Science.gov

Sample records for rocks rexervoir bitterroot

  1. Evaluation of Management of Water Releases for Painted Rocks Rexervoir, Bitterroot River, Montana, 1985 Annual Report.

    SciTech Connect

    Lere, Mark E.

    1985-12-01

    The Bitterroot River, located in western Montana, is an important and heavily used resource, providing water for agriculture and a source for diversified forms of recreation. Water shortages in the river, however, have been a persistent problem for both irrigators and recreational users. Five major diversions and numerous smaller canals remove substantial quantities of water from the river during the irrigation season. Historically, the river has been severely dewatered between the towns of Hamilton and Stevensville as a result of these withdrawals. Demands for irrigation water from the Bitterroot River have often conflicted with the instream flow needs for trout. Withdrawals of water can decrease suitable depths, velocities, substrates and cover utilized by trout (Stalnaker and Arnette 1976, Wesche 1976). Losses in habitat associated with dewatering have been shown to diminish the carrying capacities for trout populations (Nelson 1980). Additionally, dewatering of the Bitterroot River has forced irrigators to dike or channelize the streambed to obtain needed flows. These alterations reduce aquatic habitat and degrade channel stability. Odell (personal communication) found a substantial reduction in the total biomass of aquatic insects within a section of the Bitterroot River that had been bulldozed for irrigation purposes. The Montana Department of Fish, Wildlife and Parks (MDFWP) has submitted a proposal to the Northwest Power Planning Council for the purchase of 10,000 acre-feet (AF) of stored water in Painted Rocks Reservoir to augment low summer flows in the Bitterroot River. This supplemental water potentially would enhance the fishery in the river and reduce degradation of the channel due to diversion activities. The present study was undertaken to: (1) develop an implementable water management plan for supplemental releases from Painted Rocks Reservoir which would provide optimum benefits to the river: (2) gather fisheries and habitat information to

  2. Tertiary epizonal plutonic rocks of the Selway-Bitterroot Wilderness, Idaho County, Idaho

    SciTech Connect

    Motzer, W.E.

    1996-01-01

    Geologic mapping in the Selway-Bitterroot Wilderness identified approximately 731 kmS of epizonal plutonic granitic rocks within the Bitterroot lobe of the Idaho batholith. From north to south, the intrusions are the Rock Lake Creek stock and the Whistling Pig, Running Creek, Bad Luck and Painted Rocks plutons. The stock and plutons consist of medium- to coarse-grained biotite and hornblende-biotite syenorgranite to monzogranite and quartz syenite capped by fine-grained biotite leucogranite. These rocks are intruded by late-synplutonic leucogranite dikes and post plutonic porphyritic rhyolite to rhyodacite and basalt dikes. The medium-grained granitic rocks are high in SiO2, K2O, Na2O, Ga, Th, U, W and Zr, but low in Al7O3, CaO, MgO, Cr, Ni, Co and V. Most of the granites are peraluminous. Rare-earth element (REE) plots (rock sample/chondrite) show enrichment in light REE over heavy REE with strong EU depletions. K-Ar biotite radiometric age determinations for medium-grained granites in all of the plutons range from approximately 51 Ma (Whistling Pig pluton) to 43.7 Ma (Painted Rocks pluton). Petrogenetic studies suggest that the plutons were rapidly emplaced to within 3.0 km of the paleosurface. The types, textures and color of the rocks result from devolatilization of the crystallizing melt and very low-grade hydrothermal alteration. The fluorine-rich melts are the fractionated with accumulate residue; they are considered to be anorogenic (A-type) granites intruded into the center of a metamorphic core complex.

  3. Evaluation of Management of Water Releases for Painted Rocks Reservoir, Bitterroot River, Montana, 1983-1986, Final Report.

    SciTech Connect

    Spoon, Ronald L.

    1987-06-01

    This study was initiated in July, 1983 to develop a water management plan for the release of water purchased from Painted Rocks Reservoir. Releases were designed to provide optimum benefits to the Bitterroot River fishery. Fisheries, habitat, and stream flow information was gathered to evaluate the effectiveness of these supplemental releases in improving trout populations in the Bitterroot River. The study was part of the Northwest Power Planning Council's Fish and Wildlife Program and was funded by the Bonneville Power Administration. This report presents data collected from 1983 through 1986.

  4. Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.

    SciTech Connect

    Lere, Mark E.

    1984-11-01

    Baseline fisheries and habitat data were gathered during 1983 and 1984 to evaluate the effectiveness of supplemental water releases from Painted Rocks Reservoir in improving the fisheries resource in the Bitterroot River. Discharge relationships among main stem gaging stations varied annually and seasonally. Flow relationships in the river were dependent upon rainfall events and the timing and duration of the irrigation season. Daily discharge monitored during the summers of 1983 and 1984 was greater than median values derived at the U.S.G.S. station near Darby. Supplemental water released from Painted Rocks Reservoir totaled 14,476 acre feet in 1983 and 13,958 acre feet in 1984. Approximately 63% of a 5.66 m{sup 3}/sec test release of supplemental water conducted during April, 1984 was lost to irrigation withdrawals and natural phenomena before passing Bell Crossing. A similar loss occurred during a 5.66 m{sup 3}/sec test release conducted in August, 1984. Daily maximum temperature monitored during 1984 in the Bitterroot River averaged 11.0, 12.5, 13.9 and 13.6 C at the Darby, Hamilton, Bell and McClay stations, respectively. Chemical parameters measured in the Bitterroot River were favorable to aquatic life. Population estimates conducted in the Fall, 1983 indicated densities of I+ and older rainbow trout (Salmo gairdneri) were significantly greater in a control section than in a dewatered section (p < 0.20). Numbers of I+ and older brown trout (Salmo trutta) were not significantly different between the control and dewatered sections (p > 0.20). Population and biomass estimates for trout in the control section were 631/km and 154.4 kg/km. In the dewatered section, population and biomass estimates for trout were 253/km and 122.8 kg/km. The growth increments of back-calculated length for rainbow trout averaged 75.6 mm in the control section and 66.9mm in the dewatered section. The growth increments of back-calculated length for brown trout averaged 79.5 mm in the

  5. [sup 40]Ar/[sup 39]Ar thermochronology in the northern Bitterroot mylonite zone, Mt

    SciTech Connect

    House, M.A.; Hodges, K.V. . Dept. of Earth, Atmospheric, and Planetary Sciences)

    1993-04-01

    The extensional Bitterroot mylonite zone defines the eastern and southern border of the Bitterroot metamorphic core complex and is generally interpreted to be the major structure which accommodated unroofing of the metamorphic core. The most commonly cited evidence for the age of mylonitization are [sup 40]Ar/[sup 39]Ar ages for hornblend, muscovite, biotite, and potassium feldspar from the southern Bitterroot mylonite zone that indicate rapid cooling of the core rocks between 45.5 and 43.5 Ma. More recently, an [sup 40]Ar/[sup 39]Ar K-feldspar age of 46.4 [+-] 0.8 Ma for an undeformed rhyolite dike that cuts across the mylonitic fabric places a minimum age constraint on the southern part of the shear zone. The authors have obtained new [sup 40]Ar/[sup 39]Ar data for metapelitic rocks and amphibolites from the northeast border of the Bitterroot metamorphic core complex near an area where mylonitized granitoid rocks yielding 48--52 Ma U-Pb zircon crystallization ages constrain the maximum age of mylonitization. Isochran ages of 47.9 [+-] 0.9 and 49 [+-] 1 Ma for hornblende separated from deformed amphibolite pods in the northeast border zone are within analytical uncertainty of the younger mylonitized granitoid crystallization ages and indicate rapid post-crystallization cooling through temperatures of [approximately]780--800 K. They attribute this cooling to denudation related to shear zone development. Muscovite and biotite isochron ages from metapelitic rocks within the shear zone are significantly younger, between 42 and 44 Ms., and generally agree with mica ages obtained by Garmezy and Sutter for the southern part of the shear zone. However, all mica ages from the Bitterroot shear zone are younger than the minimum age of the shear zone deduced from the age of cross-cutting rhyolite dikes.

  6. Smoke in the Bitterroot Mountains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By late August 2000, severe forest fires had been burning in Montana and Idaho for more than a month. As of Aug. 29, a total of 57 fires were burning in both states. The smoke from these fires is considered a health risk, especially for the very young and very old, and health advisory has been issued for those with respiratory problems who live in the area. This image from the Moderate Resolution Imaging Spectroradiometer (MODIS) shows smoke in the Bitterroot Mountains on the morning of August 21, 2000. Even though forest fires normally taper off overnight, these blazes are burning so fiercely that opaque pillars of smoke are rising into the morning air. More smoke fills the low-lying valleys, with the mountains rising out of the smoke into clear air. In the full size image, note the irrigated fields and ancient basalt lava flows that line the Snake River Plain to the south of the fires. Image by Reto Stockli and the MODIS science team

  7. Summary geologic report on the Missoula/Bitterroot Drilling Project, Missoula/Bitterroot Basins, Montana

    SciTech Connect

    Abramiuk, I.N.

