeated geophysical surveys one attempts to detect changes in the physical properties in the underground without directly accessing the earth. This technique has been proven to be very valuable for monitoring enhanced oil recovery programs. This thesis presents an modelling approach for the feasibility analysis for monitoring of a thermal enhanced oil recovery technique applied to heavy oil reservoirs in the Western Canadian Sedimentary Basin. In order to produce heavy oil from shallow reservoirs thermal oil recovery techniques such as the Steam Assisted Gravity Drainage (SAGD) are often employed. As these techniques are expensive and technically challenging, early detection of operational problems is without doubt of great value. However, the feasibility of geophysical monitoring depends on many factors such as the changes in the rock physical properties of the target reservoir. In order to access the feasibility of seismic monitoring for heavy oil reservoirs, a fluid-substitutional rock physical study has been carried out to simulate the steam injection. The second modelling approach is based on a modified finite element algorithm to simulate the propagation of elastic waves in the earth, which has been developed independently in the framework of this thesis. The work summarized in this thesis shows a possibility to access the feasibility of seismic monitoring for heavy oil reservoirs through an extensive rock-physical study. Seismic monitoring is a useful tool in reservoir management decision process. However, the work reported here suggests that seismic monitoring of SAGD processes in the heavy oil reservoirs of the Western Canadian Sedimentary Basin is only feasible in shallow, unconsolidated deposits. For deeper, but otherwise geological similar reservoirs, the SAGD does not create a sufficient change in the rock physical properties to be

  17. Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  18. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Sheng-Jie; Shao, Yu; Chen, Xu-Qiang

    2016-03-01

    We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.

  19. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    NASA Astrophysics Data System (ADS)

    Jiang, Meijuan; Spikes, Kyle T.

    2016-06-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V P/V S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization.

  20. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect

    Gary Mavko

    2003-06-30

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Methods for detection of stress-induced velocity anisotropy in sands. (2) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  1. Chemical hydrofracturing of the Hot Dry Rock reservoir

    SciTech Connect

    Yakovlev, Leonid

    1996-01-24

    The experimental study of the water-rock interaction shows that the secondary mineral assemblage depends on the water composition. For example, granite-pure water interaction produces zeolites (relatively low-dense, Mg-poor minerals), whereas seawater yields chlorites (high-dense, Mg-rich minerals). The reactions have volumetric effects from several % to 20 % in magnitude. Volume deformations in the heterogeneous matrix cause uneven mechanical strains. Reactions with the effect of about 0,1 vol.% may cause strains of the order of 100-1000 bars being enough for destruction of rocks. Signs and magnitudes of local volume changes depend on the mineral composition of the secondary assemblage. Hence, one can provide either healing or cracking of primary fractures, as desired, by changing the composition of water in the water-felsic rock system where some elements (Mg, Fe) are in lack. The techniques of "chemical hydrofracturing" looks promising as applied to a granite HDR massif. One can regulate the permeability of fractured flow paths by changing in concord the composition and pressure of the injected water. This approach should promote efficient extraction of the petrothermal energy.

  2. Controls on CO2 Mineralization in Volcanogenic Sandstone Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Zhang, S.; DePaolo, D. J.; Xu, T.; Voltolini, M.

    2013-12-01

    We proposed to use volcanogenic sandstones for CO2 sequestration. Such sandstones with a relatively high percentage of volcanic rock fragments (VRF) could be a promising target for CO2 sequestration in that they have a sufficient percentage of reactive minerals to allow substantial mineralization of injected scCO2, which provides the most secure form of CO2 storage, but can also be porous and permeable enough to allow injection at acceptable rates. Modeling results from reactive transport code TOUGHREACT show that as much as 80% CO2 mineralization could occur in 1000 years in rocks with 10-20% volcanic rock fragments and still allow sufficient injectivity so that ca. 1 megaton of CO2 can be injected per year per well. The key to estimating how much CO2 can be injected and mineralized is the relationship between permeability (or injectivity) and reactive mineral content. We have sampled examples of volcanogenic sandstones from Miocene Etchegoin Formation, central California to examine these relationships. Characterizations of these samples by SEM, XRF and XRD show that they are rich in reactive minerals with around 32% plagioclase, 10% clinopyroxene, 2% diopside, and 1% ilmenite. Porosities range from 10% to 20%, and permeabilities range from 10 mD to 1000 mD. Batch experiments are also in progress to obtain realistic reactivity estimates. Figure 1. Outcrop photo and photomicrograph showing volcanic mineralogy and abundant pore space from Miocene Etchegoin Formation, central California

  3. Numerical simulation of the electrical properties of shale gas reservoir rock based on digital core

    NASA Astrophysics Data System (ADS)

    Nie, Xin; Zou, Changchun; Li, Zhenhua; Meng, Xiaohong; Qi, Xinghua

    2016-08-01

    In this paper we study the electrical properties of shale gas reservoir rock by applying the finite element method to digital cores which are built based on an advanced Markov Chain Monte Carlo method and a combination workflow. Study shows that the shale gas reservoir rock has strong anisotropic electrical conductivity because the conductivity is significantly different in both horizontal and vertical directions. The Archie formula is not suitable for application in shale reservoirs. The formation resistivity decreases in two cases; namely (a) with the increase of clay mineral content and the cation exchange capacity of clay, and (b) with the increase of pyrite content. The formation resistivity is not sensitive to the solid organic matter but to the clay and gas in the pores.

  4. EVALUATION OF RESERVOIR ROCK AND WELL BORE CEMENT ALTERATION WITH SUPERCRITICAL CO2

    SciTech Connect

    William k. O'Connor; Gilbert E Rush

    2009-01-01

    An evaluation of the alteration of reservoir rock and well bore cement at their interface, under supercritical CO{sub 2} (SCCO{sub 2}), was conducted at the laboratory-scale using simulated brine solutions at down-hole conditions. These studies were intended to identify potential leakage pathways for injected CO{sub 2} due to degradation of the well bore. Two distinct test series were conducted on core samples of the Mt. Simon sandstone from the Illinois Basin, IL, and the Grand Ronde basalt from the Pasco Basin, WA. LaFarge Class H well bore cement was used for both series. Reservoir rock/cement cores were immersed within a CO{sub 2}-saturated brine for up to 2000 hours at 35 degrees C and 100 atm CO{sub 2}. Results suggest that the impact of SCCO{sub 2} injection is reservoir-specific, being highly dependent on the reservoir brine and rock type. Brine pH can be significantly altered by CO{sub 2} injection, which in turn can dramatically impact the dissolution characteristics of the reservoir rock. Finally, well bore cement alteration was identified, particularly for fresh cast cement allowed to cure at SCCO{sub 2} conditions. However, this alteration was generally limited to an outer rind of carbonate and Ca-depleted cement which appeared to protect the majority of the cement core from further attack. These studies indicate that at the cement-rock interface, the annular space may be filled by carbonate which could act as an effective barrier against further CO{sub 2} migration along the well bore.

  5. Geochemical simulations on CO2-fluid-rock interactions in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Pan, F.; McPherson, B. J.; Lichtner, P. C.; Kaszuba, J. P.; Lo Re, C.; Karra, S.; Lu, C.; Xu, T.

    2012-12-01

    Supercritical CO2 has been suggested as a heat transmission fluid in Enhanced Geothermal Systems (EGS) reservoirs to improve energy extraction. Understanding the geochemical processes of CO2-fluid-rock interactions in EGS reservoirs is significant important to investigate the performance of energy extraction with CO2 instead of water as a working fluid, carbon sequestration and risk assessment. The objectives of this study: (1) to calibrate and evaluate the kinetic rate constants and specific reactive surface areas of minerals based on the batch experimental data conducted by other researchers (collaborators Kaszuba and Lo Ré at the University of Wyoming); (2) to investigate the effects of CO2-fluid-rock geochemical interactions on the energy extraction efficiency, carbon sequestration, and risk assessment. A series of laboratory experiments were conducted (Lo Ré et al., 2012) to investigate the geochemical reactions among water, fractured granite rocks, and injected supercritical CO2 at elevated temperatures of 250 oC, and pressures of 250-450 bars. The batch simulations were firstly conducted to mimic the laboratory experiments with the calibration of mineral reactive surface areas using TOUGHREACT model and parameter estimation software (PEST). Then, we performed 2-D geochemical modeling to simulate the chemical interactions among CO2, fluids, and rocks at high temperatures and pressures of EGS reservoirs. We further investigated the effects of fluid-rock interactions on the energy extraction, carbon sequestration, and risk assessment with CO2 as a heat transmission fluid instead of water for EGS reservoirs. Results of carbonate mineral precipitations suggested that the CO2 as a working fluid instead of water was favorable for EGS reservoirs on the CO2 sequestration. Our simulations also suggested that the energy extraction could be enhanced using CO2 as the transmission fluid compared to water.

  6. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect

    Gary Mavko

    2002-05-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) How to quantify elastic properties of clay minerals using Atomic Force Acoustic Microscopy. We show how bulk modulus of clay can be measured using atomic force acoustic microscopy (AFAM) (2) We have successfully measured elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic (3) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  7. Paleozoic source and reservoir rocks in unbreached thrust ramp anticlines, Millard County, Utah

    SciTech Connect

    Garrison, P.B.; Larsen, B.R. )

    1991-03-01

    Surface geology, source rock geochemistry, and seismic data indicate that substantial hydrocarbon reserves may occur beneath a regional detachment fault underlying Tule Valley and the Confusion Range in northern Millard County, west-central Utah. Paleozoic hydrocarbon source and reservoir rocks in Millard County are laterally equivalent to highly productive rocks in Railroad Valley, Nevada, oil fields. However, the volume of hydrocarbons trapped in thrust ramp duplex anticlines beneath a regional detachment fault is potentially much greater than that in established Nevada fields. The Devonian Guilmette Formation, which consists of interstratified brown, sucrosic dolomite and gray limestone, and the Mississippian Chainman Shale are exposed in the folded and thrusted Confusion Range. Regional geochemical analysis confirms that the Chainman Shale contains enough total organic carbon (TOC) to serve as an effective hydrocarbon source rock. Some surface samples exceed 3% TOC; average TOC is in excess of 1.5%. Thermal maturity of these source rock surface samples indicates that these rocks were subjected to deep burial during their geologic history and that they have generated the maximum amount of hydrocarbons. In addition, thermal maturity of these samples is consistent with hydrocarbon preservation at the 'floor' of the oil window and within the area of peak wet gas generation. Petrographic examination of potential reservoir facies in the Guilmette Formation confirms that liquid hydrocarbons were contained in porous, permeable dolomite. Petrographic examination of kerogen from these same facies also confirms the presence of solid bitumen (dead oil) in the surface samples.

  8. Fluid-Rock Interactions at the Interface between Reservoir Rock and Cap Rock: An Experimental Case Study Regarding Mineral Trapping at 54 and 200 C

    NASA Astrophysics Data System (ADS)

    Wigand, M. O.; Carey, J. W.; Kaszuba, J. P.; Hollis, W. K.

    2006-12-01

    Geologic sequestration (underground storage) of carbon dioxide (CO2) is the most feasible approach to mitigating CO2-induced global warming while maintaining the current fossil fuel-based economy. Although simple in principle, effective implementation of geologic sequestration will require significant development of the scientific understanding of interactions among injected CO2 (as a supercritical fluid), brine, and the reservoir rock. This paper presents the results of flow-through experiments that simulated a rising plume of supercritical carbon dioxide (SCCO2) interacting at the interface between reservoir rock and cap rock in a brine- saturated aquifer. We performed two high pressure flow-through experiments using powdered limestone and illite-rich shale separated by a frit with a pore size of 10 μm. One experiment was performed under in-situ pressure (2880 psi) and temperature (54°C) conditions of a typical oil reservoir in the Permian Basin. To increase the kinetic rates of the mineral reactions we also performed an experiment at elevated temperatures (200°C) but using the same boundary conditions for other experimental parameters such as pressure, rock samples, fluids, injection rates, and time span. Both experiments were performed over 3263 hours. After the experiment eight disks of equal size representing different reaction zones were cut to investigate the progressive fluid-rock interaction of the reservoir and cap rock with the mixture of SCCO2 and brine. Additionally, fluid samples were frequently collected and their compositions were analyzed using inductively coupled plasma mass spectrometry. At in-situ temperature conditions we determined an enrichment of B, Ba, Cr, Cu, Fe, K, Li, Mg, Na, Ni, Rb, Si, Sr, Ti, Zn, and sulfate in the collected brines, whereas Mn and chloride concentrations were depleted in comparison with the starting composition. Ca and Al showed uneven behavior with changes in enrichment and depletion during the experiment. At 200

  9. Velocity dispersion: A tool for characterizing reservoir rocks

    USGS Publications Warehouse

    Brown, R.L.; Seifert, D.

    1997-01-01

    Apparent discrepancies between velocity measurements made with different frequencies in a formation at the Gypsy test site are explained in terms of elastic scattering and intrinsic attenuation. The elastic scattering component of the dispersion (38%) in a marine interval above the Gypsy sandstone is estimated via simple models constructed from well log information. Any dispersion above the predicted value for elastic scattering in this interval is assigned to intrinsic attenuation (62%). Using the vertical measurements in the well, the marine interval directly above the Gypsy sandstone has an estimated intrinsic Q1 = 51 and an effective Q because of the scattering of Qsc = 85. The total Q of the combined mechanisms is 32. The dispersion of the vertical measurements through the heterogeneous sands and shales of the Gypsy formation can be explained using an intrinsic QI = 30 and neglecting the effects of scattering. The horizontal observations require a more detailed modeling effort to unravel the relative roles of path and volume effects, elastic scattering, attenuation, and intrinsic anisotropy. Thin layers barely resolvable on the sonic logs play a significant role in modifying the crosswell response. Potentially, the dispersion can be a key to mapping reservoir properties using crosswell and surface seismic data.

  10. A rock physics model for analysis of anisotropic parameters in a shale reservoir in Southwest China

    NASA Astrophysics Data System (ADS)

    Qian, Keran; Zhang, Feng; Chen, Shuangquan; Li, Xiangyang; Zhang, Hui

    2016-02-01

    A rock physics model is a very effective tool to describe the anisotropy and mechanical properties of rock from a seismology perspective. Compared to a conventional reservoir, modelling a shale reservoir requires us to face two main challenges in modelling: the existence of organic matter and strong anisotropy. We construct an anisotropic rock physics workflow for a typical shale reservoir in Southwest China, in which the organic matter is treated separately from other minerals by using a combination of anisotropic self-consistent approximation and the differential effective medium method. The standard deviation of the distribution function is used to model the degree of lamination of clay and kerogen. A double scan workflow is introduced to invert the probability of pore aspect ratio and lamination simultaneously, which can give us a better understanding of the shale formation. The anisotropic properties of target formation have been analysed based on the proposed model. Inverted Thomsen parameters, especially the sign of delta, are analysed in terms of the physical properties of rock physics modelling.

  11. Reservoir rock permeability prediction using support vector regression in an Iranian oil field

    NASA Astrophysics Data System (ADS)

    Saffarzadeh, Sadegh; Shadizadeh, Seyed Reza

    2012-06-01

    Reservoir permeability is a critical parameter for the evaluation of hydrocarbon reservoirs. It is often measured in the laboratory from reservoir core samples or evaluated from well test data. The prediction of reservoir rock permeability utilizing well log data is important because the core analysis and well test data are usually only available from a few wells in a field and have high coring and laboratory analysis costs. Since most wells are logged, the common practice is to estimate permeability from logs using correlation equations developed from limited core data; however, these correlation formulae are not universally applicable. Recently, support vector machines (SVMs) have been proposed as a new intelligence technique for both regression and classification tasks. The theory has a strong mathematical foundation for dependence estimation and predictive learning from finite data sets. The ultimate test for any technique that bears the claim of permeability prediction from well log data is the accurate and verifiable prediction of permeability for wells where only the well log data are available. The main goal of this paper is to develop the SVM method to obtain reservoir rock permeability based on well log data.

  12. Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems

    NASA Astrophysics Data System (ADS)

    Avseth, Per Age

    The petroleum industry is increasing its focus on the exploration of reservoirs in turbidite systems. However, these sedimentary environments are often characterized by very complex sand distributions. Hence, reservoir description based on conventional seismic and well-log interpretation may be very uncertain. There is a need to employ more quantitative seismic techniques to reveal reservoirs units in these complex systems from seismic amplitude data. In this study we focus on North Sea turbidite systems. Our goal is to improve the ability to use 3D seismic data to map reservoirs in these systems. A cross-disciplinary methodology for seismic reservoir characterization is presented that combines rock physics, sedimentology, and statistical techniques. We apply this methodology to two turbidite systems of Paleocene age located in the South Viking Graben of the North Sea. First, we investigate the relationship between sedimentary petrography and rock physics properties. Next, we define seismic scale sedimentary units, referred to as seismic lithofacies. These facies represent populations of data that have characteristic geologic and seismic properties. We establish a statistically representative training database by identifying seismic lithofacies from thin-sections, cores, and well-log data. This procedure is guided by diagnostic rock physics modeling. Based on the training data, we perform multivariate classification of data from several wells in the area. Next, we assess uncertainties in amplitude versus offset (AVO) response related to the inherent natural variability of each seismic lithofacies. We generate bivariate probability density functions (pdfs) of two AVO parameters for different facies combinations. By combining the bivariate pdfs estimated from well-logs with the AVO parameters estimated from seismic data, we use both quadratic discriminant analysis and Bayesian classification to predict lithofacies and pore fluids from seismic amplitudes. The final

  13. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  14. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect

    Wood, J.R.; Harrison, W.B.

    2001-01-22

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  15. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.

  16. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    DOE PAGESBeta

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform tomore » illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.« less

  17. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  18. Compositional changes of reservoir rocks through the injection of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Scherf, Ann-Kathrin; Schulz, Hans-Martin; Zetzl, Carsten; Smirnova, Irina; Andersen, Jenica; Vieth, Andrea

    2010-05-01

    The European project CO2SINK is the first project on the on-shore underground storage of carbon dioxide in Europe. CO2SINK is part of the ongoing efforts to understand the impact, problems, and likelihood of using deep saline aquifers for long term storage of CO2. In Ketzin (north-east Germany, 40 km west of Berlin) a saline sandstone aquifer of the younger Triassic (Stuttgart Formation) has been chosen as a reservoir for the long-term storage of carbon dioxide. Our monitoring focuses on the composition and mobility of the organic carbon pools within the saline aquifer and their changes due to the storage of carbon dioxide. Supercritical carbon dioxide is known as an excellent solvent of non- to moderately polar organic compounds, depending on temperature and pressure (Hawthorne, 1990). The extraction of organic matter (OM) from reservoir rock, using multiple extraction methods, allows insight into the composition of the OM and the biomarker inventory of the deep biosphere. The extraction of reservoir rock using supercritical CO2 may additionally simulate the impact of CO2 storage on the deep biosphere by the possible mobilisation of OM. We will present compound specific results from laboratory CO2 extraction experiments on reservoir rocks from the CO2 storage site in Ketzin, Germany. A total of five rock samples (silt and sandstones) from the injection well and two observation wells were applied to supercritical CO2 extraction. In the experimental setup, a supercritical fluid extractor is used to simulate the conditions within the saline aquifer. The results show distinct quantitative and qualitative differences in extraction yields between the rock samples. This may be due to differences in mineralogy and porosity (12 - 27%; Norden et al., 2007a, b, c), which seem to be extraction-controlling key factors. Furthermore, the results illustrate that the amount of extracted materials depends on the length of the time interval in which CO2 flows through the rock

  19. Laboratory measurements on reservoir rocks from The Geysers geothermal field

    SciTech Connect

    Boitnott, G.N.

    1995-01-26

    A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.

  20. Capillary Trapping of CO2 in Oil Reservoirs: Observations in a Mixed-Wet Carbonate Rock.

    PubMed

    Al-Menhali, Ali S; Krevor, Samuel

    2016-03-01

    Early deployment of carbon dioxide storage is likely to focus on injection into mature oil reservoirs, most of which occur in carbonate rock units. Observations and modeling have shown how capillary trapping leads to the immobilization of CO2 in saline aquifers, enhancing the security and capacity of storage. There are, however, no observations of trapping in rocks with a mixed-wet-state characteristic of hydrocarbon-bearing carbonate reservoirs. Here, we found that residual trapping of supercritical CO2 in a limestone altered to a mixed-wet state with oil was significantly less than trapping in the unaltered rock. In unaltered samples, the trapping of CO2 and N2 were indistinguishable, with a maximum residual saturation of 24%. After the alteration of the wetting state, the trapping of N2 was reduced, with a maximum residual saturation of 19%. The trapping of CO2 was reduced even further, with a maximum residual saturation of 15%. Best-fit Land-model constants shifted from C = 1.73 in the water-wet rock to C = 2.82 for N2 and C = 4.11 for the CO2 in the mixed-wet rock. The results indicate that plume migration will be less constrained by capillary trapping for CO2 storage projects using oil fields compared with those for saline aquifers. PMID:26812184

  1. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, J.K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  2. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    SciTech Connect

    Stephen C. Ruppel

    2004-07-20

    Our analysis and imaging of reservoir properties at the Fullerton Clear Fork field (Figure 1) is in its final stages. Major accomplishments during the past 6 months include: (1) characterization of facies and cyclicity in cores, (2) correlation of cycles and sequences using core-calibrated wireline logs, (3) calculation and modeling of wireline porosity, (4) analysis of new cores for conventional and special core analysis data, (5) construction of full-field reservoir model, and (6) revision of 3D seismic inversion of reservoir porosity and permeability. One activity has been eliminated from the originally proposed tasks. Task 3 (Characterization and Modeling of Rock Mechanics and Fractures) has been deleted because we have determined that fractures are not significant contributing in the reservoir under study. A second project extension has been asked for to extend the project until 7/31/04. Remaining project activities are: (1) interpretation and synthesis of fieldwide data, (2) preparation of 3D virtual reality demonstrations of reservoir model and attributes, (3) transfer of working data sets to the operator for reservoir implementation and decision-making, and (4) preparation and distribution of final reports.

  3. Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, Upper San Andres reservoir, Permian Basin, west Texas

    NASA Astrophysics Data System (ADS)

    Dou, Qifeng; Sun, Yuefeng; Sullivan, Charlotte

    2011-05-01

    In addition to mineral composition and pore fluid, pore type variations play an important role in affecting the complexity of velocity-porosity relationship and permeability heterogeneity of carbonate reservoirs. Without consideration of pore type diversity, most rock physics models applicable to clastic rocks for explaining the rock acoustic properties and reservoir parameters relationship may not work well for carbonate reservoirs. A frame flexibility factor ( γ) defined in a new carbonate rock physics model can quantify the effect of pore structure changes on seismic wave velocity and permeability heterogeneity in carbonate reservoirs. Our study of an Upper San Andres carbonate reservoir, Permian Basin, shows that for core samples of given porosity, the lower the frame flexibility factor ( γ), the higher the sonic wave velocity. For the studied reservoir, samples with frame flexibility factor ( γ) < 3.85 represent either visible vuggy pore space in a dolopackstone or intercrystalline pore space in dolowackstone. On the other hand, samples with frame flexibility factor ( γ) > 3.85 indicate either dominant interparticle pore space in dolopackstone or microcrack pore space in dolowackstone or dolomudstone. Using the frame flexibility factor ( γ), different porosity-impedance and porosity-permeability trends can be classified with clear geologic interpretation such as pore type and rock texture variations to improve porosity and permeability prediction accuracy. New porosity-permeability relations with γ classification help delineate permeability heterogeneity in the Upper San Andres reservoir, and could be useful for other similar carbonate reservoir studies. In addition, results from analysis of amplitude variation with offset (AVO) and impedance modeling indicate that by combining rock physics model and pre-stack seismic inversion, simultaneous estimation of porosity and frame flexibility factor ( γ) is quite feasible because of the strong influence of

  4. Experimental Long-term Investigations on Geothermal Reservoir Rock Properties at Simulated In-situ Conditions

    NASA Astrophysics Data System (ADS)

    Milsch, H.; Spangenberg, E.; Kulenkampff, J.; Schuldt, S.; Huenges, E.

    2006-12-01

    Sustainable energy production from geothermal reservoirs requires an exact knowledge of the hydrological aquifer rock properties as well as the processes that could potentially alter its productivity. The latter comprise both mechanical (e. g. fines migration) and chemical (fluid-rock interactions) effects. To perform controlled long-term investigations on the evolution of sedimentary rock transport properties at conditions pertinent to deep geothermal reservoirs two new permeameters have been set up at the GFZ- Potsdam. The apparatuses allow for a variety of continuous petrophysical measurements at a maximum temperature, lithostatic- and pore pressure of 200 ° C, 140 and 50 MPa, respectively. The permeability, ultra-sonic p- and s-wave velocities and the specific electric conductivity of the rock can be determined. In particular, the use of corrosion-resistant parts allows for experiments with highly saline formation pore fluids that can be sampled under pressure for further chemical analysis. The typical duration of an individual test is four to twelve weeks. Experiments are comparatively performed on two types of sandstones: a Lower Permian (Rotliegend) reservoir rock from Eberswalde, Germany and a pure Quartzite from Fontainebleau, France. In addition, two kinds of pore fluids are used: a low salinity brine (0.1 mol NaCl) and a synthetic Ca-Na-Cl formation fluid with a TDS- content of 250 g/l. In a first series the former fluid was used to petrophysically characterize both rocks as a function of temperature and effective pressure within the relevant range of up to 150 ° C and 75 MPa, respectively. I addition, in a continuous flow experiment the permeability and the specific electric conductivity of the reservoir sandstone were monitored as a function of time during six weeks at constant p-T-conditions. In an ongoing series similar continuous flow experiments are performed using the second, highly saline reservoir fluid. These tests are also complemented by p

  5. Quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rock

    SciTech Connect

    Pruess, K.

    1985-03-01

    We present a numerical model of vapor-dominated reservoirs which is based on the well-known conceptual model of White, Muffler, and Truesdell. Computer simulations show that upon heat recharge at the base, a single phase liquid-dominated geothermal reservoir in fractured rock with low matrix permeability will evolve into a two-phase reservoir with B.P.D. (boiling point-for-depth) pressure and temperature profiles. A rather limited discharge event through cracks in the caprock, involving loss of only a few percent of fluids in place, is sufficient to set the system off to evolve a vapor-dominated state. The attributes of this state are discussed, and some features requiring further clarification are identified. 26 refs., 5 figs.

  6. The Relative Permeability of CO2 and Water in Sandstone Rocks at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Pini, R.; Zuo, L.; Benson, S. M.

    2011-12-01

    A firm understanding of the multiphase flow properties of CO2 and water in porous media is essential to predicting the long-term fate of CO2 in geologic storage. Recently, pilot-scale and simulation based studies have highlighted the importance that properties of relative permeability, residual saturation, and rock heterogeneity will play in determining the long-term distribution of CO2 in the subsurface. There is a need for more observations to expand the current dataset of experimental work, as well as a discussion of these results in the context of the theory that is used in reservoir-scale predictions of subsurface flow. In this paper we present the results of an experimental investigation into the flow properties of CO2 and water in 4 distinct rock lithologies: a Berea sandstone and 3 reservoir rocks from formations into which CO2 injection is either currently taking place or is planned. Drainage and imbibition relative permeability and end-point saturations were measured using the steady-state method in a high pressure and temperature core-flooding apparatus with fluid distributions observed using X-ray CT. Absolute permeability, capillary pressure curves, and petrological studies were performed on each sample to fully characterize the rocks. The results are discussed in terms of their potential impact on basin-scale modeling of industrial CO2 injection projects. Theoretical explanations for generally low end-point CO2 relative permeabilities are discussed as well as its relevance for reservoir simulations. It is shown that small-scale heterogeneity plays an important role in both the overall saturations of CO2 in a rock as well as the saturation distribution within the rock. Clear evidence of heterogenous flow-properties are observed even in rocks of homogeneous rock lithology. Observations of residual CO2 saturation are discussed in the context of the long-term stability of CO2 injected in the subsurface. The experiments are compared with results reported

  7. Influences of salt structures on reservoir rocks in block L-2, Dutch continental shelf

    SciTech Connect

    Dronkert, H. ); Remmelts, G. )

    1993-09-01

    In the subsurface of the Netherlands Continental Shelf, thick layers of Zechstein salt have developed into salt domes and ridges that pierce through the overlying formations. To measure the range of lateral influence of the salt in these structures on the sandstone reservoir rocks of the Mesozoic sequence, a cementation model was developed. The target area, Block L-2, was chosen for the presence of salt domes, wells, and reservoir rocks. The L-2 case study has been performed on two Triassic sandstone intervals. The lower, Volpriehausen, sandstone showed halite cementation in one well, located within several 100 m from a salt dome. Four other wells, located more than 1.5 km from a salt structure, did not show any signs of halite cementation. Therefore, the lateral influence of salt domes on the surrounding reservoir rock is, in this case, limited to less than 1.5 km at 3-4 km depth. A slightly shallower Triassic sandstone (Detfurth) shows more frequent halite cementation. This cementation can be attributed to early seepage from overlying Rot salt brines.Triassic Rot salt is present above depletion areas of the Zechstein salt structures, and in such a way the seepage can be seen as an indirect influence of the salt structures.

  8. Roof-rock contamination of magma along the top of the reservoir for the Bishop Tuff

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin; Webster, James D.

    1995-12-01

    The Bishop Tuff, a well known Quaternary high-silica rhyolite in east-central California, is widely considered the type example of a vertically and monotonically zoned pyroclastic deposit that represents zoning in the source magma reservoir, inverted during the process of pyroclastic emplacement. However, the deposit of plinian pumice, which forms the base of the Bishop Tuff and represents the initial 10% or so of all magma erupted during the event that produced the Bishop Tuff, contains features at odds with monotonie zoning for the reservoir. Relative to overlying ignimbrite, the plinian deposit contains a reversal in trace-element zoning. Moreover, the {87Sr }/{86Sr } is significantly higher than that in overlying ignimbrite (about 0.7084 vs 0.7064), and melt inclusions trapped in quartz phenocrysts exhibit notable variability of trace-element concentrations, even within a single host crystal (e.g., U: 10.77 to 8.91 ppm). These data have been previously interpreted as due to processes of chemical fractionation and evolution operating within a magma system closed to chemical interactions with its roof rocks. For example, the reversal in trace-element zoning has been explained by the first-erupted magma being erupted from somewhat below the top of a monotonically zoned reservoir. However, we submit that the reversed zoning and other above-noted features can be explained equally well as consequences of minor assimilation of roof rocks into a magma reservoir that was erupted from the top down. The basal part of the Bishop Tuff exhibits extreme concentrations and depletions of trace elements, relative to the average composition of crustal rocks. For example, the upward decrease of Sr in the Bishop magma reservoir (downward decrease in the ignimbrite) results in concentrations as low as 2-4 ppm. Because of the attendant 'chemical leverage', assimilation of < 1 wt.% of Sierra Nevada batholith rocks typical of the area could readily reverse an 'uncontaminated' Sr (and

  9. Organic geochemical characterization of reservoir rocks, cap rocks and formation fluids from the CO2 storage site at Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Scherf, A.-K.; Morozova, D.; Wandrey, M.; Mangelsdorf, K.; Würdemann, H.; Vieth, A.

    2009-04-01

    The European project CO2SINK (CO2 Storage by Injection into a natural saline Aquifer at Ketzin) is the first project on the on-shore underground storage of carbon dioxide in Europe. Near the city Ketzin (north-east Germany) a geological formation of the younger Triassic (Stuttgart Formation) was chosen as reservoir for the long-term storage of the carbon dioxide. Within the scope of the Ketzin project we will analyse the organic matter in core rock and fluid samples to investigate the biogeochemical effects and changes on the geological formation caused by the injection of carbon dioxide. These investigations will help to evaluate the efficiency and reliability of the long-term storage of CO2 in such a geological system. Organic geochemical analyses will be performed on core rock samples drilled in 2007 at the Ketzin CO2 storage site in Germany. In total, three bore holes were constructed: one injection well and two observation wells. In addition to the molecular analysis of the microbial community we will investigate rock samples from different depths for total, dissolved and extractable organic carbon including lipid biomarkers, such as organic acids and intact polar lipids as well as the isotopic analysis of individual organic compounds. With the analysis of intact phospholipids (IPL) we will be able to further characterize the indigenous microbial community. Intact phospholipids are found in all living cells as membrane components (Zelles, 1999). Their interpretation is based on the premise that different microorganisms contain different phospholipids with ester- and/or ether-bound fatty acids (White et al., 1979) and thus, the distribution of IPLs and PLFAs (phospholipids fatty acid) can be applied to characterise and compare microbial communities. The data obtained from these analyses will provide valuable information on the active microorganisms as well as shifts in community composition. The characterization of the organic matter in the reservoir rock

  10. Preliminary evaluation of the second hot dry rock geothermal energy reservoir: results of phase 1, run segment 4

    SciTech Connect

    Murphy, H.D.; Aamodt, R.L.; Albright, J.N.

    1980-05-01

    Results of the preliminary assessment of the second hot dry rock reservoir at the Fenton Hill field site are presented. This second reservoir was created by fracturing a deeper interval of granite rock located at a depth of 2.93 km (9620 ft) in the same wellbore pair used in the creation of the first reservoir; no additional redrilling was required. The new fracture system has a vertical extent of at least 320 m (1050 ft), suggesting that the combined heat-transfer area of the old and new fracture systems is 11 times that of the old system. The virgin rock temperature at the bottom of the deeper interval was 197/sup 0/C (386/sup 0/F). Water at a flow rate of 6 l/s (100 gpm) was circulated through the reservoir for a period of 23 days. Downhole measurements of the water temperature at the reservoir outlet, as well as temperatures inferred from geothermometry, showed that the thermal drawdown of the reservoir was negligible and preliminary estimates indicate that the minimum effective heat-transfer area of the new reservoir is 45,000 m/sup 2/ (480,000 ft/sup 2/), which is six times larger than the first reservoir. The following are presented: operational plan, reservoir geometry and flow paths, flow impedance, geochemistry, heat extraction, dye tracer flow distribution studies, and seismicity. (MHR)

  11. Roof-rock contamination of magma along the top of the reservoir for the Bishop Tuff

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.; Webster, J.D.

    1995-01-01

    The Bishop Tuff, a Quaternary high-silica rhyolite in east-central California, is widely considered the type example of a vertically and monotonically zoned pyroclastic deposit that represents zoning in the source magma reservoir, inverted during the process of pyroclastic emplacement. However, the deposit of plinian pumice, which forms the base of the Bishop Tuff and represents the initial 10% or so of all magma erupted during the event that produced the Bishop Tuff, contains features at odds with monotonic zoning for the reservoir. Relative to overlying ignimbrite, the plinian deposit contains a reversal in trace-element zoning. The data have been previously interpreted as due to processes of chemical fractionation and evolution operating within a magma system closed to chemical interactions with its roof rocks. However, it is suggested here that the reversed zoning and other above-noted features can be explained equally well as consequences of minor assimilation of roof rocks into a magma reservoir that was erupted from the top down. -from Authors

  12. Mining earth's heat: development of hot-dry-rock geothermal reservoirs

    SciTech Connect

    Pettitt, R.A.; Becker, N.M.

    1983-01-01

    The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

  13. Wettability from Capillarity of CO2-Brine-Rock Systems at Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Al-Menhali, Ali; Niu, Ben; Krevor, Samuel

    2015-04-01

    The wettability of CO2-brine-rock systems will have a major impact on the management of carbon sequestration in subsurface geological formations. Recent contact angle measurement studies have reported sensitivity in wetting behaviour of this system to pressure, temperature and brine salinity. We report results of an investigation into the impact of reservoir conditions on wetting through direct observations of their impact on the capillary strength of the system. Eight capillary pressure characteristic curves were measured using CO2 and brine in a single fired Berea sandstone at pressures (5 to 20 MPa), temperatures (25 to 50 °C) and ionic strengths (0 to 5 M kg-1 NaCl) representative of subsurface reservoirs. A ninth measurement using an N2-water system provided a benchmark for capillarity with a strongly water wet system. The semi-dynamic capillary pressure core flooding technique was used with in situ saturation monitoring. In all cases, the capillarity of the system, scaled by the interfacial tension, were equivalent to the N2-water system within measurement uncertainty. Thus reservoir conditions did not have a significant impact on the capillary strength of the CO2-brine system through a variation in wetting. Two steady-state relative permeability measurements with CO2 and brine and one with N2 and brine similarly show little variation between conditions, consistent with the observation that the CO2-brine-sandstone system is strongly water wetting and invariant across a wide range of reservoir conditions.

  14. Depositional features and source and reservoir rocks of Tertiary age in northern part of South China Sea

    SciTech Connect

    Wang, S.

    1986-07-01

    The northern part of the South China Sea covers an area of about 400,000 km/sup 2/. Tertiary deposits more than 10,000 m in thickness are widely distributed there. The area has sedimentary rocks more than 1000 m thick covers more than 300,000 km/sup 2/. Five sedimentary basins have been established in this area: Beibu Bay, Yinggehai, Southeastern Qiong, Pearl River Mouth, and Southwestern Taiwann basins. The primary source and reservoir rocks for oil and gas prospects are of Tertiary age. Tertiary rocks underwent three stages of development, each forming a specific sedimentation system: (1) a system of fluviolacustrine deposits in rift depressions from the Paleocene to early Oligocene; (2) a system of semiclosed-sea deposits from the late Oligocene to early Miocene; and (3) a system of deltaic open-sea deposits from the middle Miocene to Pliocene. These three sedimentation systems resulted in three suites of source rocks, three suites of reservoir rocks, and three groups of independent oil pools, complete with source, reservoir, and cap rocks. The three suites of source rocks are as follows: (1) the Eocene Liushagang Formation in the Beibu Bay basin, which is believed to be the best source rock discovered in the area; (2) the Oligocene Zhuhai Formation in the Pearl River Mouth basin; and (3) the lower Miocene series in the Pearl River Mouth basin. The Eocene formation is probably the principal source rock of regional scale in the northern part of the South China Sea. The three suites of reservoir rocks are as follows: (1) the fluviolacustrine sandstone bodies in the Liushagang Formation; (2) the fluviolacustrine sand bodies and shallow-sea sandstone bodies in the Zhuhai Formation and Lingshu Formation; (3) the deltaic, littoral, and shallow-sea sand bodies and bioherms of Neogene age, with the middle Miocene sandstone reservoirs having the best physical properties.

  15. Influence of shape and skin of matrix-rock blocks on pressure transients in fractured reservoirs

    SciTech Connect

    de Swaan, A.

    1986-01-01

    A formulation of pressure transients in terms of the intrinsic, or core, properties of the two media that compose the fractured reservoir, establishes the influence of these properties, and reciprocally, their corroboration from - the pressure-time relationship observed in well tests and interference tests. The following reservoir characteristics are analyzed: the area of fractures transverse to flow; the dimensions, shape and properties of rectangular parallelepiped matrix-rock blocks; and a permeability reduction in the blocks surface. A restatement of the so-called pseudo-steady state inter-media flow gives to parameters alfa and lambda in the theory of a previous study the physical meaning they lacked, and allows a direct determination of the blocks minimum dimension.

  16. Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks

    SciTech Connect

    Roberts, J J; Detwiler, R L; Ralph, W; Bonner, B

    2002-05-09

    Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

  17. Integrating sequence stratigraphy and rock-physics to interpret seismic amplitudes and predict reservoir quality

    NASA Astrophysics Data System (ADS)

    Dutta, Tanima

    This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically

  18. Origin of dolostone reservoir rocks, Smackover Formation (Oxfordian), northeastern Gulf Coast, U. S. A

    SciTech Connect

    Prather, B.E. )

    1992-02-01

    Formation of regionally extensive dolostone reservoir rocks in the Smackover can be understood despite the possible effects of recrystallization. Geochemical and petrographic data suggest that dolomitization took place in (1) seawater-seepage, (2) reflux, (3) near-surface mixed-water, (4) shallow-burial mixed-water, and (5) deeper burial environments, which overlapped in time and space to form a platform-scale' dolostone body composed of a complex mixture of dolomites. Seawater-seepage and reflux dolomitization occurred in the near surface penecontemporaneously with deposition of the Smackover and overlying Haynesville Formations. Dolomitization by seawater seepage occurred within an oolite grainstone sill which separated an intraplatform salt basin from the open sea. Seawater flowed landward through the sill in response to evaporitic drawdown of brines in the isolated intraplatform basin. Isolation of the salt basin occurred during the Oxfordian when the shoreline retreated from the Conecuh embayment. Dolomite located at the top of the Smackover enriched in {sup 18}O suggests additional dolomitization by reflux of hypersaline brines. Reflux occurred as Buckner coastal sabkhas prograded over Smackover oolite grainstone shoreface deposits. Vugs lined with shallow-burial calcite and dolomite cements indicate flushing of the Smackover grainstone aquifer with fresh water. Freshwater intrusion probably occurred following sea level lowstands during the Late Jurassic and Early Cretaceous. Leaching in the proximal portion of the freshwater aquifer produced excellent limestone reservoir rocks in the updip Smackover. Dolomitization in the contemporaneous downdip mixed connate/freshwater zone formed dolostone reservoir rocks with depleted isotopic compositions consistent with a shallow-burial mixed-water origin.

  19. Origin of Dolostone reservoir rocks, smackover formation (Oxfordian), northeastern Gulf Coast, U. S. A

    SciTech Connect

    Prather, B.E. )

    1993-09-01

    Geochemical and petrographic data suggest that, despite the effects of recrystallization, formation of regionally extensive dolostone reservoir rocks in the Smackover Formation can be deciphered. These data indicate that dolomitization took place in (1) seawater seepage, (2) reflux, (3) near-surface mixed-water, (4) shallow-burial mixed-water, and (5) deeper burial environments, which overlapped in time and space to form a platform-scale dolostone body composed of a complex mixture of dolomites. Seawater-seepage and reflux dolomitization occurred in near-surface environments penecontemporaneous with deposition of the Smackover and overlying Haynesville formations. Dolomitization by seawater seepage occurred within an oolite grainstone sill that separated an intraplatform salt basin from the open Late Jurassic sea. Seawater flowed landward through the sill in the response to evaporitic drawdown of brines in the isolated intraplatform basin during a lowstand of Late Jurassic sea level. Dolomite enriched in [sup 18]O located at the top of the Smackover suggests additional dolomitization by reflux of hypersaline brines. Reflux occurred as Buckner coastal sabkhas prograded over Smackover oolite grainstone shoreface deposits. Vugs lined with shallow-burial calcite and dolomite cements indicate flushing of the Smackover grainstone aquifer with fresh water. Freshwater intrusion probably occurred along the Smackover's updip limit and subcrop following sea level lowstands during the Late Jurassic and Early Cretaceous. Leaching in the proximal part of the freshwater aquifer produced excellent-quality limestone reservoir rocks in the updip Smackover. Dolomitization in the contemporaneous downdip mixed connate/freshwater zone formed dolostone reservoir rocks with depleted isotopic compositions consistent with a shallow-burial mixed-water origin.

  20. Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California

    SciTech Connect

    Lutz, S.J.; Moore, J.N.; Copp, J.F.

    1995-06-01

    Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the overlying cap that prevents a surface expression of the geothermal system appears to be related to a combination of lithologic, structural and mineralogic factors. The position of the outflow plume is partially controlled by the distribution of fractured crystalline intrusives within foliated metamorphic rocks. Intrusive-metamorphic lithologic contacts are characterized by sericite-pyrite alteration and correlate with fluid entries in the wells. The base of a thick intrusive unit in several wells coincides with the 250{degrees}C isotherm based on fluid inclusion data. A smectite clay zone developed in the overlying metamorphic rock acts as a cap to the productive zone and inhibits vertical movement of the geothermal fluids above the main upwelling zone. The upwelling zone lies within a epidote-quartz veined, coarse-grained granite at depth in the southern portion of the field. The mineralogy of the clays varies systematically with depth and temperature. The distribution of fine-grained clay minerals with depth indicates that the smectite cap thickens dramatically from the north to the south, and overlies a strongly sericitized zone in the upwelling portion of the reservoir. Wairakite-chlorite-epidote-calcite-quartz veins at the contact with the deep granite record deposition from the hottest geothermal fluids (342{degrees}C) in the Coso field.

  1. Diffusion and spatially resolved NMR in Berea and Venezuelan oil reservoir rocks.

    PubMed

    Murgich, J; Corti, M; Pavesi, L; Voltini, F

    1992-01-01

    Conventional and spatially resolved proton NMR and relaxation measurements are used in order to study the molecular motions and the equilibrium and nonequilibrium diffusion of oils in Berea sandstone and Venezuelan reservoir rocks. In the water-saturated Berea a single line with T*2 congruent to 150 microseconds is observed, while the relaxation recovery is multiexponential. In an oil reservoir rock (Ful 13) a single narrow line is present while a distribution of relaxation rates is evidenced from the recovery plots. On the contrary, in the Ful 7 sample (extracted at a deeper depth in a different zone) two NMR components are present, with 3.5 and 30 KHz linewidths, and the recovery plot exhibits biexponential law. No echo signal could be reconstructed in the oil reservoir rocks. These findings can be related to the effects in the micropores, where motions at very low frequency can occur in a thin layer. From a comparison of the diffusion constant in water-saturated Berea, D congruent to 5*10(-6) cm2/sec, with the ones in model systems, the average size of the pores is estimated around 40 A. The density profiles at the equilibrium show uniform distribution of oils or of water, and the relaxation rates appear independent from the selected slice. The nonequilibrium diffusion was studied as a function of time in a Berea cylinder with z axis along H0, starting from a thin layer of oil at the base, and detecting the spin density profiles d(z,t) with slice-selection techniques. Simultaneously, the values of T1's were measured locally, and the distribution of the relaxation rates was observed to be present in any slice.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1461080

  2. Geochemical Modeling of CO2, Brine, and Reservoir Rock Interactions in the Knox Group, Western Kentucky

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Parris, T. M.; Bowersox, J.; Harris, D. C.

    2011-12-01

    Regionally extensive dolostones and sandstones in the Cambrian-Ordovician Knox Group could provide commercial-scale CO2 storage capacity in the Illinois Basin of Kentucky, Illinois, and Indiana. This 1200 m thick interval of dolostone and less abundant quartz sandstone is a prospective sequestration target in the southern part of the Illinois Basin, where the Cambrian Mt. Simon Sandstone, a main sequestration target in the central part of the basin, is thin to absent, or deeply buried. The Kentucky Geological Survey (KGS) has successfully injected 690 tons of CO2 into the Knox Group through a 2477 m deep well (KGS #1 Blan well) at a test site in western Kentucky. To understand the long-term fate of CO2 stored in a saline reservoir in the Knox group, this study uses TOUGHREACT to model geochemical reactions among injected CO2, brine, and the reservoir rocks. Data collected in the KGS #1 Blan well, including rock cores, deep brine water samples, temperatures, and pressures, are the main data sources. A kinetic batch model is used first to simulate the impacts of dissolved CO2 on a mineral assemblage representing the Gunter Sandstone, a subgroup of the Knox Formation. The mineral assemblage consists of mainly quartz and dolomite with small amount of k-feldspar. The batch simulation results show precipitation of calcite, magnesite, illite, and quartz and dissolution of dolomite and k-feldspar. A 1-D radial reactive transport model is being constructed to simulate the injection test to evaluate the migration of the injected CO2, mineral dissolution and precipitation, and changes of porosity and permeability of formation rocks. The reactive model will be used to simulate hypothetical commercial scale injection scenarios to evaluate the long-term impacts of large scale CO2 injection on the Knox reservoir.