    1980-08-01

    The objective of the drilling project was to obtain information to assess the favorability of the Tertiary sedimentary units in the Missoula and Bitterroot Valleys for uranium potential. The group of Montana Tertiary basins, including the Missoula and Bitterroot Basins, has been assigned a speculative uranium potential of 46,557 tons of U/sub 3/O/sub 8/ at $100/lb by the 1980 National Uranium Resource Evaluation report. The seven drill holes, two in the Missoula Valley and five in the Bitterroot Valley, verified observations made during surface studies and provided additional information about the subsurface that was previously unknown. No uranium was found, although of the two localities the Bitterroot Valley is the more favorable. Three stratigraphic units were tentatively identified on the basis of lithology: pre-Renova clastic units, Renova Formation equivalents, and Sixmile Creek Formation equivalents. Of the three, the Renova Formation equivalents in the Bitterroot Valley appear to be the most favorable for possible uranium occurrences and the pre-Renova clastic units the least favorable.

  8. Tickborne Relapsing Fever, Bitterroot Valley, Montana, USA

    PubMed Central

    Christensen, Joshua; Fischer, Robert J.; McCoy, Brandi N.; Raffel, Sandra J.

    2015-01-01

    In July 2013, a resident of the Bitterroot Valley in western Montana, USA, contracted tickborne relapsing fever caused by an infection with the spirochete Borrelia hermsii. The patient’s travel history and activities before onset of illness indicated a possible exposure on his residential property on the eastern side of the valley. An onsite investigation of the potential exposure site found the vector, Ornithodoros hermsi ticks, and 1 chipmunk infected with spirochetes, which on the basis of multilocus sequence typing were identical to the spirochete isolated from the patient. Field studies in other locations found additional serologic evidence and an infected tick that demonstrated a wider distribution of spirochetes circulating among the small mammal populations. Our study demonstrates that this area of Montana represents a previously unrecognized focus of relapsing fever and poses a risk for persons of acquiring this tickborne disease. PMID:25625502

  9. Geology and geochronology of the southeast border of the Bitterroot dome: implications for the structural evolution of the mylonitic carapace

    SciTech Connect

    Garmezy, L.

    1983-01-01

    Geologic and geochronologic study of the southeast corner of the Bitterroot dome has delimited the evolution of the shallow-dipping mylonitic carapace that developed on the granitic rocks of the Bitterroot lobe of the Idaho Batholith. Reset hornblende from the zone of mylonitization, in conjunction with /sup 40/Ar//sup 39/Ar age spectra of hornblende, muscovite, biotite, and K-feldspar from non-mylonitic samples, indicates that mylonitization began approx.45.5 Ma ago at a depth of probably greater than 9 to 10 km, and continued for approx.2 Ma, during a period of rapid uplift of the dome (.1 to .3 cm/y). The process of mylonitization caused shear heating of as much as 200/sup 0/C above ambient conditions. With only two exceptions, detailed kinematic analyses of mylonitic fabric indicate eastward tectonic transport of the hanging wall throughout the 500-1000 m-thick mylonitic zone. The extensional origin of the mylonitic carapace is supported by the /sup 40/Ar//sup 39/Ar data that indicate a contemporaneity between mylonitization and regional Eocene volcanism and extension. The data show that mylonitization was not associated with either the development of thrust faults in the Sapphire tectonic block or initial intrusion and crystallization of the batholith.

  10. A geological reconnaissance across the Bitterroot Range and Clearwater Mountains in Montana and Idaho

    USGS Publications Warehouse

    Lindgren, Waldemar

    1904-01-01

    This report describes, in a preliminary way, a belt of country extending westward from the Bitterroot Valley, across the dividing range and the rugged mountains of the Clearwater system, down to the fertile plateaus which border the canyon of Snake River. It thus presents a reconnaissance section from western Montana across northern Idaho, and deals chiefly with areas about which, thus far, little geological information has been available.

  11. Recreation Benefits of Instream Flow: Application to Montana's Big Hole and Bitterroot Rivers

    NASA Astrophysics Data System (ADS)

    Duffield, John W.; Neher, Christopher J.; Brown, Thomas C.

    1992-09-01

    Allocation of water between instream uses such as recreation and consumptive uses such as irrigation is an important public policy issue in the western United States. One basis for identifying appropriate levels of instream flows is maximization of net economic benefits. A general framework for estimating the recreational value of instream flows was developed and applied to Montana's Big Hole and Bitterroot rivers. The paper also provides a synthesis of methods for interpreting covariate effects in dichotomous choice contingent valuation models. Precision of the estimates is examined through a simulation approach. The marginal recreational value of instream flow in these rivers is in the range of 50 per acre foot (1 acre foot equals 1233.5 m3) for recreation at low-flow levels plus 25 per acre foot for downstream hydroelectric generation. These values indicate that at some flow levels, gains may be achieved on the study rivers by reallocating water from consumptive to instream uses.

  12. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  13. Constraints on the formation of the Bitterroot Lobe of the Idaho Batholith, Idaho and Montana, from U-Pb zircon geochronology and feldspar Pb isotopic data

    SciTech Connect

    Toth, M.I.; Stacey, J.S.

    1992-01-01

    This paper reports on zircons from tonalite emplaced along the western periphery of the Bitterroot Lobe of the Idaho Batholith yield an almost concordant age of 94 {plus minus} 1.4 Ma; monozogranite and granodiorite plutons along the northern edge of the lobe yield ages of 75 to 71 ma. The volumetrically more dominant plutons in the central and western parts of the lobe were emplaced between 59 and 54 Ma. Upper intercept data, combined with Pb isotopic data from feldspars, confirm that the magmas of the Bitterroot Lobe were derived mainly from an early Proterozoic lower continental crust.

  14. Multidecadal trends in burn severity and patch size in the Selway-Bitterroot Wilderness Area, 1900-2007

    NASA Astrophysics Data System (ADS)

    Wells, A.; Morgan, P.; Smith, A. M.; Hudak, A. T.; Hicke, J. A.

    2013-12-01

    How the proportion of area burned severely has changed over time is critical to understanding trends in the ecological effects of fire, but most assessments over large areas are limited to 30 years of satellite data. Little is known about multidecadal trends in burn severity, patch size, and implications for species diversity. Our objective was to analyze the change in proportion of area burned severely and patch size across 346,304 ha in the Selway-Bitterroot Wilderness Area in Idaho and Montana, USA. We used 30-meter fire perimeters and burn severity classes inferred from 1984-2007 satellite imagery from the Monitoring Trends in Burn Severity project and 1900-2000 aerial photography. We also analyzed the effect of patch size on species diversity of understory vegetation from field data collected from 20 sites burned in 2000, a year of widespread fires in the region. Fires occurred in 38 out of the 107 years in the record; 13 of these in the early period (1900-1934), 4 in the middle (1935-1974), and 21 in the late (1975-2007). Although 78% (270,918 ha) burned at least once and 48% (131,198) of the area burned severely with >70% tree mortality, there was no trend in total area burned severely through time (n=38, Spearman's Rank Correlation r = -0.14, p = 0.39), nor in proportion of area burned severely through time (n=38, Spearman's Rank Correlation r = -00.27, p = 0.09). Median patch size decreased through time (n= 38, Spearman's Rank Correlation r = -0.73 and p<0.01) and the number of high severity patches increased (n = 38, Spearman's Rank Correlation r = 0.35 and p = 0.02). Median perimeter-to-area ratio of high severity patches increased (n = 38, Spearman's Rank Sum Test r = 0.79 and p <.01); the greater perimeter-to-area ratio and shorter distance to the unburned edge through time is not an artifact of satellite data as patch size inferred from aerial photography 1900-2000 decreased (n= 31, Spearman's Rank, r = -0.42 and p <0.01), but did not for satellite

  15. The magnetic fabric of fault rocks

    NASA Astrophysics Data System (ADS)

    Ferre, Eric

    2015-04-01

    The magnetic fabric of rocks generally informs about principal strain directions and strain magnitude. The main prerequisites for such fabrics to be deemed meaningful is to be carried by a sufficiently large number of grains and for the grains to be uniformly distributed throughout the volume of deformed rock. Clearly these conditions tend not to be met in fault rocks which is the main reason why magnetic fabrics are typically applied to materials that have undergone continuous and plastic strain, such as magmatic rocks. New advances in our understanding of magnetic fabrics now allow to expand their application to discontinuous, brittle strain and consequently to track deformation in fault rocks. Here we present a review of three case studies exemplifying the applications of the anisotropy of magnetic susceptibility (AMS) in fault rocks. 1. The Bitterroot shear zone in Montana shows spectacular quartzofeldspathic C-S mylonites from Montana. These rocks, deformed in conditions ranging from high-temperature magmatic to cataclastic constitute an excellent example to monitor the variations of the magnetic fabric (principal axes, degree of anisotropy, shape parameter) in a context in which the kinematic directions remain constant while temperature decreases. 2. The carbonate ultracataclasites from the Heart Mountain detachment in Wyoming represent a case of catastrophic, large-scale slide approaching seismic velocities. While the dominant deformation mechanism is cataclastic flow, synkinematic breakdown of pyrrhotite and recrystallization into magnetite results in surprisingly consistent AMS fabrics. 3. The pseudotachylytes of the Dora Maira Massif in Italy display coherent AMS fabrics that are oblique with respect to the seismic slip plane. The combination of fabrics in the host-rock and pseudotachylyte veins provides a full kinematic solution (slip plane, slip direction, slip sense) for a single seismic event. While the magnetic fabric of fault rocks has received far

  16. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  17. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  18. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  19. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  20. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  1. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  2. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  3. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  4. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  5. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  6. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  7. Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    Most of the advances in volcanology during the past 20 years have concerned the recognition, interpretation, and mode of emplacement of pyroclastic rocks. The literature on pyroclastic rocks is widely scattered, in part because the field draws from sedimentology, igneous petrology, physics, and fluid mechanics, and there have been few review papers on the topic. Fisher and Schmincke have done the discipline of volcanology and all field-oriented geologists a great service in assembling material from a wide range of sources in this comprehensive treatment of pyroclastic rocks. With its introduction to the petrology of magmas involved in explosive eruptions in chapter 2 and a complete treatment of magma rheology and the behavior of dissolved and exsolving magmatic volatiles in chapter 3, they lay sufficient groundwork that anyone with a rudimentary knowledge of geology can understand the book.

  8. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  9. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  10. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  11. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  12. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  13. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  14. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  15. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  16. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  17. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  18. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  19. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  20. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  1. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  2. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  3. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  4. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  5. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. Microcracks in lunar rocks

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1979-01-01

    Lunar samples contain abundant open microcracks that have closure characteristics completely unlike any shocked terrestrial rock; however, the microcracks present in the lunar rocks before the rocks reached the surface of the moon were likely similar to the microcracks in the shocked terrestrial rocks. Because the microcracks present in the lunar rocks in situ inside the moon were different, radically different, from the microcracks present today in returned lunar samples, any property that is sensitive to microcracks measured on the returned lunar samples is inappropriate for predicting that property as a function of depth in the moon. Therefore, many data that have been measured already on lunar samples simply do not apply to rocks in situ inside the moon. A plausible mechanism with which to account for the difference in microcrack characteristics of lunar samples on the surface of the moon and the microcrack characteristics of lunar rock in situ inside the moon is thermal cycling during residence on the moon's surface.

  7. The Rock Physics Handbook

    NASA Astrophysics Data System (ADS)

    Mavko, Gary; Mukerji, Tapan; Dvorkin, Jack

    2003-10-01

    The Rock Physics Handbook conveniently brings together the theoretical and empirical relations that form the foundations of rock physics, with particular emphasis on seismic properties. It also includes commonly used models and relations for electrical and dielectric rock properties. Seventy-six articles concisely summarize a wide range of topics, including wave propagation, AVO-AVOZ, effective media, poroelasticity, pore fluid flow and diffusion. The book contains overviews of dispersion mechanisms, fluid substitution, and Vp-Vs relations. Useful empirical results on reservoir rocks and sediments, granular media, tables of mineral data, and an atlas of reservoir rock properties complete the text. This distillation of an otherwise scattered and eclectic mass of knowledge is presented in a form that can be immediately applied to solve real problems. Geophysics professionals, researchers and students as well as petroleum engineers, well log analysts, and environmental geoscientists will value The Rock Physics Handbook as a unique resource.

  8. Friction of rocks

    USGS Publications Warehouse

    Byerlee, J.

    1978-01-01

    Experimental results in the published literature show that at low normal stress the shear stress required to slide one rock over another varies widely between experiments. This is because at low stress rock friction is strongly dependent on surface roughness. At high normal stress that effect is diminished and the friction is nearly independent of rock type. If the sliding surfaces are separated by gouge composed of Montmorillonite or vermiculite the friction can be very low. ?? 1978 Birkha??user Verlag.

  9. Bounce Rock Dimple

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This panoramic camera image shows the hole drilled by the Mars Exploration Rover Opportunity's rock abrasion tool into the rock dubbed 'Bounce' on Sol 65 of the rover's journey. The tool drilled about 7 millimeters (0.3 inches) into the rock and generated small piles of 'tailings' or rock dust around the central hole, which is about 4.5 centimeters (1.7 inches) across. The image from sol 66 of the mission was acquired using the panoramic camera's 430 nanometer filter.

  10. Hungry for Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet) toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  11. Opaque rock fragments

    SciTech Connect

    Abhijit, B.; Molinaroli, E.; Olsen, J.

    1987-05-01

    The authors describe a new, rare, but petrogenetically significant variety of rock fragments from Holocene detrital sediments. Approximately 50% of the opaque heavy mineral concentrates from Holocene siliciclastic sands are polymineralic-Fe-Ti oxide particles, i.e., they are opaque rock fragments. About 40% to 70% of these rock fragments show intergrowth of hm + il, mt + il, and mt + hm +/- il. Modal analysis of 23,282 opaque particles in 117 polished thin sections of granitic and metamorphic parent rocks and their daughter sands from semi-arid and humid climates show the following relative abundances. The data show that opaque rock fragments are more common in sands from igneous source rocks and that hm + il fragments are more durable. They assume that equilibrium conditions existed in parent rocks during the growth of these paired minerals, and that the Ti/Fe ratio did not change during oxidation of mt to hm. Geothermometric determinations using electron probe microanalysis of opaque rock fragments in sand samples from Lake Erie and the Adriatic Sea suggest that these rock fragments may have equilibrated at approximately 900/sup 0/ and 525/sup 0/C, respectively.

  12. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  13. Welcome to Rock Day

    ERIC Educational Resources Information Center

    Varelas, Maria; Benhart, Jeaneen

    2004-01-01

    At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…

  14. Rock Cycle Roulette.

    ERIC Educational Resources Information Center

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  15. Layered Rocks in Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 June 2004 Exposures of layered, sedimentary rock are common on Mars. From the rock outcrops examined by the Mars Exploration Rover, Opportunity, in Meridiani Planum to the sequence in Gale Crater's central mound that is twice the thickness of of the sedimentary rocks exposed by Arizona's Grand Canyon, Mars presents a world of sediment to study. This unusual example, imaged by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows eroded layer outcrops in a crater in Terra Tyrrhena near 15.4oS, 270.5oW. Sedimentary rocks provide a record of past climates and events. Perhaps someday the story told by the rocks in this image will be known via careful field work. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  16. Our World: The Rock Cycle

    NASA Video Gallery

    Find out how rocks brought to Earth by the Apollo astronauts have helped NASA learn more about the rock cycle. Compare igneous, sedimentary and metamorphic rocks found on Earth to three types of ro...

  17. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  18. Dirty Rotten Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows a collection of rocks (upper right) at Gusev Crater that have captured the attention of scientists for their resemblance to rotting loaves of bread. The insides of the rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  19. Rock Garden Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image mosaic of part of the 'Rock Garden' was taken by the Sojourner rover's left front camera on Sol 71 (September 14). The rock 'Shark' is at left center and 'Half Dome' is at right. Fine-scale textures on the rocks are clearly seen. Broken crust-like material is visible at bottom center.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  20. Weird 'Endurance' Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows a bizarre, lumpy rock dubbed 'Wopmay' on the inner slopes of 'Endurance Crater.' Scientists say the rock's unusual texture is unlike any others observed so far at Meridiani Planum. Wopmay measures approximately 1 meter (3.3 feet) across. The image was taken by the rover's panoramic camera on sol 195 (Aug. 11, 2004). Opportunity will likely travel to this or a similar rock in coming sols for a closer look at the alien surface.

  1. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  2. Our World: Lunar Rock

    NASA Video Gallery

    Learn about NASA'€™s Lunar Sample Laboratory Facility at Johnson Space Center in Houston, Texas. See how NASA protects these precious moon rocks brought to Earth by the Apollo astronauts. Explore t...