  3. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  4. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks.

    PubMed

    Rizo, Hanika; Boyet, Maud; Blichert-Toft, Janne; O'Neil, Jonathan; Rosing, Minik T; Paquette, Jean-Louis

    2012-11-01

    The first indisputable evidence for very early differentiation of the silicate Earth came from the extinct (146)Sm-(142)Nd chronometer. (142)Nd excesses measured in 3.7-billion-year (Gyr)-old rocks from Isua (southwest Greenland) relative to modern terrestrial samples imply their derivation from a depleted mantle formed in the Hadean eon (about 4,570-4,000 Gyr ago). As dictated by mass balance, the differentiation event responsible for the formation of the Isua early-depleted reservoir must also have formed a complementary enriched component. However, considerable efforts to find early-enriched mantle components in Isua have so far been unsuccessful. Here we show that the signature of the Hadean enriched reservoir, complementary to the depleted reservoir in Isua, is recorded in 3.4-Gyr-old mafic dykes intruding into the Early Archaean rocks. Five out of seven dykes carry (142)Nd deficits compared to the terrestrial Nd standard, with three samples yielding resolvable deficits down to -10.6 parts per million. The enriched component that we report here could have been a mantle reservoir that differentiated owing to the crystallization of a magma ocean, or could represent a mafic proto-crust that separated from the mantle more than 4.47 Gyr ago. Our results testify to the existence of an enriched component in the Hadean, and may suggest that the southwest Greenland mantle preserved early-formed heterogeneities until at least 3.4 Gyr ago. PMID:23128231

  5. Chip-off-the-old-rock: the study of reservoir-relevant geological processes with real-rock micromodels.

    PubMed

    Song, Wen; de Haas, Thomas W; Fadaei, Hossein; Sinton, David

    2014-11-21

    We present a real-rock micromodel approach whereby microfluidic channels are fabricated in a naturally occurring mineral substrate. The method is applied to quantify calcite dissolution which is relevant to oil/gas recovery, CO2 sequestration, and wastewater disposal in carbonate formations - ubiquitous worldwide. The key advantage of this method is the inclusion of both the relevant substrate chemistry (not possible with conventional microfluidics) and real-time pore-scale resolution (not possible with core samples). Here, microchannels are etched into a natural calcite crystal and sealed with a glass slide. The approach is applied to study acidified brine flow through a single channel and a two-dimensional micromodel. The single-channel case conforms roughly to a 1-D analytical description, with crystal orientation influencing the local dissolution rate an additional 25%. The two-dimensional experiments show highly flow-directed dissolution and associated positive feedback wherein acid preferentially invades high conductivity flow paths, resulting in higher dissolution rates ('wormholing'). These experiments demonstrate and validate the approach of microfabricating fluid structures within natural minerals for transport and geochemical studies. More broadly, real-rock microfluidics open the door to a vast array of lab-on-a-chip opportunities in geology, reservoir engineering, and earth sciences. PMID:25236399

  6. Fluid identification in tight sandstone reservoirs based on a new rock physics model

    NASA Astrophysics Data System (ADS)

    Sun, Jianmeng; Wei, Xiaohan; Chen, Xuelian

    2016-08-01

    To identify pore fluids, we establish a new rock physics model named the tight sandstone dual-porosity model based on the Voigt–Reuss–Hill model, approximation for the Xu–White model and Gassmann’s equation to predict elastic wave velocities. The modeling test shows that predicted sonic velocities derived from this rock physics model match well with measured ones from logging data. In this context, elastic moduli can be derived from the model. By numerical study and characteristic analyzation of different elastic properties, a qualitative fluid identification method based on Poisson’s ratio and the S–L dual-factor method based on synthetic moduli is proposed. Case studies of these two new methods show the applicability in distinguishing among different fluids and different layers in tight sandstone reservoirs.

  7. Integrating geology, rock physics, and seismology for reservoir-quality prediction

    NASA Astrophysics Data System (ADS)

    Florez-Nino, Juan-Mauricio

    This research focuses on the prediction of reservoir quality from seismic and well-log data, integrating concepts from geology and geophysics. The purpose has been to understand the geologic processes that control lateral variations in acoustic impedance and porosity. The work concentrates on the effect of rock texture and fractures on the elastic properties of sedimentary rocks. This work improves the understanding of the rock-physics depositional and diagenetic trends. The modified Hashin-Shtrikman lower bound can be used to distinguish between sorting and packing effects. It constitutes an upper bound for the sorting effect and a lower bound for the packing effect. Pressure solution is an alternative mechanism to reproduce the rock-physics diagenetic trend for high-porosity quartzose sands, using the Digby-Rutter model proposed here. The patterns that clastic sedimentary sequences present, in the rock-physics planes, agree with predictions from rock-physics models. Dispersed sand-clay mixtures predominate in fluvial deposits, whereas laminar mixtures predominate in mud-rich deep-water deposits. Scarcity of mixed lithofacies characterizes sand-rich deep-water deposits, whereas abundance of these lithofacies occurs in low-energy shallow marine deposits. The results demonstrate that the elastic properties of clastic mixed lithofacies strongly vary depending on the mixture's proportion and fabric, and rock-physics models can be used to predict these variations. The second part of this research deals with the use of outcrop information and seismic data to predict fracture distribution in the subsurface. This work documents a fundamental link between fracture hierarchies and sequence stratigraphy. Fracture spacing and dimensions of different fracture hierarchies are constrained by the thickness of the confining stratigraphic interval. It also documents examples of hierarchical shearing and progressive deformation, a concept that explains the evolution of faults and

  8. A geological reconnaissance across the Bitterroot Range and Clearwater Mountains in Montana and Idaho

    USGS Publications Warehouse

    Lindgren, Waldemar

    1904-01-01

    This report describes, in a preliminary way, a belt of country extending westward from the Bitterroot Valley, across the dividing range and the rugged mountains of the Clearwater system, down to the fertile plateaus which border the canyon of Snake River. It thus presents a reconnaissance section from western Montana across northern Idaho, and deals chiefly with areas about which, thus far, little geological information has been available.

  9. Neocomian source and reservoir rocks in the western Brooks Range and Arctic Slope, Alaska

    SciTech Connect

    Mull, C.G.; Reifenstuhl, R.R.; Harris, E.E.; Crowder, R.K.

    1995-04-01

    Detailed (1:63,360) mapping of the Tingmerkpuk sandstone and associated rocks in the Misheguk Mountain and DeLong Mountains guadrangles of the western Brooks Range thrust belt documents potential hydrocarbon source and reservoir rocks in the northern foothills of the western Delong Mountains and adjacent Colville basin of northwest Alaska. Neocomian (?) to Albian micaceous shale, litharenite, and graywacke that overlies the Tingmerkpuk represents the onset of deposition of orogenic sediments derived from the Brooks Range to the south, and the merging of northern and southern sediment sources in the Colville basin. Both the proximal and distal Tingmerkpuk facies contain clay shale interbeds and overlie the Upper Jurassic to Neocomian Kingak Shale. Preliminary geochemical data show that in the thrust belt, these shales are thermally overmature (Ro 1.4-1.6), but are good source rocks with total organic content (TOC) that ranges from 1.2 to 1.8 percent. Shale in the overlying Brookian rocks is also thermally overmature (Ro 1.2-1.5 percent), but contains up to 1.8 percent TOC from a dominantly terrigenous source, and has generated gas. In outcrops at Surprise Creek, in the foothills north of the thrust belt, the Kingak (1.9 percent TOC) and underlying Triassic Shublik Formation (4.6 percent TOC) are excellent oil source rocks with thermal maturity close to peak oil generation stage (Ro0.75-0.9 percent). These rocks have lower thermal maturity values than expected for their stratigraphic position within the deeper parts of the Colville basin and indicate anomalous burial and uplift history in parts of the basin. Preliminary apatite fission-track (AFTA) data from the thrust belt indicate a stage of rapid uplift and cooling at about 53.61 Ma.

  10. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    USGS Publications Warehouse

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  11. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks

    NASA Astrophysics Data System (ADS)

    Marketos, G.; Spiers, C. J.; Govers, R.

    2016-06-01

    Accurate forward modeling of surface subsidence above producing hydrocarbons reservoirs requires an understanding of the mechanisms determining how ground deformation and subsidence evolve. Here we focus entirely on rock salt, which overlies a large number of reservoirs worldwide, and specifically on the role of creep of rock salt caprocks in response to production-induced differential stresses. We start by discussing available rock salt creep flow laws. We then present the subsidence evolution above an axisymmetric finite element representation of a generic reservoir that extends over a few kilometers and explore the effects of rock salt flow law choice on the subsidence response. We find that if rock salt creep is linear, as appropriate for steady state flow by pressure solution, the subsidence response to any pressure reduction history contains two distinct components, one that leads to the subsidence bowl becoming narrower and deeper and one that leads to subsidence rebound and becomes dominant at later stages. This subsidence rebound becomes inhibited if rock salt deforms purely through steady state power law creep at low stresses. We also show that an approximate representation of transient creep leads to relatively small differences in subsidence predictions. Most importantly, the results confirm that rock salt flow must be modeled accurately if good subsidence predictions are required. However, in practice, large uncertainties exist in the creep behavior of rock salt, especially at low stresses. These are a consequence of the spatial variability of rock salt physical properties, which is practically impossible to constrain. A conclusion therefore is that modelers can only resort to calculating bounds for the subsidence evolution above producing rock salt-capped reservoirs.

  12. Permeability of intact and fractured rocks in Krafla geothermal reservoir, Iceland

    NASA Astrophysics Data System (ADS)

    Eggertsson, Gudjon; Lavallée, Yan; Markusson, Sigurdur

    2016-04-01

    The magmatic-hydrothermal system at Krafla Volcano, North-East Iceland, has been the source of an important geothermal fluids, exploited by Landsvirkjun National Power since 1977 to generate electricity (~60 MW). In the last decade, the energy was extracted from fluids of moderate temperature (200-300°C), but in order to satisfy the demand for sustainable, environmentally-safe energy, Landsvirkjun is aiming to source fluids in the super high-enthalpy hydrothermal system (400°-600°C and <220 bar). In relation to this, IDDP-1 was drilled in 2009. Drilling was terminated at a depth of 2100m when the drill string penetrated rhyolite magma. The rock around this rhyolite magma body shows great potential for production, as its temperatures are very high and it is located at shallow depth. Here, we present the results of mechanical and permeability tests carried out on the main lithologies forming the geothermal reservoir rock. During a field survey in fall 2015, and through information gathered from previous drilling exercises, five main rock types were identified and sampled to carry out this study: that is, basalts (10% to 60% porosity), hyaloclastites (35% to 45% porosity), obsidians (0,25% to 5% porosity), ignimbrites (13% to 18% porosity), and intrusive felsites and microgabbros (10% to 16% porosity). The only rock type not found in outcrops on the surface is the felsite and microgabbros which are thought to be directly above the rhyolite magma (~80m thick). The reason they can be found on the surface is that during the Mývatns-fires, an explosion creating the Víti crater and scattered these rocks around the area. For all these lithologies, the porosity was determined using helium pycnometry. On-going permeability measurements are made using a classic hydrostatic cell. To simulate the stress conditions extant in the hydrothermal field, we performed permeability measurements at a range of confining pressure (1 to 100 MPa), using a pore pressure differential of 0

  13. Temperature dependence of hydraulic properties of Upper Rhine Graben rocks at conditions modelling deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Hernández Castañeda, Mariela Carolina; Renner, Joerg; Mueller, Thomas

    2016-04-01

    The evolution of reservoir rocks' hydraulic properties critically affects the operation and long term sustainability of geothermal and petroleum reservoirs. Mechanical and chemical effects modify the permeability and the storage capacity of a reservoir, whose time characteristics have remained poorly constrained up to now. The permeability (k) and specific storage capacity (s) of the rocks constituting the geothermal reservoir are important parameters controlling the extent of the space-time characteristics of the pressure drawdown (or buildup at the reinjection site). To study the evolution of permeability and specific storage capacity as a function of pressure, temperature, and time, we performed oscillatory pore pressure tests. Experiments were performed using samples collected at surface outcrops representing the lithological sequence of the Upper Rhine Graben reservoir in southern Germany, i.e. sandstone and limestone, as well as Padang granite, representing a homogeneous, crystalline reservoir rock. Experiments were run at temperatures between 20 and 200 ° C, confining pressures between 20 and 110 MPa, and a fixed fluid pressure of 10 MPa, modeling characteristic conditions of deep geothermal reservoirs. Intact samples of granite, limestone and sandstone yield permeability and specific storage capacity of about 10‑18, 10‑15, and 10‑14 m2, and 10‑10, 10‑11 and 10‑8 Pa‑1, respectively, with modest dependence on temperature and effective pressure. In addition, longitudinally fractured samples were prepared by simple splitting or cutting and grinding. Grinding was performed with sandpaper of different ISO grits designations (P100, P600, and P1200) to systematically vary the surfaces' roughness. Fractures cause an increase in room-temperature permeability up to 3 and 2 orders of magnitudes for samples of granite and limestone, respectively. Their pressure dependence corresponds to a reduction in permeability modulus by about one order of magnitude

  14. Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Krevor, Samuel C. M.; Pini, Ronny; Zuo, Lin; Benson, Sally M.

    2012-02-01

    We report the results of an experimental investigation into the multiphase flow properties of CO2 and water in four distinct sandstone rocks: a Berea sandstone and three reservoir rocks from formations into which CO2 injection is either currently taking place or is planned. Drainage relative permeability and residual gas saturations were measured at 50°C and 9 MPa pore pressure using the steady state method in a horizontal core flooding apparatus with fluid distributions observed using x-ray computed tomography. Absolute permeability, capillary pressure curves, and petrological studies were performed on each sample. Relative permeability in the four samples is consistent with general characteristics of drainage in strongly water-wet rocks. Measurements in the Berea sample are also consistent with past measurements in Berea sandstones using both CO2/brine and oil/water fluid systems. Maximum observed saturations and permeabilities are limited by the capillary pressure that can be achieved in the experiment and do not represent endpoint values. It is likely that maximum saturations observed in other studies are limited in the same way and there is no indication that low endpoint relative permeabilities are a characteristic of the CO2/water system. Residual trapping in three of the rocks is consistent with trapping in strongly water-wet systems, and the results from the Berea sample are again consistent with observations in past studies. This confirms that residual trapping can play a major role in the immobilization of CO2 injected into the subsurface. In the Mt. Simon sandstone, a nonmonotonic relationship between initial and residual CO2 saturations is indicative of a rock that is mixed or intermediate wet, and further investigations should be performed to establish the wetting properties of illite-rich rocks. The combined results suggest that the petrophysical properties of the multiphase flow of CO2/water through siliciclastic rocks is for the most part typical

  15. Anisotropy of permeability of reservoir rocks over Miaoli area, NW Taiwan.

    NASA Astrophysics Data System (ADS)

    Bo-Siang, Xiong; Loung-Yie, Tsai

    2013-04-01

    The amount of the CO2 has risen since the Industrial Evolution. In order to reduce the amount of CO2 in atmosphere, CO2 sequestration is considered to be the most effective way. In recent years, research about subsurface storage of CO2 into geological formations has increased rapidly. Assessment of storage capability is needed before selecting a site for sequestration. Porosity and permeability are important assessment factors for CO2 sequestration in reservoir rocks. In order to improve the assessment, reservoir rock properties are important and need to be evaluated in advance. Porosity of sandstone is controlled by texture and degree of cementation, whereas permeability is controlled by pore-throat size, pore types and connectivity of pore throat. Sandstones of Miocene to Pleistocene in Miaoli area, NW Taiwan, were collected in this study. YOKO2 porosity/permeability detector is used to measure their permeability perpendicular and parallel to bedding planes under 3 to 60MPa confining pressure with Helium as media. Optical microscope and scanning electron microscope (SEM) were then used to observe the mineral composition, lithology, texture and pore type of sandstones, so as to explore the influence of rock properties on porosity and anisotropy of permeability, as well as the storage potential for CO2 sequestration in the future. The experimental results show that most of the horizontal permeability exceeds the vertical permeability and the anisotropy increases with increasing confining pressure. Mineral composition of sandstones studied were mainly quartz and lithic with little feldspar content. The pore types were mainly primary pores and micropores in this study. The correlation between quantity of macropores and permeability were higher than total porosity and permeability, mainly due to total porosity contains micropores which contribute little to permeability.

  16. Orientation of minimum principal stress in the hot dry rock geothermal reservoir at Fenton Hill, New Mexico

    SciTech Connect

    Burns, K.L.

    1991-01-01

    The stress field at the source of microearthquakes in the interior of the hot dry rock geothermal reservoir at Fenton Hill appears to be different to the far field stress outside the reservoir. The stress field seems to be re-oriented prior to failure, during the course of processes that inflate the reservoir. The state of stress, both inside and outside, the hot dry rock (HDR) geothermal reservoir at Fenton Hill, is important in predicting the course of stress-dependent processes, and in transferring HDR technology developed at Fenton Hill, to sites, such as at Clearlake in California, where the stress field is expected to be substantially different. The state of stress at Fenton Hill is not well known because of limitations in stress measuring technology. It is necessary to use a variety of indirect methods and seek an estimate of the stress. 5 refs.

  17. Geologic controls on reservoir properties in gas-bearing middle and Upper Devonian rocks, southern Appalachian basin

    SciTech Connect

    Vessell, R.K.; Davies, D.K.

    1988-08-01

    Porosities and permeabilities have been measured for a wide range of nonfractured Devonian lithologies in 23 wells from southeastern Ohio, eastern Kentucky, West Virginia, and Virginia. These reservoir properties can be related directly to the geometry of the pore system. Pore geometry, in turn, is a function of rock lithology and mineralogy. Despite the lithologic complexity of the Devonian sequence, reservoir quality can be related to a small number of differing pore geometries.

  18. Research on anisotropy of shale oil reservoir based on rock physics model

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Qi; Liu, Cai; Liu, Xi-Wu; Dong, Ning; Liu, Yu-Wei

    2016-06-01

    Rock physics modeling is implemented for shales in the Luojia area of the Zhanhua topographic depression. In the rock physics model, the clay lamination parameter is introduced into the Backus averaging theory for the description of anisotropy related to the preferred alignment of clay particles, and the Chapman multi-scale fracture theory is used to calculate anisotropy relating to the fracture system. In accordance with geological features of shales in the study area, horizontal fractures are regarded as the dominant factor in the prediction of fracture density and anisotropy parameters for the inversion scheme. Results indicate that the horizontal fracture density obtained has good agreement with horizontal permeability measured from cores, and thus confirms the applicability of the proposed rock physics model and inversion method. Fracture density can thus be regarded as an indicator of reservoir permeability. In addition, the anisotropy parameter of the P-wave is higher than that of the S-wave due to the presence of horizontal fractures. Fracture density has an obvious positive correlation with P-wave anisotropy, and the clay content shows a positive correlation with S-wave anisotropy, which fully shows that fracture density has a negative correlation with clay and quartz contents and a positive relation with carbonate contents.

  19. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect

    Weislogel, Amy

    2014-01-31

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  20. Geochemical character and origin of oils in Ordovician reservoir rock, Illinois and Indiana, USA

    SciTech Connect

    Guthrie, J.M.; Pratt, L.M.

    1995-11-01

    Twenty-three oils produced from reservoirs within the Ordovician Galena Group (Trenton equivalent) and one oil from the Mississippian Ste. Genevieve Limestone in the Illinois and Indiana portions of the Illinois basin are characterized. Two end-member oil groups (1) and (2) and one intermediate group (1A) are identified using conventional carbon isotopic analysis of whole and fractionated oils, gas chromatography (GC) of saturated hydrocarbon fractions, isotope-ratio-monitoring gas chromatography/mass spectrometry (irm-GC/MS) of n-alkanes ranging from C{sub 15} to C{sub 25}, and gas chromatography/mass spectrometry (GC/MS) of the aromatic hydrocarbon fractions. Group 1 is characterized by high odd-carbon predominance in mid-chain n-alkanes (C{sub 15}-C{sub 19}), low abundance Of C{sub 20+}, n-alkanes, and an absence of pristane and phytane. Group IA is characterized by slightly lower odd-carbon predominance of mid-chain n-alkanes, greater abundance of C{sub 20+} n-alkanes compared to group 1, and no pristane and phytane. Conventional correlations of oil to source rock based on carbon isotopic-type curves and hopane (m/z 191) and sterane (m/z 217) distributions are of limited use in distinguishing Ordovician-reservoired oil groups and determining their origin. Oil to source rock correlations using the distribution and carbon isotopic composition of n-alkanes and the m/z 133 chromatograms of n-alkylarenes show that groups 1 and 1A originated from strata of the Upper Ordovician Galena Group. Group 2 either originated solely from the Upper Ordovician Maquoketa Group or from a mixture of oils generated from the Maquoketa Group and the Galena Group. The Mississippian-reservoired oil most likely originated from the Devonian New Albany Group. The use of GC, irm-GC/MS, and GC/MS illustrates the value of integrated molecular and isotopic approaches for correlating oil groups with source rocks.

  1. Geochemical changes in pore water and reservoir rock due to CO2 injection

    NASA Astrophysics Data System (ADS)

    Huq, Farhana; Blum, Philipp; Nowak, Marcus; Haderlein, Stefan; Grathwohl, Peter

    2010-05-01

    In response to current global warming, carbon capture and storage has been identified as one of the promising option. Thus, it can be an interim solution that is indeed a bridge to the future renewable energy without altering the present mode of energy consumption. Although large natural CO2 sinks are terrestrial eco-system and oceans, geological media or more specifically large sedimentary basins are now the most feasible options for carbon sequestration. At the study site, a former gas field (Altmark), which is located in the South of the Northeast German Basin, CO2 is planned to be injected into the reservoir with high pressure (> 50 bar) and temperature (125°C). Afterwards, CO2 dissolves into the pore water leading to acidification and follow up reactions such as dissolution/precipitation, which potentially change the porosity-permeability of the reservoir and the wetting properties of the mineral surfaces. The Altmark site was chosen due to its large storage capacity, well explored reservoir, high seal integrity due to the presence of massive salt layer (cap rock) and existing infrastructure required for enhanced gas recovery. The main objective of the current study is to quantify the CO2 trapping in aqueous solution under in situ reservoir condition. Therefore, it is necessary to investigate the geochemical changes in fluid composition due to dissolution of minerals under controlled laboratory conditions and to quantify the concentrations of complexing agents that might influence the concentration of total dissolved CO2 in aqueous solution over time. To observe these geochemical and hydraulic changes due to the injection of CO2, a closed system (batch system) technique is developed to study the influence of salinity, temperature, pressure and kinetics on mineral reactions. In addition to the closed system, a flow through (open) autoclave system was constructed. Water saturated sedimentary rock cores (e.g. from the Altmark site; 5cm long, 3cm diameter) are

  2. Physical property characterization of a damage zone in granitic rock - Implications for geothermal reservoir properties

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Madonna, Claudio; Amann, Florian; Gischig, Valentin; Burg, Jean-Pierre

    2016-04-01

    Geothermal energy offers a viable alternative to mitigate greenhouse gas emitting energy production. A tradeoff between less expensive drilling costs and increased permeability at shallow depths versus increased heat production at deeper depths stipulates the economic energy potential of a given reservoir. From a geological perspective, successful retrieval of geothermal energy from the subsurface requires sufficient knowledge of the structural and stratigraphic relationship of the target formations, which govern the thermal conditions, physical properties, and fluid flow properties of reservoir rocks. In Switzerland, deep basement rocks (~5 km) with fluid conducting damage zones and enhanced fractured systems stimulated by hydraulic shearing are seen as a potential geothermal reservoir system. Damage zones, both natural and induced, provide permeability enhancement that is especially important for creating fluid conductivity where the matrix permeability is low. This study concentrates on characterizing the elastic and transport properties entering into a natural damage zone penetrated by a borehole at the Grimsel underground research laboratory. The borehole drilled from a cavern at 480 m below ground surface penetrates approximately 20 m of mostly intact Grimsel granodiorite before entering the first phyllosilicate-rich shear zone (~0.2 m thick). The borehole intersects a second shear zone at approximately 23.8m. Between the two shear zones the Grimsel granodiorite is heavily fractured. The minimum principle stress magnitude from in-situ measurements decreases along the borehole into the first shear zone. Two mutually perpendicular core samples of Grimsel granodiorite were taken every 0.1 m from 19.5 to 20.1 m to characterize the physical properties and anisotropy changes as a gradient away from the damage zone. Measurements of ultrasonic compressional (Vp) and shear (Vs) velocities at 1 MHz frequency are conducted at room temperature and hydrostatic pressures

  3. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect

    Claypool, G.E.; Mancini, E.A.

    1989-07-01

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  4. Internal structure of fault zones in geothermal reservoirs: Examples from palaeogeothermal fields and potential host rocks

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea; Meier, Silke; Bauer, Johanna F.; Afşar, Filiz

    2014-05-01

    Fault zones commonly have great effects on fluid transport in geothermal reservoirs. During fault slip all the pores and small fractures that meet with the slip plane become interconnected so that the inner part of the fault, the fault core, consisting of breccia or gouge, may suddenly develop a very high permeability. This is evidenced, for example by networks of mineral veins in deeply eroded fault zones in palaeogeothermal fields. Inactive faults, however, may have low permeabilities and even act as flow barriers. In natural and man-made geothermal reservoirs, the orientation of fault zones in relation to the current stress field and their internal structure needs be known as accurately as possible. One reason is that the activity of the fault zone depends on its angle to the principal stress directions. Another reason is that the outer part of a fault zone, the damage zone, comprises numerous fractures of various sizes. Here we present field examples of faults, and associated joints and mineral veins, in palaeogeothermal fields, and potential host rocks for man-made geothermal reservoirs, respectively. We studied several localities of different stratigraphies, lithologies and tectonic settings: (1) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); (2) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone, limestone and granite) in the Upper Rhine Graben; and (3) 74 fault zones in two coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (1) and (2) are outcrop analogues of geothermal reservoir horizons, (3) represent palaeogeothermal fields with mineral veins. The field studies in the Northwest German Basin (1) show pronounced differences between normal-fault zones in carbonate and clastic rocks. In carbonate rocks clear damage zones occur that are

  5. Rock failure during massive hydraulic stimulation of the Baca location geothermal reservoir

    SciTech Connect

    Pearson, C.; Keppler, H.; Albright, J.; Potter, R.

    1982-01-01

    The analyses of microearthquake signals occurring during hydraulic stimulation provide an estimate of the size and location of the fractures thus produced. Studies of microearthquakes occurring during two large (> 10/sup 3/m/sup 3/) hydraulic stimulations of the hydrothermal reservoir at the Baca Location in the Jemez Mountains of northeastern New Mexico are reported. Both stimulations consisted of water, viscosity enhancer, and proppant. The microearthquake event rate was low but variable throughout most of the treatment. Rock failure as indicated by the distribution of the microearthquakes' foci appeared restricted to a nearly vertical NE striking zone. This orientation is in good agreement with the local earth stresses inferred from geological considerations. The second stimulation which occurred in a neighboring well was similar to the first except for a larger injected volume. The lateral extent of the detected fracture system was 600 m in both stimulations.

  6. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  7. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  8. Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology

    NASA Astrophysics Data System (ADS)

    Regnet, J. B.; Robion, P.; David, C.; Fortin, J.; Brigaud, B.; Yven, B.

    2015-02-01

    This integrated study provides significant insight into parameters controlling the acoustic and reservoir properties of microporous limestones, improving the knowledge of the relationships among petrophysic and microstructural content. Petrophysical properties measured from laboratory and logging tools (porosity, permeability, electrical conductivity, and acoustic properties) have been coupled with thin section and scanning electron microscope observations on the EST205 borehole from the Oxfordian limestone aquifer of the eastern part of the Paris Basin. A major achievement is the establishment of the link between micrite microtexture types (particle morphology and nature of intercrystal contacts) and the physical response, introducing a new effective and interesting rock-typing approach for microporous reservoirs. Fluid-flow properties are enhanced by the progressive augmentation of intercrystalline microporosity and associated pore throat diameter, as the coalescence of micrite particles decreases. Concerning acoustic properties, the slow increase of P wave velocity can be seen as a reflection of crystal size and growing contact cementation leading to a more cohesive and stiffer micrite microtexture. By applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates. This dispersion analysis highlights the presence of microcracks in the rocks, and their overall effect on acoustic and transport properties. The presence of microcracks is also confirmed with observations and permeability measurements under high confining pressure. Finally, a possible origin of high porous levels in neritic limestones is a mineralogical transformation of carbonates through freshwater-related diagenesis during subaerial exposure time. Finally, by applying poroelasticity theory on our samples, we show that velocity dispersion can be a very useful tool for data discrimination in carbonates.

  9. Thermal and Hydraulic Coupled Modeling of Hot Fractured Rock Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xing, H.; Wyborn, D.; Yin, C.; Mora, P.

    2006-12-01

    Geothermal energy manifests itself in spectacular fashion in many places on the earth's surface and has been widely recognized as a renewable green energy in the world. Several countries have started the related projects for developing the Hot Dry Rock (HDR) geothermal system which has been renamed as Hot Fractured Rock (HFR) in Australia. Geodynamics Limited is developing a world-class, high-grade geothermal energy resource beneath the Cooper Basin in NE South Australia, where the measured surface heat flow is over 100mW/m2. It is thought to originate from the Big Lake Suite granites that are enriched in the heat-producing elements. The presence of highly radiogenic intrusive within 3-4 km of the surface generates extraordinarily high geothermal gradient regimes (>60ºC km-1, and the region is recognized as one of the hottest spots in the world outside volcanic centres. To help bringing the vision of HFR geothermal energy to reality, a 3D finite element based computational model and software for simulating such a multi-scale highly coupled thermo- hydro-mechanical geo-mechanical system on the parallel supercomputer are being developed based on our long tern and on-going related outcomes. This presentation will focus on the related outcomes on the thermo- hydro coupling module aiming to investigate thermal and fluid flow coupled process and their impact on the Cooper Basin HFR geothermal reservoir. The microseismicity monitoring data measured during the hydraulic stimulation process was used to estimate the related key input parameters for the further numerical investigation of the coupled thermal and fluid flow behaviours of Cooper Basin HFR geothermal reservoir. The above preliminary simulation results demonstrate the stability and usefulness of the algorithm and software.

  10. Permeability, electrical impedance, and acoustic velocities on reservoir rocks from the Geysers geothermal field

    SciTech Connect

    Boitnott, G.N.; Boyd, P.J.

    1996-01-24

    Previous measurements of acoustic velocities on NEGU- 17 cores indicate that saturation effects are significant enough to cause Vp/Vs anomalies observed in the field. In this study we report on the results of new measurements on core recently recovered from SB-15-D along with some additional measurements on the NEGU-17 cores. The measurements indicate correlations between mechanical, transport, and water storage properties of the matrix which may prove useful for reservoir assessment and management. The SB-15-D material is found to be similar to the NEGU-17 material in terms of acoustic velocities, being characterized by a notably weak pressure dependence on the velocities and a modest Vp/Vs signature of saturation. The effect of saturation on Vp/Vs appears to result in part from a chemo-mechanical weakening of the shear modulus due to the presence of water. Electrical properties of SB-15-D material are qualitatively similar to those of the NEGU-17 cores, although resistivities of SB-15-D cores are notably lower and dielectric permittivities higher than in their NEGU- 17 counterparts. While some limited correlations of measured properties with depth are noted, no clear change in character is observed within SB-15-D cores which can be associated with the proposed cap-rock/reservoir boundary.

  11. Laboratory measurements of reservoir rock from the Geysers geothermal field, California

    USGS Publications Warehouse

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.

    1982-01-01

    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  12. Fluid-rock interactions in unconventional reservoirs during hydraulic fracturing: a geochemical investigation from the Powder River Basin, WY

    NASA Astrophysics Data System (ADS)

    Herz-Thyhsen, R.; Kaszuba, J. P.

    2014-12-01

    Widespread use of hydraulic fracturing to stimulate resource production from unconventional reservoirs necessitates the development of a fundamental understanding for this process. Our research focuses on a synthesis of three sets of data to better understand geochemical and mineralogic aspects of the process of hydraulic fracturing, including laboratory experiments, field data, and geochemical modeling. Experiments examine fluid-rock interaction using rock samples from the Niobrara and Frontier Formations, two unconventional reservoirs within the Powder River Basin of NE Wyoming. Experiments react reservoir rocks with a representative hydraulic fracturing fluid for 28 days at 115°C and 350 bars. Fresh water and common chemicals, including HCl and petroleum distillates, used in hydraulic fracturing comprise the experimental fluid. Mineral reaction to the acidic fluid (pH ~2.35) causes immediate buffering, bringing fluid pH to near-neutral conditions after ~6 hours. Al initially spikes in the first 6 hours by ~10X, but returns to lower concentrations within 12 hours. Fe, Ba, Co, Mn, Sb, and Cr follow similar trends. Contemporaneously, Sr, Mo, Li, W, V, and Rb increase dramatically and remain at elevated levels. Changes in trace element concentrations correlate with clay alteration, calcite dissolution, and feldspar dissolution observed within reacted rock samples. Fluid samples are compared to produced-water chemistry from active wells in the field, enhancing our understanding of geochemical reactions occurring at depth. Lastly, produced fluid chemistry from both field samples and experiments are tethered together using preliminary geochemical models. These models predict calcite and feldspar reaction as well as new clay formation. This research ties together a limited population of produced water data with reservoir mineralogy to enhance fundamental understanding of fluid-rock interactions in unconventional reservoirs.

  13. Effect of Shear Slip on Fault Permeability in Shale Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Reece, J. S.; Zoback, M. D.; Kohli, A. H.

    2014-12-01

    Understanding flow along faults and fractures in shales is important for better understanding of hydraulic stimulation in unconventional reservoirs. For example, the re-activation of faults and fractures during hydraulic stimulation appears to be an important process contributing to reservoir permeability. In this study, we examine the effect of shear slip on fault permeability in shale reservoir rocks. We perform shear experiments in a triaxial apparatus on two types of samples: 1) a sample sawcut at 30° to the cylindrical axis and 2) a naturally broken sample. Both samples are from 3481 m (11422 ft) depth within the Haynesville reservoir containing 22 wt.% clay. First, we hydrostatically load the samples to a confining pressure of 15 MPa (2176 psi), followed by triaxial loading in which a constant axial displacement rate of 1 μm/s is applied for increments in axial displacement of initially 0.25 mm and later 1 mm. After each shear increment, we perform measurements of fault permeability at a constant mean pore pressure of 2.1 MPa (300 psi) using the steady state Darcy flow method. Boreholes drilled parallel to the cylindrical axis on either side of the shale sample allow pore fluid to access the fault plane. The coefficient of friction increases with shearing from 0.53 to 0.61 for the sawcut sample and from about 0.60 to 0.74 for the naturally broken sample. The sawcut sample indicates stable sliding behavior whereas small stick-slip events occur in the naturally broken sample. Upon shearing, fault permeability decreases by about 2.5 and 1.5 orders of magnitude within the first mm of shear displacement for the sawcut and naturally broken sample, respectively. Fault permeability of both samples continues to slowly decrease up to a maximum axial displacement of 4 mm and 2 mm, respectively. Laser scanning images before and after shearing show the formation of small striations in the direction of slip for the sawcut sample and the break-off of several grain

  14. The Reservoir Rock GeoBioCell: A Microfluidic Flowcell Developed for Controlled Experiments on Subsurface Microbe-Water-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Singh, R.; Sanford, R. A.; Werth, C. J.; Fouke, B. W.

    2014-12-01

    A better understanding of subsurface microbe-water-rock interaction in the Earth's outer crust is of critical importance because it strongly influences the basic petro-physical properties of sedimentary rock. Over the past decade, miniaturized microfluidic flowcell prototypes of subsurface reservoir systems, usually called micromodels and named GeoBioCells herein, have been used to replace traditional column experiments. However, the inert pore structure in these micromodels does not contain the biogeochemical grain surface heterogeneities in actual subsurface rock reservoirs. In this study, we developed a next-generation microfluidic experimental test bed, herein called the Reservoir Rock GeoBioCell (RRGBC), in which an actual piece of subsurface reservoir rock is mounted within a microfluidic flowcell for experimentation. Siliciclastic sandstones core samples of an oil-bearing subsurface reservoir were obtained for construction of the RRGBC. Custom petrographic rock sections (0.5 mm thick) were prepared from these core samples impregnated with Super Glue adhesive. Acetone was then used to remove the Super Glue and physically separate thin sections from the glass slides. A PDMS mold (~3-4 mm thick) was prepared to hold the thin section between a microfluidic inlet and outlet channels. The thin section in PDMS mold was covered with a PDMS-coated glass coverslip to help provide a pressure seal for core thin section (Figure 1, left-top). Multi-photon laser confocal microscopy of the RRGBC showed pore connectivity to an imaging depth of ~400 μm within the thin section. The geochemical reactive sites were characterized using Raman Backscattering Microscopy, confirming the presence of reactive quartz. A fluorescent tracer test was conducted to identify micro-flow paths and solute breakthrough within the thin section (Figure 1). A multiphase flow experiment was performed to trap residual light oil in the thin section. A mixed-culture of oil-degrading biofilm was

  15. Dynamic reservoir characterization using 4D multicomponent seismic data and rock physics modeling at Delhi Field, Louisiana

    NASA Astrophysics Data System (ADS)

    Carvajal Meneses, Carla C.

    Pore pressure and CO2 saturation changes are important to detect and quantify for maximizing oil recovery in Delhi Field. Delhi Field is a enhanced oil recovery (EOR) project with active monitoring by 4D multicomponent seismic technologies. Dynamic rock physics modeling integrates the rich dataset of core, well logs, petrographic thin sections and facies providing a link between reservoir and elastic properties. The dynamic modeling in this high porosity sandstone reservoir shows that P-wave velocity is more sensitive to CO2 saturation while S-wave velocity is more sensitive to pore pressure changes. I use PP and PS seismic data to jointly invert for Vp=Vs ratio and acoustic impedance. This technique has the advantage of adding more information to the non-unique inversion problem. Combining the inversion results from the monitor surveys of June 2010 and August 2011 provides acoustic impedance and Vp=Vs percentage differences. The time-lapse inverted response enables dynamic characterization of the reservoir by fitting the predicted dynamic models (calibrated at the wells). Dynamic reservoir characterization adds value in this stratigraphic complex reservoir. The results indicate that reservoir heterogeneities and pore pressure gradients control the CO2 flow within the Paluxy reservoir. Injectors 148-2 and 140-1 showed CO2 is moving downdip following a distributary channel induced by differential pressure from an updip injector or a barrier caused by a heterogeneity in the reservoir. CO2 anomalies located above the Paluxy injector 148-2 indicates that CO2 is moving from the Paluxy up into the Tuscaloosa Formation. My work demonstrates that reservoir monitoring is necessary for reservoir management at Delhi Field.

  16. Carbonate petroleum reservoirs

    SciTech Connect

    Roehl, P.O.; Choquette, P.W.

    1985-01-01

    This book presents papers on the geology of petroleum deposits. Topics considered include diagenesis, porosity, dolomite reservoirs, deposition, reservoir rock, reefs, morphology, fracture-controlled production, Cenozoic reservoirs, Mesozoic reservoirs, and Paleozoic reservoirs.

  17. Hot-dry-rock geothermal-reservoir fracturing initial field operations - 1982

    SciTech Connect

    Rowley, J.C.; Pettitt, R.A.; Matsunaga, I.; Dreesen, D.S.; Nicholson, R.W.; Sinclair, A.R.

    1983-01-01

    Initial fracturing operations were conducted during 1982 to create a hot dry rock (HDR) geothermal reservoir at the Los Alamos Fenton Hill site. A preliminary work-over/cleaning operation in November to December 1981 had cleared the injection well, EE-2, and a detailed, comprehensive plan was prepared to accomplish the objectives of hydraulically connecting the injection and production wells. In January 1982, open-hole reservoir sections of both the production and injection wells were pressurized below the 9-5/8 in. casing. The injection well, EE-2, did not take fluid at 2200 psi, but the production well, EE-3, had a lost circulation zone and took water over a 240 ft zone immediately below the production casing. Subsequent field operations from May through December 14, 1982 involved ten major hydraulic injection and/or equipment tests. These ranged from 14,180 ft (4322 m) deep open-hole packer tests to installation of a cemented-in liner/PBR system. Injections of up to 1.3 x 10 gals. were performed in the injection well. Both wells were fractured in zones just below the production casings. Although several large volume injections were accomplished, hydraulic communication between wells was not achieved. Severe hardware problems were encountered due to temperature limitations, the high fracture gradient (breakdown and injection pressures), and the presence of CO/sub 2/ and H/sub 2/S during fracture back-flow and well venting. On-line and post-test analyses of seismic monitoring confirmed that fractures were created in each well that converged on, but did not intersect, the neighboring well.

  18. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    NASA Astrophysics Data System (ADS)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability

  19. Hydrology of the Valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada-California

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1967-01-01

    This is the second appraisal of the water supply of Pahrump Valley, made 15 years after the first cooperative study. In the first report the average recharge was estimated to be 23,000 acre-feet per year, only 1,000 acre-feet more than the estimate made in this report. All this recharge was considered to be available for development. Because of the difficulty in salvaging the subsurface outflow from the deep carbonate-rock reservoir, this report concludes that the perennial yield may be only 25,000 acre-feet. In 1875, Bennetts and Manse Springs reportedly discharged a total of nearly 10,000 acre-feet of water from the valley-fill reservoir. After the construction of several flowing wells in 1910, the spring discharge began to decline. In the mid-1940's many irrigation wells were drilled, and large-capacity pumps were installed. During the 4-year period of this study (1959-62), the net pumping draft averaged about 25,000 acre-feet per year, or about twice the estimated yield. In 1962 Bennetts Spring was dry, and the discharge from Marse Spring was only 1,400 acre-feet. During the period February 1959-February 1962, pumping caused an estimated storage depletion of 45,000 acre-feet, or 15,000 acre-feet per year. If the overdraft is maintained, depletion of stored water will continue and pumping costs will increase. Water levels in the vicinity of the Pahrump, Manse, and Fowler Ranches declined more than ]0 feet in response to the pumping during this period, and they can be expected to continue to decline at ,the projected rate of more than 3 feet per year. The chemical quality of the pumped water has been satisfactory for irrigation and domestic use. Recycling of water pumped or irrigation, however, could result in deterioration of the water quality with time.

  20. Experimental investigation of reservoir rocks by spontaneous imbibition and mercury intrusion porosimetry

    NASA Astrophysics Data System (ADS)

    Gao, Z.; Hu, Q.

    2013-12-01

    Spontaneous imbibition (SI), one of the important processes affecting hydrocarbon recovery from fractured reservoirs, is a capillary-force controlled process. The properties of displacing and displaced fluids, pore structure of porous media and their interactions are the main factors affecting the SI process. Many studies have been conducted to investigate these factors and among them scaling of SI is a widely used approach to predicting the oil/gas production behavior in the field based on laboratory imbibition tests. We have conducted SI experiments on different reservoir rocks, including Barnett shale (from different depths), dolomite and Indian sandstone. Because of the layered characteristic of Barnett shale, we also conducted imbibition experiments, with upward imbibition direction parallel or transverse to the shale bedding plane, to investigate its directional dependency. Two imbibing fluids, n-decane and water, were used during SI experiments to displace air, which is always treated as the non-wetting phase in the SI process. Mercury intrusion porosimetry (MIP) is a powerful tool of characterizing the pore-throat size distribution of porous media, and many important parameters (e.g. permeability and tortuosity) could be derived from MIP data. The median pore-throat diameter (D50), defined as the pore-throat diameter corresponding to 50% mercury saturation, is an important pore-structural parameter and has been used to predict permeability and tortuosity. Our results showed that Barnett shale (from different depths), dolomite and Indiana sandstone exhibited different SI behaviors. Wettability information was obtained by comparing scaled imbibition curves. Values of D50 obtained from MIP were also used to improve the existing scaling method. Low pore connectivity of Barnett shale was confirmed by both SI and MIP results.

  1. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    SciTech Connect

    Stephen C. Ruppel

    2005-02-01

    Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

  2. Evaluation of Microstructural Parameters of Reservoir Rocks of the Guarani Aquifer by Analysis of Images Obtained by X- Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Fernandes, J. S.; Lima, F. A.; Vieira, S. F.; Reis, P. J.; Appoloni, C. R.

    2015-07-01

    Microstructural parameters evaluation of porous materials, such as, rocks reservoir (water, petroleum, gas...), it is of great importance for several knowledge areas. In this context, the X-ray microtomography (μ-CT) has been showing a technical one quite useful for the analysis of such rocks (sandstone, limestone and carbonate), object of great interest of the petroleum and water industries, because it facilitates the characterization of important parameters, among them, porosity, permeability, grains or pore size distribution. The X-ray microtomography is a non-destructive method, that besides already facilitating the reuse of the samples analyzed, it also supplies images 2-D and 3-D of the sample. In this work samples of reservoir rock of the Guarani aquifer will be analyzed, given by the company of perforation of wells artesian Blue Water, in the municipal district of Videira, Santa Catarina, Brazil. The acquisition of the microtomographys data of the reservoir rocks was accomplished in a Skyscan 1172 μ-CT scanner, installed in Applied Nuclear Physics Laboratory (LFNA) in the State University of Londrina (UEL), Paraná, Brazil. In this context, this work presents the microstructural characterization of reservoir rock sample of the Guarani aquifer, analyzed for two space resolutions, 2.8 μm and 4.8 μm, where determined average porosity was 28.5% and 21.9%, respectively. Besides, we also determined the pore size distribution for both resolutions. Two 3-D images were generated of this sample, one for each space resolution, in which it is possible to visualize the internal structure of the same ones.