  3. East Candor Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick, massive outcrop of light-toned rock exposed within eastern Candor Chasma, part of the vast Valles Marineris trough system. Dark, windblown sand has banked against the lower outcrop slopes. Outcrops such as this in the Valles Marineris chasms have been known since Mariner 9 images were obtained in 1972. However, the debate as to whether these represent sedimentary or igneous rocks has not been settled within the Mars science community. In either case, they have the physical properties of sedimentary rock (that is, they are formed of fine-grained materials), but some igneous rocks made up of volcanic ash may also exhibit these properties. This image is located near 7.8oS, 65.3oW, and covers an area approximately 3 km (1.9 mi) across. The scene is illuminated by sunlight from the lower left.

  4. Focus on the Rock.

    ERIC Educational Resources Information Center

    Shewell, John

    1994-01-01

    Describes historical accounts of the manipulation and importance of the Earth and its mineral resources. A foldout, "Out of the Rock," provides a collection of activities and information that helps make integration of the aforementioned concepts easy. (ZWH)

  5. Terby's Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 March 2004 Layered rock outcrops are common all across Mars, and the Mars rover, Opportunity, has recently investigated some layered rocks in Meridiani Planum. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks in northern Terby Crater, located just north of the giant Hellas Basin near 27.5oS, 285.8oW. Hundreds of layers are exposed in a deposit several kilometers thick within Terby. A history of events that shaped the northern Hellas region is recorded in these rocks, just waiting for a person or robot to investigate. The picture covers an area 3 km (1.9 mi) across. Sunlight illuminates the scene from the left.

  6. Ancient Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-469, 31 August 2003

    The terraced area in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an outcropping of ancient, sedimentary rock. It occurs in a crater in western Arabia Terra near 10.8oN, 4.5oW. Sedimentary rocks provide a record of past environments on Mars. Field work will likely be required to begin to get a good understanding of the nature of the record these rocks contain. Their generally uniform thickness and repeated character suggests that deposition of fine sediment in this crater was episodic, if not cyclic. These rocks might be indicators of an ancient lake, or they might have been deposited from grains settling out of an earlier, thicker, martian atmosphere. This image covers an area 3 km (1.9 mi) across and is illuminated from the lower left.

  7. Tithonium Chasma's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-565, 5 December 2003

    Exposures of light-toned, layered, sedimentary rocks are common in the deep troughs of the Valles Marineris system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from western Tithonium Chasma. The banding seen here is an eroded expression of layered rock. Sedimentary rocks can be composed of (1) the detritus of older, eroded and weathered rocks, (2) grains produced by explosive volcanism (tephra, also known as volcanic ash), or (3) minerals that were chemically precipitated out of a body of liquid such as water. These outcrops are located near 4.8oS, 89.7oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  8. Layered Rock Ahead

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Now that solar conjunction is over so that communication between Earth and Mars is no longer blocked by the Sun, NASA's Mars Exploration Rover Spirit is continuing its trek through the 'Columbia Hills' in Gusev Crater. Straight ahead, in the foreground of this image, is a horizontally layered rock dubbed 'Tetl,' which scientists hope to investigate. Layering can be either volcanic or sedimentary in origin; researchers aim to determine which of these processes created this rock. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba,' just to the right, toward the middle of this image. Spirit took this image with its navigation camera on its 263rd martian day, or sol (Sept. 28, 2004).

  9. Broken Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows broken-up blocks of sedimentary rock in western Candor Chasma. There are several locations in western Candor that exhibit this pattern of broken rock. The manner in which these landforms were created is unknown; it is possible that there was a landslide or a meteoritic impact that broke up the materials. One attribute that is known: in some of these cases, it seems that the rock was broken and then buried by later sedimentary rocks, before later being exhumed so that they can be seen from orbit today.

    Location near: 6.9oS, 75.5oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  10. Rock in Its Elements

    ERIC Educational Resources Information Center

    MacCluskey, Thomas

    1969-01-01

    A discussion of the following musical elements of rock: rhythm, melody, harmony, and form. A impromptu analysis made at a session of the Youth Music Symposium, July 25, 1969. Remarks transcribed from tape. (Author/AP)

  11. Rock slope stability

    SciTech Connect

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  12. Petrology of metamorphic rocks

    SciTech Connect

    Suk, M.

    1983-01-01

    ''Petrology of Metamorphic Rocks'' reviews Central European opinions about the origin and formation of metamorphic rocks and their genetic systems, confronting the works of such distinguished European scientists as Rosenbusch, Becke, Niggli, Sander, Eskola, Barth and others with present-day knowledge and the results of Soviet and American investigations. The initial chapters discuss the processes that give rise to metamorphic rocks, and the main differences between regional metamorphism and other types of alterations, the emphasis being laid on the material characteristic of the processes of metamorphism, metasomatism and ultrametamorphism. Further chapters give a brief characterization of research methods, together with a detailed genetic classification based on the division of primary rocks into igneous rocks, sediments and ore materials. The effects of metamorphic alterations and those of the properties of the primary rocks are analyzed on the basis of examples taken chiefly from the Bohemian Massif, the West Carpathians, other parts of the European Variscides, from the crystalline Scandinavian Shelf in Norway and Finland, and from the Alps. Typical examples are documented by a number of charts, photographs and petrographical - particularly petrochemical - data.

  13. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  14. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  15. Ganges Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    24 May 2004 Mariner 9 images acquired in 1972 first revealed a large, light-toned, layered mound in Ganges Chasma, part of the vast Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a higher-resolution view of these rocks than was achieved by Mariner 9 or Viking, and higher than can be obtained by Mars Odyssey or Mars Express. The image, with a resolution of about 3.7 meters (12 feet) per pixel, shows eroded layered rock outcrops in Ganges Chasma. These rocks record a history of events that occurred either in Ganges Chasma, or in the rocks brought to the surface by the opening of Ganges Chasma. Either way, the story they might tell could be as fascinating and unprecedented as the story told by sedimentary rocks investigated this year in Meridiani Planum by the Opportunity Mars Exploration Rover ... no one knows. The image is located near 7.3oS, 48.8oW, and covers an area about 3 km (1.9 mi) across. The picture is illuminated by sunlight from the upper left.

  16. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  17. Ladon Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rocks exposed by the fluids that carved the Ladon Valles system in the Erythraeum region of Mars. These rocks are so ancient that their sediments were deposited, cemented to form rock, and then eroded by the water (or other liquid) that carved Ladon Valles, so far back in Martian history that such liquids could still flow on the planet's surface.

    Location near: 20.8oS, 30.0oW Image width: 3 km (1.9 mi Illumination from: upper left Season: Southern Spring

  18. Eos Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.

    Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  19. West Candor Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock exposures in western Candor Chasma, part of the vast Valles Marineris trough system. Most of west Candor's interior includes exposures of layered rock with very few superimposed impact craters. The rock may be very ancient, but the lack of craters suggests that the erosion of these materials is on-going.

    Location near: 6.3oS, 76.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  20. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-439, 1 August 2003

    Gale Crater, located in the Aeolis region near 5.5oS, 222oW, contains a mound of layered sedimentary rock that stands higher than the rim of the crater. This giant mound suggests that the entire crater was not only once filled with sediment, it was also buried beneath sediment. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the eroded remains of the sedimentary rock that once filled Gale Crater. The layers form terraces; wind has eroded the material to form the tapered, pointed yardang ridges seen here. The small circular feature in the lower right quarter of the picture is a mesa that was once a small meteor impact crater that was filled, buried, then exhumed from within the sedimentary rock layers exposed here. This image is illuminated from the left.

  1. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-348, 2 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image acquired in March 2003 shows dozens of repeated layers of sedimentary rock in a western Arabia Terra crater at 8oN, 7oW. Wind has sculpted the layered forms into hills somewhat elongated toward the lower left (southwest). The dark patches at the bottom (south) end of the image are drifts of windblown sand. These sedimentary rocks might indicate that the crater was once the site of a lake--or they may result from deposition by wind in a completely dry, desert environment. Either way, these rocks have something important to say about the geologic history of Mars. The area shown is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  2. Dipping Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    23 May 2004 The central peak of Oudemans Crater, located at the edge of the Labyrinthus Noctis trough system, consists of steeply-dipping rock layers that were uplifted and tilted by the meteor impact that formed the crater. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The banded features are layers of light-toned, possibly sedimentary, rock that were brought to the surface and uplifted by the impact process that formed the crater and its central peak. Oudemans Crater's central peak serves as a means for probing the nature of rock that lies beneath the plains cut by the Labyrinthus Noctis troughs, which are part of the vast Valles Marineris system. This March 2004 picture is located near 10.2oS, 92.0oW. The image covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  3. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  4. Digital carbonate rock physics

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Vialle, Stephanie; Lebedev, Maxim; Uribe, David; Osorno, Maria; Duda, Mandy; Steeb, Holger

    2016-08-01

    Modern estimation of rock properties combines imaging with advanced numerical simulations, an approach known as digital rock physics (DRP). In this paper we suggest a specific segmentation procedure of X-ray micro-computed tomography data with two different resolutions in the µm range for two sets of carbonate rock samples. These carbonates were already characterized in detail in a previous laboratory study which we complement with nanoindentation experiments (for local elastic properties). In a first step a non-local mean filter is applied to the raw image data. We then apply different thresholds to identify pores and solid phases. Because of a non-neglectable amount of unresolved microporosity (micritic phase) we also define intermediate threshold values for distinct phases. Based on this segmentation we determine porosity-dependent values for effective P- and S-wave velocities as well as for the intrinsic permeability. For effective velocities we confirm an observed two-phase trend reported in another study using a different carbonate data set. As an upscaling approach we use this two-phase trend as an effective medium approach to estimate the porosity-dependent elastic properties of the micritic phase for the low-resolution images. The porosity measured in the laboratory is then used to predict the effective rock properties from the observed trends for a comparison with experimental data. The two-phase trend can be regarded as an upper bound for elastic properties; the use of the two-phase trend for low-resolution images led to a good estimate for a lower bound of effective elastic properties. Anisotropy is observed for some of the considered subvolumes, but seems to be insignificant for the analysed rocks at the DRP scale. Because of the complexity of carbonates we suggest using DRP as a complementary tool for rock characterization in addition to classical experimental methods.

  5. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  6. Layered Rocks In Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), image shows exposures of finely-bedded sedimentary rocks in western Melas Chasma, part of the vast Valles Marineris trough system. Rocks similar to these occur in neighboring west Candor Chasma, as well. The picture is located near 9.1oS, 74.5oW, and covers an area about 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the left/upper left.

  7. Sedimentary Rock Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers of sedimentary rock in a crater in western Arabia Terra. Layered rock records the history of a place, but an orbiter image alone cannot tell the entire story. These materials record some past episodes of deposition of fine-grained material in an impact crater that is much larger than the image shown here. The picture is located near 3.4oN, 358.7oW, and covers an area 3 km (1.9 mi.) wide. Sunlight illuminates the scene from the lower left.

  8. Rock Outcrops near Hellas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in a pitted and eroded region just northeast of Hellas Planitia. The light-toned materials are most likely sedimentary rocks deposited early in martian history (but long after the Hellas Basin formed by a giant asteroid or comet impact). The scene also includes a plethora of large dark-toned, windblown ripples. The image is located near 27.2oS, 280.7oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  9. Sedimentary Rocks and Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows buttes composed of light-toned, sedimentary rock exposed by erosion within a crater occurring immediately west of Schiaparelli Basin near 4.0oS, 347.9oW. Surrounding these buttes is a field of dark sand dunes and lighter-toned, very large windblown ripples. The sedimentary rocks might indicate that the crater interior was once the site of a lake. The image covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  10. Sedimentary Rock Remnants

    NASA Technical Reports Server (NTRS)

    2005-01-01

    29 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows knobs of remnant, wind-eroded, layered sedimentary rock that once completely covered the floor of a crater located west of the Sinus Meridiani region of Mars. Sedimentary rock outcrops are common throughout the Sinus Meridiani region and its surrounding cratered terrain.

    Location near: 2.2oN, 7.9oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  11. Layered Rocks in Ritchey

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 May 2004 This March 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light- and dark-toned layered rock outcrops on the floor of Ritchey Crater, located near 28.9oS, 50.8oW. Some or all of these rocks may be sedimentary in origin. Erosion has left a couple of buttes standing on a more erosion-resistant plain. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  12. Remnant Layered Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    29 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of small yardangs -- wind eroded hills -- on the plains immediately west of Meridiani Planum. These yardangs are the remains of layered, sedimentary rock that once covered this area. The few craters visible in this 3 km (1.9 mi) -wide scene are all exhumed from beneath the rocks that comprise the yardang hills. The image is located near 0.4oS, 7.2oW. Sunlight illuminates the picture from the lower left.

  13. Layered Rocks of Melas

    NASA Technical Reports Server (NTRS)

    2004-01-01

    04 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops exposed by erosion in southern Melas Chasma, one of the major Valles Marineris troughs. Such outcrops are common in southern Melas; they resemble the rock outcrops seen in some of the chaotic terrains and other Valles Marineris chasms. This image is located near 11.9oS, 74.6oW, and is about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  14. Diverse Rock Named Squash

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image from the Sojourner rover's right front camera was taken on Sol 27. The Pathfinder lander is seen at middle left. The large rock at right, nicknamed 'Squash', exhibits a diversity of textures. It looks very similar to a conglomerate, a type of rock found on Earth that forms from sedimentary processes.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  15. Fault Rock Variation as a Function of Host Rock Lithology

    NASA Astrophysics Data System (ADS)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  16. Rocking and Rolling Rattlebacks

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical and…

  17. Reducing Rock Climbing Risks.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1998-01-01

    Provides checklists that can be used as risk-management tools to evaluate rock-climbing programs: developing goals, policies, and procedures; inspecting the climbing environment; maintaining and inspecting equipment; protecting participants; and managing staff (hiring, training, retraining, and evaluating) and campers (experience level, needs, and…

  18. Slippery Rock University

    ERIC Educational Resources Information Center

    Arnhold, Robert W.

    2008-01-01

    Slippery Rock University (SRU), located in western Pennsylvania, is one of 14 state-owned institutions of higher education in Pennsylvania. The university has a rich tradition of providing professional preparation programs in special education, therapeutic recreation, physical education, and physical therapy for individuals with disabilities.…

  19. The River Rock School.

    ERIC Educational Resources Information Center

    Gereaux, Teresa Thomas

    1999-01-01

    In the early 1920s, the small Appalachian community of Damascus, Virginia, used private subscriptions and volunteer labor to build a 15-classroom school made of rocks from a nearby river and chestnut wood from nearby forests. The school building's history, uses for various community activities, and current condition are described. (SV)

  20. Prestressed rock truss

    SciTech Connect

    Johnson, S.F.

    1981-06-23

    A roof support system for mines in which prestressed rock trusses are bolted to the roof of the mine with roof bolts which each extend beyond the width of the mine gallery and the method of installing said trusses into position.

  1. Teaching the Rock Cycle with Ease.

    ERIC Educational Resources Information Center

    Bereki, Debra

    2000-01-01

    Describes a hands-on lesson for teaching high school students the concept of the rock cycle using sedimentary, metamorphic, and igneous rocks. Students use a rock cycle diagram to identify pairs of rocks. From the rock cycle, students explain on paper how their first rock became the second rock and vice versa. (PVD)

  2. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  3. Joint Commission on rock properties

    NASA Astrophysics Data System (ADS)

    A joint commission on Rock Properties for Petroleum Engineers (RPPE) has been established by the International Society of Rock Mechanics and the Society of Petroleum Engineers to set up data banks on the properties of sedimentary rocks encountered during drilling. Computer-based data banks of complete rock properties will be organized for sandstones (GRESA), shales (ARSHA) and carbonates (CARCA). The commission hopes to access data sources from members of the commission, private companies and the public domain.

  4. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  5. Realistic Expectations for Rock Identification.

    ERIC Educational Resources Information Center

    Westerback, Mary Elizabeth; Azer, Nazmy

    1991-01-01

    Presents a rock classification scheme for use by beginning students. The scheme is based on rock textures (glassy, crystalline, clastic, and organic framework) and observable structures (vesicles and graded bedding). Discusses problems in other rock classification schemes which may produce confusion, misidentification, and anxiety. (10 references)…

  6. A look at carbonate rocks

    SciTech Connect

    Bowsher, A.I. )

    1994-03-01

    Important ore deposits are found in carbonate rocks, and large volumes of oil and gas are also produced from carbonate rocks on a worldwide basis. Reservoir types and productive capability are most often related to rock type and the facies to which the rock belongs. Broad new understanding of carbonate rocks came with the publication of Classification of Carbonate Rocks-A Symposium (AAPG Memoir 1, 1962). The principal parameters of carbonate rocks are (1) chemical composition, (2) grade size, (3) sorting and packing, (4) identification of grains in the rock, (5) cement, (6) color, (7) alteration of recrystallization, and (8) porosity. Original porosity in carbonate rocks relates to kind and packing of original particles. Secondary porosity is reduced by infilling that usually relates to some particles, or is enhanced because some types of grains are dissolved. Carbonate sediments are organic detritus. The range of solubility of organic detritus is very large. Fossils present in the carbonates are clues as to the source of the detritus in the rock. Additional research is needed in faunal relations of facies and of rock types. Ore recovery, well completion, and EOR are more successful when the parameters of carbonate rocks are extensively studied. A simplified approach to carbonate description is discussed.