  3. Hydraulic characterization of aquifers, reservoir rocks, and soils: A history of ideas

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    1998-01-01

    Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks, and soil systems is a fundamental task in many branches of Earth sciences and engineering. The transient diffusion equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in fluid mechanics, heat conduction, and potential theory, the civil engineers of the 19th century, such as Darcy, Dupuit, and Forchheimer, solved many useful problems of steady state seepage of water. Interest soon shifted towards the understanding of the transient flow process. The turn of the century saw Buckingham establish the role of capillary potential in governing moisture movement in partially water-saturated soils. The 1920s saw remarkable developments in several branches of the Earth sciences; Terzaghi's analysis of deformation of watersaturated earth materials, the invention of the tensiometer by Willard Gardner, Meinzer's work on the compressibility of elastic aquifers, and the study of the mechanics of oil and gas reservoirs by Muskat and others. In the 1930s these led to a systematic analysis of pressure transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. The response of a subsurface flow system to a hydraulic perturbation is governed by its geometric attributes as well as its material properties. In inverting field data to estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is known a priori. This approach has generally served us well in matters relating to resource development primarily concerned with forecasting fluid pressure declines. Over the past two decades, Earth scientists have become increasingly concerned with environmental contamination problems. The resolution of these problems

  4. The effect of long-term fluid-rock interactions on the mechanical properties of reservoir rock - a case study of the Werkendam natural CO2 analogue field

    NASA Astrophysics Data System (ADS)

    Hangx, Suzanne; Bertier, Pieter; Bakker, Elisenda; Nover, Georg; Busch, Andreas

    2015-04-01

    Geological storage of CO2 is one of the most promising technologies to rapidly reduce anthropogenic emissions of carbon dioxide. During long-term geological storage of CO2, fluid-rock interactions, induced by the formation of carbonic acid, may affect the mineralogical composition of the reservoir rock. Commonly expected reactions include the dissolution of carbonate and/or sulphate cements, as well as the reaction of primary minerals (feldspars, clays, micas) to form new, secondary phases. In order to ensure storage integrity, it is important to understand the effect of such fluid-rock interactions on the mechanical behaviour of a CO2 storage complex. However, most of these reactions are very slow, which limits the ability to study coupled chemical-mechanical processes in the lab. A possible way to circumvent long reaction times is to investigate natural CO2 analogue fields, which experienced CO2-exposure for thousands of years. In this study, we looked at the Dutch Werkendam natural CO2 field and its unreacted counterpart (Röt Fringe Sandstone, Werkendam, the Netherlands). We focussed on CO2-induced mineralogical and porosity-permeability changes, and their effect on mechanical behaviour of intact rock. Overall, CO2-exposure did not lead to drastic mineralogical changes, though markedly different porosity-permeability relationships were found for the unreacted and exposed material. The limited extent of reaction was in part the result of bitumen coatings protecting specific mineral phases from reaction. In local, mm-sized zones displaying significant anhydrite dissolution, enhanced porosity was observed. For most of the reservoir the long-term mechanical behaviour after CO2-exposure could be described by the behaviour of the unreacted sandstone, while these more 'porous' zones were significantly weaker. Simple stress path calculations predict that reservoir failure due to depletion and injection is unlikely.

  5. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    SciTech Connect

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that fracturing

  6. Modelling kinetically controlled water-rock interactions during geothermal stimulation in typical poly-mineralic reservoir rocks from the Upper Rhine Graben, Germany

    NASA Astrophysics Data System (ADS)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2015-04-01

    A quantitative understanding of geochemically controlled reaction rates and their operating reaction mechanisms is crucial for the efficient exploration and exploitation of geothermal reservoirs. For example, the volume changes associated with dissolution and precipitation reactions potentially may affect the hydraulic properties of a reservoir during the production phase. The reactivity depends on a complex interaction of various parameters such as temperature, fluid flux and chemistry, mineral composition, reactive surface areas, etc. Most shallow geothermal reservoirs are constituted by highly permeable sedimentary rocks saturated by a fluid phase. The abundance of impermeable crystalline basement rocks (magmatic and metamorphic) increases with depth. Typically, hydraulic stimulation is necessary to create fluid pathways, i.e. the permeability of the rock is increased by the generation of new fractures and the reactivation of old fractures (Enhanced Geothermal Systems, EGS). Fresh, high energy surfaces are created by this treatment, constituting potential sites for intensive water-rock interactions. An increasing number of reactive transport models using equilibrium thermodynamic data shed considerable light on water-rock interactions. However, most models simplify the involved rocks to mono-mineralic phases and/or use rate data based on powder experiments with unnatural high reactive surface areas. In this study we present a new numerical model approach to quantify the geochemical evolution and its mechanical feedback during geothermal stimulation of typical poly-mineralic reservoir rocks at elevated temperatures (150-200 °C). Rock samples representative for geothermal energy producing sites (limestone, sandstone, volcanic tuff and granite) were collected at the Upper Rhine Graben (URG) in southern Germany, i.e. one of the high potential locations for geothermal energy production in Germany. Samples have been characterized petrographically with regard to phase

  7. CO2 Trapping in Reservoirs with Fluvial Architecture: Sensitivity to Heterogeneity and Hysteresis in Characteristic Relationships for Different Rock Types

    NASA Astrophysics Data System (ADS)

    Gershenzon, N. I.; Ritzi, R. W., Jr.; Dominic, D. F.; Mehnert, E.; Okwen, R. T.

    2015-12-01

    Naum I. Gershenzona, Robert W. Ritzi Jr.a, David F. Dominica, Edward Mehnertb, and Roland T. OkwenbaDepartment of Earth and Environmental Sciences, Wright State University, 3640 Col. Glenn Hwy., Dayton, OH 45435, USAbIllinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 615 East Peabody Drive, Champaign, IL 61820, USA A number of important candidate CO2 reservoirs exhibit sedimentary architecture reflecting fluvial deposition. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to CO2 injection and storage, led to new geocellular modelling approaches for representing this architecture, and led to new computational studies of CO2 plume dynamics during and after injection. The processes of CO2 trapping depend upon a complex system of non-linear and hysteretic characteristic relationships including how relative permeability and capillary pressure vary with brine and CO2 saturation. New computational studies of capillary trapping in conglomeratic reservoirs strongly suggest that representing small-scale (decimeter to meter) textural facies among different rock types, including their organization within a hierarchy of larger-scale stratification, representing differences in characteristic relationships between rock types, and representing hysteresis in characteristic curves can all be critical to understanding trapping processes. In this context, CO2trapping was evaluated in conglomeratic reservoirs with fluvial architecture including different rock types with different and hysteretic characteristic curves and with capillary pressure defined for each rock type using two different conventional approaches, i.e. Brooks-Corey and van Genuchten. The results show that in these reservoirs the capillary trapping rates are quite sensitive to differences between the Brooks-Corey and van Genuchten approaches, and that

  8. Post - sedimentation influence on filtration capacity reservoir rock properties (Pur-Tazov oil\\gas-bearing area)

    NASA Astrophysics Data System (ADS)

    Isaeva, E.; Stolbova, N.; Dolgaya, T.

    2015-11-01

    The processes of the second mineral formation (kaolinite, carbonates and micas) were identified during the post-sedimentation transformation studies in oil⪆s deposits. Besides, quartz regeneration, solid product destructive formation processes and hydrocarbon oxidation processes were -determined. Correlation analysis of the mineralogy and petrophysics data revealed the post-sedimentation influence factors on the reservoir properties of deposits. It should be noted that the second kaolinite composition increase results in water saturation and density decrease, porosity and, especially, permeability increase. Quartz regeneration and second mica formation deteriorate the reservoir properties or poorly influence them. The hydrocarbon decay and oxidation products, as well as secondary carbonate seal the void space, replace the soluble rock debris and sharply deteriorate the reservoir properties of oil andgas deposits.

  9. Hydrocarbon transfer pathways from Smackover source rocks to younger reservoir traps in the Monroe gas field, NE Louisiana

    SciTech Connect

    Zimmerman, R.K. )

    1993-09-01

    The Monroe gas field contained more than 7 tcf of gas in its virgin state. Much of the original gas reserves have been produced through wells penetrating the Upper Cretaceous Monroe Gas Rock Formation reservoir. Other secondary reservoirs in the field area are Eocene Wilcox, the Upper Cretaceous Arkadelphia, Nacatoch, Ozan, Lower Cretaceous, Hosston, Jurassic Schuler, and Smackover. As producing zones, these secondary producing zones reservoirs have contributed an insignificant amount gas to the field. The source of much of this gas appears to have been in the lower part of the Jurassic Smackover Formation. Maturation and migration of the hydrocarbons from a Smackover source into Upper Cretaceous traps was enhanced and helped by igneous activity, and wrench faults/unconformity conduits, respectively. are present in the pre-Paleocene section. Hydrocarbon transfer pathways appear to be more vertically direct in the Jurassic and Lower Cretaceous section than the complex pattern present in the Upper Cretaceous section.

  10. Chemistry and mineralogy of natural bitumens and heavy oils and their reservoir rocks from the United States, Canada, Trinidad and Tobago, and Venezuela

    USGS Publications Warehouse

    Hosterman, John W.; Meyer, R.F.; Palmer, C.A.; Doughten, M.W.; Anders, D.E.

    1990-01-01

    Twenty-one samples from natural bitumen and heavy oil deposits in seven States of the United States and six samples from outside the United States form the basis of this initial study. This Circular gives the mineral content of the reservoir rock, the trace-element distribution in the reservoir rock and hydrocarbons, and the composition of the heavy oil and natural bitumen. The reservoir rock and sediment residues from California contain more trace-element maximum amounts than any of the other rock samples. These relatively high concentrations of trace elements may be due, in part, to the low quartz content of the rock and to the presence of heulandite, cristobalite, siderite, and pyrite. The reservoir rock and sediment residues from Oklahoma contain more minimum amounts of trace elements than any of the other rock samples. This pattern probably results from the large amount of quartz in four of the samples and a large amount of calcite in the other sample. The maximum and minimum amounts of trace elements in the bitumen and heavy oil do not correlate with those in the reservoir rocks. The bitumen from Utah contains the greatest number of trace-element maxima, whereas there is no trend in the trace-element minima in the bitumen and heavy oil.

  11. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport - Errata

    SciTech Connect

    Freedman, Vicky L.

    2007-04-30

    Errata for report documenting initial scoping calculations investigating the potential impacts on the Hanford unconfined aquifer resulting from leakage from the proposed Black Rock Reservoir to the west. These calculations were performed for the U.S. Bureau of Reclamation.

  12. Transient groundwater observations and modelling at a rockslide in fractured rocks adjacent to a hydropower reservoir (Kaunertal valley, Austria)

    NASA Astrophysics Data System (ADS)

    Strauhal, Thomas; Zangerl, Christian; Loew, Simon; Holzmann, Michael; Perzlmaier, Sebastian

    2015-04-01

    Positive pore water pressure within the fractured network of a rock slope reduces the effective stresses. This makes the knowledge of transient pore pressure magnitudes essential to evaluate time-dependent hydro-mechanically coupled rock slope processes. Slowly moving, deep-seated rockslides are a common type of gravitational mass movements in fractured metamorphic rocks. The hydrogeological conditions in rockslides adjacent to hydropower reservoirs are of major interest given that several case studies document the hydro-mechanical coupling between seasonal variations in the rockslide deformation behaviour and the filling and drawing down of the reservoir and/or seasonal variations of pore water pressure due to rainfall-events and snowmelt. Groundwater flow and pore pressure distributions in deep-seated rockslides, composed of fractured rocks, are usually only described by simplified conceptual models because of a lack of field measurements and difficulties in transient numerical modelling. The heterogeneous degree of disintegration of the sliding mass, soil-like deformation zones and the anisotropic fractured bedrock complicate the hydrogeological measurement, interpretation and analysis. In this study, detailed hydrogeological analyses of the Klasgarten rockslide at the Gepatsch reservoir (Kaunertal valley, Austria) are presented. A focus is set on the impact of reservoir level fluctuations, groundwater recharge along the slope and drainage by an exploring adit. The effect of various hydrogeological properties of the sliding mass, the deformation zone and the fractured bedrock on the groundwater fluctuations is discussed. Information on the groundwater flow regime, hydraulic relevant material properties and pore water pressure data are gained from borehole based investigations, a subhorizontal exploring adit and laboratory tests. Field observations are interpreted and validated on the basis of two dimensional finite element groundwater modelling. The transient

  13. Reservoir condition special core analyses and relative permeability measurements on Almond formation and Fontainebleu sandstone rocks

    SciTech Connect

    Maloney, D.

    1993-11-01

    This report describes the results from special core analyses and relative permeability measurements conducted on Almond formation and Fontainebleu sandstone plugs. Almond formation plug tests were performed to evaluate multiphase, steady-state,reservoir-condition relative permeability measurement techniques and to examine the effect of temperature on relative permeability characteristics. Some conclusions from this project are as follows: An increase in temperature appeared to cause an increase in brine relative permeability results for an Almond formation plug compared to room temperature results. The plug was tested using steady-state oil/brine methods. The oil was a low-viscosity, isoparaffinic refined oil. Fontainebleu sandstone rock and fluid flow characteristics were measured and are reported. Most of the relative permeability versus saturation results could be represented by one of two trends -- either a k{sub rx} versus S{sub x} or k{sub rx} versus Sy trend where x and y are fluid phases (gas, oil, or brine). An oil/surfactant-brine steady-state relative permeability test was performed to examine changes in oil/brine relative permeability characteristics from changes in fluid IFTS. It appeared that, while low interfacial tension increased the aqueous phase relative permeability, it had no effect on the oil relative permeability. The BOAST simulator was modified for coreflood simulation. The simulator was useful for examining effects of variations in relative permeability and capillary pressure functions. Coreflood production monitoring and separator interface level measurement techniques were developed using X-ray absorption, weight methods, and RF admittance technologies. The three types of separators should be useful for routine and specialized core analysis applications.

  14. Imaging techniques applied to the study of fluids in porous media. Scaling up in Class 1 reservoir type rock

    SciTech Connect

    Tomutsa, L.; Brinkmeyer, A.; Doughty, D.

    1993-04-01

    A synergistic rock characterization methodology has been developed. It derives reservoir engineering parameters from X-ray tomography (CT) scanning, computer assisted petrographic image analysis, minipermeameter measurements, and nuclear magnetic resonance imaging (NMRI). This rock characterization methodology is used to investigate the effect of small-scale rock heterogeneity on oil distribution and recovery. It is also used to investigate the applicability of imaging technologies to the development of scaleup procedures from core plug to whole core, by comparing the results of detailed simulations with the images ofthe fluid distributions observed by CT scanning. By using the rock and fluid detailed data generated by imaging technology describe, one can verify directly, in the laboratory, various scaling up techniques. Asan example, realizations of rock properties statistically and spatially compatible with the observed values are generated by one of the various stochastic methods available (fuming bands) and are used as simulator input. The simulation results were compared with both the simulation results using the true rock properties and the fluid distributions observed by CT. Conclusions regarding the effect of the various permeability models on waterflood oil recovery were formulated.

  15. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2002-12-01

    Michigan Basin, and it is crucial in developing reservoir quality rocks in some fields. Data on the occurrence of dolomite was extracted from driller's reports for all reported occurrences in Michigan, nearly 50 fields and over 500 wells. A digital database was developed containing the geographic location of all these wells (latitude-longitude) as well as the elevation of the first encounter of dolomite in the field/reservoir. Analysis shows that these dolomite occurrences are largely confined to the center of the basin, but with some exceptions, such as N. Adams Field. Further, some of the dolomite occurrences show a definite relationship to the fracture pattern described above, suggesting a genetic relationship that needs further work. Other accomplishments of this past reporting period include obtaining a complete land grid for the State of Michigan and further processing of the high and medium resolution DEM files. We also have measured new fluid inclusion data on dolomites from several fields that suggest that the dolomitization occurred at temperatures between 100 and 150 C. Finally, we have extracted the lithologic data for about 5000 wells and are in the process of integrating this data into the overall model for the Michigan Basin.

  16. Recreation Benefits of Instream Flow: Application to Montana's Big Hole and Bitterroot Rivers

    NASA Astrophysics Data System (ADS)

    Duffield, John W.; Neher, Christopher J.; Brown, Thomas C.

    1992-09-01

    Allocation of water between instream uses such as recreation and consumptive uses such as irrigation is an important public policy issue in the western United States. One basis for identifying appropriate levels of instream flows is maximization of net economic benefits. A general framework for estimating the recreational value of instream flows was developed and applied to Montana's Big Hole and Bitterroot rivers. The paper also provides a synthesis of methods for interpreting covariate effects in dichotomous choice contingent valuation models. Precision of the estimates is examined through a simulation approach. The marginal recreational value of instream flow in these rivers is in the range of 50 per acre foot (1 acre foot equals 1233.5 m3) for recreation at low-flow levels plus 25 per acre foot for downstream hydroelectric generation. These values indicate that at some flow levels, gains may be achieved on the study rivers by reallocating water from consumptive to instream uses.

  17. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, Northern Spain)

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2015-08-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of Lower-Upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of SC CO2 during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in Northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin). Experimental wet CO2 injection was performed in a reactor chamber under realistic conditions of deep saline formations (P ≈ 78 bar, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and porous network distribution. Chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analysed before and after the experiment. The results indicate an evolution of the pore network (porosity increase ≈ 2 %). Intergranular quartz matrix detachment and partial removal from the rock sample (due to CO2 input/release dragging) are the main processes that may explain the porosity increase. Primary mineralogy (≈ 95 % quartz) and rock texture (heterogeneous sand with interconnected framework of micro-channels) are important factors that seem to enhance textural/mineralogical changes in this heterogeneous system. The whole rock and brine chemical analyses after interaction with SC CO2-brine do not present important changes in the mineralogical, porosity and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early stages. These results

  18. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system

  19. Exploration, Drilling and Development Operations in the Bottle Rock Area of the Geysers Steam Field, With New Geologic Insights and Models Defining Reservoir Parameters

    SciTech Connect

    Hebein, Jeffrey J.

    1983-12-15

    MCR Geothermal Corporation pioneered successful exploratiory drilling the Bottle Rock area of the Geysers Steam Field in 1976. The wellfield is characterized by a deep reservoir with varied flowrates, temperatures, pressures, and stem chemistries being quite acceptable. More detailed reservoir engineering tests will follow as production commences.

  20. Fracture permeability and water-rock interaction in a shallow volcanic groundwater reservoir and the concern of its interaction with the deep geothermal reservoir of Mt. Amiata, Italy

    NASA Astrophysics Data System (ADS)

    La Felice, S.; Montanari, D.; Battaglia, S.; Bertini, G.; Gianelli, G.

    2014-09-01

    The study of core samples and in-hole data of a 545 m deep well drilled in Mt. Amiata extinct volcano allowed a better characterization of the shallow volcanic reservoir, which is exploited for domestic utilization. The new discovery is that: 1) the water table level is at a depth of 302 m b.g.l. (783 m a.s.l.), in agreement with recent magnetotelluric surveys, and in disagreement with previous hydrogeological models; 2) there is no evidence of present or past interaction with geothermal fluids, the alteration minerals being present only in fractures within the volcanic rocks and indicating fluids of low temperature and relatively low pH due to gas inlets in the volcanic reservoir; and 3) the volcanic reservoir is characterized by fracture permeability, as shown by the fracture system along the well. On the base of these new data the previous geological and hydrogeological models of Mt. Amiata should be revised. In particular, the hypothesis of a catastrophic lowering of the water table in a short time span is unlikely.

  1. Qualitative and quantitative changes in detrital reservoir rocks caused by CO2-brine-rock interactions during first injection phases (Utrillas sandstones, northern Spain)

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; Ordóñez-Casado, B.; Quintana, L.

    2016-01-01

    The aim of this article is to describe and interpret qualitative and quantitative changes at rock matrix scale of lower-upper Cretaceous sandstones exposed to supercritical (SC) CO2 and brine. The effects of experimental injection of CO2-rich brine during the first injection phases were studied at rock matrix scale, in a potential deep sedimentary reservoir in northern Spain (Utrillas unit, at the base of the Cenozoic Duero Basin).

    Experimental CO2-rich brine was exposed to sandstone in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). After the experiment, exposed and non-exposed equivalent sample sets were compared with the aim of assessing possible changes due to the effect of the CO2-rich brine exposure. Optical microscopy (OpM) and scanning electron microscopy (SEM) aided by optical image analysis (OIA) were used to compare the rock samples and get qualitative and quantitative information about mineralogy, texture and pore network distribution. Complementary chemical analyses were performed to refine the mineralogical information and to obtain whole rock geochemical data. Brine composition was also analyzed before and after the experiment.

    The petrographic study of contiguous sandstone samples (more external area of sample blocks) before and after CO2-rich brine injection indicates an evolution of the pore network (porosity increase ≈ 2 %). It is probable that these measured pore changes could be due to intergranular quartz matrix detachment and partial removal from the rock sample, considering them as the early features produced by the CO2-rich brine. Nevertheless, the whole rock and brine chemical analyses after interaction with CO2-rich brine do not present important changes in the mineralogical and chemical configuration of the rock with respect to initial conditions, ruling out relevant precipitation or dissolution at these early

  2. Combining water-rock interaction experiments with reaction path and reactive transport modelling to predict reservoir rock evolution in an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2016-04-01

    Reliably predicting the evolution of mechanical and chemical properties of reservoir rocks is crucial for efficient exploitation of enhanced geothermal systems (EGS). For example, dissolution and precipitation of individual rock forming minerals often result in significant volume changes, affecting the hydraulic rock properties and chemical composition of fluid and solid phases. Reactive transport models are typically used to evaluate and predict the effect of the internal feedback of these processes. However, a quantitative evaluation of chemo-mechanical interaction in polycrystalline environments is elusive due to poorly constrained kinetic data of complex mineral reactions. In addition, experimentally derived reaction rates are generally faster than reaction rates determined from natural systems, likely a consequence of the experimental design: a) determining the rate of a single process only, e.g. the dissolution of a mineral, and b) using powdered sample materials and thus providing an unrealistically high reaction surface and at the same time eliminating the restrictions on element transport faced in-situ for fairly dense rocks. In reality, multiple reactions are coupled during the alteration of a polymineralic rocks in the presence of a fluid and the rate determining process of the overall reactions is often difficult to identify. We present results of bulk rock-water interaction experiments quantifying alteration reactions between pure water and a granodiorite sample. The rock sample was chosen for its homogenous texture, small and uniform grain size (˜0.5 mm in diameter), and absence of pre-existing alteration features. The primary minerals are plagioclase (plg - 58 vol.%), quartz (qtz - 21 vol.%), K-feldspar (Kfs - 17 vol.%), biotite (bio - 3 vol.%) and white mica (wm - 1 vol.%). Three sets of batch experiments were conducted at 200 ° C to evaluate the effect of reactive surface area and different fluid path ways using (I) powders of the bulk rock with

  3. Geophysical and transport properties of reservoir rocks. Final report for task 4: Measurements and analysis of seismic properties

    SciTech Connect

    Cook, N.G.W.

    1993-05-01

    The principal objective of research on the seismic properties of reservoir rocks is to develop a basic understanding of the effects of rock microstructure and its contained pore fluids on seismic velocities and attenuation. Ultimately, this knowledge would be used to extract reservoir properties information such as the porosity, permeability, clay content, fluid saturation, and fluid type from borehole, cross-borehole, and surface seismic measurements to improve the planning and control of oil and gas recovery. This thesis presents laboratory ultrasonic measurements for three granular materials and attempts to relate the microstructural properties and the properties of the pore fluids to P- and S-wave velocities and attenuation. These experimental results show that artificial porous materials with sintered grains and a sandstone with partially cemented grains exhibit complexities in P- and S-wave attenuation that cannot be adequately explained by existing micromechanical theories. It is likely that some of the complexity observed in the seismic attenuation is controlled by details of the rock microstructure, such as the grain contact area and grain shape, and by the arrangement of the grain packing. To examine these effects, a numerical method was developed for analyzing wave propagation in a grain packing. The method is based on a dynamic boundary integral equation and incorporates generalized stiffness boundary conditions between individual grains to account for viscous losses and grain contact scattering.

  4. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.

    2015-12-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  5. Pore Fluid Effects on Shear Modulus in a Model of Heterogeneous Rocks, Reservoirs, and Granular Media

    SciTech Connect

    Berryman, J G

    2005-03-23

    To provide quantitative measures of the importance of fluid effects on shear waves in heterogeneous reservoirs, a model material called a ''random polycrystal of porous laminates'' is introduced. This model poroelastic material has constituent grains that are layered (or laminated), and each layer is an isotropic, microhomogeneous porous medium. All grains are composed of exactly the same porous constituents, and have the same relative volume fractions. The order of lamination is not important because the up-scaling method used to determine the transversely isotropic (hexagonal) properties of the grains is Backus averaging, which--for quasi-static or long-wavelength behavior--depends only on the volume fractions and layer properties. Grains are then jumbled together totally at random, filling all space, and producing an overall isotropic poroelastic medium. The poroelastic behavior of this medium is then analyzed using the Peselnick-Meister-Watt bounds (of Hashin-Shtrikman type). We study the dependence of the shear modulus on pore fluid properties and determine the range of behavior to be expected. In particular we compare and contrast these results to those anticipated from Gassmann's fluid substitution formulas, and to the predictions of Mavko and Jizba for very low porosity rocks with flat cracks. This approach also permits the study of arbitrary numbers of constituents, but for simplicity the numerical examples are restricted here to just two constituents. This restriction also permits the use of some special exact results available for computing the overall effective stress coefficient in any two-component porous medium. The bounds making use of polycrystalline microstructure are very tight. Results for the shear modulus demonstrate that the ratio of compliance differences R (i.e., shear compliance changes over bulk compliance changes when going from drained to undrained behavior, or vice versa) is usually nonzero and can take a wide range of values, both

  6. Pore facies analysis: incorporation of rock properties into pore geometry based classes in a Permo-Triassic carbonate reservoir in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Rahimpour-Bonab, H.; Aliakbardoust, E.

    2014-06-01

    Pore facies analysis is a useful method for the classification of reservoir rocks according to pore geometry characteristics. The importance of this method is related to the dependence of the dynamic behaviour of the reservoir rock on the pore geometry. In this study, pore facies analysis was performed by the quantification and classification of the mercury injection capillary pressure (MICP) curves applying the multi-resolution graph-based clustering (MRGC) method. Each pore facies includes a limited variety of rock samples with different depositional fabrics and diagenetic histories, which are representative of one type of pore geometry. The present pore geometry is the result of the interaction between the primary rock fabric and its diagenetic overprint. Thus the variations in petrographic properties can be correlated with the pore geometry characteristics. Accordingly, the controlling parameters in the pore geometry characteristics were revealed by detailed petrographic analysis in each pore facies. The reservoir rock samples were then classified using the determined petrographic properties which control the pore system quality. This method is proposed for the classification of reservoir rocks in complicated carbonate reservoirs, in order to reduce the incompatibility of traditional facies analysis with pore system characteristics. The method is applicable where enough capillary pressure data is not available.

  7. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    PubMed

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix. PMID:22214656

  8. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China.

    PubMed

    Jiang, Li-guo; Liang, Bing; Xue, Qiang; Yin, Cheng-wei

    2016-05-01

    Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. PMID:26901468

  9. Spiculitic chert reservoir rocks: Glick Field, Kiowa and Comanche Counties, Kansas

    SciTech Connect

    Rogers, J.P.; Longman, M.W.

    1995-09-01

    Glick field, discovered in 1957, has produced more than 362 BCF of gas from Mississippian Osage chert commonly referred to as the {open_quotes}Chat{close_quotes}. Other {open_quotes}Chat{close_quotes} reservoirs in Kansas and Oklahoma produce mainly from mixed chert and dolomite beneath the pre-Pennsylvanian unconformity, but Glick field`s reservoir is dominated by spiculitic chert. Glick field is a stratigraphic trap with production ending where the spiculitic facies pinches out into tight limestone to the south and west. Updip, to the northeast, the productive spiculitic facies is truncated by the unconformity. Reworked chert conglomerates overlying the spiculitic reservoir at the unconformity also produce minor amounts of gas. The spiculitic chert forming the reservoir was deposited below wavebase and grades laterally into echinoderm and brachiopod-rich skeletal wackstones and lime mudstones. Even where completely silicified, these associated limestones are tight. They form the lateral seal in the field. Thus, the reservoir is an in situ oval-shaped complex of internally brecciated sponge mats and bioherms capped in part by chert conglomerate. The spiculitic chert contains up to 50% porosity in molds after sponge spicules, matrix micropores, and vugs coupled with fracture and breccia porosity. Distribution of the sponge bioherms which form the reservoir facies was partly controlled by a subtle change on the shallow Mississippian carbonate shelf from clean skeletal limestones southward into shaly (and probable more anoxic) carbonates known locally as the {open_quotes}Cowley Facies.{close_quotes} This lithologic boundary can be mapped across southern Kansas and provides a potential exploration tool that may help in finding other stratigraphically trapped spiculitic reservoirs in the area.

  10. The use of predictive lithostratigraphy to significantly improve the ability to forecast reservoir and source rocks? Final CRADA report.

    SciTech Connect

    Doctor, R. D.; Moore, T. L.; Energy Systems

    2010-06-29

    The purpose of this CRADA, which ended in 2003, was to make reservoir and source rock distribution significantly more predictable by quantifying the fundamental controls on stratigraphic heterogeneity. To do this, the relationships among insolation, climate, sediment supply, glacioeustasy, and reservoir and source rock occurrence were investigated in detail. Work current at the inception of the CRADA had uncovered previously unrecognized associations among these processes and properties that produce a phenomenon that, when properly analyzed, will make lithostratigraphic variability (including texture, porosity, and permeability) substantially more understandable. Computer climate simulations of selected time periods, compared with the global distribution of paleoclimatic indicators, documented spatial and temporal climate changes as a function of insolation and provided quantitative changes in runoff, lake level, and glacioeustasy. The effect of elevation and climate on sediment yield was assessed numerically by analyzing digital terrain and climate data. The phase relationships of climate, yield, and glacioeustatic cycles from the Gulf of Mexico and/or other sedimentary basins were assessed by using lacunarity, a statistical technique.

  11. A land-use and water-quality history of White Rock Lake Reservoir, Dallas, Texas, based on paleolimnological analyses

    USGS Publications Warehouse

    Platt, Bradbury J.; Van Metre, P.C.

    1997-01-01

    White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.

  12. Multidisciplinary Imaging of Rock Properties in Carbonate Reservoirs for Flow-Unit Targeting

    SciTech Connect

    Ruppel, Stephen C.

    2002-10-08

    During the period major accomplishments were in (1) characterization of facies and cyclicity in subsurface cores and in outcrop, (2) construction of a preliminary stratigraphic framework, (3) definition of rock fabrics, and (4) correlation of 3-D seismic data.

  13. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  14. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    SciTech Connect

    Stephen C. Ruppel

    2003-07-01

    Excellent progress continues to be made on most objectives and goals. Primary focus during the past 6 months has been (1) simulation of reservoir performance using the reservoir model constructed for the Phase 1 study area, (2) extension of core and log characterization activities to the Phase 2 study area, (3) development of an initial velocity-based inversion model from the 3-D seismic volume for porosity characterization, (4) continuation of quality-control analysis of wireline logs. Preliminary results of the study were presented at a technology-transfer workshop in May 2003 in Midland/Odessa Texas.

  15. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  16. Hydrothermal alteration and tectonic setting of intrusive rocks from East Brawley, Imperial Valley: an application of petrology to geothermal reservoir analysis

    SciTech Connect

    Keskinen, M.; Sternfeld, J.

    1982-01-01

    A geothermal well near East Brawley intersected a series of thin (3 to 35m) diabasic to dioritic intrusives. The petrology and chemistry of these meta-igneous rocks can provide insight into the thermal and fluid chemical characteristics of the reservoir and into the processes of magma generation at depth. A description of the rock types and their hydrothermal alteration is presented in order to increase the petrologic data base relating to this important facet of the geothermal potential of the Salton Trough and to provide a case study illustrating how detailed petrologic examination of well cuttings can provide important input in the construction of a geothermal reservoir model.

  17. Impact of 4-year CO2 injection on reservoir-rock integrity at the CO2 pilot site Ketzin (Germany)

    NASA Astrophysics Data System (ADS)

    Bock, S.; Förster, H.; Meier, A.; Pudlo, D.; Förster, A.; Gaupp, R.

    2013-12-01

    The CO2 Ketzin pilot site offers the possibility to study the short-term effects of injected CO2 on the mineralogy, geochemistry and porosity/permeability of siliciclastic reservoir rocks in a saline aquifer. Ketzin is located 30 kilometers west of Berlin in the Northeast German Basin, a sedimentary basin containing Paleozoic to Cenozoic sediments. The site is characterized by an anticlinal structure formed through halokinetic uprise of Permian salt. The reservoir in the Upper Triassic Stuttgart Formation, in which about 64,000 tons of CO2 are stored at depth of 630-700 m, is heterogeneous, comprising sandstones and siltstones. The Stuttgart Formation is overlain by a 200-m-thick caprock system of massive mudstones pertaining to the Upper Triassic Weser Formation and Arnstadt Formation. Argillaceous Tertiary sediments form an additional caprock in the shallow subsurface. Core material was recovered in 2007 for a baseline study and again in August 2012, almost four years after start of CO2 injection, to evaluate the fluid-rock reactions that took place. Preliminary results of an ongoing study, which focuses on petrographic-mineralogical and geochemical features, reveal negligible changes in bulk-rock composition almost in the range of the pristine natural heterogeneity of the reservoir. No significant dissolution or precipitation of minerals occurred implying that CO2 was trapped mainly structurally and residually as well as became dissolved in the formation brine. Additional studies concentrated on the fixation of CO2 by mineral trapping. Analytical work was focused on small-scale variations and reactions within and on the surface of minerals. X-ray Photoelectron Spectroscopy (XPS) supplied information about the alteration of Fe-rich grain coatings. This surface-sensitive method provides, beyond the quantitative analysis of certain elements, information on the valence state and quantity of iron. A weak tendency of transformation from hematite to goethite coatings

  18. Constraints on the formation of the Bitterroot Lobe of the Idaho Batholith, Idaho and Montana, from U-Pb zircon geochronology and feldspar Pb isotopic data

    SciTech Connect

    Toth, M.I.; Stacey, J.S.

    1992-01-01

    This paper reports on zircons from tonalite emplaced along the western periphery of the Bitterroot Lobe of the Idaho Batholith yield an almost concordant age of 94 {plus minus} 1.4 Ma; monozogranite and granodiorite plutons along the northern edge of the lobe yield ages of 75 to 71 ma. The volumetrically more dominant plutons in the central and western parts of the lobe were emplaced between 59 and 54 Ma. Upper intercept data, combined with Pb isotopic data from feldspars, confirm that the magmas of the Bitterroot Lobe were derived mainly from an early Proterozoic lower continental crust.

  19. Ichnofabric mapping and interpretation of Jurassic reservoir rocks of the Norwegian North Sea

    SciTech Connect

    Bockelie, J.F. )

    1991-06-01

    Recurrent sediment fabric and trace fossil associations in the Norwegian offshore Jurassic sequences have been interpreted by the ichnofabric concept. In the Sognefjord Formation (Oxfordian-Kimmeridgian) of the Troll Field five basic ichnofabrics were recognized and named after the dominant ichnogenus present, respectively: Helminthoida, Anconichnus, Palaeophycus, Ophiomorpha and Skolithos. These ichnofabrics developed in sediments deposited in marine environments ranging from quiescent offshore to high energy, shallow water nearshore situations. When sequence patterns of ichnofabrics were mapped within five chronostratigraphic reservoir zones of the Troll Field it was possible to recognize both how the frequency of a given ichnofabric may change in time in a restricted area or may change in its areal distribution in a restricted time interval. Such maps have been integrated with lithofacies maps and dip-meter studies in cored sequence to produce quantitative base maps for computerized reservoir models. The maps can also be used as a powerful tool for facies predictions.

  20. Gamma ray spectrometry logs as a hydrocarbon indicator for clastic reservoir rocks in Egypt.

    PubMed

    Al-Alfy, I M; Nabih, M A; Eysa, E A

    2013-03-01

    Petroleum oil is an important source for the energy in the world. The Gulf of Suez, Nile Delta and South Valley are important regions for studying hydrocarbon potential in Egypt. A thorium normalization technique was applied on the sandstone reservoirs in the three regions to determine the hydrocarbon potentialities zones using the three spectrometric radioactive gamma ray-logs (eU, eTh and K% logs). The conventional well logs (gamma-ray, deep resistivity, shallow resistivity, neutron, density and sonic logs) are analyzed to determine the net pay zones in these wells. Indices derived from thorium normalized spectral logs indicate the hydrocarbon zones in petroleum reservoirs. The results of this technique in the three regions (Gulf of Suez, Nile Delta and South Valley) are in agreement with the results of the conventional well log analyses by ratios of 82%, 78% and 71% respectively. PMID:23306160

  1. The fractal menger sponge and Sierpinski carpet as models for reservoir rock/pore systems: I. ; Theory and image analysis of Sierpinski carpets

    SciTech Connect

    Garrison, J.R., Jr.; Pearn, W.C.; von Rosenberg, D. W. )

    1992-01-01

    In this paper reservoir rock/pore systems are considered natural fractal objects and modeled as and compared to the regular fractal Menger Sponge and Sierpinski Carpet. The physical properties of a porous rock are, in part, controlled by the geometry of the pore system. The rate at which a fluid or electrical current can travel through the pore system of a rock is controlled by the path along which it must travel. This path is a subset of the overall geometry of the pore system. Reservoir rocks exhibit self-similarity over a range of length scales suggesting that fractal geometry offers a means of characterizing these complex objects. The overall geometry of a rock/pore system can be described, conveniently and concisely, in terms of effective fractal dimensions. The rock/pore system is modeled as the fractal Menger Sponge. A cross section through the rock/pore system, such as an image of a thin-section of a rock, is modeled as the fractal Sierpinski Carpet, which is equivalent to the face of the Menger Sponge.

  2. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    PubMed

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. PMID:23745958

  3. Hydrothermal origin of oil and gas reservoirs in basement rock of the South Vietnam continental shelf

    SciTech Connect

    Dmitriyevskiy, A.N.; Kireyev, F.A.; Bochko, R.A.; Fedorova, T.A. )

    1993-07-01

    Oil-saturated granites, with mineral parageneses typical of hydrothermal metasomatism and leaching haloes, have been found near faults in the crystalline basement of the South Vietnam continental shelf. The presence of native silver, barite, zincian copper, and iron chloride indicates a deep origin for the mineralizing fluids. Hydrothermally altered granites are a new possible type of reservoir and considerably broaden the possibilities of oil and gas exploration. 15 refs., 22 figs., 1 tab.

  4. Fluid sensitivity study of elastic parameters in low-medium porosity and permeability reservoir rocks

    NASA Astrophysics Data System (ADS)

    Pei, Fa-Gen; Zou, Chang-Chun; He, Tao; Shi, Ge; Qiu, Gen-Gen; Ren, Ke-Ying

    2010-03-01

    In this article, based on the acoustic measurements of core samples obtained from the low to medium porosity and permeability reservoirs in the WXS Depression, the densities and P and S wave velocities of these core samples were obtained. Then based on these data, a series of elastic parameters were computed. From the basic theory and previous pore fluid research results, we derived a new fluid identification factor (F). Using the relative variations, Ag/w and Ao/w, of the elastic parameters between gas and water saturated samples and between oil and water saturated samples, λρ, σ HSFIF, Kρ, λρ - 2µ ρ, and F as quantitative indicators, we evaluate the sensitivity of the different fluid identification factors to identify reservoir fluids and validate the effects by crossplots. These confirm that the new fluid identification factor (F) is more sensitive for distinguishing oil and water than the traditional method and is more favorable for fliud identification in low to medium porosity and permeability reservoirs.

  5. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    NASA Astrophysics Data System (ADS)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other

  6. Water-quality trends in White Rock Creek Basin from 1912-1994 identified using sediment cores from White Rock Lake Reservoir, Dallas, Texas

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1997-01-01

    Historical trends in selected water-quality variables from 1912 to 1994 in White Rock Creek Basin were identified by dated sediment cores from White Rock Lake. White Rock Lake is a 4.4-km2 reservoir filled in 1912 and located on the north side of Dallas, Texas, with a drainage area of 259 km2. Agriculture dominated land use in White Rock Creek Basin before about 1950. By 1990, 72% of the basin was urban. Sediment cores were dated using cesium-137 and core lithology. Major element concentrations changed, and sedimentation rates and percentage of clay-sized particles in sediments decreased beginning in about 1952 in response to the change in land use. Lead concentrations, normalized with respect to aluminum, were six times larger in sediment deposited in about 1978 than in pre-1952 sediment. Following the introduction of unleaded gasoline in the 1970s, normalized lead concentrations in sediment declined and stabilized at about two and one-half times the pre-1952 level. Normalized zinc and arsenic concentrations increased 66 and 76%, respectively, from before 1952 to 1994. No organochlorine compounds were detected in sediments deposited prior to about 1940. Concentrations of polychlorinated biphenyls (PCB) and DDE (a metabolite of DDT) increased rapidly beginning in the 1940s and peaked in the 1960s at 21 and 20 ??g kg-1, respectively, which is coincident with their peak use in the United States. Concentrations of both declined about an order of magnitude from the 1960s to the 1990s to 3.0 and 2.0 ??g kg-1, respectively. Chlordane and dieldrin concentrations increased during the 1970s and 1980s. The largest chlordane concentration was 8.0 ??g kg-1 and occurred in a sediment sample deposited in about 1990. The largest dieldrin concentration was 0.7 ??g kg-1 and occurred in the most recent sample deposited in the early 1990s. Agricultural use of chlordane and dieldrin was restricted in the 1970s; however, both were used as termiticides, and urban use of chlordane

  7. Reactive Transport Modeling of Supercritical Carbon Dioxide Injection Into Mafic Rock Reservoirs

    NASA Astrophysics Data System (ADS)

    Podgorney, R.; Hull, L.; Huang, H.; McLing, T.

    2007-12-01

    Technologies to reduce emissions of greenhouse gases and increase the sequestration of CO2 have received increasing attention since the development of the Kyoto protocol. One promising technology is the sequestration of CO2 in geologic formations. The suitability of a fractured basalt reservoir for CO2 sequestration is constrained by three broad categories of issues, which we refer to as physical, technical, and economic constraints. Physical constraints are beyond human control; thus, it is a requirement that a systematic method be developed by which a particular target reservoir may be evaluated to determine if it lies within the bounds required for safe and effective disposal. Technical constraints, on the other hand, are challenges to the ability to design, construct, and/or monitor a sequestration project as a result of limitations on our ability to determine the distribution of properties in the subsurface, our knowledge of the behavior of CO2 in the deep subsurface, and the current state of computational science and subsurface monitoring. Equally important are the heterogeneity of economic costs associated with sequestering CO2 at different sites and within different formations. The work presented here focuses on the technical aspects of CO2 injection, specifically examining reactive transport of CO2 in the subsurface in the vicinity of the injection well using the simulation code TOUGHREACT. Pressure distribution and propagation, kinetics of the geochemical reactions, and resultant changes in permeability/porosity are examined in order to evaluate injection scenarios that maximize the longevity of the injection well and sustainability of the reservoir.

  8. Tests of US rock salt for long-term stability of CAES reservoirs

    SciTech Connect

    Gehle, R.M.; Thoms, R.L.

    1986-01-01

    This is a report on laboratory tests to assess the effects of compressed air energy storage (CAES) on rock salt within the US. The project included a conventional laboratory test phase, with triaxial test machines, and a bench-scale test phase performed in salt mines in southern Louisiana. Limited numerical modeling also was performed to serve as a guide in selecting test layouts and for interpreting test data.

  9. Supercritical CO2 migration in a fractured rock at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Oh, J.; Kim, K.; Han, W.; Kim, T.; Kim, J.; Park, E.

    2012-12-01

    Suitable geological formations should guarantee a long-term safe and reliable storage of the injected supercritical CO2 (scCO2), and thus densely fractured natural reservoirs are reluctant to consider as a candidate formation. Nevertheless, fractures occur in nearly all geological settings and play a major role for fluid flow. A series of core flooding test were performed to investigate the effect of a fracture on supercritical CO2 migration under reservoir conditions. In the experiment, twin samples of Berea sandstone cores were employed which have 20 % porosity and 1.7×10-13 m2 permeability. One of the twin samples was cut through the center in the direction of longitudinal axis in order to induce a single artificial fracture. The other core represents the homogeneous core. During the test, the downstream pressure was maintained at 10 MPa, and the confining pressure was kept at 20 MPa. The temperature was set to be 40 degrees to reflect the 1 km subsurface environment. The CO2-flooding (drainage) tests with brine-saturated core were performed with different injection rates (q) for both the homogeneous and the fractured core. The scCO2 saturation was measured with linear X-ray scanner. While piston-like brine displacement was observed in homogeneous core with minor effects of gravity over-run, the fractured core showed scCO2 displacing brine at fracture zone instantaneously as the injection started. As the injected volume increased, more CO2 intruded the matrix zone. Injection rates lower than a critical value (3ml/min in our conditions) only allowed CO2 displace brine along fractured zone as the built up pressure did not overcome the entry pressure of the matrix zone. In case q = 5 ml/min, the pressure drop across the cores showed 6 kPa and 13 kPa for fractured and homogeneous core, respectively, revealing that fractured reservoir has advantage on injectivity. The storage capacity was estimated by calculating scCO2 mass stored in both the homogeneous and

  10. Characterization of rock for constraining reservoir scale tomography at the Geysers geothermal field

    SciTech Connect

    Boitnott, G.N.; Bonner, B.P.

    1994-01-20

    A suite of laboratory measurements are being conducted on Geysers graywacke recovered from a drilled depth of 2599 meters in NEGU-17. The tests are being conducted to characterize the effect of pressure and fluid saturation on the seismic properties of the graywacke matrix. The measurements indicate that the graywacke is an unusual rock in many respects. Both compressional and shear velocities exhibit relatively little change with pressure. Water saturation causes a slight increase in the compressional velocity, quantitatively consistent with predictions from the Biot-Gassmann equations. Shear velocity decreases with water saturation by an amount greater than that predicted by the Biot-Gassmann equations. This decrease is attributed to chemomechanical weakening caused by the presence of water. Measurements of Q, from torsion experiments on room dry samples at seismic frequencies indicate unusually high Q, (~500). Water saturation decreases the shear modulus by 12 percent, again indicative of chemomechanical weakening. Q, is lower for the water saturated condition, but still relatively high for rock at low stress. Results of ultrasonic pulse propagation experiments on partially saturated samples are typical of low porosity rocks, being characterized by a monotonic decrease in compressional and shear velocity with decrease in saturation. An increase in shear velocity and low frequency shear modulus after vacuum drying indicates the presence of chemo-mechanical weakening resulting from the presence of small amounts of water.

  11. Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks.

    PubMed

    Alkafeef, Saad F; Algharaib, Meshal K; Alajmi, Abdullah F

    2006-06-01

    The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore. PMID:16414057

  12. Fluid focusing and breaching of low permeability layers in reacting and visco-elasto-plastically deforming reservoir rocks

    NASA Astrophysics Data System (ADS)

    Simon, Nina S. C.