  7. Soil and rock 'Yogi'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several possible targets of study for rover Sojourner's Alpha Proton X-Ray Spectrometer (APXS) instrument are seen in this image, taken by the Imager for Mars Pathfinder (IMP) on Sol 2. The smaller rock at left has been dubbed 'Barnacle Bill,' while the larger rock at right, approximately 3-4 meters from the lander, is now nicknamed 'Yogi.' Barnacle Bill is scheduled to be the first object of study for the APXS. Portions of a petal and deflated airbag are also visible at lower right.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  8. Sedimentary Rock Outcrops

    NASA Technical Reports Server (NTRS)

    2004-01-01

    16 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded layered rock outcrops in a crater north of Meridiani Planum near 2.7oN, 359.1oW. The dozens and dozens of sedimentary rock layers of repeated thickness and similar physical properties at this location suggest that they may have been deposited in a lacustrine (lake) setting. The crater in which these layers occur may once have been completely filled and buried, as is the case for many craters in the Sinus Meridiani region. This image covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  9. Sedimentary Rock Near Coprates

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-420, 13 July 2003

    This mosaic of two Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle camera images, one from 2001, the other from 2003, shows light-toned, layered, sedimentary rock outcrops exposed on the floor of a trough that parallels Coprates Chasma in the Valles Marineris system. Layered rocks form the pages from which the history of a place can be read. It may be many years before the story is read, but or now at least we know where one of the books of martian history is found. This picture is located near 15.2oS, 60.1oW. Sunlight illuminates the scene from the left.

  10. Schiaparelli's Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 October 2004 Schiaparelli Basin is a large, 470 kilometer (292 miles) impact crater located east of Sinus Meridiani. The basin might once have been the site of a large lake--that is, if the sedimentary rocks exposed on its northwestern floor were deposited in water. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.5 meter per pixel (5 ft per pixel) view of some of the light-toned, finely-bedded sedimentary rocks in northwestern Schiaparelli. The image is located near 1.0oS, 346.0oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  11. Gale Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    15 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of layered, sedimentary rock in eastern Gale Crater. North-central Gale Crater is the site of a mound that is more than several kilometers thick and largely composed of sedimentary rocks that record a complex history of deposition and erosion. At one time, Gale Crater might have been completely filled and buried beneath the martian surface.

    Location near: 4.9oS, 221.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  12. Poroelasticity of rock

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton's coefficient and undrained Poisson's ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  13. Terby Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 December 2003 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rock outcrops in Terby Crater, located near 27.7oS, 285.4oW. The layered sediments in Terby are several kilometers thick, attesting to a long history of deposition in this ancient basin. The picture covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the upper left.

  14. Eroded Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-372, 26 May 2003

    This high resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded, layered sedimentary rock exposures in an unnamed western Arabia Terra crater at 8oN, 7oW. The dark material is windblown sand; much of the erosion of these layers may have also been caused by wind. Sunlight illuminates the scene from the left.

  15. Ripples and Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rock outcrops and large dark-toned, windblown ripples in Aram Chaos.

    Location near: 3.0oN, 20.9oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Summer

  16. Iani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 February 2005 This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows light-toned sedimentary rocks exposed by erosion in the Iani Chaos region of Mars.

    Location near: 4.2oS, 18.7oW Image width: 1 km (0.6 mi) Illumination from: upper left Season: Southern Winter

  17. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered, sedimentary rock outcrops in southwestern Melas Chasma, one of the troughs of the vast Valles Marineris system. Sunlight illuminates this scene from the upper left; it is located near 9.8oS, 76.0oW, and covers an area about 3 km (1.9 mi) wide.

  18. Soil Rock Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A redesigned version of a soil/rock analyzer developed by Martin Marietta under a Langley Research Center contract is being marketed by Aurora Tech, Inc. Known as the Aurora ATX-100, it has self-contained power, an oscilloscope, a liquid crystal readout, and a multichannel spectrum analyzer. It measures energy emissions to determine what elements in what percentages a sample contains. It is lightweight and may be used for mineral exploration, pollution monitoring, etc.

  19. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  20. Salty Martian Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which produces a spectrum, or fingerprint, of chemicals in martian rocks and soil. The instrument contains a radioisotope, curium-244, that bombards a designated area with alpha particles and X-rays, causing a cascade of reflective fluorescent X-rays. The energies of these fluorescent X-rays are unique to each atom in the periodic table, allowing scientists to determine a target's chemical composition.

    Both 'Tarmac' and 'McKittrick' are located within the small crater where Opportunity landed. The full spectra are expressed as X-ray intensity (logarithmic scale) versus energy. When comparing two spectra, the relative intensities at a given energy are proportional to the elemental concentrations, however these proportionality factors can be complex. To be precise, scientists extensively calibrate the instrument using well-analyzed geochemical standards.

    Both the alpha particle X-ray spectrometer and the rock abrasion tool are located on the rover's instrument deployment device, or arm.

  1. Rock pushing and sampling under rocks on Mars

    USGS Publications Warehouse

    Moore, H.J.; Liebes, S., Jr.; Crouch, D.S.; Clark, L.V.

    1978-01-01

    Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil

  2. Grinding into Soft, Powdery Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This hole in a rock dubbed 'Clovis' is the deepest hole drilled so far in any rock on Mars. NASA's Mars Exploration Rover Spirit captured this view with its microscopic imager on martian sol 217 (Aug. 12, 2004) after drilling 8.9 millimeters (0.35 inch) into the rock with its rock abrasion tool. The view is a mosaic of four frames taken by the microscopic imager. The hole is 4.5 centimeters (1.8 inches) in diameter. Clovis is key to a developing story about environmental change on Mars, not only because it is among the softest rocks encountered so far in Gusev Crater, but also because it contains mineral alterations that extend relatively deep beneath its surface. In fact, as evidenced by its fairly crumbly texture, it is possibly the most highly altered volcanic rock ever studied on Mars.

    Scientific analysis shows that the rock contains higher levels of the elements sulfur, chlorine, and bromine than are normally encountered in basaltic rocks, such as a rock dubbed 'Humphrey' that Spirit encountered two months after arriving on Mars. Humphrey showed elevated levels of sulfur, chlorine, and bromine only in the outermost 2 millimeters (less than 0.1 inch) of its surface. Clovis shows elevated levels of the same elements along with the associated softness of the rock within a borehole that is 4 times as deep. Scientists hope to compare Clovis to other, less-altered rocks in the vicinity to assess what sort of water-based processes altered the rock. Hypotheses include transport of sulfur, chlorine, and bromine in water vapor in volcanic gases; hydrothermal circulation (flow of volcanically heated water through rock); or saturation in a briny soup containing the same elements.

    In this image, very fine-grained material from the rock has clumped together by electrostatic attraction and fallen into the borehole. NASA/JPL/Cornell/USGS

  3. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  4. Rock Pore Structure as Main Reason of Rock Deterioration

    NASA Astrophysics Data System (ADS)

    Ondrášik, Martin; Kopecký, Miloslav

    2014-03-01

    Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite. However, rock as any other material if exposed to exogenous processes starts to deteriorate. Especially mechanical weathering can be very intensive if rock with unsuitable rock properties is used. For long it had been believed that repeated freezing and thawing in relation to high absorption is the main reason of the rock deterioration. In Slovakia for many years the high water absorption was set as exclusion criterion for use of rocks and stones in building industry. Only after 1989 the absorption was accepted as merely informational rock property and not exclusion. The reason of the change was not the understanding of the relationship between the porosity and rock deterioration, but more or less good experiences with some high porous rocks used in constructions exposed to severe weather conditions and proving a lack of relationship between rock freeze-thaw resistivity and water absorption. Results of the recent worldwide research suggest that understanding a resistivity of rocks against deterioration is hidden not in the absorption but in the structure of rock pores in relation to thermodynamic properties of pore water and tensile strength of rocks and rock minerals. Also this article presents some results of research on rock deterioration and pore structure performed on 88 rock samples. The results divide the rocks tested into two groups - group N in which the pore water does not freeze

  5. Rock mechanics for hard rock nuclear waste repositories

    SciTech Connect

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff (Nevada Test Site).