    2013-04-01

    The on-going injection of one million tons per year of CO2 into the Utsira sand at Sleipner is used as an example for a highly successful CO2 storage operation. Even at Sleipner, however, we observe features that are not straightforward to explain and quantify with exiting models. One such feature is the so- called chimneys that show up in the time laps seismic images. They are zones of disturbed layering that cut nearly vertically through the interbedded thin shale layers in the reservoir sands, not unlink the frequently observed pipe structures due to fluid venting. These chimneys have been ascribed to artefacts in the data or pre-existing fractures or pipes, and these explanations are difficult to rule out. If we take the seismic interpretations at face value, however, then the data suggest that the intensity and extent of the chimneys changes through time. The extent and thickness of the observed plume supports that the injected CO2 is migrating through focused zones in the shales from the well at the bottom of the reservoir to the top layer immediately below the caprock much faster than predicted by Darcy flow through intact, low permeable shale layers. We developed a fully coupled numerical model for fluid flow through a reacting and deforming porous rock. Reactions may be upscaled to add a viscous component to the rheology, or be modelled explicitly. In laboratory experiments, viscous compaction has been shown to take place in typical reservoir rocks due to the high reactivity of CO2-rich brine. Other experimental studies show that unconsolidated sands, such as the Utsira sand, and clay-rich shales follow a visco-plastic flow law rather than behaving as purely poro-elastically. Hence, viisco-elasto-plastic deformation of the porous matrix is taken into account in our model and fluid focusing may occur due to non-linear couplings between porosity and permeability and viscosity. This phenomenon is known as a porosity wave. A non-linear viscous rheology (or

  13. Characterization of reservoir rocks and fluids by surface electromagnetic transient methods

    SciTech Connect

    Hoekstra, P.; Blohm, M.W. ); Stoyer, C.H. ); James, B.A. )

    1992-01-01

    The objectives of this research are to improve the interpretations of transient electromagnetic (TEM) measurements over two-dimensional subsurface structures. TEM is a surface electromagnetic method employed in fossil energy reservoir exploration and characterization. Electrical measurements find application in (i) assisting in fossil energy exploration mainly in areas where seismic methods yield inadequate data quality, such as volcanic covered terrain, permafrost areas, and the Rocky Mountain overthrust; (ii) mapping contacts between hydrocarbon and brines in shallow producing horizons, and (iii) in monitoring enhanced oil recovery processes which cause zones of lower resistivity. Accomplishments for this past year are presented for the following tasks: (1) site selection and acquisition of high density, 3-component TEM data set over test site; (2) finite element forward modeling; and (3) TEM 2-D subsurface imaging.

  14. Characterization of reservoir rocks and fluids by surface electromagnetic transient methods

    SciTech Connect

    Hoekstra, P.; Blohm, M.W.; Stoyer, C.H.; James, B.A.

    1992-07-17

    The objectives of this research were to improve the interpretations of transient electromagnetic (TEM) measurements over two-dimensional subsurface structures. TEM is a surface electromagnetic method employed in fossil energy reservoir exploration and characterization. Electrical measurements find application in (i) assisting in fossil energy exploration mainly in areas where seismic methods yield inadequate data quality, such as volcanic covered terrain, permafrost areas, and the Rocky Mountain Overthrust; (ii) mapping contacts between hydrocarbon and brines in shallow producing horizon, and (iii) in monitoring enhanced oil recovery processes which cause zones of lower resistivity. The work under this contract consisted of three tasks: (1) Selection of a test site and acquisition of a high density, 3-component data set over the test site; (2) development of finite element modeling algorithms for computing 3-D EM fields over 2-D EM fields over 2-D subsurface structures; and development of TEM 2-D subsurface imaging method. Accomplishments for this period are described.

  15. Special core analyses and relative permeability measurement on Almond formation reservoir rocks

    SciTech Connect

    Maloney, D.; Doggett, K.; Brinkmeyer, A.

    1993-02-01

    This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74[degrees]F laboratory temperature. Additional tests are planned at 150[degrees]F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.

  16. Special core analyses and relative permeability measurement on Almond formation reservoir rocks

    SciTech Connect

    Maloney, D.; Doggett, K.; Brinkmeyer, A.

    1993-02-01

    This report describes the results from special core analyses and relative permeability measurements conducted on samples of rock from the Almond Formation in Greater Green River Basin of southwestern Wyoming. The core was from Arch Unit Well 121 of Patrick Draw field. Samples were taken from the 4,950 to 4,965 ft depth interval. Thin section evaluation, X-ray diffraction, routine permeability and porosity, capillary pressure and wettability tests were performed to characterize the samples. Fluid flow capacity characteristics were measured during two-phase unsteady- and steady-state and three-phase steady-state relative permeability tests. Test results are presented in tables and graphs. Relative permeability results are compared with those of a 260-mD, fired Berea sandstone sample which was previously subjected to similar tests. Brine relative permeabilities were similar for the two samples, whereas oil and gas relative permeabilities for the Almond formation rock were higher at equivalent saturation conditions compared to Berea results. Most of the tests described in this report were conducted at 74{degrees}F laboratory temperature. Additional tests are planned at 150{degrees}F temperature. Equipment and procedural modifications to perform the elevated temperature tests are described.

  17. Adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA

    SciTech Connect

    Satik, Cengiz; Walters, Mark; Horne, Roland N.

    1996-01-24

    This paper reports on a continuing experimental effort to characterize the adsorption behavior of rocks from The Geysers steam field in California. We show adsorption results obtained for 36 rock samples. All of the adsorption isotherms plotted on the same graph exhibit an envelope of isotherms. The minimum and the maximum values of the slope (or rate of adsorption) and of the magnitude within this envelope of isotherms belonged to the UOC-1 (felsite) and NCPA B-5 (serpentine) samples. The values of surface area and porosity, and pore size distribution for 19 of the samples indicated a very weak correlation with adsorption. An interpretation of the pore size distributions and the liquid saturation isotherms suggests that the change in the slope and the magnitude of the adsorption isotherms within the envelope is controlled primarily by the physical adsorption mechanism instead of capillary condensation. Grain-size and framework grain to matrix ratio are found to be insufficient to characterize this adsorption behavior. An accurate identification of the mineralogy of the samples will be essential to complete this analysis.

  18. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    SciTech Connect

    McPherson, Brian J.; Pan, Feng

    2014-09-24

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  19. Time-dependent deformation of gas shales - role of rock framework versus reservoir fluids

    NASA Astrophysics Data System (ADS)

    Hol, Sander; Zoback, Mark

    2013-04-01

    Hydraulic fracturing operations are generally performed to achieve a fast, drastic increase of permeability and production rates. Although modeling of the underlying short-term mechanical response has proven successful via conventional geomechanical approaches, predicting long-term behavior is still challenging as the formation interacts physically and chemically with the fluids present in-situ. Recent experimental work has shown that shale samples subjected to a change in effective stress deform in a time-dependent manner ("creep"). Although the magnitude and nature of this behavior is strongly related to the composition and texture of the sample, also the choice of fluid used in the experiments affects the total strain response - strongly adsorbing fluids result in more, recoverable creep. The processes underlying time-dependent deformation of shales under in-situ stresses, and the long-term impact on reservoir performance, are at present poorly understood. In this contribution, we report triaxial mechanical tests, and theoretical/thermodynamic modeling work with the aim to identify and describe the main mechanisms that control time-dependent deformation of gas shales. In particular, we focus on the role of the shale solid framework versus the type and pressure of the present pore fluid. Our experiments were mainly performed on Eagle Ford Shale samples. The samples were subjected to cycles of loading and unloading, first in the dry state, and then again after equilibrating them with (adsorbing) CO2 and (non-adsorbing) He at fluid pressures of 4 MPa. Stresses were chosen close to those persisting under in-situ conditions. The results of our tests demonstrate that likely two main types of deformation mechanisms operate that relate to a) the presence of microfractures as a dominating feature in the solid framework of the shale, and b) the adsorbing potential of fluids present in the nanoscale voids of the shale. To explain the role of adsorption in the observed

  20. Discrimination of reservoir dolostone within tight limestone using rock physics modeling and pre-stack parameters

    NASA Astrophysics Data System (ADS)

    Park, G.; Lee, B.; Lee, G.

    2013-12-01

    Dolostones may be differentiated from limestones based on various pre-stack seismic parameters as they are denser and faster. However, because the seismic properties of a rock are affected strongly by porosity, porous dolostones may not be significantly denser and faster than limestones. We computed various pre-stack parameters (P-impedance, S-impedance, Vp/Vs, Poisson's ratio, Lamé constants) for tight limestones using the Vp and density logs from a well that penetrated Jurassic carbonate and the Vs log, constructed from the empirical relationships of Vp and Vs. The pre-stack parameters of dolostones with 1% - 40% porosity were estimated based on the bulk and shear moduli and bulk densities computed from the formulas proposed by various workers, including Gassmann equations. Crossplots of the pre-stack parameters show that the Lamé constants (λ, μ) are most effective in differentiating dolostones from limestones. In particular, the λρ -μρ vs. μρ crossplot shows a clear-cut separation of the porous dolostones and tight limestones; the porous dolostones plot exclusively to the left of the λρ -μρ of about 25 GPa.

  1. Grain-Scale Deformation in a Weakly-Cemented Analogue Reservoir Rock

    NASA Astrophysics Data System (ADS)

    DiGiovanni, A. A.; Fredrich, J. T.

    2001-12-01

    High-resolution field-emission scanning electron microscopy was performed to elucidate the micromechanics of compaction in Castlegate sandstone deformed in the laboratory under triaxial compression loading conditions. The microscopy reveals that compaction of this weakly-cemented sandstone proceeds in two phases: an initial stage of porosity decrease that is accomplished by breakage of grain contacts and grain rotation, and a second stage of further porosity reduction that is accommodated by intense grain breakage and rotation. This compaction sequence contrasts with that observed by other workers in more strongly indurated rocks such as Berea sandstone, where grain fragmentation coincides with the onset of inelastic compaction. Quantitative stereological measurements corroborate the decrease in intergrain spacing and increase in grain boundary contact area that the microstructural observations suggest occur during the first stage of compaction. In the second stage of compaction, image analysis further reveals a five-fold increase in the surface area per unit volume resulting from extensive microfracturing that occurs with a preferred orientation parallel to the primary loading axis. Acoustic emission (AE) detection and location measured during the experiment correlate with the microscopic observations in that rotation and breakage of grain contacts in the first compaction stage is marked by diffuse AE events whereas the regions of intense grain breakage and subsequent compaction are indicated by intensely concentrated AE. High-resolution (1.7 and 3.3 micron) synchrotron computed microtomography experiments performed on millimeter sized cores at the GSECARS beamline at the Advanced Photon are also analyzed and compared with the data obtained from the high-resolution scanning electron microscopy. This work was performed at Sandia National Laboratories funded by the U.S. Department of Energy under Contract DE-AC04-94AL85000.

  2. The Impacts of Rock Composition and Properties on the Ability to Stimulate Production of Ultra-Low Permeability Oil and Gas Reservoirs Through Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Sone, H.; Kohli, A. H.; Heller, R. J.

    2014-12-01

    In this talk, we present the results of several research projects investigating how rock properties, natural fractures and the state of stress affect the success of hydraulic fracturing operations during stimulation of shale gas and tight oil reservoirs. First, through laboratory measurements on samples of the Barnett, Eagle Ford, Haynesville and Horn River shales, we discuss pore structure, adsorption and permeability as well as the importance of clay content on the viscoplastic behavior of shale formations. Second, we present several lines of evidence that indicates that the principal way in which hydraulic fracturing stimulates production from shale gas reservoirs is by inducing slow slip on pre-existing fractures and faults, which are not detected by conventional microseismic monitoring, Finally, we discuss how hydraulic fracturing can be optimized in response to variations of rock properties.

  3. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect

    James R. Wood; William B. Harrison

    2001-04-01

    Among the accomplishments of this past reporting period are obtaining a complete landgrid for the State of Michigan and the digital processing of the high and medium resolution DEM files. We can now extract lineations from the DEMs automatically using machine algorithms. One tentative result that may be very significant is that we may be seeing manifestations of buried structures in the DEM data. We are looking at a set of extracted lineations in the northern lower peninsula that appear to follow the trend of the pinnacle reefs (Silurian) which had relief approaching 300 feet but are now buried to greater than 3000 feet. We have also extracted the dolomite alteration data from all fields and can show that this is mainly confined to the basin center. It may be related to the paleo-rift suggested by the paleomagnetic and gravity data. As reported last time, the acquisition of a 3D seismic dataset over Stoney Point Field from Marathon Oil Company, is complete and attention is being devoted to incorporating the data into the project database and utilizing it. The surface lineation study is focusing on Stoney Point Field using the high-resolution DEM data and plotting of subsurface formation top data for the main reservoir, the Trenton (Ordovician) Formation. The fault pattern at Stoney Point is well documented by Marathon and we are looking for any manifestations on the surface. The main project database is now about as complete as it will be for this project. The main goals have been met, although the scanning of the paper records will have to continue beyond the scheduled end of the project due to the sheer number of records and the increased donations of data from companies as word spread of the project. One of the unanticipated benefits of the project has been the cooperation of gas and oil companies that are or were active in the Michigan Basin in donating material to the project. Both Michigan Tech and Western Michigan continue to receive donations at an

  4. Effect of Salinity on Effective CO2 Permeability in Reservoir Rock Determined by Pressure Transient Methods: an Experimental Study on Hawkesbury Sandstone

    NASA Astrophysics Data System (ADS)

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2015-09-01

    The determination of effective carbon dioxide (CO2) permeability in reservoir rock and its variation is of great interest in the process of CO2 sequestration in deep saline aquifers, as CO2 sequestration-induced permeability alternations appear to create major problems during the CO2 injection process. The main objective of this study is to investigate the effect of salinity on the effective CO2 permeability of reservoir rock under different injection pressures. A series of high-pressure tri-axial experiments was, therefore, performed to investigate the effect of salinity on effective CO2 permeability in Hawkesbury sandstone under various brine concentrations. The selected brine concentrations were 0, 10, 20, and 30 % sodium chloride (NaCl) by weight and the experiments were conducted for a range of CO2 injection pressures (2, 4, 6, 8, 10, and 12 MPa) at a constant confinement of 20 MPa and a temperature of 35 °C, respectively. According to the results, the degree of salinity of the aquifer's pore fluid plays a vital role in the effective CO2 permeability variation which occurs with CO2 injection, and the effective permeability decreases with increasing salinity in the range of 0-30 % of NaCl. Interestingly, in dry reservoir rock samples, the phase transition of the injection of CO2 from gas to super-critical condition caused a sudden reduction of CO2 permeability, related to the slip flow effect which occurs in gas CO2. Transfer into vapor or super-critical CO2 causes this slip flow to be largely reduced, reducing the reservoir permeability for CO2 movement in dry reservoir rock samples. However, this behavior was not observed for water- and brine-saturated samples, and an increasing trend of effective CO2 permeability was observed with increasing injection pressure. A detailed chemical analysis was then conducted to understand the physical phenomenon causing the salinity effect on effective CO2 permeability using scanning electron microscopy analyses. Such

  5. Well-log signatures of alluvial-lacustrine reservoirs and source rocks, Lagoa-Feia Formations, Lower Cretaceous, Campos Basin, offshore Brazil

    SciTech Connect

    Abrahao, D.; Warme, J.E.

    1988-01-01

    The Campos basin is situated in offshore southeastern Brazil. The Lagoa Feia is the basal formation in the stratigraphic sequence of the basin, and was deposited during rifting in an evolving complex of lakes of different sizes and chemical characteristics, overlying and closely associated with rift volcanism. The stratigraphic sequence is dominated by lacustrine limestones and shales (some of them organic-rich), and volcaniclastic conglomerates deposited on alluvial fans. The sequence is capped by marine evaporites. In the Lagoa Feia Formation, complex lithologies make reservoirs and source rocks unsuitable for conventional well-log interpretation. To solve this problem, cores were studied and the observed characteristics related to log responses. The results have been extended through the entire basin for other wells where those facies were not cored. The reservoir facies in the Lagoa Feia Formation are restricted to levels of pure pelecypod shells (''coquinas''). Resistivity, sonic, neutron, density, and gamma-ray logs were used in this work to show how petrophysical properties are derived for the unconventional reservoirs existing in this formation. The same suite of logs was used to develop methods to define geochemical characteristics where source rock data are sparse in the organic-rich lacustrine shales of the Lagoa Feia Formation. These shales are the main source rocks for all the oil discovered to date in the Campos basin.

  6. Carbon dioxide-brine-rock interactions in a carbonate reservoir capped by shale: Experimental insights regarding the evolution of trace metals

    NASA Astrophysics Data System (ADS)

    Marcon, Virginia; Kaszuba, John P.

    2015-11-01

    Trace metal behavior provides important information regarding fluid-rock interactions in CO2-charged water-rock systems and constrains potential environmental impacts. Hydrothermal experiments evaluated mechanisms of release, evolution, and subsequent scavenging of trace metals at 160 °C and 25 MPa. Experiments were designed to simulate two theoretical locations within a CO2-charged reservoir: (1) at the contact between a shale caprock and carbonate reservoir and (2) deeper within a carbonate reservoir, away from the shale. CO2 injection into brine (ionic strength = 3.3 mol/kg) decreased the pH by 1-2 units; concomitant mineral dissolution elevated Ba, Co, Cu, Pb, and V concentrations in the brine at both simulated locations within the reservoir. Additionally, Fe, Ni, and Zn concentrations increased in the mixed shale-carbonate experiment; Ba and Cd concentrations increased in the carbonate-only experiment. However, concentrations of Fe, Ba, Cr, and Pb in the mixed shale-carbonate experiment and Cr, Pb, V, and Zn within the carbonate-only experiment subsequently decreased as a result of precipitation of sulfides (Fe and Co sulfides), oxides, and clays. At the conclusion of the experiments, Fe, Pb, and Cr exceeded U.S. Environmental Protection Agency maximum contaminant limits in both experiments. In addition, zinc exceeded the limits at the simulated shale-carbonate contact and Ba, Cu, and Cd exceeded the limits in the simulated carbonate reservoir. Experimentally observed trends of decreasing Fe and Pb concentrations suggest these trace metals become less of an environmental concern as CO2-water-rock reactions evolve with time. The shale caprock plays an active role in trace metal evolution. The shale is a large source of metals, but also provides metal sinks such as primary clays, secondary smectites, and other silicates that are not found deeper within the carbonate reservoir, away from the shale. This potential mechanism of self-healing mitigates, but does not

  7. Is there any impact of CO2 injection on sandstone reservoir rocks? - Insights from a field experiment at the CO2-storage site of Ketzin (Germany)

    NASA Astrophysics Data System (ADS)

    Bock, Susanne; Pudlo, Dieter; Meier, Angela; Förster, Hans-Jürgen; Förster, Andrea; Gaupp, Reinhard

    2013-04-01

    The importance and viability of Carbon Capture and Storage (CCS) is an issue of intense discussion both in the science community and the public society. The effects of CO2 on formation fluids, minerals, and perspective reservoir rocks have been investigated by several laboratory experiments, but studies on the long-term CO2-impregnation of rocks are sparse. With the installation of a pilot CO2-injection site at Ketzin, near to the German capital of Berlin, the impact of CO2 on reservoir sandstones is investigated at field scale. Ketzin is located on the top of an anticline structure, which belongs to a double anticline formed during several episodes of halokinetic uprise of Permian salt. The storage reservoir belongs to the Stuttgart Formation (Keuper, Upper Triassic) and consists of two main sedimentary facies types. Channel sandstones (CH) formed by meandering river systems are considered as most perspective reservoir rocks for CO2 storage. For storage considerations the second type of facies, characterized by overbank fine (OF) siltstones, is less important. These sediments exhibit only low porosity and permeability. During field operation of four years about 61,000 tons of almost pure CO2 were injected. This contribution presents preliminary results of an ongoing study of petrographic-mineralogical and geochemical features of rocks which suffered CO2 attack during this period of time. Due to the high porosity and permeability, which promote gas-brine-rock interactions, analytical investigations were focused on the reservoir sandstones of the CH facies. In general such reactions will strongly affect reservoir quality. These processes are mainly controlled by fluid and rock chemistry and associated pH- and Eh-conditions. On one side, the precipitation of mineral phases (esp. pore-filling cements) can induce porosity and permeability deterioration, which will retard further fluid flow and an expansion of the CO2 plume. On the other side, due to the dissolution of

  8. Extent and effect of fault-controlled CO2 alteration on reservoir and seal rocks and implications for geomechanical failure at Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Dewers, T. A.

    2013-12-01

    A structural diagenesis approach involving the coupled chemical and mechanical properties of reservoir and seal rocks is necessary for assessing the short and long term security of sequestered CO2. Current numerical models used to model subsurface CO2 reservoirs do not account for such processes, and typically these use only linear-elastic geomechanical properties, ignoring failure parameters such as fracture toughness. In addition, numerical models normally lack constraints on long-term, geologic time scales. Study of fossil and active CO2 seeps found at Little Grand Wash and Salt Wash fault systems near Green River, Utah are invaluable to assess long-term storage and leakage behavior in natural systems. Observations from the site and geomechanical testing also indicate that fracture systems play a crucial role in leakage, and the extent of fracturing and CO2-related alteration extends from tens to over one-hundred meters. Failure parameters of reservoir and seal rocks under variable environmental conditions, such as fracture toughness should also be quantified as they likely play a role in fracturing and leakage. Subcritical fracture growth may also be involved. Transects across the Little Grand Wash fault show distinct mineralogical and isotopic trends related to alteration by CO2-rich fluids. Calcite is the dominant precipitated mineral, both in reservoir (sandstone) and seal (siltstone & mudrock) lithologies. Precipitated calcite is isotopically distinct and observed in bulk rock isotopic trends. Fracture toughness testing using the short rod method indicates that CO2-related alteration of rocks exposed at the field site has weakened one reservoir lithology by half (0.57 versus 0.27 MPa√m). A full suite of lithologies are being tested and compared with the double torsion test method under ambient air conditions. These same samples are also being tested in environmental conditions more like those encountered in a CO2 sequestration scenario. These data can and

  9. Fracture corridors as seal-bypass systems in siliciclastic reservoir-cap rock successions: Field-based insights from the Jurassic Entrada Formation (SE Utah, USA)

    NASA Astrophysics Data System (ADS)

    Ogata, Kei; Senger, Kim; Braathen, Alvar; Tveranger, Jan

    2014-09-01

    Closely spaced, sub-parallel fracture networks contained within localized tabular zones that are fracture corridors may compromise top seal integrity and form pathways for vertical fluid flow between reservoirs at different stratigraphic levels. This geometry is exemplified by fracture corridors found in outcrops of the Jurassic Entrada Formation in Utah (USA). These fracture corridors exhibit discolored (bleached) zones, interpreted as evidence of ancient fracture-enhanced circulation of reducing fluids within an exhumed siliciclastic reservoir-cap rock succession. Extensive structural and stratigraphic mapping and logging provided fracture data for analysis with respect to their occurrence and relationships to larger faults and folds. Three types of fracture corridors, representing end-members of a continuum of possibly interrelated structures were identified: 1) fault damage zone including segment relays; 2) fault-tip process zone; and 3) fold-related crestal-zone fracture corridors. The three types exhibit intrinsic orientations and patterns, which in sum define a local- to regional network of inferred vertical and lateral, high-permeability conduits. The results from our analysis may provide improved basis for the evaluation of trap integrity and flow paths across the reservoir-cap rock interface, applicable to both CO2 storage operations and the hydrocarbon industry.

  10. Petrophysical examination of CO₂-brine-rock interactions-results of the first stage of long-term experiments in the potential Zaosie Anticline reservoir (central Poland) for CO₂ storage.

    PubMed

    Tarkowski, Radosław; Wdowin, Magdalena; Manecki, Maciej

    2015-01-01

    The objective of the study was determination of experiment-induced alterations and changes in the properties of reservoir rocks and sealing rocks sampled from potential reservoir for CO₂. In the experiment, rocks submerged in brine in specially constructed reactors were subjected to CO₂ pressure of 6 MPa for 20 months at room temperature. Samples of Lower Jurassic reservoir rocks and sealing rocks (sandstones, claystones, and mudstones) from the Zaosie Anticline (central Poland) were analysed for their petrophysical properties (specific surface area, porosity, pore size and distribution) before and after the experiment. Comparison of the ionic composition the brines before and after the experiment demonstrated an increase in total dissolved solids as well as the concentration of sulphates and calcium ions. This indicates partial dissolution of the rock matrix and the cements. As a result of the reaction, the properties of reservoir rocks did not changed significantly and should not affect the process of CO₂ storage. In the case of the sealing rocks, however, the porosity, the framework density, as well as the average capillary and threshold diameter increased. Also, the pore distribution in the pore space changed in favour of larger pores. The reasons for these changes could not be explained by petrographic characteristics and should be thoroughly investigated. PMID:25519873

  11. Reservoir rock integrity of the Ketzin pilot storage site (Germany) during long-term CO2-exposure experiments - Mineralogical, petrophysical and geochemical modeling results

    NASA Astrophysics Data System (ADS)

    Fischer, S.; Liebscher, A.; Zemke, K.; De Lucia, M.; Ketzin Team

    2012-04-01

    In order to investigate CO2-brine-rock interactions occurring at the Ketzin pilot storage site, core samples of the siliciclastic reservoir rock were exposed to pure CO2 and synthetic reservoir brine at simulated in-situ P-T conditions of 5 MPa and 40 °C. Autoclaves were opened and rock and fluid samples taken after 15, 21, 24 and 40 months, respectively. The samples were analysed for mineralogical and chemical composition and compared to baseline data of untreated samples. XRD data with Rietveld refinement show decreasing weight percentages for analcime, chlorite, hematite and illite. While plagioclase as well as K-feldspar both do not reveal a coherent trend over time, quartz exhibits increasing weight percentages in the same interval. On freshly broken rock fragments corrosion textures were found on plagioclase, K-feldspar and anhydrite surfaces of CO2-treated samples. BSE images of the respective samples indicate (intensified) alterations of feldspar minerals. EMPA data display a change in plagioclase composition from intermediate to sodium-rich and albite endmember compositions during CO2 exposure. Compared to the synthetic brine used for the experiments, sodium, magnesium and chloride concentrations increased slightly, while potassium, calcium and sulfate concentrations significantly increased. Potassium and calcium even exceed reservoir brine concentration levels. Experimental observations were reproduced using the reactive geochemical modeling code Phreeqc-2. The mineralogical and geochemical measurements imply preferred dissolution of calcium out of plagioclase next to dissolution of K-feldspar and anhydrite. Petrophysical data show tendentially increasing porosities and permeabilities that also suggest mineral dissolution during the experiments. Due to the heterogeneous character of the Stuttgart Formation it is often difficult to distinguish between natural, lithostratigraphic variability and CO2-related changes. Assuming thermodynamic equilibrium

  12. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  13. Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Aquilina, L.; Pauwels, H.; Genter, A.; Fouillac, C.

    1997-10-01

    Saline fluids have been collected in the Rhine Graben over the last two decades, both from the Triassic sandstone aquifer and the granitic basement down to a depth of 3500m. Their salinities and location are compared in order to distinguish the respective influences of temperature and host-rock mineralogy in the water-rock interaction processes. The comparison shows that sulphates in the sedimentary formations were dissolved by the fluids, which also led to Br enrichment. Mica dissolution has strongly increased the Rb and Cs contents, which then provide an indication of the degree of water-rock interaction. The Sr isotopic ratios are used to compare the fluids with the granite minerals. Two relationships are revealed for the fluids in the sandstone and the granite, one related to widespread mica dissolution, which could have affected both the Buntsandstein and the granite, and the other to subsequent plagioclase dissolution, which is observed only in the granite. Computations showed that 12.5g of mica and 1.658 of plagioclase per liter of fluid have been dissolved. The nature of these two relationships suggests two different evolutions for the fluids and the individualization of the two reservoirs during the graben's history. The cation concentrations are mainly controlled by temperature, and are independent of the type of host rock. Equilibrium with the rock mainly caused Ca and K concentration variations, which has induced clear CaK and Ca-δ 18O, K-δ 18O correlations. Geothermometric computations indicate that with increasing depth, the cations, the silica and the δ 18O(SO 4) geothermometers evolve towards a value close to 230δC. This demonstrates the existence of a hot reservoir in the granite of the graben, at a depth estimated at 4.5-5 km.

  14. Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir

    SciTech Connect

    Aquilina, L.; Pauwels, H.; Genter, A.; Fouillac, C.

    1997-10-01

    Saline fluids have been collected in the Rhine Graben over the last two decades, both from the Triassic sandstone aquifer and the granitic basement down to a depth of 3500m. Their salinities and location are compared in order to distinguish the respective influences of temperature and host-rock mineralogy in the water-rock interaction processes. The comparison shows that sulphates in the sedimentary formations were dissolved by the fluids, which also led to Br enrichment. Mica dissolution has strongly increased the Rb and Cs contents, which then provide an indication of the degree of water-rock interaction. The Sr isotopic ratios are used to compare the fluids with the granite minerals. Two relationships are revealed for the fluids in the sandstone and the granite, one related to widespread mica dissolution, which could have affected both the Buntsandstein and the granite, and the other to subsequent plagioclase dissolution, which is observed only in the granite. Computations showed that 12.5g of mica and 1.65g of plagioclase per liter of fluid have been dissolved. The nature of these two relationships suggests two different evolutions for the fluids and the individualization of the two reservoirs during the graben`s history. The cation concentrations are mainly controlled by temperature, and are independent of the type of host rock. Equilibrium with the rock mainly caused Ca and K concentration variations, which has induced clear Ca-K and Ca-{delta}{sup 18}O, K-{delta}{sup 18}O correlations. Geothermometric computations indicate that with increasing depth, the cations, the silica and the {delta}{sup 18}O (SO{sub 4}) geothermometers evolve towards a value close to 230{degrees}C. This demonstrates the existence of a hot reservoir in the granite of the graben, at a depth estimated at 4.5-5 km. 59 refs., 11 figs., 6 tabs.

  15. Velocity measurements in reservoir rock samples from a limestone unit using various pore fluids, and integration with well logs and seismic data

    NASA Astrophysics Data System (ADS)

    Purcell, Christopher C.

    One of the most promising methods proposed to mitigate excess global CO2 is carbon sequestration, a process in which CO2 is pressurized and injected into geologic formations. A technical challenge surrounding the geologic sequestration of CO2 is tracking the movement of the fluids pumped underground. Monitoring, verification and accounting activities related to CO2 storage are important for assuring that sequestered CO2 does not escape to the surface. Tracking this carbon dioxide can be considerably aided by reflection seismic-based detection methods. This thesis employs lab scale velocity measurements of core samples, under in situ reservoir pressure and temperature conditions, combined with multiple 3D reflection seismic surveys, to effectively track the movements of CO2 after injection. The National Energy Technology Laboratory (NETL) of the United States Department of Energy began to participate in research of an enhanced oil recovery project including the injection of CO2 deep into a reservoir structure, repeat reflection seismic surveys, collection of well logs, and rock physics analysis of sample core material. Our study is concentrated on a small area of this field around the injection site. At this site, hydrocarbons were previously moved via water injection. We obtained ultrasonic elastic wave velocity measurements that were conducted under several different saturation scenarios, including CO2 saturated samples, so a quantification of the conditions in different parts of the reservoir could be determined. This approach can help to characterize what is taking place inside the reservoir. Core-scale velocity measurements under in situ conditions allow us to predict changes in future well log or seismic surveys. The large amounts of CO2 accumulated over the past four decades in this reservoir give us a real world example of how an EOR site matures. Combining core scale, well log scale, and seismic scale measurements allows a better understanding of the

  16. Rock Physics Interpretation of P-Wave Q and Velocity Structure, Geology, Fluids and Fractures at the Southeast Portion of The Geysers Geothermal Reservoir

    SciTech Connect

    Berge, P; Hutchings, L; Wagoner, J; Kasameyer, P

    2001-04-06

    We examine how quantitative rock physics models, such as effective medium theories, can improve the interpretation of seismic parameters and material and fluid properties at The Geysers. We use effective medium theories to estimate effects of fractures on velocities for The Geysers rocks. We compare theoretical velocity estimates to laboratory measurements from the literature and our seismic velocity values from 1992 earthquake data. We approximate the reservoir as being homogeneous in mineral composition, with a constant density of fractures whose total void ratio is reduced by lithostatic pressure. Thus, we expect low velocities near the surface, increasing with depth up to the values observed in the lab on intact samples, 5.5 - 5.7 km/sec. We use a one-dimensional inversion of P-waves to obtain an ''expected'' P-wave velocity (Vp) and attenuation (Qp) relation as a function of depth for The Geysers rocks. We then use a three-dimensional Vp and Qp inversion to find anomalous zones within the reservoir. We find portions with ''high'' Vp and Qp, high Vp and low Qp, and low Vp and low Qp. We interpret the regions with high Vp and Qp to be relatively less fractured, and the regions with low Vp and Qp to be significantly fractured. The high V and Q anomaly is centered on the zone of greatest pressure drop, and is mostly within the shallowest part of the felsite. The anomalous zones within the greywacke reservoir are on either side of the felsite, in areas of more moderate pressure depletion. More work is required to interpret the significance of these observations.

  17. Experimental study on rock-water interaction due to CO2 injection under in-situ P-T condition of the Altmark gas reservoir, Germany

    NASA Astrophysics Data System (ADS)

    Huq, F.; Blum, P.; Nowak, M.; Haderlein, S.; Grathwohl, P.

    2012-04-01

    CO2 sequestration in depleted gas reservoir is an economically feasible option to mitigate global warming. The Altmark gas reservoir, located in the western part of the northeast German basin, was selected for enhanced gas recovery (EGR) by injecting CO2. Under reservoir conditions (50 bars and 125°C), the injected CO2 has very high solubility leading to subsequent dissolution and precipitation of minerals of the surrounding rock matrix. Therefore, the main objective of the current study is to investigate the geochemical changes in fluid composition due to dissolution of minerals under controlled laboratory conditions. Dry sandstone sample from the Altmark reservoir was mounted in an autoclave system and flushed by a pre-equilibrated mixture of water saturated with CO2 at a constant flow rate at 50 bars and 125°C. The experiment was conducted for 100 hours during which fluid samples were collected at regular intervals and analyzed by Ion Chromatography (IC) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). pH was also measured in partially de-gassed samples. Fluid analysis showed an increased concentration of Ca and SO4 at the beginning of the reaction time indicating the early dissolution of anhydrite. However, the Ca/SO4 molar ratio (>1) proved the dissolution of both calcite and anhydrite. The source of Na and K could be the dissolution of feldspars (albite and K-feldspar). Low concentrations of these two elements reflect the lower solubility and slow dissolution kinetics of feldspar minerals. Moreover, trace amounts of Mn, Mg, Zn, Cu and Fe might be derived from the dissolution of trace minerals in the sandstone. Besides, thermodynamic calculations of mineral saturation indices enabled an evaluation of the CO2-water-rock interactions and highlighted the dissolution of the Ca-bearing minerals in the studied solution.

  18. Chemical, mineralogical and molecular biological characterization of the rocks and fluids from a natural gas storage deep reservoir as a baseline for the effects of geological hydrogen storage

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Kasina, Monika; Weigt, Jennifer; Merten, Dirk; Pudlo, Dieter; Würdemann, Hilke

    2014-05-01

    Planned transition to renewable energy production from nuclear and CO2-emitting power generation brings the necessity for large scale energy storage capacities. One possibility to store excessive energy produced is to transfer it to chemical forms like hydrogen which can be subsequently injected and stored in subsurface porous rock formations like depleted gas reservoirs and presently used gas storage sites. In order to investigate the feasibility of the hydrogen storage in the subsurface, the collaborative project H2STORE ("hydrogen to store") was initiated. In the scope of this project, potential reactions between microorganism, fluids and rocks induced by hydrogen injection are studied. For the long-term experiments, fluids of natural gas storage are incubated together with rock cores in the high pressure vessels under 40 bar pressure and 40° C temperature with an atmosphere containing 5.8% He as a tracer gas, 3.9% H2 and 90.3% N2. The reservoir is located at a depth of about 2 000 m, and is characterized by a salinity of 88.9 g l-1 NaCl and a temperature of 80° C and therefore represents an extreme environment for microbial life. First geochemical analyses showed a relatively high TOC content of the fluids (about 120 mg l-1) that were also rich in sodium, potassium, calcium, magnesium and iron. Remarkable amounts of heavy metals like zinc and strontium were also detected. XRD analyses of the reservoir sandstones revealed the major components: quartz, plagioclase, K-feldspar, anhydrite and analcime. The sandstones were intercalated by mudstones, consisting of quartz, plagioclase, K-feldspar, analcime, chlorite, mica and carbonates. Genetic profiling of amplified 16S rRNA genes was applied to characterize the microbial community composition by PCR-SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results indicate the presence of microorganisms belonging to the phylotypes alfa-, beta- and gamma

  19. Effects of fault-controlled CO2 alteration on mineralogical and geomechanical properties of reservoir and seal rocks, Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Eichhubl, P.; Urquhart, A.; Dewers, T. A.

    2012-12-01

    An understanding of the coupled chemical and mechanical properties of reservoir and seal units undergoing CO2 injection is critical for modeling reservoir behavior in response to the introduction of CO2. The implementation of CO2 sequestration as a mitigation strategy for climate change requires extensive risk assessment that relies heavily on computer models of subsurface reservoirs. Numerical models are fundamentally limited by the quality and validity of their input parameters. Existing models generally lack constraints on diagenesis, failing to account for the coupled geochemical or geomechanical processes that affect reservoir and seal unit properties during and after CO2 injection. For example, carbonate dissolution or precipitation after injection of CO2 into subsurface brines may significantly alter the geomechanical properties of reservoir and seal units and thus lead to solution-enhancement or self-sealing of fractures. Acidified brines may erode and breach sealing units. In addition, subcritical fracture growth enhanced by the presence of CO2 could ultimately compromise the integrity of sealing units, or enhance permeability and porosity of the reservoir itself. Such unknown responses to the introduction of CO2 can be addressed by laboratory and field-based observations and measurements. Studies of natural analogs like Crystal Geyser, Utah are thus a critical part of CO2 sequestration research. The Little Grand Wash and Salt Wash fault systems near Green River, Utah, host many fossil and active CO2 seeps, including Crystal Geyser, serving as a faulted anticline CO2 reservoir analog. The site has been extensively studied for sequestration and reservoir applications, but less attention has been paid to the diagenetic and geomechanical aspects of the fault zone. XRD analysis of reservoir and sealing rocks collected along transects across the Little Grand Wash Fault reveal mineralogical trends in the Summerville Fm (a siltstone seal unit) with calcite and

  20. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  1. Carbonate/clay-mineral relationships and the origin of protodolomite in L-2 and L-3 carbonate reservoir rocks of the Bombay high field, India

    NASA Astrophysics Data System (ADS)

    Gundu Rao, C.

    1981-07-01

    This paper consists of two parts. The first deals with carbonate/clay-mineral relationships and the second with the origin of protodolomite in L-2 and L-3 carbonate reservoir rocks of the Bombay High Oil Field, India. Six carbonate/clay-mineral assemblages, viz. (1) calcite-protodolomite-chlorite-kaolinite, (2) calcite-protodolomite-montmorillonite-kaolinite, (3) calcite-montmorillonite-kaolinite, (4) calcite-protodolomite-montmorillonite, (5) calcite-protodolomite-vermiculite, and (6) calcite-montmorillonite-chlorite-kaolinite are recognized among the L-2 and L-3 carbonate reservoir rocks of the offshore Bombay High Oil Field, India. These form disequilibrium assemblages on a Al 2O 3 (kaolinite), CaO (calcite) and MgO (magnesite) facies diagram. Therefore, the clay minerals are terrigenous in origin and have at least contributed the magnesium needed for the formation of protodolomite. The protodolomite seen in L-2 and L-3 rocks is limpid, water-clear, non-zoned, and inclusion-free with an average grain diameter of 7-10 μm and on the X-ray chart shows a consistent (104) peak between 2.93 Å to 2.90 Å ' d' spacing, reading 30-40 mole% MgCO 3 solid solution in calcite. By comparison with other types of dolomite, viz (1) replacement, (2) evaporite, (3) sabkha, and (4) schizohaline, the present protodolomite seems to be of biogenic origin and in all probability appears to be a new form of dolomite to be reported from an ancient subsurface carbonate formation.

  2. Modeling brine-rock interactions in an enhanced geothermal systemdeep fractured reservoir at Soultz-Sous-Forets (France): a joint approachusing two geochemical codes: frachem and toughreact

    SciTech Connect

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz,Francois-D.; Pruess, Karsten.

    2006-12-31

    The modeling of coupled thermal, hydrological, and chemical (THC) processes in geothermal systems is complicated by reservoir conditions such as high temperatures, elevated pressures and sometimes the high salinity of the formation fluid. Coupled THC models have been developed and applied to the study of enhanced geothermal systems (EGS) to forecast the long-term evolution of reservoir properties and to determine how fluid circulation within a fractured reservoir can modify its rock properties. In this study, two simulators, FRACHEM and TOUGHREACT, specifically developed to investigate EGS, were applied to model the same geothermal reservoir and to forecast reservoir evolution using their respective thermodynamic and kinetic input data. First, we report the specifics of each of these two codes regarding the calculation of activity coefficients, equilibrium constants and mineral reaction rates. Comparisons of simulation results are then made for a Soultz-type geothermal fluid (ionic strength {approx}1.8 molal), with a recent (unreleased) version of TOUGHREACT using either an extended Debye-Hueckel or Pitzer model for calculating activity coefficients, and FRACHEM using the Pitzer model as well. Despite somewhat different calculation approaches and methodologies, we observe a reasonably good agreement for most of the investigated factors. Differences in the calculation schemes typically produce less difference in model outputs than differences in input thermodynamic and kinetic data, with model results being particularly sensitive to differences in ion-interaction parameters for activity coefficient models. Differences in input thermodynamic equilibrium constants, activity coefficients, and kinetics data yield differences in calculated pH and in predicted mineral precipitation behavior and reservoir-porosity evolution. When numerically cooling a Soultz-type geothermal fluid from 200 C (initially equilibrated with calcite at pH 4.9) to 20 C and suppressing mineral

  3. Variations of the petrophysical properties of rocks with increasing hydrocarbons content and their implications at larger scale: insights from the Majella reservoir (Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Ruggieri, Roberta; Lipparini, Lorenzo

    2016-04-01

    Crustal processes such as deformations or faulting are strictly related to the petrophysical properties of involved rocks. These properties depend on mineral composition, fabric, pores and any secondary features such as cracks or infilling material that may have been introduced during the whole diagenetic and tectonic history of the rock. In this work we investigate the role of hydrocarbons (HC) in changing the petrophysical properties of rock by merging laboratory experiments, well data and static models focusing on the carbonate-bearing Majella reservoir. This reservoir represent an interesting analogue for the several oil fields discovered in the subsurface in the region, allowing a comparison of a wide range of geological and geophysical data at different scale. The investigated lithology is made of high porosity ramp calcarenites, structurally slightly affected by a superimposed fracture system and displaced by few major normal faults, with some minor strike-slip movements. Sets of rock specimens were selected in the field and in particular two groups were investigated: 1. clean rocks (without oil) and 2. HC bearing rocks (with different saturations). For both groups, density, porosity, P and S wave velocity, permeability and elastic moduli measurements at increasing confining pressure were conducted on cylindrical specimens at the HP-HT Laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. For clean samples at ambient pressure, laboratory porosity varies from 10 % up to 26 % and P wave velocity (Vp) spans from 4,1 km/s to 4,9 km/s and a very good correlation between Vp, Vs and porosity is observed. The P wave velocity at 100 MPa of confining pressure, ranges between 4,5 km/s and 5,2 km/s with a pressure independent Vp/Vs ratio of about 1,9. The presence of HC within the samples affects both Vp and Vs. In particular velocities increase with the presence of hydrocarbons proportionally respect to the amount of the filled

  4. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers.

    PubMed

    Rathnaweera, T D; Ranjith, P G; Perera, M S A

    2016-01-01

    Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock's flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H(+) ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer's permeability, with important practical consequences for the sequestration process. PMID:26785912

  5. Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    SciTech Connect

    G. Michael Grammer

    2006-09-30

    This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point

  6. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California

    NASA Astrophysics Data System (ADS)

    Zukin, Jeffrey G.; Hammond, Douglas E.; Teh-Lung, Ku; Elders, Wilfred A.

    1987-10-01

    minutes, indicating the potential for rapid removal of reactive isotopes fom brines. The brine is greatly enriched in 226Ra (2-3 dpm/g, about 10 4-10 5 times that of its parent 230Th), while reservoir rocks are about 10% deficient in 226Ra relative to 230Th. Material balance calculations for 2 226Ra and 18O suggest that brines reside in the reservoir for 10 2-10 3 years, that the SSGF formed 10,000-40,000 years B.P., and that porosity cannot be more than 20%.

  7. Ductile shear zones can induce hydraulically over-pressured fractures in deep hot-dry rock reservoirs: a new target for geothermal exploration?

    NASA Astrophysics Data System (ADS)

    Schrank, C. E.; Karrech, A.; Regenauer-Lieb, K.

    2014-12-01

    It is notoriously difficult to create and maintain permeability in deep hot-dry rock (HDR) geothermal reservoirs with engineering strategies. However, we predict that long-lived, slowly deforming HDR reservoirs likely contain hydraulically conductive, over-pressured fracture systems, provided that (a) the underlying lower crust and/or mantle are not entirely depleted of fluids and (b) the fracture system has not been drained into highly permeable overlying rocks. Such fracture systems could be targeted for the extraction of geothermal energy. Our prediction hinges on the notion that polycrystalline creep through matter transfer by a liquid phase (dissolution-precipitation creep) is a widespread mechanism for extracting fluids from the lower crust and mantle. Such processes - where creep cavities form during the slow, high-temperature deformation of crystalline solids, e.g., ceramics, metals, and rocks - entail the formation of (intergranular) fluid-assisted creep fractures. They constitute micron-scale voids formed along grain boundaries due to incompatibilities arising from diffusion or dislocation creep. Field and laboratory evidence suggest that the process leading to creep fractures may generate a dynamic permeability in the ductile crust, thus extracting fluids from this domain. We employed an elasto-visco-plastic material model that simulates creep fractures with continuum damage mechanics to model the slow contraction of high-heat-producing granites overlain by sedimentary rocks in 2D. The models suggest that deformation always leads to the initiation of a horizontal creep-damage front in the lower crust. This front propagates upwards towards the brittle-ductile transition (BDT) during protracted deformation where it collapses into highly damaged brittle-ductile shear zones. If the BDT is sufficiently shallow or finite strain sufficiently large, these shear zones trigger brittle faults emerging from their tips, which connect to the sub-horizontal damage

  8. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil.

    PubMed

    da Cunha, Claudia Duarte; Rosado, Alexandre S; Sebastián, Gina V; Seldin, Lucy; von der Weid, Irene

    2006-12-01

    Sixteen spore forming Gram-positive bacteria were isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. These strains were identified as belonging to the genus Bacillus using classical biochemical techniques and API 50CH kits, and their identity was confirmed by sequencing of part of the 16S rRNA gene. All strains were tested for oil degradation ability in microplates using Arabian Light and Marlin oils and only seven strains showed positive results in both kinds of oils. They were also able to grow in the presence of carbazole, n-hexadecane and polyalphaolefin (PAO), but not in toluene, as the only carbon sources. The production of key enzymes involved with aromatic hydrocarbons biodegradation process by Bacillus strains (catechol 1,2-dioxygenase and catechol 2,3-dioxygenase) was verified spectrophotometrically by detection of cis,cis-muconic acid and 2-hydroxymuconic semialdehyde, and results indicated that the ortho ring cleavage pathway is preferential. Furthermore, polymerase chain reaction (PCR) products were obtained when the DNA of seven Bacillus strains were screened for the presence of catabolic genes encoding alkane monooxygenase, catechol 1,2-dioxygenase, and/or catechol 2,3-dioxygenase. This is the first study on Bacillus strains isolated from an oil reservoir in Brazil. PMID:16896598

  9. Experimental Investigation on the Influence of High Pressure and High Temperature on the Mechanical Properties of Deep Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Mishra, Brijes; Heasley, Keith A.

    2015-11-01

    Deep and ultra-deep resources extraction has resulted in the challenge of drilling into high-pressure, high-temperature (HPHT) environments. Drilling challenges at such extreme conditions prompted NETL to develop a specialized ultra-deep drilling simulator (UDS) for investigating drill behavior in such conditions. Using the UDS apparatus, complex laboratory tests were performed on Carthage marble (Warsaw limestone) and Crab Orchard sandstone, which represent the rocks in the basins of the Tuscaloosa trend in southern Louisiana and the Arbuckle play in Oklahoma and North Texas. Additionally, numerical models of the UDS were developed for performing parametric analyses that would be impossible with the UDS alone. Subsequently, it was found that the input properties for these two rock types at such extreme pressure and temperature conditions were unavailable. Therefore, a suite of unconfined compressive strength, indirect tensile strength, and triaxial compression tests ( σ 1 > σ 2 = σ 3) were performed on Carthage marble and Crab Orchard sandstone for investigating their behavior in HPHT environments. The HPHT experiments were performed at confining pressures ranging from atmospheric to 200 MPa, and with temperatures ranging from 25 to 180 °C. The influences of confining pressure and temperature on the mechanical properties of two rocks were investigated.

  10. Reservoirs III carbonates

    SciTech Connect

    Beaumont, E.A.; Foster, N.H.

    1988-01-01

    This text is part of a three volume set on petroleum and natural gas reservoir rocks. This volume deals with carbonate rocks and their properties as they relate to oil and gas production. Papers deal specifically with depositional environments, diagenesis, and chemical and physical properties of the rock.

  11. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers

    PubMed Central

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2016-01-01

    Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock’s flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H+ ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer’s permeability, with important practical consequences for the sequestration process. PMID:26785912

  12. Analysing petrophysical parameters of reservoir rock from the Ketzin pilot site (Germany) during long-term CO2-exposure experiments under thermodynamic conditions relevant for the geological storage of CO2

    NASA Astrophysics Data System (ADS)

    Zemke, K.; Fischer, S.; Liebscher, A.; Ketzin Team

    2012-04-01

    In the present study, 7 reservoir core samples from observation well Ktzi 202 at the Ketzin pilot storage site (Germany) were experimentally exposed to pure CO2 and synthetic reservoir brine at simulated reservoir conditions of 5.5 MPa and 40°C. Reservoir rocks are immature arcosic to litharenitic sandstones of the Upper Triassic Stuttgart Formation. After 15, 21, 24, and 40 months, respectively, autoclaves were opened and rock samples were taken for petrophysical characterisation and mineralogical and microbial analyses. Brine samples were analysed with respect to organic and inorganic components. Porosity and pore radii distribution have been investigated before and after the experiments by NMR relaxation and mercury injection. NMR measurements on brine-saturated rock core plugs potentially yield valuable information on the porous structure of the rock core. The distribution of NMR-T2 values (CPMG) reflects pore sizes within the rock core. NMR pore size is a derivative of the ratio pore surface to pore volume. The pore size derived by mercury injection is an area-equivalent diameter of throats connecting the pore system. Both methods produce petrophysical parameters required for calculating storage capacity and hydraulic properties (e.g. injectivity). Measured porosity data of the experimentally treated samples together with data from additional, untreated core samples from the Ketzin wells were also compared with results from wireline porosity determinations in the wells. Based on the NMR measurements, the permeability was calculated with standard parameters for sandstones after Timur-Coates. Mercury injection data was used to calculate sandstone permeabilities after Swanson (1981) and to furthermore determine the threshold pressure. NMR and mercury injection data generally indicate increased porosities and a shift to larger pore sizes during the first months. This suggests mineral dissolution during the experiments in agreement with the observed chemical

  13. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs

    USGS Publications Warehouse

    Basu, A.R.; Wang, Junwen; Huang, Wankang; Xie, Guanghong; Tatsumoto, M.

    1991-01-01

    Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China. The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb Sr and Nd Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb 204Pb vs 206Pb 204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb 204Pb vs 206Pb 204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components-a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle

  14. Effects of mineral composition and pore structure in HC potential of reservoir rocks in the Western Foothill Belt, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, J. M.; Tsai, L. Y.

    2014-12-01

    The exploration of unconventional gas resource achieved a successful breakthrough in USA due to the innovation of hydraulic fracturing and horizontal drilling since 1995. The production of shale gas dramatically changed the energy structure and released the demand of fossil fuel in USA. Many studies about the unconventional oil-gas resource were performed worldwide especially in China, which provide very useful characterization for unconventional gas reservoirs. Since Taiwan has a strong energy demand and still highly relied on imported fossil fuel, the development of unconventional gas resource needs to be concerned. Therefore, the objective of this study is to evaluate the potential of unconventional oil-gas in Taiwan. In this study, we examine mineral composition and pore structure of Miocene oil-gas bearing strata from the Western Foothill Belt in Taiwan. Sandstone samples were collected from Cholan Fm, Yutengpin ss, Kuantaoshan ss, Shangfuchi ss, Tungkeng Fm, Guanyinshang ss and Peiliao Fm; whereas shale samples were collected from Chinshui sh and Talu sh, as well as outcropped coal sample from Nanchung Fm. The porosity, permeability, TOC, thermal maturity, and mineral composition of samples are examined after a series of geochemical experiments. Finally, after comparing the data with their gas sorption capacity, the reservoir with the strongest potential in unconventional gas resource can be identified.

  15. Magnetotelluric survey for exploration of a volcanic-rock reservoir in the Yurihara oil and gas field, Japan

    SciTech Connect

    Mitsuhata, Yuji; Matsuo, Koichi; Minegishi, Masato

    1999-03-01

    The Yurihara oil and gas field is located on the southern edge of Akita Prefecture, northeastern Japan. In this area, drilling, surface geological surveys and many seismic surveys have been used to investigate the geological structure. Wells drilled into the Nishikurosawa Basalt Group (NBG) of Miocene age found oil and gas reservoirs at depths of 1.5--2 km. Oil and gas are now being produced commercially and further exploration is required in the surrounding areas. However, since the neighboring areas are covered with young volcanic products from the Chokai volcano, and have a rough topography, the subsurface distribution of the NBG must be investigated using other methods in addition to seismic reflection. According to the well data, the resistivity of the NBG is comparatively higher than that of the overlying sedimentary formations, and therefore the magnetotelluric (MT) method is expected to be useful for the estimation of the distribution of the NBG. An MT survey was conducted along three survey lines in this area. Each line trended east-west, perpendicular to the regional geological strike, and was composed of about 25 measurement sites. Induction vectors evaluated from the magnetic field show that this area has a two-dimensional structure. The evaluated resistivity sections are in agreement with the log data. In conclusion, the authors were able to detect resistive layers (the NBG) below conductive layers. The results indicate that the NBG becomes gradually less resistive from north to south. In the center of the northern line, an uplifted resistive area is interpreted as corresponding to the reservoir. By comparison with a seismic section, the authors prove the effectiveness of the integration of seismic and MT surveys for the investigation of the morphology and internal structure of the NBG. On other survey lines, the resistive uplifted zones are interpreted as possible prospective areas.

  16. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    SciTech Connect

    Spinler, E.A.; Baldwin, B.A.

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  17. Analysis of reservoir heterogeneities due to shallowing-upward cycles in carbonate rocks of the Pennsylvanian Wahoo Limestone of Northeastern Alaska. Annual report, October 1990--September 1991

    SciTech Connect

    Watts, K.

    1992-09-01

    The primary objective of this project is to develop an integrated database to characterize reservoir heterogeneities resulting from numerous small-scale shallowing-upward cycles (parasequences) comprising the carboniferous Pennsylvanian Wahoo Limestone. The Wahoo Limestone is the upper formation of an extensive carbonate platform sequence of the Carboniferous Lisburne Group which is widely exposed in the Brooks Range and is a widespread hydrocarbon reservoir unit in the subsurface of the North Slope of Alaska. A principal goal is to determine lateral and vertical variations in the complex mosaic of carbonate facies comprising the Wahoo Limestone. This report presents the preliminary results of research accomplished by a team of specialists in carbonate petrology, biostratigraphy, and diagenesis during the 1990--1991 fiscal year.It includes a summary of regional geological framework studies, a discussion conodont analyses, an overview of diagenetic studies, a brief description of progress in computerized database development, and appendices containing some of the new data on petrographic analyses, conodont analyses, and locality and sample information. Our correlation scheme, which uses cyclic stratigraphy, biostratigraphy, and cement stratigraphy, will allow interpretation of the depositional history and paleogeographic evolution of the region. We have developed predictive facies models and will make paleogeographic maps to illustrate different stages in the history of the Wahoo carbonate ramp. Our detailed analyses of the Wahoo Limestone will provide a basis for interpreting correlative rocks in the adjacent subsurface of the coastal plain of ANWR, a potential hydrocarbon lease-sale area. In a broader sense, our work will provide an excellent generic example of carbonate shallowing-upward cycles which typify carbonate sediments.

  18. Analysis of reservoir heterogeneities due to shallowing-upward cycles in carbonate rocks of the Pennsylvanian Wahoo Limestone of Northeastern Alaska

    SciTech Connect

    Watts, K.

    1992-09-01

    The primary objective of this project is to develop an integrated database to characterize reservoir heterogeneities resulting from numerous small-scale shallowing-upward cycles (parasequences) comprising the carboniferous Pennsylvanian Wahoo Limestone. The Wahoo Limestone is the upper formation of an extensive carbonate platform sequence of the Carboniferous Lisburne Group which is widely exposed in the Brooks Range and is a widespread hydrocarbon reservoir unit in the subsurface of the North Slope of Alaska. A principal goal is to determine lateral and vertical variations in the complex mosaic of carbonate facies comprising the Wahoo Limestone. This report presents the preliminary results of research accomplished by a team of specialists in carbonate petrology, biostratigraphy, and diagenesis during the 1990--1991 fiscal year.It includes a summary of regional geological framework studies, a discussion conodont analyses, an overview of diagenetic studies, a brief description of progress in computerized database development, and appendices containing some of the new data on petrographic analyses, conodont analyses, and locality and sample information. Our correlation scheme, which uses cyclic stratigraphy, biostratigraphy, and cement stratigraphy, will allow interpretation of the depositional history and paleogeographic evolution of the region. We have developed predictive facies models and will make paleogeographic maps to illustrate different stages in the history of the Wahoo carbonate ramp. Our detailed analyses of the Wahoo Limestone will provide a basis for interpreting correlative rocks in the adjacent subsurface of the coastal plain of ANWR, a potential hydrocarbon lease-sale area. In a broader sense, our work will provide an excellent generic example of carbonate shallowing-upward cycles which typify carbonate sediments.

  19. The dolomitized{open_quotes}O{close_quotes} Limestone in the Barinas basin: A hydrocarbon reservoir in carbonate rocks

    SciTech Connect

    Aquino, R.; Boujana, M.

    1996-08-01

    The {open_quotes}O{close_quotes} Limestone Member, top of Escandalosa Formation of a Lower to Upper Cretaceous age, is an interval of about 70 feet thick. It represents a coastal facies of caitonate platform; dominated by carbonates of calcarenitic lithologies intercalated with some sandy, glauconitic, calcareous bodies and thin bioturbated shaly intervals. Detailed studies carried out in five cores yield to a new approach and subdivision within this interval based on diagnostic erosive surfaces that may be interpreted as sequence boundaries. Based on sedimentology, trace fossil assemblages and diagenetic events, the milieu of sedimentation varies from foreshore to offshore. Porous dolomite levels occur within the {open_quotes}O{close_quotes} Limestone. This porosity is of intergranular, moldic and vuggy types. Some microfractures are also observed. Subaerial karstification is an alternative hypothesis that can explain the origin of the localized dolomitized vuggy reservoirs. The following sequence of events is suggested: (1) Sedimentation followed by bioturbation, then lithification with a probable replacement of aragonite by calcite, (2) Early dolomitization undergoing the {open_quotes}mixing{close_quote} or {open_quotes}Dorag {close_quotes} Model, (3) Dedolomitization and dissolution generating a moldic porosity enhanced the vuggy forms. This stage may have been influenced by karst processes, (4) Burial diagenesis accompanied by stylolitization and fracturation with pressure-solution effects, and (5) Some levels increase their porosity because of partial dolomitization; in others the vuggy porosity is totally infilled with sparry calcite.

  20. Borehole and Caprock integrity - Pre-Failure Permeability Response to Stress Change of Storage Domain Rocks (Caprocks, Barriers to Fluid Flow, and Reservoir) Caused by CO2 Injection: an Experimental and Analytical Approach

    NASA Astrophysics Data System (ADS)

    Armitage, P. J.; Faulkner, D. R.; Worden, R. H.

    2011-12-01

    Field trials into CO2 sequestration are currently being undertaken at the In Salah gas field, Algeria. As a part of a wider project, we are experimentally investigating the geomechanical and geochemical effects of CO2 sequestration on storage domain rocks. Detailed experimental studies of the development of permeability in storage domain rocks during reactive fluid flow are essential to understand borehole and caprock integrity on short term timescales during injection of CO2. The experiments are needed to help constrain larger-scale models that predict bulk fluid flow within the storage system. It has been demonstrated from experiments and modeling that accumulation of microfractures under differential stress before rock failure occurs systematically and leads to enhanced porosity, permeability and fracture surface area. (Mitchell and Faulkner, 2008). Changes in stress affecting storage domain rocks can occur on short-term, production timescales from drilling the boreholes and from injection of CO2. Increasing pore fluid pressure will reduce the effective stress, bringing the rocks closer to failure and potentially increasing permeability. Creation of boreholes for injection will change the stress field and lead to greater differential stresses, bringing the rocks closer to failure and potentially increasing permeability beyond that of the far field stress state. These stress changes will affect fluid flow properties of storage domain rocks, which in turn may facilitate CO2 migration and escape from the intended structure. We present results from direct experimental evaluation of permeability evolution for these stress changes on samples of low porosity rock from the In Salah CO2 storage site, representing a barrier to fluid flow, and samples of a sandstone representing a porous reservoir rock. Pre-failure stress changes associated with CO2 injection leads to increased rock permeability for intact rock, by up to 2 orders of magnitude in these samples.

  1. Fractured reservoirs in clastic rocks: Differences between a basement-cored structure and a detached fold belt

    SciTech Connect

    Engelder, T.; Gross, M.R.; Younes, A.

    1996-08-01

    The Elk Basin anticline, Wyoming-Montana, has an order of magnitude more structural relief than structures of the Appalachian Plateau, New York. Despite its structural relief the Elk Basin anticline shows very little macroscopic evidence for layer-parallel shortening vs. more than 10% for the subtle Appalachian Plateau folds. Elk Basin anticline is a passive drape fold extending over a tongue of basement punching up into the sedimentary cover. On the other extreme, the detached fold belt of the Appalachian Plateau remained in compression during most, if not all, of the Alleghanian layer-parallel shortening event. The joint pattern in Elk Basin is dominated by fold-parallel sets. The joint pattern in the Appalachian Plateau is dominated by fold-perpendicular sets. These two joint patterns are consistent with states of stress that suppress layer-parallel shortening in the former case and favor it in the latter case. Curvy cross joints are unambiguous records of the change in stress field orientation. Such structures in the clastic rocks of Elk Basin indicate a 10{degrees} to 15{degrees} clockwise reorientation of the stress field during later stages of fold development. The early to synfolding propagation of fold-parallel joints is indicated by their attitude normal to bedding on both limbs of the Elk Basin anticline. Fold-parallel joints are also rotated during strike-slip motion on later, vertical faults cutting subperpendicular to the anticlinal axis. Finally, the fracture spacing index for fold-parallel joints in various formations at Elk Basin is less than for cross fold joints of the Appalachian Plateau.

  2. Micro-CT imaging of reservoir condition CO2 during multi-phase flow in natural rock

    NASA Astrophysics Data System (ADS)

    Andrew, M. G.; Bijeljic, B.; Menke, H. P.; Blunt, M. J.

    2014-12-01

    Micron-resolution X-ray microtomography has allowed researchers to examine the processes controlling fluid flow behaviour at the pore scale, offering the promise of a transformation in our understanding of flow and transport in porous media. Until recently wettability has only been directly accessible in extremely simplified systems. A new method is presented for the measurement of the contact angle and capillary pressure of multiple immiscible fluids at the pore scale at reservoir conditions in the scCO2-brine-carbonate system. Contact angle is found by resampling the micro-CT data onto planes orthogonal to the contact lines, allowing for vectors to be traced along the grain surface and the scCO2 - brine interface. A distribution of contact angles ranging from 35o to 55o is observed. This distribution can be understood as the result of contact angle hysteresis and surface heterogeneity on a range of length scales. Ganglion capillary pressure for each ganglion was found by measuring the curvature of the CO2-brine interface, while the pore structure was parameterised using distance maps of the pore-space. The formation of the residual clusters by snap-off was examined by comparing the ganglion capillary pressure to local pore topography. The capillary pressure was found to be inversely proportional to the radius of the largest restriction (throat) surrounding the ganglion, which validates the imbibition mechanisms used in pore-network modelling. The potential mobilization of residual ganglia was assessed using a new formulation of both the capillary and Bond numbers, rigorously based on a balance of pore-scale forces, with the majority of ganglia remobilized at Ncmacro around 1. By the use of synchrotron tomography it is possible to create high quality 4D images of dynamic processes involving the flow of multiple fluid phases. We show how the drainage process take place as a series of discreet Haines jumps. Two different types of Haines jumps were seen, one where CO

  3. Inversion of multicomponent seismic data and rock-physics intepretation for evaluating lithology, fracture and fluid distribution in heterogeneous anisotropic reservoirs

    SciTech Connect

    Ilya Tsvankin; Kenneth L. Larner

    2004-11-17

    Within the framework of this collaborative project with the Lawrence Livermore National Laboratory (LLNL) and Stanford University, the Colorado School of Mines (CSM) group developed and implemented a new efficient approach to the inversion and processing of multicomponent, multiazimuth seismic data in anisotropic media. To avoid serious difficulties in the processing of mode-converted (PS) waves, we devised a methodology for transforming recorded PP- and PS-wavefields into the corresponding SS-wave reflection data that can be processed by velocity-analysis algorithms designed for pure (unconverted) modes. It should be emphasized that this procedure does not require knowledge of the velocity model and can be applied to data from arbitrarily anisotropic, heterogeneous media. The azimuthally varying reflection moveouts of the PP-waves and constructed SS-waves are then combined in anisotropic stacking-velocity tomography to estimate the velocity field in the depth domain. As illustrated by the case studies discussed in the report, migration of the multicomponent data with the obtained anisotropic velocity model yields a crisp image of the reservoir that is vastly superior to that produced by conventional methods. The scope of this research essentially amounts to building the foundation of 3D multicomponent, anisotropic seismology. We have also worked with the LLNL and Stanford groups on relating the anisotropic parameters obtained from seismic data to stress, lithology, and fluid distribution using a generalized theoretical treatment of fractured, poroelastic rocks.

  4. Fissured Rocks and Water Reservoirs in Eastern Thessaly Mountain Range, Greece (Olympus, Ossa, Maurovouni and Pelion): The Role of Tectonic Deformation

    NASA Astrophysics Data System (ADS)

    Papanikolaou, I.; Migiros, G.; Stamatis, G.; Yoxas, G.

    2009-04-01

    The storage capacity of fractured hard rocks is lower than porous media and karst formations, though they can yield groundwater of sufficiently good quality for drinking purposes and may host important water resources, even if they are often of low permeability. In particular, for countries like Greece, where water needs for the local population and the tourist industry are excessive and waterfall limited, these reservoirs are of strategic importance. The mountain Range in Eastern Thessaly comprises an extensive nappe of metamorphic rocks, consisting of schists, gneisses, involving partly some ophiolithic rocks and marble intercalations. The thickness of the nappe exceeds 600 m in Ossa, whereas in the area of Pelion is estimated up to 3.000 m. This nappe rests on top of the Autochthonous Olympus- Ossa unit, which forms a massive Mesozoic carbonate sequence. Extensive fieldwork data supported by the analysis of the physical and chemical properties of a large number of springs and combined by the study of the geological structure both local and regional, resulted in important outcomes regarding the fissured rocks permeability, water flow and springs distribution. Schists are characterized by heterogeneity regarding their permeability features. They are divided into hard-rocks where quartz, epidote and amphiboles prevail, displaying higher permeability and soft-rocks where clay minerals prevail, exhibiting low permeability features, because the presence of clay blocks the fissures and prevent any infiltration process. The marbles are of high permeability, but are of limited extent. A few springs are located in marbles, but the vast majority of the springs are associated to the hard-rock schists, are scattered and characterized by high seasonal discharges. In the area of Ossa in particular, the most important reservoirs exist at the bordering zones of the metamorphic and the post-alpine formations due to the enrichment of the sedimentary post-alpine formations. In the

  5. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect

    Freedman, Vicky L.

    2007-03-09

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investi¬gate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a quali¬tative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represent initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simula¬tion period with the three flow fields. The four radionuclides are current contaminants of concern (COCs) in the Central Plateau and include tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005

  6. Multidecadal trends in burn severity and patch size in the Selway-Bitterroot Wilderness Area, 1900-2007

    NASA Astrophysics Data System (ADS)

    Wells, A.; Morgan, P.; Smith, A. M.; Hudak, A. T.; Hicke, J. A.

    2013-12-01

    How the proportion of area burned severely has changed over time is critical to understanding trends in the ecological effects of fire, but most assessments over large areas are limited to 30 years of satellite data. Little is known about multidecadal trends in burn severity, patch size, and implications for species diversity. Our objective was to analyze the change in proportion of area burned severely and patch size across 346,304 ha in the Selway-Bitterroot Wilderness Area in Idaho and Montana, USA. We used 30-meter fire perimeters and burn severity classes inferred from 1984-2007 satellite imagery from the Monitoring Trends in Burn Severity project and 1900-2000 aerial photography. We also analyzed the effect of patch size on species diversity of understory vegetation from field data collected from 20 sites burned in 2000, a year of widespread fires in the region. Fires occurred in 38 out of the 107 years in the record; 13 of these in the early period (1900-1934), 4 in the middle (1935-1974), and 21 in the late (1975-2007). Although 78% (270,918 ha) burned at least once and 48% (131,198) of the area burned severely with >70% tree mortality, there was no trend in total area burned severely through time (n=38, Spearman's Rank Correlation r = -0.14, p = 0.39), nor in proportion of area burned severely through time (n=38, Spearman's Rank Correlation r = -00.27, p = 0.09). Median patch size decreased through time (n= 38, Spearman's Rank Correlation r = -0.73 and p<0.01) and the number of high severity patches increased (n = 38, Spearman's Rank Correlation r = 0.35 and p = 0.02). Median perimeter-to-area ratio of high severity patches increased (n = 38, Spearman's Rank Sum Test r = 0.79 and p <.01); the greater perimeter-to-area ratio and shorter distance to the unburned edge through time is not an artifact of satellite data as patch size inferred from aerial photography 1900-2000 decreased (n= 31, Spearman's Rank, r = -0.42 and p <0.01), but did not for satellite

  7. The magnetic fabric of fault rocks

    NASA Astrophysics Data System (ADS)

    Ferre, Eric

    2015-04-01

    The magnetic fabric of rocks generally informs about principal strain directions and strain magnitude. The main prerequisites for such fabrics to be deemed meaningful is to be carried by a sufficiently large number of grains and for the grains to be uniformly distributed throughout the volume of deformed rock. Clearly these conditions tend not to be met in fault rocks which is the main reason why magnetic fabrics are typically applied to materials that have undergone continuous and plastic strain, such as magmatic rocks. New advances in our understanding of magnetic fabrics now allow to expand their application to discontinuous, brittle strain and consequently to track deformation in fault rocks. Here we present a review of three case studies exemplifying the applications of the anisotropy of magnetic susceptibility (AMS) in fault rocks. 1. The Bitterroot shear zone in Montana shows spectacular quartzofeldspathic C-S mylonites from Montana. These rocks, deformed in conditions ranging from high-temperature magmatic to cataclastic constitute an excellent example to monitor the variations of the magnetic fabric (principal axes, degree of anisotropy, shape parameter) in a context in which the kinematic directions remain constant while temperature decreases. 2. The carbonate ultracataclasites from the Heart Mountain detachment in Wyoming represent a case of catastrophic, large-scale slide approaching seismic velocities. While the dominant deformation mechanism is cataclastic flow, synkinematic breakdown of pyrrhotite and recrystallization into magnetite results in surprisingly consistent AMS fabrics. 3. The pseudotachylytes of the Dora Maira Massif in Italy display coherent AMS fabrics that are oblique with respect to the seismic slip plane. The combination of fabrics in the host-rock and pseudotachylyte veins provides a full kinematic solution (slip plane, slip direction, slip sense) for a single seismic event. While the magnetic fabric of fault rocks has received far

  8. Data requirements and acquisition for reservoir characterization

    SciTech Connect

    Jackson, S.; Chang, Ming Ming; Tham, Min.

    1993-03-01

    This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

  9. Investigation of the relationship between CO2 reservoir rock property change and the surface roughness change originating from the supercritical CO2-sandstone-groundwater geochemical reaction at CO2 sequestration condition

    NASA Astrophysics Data System (ADS)

    Lee, Minhee; Wang, Sookyun; Kim, Seyoon; Park, Jinyoung

    2015-04-01

    Lab scale experiments were performed to investigate the property changes of sandstone slabs and cores, resulting from the scCO2-rock-groundwater reaction for 180 days under CO2 sequestration conditions (100 bar and 50 °C). The geochemical reactions, including the surface roughness change of minerals in the slab, resulted from the dissolution and the secondary mineral precipitation for the sandstone reservoir of the Gyeongsang basin, Korea were reproduced in laboratory scale experiments and the relationship between the geochemical reaction and the physical rock property change was derived, for the consideration of successful subsurface CO2 sequestration. The use of the surface roughness value (SRrms) change rate and the physical property change rate to quantify scCO2-rock-groundwater reaction is the novel approach on the study area for CO2 sequestration in the subsurface. From the results of SPM (Scanning Probe Microscope) analyses, the SRrms for each sandstone slab was calculated at different reaction time. The average SRrms increased more than 3.5 times during early 90 days reaction and it continued to be steady after 90 days, suggesting that the surface weathering process of sandstone occurred in the early reaction time after CO2 injection into the subsurface reservoir. The average porosity of sandstone cores increased by 8.8 % and the average density decreased by 0.5 % during 90 days reaction and these values slightly changed after 90 days. The average P and S wave velocities of sandstone cores also decreased by 10 % during 90 days reaction. The trend of physical rock property change during the geochemical reaction showed in a logarithmic manner and it was also correlated to the logarithmic increase in SRrms, suggesting that the physical property change of reservoir rocks originated from scCO2 injection directly comes from the geochemical reaction process. Results suggested that the long-term estimation of the physical property change for reservoir rocks in CO2

  10. Interaction Between CO2-Rich Sulfate Solutions and Carbonate Reservoir Rocks from Atmospheric to Supercritical CO2 Conditions: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Cama, J.; Garcia-Rios, M.; Luquot, L.; Soler Matamala, J. M.

    2014-12-01

    A test site for CO2 geological storage is situated in Hontomín (Spain) with a reservoir rock that is mainly composed of limestone. During and after CO2 injection, the resulting CO2-rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P-pCO2 conditions (atmospheric: 1-10-3.5 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar), T (25, 40 and 60 ºC) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Under the P-pCO2-T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δporosity up to ≈ 4%). A decrease in T favored limestone dissolution regardless of pCO2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 conditions. The increase in limestone dissolution with pCO2 was directly attributed to pH, which was more acidic at higher pCO2. Increasing pCO2, carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P-pCO2-T conditions). Drawing

  11. Potential Impacts of Leakage from Black Rock Reservoir on the Hanford Site Unconfined Aquifer: Initial Hypothetical Simulations of Flow and Contaminant Transport

    SciTech Connect

    Freedman, Vicky L.

    2008-01-30

    Initial scoping calculations of the unconfined aquifer at the Hanford Site were carried out for the U.S. Bureau of Reclamation (USBR) to investigate the potential impacts on the Hanford unconfined aquifer that would result from leakage from the proposed Black Rock Reservoir to the west. Although impacts on groundwater flow and contaminant transport were quantified based on numerical simulation results, the investigation represented a qualitative assessment of the potential lateral recharge that could result in adverse effects on the aquifer. Because the magnitude of the potential leakage is unknown, hypothetical bounding calculations were performed. When a quantitative analysis of the magnitude of the potential recharge from Black Rock Reservoir is obtained, the hydrologic impacts analysis will be revisited. The analysis presented in this report represents initial bounding calculations. A maximum lateral recharge (i.e., upland flux) was determined in the first part of this study by executing steady-state flow simulations that raised the water table no higher than the elevation attained in the Central Plateau during the Hanford operational period. This metric was selected because it assumed a maximum remobilization of contaminants that existed under previous fully saturated conditions. Three steady-state flow fields were then used to analyze impacts to transient contaminant transport: a maximum recharge (27,000 acre-ft/yr), a no additional flux (365 acre-ft/yr), and an intermediate recharge case (16,000 acre-ft/yr). The transport behavior of four radionuclides was assessed for a 300 year simulation period with the three flow fields. The four radionuclides are tritium, iodine-129, technetium-99, and uranium-238. Transient flow and transport simulations were used to establish hypothetical concentration distributions in the subsurface. Using the simulated concentration distributions in 2005 as initial conditions for steady-state flow runs, simulations were executed to

  12. I. Fundamental Practicum: Temperature Measurements of Falling Droplets, July, 1989. II. Industrial Practicum: Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock, April, 1988. III. Apprenticeship Practicum: Studies of Group XIII Metal Inclusion Complexes, March, 1987

    NASA Astrophysics Data System (ADS)

    Wells, Mark Richard

    The temperature of 225 μm decane droplets falling through a hot, quiescent, oxygen -free environment were measured using laser-induced exciplex fluorescence thermometry. The temperature of the droplets was found to increase approximately 0.42^ circC/^circC increase in the environment temperature as the environment temperature was increased to 250^circ C. Less than 10% evaporation of the droplets was observed at the highest environment temperatures. This represents one of the first successful applications of a remote-sensing technique for the temperature determination of droplets in a dynamic system. Industrial practicum. The industrial practicum report, entitled "Interaction and Effect of Adsorbed Organics on Reference Clays and Reservoir Rock," is a discussion of the measurement of the effect adsorbed organic material, especially from crude petroleum, has on the surface area, cation exchange capacity, and zeta potential of reference clay material and reservoir rock. In addition, the energetics of adsorption of a petroleum extract onto several reference clays and reservoir rock were measured using both flow and batch microcalorimetry. These results are very important in evaluating and understanding the wettability of reservoir rock and its impact on the recovery of crude oil from a petroleum reservoir. Apprenticeship practicum. "Studies of Group XIII Metal Inclusion Complexes" investigates the structure and dynamics of liquid inclusion complexes having the general formula (R_4N) (Al_2 Me_6I) cdot (C_6H_6) _{rm x}. ^1H and ^{13}C spin-lattice relaxation times, nuclear Overhauser enhancements, and molecular correlation times were measured as well as diffusion coefficients of the various species in solution. The dynamics of transfer between "guest" and free solvent molecules were measured using a variety of techniques. The inherent structure of liquid inclusion complexes as an ordered medium for homogeneous catalysis was studied using hydrogenation catalyzed by

  13. Characterizing a Mississippian Carbonate Reservoir for CO2-EOR and Carbon Geosequestration: Applicability of Existing Rock Physics Models and Implications to Feasibility of a Time Lapse Monitoring Program in the Wellington Oil Field, Sumner County, Kansas.

    NASA Astrophysics Data System (ADS)

    Lueck, A. J.; Raef, A. E.

    2015-12-01

    This study will focus on characterizing subsurface rock formations of the Wellington Field, in Sumner County, Kansas, for both geosequestration of carbon dioxide (CO2) in the saline Arbuckle formation and enhanced oil recovery of a depleting Mississippian oil reservoir. Multi-scale data including lithofacies core samples, X-ray diffraction, digital rock physics scans, scanning electron microscope (SEM) imaging, well log data including sonic and dipole sonic, and surface 3D seismic reflection data will be integrated to establish and/or validate a new or existing rock physics model that best represents our reservoir rock types and characteristics. We will acquire compressional wave velocity and shear wave velocity data from Mississippian and Arbuckle cores by running ultrasonic tests using an Ult 100 Ultrasonic System and a 12 ton hydraulic jack located in the geophysics lab in Thompson Hall at Kansas State University. The elastic constants Young's Modulus, Bulk Modulus, Shear (Rigidity) Modulus and Poisson's Ratio will be extracted from these velocity data. Ultrasonic velocities will also be compared to sonic and dipole sonic log data from the Wellington 1-32 well. These data will be integrated to validate a lithofacies classification statistical model, which will be and partially has been applied to the largely unknown saline Arbuckle formation, with hopes for a connection, perhaps via Poisson's ratio, allowing a time-lapse seismic feasibility assessment and potentially developing a transformation of compressional wave sonic velocities to shear wave sonic for all wells, where compressional wave sonic is available. We will also be testing our rock physics model by predicting effects of changing effective (brine + CO2 +hydrocarbon) fluid composition on seismic properties and the implications on feasibility of seismic monitoring. Lessons learned from characterizing the Mississippian are essential to understanding the potential of utilizing similar workflows for the

  14. New petrophysical magnetic methods MACC and MAFM in permeability characterisation of petroleum reservoir rock cleaning, flooding modelling and determination of fines migration in formation damage

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, O. P.

    2012-04-01

    Potential applications of magnetic techniques and methods in petroleum engineering and petrophysics (Ivakhnenko, 1999, 2006; Ivakhnenko & Potter, 2004) reveal their vast advantages for the petroleum reservoir characterisation and formation evaluation. In this work author proposes for the first time developed systematic methods of the Magnetic Analysis of Core Cleaning (MACC) and Magnetic Analysis of Fines Migration (MAFM) for characterisation of reservoir core cleaning and modelling estimations of fines migration for the petroleum reservoir formations. Using example of the one oil field we demonstrate results in application of these methods on the reservoir samples. Petroleum reservoir cores samples have been collected within reservoir using routine technique of reservoir sampling and preservation for PVT analysis. Immediately before the MACC and MAFM studies samples have been exposed to atmospheric air for a few days. The selected samples have been in detailed way characterised after fluid cleaning and core flooding by their mineralogical compositions and petrophysical parameters. Mineralogical composition has been estimated utilizing XRD techniques. The petrophysical parameters, such as permeability and porosity have been measured on the basis of total core analysis. The results demonstrate effectiveness and importance of the MACC and MAFM methods for the routine core analysis (RCAL) and the special core analysis (SCAL) in the reservoir characterisation, core flooding and formation damage analysis.

  15. The Obtaining of Oil from an Oil Reservoir.

    ERIC Educational Resources Information Center

    Dawe, R. A.

    1979-01-01

    Discusses the mechanics of how an actual oil reservoir works and provides some technical background in physics. An experiment which simulates an oil reservoir and demonstrates quantitatively all the basic concepts of oil reservoir rock properties is also presented. (HM)

  16. Experimental and simulation studies of pore scale flow and reactive transport associated with supercritical CO2 injection into brine-filled reservoir rocks (Invited)

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.; Steefel, C. I.; Bourg, I. C.

    2013-12-01

    This talk will review recent research relating to pore scale reactive transport effects done in the context of the Department of Energy-sponsored Energy Frontier Research Center led by Lawrence Berkeley National Laboratory with several other laboratory and University partners. This Center, called the Center for Nanoscale Controls on Geologic CO2 (NCGC) has focused effort on the behavior of supercritical CO2 being injected into and/or residing as capillary trapped-bubbles in sandstone and shale, with particular emphasis on the description of nanoscale to pore scale processes that could provide the basis for advanced simulations. In general, simulation of reservoir-scale behavior of CO2 sequestration assumes a number of mostly qualitative relationships that are defensible as nominal first-order descriptions of single-fluid systems, but neglect the many complications that are associated with a two-phase or three-phase reactive system. The contrasts in properties, and the mixing behavior of scCO2 and brine provide unusual conditions for water-rock interaction, and the NCGC has investigated the underlying issues by a combination of approaches including theoretical and experimental studies of mineral nucleation and growth, experimental studies of brine films, mineral wetting properties, dissolution-precipitation rates and infiltration patterns, molecular dynamic simulations and neutron scattering experiments of fluid properties for fluid confined in nanopores, and various approaches to numerical simulation of reactive transport processes. The work to date has placed new constraints on the thickness of brine films, and also on the wetting properties of CO2 versus brine, a property that varies between minerals and with salinity, and may also change with time as a result of the reactivity of CO2-saturated brine. Mineral dissolution is dependent on reactive surface area, which can be shown to vary by a large factor for various minerals, especially when correlated with

  17. Phase I (Year 1) Summary of Research--Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    SciTech Connect

    G. Michael Grammer

    2005-11-09

    This topical report covers the first 12 months of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). Phase I tasks, including Developing a Reservoir Catalog for selected dolomite reservoirs in the Michigan Basin, Characterization of Dolomite Reservoirs in Representative Fields and Technology Transfer have all been initiated and progress is consistent with our original scheduling. The development of a reservoir catalog for the 3 subject formations in the Michigan Basin has been a primary focus of our efforts during Phase I. As part of this effort, we currently have scanned some 13,000 wireline logs, and compiled in excess of 940 key references and 275 reprints that cover reservoir aspects of the 3 intervals in the Michigan Basin. A summary evaluation of the data in these publications is currently ongoing, with the Silurian Niagara Group being handled as a first priority. In addition, full production and reservoir parameter data bases obtained from available data sources have been developed for the 3 intervals in Excel and Microsoft Access data bases. We currently have an excess of 25 million cells of data for wells in the Basin. All Task 2 objectives are on time and on target for Phase I per our original proposal. Our mapping efforts to date, which have focused in large part on the Devonian Dundee Formation, have important implications for both new exploration plays and improved enhanced recovery methods in the Dundee ''play'' in Michigan--i.e. the interpreted fracture-related dolomitization control on the distribution of hydrocarbon reservoirs. In an exploration context, high-resolution structure mapping using quality-controlled well data should provide leads to convergence zones of fault/fracture trends that are

  18. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  19. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    1998-03-12

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  20. The Rock Physics Handbook

    NASA Astrophysics Data System (ADS)

    Mavko, Gary; Mukerji, Tapan; Dvorkin, Jack

    2003-10-01

    The Rock Physics Handbook conveniently brings together the theoretical and empirical relations that form the foundations of rock physics, with particular emphasis on seismic properties. It also includes commonly used models and relations for electrical and dielectric rock properties. Seventy-six articles concisely summarize a wide range of topics, including wave propagation, AVO-AVOZ, effective media, poroelasticity, pore fluid flow and diffusion. The book contains overviews of dispersion mechanisms, fluid substitution, and Vp-Vs relations. Useful empirical results on reservoir rocks and sediments, granular media, tables of mineral data, and an atlas of reservoir rock properties complete the text. This distillation of an otherwise scattered and eclectic mass of knowledge is presented in a form that can be immediately applied to solve real problems. Geophysics professionals, researchers and students as well as petroleum engineers, well log analysts, and environmental geoscientists will value The Rock Physics Handbook as a unique resource.

  1. Summary of Research through Phase II/Year 2 of Initially Approved 3 Phase/3 Year Project - Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    SciTech Connect

    G. Grammer

    2007-09-30

    This final scientific/technical report covers the first 2 years (Phases I and II of an originally planned 3 Year/3 Phase program). The project was focused on evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin. The characterization of select dolomite reservoirs was the major focus of our efforts in Phases I and II of the project. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault-related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in these 2 studied intervals (based upon fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. In the Niagaran (Silurian), there is a general trend of increasing dolomitization shelfward, with limestone predominant in more basinward positions. A major finding is that facies types, when analyzed at a detailed level, are directly related to reservoir porosity and permeability in these dolomites which increases the predictability of reservoir quality in these units. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point that the results should be exportable throughout the basin. Much of the data synthesis and modeling for the project was scheduled to be part of Year 3/Phase III, but the discontinuation of funding after Year 2 precluded those efforts

  2. Geysers reservoir studies

    SciTech Connect

    Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K.

    1993-04-01

    LBL is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Only reservoir engineering studies will be described here, since microearthquake and geochemical projects carried out by LBL or its contractors are discussed in accompanying papers. Three reservoir engineering studies will be described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

  3. Reconstruction of sedimentary environments of J2-4 reservoir rocks of the Lovin oil field by facial analysis and 3D simulation

    NASA Astrophysics Data System (ADS)

    Iagudin, R.; Minibaev, N.

    2012-04-01

    The reconstruction of accumulations' conditions of sand bodies and determination of paleogeographical conditions is the basis for 3D modeling of lithologically screened oil and gas reservoirs. The reconstruction of accumulations' conditions is implemented by lithologic-and-facies analysis. The facial types are determined during the analysis of deposits of oil reservoir and then mapped within the reservoir's space. The facies type is an integral characteristic. It is determined on the basis of a large number of research methods such as the processing and analysis of core samples, seismic and well log data. Mapping of reservoirs' facies types allow estimating variability of important for exploration of oil deposits parameters such as reservoir properties, productivity, distribution of effective thickness, etc. The facies types can be mapped as an individual geological unit and used in 3D geological modeling. Subject of facial analysis was sediments of J2-4 reservoir of Lovin oil field (Western Lovin structure) which were accumulated in the Jurassic period. Based on lithologic-and-facies analysis of core material from 6 wells (25 samples), including studies on the grain size measurements, analysis of sediment's structure and core description, the metering of magnetic susceptibility of sediments, facies types of the J2-4 reservoir were identified. The lithotype A is characterized by sand and silt structure, small nodules in the halo of pyrite oxidation, indicated the presence of magnetite. This lithotype belongs to conditions of river-bed facies. The lithotype B have a silty structure, interlayer of coal and traces of bioturbation. This lithotype corresponds to the conditions of sand bars of the floodplain. The lithotype C is characterized by silty-clay structure, single siderite nodules and the remnants of the fauna. This is referring to bog part of the floodplain. After analyzing the well log data of 25 wells of Lovin oil field by Muromtsev methodology distribution

  4. Reservoirs 3 carbonates

    SciTech Connect

    Beaumont, E.A.; Foster, N.H.

    1988-01-01

    This book covers the topics of Carbonates; Carbonate depositional environments and Carbonate diagenesis. Included are the following papers: pore geometry of carbonate rocks as revealed by pore casts and capillary pressure; a review of carbonate reservoirs; the chemistry of dolomitization and dolomite precipitation.

  5. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect

    Fowler, M.L.; Young, M.A.; Madden, M.P.

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  6. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  7. Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes: Inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps)

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Van Roermund, Herman L. M.; Pettke, Thomas

    2010-11-01

    The garnet websterites from Bardane (Western Gneiss Region, Norway) derive from cold Archean subcontinental lithosphere involved in Scandian continental subduction to ultrahigh-pressures. Subduction zone metamorphism was promoted by slab fluid infiltration into the cold overlying mantle wedge. The earliest subduction transformation (M3-1) consists of garnet/clinopyroxene exsolution from old pre-subduction orthopyroxene. This stage was likely coeval with fluid input and formation of phlogopite and dolomite rods in the exsolution structures. Magnesite formation after dolomite and entrapment of fluid-related diamond-bearing polyphase inclusions in corona structures around the exsolved orthopyroxenes point to pressure increase to 4.5 GPa (M3-2). Peak pressures of 6.5-7 GPa (c.a. 200 km depth) are witnessed by crystallization of majoritic garnet (M3-3), mostly in veins cutting all the above microstructures. When such veins infiltrate the corona domains, formation of majoritic garnet in coronas is enhanced. This multistage evolution thus envisages episodic fluid influx, favouring rock recrystallization and formation of microdiamond-bearing inclusions and of majoritic garnet veins. These mantle rocks thus record fluid circulation along grain boundaries and microfractures down to 200 km depth in subduction environments. The Ulten Zone peridotites are slices of Variscan mantle wedge. Infiltration of metasomatic subduction fluids favoured transition from spinel-facies to garnet + amphibole ± dolomite parageneses at pressures below 3 GPa. Formation of metasomatized garnet-bearing peridotite mylonites suggest channelled influx of subduction fluids. The incompatible element-enriched signature of all subduction minerals in Bardane indicate that previously depleted websterites have been refertilized by COH subduction fluids. Comparison with the Ulten Zone garnet + amphibole ± dolomite peridotites outlines striking similarities in the metasomatic style and in the COH fluid phase

  8. The dependence of permeability on effective stress from flow tests at hot dry rock reservoirs at Rosemanowes (Cornwall) and Fenton Hill (New Mexico)

    USGS Publications Warehouse

    Nathenson, M.

    1999-01-01

    Effective stress is the primary control on permeability and thus on flow and water loss for two-well hot dry rock systems involving injection and production that have been tested to date. Theoretical relations are derived for the flow between an injector and producer, including the dependence of permeability on effective stress. Four relations for permeability as a function of effective stress are used to match field data for the hot dry rock systems at Rosemanowes, Cornwall, and Fenton Hill, New Mexico. The flow and water loss behavior of these systems are well explained by the influence of effective stress on permeability. All four relations for permeability as a function of effective stress are successful in matching the field data, but some have difficulty in determining unique values for elastic and hydrologic parameters.Effective stress is the primary control on permeability and thus on flow and water loss for two-well hot dry rock systems involving injection and production that have been tested to date. Theoretical relations are derived for the flow between an injector and producer, including the dependence of permeability on effective stress. Four relations for permeability as a function of effective stress are used to match field data for the hot dry rock systems at Rosemanowes, Cornwall, and Fenton Hill, New Mexico. The flow and water loss behavior of these systems are well explained by the influence of effective stress on permeability. All four relations for permeability as a function of effective stress are successful in matching the field data, but some have difficulty in determining unique values for elastic and hydrologic parameters.