  6. Evolution of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Veizer, J.; MacKenzie, F. T.

    2003-12-01

    For almost a century, it has been recognized that the present-day thickness and areal extent of Phanerozoic sedimentary strata increase progressively with decreasing geologic age. This pattern has been interpreted either as reflecting an increase in the rate of sedimentation toward the present (Barrell, 1917; Schuchert, 1931; Ronov, 1976) or as resulting from better preservation of the younger part of the geologic record ( Gilluly, 1949; Gregor, 1968; Garrels and Mackenzie, 1971a; Veizer and Jansen, 1979, 1985).Study of the rocks themselves led to similarly opposing conclusions. The observed secular (=age) variations in relative proportions of lithological types and in chemistry of sedimentary rocks (Daly, 1909; Vinogradov et al., 1952; Nanz, 1953; Engel, 1963; Strakhov, 1964, 1969; Ronov, 1964, 1982) were mostly given an evolutionary interpretation. An opposing, uniformitarian, approach was proposed by Garrels and Mackenzie (1971a). For most isotopes, the consensus favors deviations from the present-day steady state as the likely cause of secular trends.This chapter attempts to show that recycling and evolution are not opposing, but complementary, concepts. It will concentrate on the lithological and chemical attributes of sediments, but not deal with the evolution of sedimentary mineral deposits (Veizer et al., 1989) and of life ( Sepkoski, 1989), both well amenable to the outlined conceptual treatment. The chapter relies heavily on Veizer (1988a) for the sections dealing with general recycling concepts, on Veizer (2003) for the discussion of isotopic evolution of seawater, and on Morse and Mackenzie (1990) and Mackenzie and Morse (1992) for discussion of carbonate rock recycling and environmental attributes.

  7. Rocking and Rolling Rattlebacks

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2013-12-01

    A rattleback is a well-known physics toy that has a preferred direction of rotation. If it is spun about a vertical axis in the "wrong" direction, it will slow down, start rocking from end to end, and then spin in the opposite (i.e. preferred) direction. Many articles have been written about rattlebacks. Some are highly mathematical , 2 and others are purely descriptive. It is surprising that there is still no simple physical explanation. By that, I mean an explanation that can be given to a high school student and one that does not involve an obscure set of complicated equations.

  8. Sedimentary Rocks in Ganges

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows portions of two massifs composed of light-toned, sedimentary rock in Ganges Chasma, part of the Valles Marineris trough system. On the steeper slopes in this vista, dry talus shed from the outcrop has formed a series of dark fans. Surrounded by dark, windblown sand, these landforms are located near 8.6oS, 46.8oW. The image covers an area approximately 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  9. Aram Chaos Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of light-toned, sedimentary rock among darker-toned mesas in Aram Chaos. Dark, windblown megaripples -- large ripples -- are also present at this location.

    Location near: 3.0oN, 21.6oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  10. Sedimentary Rocks in Melas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Mars Global Surveyor (MGS) Orbiter Camera (MOC) image shows a butte and several other landforms eroded into light-toned, layered, sedimentary rock in southern Melas Chasma. Melas is part of the vast Valles Marineris trough system.

    Location near: 11.8oS, 74.6oW Image width: 3.0 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  11. Sedimentary Rock in Candor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    11 February 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dozens of light- and a few dark-toned sedimentary rock layers exposed by faulting and erosion in western Candor Chasma, part of the vast Valles Marineris trough system.

    Location near: 6.5oS, 77.0oW Image width: 3.0 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  12. Ganges Rocks and Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 January 2004 The top half of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded remnants of sedimentary rock outcrops in Ganges Chasma, one of the troughs of the Valles Marineris system. The lower half shows a thick accumulation of dark, windblown sand. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left. These features are located near 7.6oS, 49.4oW.

  13. Melas Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 August 2004 Light-toned, layered, sedimentary rock outcrops are common within the vast martian Valles Marineris trough system. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a recent example from southern Melas Chasma at 1.5 m/pixel (5 ft/pixel) resolution. The image is located near 11.3oS, 73.9oW, and covers an area about 1.8 km (1.1 mi) across. Sunlight illuminates the scene from the upper left.

  14. From stones to rocks

    NASA Astrophysics Data System (ADS)

    Mortier, Marie-Astrid; Jean-Leroux, Kathleen; Cirio, Raymond

    2013-04-01

    With the Aquila earthquake in 2009, earthquake prediction is more and more necessary nowadays, and people are waiting for even more accurate data. Earthquake accuracy has increased in recent times mainly thanks to the understanding of how oceanic expansion works and significant development of numerical seismic prediction models. Despite the improvements, the location and the magnitude can't be as accurate as citizen and authorities would like. The basis of anticipating earthquakes requires the understanding of: - The composition of the earth, - The structure of the earth, - The relations and movements between the different parts of the surface of the earth. In order to answer these questions, the Alps are an interesting field for students. This study combines natural curiosity about understanding the predictable part of natural hazard in geology and scientific skills on site: observing and drawing landscape, choosing and reading a representative core drilling, replacing the facts chronologically and considering the age, the length of time and the strength needed. This experience requires students to have an approach of time and space radically different than the one they can consider in a classroom. It also limits their imagination, in a positive way, because they realize that prediction is based on real data and some of former theories have become present paradigms thanks to geologists. On each location the analyzed data include landscape, core drilling and the relation established between them by students. The data is used by the students to understand the meaning, so that the history of the formation of the rocks tells by the rocks can be explained. Until this year, the CBGA's perspective regarding the study of the Alps ground allowed students to build the story of the creation and disappearance of the ocean, which was a concept required by French educational authorities. But not long ago, the authorities changed their scientific expectations. To meet the

  15. Schiaparelli Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-403, 26 June 2003

    Some of the most important high resolution imaging results of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) experiment center on discoveries about the presence and nature of the sedimentary rock record on Mars. This old meteor impact crater in northwestern Schiaparelli Basin exhibits a spectacular view of layered, sedimentary rock. The 2.3 kilometer (1.4 miles) wide crater may have once been completely filled with sediment; the material was later eroded to its present form. Dozens of layers of similar thickness and physical properties are now expressed in a wedding cake-like stack in the middle of the crater. Sunlight illuminating the scene from the left shows that the circle, or mesa top, at the middle of the crater stands higher than the other stair-stepped layers. The uniform physical properties and bedding of these layers might indicate that they were originally deposited in a lake (it is possible that the crater was at the bottom of a much larger lake, filling Schiaparelli Basin); alternatively, the layers were deposited by settling out of the atmosphere in a dry environment. This picture was acquired on June 3, 2003, and is located near 0.9oS, 346.2oW.

  16. A smart rock

    NASA Astrophysics Data System (ADS)

    Pressel, Phil

    2014-12-01

    This project was to design and build a protective weapon for a group of associations that believed in aliens and UFO's. They collected enough contributions from societies and individuals to be able to sponsor and totally fund the design, fabrication and testing of this equipment. The location of this facility is classified. It also eventually was redesigned by the Quartus Engineering Company for use at a major amusement park as a "shoot at targets facility." The challenge of this project was to design a "smart rock," namely an infrared bullet (the size of a gallon can of paint) that could be shot from the ground to intercept a UFO or any incoming suspicious item heading towards the earth. Some of the challenges to design this weapon were to feed cryogenic helium at 5 degrees Kelvin from an inair environment through a unique rotary coupling and air-vacuum seal while spinning the bullet at 1500 rpm and maintain its dynamic stability (wobble) about its spin axis to less than 10 micro-radians (2 arc seconds) while it operated in a vacuum. Precision optics monitored the dynamic motion of the "smart rock."

  17. Rock Properties Model

    SciTech Connect

    C. Lum

    2004-09-16

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  18. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John

    1999-01-01

    We study our Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are now on top of a mountain may once have been at the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of Earth in space. One spin of Earth on its axis is a day, and one trip around the Sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  19. Fossils, rocks, and time

    USGS Publications Warehouse

    Edwards, Lucy E.; Pojeta, John, Jr.

    1993-01-01

    We study out Earth for many reasons: to find water to drink or oil to run our cars or coal to heat our homes, to know where to expect earthquakes or landslides or floods, and to try to understand our natural surroundings. Earth is constantly changing--nothing on its surface is truly permanent. Rocks that are not on top of a mountain may once have been on the bottom of the sea. Thus, to understand the world we live on, we must add the dimension of time. We must study Earth's history. When we talk about recorded history, time is measured in years, centuries, and tens of centuries. When we talk about Earth history, time is measured in millions and billions of years. Time is an everyday part of our lives. We keep track of time with a marvelous invention, the calendar, which is based on the movements of the Earth in space. One spin of Earth on its axis is a day, and one trip around the sun is a year. The modern calendar is a great achievement, developed over many thousands of years as theory and technology improved. People who study Earth's history also use a type of calendar, called the geologic time scale. It looks very different from the familiar calendar. In some ways, it is more like a book, and the rocks are its pages. Some of the pages are torn or missing, and the pages are not numbered, but geology gives us the tools to help us read this book.

  20. 'They of the Great Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.'

  1. Building The Bell Rock Lighthouse

    ERIC Educational Resources Information Center

    Shallcross, David C.

    2005-01-01

    Ever since the first mariners sailed off the east coast of Scotland the Bell Rock has claimed many vessels and countless lives. Also known as the Inch Cape Rocks they lie 18 km off the coast at Arbroath. Located near the mouth of the Firth of Forth and its important shipping ports these dangerous rocks cover an area some 440 m long and 90 m wide.…

  2. [Hearing disorders and rock music].