  9. Numerical Calculation of Permeability and Electrical Formation Factor from AN Oil Reservoir Rock Using Geometry Obtained from Synchrotron X-Ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Butler, S. L.; Bird, M.; Hawkes, C.; Kotzer, T.

    2013-12-01

    Advanced imaging techniques and computational modeling are being used increasingly to investigate the transport characteristics of porous rocks. In this contribution, we describe modeling of fluid and electrical flow through the interstices of two rock samples from the Weyburn oilfield in Southwestern Saskatchewan, Canada, using commercially available software. Samples of Marley Dolostone and Vuggy Limestone were imaged at resolutions of 0.78 μm and 7.45 μm, respectively, using synchrotron X-ray tomography. The porosity, permeability and electrical formation factor of similar samples were measured in the laboratory. The connected pore space of the rock sample was extracted and converted to a standard CAD file representation using commercial software. This CAD file was then imported into a commercial finite-element modeling software package where the pore space was meshed and the Navier-Stokes equations and Laplace's equation describing fluid and electrical flows were solved with appropriate boundary conditions. An example solution of the fluid flow field is shown in figure 1. Streamlines follow the direction of fluid flow while colors indicate the magnitude of the velocity. Calculation of the fluxes in post-processing allowed us to determine the permeability and electrical formation factors which were similar to those found experimentally and fell on the same porosity-permeability and Archie's Law trends. Fluid flow through a 50 micron per side cubic sub-sample of a Marley Dolostone. The pressure gradient is applied vertically. Streamlines indicate the direction of fluid flow. Colors indicate the magnitude of flow velocity.

  10. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL

    NASA Astrophysics Data System (ADS)

    Bird, M. B.; Butler, S. L.; Hawkes, C. D.; Kotzer, T.

    2014-12-01

    The use of numerical simulations to model physical processes occurring within subvolumes of rock samples that have been characterized using advanced 3D imaging techniques is becoming increasingly common. Not only do these simulations allow for the determination of macroscopic properties like hydraulic permeability and electrical formation factor, but they also allow the user to visualize processes taking place at the pore scale and they allow for multiple different processes to be simulated on the same geometry. Most efforts to date have used specialized research software for the purpose of simulations. In this contribution, we outline the steps taken to use commercial software Avizo to transform a 3D synchrotron X-ray-derived tomographic image of a rock core sample to an STL (STereoLithography) file which can be imported into the commercial multiphysics modeling package COMSOL. We demonstrate that the use of COMSOL to perform fluid and electrical current flow simulations through the pore spaces. The permeability and electrical formation factor of the sample are calculated and compared with laboratory-derived values and benchmark calculations. Although the simulation domains that we were able to model on a desk top computer were significantly smaller than representative elementary volumes, and we were able to establish Kozeny-Carman and Archie's Law trends on which laboratory measurements and previous benchmark solutions fall. The rock core samples include a Fountainebleau sandstone used for benchmarking and a marly dolostone sampled from a well in the Weyburn oil field of southeastern Saskatchewan, Canada. Such carbonates are known to have complicated pore structures compared with sandstones, yet we are able to calculate reasonable macroscopic properties. We discuss the computing resources required.

  11. Reservoir quality and diagenetic evolution of Upper Mississippian rocks in the Illinois Basin; influence of a regional hydrothermal fluid-flow event during late diagenesis

    USGS Publications Warehouse

    Pitman, Janet K.; Henry, Mitchell E.; Seyler, Beverly

    1998-01-01

    Conventional reservoir quality data for more than 300 wells provided by the Illinois and Indiana State Geological Surveys were analyzed to determine the factors governing porosity and permeability in the Upper Mississippian Bethel Sandstone and Cypress Sandstone, two of the principal producing units in the Illinois Basin. In addition, approximately 150 samples of the Bethel Sandstone-Cypress Sandstone interval from about 80 wells in the Illinois Basin were collected for mineralogical and geochemical analysis to reconstruct the burial and diagenetic history and to establish the timing of diagenesis relative to the entrapment of hydrocarbons. One aspect of the study involved linking inorganic and organic diagenesis to late Paleozoic tectonism and hydrothermal fluid-flow events in the region.

  12. Transport and Deposition of Nanoparticles in the Pore Network of a Reservoir Rock: Effects of Pore Surface Heterogeneity and Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2014-03-01

    In this study, transport behavior of nanoparticles under different pore surface conditions of consolidated Berea sandstone is numerically investigated. Micro-CT scanning technique is applied to obtain 3D grayscale images of the rock sample geometry. Quantitative characterization, which is based on image analysis is done to obtain physical properties of the pore network, such as the pore size distribution and the type of each pore (dead-end, isolated, and fully connected pore). Transport of water through the rock is simulated by employing a 3D lattice Boltzmann method. The trajectories of nanopaticles moving under convection in the simulated flow field and due to molecular diffusion are monitored in the Lagrangian framework. It is assumed in the model that the particle adsorption on the pore surface, which is modeled as a pseudo-first order adsorption, is the only factor hindering particle propagation. The effect of pore surface heterogeneity to the particle breakthrough is considered, and the role of particle radial diffusion is also addressed in details. The financial support of the Advanced Energy Consortium (AEC BEG08-022) and the computational support of XSEDE (CTS090017) are acknowledged.

  13. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  14. Tertiary carbonate reservoirs in Indonesia

    SciTech Connect

    Nayoan, G.A.S.; Arpandi; Siregar, M.

    1981-01-01

    Hydrocarbon production from Tertiary carbonate reservoirs accounted for ca. 10% of daily Indonesian production at the beginning of 1978. Environmentally, the reservoirs appear as parts of reef complexes and high-energy carbonate deposits within basinal areas situated mainly in the back arc of the archipelago. Good porosities of the reservoirs are represented by vugular/moldic and intergranular porosity types. The reservoirs are capable of producing prolific amounts of hydrocarbons: production tests in Salawati-Irian Jaya reaches maximum values of 32,000 bpd, and in Arun-North Sumatra tests recorded 200 MMCF gas/day. Significant hydrocarbon accumulations are related to good reservoir rocks in carbonates deposited as patch reefs, pinnacle reefs, and platform complexes. Exploration efforts expand continuously within carbonate formations which are extensive horizontally as well as vertically in the Tertiary stratigraphic column.

  15. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    SciTech Connect

    Nurhandoko, Bagus Endar B. E-mail: bagusnur@rock-fluid.com; Susilowati E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  16. Mechanistic models of unconventional reservoirs

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Pouyan Lialekol

    Rock physics models are mathematical relations between porosity, composition and elastic properties of a rock. Unlike in conventional silisiclastic rocks where seismic-to-rock properties are predicted successfully by rock physics models, their application in unconventional reservoirs such as shale, hydrate and carbonates is not fully understood. In light of the vast untapped potential of unconventional resources, their exploration will be easier if a suitable rock physics models become available for quantitative interpretation of seismic data. In this thesis generic, rock physics models that were developed for conventional siliciclastic systems have been used to infer rock properties such as porosity, composition, fluid saturation and pore pressure in shale, gas hydrates and carbonates. Results indicate that elastic properties of these rocks including shale and gas hydrates which can be viewed as grain assemblages can be best predicted by Hashin Shtrikman bounds. For rocks with non-spherical pores and a rather unified matrix such as carbonates where grain-to-grain contacts are not very clear, the Kuster and Toksoz model provide a good description of their dry elastic properties.

  17. A finite element simulation system in reservoir engineering

    SciTech Connect

    Gu, Xiaozhong

    1996-03-01

    Reservoir engineering is performed to predict the future performance of a reservoir based on its current state and past performance and to explore other methods for increasing the recovery of hydrocarbons from a reservoir. Reservoir simulations are routinely used for these purposes. A reservoir simulator is a sophisticated computer program which solves a system of partial differential equations describing multiphase fluid flow (oil, water, and gas) in a porous reservoir rock. This document describes the use of a reservoir simulator version of BOAST which was developed by the National Institute for Petroleum and Energy Research in July, 1991.

  18. Fractured geothermal reservoir growth induced by heat extraction

    SciTech Connect

    Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Robinson, B.A.; Potter, R.M.

    1986-01-01

    Field testing of a hydraulically-stimulated, hot dry rock geothermal system at the Fenton Hill site in northern New Mexico has indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for documenting the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations which caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir heat production capacity in hot dry rock systems may be possible.

  19. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  20. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  1. A look at carbonate rocks

    SciTech Connect

    Bowsher, A.I. )

    1994-03-01

    Important ore deposits are found in carbonate rocks, and large volumes of oil and gas are also produced from carbonate rocks on a worldwide basis. Reservoir types and productive capability are most often related to rock type and the facies to which the rock belongs. Broad new understanding of carbonate rocks came with the publication of Classification of Carbonate Rocks-A Symposium (AAPG Memoir 1, 1962). The principal parameters of carbonate rocks are (1) chemical composition, (2) grade size, (3) sorting and packing, (4) identification of grains in the rock, (5) cement, (6) color, (7) alteration of recrystallization, and (8) porosity. Original porosity in carbonate rocks relates to kind and packing of original particles. Secondary porosity is reduced by infilling that usually relates to some particles, or is enhanced because some types of grains are dissolved. Carbonate sediments are organic detritus. The range of solubility of organic detritus is very large. Fossils present in the carbonates are clues as to the source of the detritus in the rock. Additional research is needed in faunal relations of facies and of rock types. Ore recovery, well completion, and EOR are more successful when the parameters of carbonate rocks are extensively studied. A simplified approach to carbonate description is discussed.

  2. Reservoir Simulations of Low-Temperature Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  3. Gas reaction in the Cerro Prieto reservoir

    SciTech Connect

    Nehring, N.L.; Valette-Silver, J.N.

    1982-08-10

    Gases in an undisturbed geothermal reservoir should be in equilibrium with the surrounding rock and water. Production of fluid at rapid rates may cause physical changes in the reservoir that are reflected as changes in gas composition. At Cerro Prieto production has lowered the reservoir pressure enough in places to induce boiling in the aquifer, leading to high enthalpy, low production and eventual drawndown of cold water into the reservoir. These changes are reflected in gas compositions. Differences, in gas composition between well and surface samples reflect changing equilibrium in temperature-dependent chemical reactions and a mixture of gases dissolved in groundwater.

  4. Quantification of geologic descriptions for reservoir characterization in carbonate reservoirs

    SciTech Connect

    Lucia, F.J.; Vander Stoep, G.W. )

    1990-05-01

    Recognition that a large volume of oil remains in carbonate reservoirs at the end of primary depletion and waterflooding has prompted the reevaluation of the reserve-growth potential of many existing carbonate reservoirs. Types of numerical data required include porosity, absolute permeability, relative permeability, fluid saturation, and capillary pressure, all of which are related to the size and distribution of pore space. Rock fabrics control the size and distribution of pore space and define facies that best characterize carbonate reservoirs. Thus, the link between facies descriptions and numerical engineering data is the relationship between pore-size distribution and present carbonate rock fabric. The most effective way to convert facies descriptions into engineering parameters is by considering three basic rock-fabric categories. The first category is interparticle pore space (both intergranular and intercrystalline pore types) with pore-size distribution controlled primarily by the size and shape of grains or crystals. Grain or crystal size is the key geologic measurement and, along with porosity, provides the basis for converting geologic descriptions into values for permeability, saturation, and capillarity. The second category is separate-vug pore space, such as moldic or intraparticle pore space. Separate-vug pore space adds porosity but little permeability to the reservoir rock. The contribution to saturation and capillarity depends upon the size of the separate-vug pore space. For example, moldic separate vugs will be saturated with oil, whereas microporous grains will be saturated with water. The third category is touching-vug pore space, which is vuggy pore space that is interconnected on a reservoir scale. The engineering parameters for this category are related to three diagenetic and tectonic factors.

  5. Source of oils in Gulf Coast Cenozoic reservoirs

    SciTech Connect

    Curtis, D.M. )

    1989-09-01

    Many Gulf Coast geologists have assumed that shales interbedded with or adjacent to the reservoir sandstones are source rocks for oils in Cenozoic reservoirs, but few source-rock quality shales have been identified in Cenozoic strata. Reservoirs and their associated shales are in thermally immature and organic-poor intervals. Based on geothermal gradient, age, and depth, it can be shown that thermally mature source rocks should be present in older slope shales beneath each producing trend. Assumptions regarding the source rock potential of the interbedded thermally immature shales derive from the fact that hydrocarbons migrated into traps soon after burial of the reservoir (early migration). Early migration from the source rock was therefore also assumed (shallow burial, early migration model). Review of the geochemical requirements for a source rock shows that geochemical constraints demand late migration from the source rock after many thousands of feet of burial (deep burial, late migration model). Geological and geochemical concepts are compatible, however, if migration out of the source rock was late (long after deposition and deep burial of the source rock) but migration into the reservoir was early (soon after shallow burial of the reservoir and trap system).

  6. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  7. Hot-dry-rock feasibility study

    SciTech Connect

    Not Available

    1981-08-01

    The hot-dry-rock project tasks are covered as follows: hot-dry-rock reservoir; generation facilities; water resources; transmission requirements; environmental issues; government and community institutional factors; leasing, ownership and management of facilities; regulations, permits, and laws; and financial considerations. (MHR)

  8. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  9. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  10. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  11. Reservoir parameter inversion based on weighted statistics

    NASA Astrophysics Data System (ADS)

    Gui, Jin-Yong; Gao, Jian-Hu; Yong, Xue-Shan; Li, Sheng-Jun; Liu, Bin-Yang; Zhao, Wan-Jin

    2015-12-01

    Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.

  12. NFFLOW: A reservoir simulator incorporating explicit fractures (SPE 153890)

    SciTech Connect

    Boyle, E.J.; Sams, W.N.

    2012-01-01

    NFFLOW is a research code that quickly and inexpensively simulates flow in moderately fractured reservoirs. It explicitly recognizes fractures separately from rock matrix. In NFFLOW fracture flow is proportional to the pressure gradient along the fracture, and flow in the rock matrix is determined by Darcy’s Law. The two flow mechanisms are coupled through the pressure gradient between a fracture and its adjacent rock matrix. Presented is a promising change to NFFLOW that allows for flow across a rock matrix block.

  13. Geologic aspects of horizontal drilling in self-sourcing reservoirs

    SciTech Connect

    Illich, H.A. )

    1991-03-01

    Horizontal drilling techniques provide a way to exploit hydrocarbon reserves that are either noneconomic or only marginally economic using vertical drilling techniques. A significant fraction of these reserves is contained in reservoirs that are self-sourcing or in reservoirs that are closely associated with their resources. Most formations drilled as horizontal targets are self-sourcing. The Austin Chalk, Niobrara, Mesaverde, and Bakken are examples of horizontally drilled, self-sourcing reservoir systems. In formations like the Bakken or Austin Chalk, the close relationship between reservoir and source makes risks associated with migration and accumulation less important. Reservoirs of this kind can contain oil or gas and often have little or no associated water. They can be matrix-dominated reservoirs, dual-porosity reservoirs (Mesaverde), or fractured reservoirs (Austin Chalk, Bakken, and Niobrara). Fractured, self-sourcing reservoirs also can possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess highly heterogeneous reservoir systems. Characterization of the style of reservoir heterogeneity in self-sourcing systems is important if the favorable properties of horizontally oriented bore holes are to be realized. Production data and rock mechanics considerations are important in horizontal drilling ventures. Examples of the use of these data for the purpose of defining reservoir characteristics are discussed. Knowledge of lateral changes in reservoir properties is essential if we are to recover known reserves efficiently.

  14. Formation evaluation and reservoir geology. 1995 SPE annual technical conference and exhibition

    SciTech Connect

    1995-12-31

    This document contains the proceedings of the Annual Technical Conference and Exhibition of the Society of Petroleum Engineers which was held on October 22-25, 1995 in Dallas, Texas. This volume contains the presentations regarding Formation Evaluation and Reservoir Geology. The topics covered in these presentations include: resource management and reservoir engineering of oil, natural gas and gas condensate fields, magnetic, electrical, and seismic surveys of reservoir rock, mathematical models and computerized simulation of fluid flow in reservoir rock, geochemistry of reservoir fluids, and enhanced recovery of oil and natural gas using waterflooding and other secondary recovery methods. Team approaches to reservoir characterization using geology, geophysics, and petroleum engineering are also described.

  15. Dispersed fluid flow in fractured reservoirs: An analysis of tracer-determined residence time distributions

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce A.; Tester, Jefferson W.

    1984-11-01

    A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir using tracer-determined residence time distribution curves is outlined. Emphasis is placed on comparison of the statistical quantities obtained from the tracer curves of different reservoirs or of the same reservoir under different conditions. In this way, model-independent information may be used unambiguously to construct empirical reservoir performance correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer experiments conducted in prototype hot dry rock geothermal reservoirs in fractured rock are examined using these statistically based data analysis methods.

  16. Microseismic monitoring: a tool for reservoir characterization.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2011-12-01

    Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.

  17. Reservoir Technology

    SciTech Connect

    Renner, J.L.

    1992-03-24

    The reservoir technology program supports the utilization of geothermal resources through development and verification of new earth science technologies for: exploration, fluid production and injection; and prediction of reservoir lifetimes. A two-fold strategy of conducting DOE-sponsored research to meet higher-risk, longer-term needs and cost-shared research with industry in areas of greatest current need is utilized to maximize the benefit of the program to the geothermal industry. The program uses a coordinated, multi-disciplinary approach to investigating and solving reservoir problems facing the industry. Research at The Geysers geothermal field has received major emphasis in the past three years. Recent progress in that work will be reviewed in detail by The Geysers operators, federal, state and local regulators and other interested parties during a meeting in Santa Rosa on May 5 and 6, 1992. Hence the papers by Lipman, Bodvarsson et al., Wannamaker, et al., Horne, and Shook in this proceedings volume emphasize non-Geysers research in the program.

  18. Poroelasticity of rock

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton's coefficient and undrained Poisson's ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  19. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization-determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis-source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. Results are discussed.

  20. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization -- determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis -- source rock identification; and the study of asphaltene precipitation for Alaskan crude oils.

  1. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate oojective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization--determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis--source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. This report presents a summary of technical progress of the well log analysis of Kuparuk Field, Northslope, Alaska.

  2. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  3. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  4. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  5. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  6. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  7. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  8. Fourteenth workshop geothermal reservoir engineering: Proceedings

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  9. Advanced Reservoir Characterization and Evaluation of CO(2) Gravity Drainage in the Naturally Fractured Spraberry Reservoir

    SciTech Connect

    Schechter, David

    1996-12-01

    Progress has been made in the area of laboratory analysis of Spraberry oil/brine/rock interactions during this quarter. Water imbibition experiments were conducted under ambient conditions, using cleaned Spraberry cores, synthetic Spraberry reservoir brine, and Spraberry oil. It has been concluded that the Spraberry reservoir cores are weakly water-wet. The average Amott wettability index to water is about 0.55. The average oil recovery due to spontaneous water imbibition is about 50% of original oil in place.

  10. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  11. Profiles of Reservoir Properties of Oil-Bearing Plays for Selected Petroleum Provinces in the United States

    USGS Publications Warehouse

    Freeman, P.A.; Attanasi, E.D.

    2016-01-01

    Each province profile figure consists of five strip charts and a boxplot. The five strip charts display for individual plays the following reservoir-fluid and reservoir properties: A, oil density (American Petroleum Institute [API] gravity in degrees); B, computed pseudo-Dykstra-Parsons coefficient; C, reservoir porosity (in percent); D, reservoir permeability (in millidarcies); and E, estimates of the original oil in place (OOIP) per unit volume of reservoir rock (in barrels per acre-foot). The OOIP per unit volume of reservoir rock is an indicator of the relative richness of the oil reservoir and is derived from estimates in the CRD of OOIP, reservoir acreage, and net pay. The net pay is the interval of productive reservoir rock. The same data for OOIP per unit volume are graphed as a strip chart (E) and a boxplot (F).

  12. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  13. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Core Analysis for the Development and Constraint of Physical Models of Geothermal Reservoirs

    SciTech Connect

    Greg N. Boitnott

    2003-12-14

    Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting assumptions based on a knowledge base founded in validated rock physics models of reservoir material.

  15. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  16. Sediment pass-through, an alternative to reservoir dredging

    SciTech Connect

    Harrison, L.L.; Lee, W.H.; Tu, S.

    1995-12-31

    Pacific Gas and Electric Company (PG&E) is studying an alternative {open_quotes}Sediment Management Plan{close_quotes} (SMP) to control sediments at Rock Creek Reservoir and the downstream Cresta Reservoir on the North Fork Feather River in Plumas County. The reservoirs are part of the 182,000 kW Rock Creek-Cresta Project hydroelectric development. Approximately 5.4 million cubic meters of sediments, deposited in the two reservoirs since they were placed in service in 1949 and 1950, partially obstruct the dams` low level outlets and pipe inlets supplying water for spillway gate operations. The sediments jeopardize the reliable and efficient operation of the dams and powerhouses. The SMP includes retrofitting Rock Creek and Cresta Dams with additional low-level gated outlets and modification of trash racks at the existing low level outlet pipes at each dam to improve sediment pass-through (SPT) capacity during high flows. Also, to enable construction of the dam modifications and to facilitate the initiation of SPT operation, dredging of approximately 46,000 cubic meters at Rock Creek Reservoir and 57,000 cubic meters at Cresta Reservoir can be accomplished using a new slurry pump dredging technology to minimize turbidity and re-suspension of solids during dredging. It is proposed to deposit the sediment on the reservoir bottoms, upstream of the areas to be dredged. The dredged sediments subsequently would be flushed from the reservoirs during SPT operations to ultimately be deposited in the dead storage volume of a large downstream reservoir, Lake Oroville. The SPT management plan supersedes more costly plans for major dredging, and may preclude the need for future maintenance dredging at the reservoirs.

  17. Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    Most of the advances in volcanology during the past 20 years have concerned the recognition, interpretation, and mode of emplacement of pyroclastic rocks. The literature on pyroclastic rocks is widely scattered, in part because the field draws from sedimentology, igneous petrology, physics, and fluid mechanics, and there have been few review papers on the topic. Fisher and Schmincke have done the discipline of volcanology and all field-oriented geologists a great service in assembling material from a wide range of sources in this comprehensive treatment of pyroclastic rocks. With its introduction to the petrology of magmas involved in explosive eruptions in chapter 2 and a complete treatment of magma rheology and the behavior of dissolved and exsolving magmatic volatiles in chapter 3, they lay sufficient groundwork that anyone with a rudimentary knowledge of geology can understand the book.

  18. Seismic Imaging of Reservoir Structure at The Geysers Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Yoo, S.; Jarpe, S.

    2013-12-01

    Three-dimensional Vp/Vs-ratio structure is presented for The Geysers geothermal field using seismic travel-time data. The data were recorded by the Lawrence Berkeley National Laboratory (LBNL) using a 34-station seismic network. The results are based on 32,000 events recorded in 2011 and represent the highest resolution seismic imaging campaign at The Geysers to date. The results indicate low Vp/Vs-ratios in the central section of The Geysers within and below the current reservoir. The extent of the Vp/Vs anomaly deceases with increasing depth. Spatial correlation with micro-seismicity, used as a proxy for subsurface water flow, indicates the following. Swarms of seismicity correlate well with areas of high and intermediate Vp/Vs estimates, while regions of low Vp/Vs estimates appear almost aseismic. This result supports past observations that high and low Vp/Vs-ratios are related to water and gas saturated zones, respectively. In addition, the correlation of seismicity to intermediate Vp/Vs-ratios is supportive of the fact that the process of water flashing to steam requires four times more energy than the initial heating of the injected water to the flashing point. Because this energy is dawn from the reservoir rock, the associated cooling of the rock generates more contraction and thus seismic events than water being heated towards the flashing point. The consequences are the presence of some events in regions saturated with water, most events in regions of water flashing to steam (low steam saturation) and the absence of seismicity in regions of high steam concentrations where the water has already been converted to steam. Furthermore, it is observed that Vp/Vs is inversely correlated to Vs but uncorrelated to Vp, leading support to laboratory measurements on rock samples from The Geysers that observe an increase in shear modulus while the core samples are dried out. As a consequence, traditional poroelastic theory is no applicable at The Geysers geothermal

  19. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  20. Surface energy characterization of sandstone rocks

    NASA Astrophysics Data System (ADS)

    Arsalan, Naveed; Palayangoda, Sujeewa S.; Burnett, Daniel J.; Buiting, Johannes J.; Nguyen, Quoc P.

    2013-08-01

    The fundamental forces of adhesion are responsible for the spreading of fluids such as crude oil/brine on the reservoir rock surface. These physico-chemical interactions determine the surface energetics of a reservoir and thus their wetting phenomena. Inverse Gas Chromatography (IGC) is introduced to characterize the surface energy of sandstones (Ottawa sand and Berea sandstone). The surface chemistry of the sandstone rocks is further elucidated using X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) techniques. The behavior of the polar and non-polar interaction forces was investigated at varying water coverage and at different temperatures. The results indicated that in general as the water coverage increased, the Lifshitz-van der Waals component of surface energy decreased to nearly that of the bulk water, while the acid-base component also showed a decreasing trend. The Lifshitz-van der Waals component of surface energy always decreased with increase in temperature, while the acid-base properties showed contrasting trends in line with changes in surface chemistry of the sandstones, due to the change in temperature. Finally, the wetting properties arising in reservoir sandstones were related to the surface chemistry of the reservoir fluids and their interactions with the reservoir rock surface.

  1. Generation of saturation functions for simulation models of carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Qingfeng

    A rock type is the unit of rock deposited under similar conditions, which went through similar diagenetic processes, producing analogous rock fabric, with distinct set of pore types, and pore throat size distribution, having specific range of porosity and permeability. Rock typing can generally be used as a guide to assign petrophysical characteristics to different zones for detailed reservoir characterization, modeling and simulation, which provide valid frames for reservoir development. It is often assumed that conventional rock types are capable of assigning multiphase flow characteristics, such as capillary pressure and relative permeability to the cells of dynamic simulation models. However, these conventional rock types, or static reservoir rock types (SRRT) fail to capture the actual variability of capillary pressure and relative permeability, due to lack of representation of wettability difference at different elevation above the free water level (FWL) in carbonate reservoirs, especially in the highly heterogeneous reservoirs. This should be resolved through dynamic reservoir rock types (DRRT), in which wettability effect is imposed on the SRRTs to generate saturation functions for simulation models. This research studies Ghedan's comprehensive DRRT model7, and proposes a modified Ghedan's model. First, the defined static rock types are sub-divided into sub-static rock types based on porosity frequency. Second, three curve-fitting programs are coded to generate the related saturation-height functions. These are the modified Ghedan-Okuyiga equation, Cuddy function and Power Law function. Developed from Ghedan-Okuyiga function113, the recommended modified Ghedan-Okuyiga function has been proposed with saturation and implicit porosity as a function of height above FWL in the transition zone. Third, each sub-static rock type is divided into a number of DRRTs by determining the capillary pressure and relative permeability curves in the oil zone from gas

  2. Architecture of collapsed-paleocave reservoirs

    SciTech Connect

    Loucks, R.G. ); Mescher, P. )

    1996-01-01

    It is important to investigate the architecture of collapsed-paleocave reservoirs at interwell scales in outcrops because reservoir heterogeneities cannot be adequately characterized by cores and log correlation sections. A 3000-foot long quarry wall of Ellenburger strata in central Texas displays the lithologic and pore network heterogeneities at typical well spacings (1300 to 2600 feet). The quarry wall exposes the transition from stratified host rock into a complex collapsed-paleocave system showing several developmental episodes. This paleocave system has over 2600 feet of laterally continuous chaotic breccias. The dimensions of these breccias are similar as to what is imaged by 3-D seismic over paleocave reservoirs. Collapsed-paleocave reservoirs are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across. This concept of scale is very important because collapsed-paleocave systems offer larger exploration targets than individual cave passages. Collapsed-paleocave systems are complex because they are the homogenization of chaotic breccias and cave-sediment fill from passages, chambers, and shafts and of crackle breccias from roof- and wall-rock and pillars. Pore networks are associated with chaotic breakdown breccias, cave roof- and wall-crackle breccias, and/or clastic sediment fill. Strong heterogeneity within a collapsed paleocave system should be expected. Lateral and vertical changes in collapsed-paleocave-related facies have the strongest effect on reservoir heterogeneity and quality. Within individual facies there can be distinct reservoir quality variation, such as between the cave-sediment fill and associated blocks. Tectonic fractures, however, can interconnect the highly variable pore networks within a collapsed-paleocave reservoir.

  3. Architecture of collapsed-paleocave reservoirs

    SciTech Connect

    Loucks, R.G.; Mescher, P.

    1996-12-31

    It is important to investigate the architecture of collapsed-paleocave reservoirs at interwell scales in outcrops because reservoir heterogeneities cannot be adequately characterized by cores and log correlation sections. A 3000-foot long quarry wall of Ellenburger strata in central Texas displays the lithologic and pore network heterogeneities at typical well spacings (1300 to 2600 feet). The quarry wall exposes the transition from stratified host rock into a complex collapsed-paleocave system showing several developmental episodes. This paleocave system has over 2600 feet of laterally continuous chaotic breccias. The dimensions of these breccias are similar as to what is imaged by 3-D seismic over paleocave reservoirs. Collapsed-paleocave reservoirs are not single collapsed passages of tens of feet across, but are homogenized collapsed-cave systems hundreds to several thousand feet across. This concept of scale is very important because collapsed-paleocave systems offer larger exploration targets than individual cave passages. Collapsed-paleocave systems are complex because they are the homogenization of chaotic breccias and cave-sediment fill from passages, chambers, and shafts and of crackle breccias from roof- and wall-rock and pillars. Pore networks are associated with chaotic breakdown breccias, cave roof- and wall-crackle breccias, and/or clastic sediment fill. Strong heterogeneity within a collapsed paleocave system should be expected. Lateral and vertical changes in collapsed-paleocave-related facies have the strongest effect on reservoir heterogeneity and quality. Within individual facies there can be distinct reservoir quality variation, such as between the cave-sediment fill and associated blocks. Tectonic fractures, however, can interconnect the highly variable pore networks within a collapsed-paleocave reservoir.

  4. Status of Norris Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  5. Preliminary Fracture Model for The SE Geysers Geothermal Reservoir

    NASA Astrophysics Data System (ADS)

    Furrey, L.; Furrey, L.; Wagoner, J.; Elkibbi, M.; Hutchings, L. J.

    2001-12-01

    In this study we combine interpretation of steam entry points, seismicity, shear-wave splitting, geology, and rock physics to develop a fracture model for the Southeast Geysers reservoir in an attempt to improve understanding of the permeability and steam flow within the reservoir. The Geysers is a dry steam field located approximately 140 km NNW of San Francisco, in Sonoma and Lake Counties in northern California. We developed this model by utilizing three-dimensional coordinates of wellbores and observations of steam entries encountered during drilling in conjunction with the locations of microearthquakes, the orientations of fractures from shear-wave splitting, geologic interpretation, and the result of rock physics interpretations. We utilize earthVision5.1TM visualization software in analyzing this data. We are interested in analyzing the fault, fractures, or fracture sets that appear to have the major control over fluid flow at reservoir depths. Faults offsetting the reservoir graywacke and felsite are generally identified by indirect methods. Fault detection within the reservoir rocks is difficult because the geology is relatively homogeneous and lacks marker horizons. Most high-angle faults mapped at the surface are truncated above the reservoir by thrust faults, and do not project to zones of high permeability within the reservoir. Thus, we utilize steam entry points along with geological formation topography to assist in the identification of faults at depth.

  6. Introduction to carbonate sediments and rocks

    SciTech Connect

    Scoffin, T.P.

    1987-01-01

    The first chapter has a brief introduction to carbonate minerals and chemistry. Carbonate grains, deposition processes, and diagenesis are included in chapters 2 through 4 respectively. Chapter 5 is about carbonate environments and describes how carbonate sediments are formed in terrestrial and various marine conditions. Ancient limestones are discussed in chapter 6 and examples of representative carbonate sequences from the geologic record are included. The Permian limestone reef complex in the Guadalupe Mountains of midwestern US is included as a classic ancient limestone example in chapter 6. The book concludes with an appraisal of the economic aspects of carbonate sediments and rocks. Carbonate rocks and minerals are important as building stones, as raw materials in the manufacture of cement, and as reservoir rocks for oil and natural gas accumulation. About 40% of the world's oil is produced from carbonate rocks. In addition, valuable deposits of lead, zinc, and other metals are found in carbonate host rocks.

  7. A Common Loon incubates rocks as surrogates for eggs

    USGS Publications Warehouse

    Destefano, Stephen; Koenen, Kiana K. G.; Pereira, Jillian W.

    2013-01-01

    A nesting Gavia immer (Common Loon) was discovered incubating 2 rocks on a floating nest platform on the Quabbin reservoir in central Massachusetts for 43 days, well beyond the typical period of 28 days, before we moved in to investigate. The rocks were likely unearthed in the soil and vegetation used on the platform to create a more natural substrate for the nest. We suggest sifting through soil and vegetation to remove rocks before placing material on nest platforms.

  8. A coupled model of fluid flow in jointed rock

    SciTech Connect

    Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don

    1991-01-01

    We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.

  9. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  10. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  11. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  12. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  13. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  14. Reservoir assessment of The Geysers Geothermal field

    SciTech Connect

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  15. Reservoir management applications to oil reservoirs

    SciTech Connect

    Martin, F.D.; Ouenes, A.; Weiss, W.W.; Chawathe, A.

    1996-02-01

    Winnipegosis and Red River oil production in the Bainville North Field in Roosevelt County, Montana began in 1979. The Red River is at 12,500 ft and one well is completed in the Nisku formation at 10,200 ft. This well produced 125,000 bbl from the Nisku during its first 41 months. Since operating conditions inhibit dual completions and Nisku wells cost $900,000, the need for a Nisku development plan is apparent. The size of the reservoir and optimum well density are the key unknowns. Recognizing the need for additional Nisku data, a 5000 acre 3-D seismic survey was processed and the results used to map the top of the Nisku. The reservoir thickness, porosity, and water saturation were known from the openhole logs at eight well locations on an average of 320 acres spacing. The thickness of the thin pay limited the seismic information to areal extent of reservoir depth. Static reservoir pressure from drillstem test was available at two wells. Additional reservoir pressure data in the form of transient tests were available at two wells. Under Los Alamos National Laboratory Basic Ordering Agreement 9-XU3-0402J-1, the New Mexico Petroleum Recovery Research Center (PRRC) characterized the Nisku to develop a reservoir management plan. Nance Petroleum provided all available field and laboratory data for characterizing the Nisku formation. Due to sparse well coverage, and the lack of producing wells, the PRRC had to develop a new reservoir description approach to reach an acceptable characterization of the entire reservoir. This new approach relies on the simultaneous use of 3-D seismic and reservoir simulation to estimate key reservoir properties.

  16. In-situ heat transfer in man-made hydraulically fractured geothermal energy reservoirs

    SciTech Connect

    Murphy, H.D.; Tester, J.W.; Grigsby, C.; Potter, R.M.

    1980-01-01

    Heat extraction results and reservoir assessments are discussed for 2 geothermal reservoirs created by hydraulic fracturing of hot granitic formations on the west flank of the Valles Caldera, a dormant volcano, in the Jemez Mt. of New Mexico. The second reservoir was created in a deeper rock formation using the same pair of operation wells, and appears to be approximately 8 times larger in heat transfer area than the first reservoir. Despite the larger size, the flow impedance of the second reservoir is the same as that of the first, and the down-hole water losses to the surrounding rock were requirements as a building block for commercial sized, multiply fractured reservoirs - 6 or 7 reservoirs similar to the latest one would produce 20 to 50 MW (T) for 20 years.

  17. HDR reservoir analysis incorporating acoustic emission data

    SciTech Connect

    Willis-Richards, J.; Watanable, K.; Yamaguchi, T.; Takasugi, A.

    1995-01-26

    A set of models of HDR systems is presented which attempts to explain the formation and operation of HDR systems using only the in-situ properties of the fractured rock mass, the earth stress field, the engineering intervention applied by way of stimulation and the relative positions and pressures of the well(s). A statistical and rock mechanics description of fractures in low permeability rocks provides the basis for modeling of stimulation, circulation and water loss in HDR systems. The model uses a large number of parameters, chiefly simple directly measurable quantities, describing the rock mass and fracture system. The effect of stimulation (raised fluid pressure allowing slip) on fracture apertures is calculated, and the volume of rock affected per volume of fluid pumped estimated. The total rock volume affected by stimulation is equated with the rock volume containing the associated AE (microseismicity). The aperture and compliance properties of the stimulated fractures are used to estimate impedance and flow within the reservoir. Fluid loss from the boundary of the stimulated volume is treated using radial leak-off with pressure-dependent permeability.

  18. Status of Cherokee Reservoir

    SciTech Connect

    Not Available

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  19. Status of Wheeler Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  20. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  1. Controls on reservoir development in Devonian Chert: Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Hovorka, S.D.

    1995-12-01

    Chert reservoirs of the Lower Devonian Thirtyone Formation contain a significant portion of the hydrocarbon resource in the Permian basin. More than 700 million bbl of oil have been produced from these rocks, and an equivalent amount of mobile oil remains. Effective exploitation of this sizable remaining resource, however, demands a comprehensive appreciation of the complex factors that have contributed to reservoir development. Analysis of Thirtyone Formation chert deposits in Three Bar field and elsewhere in the Permian basin indicates that reservoirs display substantial heterogeneity resulting from depositional, diagenetic, and structural processes. Large-scale reservoir geometries and finer scale, intra-reservoir heterogeneity are primarily attributable to original depositional processes. Despite facies variations, porosity development in these cherts is principally a result of variations in rates and products of early silica diagenesis. Because this diagenesis was in part a function of depositional facies architecture, porosity development follows original depositional patterns. In reservoirs such as Three Bar field, where the Thirtyone Formation has been unroofed by Pennsylvanian deformation, meteoric diagenesis has created additional heterogeneity by causing dissolution of chert and carbonate, especially in areas of higher density fracturing and faulting and along truncated reservoir margins. Structural deformation also has exerted direct controls on heterogeneity that are particularly noteworthy in reservoirs under waterflood. High-density fracture zones create preferred flow paths that result in nonuniform sweep through the reservoir. Faulting locally creates compartments by offsetting reservoir flow units. As such, the processes and models defined here improve understanding of the causes of heterogeneity in all Thirtyone chert reservoirs in the Permian basin and aid recovery of the sizable hydrocarbon resource remaining in these rocks.

  2. Lowstand carbonate reservoirs: Upper Pennsylvanian sea level changes and reservoir development adjoining Horseshoe Atoll

    SciTech Connect

    Mazzullo, S.J. ); Reid, A.M.; Reid, S.T.

    1990-02-01

    The majority of carbonate reservoirs comprising the Horseshoe Atoll were deposited as reefs and skeletal sand banks during sea level highstands of glacio-eustatic origin, during Canyon (Missourian) and Cisco (Virgilian) deposition. During lowstands, previously deposited carbonate rocks were exposed subaerially to intense meteoric dissolution and karstification creating the pore systems typical of most Horseshoe Atoll fields. Detailed biostratigraphic and sedimentologic studies and recent discoveries adjoining the Horseshoe Atoll have documented the deposition of in-situ and associated intraclastic limestone reservoirs deposited in former slope and basin locations concomittant with periods of sea level lowstand. The authors data suggest that the deposition of such reservoirs occurred throughout the Late Pennsylvanian and accompanied sea level drops of as great as 200 m. To date, productive lowstand reservoirs have been identified in rocks of the middle lower, upper lower, and upper middle Missourian, and the lower lower Virgilian. These deposits are represented by porous reefs, skeletal sandstones, and porous-to-tight intraclastic limestones previously referred to as satellite or pinnacle reefs. These deposits, subsequently onlapped and buried by deepwater shales, comprise potentially prolific stratigraphic-trap reservoirs in basinal areas seaward of the Horseshoe Atoll.

  3. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  4. Oil and gas in carbonate rocks of the CIS basins

    SciTech Connect

    Kuznetsov, V. )

    1993-09-01

    In petroleum basins of the Commonwealth of Independent States (CIS), oil and gas fields in carbonate reservoirs have been discovered in rocks ranging from the Riphean to the Eocene. Most fields are found in cratonic carbonate formations deposited under arid climatic conditions. Regional seals are formed by salt, anhydrite, and dolomicrite. Multilayer reservoirs predominate, but massive reservoirs are common also. The distribution of reservoir types and their quality are strongly uneven. Many fields, including giant fields, are controlled by reefs. Depending on the paleoclimatic zone, the seals are composed of salt or, rarely, of shale. Massive reservoirs predominate, but the distribution of porosity and localization of zones of improved reservoir properties are variable and controlled by the morphogenetic types of the reefs. Carbonate formations deposited under humid climatic conditions contain much less hydrocarbon reserves. The seals are generally composed of shale. The reservoirs are stratal, rarely multilayer, and the fields are usually small. A number of fields, some of them highly productive, are present in Upper Cretaceous carbonate rocks of the North Caucasus region. The carbonates consist of the remains of planktonic organisms. Seals for the hydrocarbon pool are composed of shale. The reservoirs are massive and layered-massive. Fractures and stylolites play a leading role in controlling the reservoir properties.

  5. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  6. Poroelasticity of rock. Progress report

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton`s coefficient and undrained Poisson`s ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  7. Dolomite reservoirs: Porosity evolution and reservoir characteristics

    SciTech Connect

    Sun, S.Q.

    1995-02-01

    Systematic analyses of the published record of dolomite reservoirs worldwide reveal that the majority of hydrocarbon-producing dolomite reservoirs occurs in (1) peritidal-dominated carbonate, (2) subtidal carbonate associated with evaporitic tidal flat/lagoon, (3) subtidal carbonate associated with basinal evaporite, and (4) nonevaporitic carbonate sequence associated with topographic high/unconformity, platform-margin buildup or fault/fracture. Reservoir characteristics vary greatly from one dolomite type to another depending upon the original sediment fabric, the mechanism by which dolomite was formed, and the extent to which early formed dolomite was modified by post-dolomitization diagenetic processes (e.g., karstification, fracturing, and burial corrosion). This paper discusses the origin of dolomite porosity and demonstrates the porosity evolution and reservoir characteristics of different dolomite types.

  8. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  9. Production of superheated steam from vapor-dominated geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, A.H.; White, D.E.

    1973-01-01

    Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.

  10. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    SciTech Connect

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  11. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    USGS Publications Warehouse

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    The storage capacity for all unconventional reservoirs may be modeled using a volumetric equation starting with the extent of the rock unit and adjusted using these key factors and reaction terms. The ideas that were developed during this workshop can be used by USGS scientists to develop a methodology to assess the CO2 storage resource in unconventional reservoirs. This methodology could then be released for public comment and peer review. After completing this development process, the USGS could then use the methodology to assess the CO2 storage resource in unconventional reservoirs.

  12. Experience in operating the Bratsk Reservoir

    SciTech Connect

    Nazarov, A.V.

    1984-04-01

    The Bratsk reservoir is the largest in the USSR and second largest in the world. Initially, the reservoir was expected to be filled by the end of 1966. However, the actual filling was not completed until September of 1967. During filling and in the first years of operation it was constantly necessary to deal with floating timber in order to ensure normal operation of the hydrostation, navigation safety, conditions for fishery, and fulfillment of the sanitary requirements. During seasonal variations of the reservoir level about 160 sq km of the shore zone was subjected to variable flooding and waterlogging. Maximum erosion occurred on expanded stretches, and within their limits on slopes composed of loam and sand deposits. Within the narrows, where the banks are composed mainly of hard and soft rocks and wave action is weak, erosion is negligible. Wind setup and setdown cause maximum denivellation of the water surface. The maximum increase of the level during setup reaches 232 cm and the maximum decrease during setdown is 24 cm. Seiche oscillations with various amplitudes and periods are observed on the reservoir surface. The main uses of the complex are hydropower, water transport, timber floating, water supply, and fishery. For the successful development of the shores of reservoirs it is necessary to select the construction sites with consideration of possible occurrence of karstic and landslide processes; the construction of heavy structures requires special karst-control measures. 3 references, 3 figures, 1 table.

  13. Pressure behavior of laterally composite reservoirs

    SciTech Connect

    Kuchuk, F.J.; Habashy, T.

    1997-03-01

    This paper presents a new general method for solving the pressure diffusion equation in laterally composite reservoirs, where rock and fluid properties may change laterally as a function of y in the x-y plane. Composite systems can be encountered as a result of many different types of depositional and tectonic processes. For example, meandering point bar reservoirs or reservoirs with edgewater encroachment are examples of such systems. The new solution method presented is based on the reflection-transmission concept of electromagnetics to solve fluid-flow problems in 3D nonhomogeneous reservoirs, where heterogeneity is in only one (y) direction. A general Green`s function for a point source in 3D laterally composite systems is developed by using the reflection-transmission method. The solutions in the Laplace transform domain are then developed from the Green`s function for the pressure behavior of specific composite reservoirs. The solution method can also be applied to many different types of wells, such as vertical, fractured, and horizontal in composite reservoirs. The pressure behavior of a few well-known laterally composite systems are investigated. It is shown that a network of partially communicating faults and fractures in porous medium can be modeled as composite systems. It is also shown that the existing solutions for a partially communicating fault are not valid when the fault permeability is substantially larger than the formation permeability. The derivative plots are presented for selected faulted, fractured, channel, and composite reservoirs as diagnostic tools for well-test interpretation. It is also shown that if the composite system`s permeability varies moderately in the x or y direction, it exhibits a homogeneous system behavior. However, it does not yield the system`s average permeability. Furthermore, the composite systems with distributed low-permeability zones behave as if the system has many two no-flow boundaries.

  14. Consistent small-scale porosity contrasts in reservoir sandstones and their relevance to reservoir characterization

    SciTech Connect

    Etris, E.L.; Ehrlich, R.

    1988-01-01

    Although grain size may gradually increase or decrease vertically through a sandstone reservoir, porosity need not change appreciably. Yet porosity does vary greatly at all scales. Large-scale changes, commonly measured by wireline logs, are used in assessing not only reservoir capacity, but also (not always correctly) reservoir efficiency. Systematic porosity variation at smaller scales, however, is usually not considered in reservoir modeling or assessment because it is thought to be difficult to measure, insignificant compared to variation at larger scales, and difficult to simulate in numerical models. The authors' data indicate there there is a common mode of small-scale porosity contrast in reservoir sandstones and that this contrast is important in understanding the behavior of multiphase flow in such rocks. Using image analysis procedures, they measured porosity between adjacent laminate in 50 thin sections taken from four contrasting reservoir sandstones (Kekiktuk, Rotliegendes, Wilcox, and Satun), and have found consistent small-scale contrasts in porosity between laminae. In all but a few samples, porosity alternates, with contrasts of a factor of three or more. The bimodal distribution of porosity in laminated sandstones means theat few if any laminate contain the porosity measured form wireline logs. The authors' data indicate that permeability, pore sizes, and throat sizes also alternate - a fact that can affect the localization of residual oil. Although this phenomenon increases the complexity of the sandstone system, the simple alternation of porosity allows ease in modeling.

  15. Relation between facies, diagenesis, and reservoir quality of Rotliegende reservoirs in north Germany

    SciTech Connect

    David, F.; Gast, R.; Kraft, T. )

    1993-09-01

    In north Germany, the majority of Rotliegende gas fields is confined to an approximately 50 km-wide east-west-orientated belt, which is situated on the gently north-dipping flank of the southern Permian basin. Approximately 400 billion m[sup 3] of natural gas has been found in Rotliegende reservoir sandstones with average porosities of depths ranging from 3500 to 5000 m. Rotliegende deposition was controlled by the Autunian paleo-relief, and arid climate and cyclic transgressions of the desert lake. In general, wadis and large dunefields occur in the hinterland, sebkhas with small isolate dunes and shorelines define the coastal area, and a desert lake occurs to the north. The sandstones deposited in large dunefields contain only minor amounts of illite, anhydrite, and calcite and form good reservoirs. In contrast, the small dunes formed in the sebkha areas were affected by fluctuations of the desert lake groundwaters, causing the infiltration of detrital clay and precipitation of gypsum and calcite. These cements were transformed to illite, anhydrite, and calcite-II during later diagenesis, leading to a significant reduction of the reservoir quality. The best reservoirs occur in the shoreline sandstones because porosity and permeability were preserved by early magnesium-chlorite diagenesis. Since facies controls diagenesis and consequently reservoir quality, mapping of facies also indicates the distribution of reservoir and nonreservoir rocks. This information is used to identify play area and to interpret and calibrate three-dimensional seismic data.

  16. Water quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98

    USGS Publications Warehouse

    Ogle, Kathy Muller; Peterson, D.A.; Spillman, Bud; Padilla, Rosie

    1999-01-01

    Crystal Lake Reservoir had the highest concentration (63 milligrams per liter). Relatively little differences in the concentrations of major-ion species were noted between samples collected near the surface and near the bottom of the same reservoir. In contrast, iron and manganese concentrations generally were higher in samples collected near the bottom of a reservoir than in near-surface samples collected from the same reservoir.Composite bottom-sediment samples from all four reservoirs contained similar concentrations of bulk constituents such as aluminum, iron, phosphorus and titanium, but varied in concentrations of trace elements. Trace-element concentrations in Rob Roy Reservoir and Lake Owen were similar to the crustal average, whereas in Granite Springs and Crystal Lake Reservoirs the concentrations were similar to granitic rocks.

  17. Petroleum geology of carbonate rocks

    SciTech Connect

    Billo, S.M.

    1995-09-01

    Where oil and gas supervene in reservoirs consisting of both limestone and dolomite, the dolomite and dolomitic rocks are usually the more prolific producers of petroleum. Even the dismissal by some oil explorers of primary or evaporitic dolostones from the category of reservoir rocks have recently been challenged; for example, by the discovery of more than 500 million barrels of oil in a primary dolomite and associated dolomitized portion of the Trenton (Ordovician) limestone of the Lima-Indiana field across the Cincinnati and Findlay arches. Permeability decreased updip where oil in the magnesian phase of the limestone disposed a stratigraphic trap. Oil geologists found that both porosity and permeability developed during dolomitization. Temperature and pressure, time, pH, Eh, and salinity are all important controls. Evaporation of sea water past the point of calcium sulphate precipitation suppresses the chemically inhibiting influence of calcium sulphate in solution on dolomite precipitation and increases the Mg/Ca ration from 1:1 at low salinities to over 5:1 or 10:1 in a hypersaline environment.

  18. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual technical progress report, June 13, 1996--June 12, 1997

    SciTech Connect

    Nevans, J.W.; Pregger, B.; Blasingame, T.; Doublet, L.; Freeman, G.; Callard, J.; Moore, D.; Davies, D.; Vessell, R.

    1997-08-01

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. The purpose of this project is to demonstrate the application of advanced secondary recovery technologies to remedy producibility problems in typical shallow shelf carbonate reservoirs of the Permian Basin, Texas. Typical problems include poor sweep efficiency, poor balancing of injection and production rates, and completion techniques that are inadequate for optimal production and injection.

  19. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drillings. Annual technical progress report, June 13, 1996 to June 12, 1998

    SciTech Connect

    Nevans, Jerry W.; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill

    1999-04-27

    Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. Other technologies, such as inter-well injection tracers and magnetic flow conditioners, can also aid in the efficient evaluation and operation of both injection and producing wells. The purpose of this project was to demonstrate useful and cost effective methods of exploitation of the shallow shelf carbonate reservoirs of the Permian Basin located in West Texas.

  20. Feasibility study of sedimentary enhanced geothermal systems using reservoir simulation

    NASA Astrophysics Data System (ADS)

    Cho, Jae Kyoung

    The objective of this research is to evaluate the preliminary feasibility of commercial geothermal projects, from a sedimentary reservoir with low permeability that requires productivity enhancement, using numerical reservoir simulation. The performance of a sedimentary geothermal reservoir is investigated in terms of reservoir hydraulics and thermal evolution. To build a reliable benchmark for simulation study, validation of the numerical reservoir model with respect to an analytical model is presented, and the process to achieve an acceptable match between the numerical and analytical solutions is described. The analytical model used in this study is based on the work of Gringarten (1978), which consists of a conceptual geothermal reservoir, considering an injection and production well doublet in a homogeneous porous media. A commercial thermal reservoir simulator (STARS from Computer Modeling Group, CMG) is used in this work for numerical modeling. In order to reproduce the analytical model results, the numerical simulation model is modified to include the same assumptions of the analytical model. Simulation model parameters that make the numerical results deviate from the analytical solution, such as the grid block size, time step and no-flow boundary are identified and investigated. An analytical tracer test model proposed by Shook (2000) is numerically modeled. This model allows us to predict the time when the temperature of the produced water decreases by capturing a tracer component at production well. Reservoir simulation models with different porosity and permeability distribution are tested to see the effects of reservoir inhomogeneity and anisotropy. In particular, premature thermal breakthrough due to the presence of high permeability streak in a reservoir model is simulated. In an effort to apply the knowledge we obtained from the analytical solutions, the effects of reservoir rock and water properties, as a function of pressure and temperature, are

  1. Karst-controlled reservoir heterogeneity in Ellenburger group carbonates of west Texas: Reply

    SciTech Connect

    Kerans, C. )

    1990-07-01

    A reply to a comment made on Kerans' paper (AAGP Bull. 1988) by S.J. Mazzullo is presented. The author takes exception that Mazzullo's contention that he left out important types of hydrocarbon reservoirs in the Permian basin of west Texas and points out that his original intention was to model karst-controlled reservoir rocks only.

  2. 95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  3. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  4. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified. PMID:27156090

  5. Boone Reservoir bacteriological assessment

    SciTech Connect

    Crouch, H.A.

    1990-03-01

    Since 1984, the bacteriological water quality of Boone Reservoir has improved. The actual reservoir pool consistently meets State bacteriological criteria for fecal coliform. Areas of the reservoir that remain impacted by high fecal coliform densities are the riverine portions upstream from SFHRM 35 on the South Fork Holston arm and WRM 13 on the Watauga River am of the reservoir. Improvements have resulted from a combined effort of water resource agencies, local municipalities, and private citizens. Both TVA and the TDHE have conducted monitoring programs over the last six years to assess the condition of the reservoir. Wastewater treatment facility improvements have been made by the cities of Bristol, Tennessee and Virginia, Bluff City, Elizabethton, and Johnson City to increase treatment efficiency and thereby improve Boone Reservoir water quality. Storm runoff events were correlated with elevated fecal coliform measurements in the Boone River watershed, with the greatest impact observed on the Watauga River arm and in the upper portion of the South Fork Holston River arm of the reservoir. Storm events increased the occurrence of wastewater bypasses from the Elizabethton STP and are primarily responsible for the high fecal coliform counts on the Watauga arm. However, nonpoint sources of pollution including animal waste and effluent from malfunctioning septic tank systems may also have a significant impact on Boone Reservoir water quality.

  6. 54. AVALON DAM (Photographic copy of photo in Reservoirs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. AVALON DAM - (Photographic copy of photo in Reservoirs for Irrigation, Water-Power, and Domestic Water Supply. New York: John Wiley & Sons, 1902.) 'ROCK-FILL IN PROCESS OF CONSTRUCTION' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  7. Rock thermal conductivity at the cap rock and initial conditions in two-phase volcanic hydrothermal systems

    SciTech Connect

    Mario Cesar Suarez Arriaga

    1993-01-28

    Numerical experiments are performed to investigate the rock thermal conductivity influence in the formation of the thermodynamic initial conditions of two-phase systems located in volcanic rocks. These systems exhibit pressure and temperature profiles characterized by a sudden change or discontinuity in their vertical gradients. Vapor dominated, two-phase fluids are found at the upper reservoir's levels. Liquid is the dominated phase within the layers below some critical point. Numerical results presented in this paper, suggest that the vertical location of this point of discontinuity be controlled by the thermal conductivity existing between the limit of the reservoir and the caprock. Too high values could originate liquid dominated reservoirs. Small values would be at the origin of vapor dominated reservoirs. A characteristic middle value could be responsible for the formation of a counter flow mechanism originating the initial conditions observed at some locations of the Los Azufres, Mexico, geothermal field.

  8. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  9. Estimation of reservoir permeability using gravity change measurements

    SciTech Connect

    Hunt, Trevor M.; Kissling, Warwick M.

    1994-01-20

    Exploitation of a liquid-dominated geothermal system generally results in a transfer of mass that causes measurable changes in gravity. When the rate of mass transfer is controlled by the permeability of the reservoir rocks then analysis of measured gravity changes, using numerical reservoir simulation models, can yield values for reservoir properties. One such case is during the early stages of exploitation, during the formation and expansion of a 2-phase zone. Calculations using MULKOM models show that for Wairakei field the gravity changes associated with permeabilities of 50 and 100 md would be clearly distinguishable (> 50 microgal) in less than 2 years. A measured gravity change of -415 microgal between 1950 and 1961 suggests a permeability of 100 md for rocks in the upper part of the 2-phase zone. This value is consistent with those obtained from well tests.

  10. Seismic and Rockphysics Diagnostics of Multiscale Reservoir Textures

    SciTech Connect

    Gary Mavko

    2005-07-01

    This final technical report summarizes the results of the work done in this project. The main objective was to quantify rock microstructures and their effects in terms of elastic impedances in order to quantify the seismic signatures of microstructures. Acoustic microscopy and ultrasonic measurements were used to quantify microstructures and their effects on elastic impedances in sands and shales. The project led to the development of technologies for quantitatively interpreting rock microstructure images, understanding the effects of sorting, compaction and stratification in sediments, and linking elastic data with geologic models to estimate reservoir properties. For the public, ultimately, better technologies for reservoir characterization translates to better reservoir development, reduced risks, and hence reduced energy costs.

  11. Stratigraphic and structural distribution of reservoirs in Romania

    SciTech Connect

    Stefanescu, M.O. )

    1991-08-01

    In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by the coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.

  12. Structural interpretation of the Kakkonda deep geothermal reservoir

    SciTech Connect

    Kobayashi, Osamu; Arihara, Norio; Hanano, Mineyuki

    1996-12-31

    The Kakkonda geothermal field is known as a unique field such that a new reservoir was found at about 2500 m depth after the shallow reservoir ranging from 1000 m to 1500 m had been produced for about eight years. The shallow reservoir is composed of sedimentary rock with igneous rock intrusions, while the deep reservoir is a fractured thin zone located at the top of a large granite intrusion. Between the two, there exist thermally metamorphosed zones. This study aims at integrated interpretation of the top structural surface of the deep reservoir. The data used include well data, microearthquakes, and several metamorphic minerals. Microearthquakes, which are continuously observed at surface, reflect the structural surface of the granite intrusion of the deep reservoir. The metamorphic minerals such as biotite and cordierite caused by strong heat conduction out of the granite also give an image of the structure. Based on the spacings of acoustic emission data, images of the structural surface are extracted statistically. The degree of uncertainty is evaluated. The isograds of the metamorphic mineral distributions are reproduced by a regional heat conduction model.

  13. Structural interpretation of the Kakkonda deep geothermal reservoir

    SciTech Connect

    Kobayashi, Osamu; Arihara, Norio; Hanano, Mineyuki

    1996-01-24

    The Kakkonda geothermal field is known as a unique field such that a new reservoir was found at about 2500 m in depth after the shallow reservoir ranging from 1000 m to 1500 m had been produced for about eight years. The shallow reservoir is composed of sedimentary rock with igneous rock intrusions, while the deep reservoir is a fractured thin zone located at the top of a large granite intrusion. Between the two, there exist thermally metamorphosed zones. This study aims at integrated interpretation of the top structural surface of the deep reservoir. The data used include well data, microearthquakes, and several metamorphic minerals. Microearthquakes, which are continuously observed at surface, reflect the structural surface of the granite intrusion of the deep reservoir. The metamorphic minerals such as biotite and cordierite caused by strong heat conduction out of the granite also give an image of the structure. Based on the spacings of acoustic emission data, images of the structural surface are extracted statistically. The degree of uncertainty is evaluated. The isograds of the metamorphic mineral distributions are reproduced by a regional heat conduction model.

  14. Reservoir quality studies, Arctic National Wildlife Refuge, Alaska

    SciTech Connect

    Mowatt, T.C.; Banet, A. )

    1991-03-01

    Reservoir quality studies are part of the reservoir management and resource assessment programs of the U.S. Bureau of Land Management in Alaska. Petrographic analyses have been carried out of samples collected from surface exposures in the Arctic National Wildlife Refuge (ANWR), Alaska, to evaluate surface materials as to their potential reservoir rock qualities in the subsurface. This entails characterization of relevant petrologic-petrophysical properties, integration with regional geological-geophysical relationships, and synthesis in terms of likely diagenetic, structural, and stratigraphic conditions in the subsurface. There is a paucity of relevant data in this region. Inferences must be predicated largely on general principles and known relationships elsewhere. A spectrum of lithologies were studied, representing a substantial portion of the regional stratigraphic column. In a number of cases, particularly among the pre-Brookian samples, the rocks appear to have low reservoir potential, based on their present high degree of diagenetic maturity. There is always the possibility - deemed somewhat unlikely here - of subsurface equivalents with more favorable characteristics, due to different original compositions, textures, and/or geologic histories. Brookian sandstones and conglomerates feature samples with fair-good reservoir characteristics, with prospects of being equally good or better in the subsurface. The samples studied suggest the likelihood of horizons with viable reservoir qualities in the subsurface within the ANWR region.

  15. Rock Physics of Geologic Carbon Sequestration/Storage

    SciTech Connect

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  16. Experimentally determined rock-fluid interactions applicable to a natural hot dry rock geothermal system

    SciTech Connect

    Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.; Blatz, L.A.; Grigsby, C.O.

    1980-02-01

    The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have been built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.

  17. Carbonate reservoir plays in the South Atlantic and worldwide analogs

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster

    2015-04-01

    This work presents a summary of the geological, geophysical and petrophysical challenges for interpretation of post-salt and presalt carbonate rocks that constitute one of the main reservoirs in the hydrocarbon accumulations in the South Atlantic, particularly in the Campos and Santos basins offshore Brazil and in the Angola -Gabon conjugate margins. Carbonate rocks associated with salt tectonics constitute one of the main exploratory plays in several basins worldwide, and recently have yielded large petroleum discoveries in the southeastern Brazilian continental margin (Santos Basin) and also in Angola (Kwanza Basin) . The presalt microbialite reservoirs are sealed by evaporites and the origin of these rocks is still controversial. One current of interpretation assumes they are associated with reefs and carbonate buildups formed during periods of sea-level rises in a desiccating basin. Other currents of interpretation assume that these rocks might be associated with hydrothermal fluids and chemical precipitation of carbonates in a basin affected by volcanic episodes, resulting in travertine deposits with secondary biogenic growth. We present examples of post-salt oil fields involving Albian carbonates in the South Atlantic, and also discuss the presalt plays recently drilled in ultradeep waters. The presalt carbonate reservoirs are compared with possible microbialite analogs in the sedimentary basins of Brazil dating from Neoproterozoic to Recent, and their similarities and differences in terms of depositional setting and petrophysical parameters from the Late Aptian presalt carbonate rocks that have been sampled in the Santos and Kwanza basins.

  18. Release of biodegradable dissolved organic matter from ancient sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Schillawski, Sarah; Petsch, Steven

    2008-09-01

    Sedimentary rocks contain the largest mass of organic carbon on Earth, yet these reservoirs are not well integrated into modern carbon budgets. Here we describe the release of dissolved organic matter (DOM) from OM-rich sedimentary rocks under simulated weathering conditions. Results from column experiments demonstrate slow, sustained release of DOM from ancient sedimentary rocks under simulated weathering conditions. 1H-NMR analysis of shale-derived DOM reveals a highly aliphatic, carbohydrate-poor material distinct from other natural DOM pools. Shale-derived DOM is rapidly assimilated and biodegraded by aerobic heterotrophic bacteria. Consequently, no compositional signature of shale-derived DOM other than 14C-depletion is likely to persist in rivers or other surface reservoirs. Combined, these efforts show that dissolution provides a mechanism for the conversion of refractory kerogen into labile biomass, linking rock weathering with sedimentary OM oxidation and the delivery of aged OM to rivers and ocean margins.

  19. Rock alteration in an experimentally imposed temperature gradient

    SciTech Connect

    Charles, R.W.

    1980-01-01

    Rock alteration in a dynamic (circulating) hydrothermal system can be applied to any geologic system with mobile fluids. Some examples are geothermal energy extraction, ore mineral extraction, and radioactive waste isolation. While isothermal systems yield important results, polythermal (i.e., temperature gradient) systems more closely model reactions of fluid moving through a rock reservoir. The above examples will generally involve temperature gradients across the rock reservoir. A controlled temperature gradient circulation system was developed to help define these rock-fluid reactions. Six fine grained prisms are placed along the axis of a 113 cm pressure vessel. The prisms are at 72, 119, 161, 209, 270, and 310{degrees}C under flow conditions of 4 cc/min. at 1/3 kbar total pressure. In this experiment a granodiorite was reacted with initially distilled water.

  20. GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.

    USGS Publications Warehouse

    Spencer, Charles W.

    1985-01-01

    The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.

  1. Mechanism of reservoir testing

    SciTech Connect

    Bodvarsson, Gunnar

    1987-01-01

    In evaluating geothermal resources we are primarily interested in data on the distribution of temperature and fluid conductivity within the reservoir, the total volume of the productive formations, recharge characteristics and chemical quality of the thermal fluids. While geophysical exploration by surface methods may furnish some data on the temperature field and give indications as to the reservoir volume, they furnish practically no information on the fluid conductivity and production characteristics. Such information will generally have to be obtained by tests performed within the reservoir, primarily by production tests on sufficiently deep wells. Reservoir testing is therefore one of the most important tasks in a general exploration program. In principal, reservoir testing has much in common with conventional geophysical exploration. Although the physical fields applied are to some extent different, they face the same type of selection between controlled and natural drives, forward and inverse problem setting, etc. The basic philosophy (Bodvarsson, 1966) is quite similar. In the present paper, they discuss some fundamentals of the theory of reservoir testing where the fluid conductivity field is the primary target. The emphasis is on local and global aspects of the forward approach to the case of liquid saturated (dominated) Darcy type formations. Both controlled and natural driving pressure or strain fields are to be considered and particular emphasis is placed on the situation resulting from the effects of a free liquid surface at the top of the reservoir.

  2. Heat extraction modeling of the Stanford hydrothermal reservoir model

    SciTech Connect

    Hunsbedt, A.; Lam, S.T.; Kruger, P.; Pruess, K.

    1982-01-01

    Three heat extraction experiments using a known-geometry rock loading and a calibration cooldown experiment for this rock loading yielded a set of useful hydrothermal reservoir production data covering a range of cooldown rates. The one-dimensional sweep model being developed for early use in hydrothermal reservoirs shows good agreement with the experimental data. A numerical model of the experimental system is under development and early predictions indicate reasonable agreement between numerical model output and experimental results. Future efforts will concentrate on improving details of the model particularly those related to experimental system heat loss characteristics. Once completed, a more detailed evaluation of the rock heat transfer process and appropriate simplified modeling approaches for use in the one-dimensional sweep model can be made.

  3. Marine and nonmarine gas-bearing rocks in Upper Cretaceous Blackhawk and Neslen Formations, eastern Uinta Basin, Utah: sedimentology, diagenesis, and source rock potential

    USGS Publications Warehouse

    Pitman, J.K.; Franczyk, K.J.; Anders, D.E.

    1987-01-01

    Thermogenic gas was generated from interbedded humic-rich source rocks. The geometry and distribution of hydrocarbon source and reservoir rocks are controlled by depositional environment. The rate of hydrocarbon generation decreased from the late Miocene to the present, owing to widespread cooling that occurred in response to regional uplift and erosion associated with the development of the Colorado Plateau. -from Authors

  4. Thermodynamic behaviour of simplified geothermal reservoirs

    SciTech Connect

    Hiriart, G.; Sanchez, E.

    1985-01-22

    Starting from the basic laws of conservation of mass and energy, the differential equations that represent the thermodynamic behavior of a simplified geothermal reservoir are derived. Its application is limited to a reservoir of high permeability as it usually occurs in the central zone of a geothermal field. A very practical method to solve numerically the equations is presented, based on the direct use of the steam tables. The method, based in one general equation, is extended and illustrated with a numerical example to the case of segregated mass extraction, variable influx and heat exchange between rock and fluid. As it is explained, the method can be easily coupled to several influx models already developed somewhere else. The proposed model can become an important tool to solve practical problems, where like in Los Azufres Mexico, the geothermal field can be divided in an inner part where flashing occurs and an exterior field where storage of water plays the main role.

  5. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  6. Reservoir Temperature Estimator

    SciTech Connect

    Palmer, Carl D.

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of the weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.

  7. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (ESTSC)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  8. Determining multiple length scales in rocks

    NASA Astrophysics Data System (ADS)

    Song, Yi-Qiao; Ryu, Seungoh; Sen, Pabitra N.

    2000-07-01

    Carbonate reservoirs in the Middle East are believed to contain about half of the world's oil. The processes of sedimentation and diagenesis produce in carbonate rocks microporous grains and a wide range of pore sizes, resulting in a complex spatial distribution of pores and pore connectivity. This heterogeneity makes it difficult to determine by conventional techniques the characteristic pore-length scales, which control fluid transport properties. Here we present a bulk-measurement technique that is non-destructive and capable of extracting multiple length scales from carbonate rocks. The technique uses nuclear magnetic resonance to exploit the spatially varying magnetic field inside the pore space itself-a `fingerprint' of the pore structure. We found three primary length scales (1-100µm) in the Middle-East carbonate rocks and determined that the pores are well connected and spatially mixed. Such information is critical for reliably estimating the amount of capillary-bound water in the rock, which is important for efficient oil production. This method might also be used to complement other techniques for the study of shaly sand reservoirs and compartmentalization in cells and tissues.

  9. Determining multiple length scales in rocks

    PubMed

    Song; Ryu; Sen

    2000-07-13

    Carbonate reservoirs in the Middle East are believed to contain about half of the world's oil. The processes of sedimentation and diagenesis produce in carbonate rocks microporous grains and a wide range of pore sizes, resulting in a complex spatial distribution of pores and pore connectivity. This heterogeneity makes it difficult to determine by conventional techniques the characteristic pore-length scales, which control fluid transport properties. Here we present a bulk-measurement technique that is nondestructive and capable of extracting multiple length scales from carbonate rocks. The technique uses nuclear magnetic resonance to exploit the spatially varying magnetic field inside the pore space itself--a 'fingerprint' of the pore structure. We found three primary length scales (1-100 microm) in the Middle-East carbonate rocks and determined that the pores are well connected and spatially mixed. Such information is critical for reliably estimating the amount of capillary-bound water in the rock, which is important for efficient oil production. This method might also be used to complement other techniques for the study of shaly sand reservoirs and compartmentalization in cells and tissues. PMID:10910355

  10. The fracture criticality of crustal rocks

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart

    1994-08-01

    The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before

  11. Permeability estimation from NMR diffusion measurements in reservoir rocks.

    PubMed

    Balzarini, M; Brancolini, A; Gossenberg, P

    1998-01-01

    It is well known that in restricted geometries, such as in porous media, the apparent diffusion coefficient (D) of the fluid depends on the observation time. From the time dependence of D, interesting information can be derived to characterise geometrical features of the porous media that are relevant in oil industry applications. In particular, the permeability can be related to the surface-to-volume ratio (S/V), estimated from the short time behaviour of D(t), and to the connectivity of the pore space, which is probed by the long time behaviour of D(t). The stimulated spin-echo pulse sequence, with pulsed magnetic field gradients, has been used to measure the diffusion coefficients on various homogeneous and heterogeneous sandstone samples. It is shown that the petrophysical parameters obtained by our measurements are in good agreement with those yielded by conventional laboratory techniques (gas permeability and electrical conductivity). Although the diffusing time is limited by T1, eventually preventing an observation of the real asymptotic behaviour, and the surface-to-volume ratio measured by nuclear magnetic resonance is different from the value obtained by BET because of the different length scales probed, the measurement remains reliable and low-time consuming. PMID:9803918

  12. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    SciTech Connect

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  13. LBL/Industry fractured reservoir performance definition project

    SciTech Connect

    Benson, S.M.

    1995-04-01

    One of the problems facing the petroleum industry is the recovery of oil from heterogeneous, fractured reservoirs and from reservoirs that have been partially depleted. In response to this need, several companies, notably British Petroleum USA, (BP) and Continental Oil Company (CONOCO), have established integrated reservoir description programs. Concurrently, LBL is actively involved in developing characterization technology for heterogeneous, fractured rock, mainly for DOE`s Civilian Nuclear Waste Program as well as Geothermal Energy programs. The technology developed for these programs was noticed by the petroleum industry and resulted in cooperative research centered on the petroleum companies test facilities. The emphasis of this work is a tightly integrated interdisciplinary approach to the problem of characterizing complex, heterogeneous earth materials. In this approach we explicitly combine the geologic, geomechanical, geophysical and hydrologic information in a unified model for predicting fluid flow. The overall objective is to derive improved integrated approaches to characterizing naturally fractured gas reservoirs.

  14. Geopressured geothermal reservoir continuity: Louisiana and Texas Gulf Coast

    SciTech Connect

    Boardman, C.R.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The areal extent of aquifers which provide the production drive for Gulf Coast geopressured gas reservoirs are postulated to be representative of the areal extents of geopressured geothermal aquifers. Accordingly, the performances of nine water-drive geopressured gas reservoirs were analyzed to obtain inferences of the production-driving aquifers' sizes. Apparent areal extents of these aquifers ranged from 4 to 35 square miles. Two-thirds (6) of the aquifer extents exceeded 12 square miles. All three SP-log types (increased deflection upward, decreased deflection upward and uniform deflection) are represented in this larger aquifer data set. Comparisons of these inferred aquifer volumes with those determined from well log data and correlations are consistent with the existence of hydraulic reservoir continuity across faults and pinch-outs of sand within fault compartments. The magnitudes of in situ rock pore volume compressibility and shale watering could also be evaluated by careful analysis of geopressured gas reservoir performance data.

  15. Potential Mammalian Filovirus Reservoirs

    PubMed Central

    Carroll, Darin S.; Mills, James N.; Johnson, Karl M.

    2004-01-01

    Ebola and Marburg viruses are maintained in unknown reservoir species; spillover into human populations results in occasional human cases or epidemics. We attempted to narrow the list of possibilities regarding the identity of those reservoir species. We made a series of explicit assumptions about the reservoir: it is a mammal; it supports persistent, largely asymptomatic filovirus infections; its range subsumes that of its associated filovirus; it has coevolved with the virus; it is of small body size; and it is not a species that is commensal with humans. Under these assumptions, we developed priority lists of mammal clades that coincide distributionally with filovirus outbreak distributions and compared these lists with those mammal taxa that have been tested for filovirus infection in previous epidemiologic studies. Studying the remainder of these taxa may be a fruitful avenue for pursuing the identity of natural reservoirs of filoviruses. PMID:15663841

  16. Fundamentals of log analysis. Part 10: Determining rock mechanical property values from log analysis

    SciTech Connect

    Hunt, E.R.; McCain, W.D. Jr.

    1997-10-01

    Correct design and execution of well completions, including hydraulic fracturing, can enhance a reservoir`s productivity. Success in this optimization depends in part on being able to predict how hydraulic fracturing affects performance. Controls on the performance of a hydraulically fractured well are the fracture, reservoir characteristics and the well. This article will cover methods for obtaining values of in-situ stress in a specific rock layer and the in-situ stress profile, and determining Young`s modulus.

  17. Session: Reservoir Technology

    SciTech Connect

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  18. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  19. The Bulalo geothermal field, Philippines: Reservoir characteristics and response to production

    SciTech Connect

    Clemente, W.C.; Villadolid-Abrigo, F.L.

    1993-10-01

    The Bulalo geothermal field has been operating since 1979, and currently has 330 MWe of installed capacity. The field is associated with a 0.5 Ma dacite dome on the southeastern flank of the Late Pliocene to Quaternary Mt. Makiling stratovolcano. The reservoir occurs within pre-Makiling andesite flows and pyroclastic rocks capped by the volcanic products of Mt. Makiling. Initially, the reservoir was liquid-dominated with a two-phase zone overlying the neutral-pH liquid. Exploitation has resulted in an enlargement of the two-phase zone, return to the reservoir of separated waste liquid that has been injected, scaling in the wellbores and rock formation, and influx of cooler groundwaters. Return of injected waters to the reservoir and scaling have been the major reservoir management concerns. These have been mitigated effectively by relocating injection wells farther away from the production area and by dissolving scale from wells with an acid treatment.

  20. Rock Mechanical Properties from Logs Petrophysics : Concepts and Results

    NASA Astrophysics Data System (ADS)

    Gaillot, Philippe; Crawford, Brian; Alramahi, Bashar; Karner, Steve

    2010-05-01

    The objective of the "geomechanics from logs" (GML) research project is to develop model-driven predictive software for determining rock mechanical properties (specifically rock strength, compressibility and fracability) from other, more easily measured, rock properties (e.g. lithology, porosity, clay volume, velocity) routinely derived from nuclear, resistivity and acoustic logging tools. To this end, geomechanics from logs seeks to increase fundamental understanding of the primary geologic controls on rock mechanical properties and to translate this new insight into novel predictive tools. In detail, GML predictors rely on (i) the generation of relational rock mechanical properties databases incorporating QC'd core-based laboratory measurements (both in-house and high-precision published data); (ii) the use of established rock physics models (e.g. friable sand, contact cement models) to investigate theoretical relationships between geologic processes, reservoir environment, rock microstructure and elastic, bulk and transport petrophysical attributes/properties; (iii) the subdivision of database rocks into generic lithotypes (e.g. sand, shaly sand, sandy shale, shale) with common petrophysical attributes/properties; (iv) the use of multivariate statistics to generate lithotype-dependent empirical predictive relationships between mechanical properties and log-derived petrophysical attributes/properties; (v) the estimation of uncertainties associated with predictive function parameters; (vi) the application and validation of mechanical properties predictive tools to well-documented case studies (e.g. sand strength for perforation stability, rock compressibility for reservoir simulation) to test overall performance and quantify uncertainty in predictions. This paper presents the results of various rock strength, rock compressibility and rock fracability case studies conducted in wells of different stratigraphic age and depositional environment. Overall, GML (i

  1. Diagenetic evolution and petrophysical characteristics of oomoldic facies in United States and Middle East reservoirs

    SciTech Connect

    Nurmi, R.; Neuberger, D.

    1987-08-01

    The diagenetic evolution of oomoldic pore rocks from US and Middle East reservoirs were studied to determine their variation. The oomolds in all of the reservoir samples appear to have formed prior to any compaction, and were also subject to early cementation, which preserved the delicate structure of these rocks. The most common oomold-filling mineral is calcite, regardless of whether the remainder of the rock is dolostone or limestone. Anhydrite is commonly the mineral filling oomolds in formations depositionally associated with evaporites. Partial cementation of individual oomolds is rare. However, partial filling of oomoldic wackestones by lime mud was observed. The petrophysical characteristics of oomoldic rocks in different stages of diagenetic evolution were analyzed using thin sections, pore casts, porosity and permeability measurements, and saturation. The rocks used in the study included core samples from the Lansing-Kansas City Group, San Andres, Smackover, Arab, and Khuff formations. Selected samples from the Lansing-Kansas City Groups were also measured for formation factor, density, and for dielectric and acoustic properties. The study quantified the relationship of pore type and volume with both formation factor and permeability of oomoldic rocks. The framework mineralogy (calcite or dolomite) and microstructure, and the presence and nature of interparticle pore-filling cements are critical factors in assessing the reservoir potential of an oomoldic reservoir facies. Furthermore, the geologic analysis of the pore system can greatly improve the determination of the Archie m exponent, which provides more reasonable evaluations of the saturation and permeability of these complex rocks.

  2. The Tiwi geothermal reservoir: Geology, geochemistry, and response to production

    SciTech Connect

    Hoagland, J.R.; Bodell, J.M. )

    1990-06-01

    The Tiwi geothermal field is located on the Bicol Peninsula of Southern Luzon in the Philippines. The field is associated with the extinct Quaternary stratovolcano Mt. Malinao, one of a chain of volcanos formed as a result of crustal subduction along the Philippine Trench to the east. The geothermal reservoir is contained within a sequence of interlayered andesite flows and pyroclastic deposits that unconformably overlie a basement complex of marine sediments, metamorphic, and intrusive rocks. In its initial state, the Tiwi reservoir was an overpressured liquid-filled system containing near-neutral sodium chloride water at temperatures exceeding 260{degree}C. The reservoir is partially sealed at its top and sides by hydrothermal argillic alteration products and calcite deposition. Isolated portions of the reservoir contain a corrosive acid chloride-sulfate water associated with a distinctive advanced argillic mineral assemblage. Withdrawal of fluid for electricity generation has caused widespread boiling in the reservoir and the formation of steam zones. The resultant solids deposition in wellbores and near-wellbore formation has been mitigated by a combination of mechanical and chemical well stimulation. Mass withdrawal from the reservoir has also caused invasion of cold groundwater into the reservoir through former fluid outflow channels. During 1983-1987, several wells were flooded with cold water and ceased flowing. In response, PGI moved development drilling west to largely unaffected areas and undertook recompletion and stimulation programs. These programs effectively halted the decline in generation by 1988.

  3. Paonia Reservoir Sediment Management

    NASA Astrophysics Data System (ADS)

    Kimbrel, S.; Collins, K.; Williams, C.

    2014-12-01

    Paonia Dam and Reservoir are located on Muddy Creek, a tributary of the North Fork Gunnison River in western Colorado. Since dam closure in 1962, the 2002 survey estimates an annual sedimentation rate of 153,000 m3/y, resulting in a 25% loss of total reservoir capacity. Long before sediment levels completely fill the reservoir, the outlet works have recently plugged with sediment and debris, adversely impacting operations, and emphasizing the urgency of formulating an effective sediment management plan. Starting in 2010-2011, operations were changed to lower the reservoir and flush sediment through the outlet works in early spring before filling the pool for irrigation. Even though the flushing strategy through the long, narrow reservoir (~5 km long and 0.3 km wide) has prevented outlet works plugging, a long term plan is needed to manage inflowing and deposited sediment more efficiently. Reclamation's Sedimentation and River Hydraulics Group is leading an effort to study the past and current sediment issues at Paonia Dam and Reservoir, evaluate feasible sediment management alternatives, and formulate a plan for future operations and monitoring. The study is building on previously collected data and the existing knowledge base to develop a comprehensive, sustainable sediment management plan. The study is being executed in three phases: Phase 1 consisted of an initial site visit to map and sample existing reservoir bottom sediments, a preliminary site evaluation upstream and downstream of the dam, and establishment of time-lapse photo sites and taking initial ground-based photos. Phase 2 includes a bathymetric survey of entire reservoir and 11 km of the river downstream of the dam, continuous suspended sediment monitoring upstream and downstream of the reservoir, and collection of additional core samples of reservoir bottom sediments. Phase 3 involves the evaluation of current and past operations and sediment management practices, evaluate feasible sediment

  4. Magnetic susceptibility of petroleum reservoir fluids

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Oleksandr P.; Potter, David K.

    A knowledge of the magnetic properties of petroleum reservoir fluids may provide new techniques for improved reservoir characterisation, petroleum exploration and production. However, magnetic information is currently scarce for the vast majority of reservoir fluids. For instance, there is little in the literature concerning basic magnetic susceptibility values of crude oils or formation waters. We have therefore measured the mass magnetic susceptibility ( χm) of several crude oils, refined oil fractions, and formation waters from local and world-wide sites. All the fluids measured were diamagnetic, however there were distinct differences in magnitude between the different fluid types. In particular, χm for the crude oils was more negative than for the formation waters of the same locality. The magnetic susceptibility of the oils appears to be related to their main physical and chemical properties. The results correlated with the density, residue content, API (American Petroleum Institute) gravity, viscosity, sulphur content and metal concentration of the fluids. Light fractions of crude oil were the most diamagnetic. The magnetic measurements potentially allow physical and chemical differences between the fluids to be rapidly characterised. The results suggest other possible applications, such as passive in situ magnetic susceptibility sensors for fluid monitoring (for example, the onset of water breakthrough, or the detection of migrating fines) in reservoirs, which would provide an environmentally friendly alternative to radioactive tracers. The mass magnetic susceptibilities of the fluids in relation to typical reservoir minerals may also play a role in fluid-rock interactions, such as studies of wettability. The χm of crude oil from the various world-wide oil provinces that were tested also showed some differences, possibly reflecting broad physical and chemical features of the geological history of each province.

  5. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  6. 14. ANGULAR QUARTZITE ROCK REINFORCEMENT ON INTERIOR OF OUTSIDE CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. ANGULAR QUARTZITE ROCK REINFORCEMENT ON INTERIOR OF OUTSIDE CANAL BANK, LOOKING SOUTH-SOUTHEAST. CANAL ROUTE VISIBLE ALONG HILLSIDE NEAR TOP LEFT. NOTE DILLON RESERVOIR, HIGHWAY 6, AND NEW RESIDENTIAL CONSTRUCTION AT RIGHT AND CENTER. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  7. GENERAL VIEW OF DRYLAID ROCK CUTOFF WALLS ALONG NORTH EDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF DRY-LAID ROCK CUTOFF WALLS ALONG NORTH EDGE OF TUMALO RESERVOIR AND ADJACENT TO NORTH SIDE OF BULL CREEK DAM AND BRIDGE. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  8. In situ heat transfer in man-made geothermal energy reservoirs

    SciTech Connect

    Murphy, H.D.; Tester, J.W.; Grigsby, C.O.; Potter, R.M.

    1980-01-01

    Two hot dry rock geothermal energy reservoirs were created by hydraulic fracturing of Precambrian granitic rock on the west flank of the Valles Caldera, a dormant volcanic complex, in the Jemez Mountains of northern New Mexico. Heat was extracted in a closed-loop mode of operation, injecting water into one well and extracting the heated water from a separate production well. The first reservoir was produced by fracturing the injection well at a depth of 2.75 km (9020 ft) where the indigenous rock temperature was 185/sup 0/C. The relatively rapid thermal drawdown of the water produced from the first reservoir, 100/sup 0/C in 74 days, indicated that its effective fracture radius was about 60 m (200 ft). Average thermal power extracted was 4 MW. A second, larger reservoir was created by refracturing the injection well 180 m (600 ft) deeper. Downhole measurements of the water temperature at the reservoir outlet as well as temperatures inferred from chemical geothermometry showed that the thermal drawdown of this reservoir was negligible; the effective heat transfer area of the new reservoir must be at least 45,000 m/sup 2/ (480,000 ft/sup 2/), nearly six times larger than the first reservoir. In addition reservoir residence time studies employing visible dye tracers indicated that the mean volume of the second reservoir is nine times larger. Other measurements showed that flow impedances were low, downhole water losses from these reservoirs should be manageable, that the geochemistry of the produced water was essentially benign, with no scaling problems apparent, and that the level of induced seismic activity was insignificantly small.

  9. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  10. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  11. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  12. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  13. Fractured unconventional reservoirs in the Crystalline Basement

    NASA Astrophysics Data System (ADS)

    Plotnikova, Irina

    2015-04-01

    Since the late 1960-es, the crystalline basement of Tatarstan has been in the focus of intense geological and geophysical surveys. Since 1975, within the framework of the Subsoil Survey Program of Tatarstan, two extra deep wells have been drilled in the Republic, including: 20000-Minnibaevskaya well (bottomhole depth - 5,099 m, meters drilled in the basement - 3,215 m) and 20009-Novoelkhovskaya well (bottomhole depth - 5,881 m, meters drilled in the basement - 4,077 m), as well as 24 wells penetrating the basement at depth from 100 to 2,432 m. Reservoir properties of the crystalline basement rocks can be evaluated based on the resulting volumes of produced liquid, which vary from 0.027 to 125 m3/day. The highest flow rate was registered for well № 20000 Minnibaevskaya. Therefore, there are high-capacity reservoir zones in the crystalline basement of the eastern margin of the Russian Platform. The statement saying that natural reservoirs with significant sizes and fluid storage capacities occur everywhere within the Precambrian crystalline massive on the territory of Tatarstan can be justified by the following provisions: - deconsolidation and fracturing zones of the crystalline basement are registered by a full set of geological and geophysical methods applied in the process of geophysical well surveys and in the process of surface geophysical studies; - there is a certain regular pattern of crystalline basement zone distribution by area and by profile. Wide-spaced drilling into the crystalline basement helped to identify numerous zones of deconsolidation and fracturing with different fluid storage capacity and different extent of fluid saturation. Thickness of the crystalline basement reservoir zones varies from several meters to dozens of meters. Such zones were identified close to the crystalline basement top, As well as at depths more than 5 km. Well log survey was the key method used for reservoir differentiation in the crystalline basement. In total, 16

  14. Reservoir permeability from seismic attribute analysis

    SciTech Connect

    Silin, Dmitriy; Goloshubin, G.; Silin, D.; Vingalov, V.; Takkand, G.; Latfullin, M.

    2008-02-15

    In case of porous fluid-saturated medium the Biot's poroelasticity theory predicts a movement of the pore fluid relative to the skeleton on seismic wave propagation through the medium. This phenomenon opens an opportunity for investigation of the flow properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid movement becomes negligible at seismic frequencies if porous material is homogeneous and well cemented. In this case the theory predicts an underestimated seismic wave velocity dispersion and attenuation. Based on Biot's theory, Helle et al. (2003) have numerically demonstrated the substantial effects on both velocity and attenuation by heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the effects of scattering (Gurevich, et al., 1997) play very important role in case of finely layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow and scattering effects to derive a frequency-dependent seismic attribute which is proportional to fluid mobility and applied it for analysis of reservoir permeability.

  15. Advances in carbonate exploration and reservoir analysis

    USGS Publications Warehouse

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  16. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry reservoir. Quarterly technical report, April 1, 1996--June 30, 1996

    SciTech Connect

    Schechter, D.

    1996-11-01

    Progress has been made in the area of laboratory analysis of Spraberry oil/brine/rock interactions during this quarter. Water imbibition experiments were conducted under ambient conditions, using cleaned Spraberry cores, synthetic Spraberry reservoir brine, and Spraberry oil. It has been concluded that the Spraberry reservoir cores are weakly water-wet. The average Amott wettability index to water is about 0.55. The average oil recovery due to spontaneous water imbibition is about 50% of original oil in place.

  17. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  18. Conference addresses thermo-hydro-mechanical coupling in fractured rock

    NASA Astrophysics Data System (ADS)

    Kümpel, Hans-Joachim

    Various environmental problems and the use of certain energy resources are closely related to fluid flow in and the mechanical behavior of porous or fractured rock. Subjects of obvious socioeconomic relevance are the supply and protection of groundwater, the production of hydrocarbon reservoirs, land subsidence in coastal areas, exploitation of geothermal energy and the long-term disposal of critical wastes. Efficient management of such issues is often hampered by the fact that rocks and rock formations are inherently complex. Any rock sample is an aggregate of the myriad mineral particles forming its matrix and fluid molecules residing in voids. Any two rock samples differ in many aspects, including geochemical constituents, size and shape of grains, structure of pore space, and fracture networks.

  19. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  20. Lakes and reservoirs

    SciTech Connect

    Taub, F.B.

    1984-01-01

    This volume in the Ecosystems of the World series studies lakes and reservoirs. The book opens with a discussion of the ecosystem processes that are common to all lakes and reservoirs and then proceeds to a description of mathematical models of these processes. The chapters concentrate on lakes and reservoirs in different parts of the world, ranging from polar to tropical lakes, and in many of the chapters the effects of human activities such as dam construction, increased nutrient inputs, toxic contaminants and fish introduction, are also considered. The book concludes with a summary of the efforts at lake restoration that are being undertaken in many communities in an attempt to undo the damage that has resulted from some of these activities.

  1. A petroleum system in search of a reservoir; the Palmyrid Region, Syria

    SciTech Connect

    Blanchard, D.C.; Dembicki, H. Jr.; Dow, W.G.

    1995-08-01

    World class accumulations of hydrocarbons have not been discovered in the Palmyrid region of central Syria despite the presence of all of the essential elements of a petroleum system such as source rock, seal rock, trap and, to a lesser extent, reservoir rock. Recent exploration has resulted in an appreciation of why the Palmyrid region has failed to yield significant hydrocarbon discoveries even though active source generation appears more than adequate to charge the basin. The early Triassic Mulussa E, D1 and C2 source-reservoir system is characterized by an overall shallowing up sequence capped by Mulussa C-1 salt rock. Source rock quality and facies distribution and subsequent oil and gas generation and migration are correctly placed in time and space to take advantage of the structural evolution of traps. The sub-salt system fails primarily because of poor reservoir quality although patchy, unpredictable porosity-permeability enhancement provides adequate reservoir quality for the Ash Shaer and Cherrife gas fields. The Palmyrid petroleum system illustrates a case where all of the processes and elements required to form large accumulations are present but for one essential element, the reservoir, is insufficiently developed to form major hydrocarbon accumulations.

  2. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  3. Gypsy Field Project in Reservoir Characterization

    SciTech Connect

    John P. Castagna; William J. Lamb; Carlos Moreno; Roger Young; Lynn Soreghan

    2000-09-19

    The objective of the Gypsy Project was to properly calculate seismic attributes and integrate these into a reservoir characterization project. Significant progress was made on the project in four areas. (1) Attenuation: In order for seismic inversion for rock properties or calculation of seismic attributes used to estimate rock properties to be performed validly, it is necessary to deal with seismic data that has had true amplitude and frequency content restored to account for earth filtering effects that are generally not included in seismic reservoir characterization methodologies. This requires the accurate measurement of seismic attenuation, something that is rarely achieved in practice. It is hoped that such measurements may also provide additional independent seismic attributes for use in reservoir characterization studies. In 2000, we were concerned with the ground truthing of attenuation measurements in the vicinity of wells. Our approach to the problem is one of extracting as time varying wavelet and relating temporal variations in the wavelet to an attenuation model of the earth. This method has the advantage of correcting for temporal variations in the reflectivity spectrum of the earth which confound the spectral ratio methodology which is the most commonly applied means of measuring attenuation from surface seismic data. Part I of the report describes our efforts in seismic attenuation as applied to the Gypsy data. (2) Optimal Attributes: A bewildering array of seismic attributes is available to the reservoir geoscientist to try to establish correlations to rock properties. Ultimately, the use of such a large number of degrees of freedom in the search for correlations with limited well control leads to common misapplication of statistically insignificant results which yields invalid predictions. Cross-validation against unused wells can be used to recognize such problems, but does not offer a solution to the question of which attributes should be used

  4. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  5. Manicouagin Reservoir of Canada

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Recorded by the Space Shuttle Atlantis STS-110 mission, this is a photograph of the ice- covered Manicouagin Reservoir located in the Canadian Shield of Quebec Province in Eastern Canada, partially obscured by low clouds. This reservoir marks the site of an impact crater, 60 miles (100 kilometers) wide, which according to geologists was formed 212 million years ago when a meteorite crashed into this area. Over millions of years, the crater has been worn down by glaciers and other erosional processes. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  6. Modeling Permeability Alteration in Diatomite Reservoirs During Steam Drive, SUPRI TR-113

    SciTech Connect

    Bhat, Suniti Kumar; Kovscek, Anthony R.

    1999-08-09

    There is an estimated 10 billion barrels of original oil in place (OOIP) in diatomaceous reservoirs in Kern County, California. These reservoirs have low permeability ranging from 0.1 to 10 mD. Injection pressure controlled steam drive has been found to be an effective way to recover oil from these reservoir. However, steam drive in these reservoirs has its own complications. The rock matrix is primarily silica (SiO2). It is a known fact that silica is soluble in hot water and its solubility varies with temperature and pH. Due to this fact, the rock matrix in diatomite may dissolve into the aqueous phase as the temperature at a location increases or it may precipitate from the aqueous phase onto the rock grains as the temperature decreases. Thus, during steam drive silica redistribution will occur in the reservoir along with oil recovery. This silica redistribution causes the permeability and porosity of the reservoir to change. Understanding and quantifying these silica redistribution effects on the reservoir permeability might prove to be a key aspect of designing a steam drive project in these formations.

  7. Reservoir simulation in a North Sea reservoir experiencing significant compaction drive

    SciTech Connect

    Cook, C.C.; Jewell, S.

    1995-12-31

    The Valhall field in the Norwegian North Sea is a high porosity chalk reservoir undergoing primary pressure depletion. Over the last ten years there have been a number of computer modeling studies of the field which have all assumed an original oil-in-place of approximately 2,000 MMSTB (318.0{times}10{sup 6}m{sup 3}) to the present due to the addition of wells and the optimization of completion techniques. However, the single most important and unique feature influencing Valhall long term production performance is reservoir rock compaction. This paper describes the mathematical model used to simulate reservoir performance in a compacting reservoir with specific discussion regarding the proportion of oil produced by each physical recovery process. An understanding of the recovery mechanisms and their relative importance is critical for the successful management of the field. This paper also presents an alternative method for evaluating the various recovery processes using a simple solution to the material balance equation. This is used to substantiate the magnitude of the various recovery mechanisms identified in the simulation model.

  8. Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonaradian Age) Reservoirs, West Texas and New Mexico

    SciTech Connect

    Lucia, F. Jerry; Jennings, Jr., James W.

    2001-05-08

    A preliminary reservoir model was constructed for the Lower Clear Fork of the South Wasson Clear Fork reservoir. The model was constructed by calibrating high-frequency cycles observed in cores to the porosity log. The rock fabrics mostly fall in petrophysical class 1, and cross plots of porosity and water saturation could not be used to identify rock fabrics. Data from two limestone fields and one dolostone field were presented to support the contention that grain-dominated fabrics have higher porosity than mud-dominated fabrics do and that this difference is retained when the limestone is dolomitized.

  9. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  10. Diagenetic capping of carbonate reservoir facies

    SciTech Connect

    Lighty, R.G.

    1984-04-01

    The diagenetic model proposed involves the effect of submarine cementation on previously lithified carbonates, such as submerged relict shelf-margin buildups (e.g., drowned reefs, ooid shoals) or previously subaerially exposed formations (e.g., dune ridges) that were submerged by later sea level rise. These deposits generally have pronounced topographic relief (visible on seismic), good reservoir geometries, and high internal porosity of either primary or secondary origin. Petrologic studies on examples of both of these situations, a submerged early Holocene barrier reef off Florida and a 175-km (110-m) long submerged Pleistocene eolian ridge in the Bahamas, show that their exposed surface and uppermost facies (0.1 m, or 0.3 ft, below top) are further infilled and cemented, creating an extensively lithified, low porosity/low permeability zone or diagenetic cap rock. Quantitative mineralogic studies of occluding cements reveal an exponential reduction in porosity while moving upward into the seal zone. Submarine cements effectively infill and form a surficial permeability barrier that acts to impede further diagenesis and porosity reduction within underlying potential reservoir facies. To form this diagenetic seal only requires that the original carbonate buildup be resubmerged for some brief period of time prior to subsequent burial by sediments. If buildup accumulation later resumes without intermediate sediment burial, a common stratigraphic situation, the diagenetic seal would represent a disconformity separating two similar facies. The early formation of a diagenetic cap rock lends support to models of early hydrocarbon migration and emplacement. Prediction and recognition of submarine diagenetic seals will aid in exploration and development of obvious buildup reservoirs as well as subtle intraformational traps.

  11. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  12. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect

    Mohan Kelkar

    2005-07-01

    West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we continue to describe the use of surfactant to alter the wettability of the rock. By altering the wettability, we should be able to change the water-gas ratio in the reservoir and, hence, improve the productivity from the well. In our Engineering and Geological Analysis section, we present our rock typing analysis work which combines the geological data with engineering data to develop a unique rock characteristics description. The work demonstrates that it is possible to incorporate geological description in engineering analysis so that we can come up with rock types which have unique geological characteristics, as well as unique petrophysical characteristics. Using this rock typing scheme, we intend to develop a detailed reservoir description in our next quarterly report.

  13. Microcracks in lunar rocks

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1979-01-01

    Lunar samples contain abundant open microcracks that have closure characteristics completely unlike any shocked terrestrial rock; however, the microcracks present in the lunar rocks before the rocks reached the surface of the moon were likely similar to the microcracks in the shocked terrestrial rocks. Because the microcracks present in the lunar rocks in situ inside the moon were different, radically different, from the microcracks present today in returned lunar samples, any property that is sensitive to microcracks measured on the returned lunar samples is inappropriate for predicting that property as a function of depth in the moon. Therefore, many data that have been measured already on lunar samples simply do not apply to rocks in situ inside the moon. A plausible mechanism with which to account for the difference in microcrack characteristics of lunar samples on the surface of the moon and the microcrack characteristics of lunar rock in situ inside the moon is thermal cycling during residence on the moon's surface.

  14. Using HDR (Hot Dry Rock) technology to recharge The Geysers

    SciTech Connect

    Brown, D.W.; Robinson, B.A.

    1990-01-01

    The main reason for the productivity decline at The Geysers geothermal field is obvious: more fluid is being withdrawn from the reservoir than is being returned by reinjection and natural recharge. However, there is another factor that may be contributing to this decline --- the method of reinjection. By reinjecting cold condensate directly into the steam dome as is the current practice, the very large pressure difference between the injected condensate and the underpressured reservoir guarantees that the reinjected fluid will fall rapidly to the bottom of the reservoir, with very little residence time for heat transfer. This point is very important since the vast majority of the heat contained in The Geysers geothermal field is stored in the hot rock comprising the reservoir. 10 refs., 4 figs.

  15. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    NASA Astrophysics Data System (ADS)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  16. Reinjection into geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  17. Applying reservoir characterization technology

    SciTech Connect

    Lake, L.W.

    1994-12-31

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  18. A mathematical model of microbial enhanced oil recovery (MEOR) method for mixed type rock

    SciTech Connect

    Sitnikov, A.A.; Eremin, N.A.; Ibattulin, R.R.

    1994-12-31

    This paper deals with the microbial enhanced oil recovery method. It covers: (1) Mechanism of microbial influence on the reservoir was analyzed; (2) The main groups of metabolites affected by the hydrodynamic characteristics of the reservoir were determined; (3) The criterions of use of microbial influence method on the reservoir are defined. The mathematical model of microbial influence on the reservoir was made on this basis. The injection of molasse water solution with Clostridium bacterias into the mixed type of rock was used in this model. And the results of calculations were compared with experimental data.

  19. Modeling of fluid and heat flow in fractured geothermal reservoirs

    SciTech Connect

    Pruess, K.

    1988-08-01

    In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.

  20. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. First annual report, September 29, 1993--September 30, 1994

    SciTech Connect

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1995-05-01

    The goal of this project is to provide a more quantitative definition of reservoir heterogeneity. This objective will be accomplished through the integration of geologic, geophysical, and engineering databases into a multidisciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. The intent is to obtain a quantitative reservoir description incorporating outcrop, field, well-to-well, and laboratory core and fluid data of widely varying scales. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. A more accurate reservoir description will allow greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, is available for the field research activities that will be conducted.

  1. Recent resource assessments of tight gas reservoirs

    SciTech Connect

    Spencer, C.W.

    1984-04-01

    Two fairly recent estimates of natural gas recoverable from tight gas reservoirs in the US have been made. One was prepared in 1978, by Lewin and Associates for DOE (US Department of Energy) and the second was made by the NPC (National Petroleum Council) in 1980. Lewin estimated about 200 tcf is recoverable from the 14 most favorable regions in the US. The NPC estimated that about 500 tcf is recoverable from the entire onshore US. These studies involved a careful analysis of available data; however, both studies excluded large areas and great thicknesses of rock strata from their resource data base. The reasons for these exclusions were mostly lack of good well control and not absence of gas potential. Therefore, both assessments were conservative and the potential recoverable resource is probably much larger than even the 500 tcf estimated by the NPC. Unfortunately present-day technology is not able to consistently identify, stimulate, and produce large volumes of gas from lenticular and (or) deep tight reservoirs. The NPC recognized these problems and listed many research topics and programs, in their report, that should be undertaken to increase the amount of recoverable gas. A few of the more important informational needs are: (1) better methods to predict geometry of reservoirs, (2) improvement of log interpretation, (3) better prediction of natural fracture systems, (4) control of, and prediction of, hydraulic fracture height, length, and orientation, (5) elimination of formation damage, and (6) development of innovative reservoir stimulation methods. DOE has supported a number of research efforts directed toward solving many of these problems.

  2. Coalbed methane reservoir characterization using magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, Aleksandr; Makhatova, Meruyert; Kalbekov, Arkhat; Baibussinova, Zhanar; Moldagereyeva, Anel

    2016-04-01

    This research describes a study of the dependence of the magnetic susceptibility (MS) and permeability as a new approach for coalbed methane (CBM) reservoir characterization. Experimental measurements were undertaken in coal cores from Kazakhstan (Karaganda Basin). The well sections containing coal are the area of high interest where regular deposition of sandstone, shale and coal is observed. The MS measurements were made by the core logging sensor with the sensitive area of the probe providing volume magnetic susceptibility values. Permeability has been determined by air permeameter. Both magnetic susceptibility and permeability have been measured at the same points. The obtained values of permeability and magnetic susceptibility exhibit the predicted pattern of deposition of reservoir rocks. Coal reservoirs generally is spaced between shale layers with extremely high MS values and highly low permeability. Sandstone with shale interlayers tends to be a transition area between shale and coal. Such tendency appears within several sections. The experimental results showed a strong correspondence between measured magnetic susceptibility and permeability of coal core samples. Therefore, inverse proportionality between magnetic susceptibility and permeability is observed. Generally, the high values of magnetic susceptibility correspond to low permeability, likewise the low diamagnetic MS values comply with high permeability of production zones. In a point of fact, linear proportionality appears as well due to fractures. In this case, permeability must be recalculated in relation to degree of fracturing. Magnetic susceptibility results could sometimes be affected by small content of ferrimagnetic minerals that resulted in high MS values. However, MS data demonstrated good correlations with permeability. The application of magnetic susceptibility values for coalbed methane reservoir characterization could be a non-destructive and rapid method potentially used in both

  3. Dynamic-reservoir lubricating device

    NASA Technical Reports Server (NTRS)

    Ficken, W. H.; Schulien, H. E.

    1968-01-01

    Dynamic-reservoir lubricating device supplies controlled amounts of lubricating oil to ball bearings during operation of the bearings. The dynamic reservoir lubricating device includes a rotating reservoir nut, a hollow cylinder filled with lubricating oil, flow restrictors and a ball bearing retainer.

  4. Stream, Lake, and Reservoir Management.

    PubMed

    Mei, Ying; Chang, Chein-Chi; Dong, Zhanfeng; Wei, Li

    2016-10-01

    This review on stream, lake, and reservoir management covers selected 2015 publications on the focus of the following sections: • Biota • Climate effect • Models • Remediation and restoration • Reservoir operations • Stream, Lake, and Reservoir Management • Water quality. PMID:27620102

  5. Reservoir geochemistry: A link between reservoir geology and engineering?

    SciTech Connect

    Larter, S.R.; Aplin, A.C.; Corbett, P.; Ementon, N.

    1994-12-31

    Geochemistry provides a natural but poorly exploited link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the PVT properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a sub-meter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  6. Reservoir geochemistry: A link between reservoir geology and engineering?

    SciTech Connect

    Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N.; Corbett, P.W.M.; Ementon, N.

    1997-02-01

    Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

  7. Geologic map of the Morena Reservoir 7.5-minute quadrangle, San Diego County, California

    USGS Publications Warehouse

    Todd, Victoria R.

    2016-01-01

    IntroductionMapping in the Morena Reservoir 7.5-minute quadrangle began in 1980, when the Hauser Wilderness Area, which straddles the Morena Reservoir and Barrett Lake quadrangles, was mapped for the U.S. Forest Service. Mapping was completed in 1993–1994. The Morena Reservoir quadrangle contains part of a regional-scale Late Jurassic(?) to Early Cretaceous tectonic suture that coincides with the western limit of Jurassic metagranites in this part of the Peninsular Ranges batholith (PRB). This suture, and a nearly coincident map unit consisting of metamorphosed Cretaceous and Jurassic back-arc basinal volcanic and sedimentary rocks (unit KJvs), mark the boundary between western, predominantly metavolcanic rocks, and eastern, mainly metasedimentary, rocks. The suture is intruded and truncated by the western margin of middle to Late Cretaceous Granite Mountain and La Posta plutons of the eastern zone of the batholith.

  8. Application of wavelet analysis to upscaling of rock properties

    SciTech Connect

    Chu, Lifu; Schatzinger, R.A.; Tham, M.K.

    1996-12-31

    Although numerous upscaling techniques are reported in the literature, efficiently computing reasonably accurate equivalent rock properties from geological data at fine scale remains difficult. This is especially true for facies with multiple lithologies under multiphase flow conditions. Due to the nature of multiscale heterogeneity inherent in petroleum reservoirs, the equivalent rock and flow properties will vary with the scales of heterogeneity. Therefore, upscaled properties under multiphase flow conditions cannot be estimated without reference to the absolute scales of heterogeneity. Wavelet analysis is a multiresolution framework and, thus, it is well suited for upscaling rock and flow properties in a multiscale heterogeneous reservoir. The compact support property of the wavelet transform assures efficient computation. Choice of regularity provides a flexible way to control the smoothness of the resulting upscaling properties. In this study, a new procedure was developed to significantly improve the computational efficiency and accuracy of upscaling for generating equivalent rock and rock-fluid properties under various geological and flow conditions based on multiresolution analysis of wavelet transforms. Additionally, a wavelet reconstruction method was explored to provide a basis for downsampling fine-scale rock property fields from information at various levels of coarser scale. The beauty of the method is that since the equivalent properties at different length scales are computed recursively, the interdependent influences of the heterogeneities on the scales are included effectively. The method is demonstrated by successfully applying it to upscale interbedset and interfacies outcrop petrophysical data.

  9. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    SciTech Connect

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  10. Properties of a natural CO2 analogue reservoir in Hungary

    NASA Astrophysics Data System (ADS)

    Király, Csilla; Szamosfalvi, Ágnes; Sendula, Eszter; Falus, György; Szabó, Csaba; Kovács, István; Füri, Judit; Kónya, Péter; Káldos, Réka

    2014-05-01

    Reducing anthropogenic CO2 emissions is one of the greatest goals of the present and future environmental scientists. Carbon capture and sequestration is considered to be an efficient technology in eliminating carbon-dioxide at large, stationary carbon-emitting industrial sources. To ensure the long term stability of the geologically trapped CO2, behavior of the CO2-reservoir-porewater system should be predictable on geological timescales. Natural CO2 reservoirs are very important in studying the safety of geological storage of industrial CO2. In these natural occurrences we can study long term rock-fluid reactions, which cannot be reproduced in laboratories or with computer models. Nevertheless, this information is essential to assure the long term safety of CCS-technology. The Mihályi-Répcelak area (Western Hungary) is the oldest known and produced CO2 occurrence in Hungary. In this area there are dozens of CO2 sites that are suitable for industrial production. As a consequence many of the data are publicly available. We have studied 28 wells from the area of Mihályi-Répcelak (10 wells from the area of Mihályi and 18 wells from Répcelak area). We have rock samples from the CO2 reservoirs and from their caprock and underlying rock layer, too. Furthermore, the fluid composition and the well log database are also known. In this study we discuss our first results of the core samples from the study area. The rocks were selected in order to represent CO2 reservoir lithologies, their caprocks and underlying sedimentary sequences. We have used conventional methods, i.e., petrographic microscope and also applied SEM, XRD, DTA to obtain control of the major mineralogical composition and textural feature of the reservoir rocks. Detailed analysis of samples on the caprock and underlying rock layers with XRD, SEM, FTIR and DTA are also done. The applied methods are expected to show the mineralogical and textural changes in the lithologies as a consequence of CO2. We

  11. Geothermal Reservoir Engineering Research. Fourth annual report, October 1, 1983-September 30, 1984

    SciTech Connect

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

    1984-09-01

    Reservoir definition research consisted of well test analysis and bench-scale experiments. Well testing included both single-well pressure drawdown and buildup testing, and multiple-well interference testing. The development of new well testing methods continued to receive major emphasis during the year. Work included a project on multiphase compressibility, including the thermal content of the rock. Several projects on double-porosity systems were completed, and work was done on relative-permeability. Heat extraction from rock will determine the long-term response of geothermal reservoirs to development. The work in this task area involved a combination of physical and mathematical modeling of heat extraction from fractured geothermal reservoirs. International cooperative research dealt with adsorption of water on reservoir cores, the planning of tracer surveys, and an injection and tracer test in the Los Azufres fields. 32 refs.

  12. Surrogate Reservoir Model

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab

    2010-05-01

    Surrogate Reservoir Model (SRM) is new solution for fast track, comprehensive reservoir analysis (solving both direct and inverse problems) using existing reservoir simulation models. SRM is defined as a replica of the full field reservoir simulation model that runs and provides accurate results in real-time (one simulation run takes only a fraction of a second). SRM mimics the capabilities of a full field model with high accuracy. Reservoir simulation is the industry standard for reservoir management. It is used in all phases of field development in the oil and gas industry. The routine of simulation studies calls for integration of static and dynamic measurements into the reservoir model. Full field reservoir simulation models have become the major source of information for analysis, prediction and decision making. Large prolific fields usually go through several versions (updates) of their model. Each new version usually is a major improvement over the previous version. The updated model includes the latest available information incorporated along with adjustments that usually are the result of single-well or multi-well history matching. As the number of reservoir layers (thickness of the formations) increases, the number of cells representing the model approaches several millions. As the reservoir models grow in size, so does the time that is required for each run. Schemes such as grid computing and parallel processing helps to a certain degree but do not provide the required speed for tasks such as: field development strategies using comprehensive reservoir analysis, solving the inverse problem for injection/production optimization, quantifying uncertainties associated with the geological model and real-time optimization and decision making. These types of analyses require hundreds or thousands of runs. Furthermore, with the new push for smart fields in the oil/gas industry that is a natural growth of smart completion and smart wells, the need for real time

  13. Hot dry rock venture risks investigation:

    SciTech Connect

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  14. Super viscous oil reservoir formations of Ufa unit of Republic of Tatarstan and their properties

    NASA Astrophysics Data System (ADS)

    Osipova, D.; Vafin, R.; Surmashev, R.; Bondareva, O.

    2012-04-01

    Over 450 concentrations of super viscous oils (SVO) were discovered in Tatarstan for the time being. All of them are related to productive deposits of Permian period occurred at depths up to 300-400 metres consisting of terrigenous and carbonate deposits. Described are reservoir formations of the fields where recoverable reserves of SVO are confined by argillo-arenaceous thickness of Ufa terrigenous unit. Studying reservoir properties was based on laboratory analysis of core samples in terms of: Macro- and microscopic description, grain-size analysis, determination of effective porosity, permeability, volumetric and weight oil saturation, carbonate content, mineralogical density. According to macro-analysis data, thickness cross-section presents sandstones with rare interlayer and lenticle of siltstones and clays. The colour of calcareous sandstones varies from grey to black. Incoherent rocks prevail while closely consolidated types are rarely observed. The grain-size analysis revealed that 0.25-0.1 mm size grains are dominated in the sandstone composition, their concentration in rocks amounts to 69% that enables belonging oil rocks to fine-grained sandstones. Reservoir properties of rocks widely vary as follows: Effective porosity varies from 2.4 to 44.5% (average 31.5%), carbonate content from 0.6 to 30.1% (average 6.7%), mineralogical density from 2.3 to 3.3% (average 2.7%), and oil saturation from 0.1 to 14.9 rock weight % (average 7.8%). Reservoir porosities of reservoirs correlate to each other. Correlations between porosities are set in logarithmic values. Good direct correlation dependence (coefficient of correlation 0.5352) was identified between porosity and permeability as well as clear inverse relation between carbonate content and porosity (coefficient of correlation = - 0.7659). More tight positive correlation is observed for Porosity - Mass oil saturation (coefficient of correlation 0. 75087). This correlation indicates that super viscous oils are

  15. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Morford, Scott L.; Houlton, Benjamin Z.; Dahlgren, Randy A.

    2016-02-01

    Rock contains > 99% of Earth's reactive nitrogen (N), but questions remain over the direct importance of rock N weathering inputs to terrestrial biogeochemical cycling. Here we investigate the factors that regulate rock N abundance and develop a new model for quantifying rock N mobilization fluxes across desert to temperate rainforest ecosystems in California, USA. We analyzed the N content of 968 rock samples from 531 locations and compiled 178 cosmogenically derived denudation estimates from across the region to identify landscapes and ecosystems where rocks account for a significant fraction of terrestrial N inputs. Strong coherence between rock N content and geophysical factors, such as protolith, (i.e. parent rock), grain size, and thermal history, are observed. A spatial model that combines rock geochemistry with lithology and topography demonstrates that average rock N reservoirs range from 0.18 to 1.2 kg N m-3 (80 to 534 mg N kg-1) across the nine geomorphic provinces of California and estimates a rock N denudation flux of 20-92 Gg yr-1 across the entire study area (natural atmospheric inputs ~ 140 Gg yr-1). The model highlights regional differences in rock N mobilization and points to the Coast Ranges, Transverse Ranges, and the Klamath Mountains as regions where rock N could contribute meaningfully to ecosystem N cycling. Contrasting these data to global compilations suggests that our findings are broadly applicable beyond California and that the N abundance and variability in rock are well constrained across most of the Earth system.

  16. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    SciTech Connect

    Carlos A. Fernandez

    2014-09-15

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  17. Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS

    DOE Data Explorer

    Fernandez, Carlos A.

    2013-09-25

    EGS field projects have not sustained production at rates greater than ½ of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

  18. US production of natural gas from tight reservoirs

    SciTech Connect

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  19. Karst-controlled reservoir heterogeneity in Ellenburger group carbonates of west Texas

    SciTech Connect

    Kerans, C.

    1988-10-01

    Petroleum production from restricted shelf carbonates of the Lower Ordovician Ellenburger group is commonly considered to have been a result of a pervasive, relatively homogeneous tectonic fracture system within the reservoir rock. However, regional facies and diagenetic (paleokarst) studies of Ellenburger strata, based on cores and wireline logs, have demonstrated that significant reservoir compartmentalization was caused by karst modification in the upper part of the unit. 19 figures.

  20. DOE's Current Geothermal Reservoir Programs and Comments on International Cooperation in Hydrothermal Research

    SciTech Connect

    Toms, Ronald S.H.

    1983-12-15

    DOE's geothermal program continues to emphasize a range of reservoir-related programs in reservoir definition, brine injection, stimulation, hot dry rock, geopressured resources and, now, magma resources. These programs are described briefly. Programs in international cooperation between the U.S. and 23 other countries on hydrothermal research have produced important gains in knowledge over the past ten years. Although the activity has diminished, a resurgence is anticipated.

  1. Status of Blue Ridge Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  2. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  3. Estimation of Reservoir Geotemperatures from Multicomponent and Classical Geothermometry of the Bath Geothermal Reservoir: An Integrated Approach

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2014-12-01

    An integrated approach incorporating multicomponent and classical solute geothermometry was used to evaluate its utility to estimate the temperature of the Bath geothermal reservoir, a low-enthalpy system on the island of Jamaica. Reservoir temperatures were estimated from (1) empirical geothermometric equations; (2) simulations of solute geothermometers using SolGeo software; (3) computations of saturation indices [Log(Q/K)] of reservoir minerals from full chemically-analyzed thermal water samples over a temperature range of 25-220°C in PHREEQC; and (4) the Giggenbach Na-K-Mg geothermometer. A principal component analysis (PCA) shows strong, positive correlations between Na+, K+, and Mg2+ and is regarded as significant for these ions in their reliance as useful reservoir geoindicators. However, a negative correlation exists between Na+, K+, Mg2+ and silica (SiO2). The more realistic estimates of the geothermal reservoir temperature were provided by the Na-K and Na-K-Mg geothermometers, whereas the Na-K-Ca geothermometer overestimated reservoir temperatures. Estimated geotemperatures from silica-quartz geothermometers were the lowest. The discrepancy in estimated geotemperatures may be due to processes such as boiling, degassing, dilution, rock dissolution, and mixing during the ascent of geothermal fluids. Log (Q/K) curves cluster over a range of equilibrium temperatures closest to Na-K and Na-K-Mg geothermometers at 80-102°C. Reservoir temperatures estimated for the Bath geothermal system range between 79-118°C. Comparisons of the estimated geotemperatures using the integrated approach to geothermometry show a favorable agreement. Based on the results of this investigation, the integrated geothermometric approach provided a more reliable approach to reconstruct the fluid composition at depth and estimate the geothermal reservoir temperature.

  4. Integrating statistical rock physics and sedimentology for quantitative seismic interpretation

    NASA Astrophysics Data System (ADS)

    Avseth, Per; Mukerji, Tapan; Mavko, Gary; Gonzalez, Ezequiel

    This paper presents an integrated approach for seismic reservoir characterization that can be applied both in petroleum exploration and in hydrological subsurface analysis. We integrate fundamental concepts and models of rock physics, sedimentology, statistical pattern recognition, and information theory, with seismic inversions and geostatistics. Rock physics models enable us to link seismic amplitudes to geological facies and reservoir properties. Seismic imaging brings indirect, noninvasive, but nevertheless spatially exhaustive information about the reservoir properties that are not available from well data alone. Classification and estimation methods based on computational statistical techniques such as nonparametric Bayesian classification, Monte Carlo simulations and bootstrap, help to quantitatively measure the interpretation uncertainty and the mis-classification risk at each spatial location. Geostatistical stochastic simulations incorporate the spatial correlation and the small scale variability which is hard to capture with only seismic information because of the limits of resolution. Combining deterministic physical models with statistical techniques has provided us with a successful way of performing quantitative interpretation and estimation of reservoir properties from seismic data. These formulations identify not only the most likely interpretation but also the uncertainty of the interpretation, and serve as a guide for quantitative decision analysis. The methodology shown in this article is applied successfully to map petroleum reservoirs, and the examples are from relatively deeply buried oil fields. However, we suggest that this approach can also be carried out for improved characterization of shallow hydrologic aquifers using shallow seismic or GPR data.

  5. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  6. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  7. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  8. Interactive reservoir simulation

    SciTech Connect

    Regtien, J.M.M. Por, G.J.A.; Stiphout, M.T. van; Vlugt, F.F. van der

    1995-12-31

    Shell`s new Modular Reservoir Simulator (MoReS) has been equipped with a comprehensive and versatile user interface called FrontEnd. Apart from providing a user-friendly environment for interactive reservoir simulation, FrontEnd serves a software platform for other dynamic simulation and reservoir-engineering applications. It offers to all supported applications a common user interface, enables the re-use of code and reduces overall maintenance and support costs associated with the embedded applications. Because of its features, FrontEnd facilitates the transfer of research results in the form of operational software to end users. When coupled with MoReS, FrontEnd can be used for pre- and post-processing and interactive simulation. The pre-processing options allow data to be inputted by means of various OSF/Motif widgets containing a spreadsheet, text editors, dialogues and graphical input. The display of the input data as well as the post-processing of all simulation results is made possible by a variety of user-defined plot of tabular (e.g. timestep summary) and array (simulation grid) data. During a simulation user-defined plots can be displayed and edited, allowing a close inspection of the results as they are being calculated. FrontEnd has been equipped with a powerful input command language, which gives the batch user as much flexibility and control over the input as the interactive user.

  9. Trends in reservoir simulation

    SciTech Connect

    Nolen, J.S.

    1995-06-01

    The future of reservoir simulation is driven by two different and, on the surface, paradoxical trends. On the one hand, the user base is on average becoming less experienced, and on the other, increasingly complex models are being built to honor the advances in reservoir-description technology. The job of the software development community is to create software that satisfies both the ease-of-use needs of the novice and the accuracy needs of the integrated geoscience team. One of the near-term effects of these demands will be to improve the capabilities and quality of the fully integrated geoscience work-station. This will include the need for implementation of industry-wide data standards. Reservoir simulators will need to incorporate increasing amounts of interactivity and built-in expertise. Accuracy of results will be improved by increased use of unstructured grids, including automatic gridding software with dynamic capabilities. Additional research will focus on complex wells, including both in-flow performance and wellbore hydraulics. Finally, grid size will continue to escalate in step with advances in hardware and software. The growth of grid size will be mitigated by substantial efforts in upscaling, but ultimately parallel computing must provide the mechanism for continued growth.

  10. Rock melting technology and geothermal drilling

    NASA Technical Reports Server (NTRS)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  11. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  12. Accurate phase-shift velocimetry in rock

    NASA Astrophysics Data System (ADS)

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R.; Holmes, William M.

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models.

  13. Source rock maturation, San Juan sag

    SciTech Connect

    Gries, R.R.; Clayton, J.L.

    1989-09-01

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  14. Scaling minerals from deep-seated granitic geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Norio

    2016-04-01

    To promote geothermal energy use and sustainable production, the information of scaling situation from deep-seated geothermal reservoir is important. In Japan, at the Kakkonda geothermal field, Iwate prefecture, north-eastern of Japan, there is 80MW geothermal power plant using about 300 degree C fluid from the reservoir at the boundary between Quaternary Kakkonda granite and Pre-Tertiary formations about 3km depth and more deep-seated reservoir survey was carried out by NEDO. Then, to understand the mechanism of deep-seated reservoir, we survey the metal sulphide minerals deposited at production wellhead and pipeline and compare with the brine And the brine of WD-1a at 3.7km depth, into Quaternary Kakkonda granite rock. In Kakkonda geothermal system, the scales are classified into two types based on sulphide mineralogy, which are Pb-Zn rich type and Cu rich type. Pb-Zn rich scales, for example galena (PbS) and Sphalerite (ZnS), are found in Well-19 located at the marginal part of the Kakkonda granite And Cu-rich scales, for example chalcocite (Cu2S), loellingite (FeAs2) and native antimony (Sb), are found in Well-13, located at the central part of the Kakkonda granite. And the brine of WD-1a at 3.7km depth about 500 degree C, into Quaternary Kakkonda granite rock near Well-19 is rich in Pb and Zn and similar composition as the Well-19 scale. Therefore, deep reservoir of Kakkonda field evolves with mixing the fluid of shallow reservoir and the brine of occurred in the Quaternary Kakkonda granite. Then, the existence of both Pb-Zn rich scale and Cu rich scale is a characteristic feature of Kakkonda geothermal and this fact suggest to have similar zoning as found in Porphyry Copper Zoning. On progress of production the fluids from deep reservoir continue to be suffered by the fluid of shallow reservoir and meteoritic water. With temperature of production well decreasing and chemical composition changed, silica precipitation decreased and the metal sulfide mineral

  15. Effective Stress Approximation using Geomechanical Formulation of Fracturing Technology (GFFT) in Petroleum Reservoirs

    NASA Astrophysics Data System (ADS)

    Haghi, A.; Asef, M.; Kharrat, R.

    2010-12-01

    Recently, rock mechanics and geophysics contribution in petroleum industry has been significantly increased. Wellbore stability analysis in horizontal wells, sand production problem while extracting hydrocarbon from sandstone reservoirs, land subsidence due to production induced reservoir compaction, reservoir management, casing shearing are samples of these contributions. In this context, determination of the magnitude and orientation of the in-situ stresses is an essential parameter. This paper is presenting new method to estimate the magnitude of in-situ stresses based on fracturing technology data. Accordingly, kirsch equations for the circular cavities and fracturing technology models in permeable formations have been used to develop an innovative Geomechanical Formulation (GFFT). GFFT introduces a direct reasonable relation between the reservoir stresses and the breakdown pressure of fracture, while the concept of effective stress was employed. Thus, this complex formula contains functions of some rock mechanic parameters such as poison ratio, Biot’s coefficient, Young’s modulus, rock tensile strength, depth of reservoir and breakdown/reservoir pressure difference. Hence, this approach yields a direct method to estimate maximum and minimum effective/insitu stresses in an oil field and improves minimum in-situ stress estimation compared to previous studies. In case of hydraulic fracturing; a new stress analysis method is developed based on well known Darcy equations for fluid flow in porous media which improves in-situ stress estimation using reservoir parameters such as permeability, and injection flow rate. The accuracy of the method would be verified using reservoir data of a case history. The concepts discussed in this research would eventually suggest an alternative methodology with sufficient accuracy to derive in-situ stresses in hydrocarbon reservoirs, while no extra experimental work is accomplished for this purpose.

  16. Direct quantification of long-term rock nitrogen inputs to temperate forest ecosystems.

    PubMed

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2016-01-01

    Sedimentary and metasedimentary rocks contain large reservoirs of fixed nitrogen (N), but questions remain over the importance of rock N weathering inputs in terrestrial ecosystems. Here we provide direct evidence for rock N weathering (i.e., loss of N from rock) in three temperate forest sites residing on a N-rich parent material (820-1050 mg N kg(-1); mica schist) in the Klamath Mountains (northern California and southern Oregon), USA. Our method combines a mass balance model of element addition/ depletion with a procedure for quantifying fixed N in rock minerals, enabling quantification of rock N inputs to bioavailable reservoirs in soil and regolith. Across all sites, -37% to 48% of the initial bedrock N content has undergone long-term weathering in the soil. Combined with regional denudation estimates (sum of physical + chemical erosion), these weathering fractions translate to 1.6-10.7 kg x ha(-1) x yr(-1) of rock N input to these forest ecosystems. These N input fluxes are substantial in light of estimates for atmospheric sources in these sites (4.5-7.0 kg x ha(-1) x yr(-1)). In addition, N depletion from rock minerals was greater than sodium, suggesting active biologically mediated weathering of growth-limiting nutrients compared to nonessential elements. These results point to regional tectonics, biologically mediated weathering effects, and rock N chemistry in shaping the magnitude of rock N inputs to the forest ecosystems examined. PMID:27008775

  17. Dispersion measurement as a method of quantifying geologic characterization and defining reservoir heterogeneity. Final report

    SciTech Connect

    Menzie, D.E.

    1995-05-01

    The main objective of this research project is to investigate dispersion as a method of quantifying geological characterization and defining reservoir heterogeneity in order to enhance crude oil recovery. The dispersion of flow of a reservoir rock (dispersion coefficient and dispersivity) was identified as one of the physical properties of a reservoir rock by measuring the mixing of two miscible fluids, one displacing the other in a porous medium. A rock was 100% saturated with a resident fluid and displaced by a miscible fluid of equal viscosity and equal density. Some specific experiments were performed with unequal densities. Produced fluid was analyzed by refractometer, nuclear reaction, electrical conductivity and X-ray scan. Several physical and flow characteristics were measured on the sand rock sample in order to establish correlations with the measured dispersion property. Absolute permeability, effective porosity, relative permeability, capillary pressure, the heterogeneity factor and electrical conductivity were used to better understand the flow system. Linear, transverse, 2-D and 3-D dispersions were measured and used to characterize the rock heterogeneity of the flow system. A new system of measuring dispersion was developed using a gas displacing gas system in a porous medium. An attempt was also made to determine the dispersion property of an actual reservoir from present day well log data on a producing well. 275 refs., 102 figs., 17 tabs.

  18. Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach.

    PubMed

    Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz

    2015-10-01

    Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs. PMID:26365327

  19. From the pore scale to reservoir scale: Lithohydraulic flow unit characterization of a shallow shelf carbonate reservoir, North Robertson Unit, West Texas

    SciTech Connect

    Vessell, R.K.; Davies, D.K.

    1996-12-31

    This paper presents the results of integrated geological-petrophysical reservoir characterization performed as part of the US Department of Energy Class II reservoir program. Petrographic image analysis, using a specially equipped SEM, allowed for the identification of 8 petrophysical rock types at the North Robertson Unit. Detailed log analysis resulted in the development of algorithms for the log-based identification of these rock types in 109 wells. Porosity was related to permeability for each Rock Type: thus permeability is determined from well log data. Evaluation of porosity, permeability, Sw and HPV distribution has allowed for the identification of 12 lithohydraulic flow units. These flow units have been mapped across the unit. The technique allows for the development of log-based reservoir models that are simulator-ready. The results of this study have application to all heterogeneous, shallow shelf carbonate reservoirs, they demonstrate that large fields can be successfully characterized using few cores and emphasize the importance of integrated geological-engineering analysis in reservoir characterization.

  20. From the pore scale to reservoir scale: Lithohydraulic flow unit characterization of a shallow shelf carbonate reservoir, North Robertson Unit, West Texas

    SciTech Connect

    Vessell, R.K.; Davies, D.K. )

    1996-01-01

    This paper presents the results of integrated geological-petrophysical reservoir characterization performed as part of the US Department of Energy Class II reservoir program. Petrographic image analysis, using a specially equipped SEM, allowed for the identification of 8 petrophysical rock types at the North Robertson Unit. Detailed log analysis resulted in the development of algorithms for the log-based identification of these rock types in 109 wells. Porosity was related to permeability for each Rock Type: thus permeability is determined from well log data. Evaluation of porosity, permeability, Sw and HPV distribution has allowed for the identification of 12 lithohydraulic flow units. These flow units have been mapped across the unit. The technique allows for the development of log-based reservoir models that are simulator-ready. The results of this study have application to all heterogeneous, shallow shelf carbonate reservoirs, they demonstrate that large fields can be successfully characterized using few cores and emphasize the importance of integrated geological-engineering analysis in reservoir characterization.

  1. Fault controlled geochemical properties in Lahendong geothermal reservoir Indonesia

    NASA Astrophysics Data System (ADS)

    Brehme, Maren; Deon, Fiorenza; Haase, Christoph; Wiegand, Bettina; Kamah, Yustin; Sauter, Martin; Regenspurg, Simona

    2016-03-01

    Rock and fluid geochemical data from Lahendong, Indonesia, were analyzed to evaluate the influence of fault zones on reservoir properties. It was found that these properties depend on fault-permeability controlled fluid flow. Results from measurements of spring and well water as well as rocks and their hydraulic properties were combined with hydrochemical numerical modeling. The models show that the geothermal field consists of two geochemically distinct reservoir sections. One section is characterized by acidic water, considerable gas discharge and high geothermal-power productivity—all related to increased fault zone permeability. The other section is characterized by neutral water and lower productivity. Increased fluid flow in the highly fractured and permeable areas enhances chemical reaction rates. This results in strong alteration of their surrounding rocks. Numerical models of reactions between water and rock at Lahendong indicate the main alteration products are clay minerals. A geochemical conceptual model illustrates the relation between geochemistry and permeability and their distribution within the area. Our conceptual model illustrates the relation between geochemistry and fault-zone permeability within the Lahendong area. Further mapping of fault-related permeability would support sustainable energy exploitation by avoiding low-productive wells or the production of highly corroding waters, both there and elsewhere in the world.

  2. Initial Measurements of Petrophysical Properties on Rocks from the Los Azufres, Mexico, Geothermal Field

    SciTech Connect

    Contreras, E.; Iglesias, E.; Razo, E.

    1986-01-21

    Petrophysical properties of geothermal reservoir rocks are valuable information for many activities, including reservoir characterization, modeling, field test analysis and planning of exploitation techniques. Petrophysical data of rocks from geothermal reservoirs located in volcanic areas is in general very scarce. In particular, no petrophysical data of rocks from the Los Azufres geothermal field area has ever been published. This work presents the results of initial petrophysical studies on outcrop rocks and drill core samples from the Los Azufres geothermal field. These studies are the first part of an ongoing experimental program intended to establish a data-base about physical properties of the Los Azufres rocks, in support of the many reservoir engineering activities which require of such information. The experimental work carried out consisted of laboratory measurements of density, porosity, permeability, compressibility, thermal conductivity, thermal expansion, electrical resistivity and sonic wave velocities. Some of the experiments were aimed at investigation of the effects of temperature, pressure, saturation and other parameters on the physical properties of rocks.

  3. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    NASA Astrophysics Data System (ADS)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  4. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  5. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  6. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  7. Surface potential and permeability of rock cores under asphaltenic oil flow conditions

    SciTech Connect

    Alkafeef, S.F.; Gochin, R.J.; Smith, A.L.

    1995-12-31

    The surface properties, wetting behaviour and permeability of rock samples are central to understanding recovery behaviour in oil reservoirs. This paper will present a method new to petroleum engineering to show how area/length ratios for porous systems can be obtained by combining streaming potential and streaming current measurements on rock cores. This has allows streaming current measurements (independent of surface conductivity errors) to be made on rock samples using hydrocarbon solvents with increasing concentrations of asphaltene. Negative surface potentials for the rock became steadily more positive as asphaltene coated the pore surfaces, with permeability reduction agreeing well with petrographic analysis.

  8. Characterization of oil and gas reservoir heterogeneity. Technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Sharma, G.D.

    1992-10-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization-determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis-source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. Results are discussed.

  9. Characterization of oil and gas reservoir heterogeneity. Technical progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Sharma, G.D.

    1992-08-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization -- determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis -- source rock identification; and the study of asphaltene precipitation for Alaskan crude oils.

  10. Characterization of oil and gas reservoir heterogeneity. Technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Sharma, G.D.

    1992-12-01

    The ultimate oojective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization--determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis--source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. This report presents a summary of technical progress of the well log analysis of Kuparuk Field, Northslope, Alaska.

  11. A Reservoir Assessment of the Geysers Geothermal Field

    SciTech Connect

    Thomas, Richard P.; Chapman, Rodger H.; Dykstra, Herman; Stockton, A.D.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Upon moderately dipping, fracture network. Condensed steam at the steep reservoir flank drains back to the hot water table. These flanks are defined roughly by marginally-producing geothermal wells. Field extensions are expected to be on the southeast and northwest. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably represent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resitivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. Monitoring gravity and geodetic changes with time and mapping microearthquake activity are methods that show promise for determining reservoir size, possible recharge, production lifetime, and other characteristics of the known stream field. Seismic reflection data may contribute to the efficient exploitation of the field by identifying fracture zones that serve as conduits for the steam. (DJE-2005)

  12. Geochemistry of formation water, Pliocene-Pleistocene reservoirs, offshore Louisiana

    SciTech Connect

    Land, L.S.; MacPherson, G.L. )

    1989-09-01

    The total dissolved solids content of formation water from Pliocene-Pleistocene reservoirs, offshore Louisiana, is dominated by NaCl derived from the dissolution and recrystallization of diapiric salt. Other solutes, and the water itself, are derived from primary pore water (originally seawater, subsequently modified by sulfate reduction and methanogenesis) from mineralogically immature late Cenozoic marine clastics. {sup 18}O values between 0 and +2 {per thousand} (SMOW), coupled with nonradiogenic {sup 87}Sr/{sup 86}Sr ratios, demonstrate that the water has undergone little interaction with detrital silicates (smectite or detrital feldspars) prior to emplacement in the reservoirs. Water from Pliocene-Pleistocene reservoir rocks contrasts with water from nearby, onshore Miocene reservoirs, which is largely derived from more mineralogically mature Cenozoic clastic sediments. Low Ca, Ba, Li, B, and Br in both Miocene and Pliocene-Pleistocene water samples from offshore Louisiana indicate little contribution from Ca-rich water characteristic of deep-seated Mesozoic reservoirs. A few samples of formation water associated with diapiric salt structures could contain up to about 10% solutes derived from deep-seated Mesozoic sources, however.

  13. Pleasant Bayou Geopressured-Geothermal Reservoir Analysis - January 1991

    SciTech Connect

    Riney, T.D.

    1991-01-01

    Many sedimentary basins contain formations with pore fluids at pressures higher than hydrostatic value; these formations are called geopressured. The pore pressure is generally well in excess of hydrostatic and the fluids vary in scalinity, temperature, and dissolved methane. As part of its program to define the magnitude and recoverability of the geopressured-geothermal energy resource, the US Department of Energy has drilled and tested deep wells in geopressured formations in the Texas-Louisiana Gulf Coast region. Geological information for the Pleasant Bayou geopressured geothermal resource is most extensive among the reservoirs tested. Earlier testing of the DOE well (Pleasant Bayou Well No.2) was conducted in several phases during 1979-1983. Long-term testing was resumed in May 1988 and is currently in progress. This report summarizes the pertinent field and laboratory test data available through December 31, 1990. A numerical reservoir simulator is employed as a tool for synthesizing and integrating the reservoir information, formation rock and fluid properties data from laboratory tests, well data from the earlier testing (1979-1983), and the ongoing long-term production testing (1988-1990) of Pleasant Bay