    PubMed

    Lindhardt, Bjarne Orskov

    2008-12-15

    Only few studies have investigated the frequency of hearing disorders in rock musicians. Performing rock music is apparently associated with a hearing loss in a fraction of musicians. Tinnitus and hyperacusis are more common among rock musicians than among the background population. It seems as if some sort of resistance against further hearing loss is developed over time. The use of ear protection devices have not been studied systematically but appears to be associated with diminished hearing loss. PMID:19128557

  3. Geoelectrical Classification of Gypsum Rocks

    NASA Astrophysics Data System (ADS)

    Guinea, Ander; Playà, Elisabet; Rivero, Lluís; Himi, Mahjoub; Bosch, Ricard

    2010-12-01

    Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum rocks and its lithological composition has been established, with the presence of lutites being the main controlling factor in the geoelectrical response of the deposit. This phenomenon has been quantified in the present study, by means of a combination of theoretical calculations, laboratory measurements and field data acquisition. Direct modelling has been performed; the data have been inverted to obtain the mean electrical resistivity of the models. The laboratory measurements have been obtained from artificial gypsum-clay mixture pills, and the electrical resistivity has been measured using a simple electrical circuit with direct current power supply. Finally, electrical resistivity tomography data have been acquired in different evaporite Tertiary basins located in North East Spain; the selected gypsum deposits have different gypsum compositions. The geoelectrical response of gypsum rocks has been determined by comparing the resistivity values obtained from theoretical models, laboratory tests and field examples. A geoelectrical classification of gypsum rocks defining three types of gypsum rocks has been elaborated: (a) Pure Gypsum Rocks (>75% of gypsum content), (b) Transitional Gypsum Rocks (75-55%), and (c) Lutites and Gypsum-rich Lutites (<55%). From the economic point of view, the Pure Gypsum Rocks, displaying a resistivity value of >800 ohm.m, can be exploited as industrial rocks. The methodology used could be applied in other geoelectrical rock studies, given that this relationship

  4. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  5. Electromagnetic emissions during rock blasting

    NASA Astrophysics Data System (ADS)

    O'Keefe, S. G.; Thiel, D. V.

    1991-05-01

    Radio emissions during quarry blasting have been recorded in the audio frequency band. Three distinct mechanisms are suggested to explain the observed results; rock fracture at the time of the explosion, charged rocks discharging on impact with the pit floor and micro-fracture of the remaining rock wall due to pressure adjustment of the bench behind the blast. The last mechanism was evident by a train of discrete impulses recorded for up to one minute after the blast. It is assumed that during this time the rock behind the blast was subjected to a significant change in pressure. This may be related to ELF observations during earthquakes.

  6. Ready to Rock and Roll

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Spirit hazard-identification camera shows the rover's perspective just before its first post-egress drive on Mars. On Sunday, the 15th martian day, or sol, of Spirit's journey, engineers drove Spirit approximately 3 meters (10 feet)toward its first rock target, a football-sized, mountain-shaped rock called Adirondack (not pictured). In the foreground of this image are 'Sashimi' and 'Sushi' - two rocks that scientists considered investigating first. Ultimately, these rocks were not chosen because their rough and dusty surfaces are ill-suited for grinding.

  7. Rock.XML - Towards a library of rock physics models

    NASA Astrophysics Data System (ADS)

    Jensen, Erling Hugo; Hauge, Ragnar; Ulvmoen, Marit; Johansen, Tor Arne; Drottning, Åsmund

    2016-08-01

    Rock physics modelling provides tools for correlating physical properties of rocks and their constituents to the geophysical observations we measure on a larger scale. Many different theoretical and empirical models exist, to cover the range of different types of rocks. However, upon reviewing these, we see that they are all built around a few main concepts. Based on this observation, we propose a format for digitally storing the specifications for rock physics models which we have named Rock.XML. It does not only contain data about the various constituents, but also the theories and how they are used to combine these building blocks to make a representative model for a particular rock. The format is based on the Extensible Markup Language XML, making it flexible enough to handle complex models as well as scalable towards extending it with new theories and models. This technology has great advantages as far as documenting and exchanging models in an unambiguous way between people and between software. Rock.XML can become a platform for creating a library of rock physics models; making them more accessible to everyone.

  8. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  9. Light-toned Rock

    NASA Technical Reports Server (NTRS)

    2006-01-01

    1 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a scene reminiscent of some of the Mars Exploration Rover (MER-B), Opportunity, images of terrain in the vicinity of Erebus Crater -- a substrate of light-toned rock, broken into polygonal forms, overlain by large, dark-toned, ripple-like drifts. However, this scene is many hundreds of kilometers away from Meridiani Planum -- it lies on the floor of an old impact crater near the northwest rim of the giant Hellas Basin.

    Location near: 21.0oS, 312.0oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  10. Yogi the rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. The soil in the foreground will be the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists will be able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties.

    The image was taken by the Imager for Mars Pathfinder (IMP) after its deployment on Sol 3. Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. JPL is an operating division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. Meridiani Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-545, 15 November 2003

    Northern Sinus Meridiani is a region of vast exposures of layered, sedimentary rock. Buried within these layers are many filled impact craters. Erosion has re-exposed several formerly-buried craters in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. Arrows 1 and 2 indicate craters that are still emerging from beneath layered material; arrow 3 indicates a crater that has been fully re-exposed. This image is located near 5.1oN, 2.7oW. The area shown is about 3 km (1.9 mi) wide and illuminated from the left/upper left.

  12. Celebrated Moon Rocks

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2009-12-01

    The Need for Lunar Samples and Simulants: Where Engineering and Science Meet sums up one of the sessions attracting attention at the annual meeting of the Lunar Exploration Analysis Group (LEAG), held November 16-19, 2009 in Houston, Texas. Speakers addressed the question of how the Apollo lunar samples can be used to facilitate NASA's return to the Moon while preserving the collection for scientific investigation. Here is a summary of the LEAG presentations of Dr. Gary Lofgren, Lunar Curator at the NASA Johnson Space Center in Houston, Texas, and Dr. Meenakshi (Mini) Wadhwa, Professor at Arizona State University and Chair of NASA's advisory committee called CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials). Lofgren gave a status report of the collection of rocks and regolith returned to Earth by the Apollo astronauts from six different landing sites on the Moon in 1969-1972. Wadhwa explained the role of CAPTEM in lunar sample allocation.

  13. Robotic Rock Classification

    NASA Technical Reports Server (NTRS)

    Hebert, Martial

    1999-01-01

    This report describes a three-month research program undertook jointly by the Robotics Institute at Carnegie Mellon University and Ames Research Center as part of the Ames' Joint Research Initiative (JRI.) The work was conducted at the Ames Research Center by Mr. Liam Pedersen, a graduate student in the CMU Ph.D. program in Robotics under the supervision Dr. Ted Roush at the Space Science Division of the Ames Research Center from May 15 1999 to August 15, 1999. Dr. Martial Hebert is Mr. Pedersen's research adviser at CMU and is Principal Investigator of this Grant. The goal of this project is to investigate and implement methods suitable for a robotic rover to autonomously identify rocks and minerals in its vicinity, and to statistically characterize the local geological environment. Although primary sensors for these tasks are a reflection spectrometer and color camera, the goal is to create a framework under which data from multiple sensors, and multiple readings on the same object, can be combined in a principled manner. Furthermore, it is envisioned that knowledge of the local area, either a priori or gathered by the robot, will be used to improve classification accuracy. The key results obtained during this project are: The continuation of the development of a rock classifier; development of theoretical statistical methods; development of methods for evaluating and selecting sensors; and experimentation with data mining techniques on the Ames spectral library. The results of this work are being applied at CMU, in particular in the context of the Winter 99 Antarctica expedition in which the classification techniques will be used on the Nomad robot. Conversely, the software developed based on those techniques will continue to be made available to NASA Ames and the data collected from the Nomad experiments will also be made available.

  14. The Rock Climbing Teaching Guide.

    ERIC Educational Resources Information Center

    Kudlas, John

    The product of 10 years of rock climbing instruction, this guide provides material from which an instructor can teach basic climbing concepts and safety skills as well as conduct a safe, enjoyable rock climbing class in a high school setting. It is designed for an instructor with limited experience in climbing; however, the need for teacher…

  15. Bakhtin's Dialogics and Rock Lyrics.

    ERIC Educational Resources Information Center

    Knight, Jeff Parker

    Rock music is ideological both implicitly (in its intrinsic valuing of change, and resistance to authority, for instance), and explicitly (in political records from activist artists such as John Lennon and U2). The texts of the rock genre offer rhetorical experiences. A dialogic conception may help scholars to account for and describe the…

  16. 'Mister Badger' Pushing Mars Rock

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.

  17. Further Reflections on Little Rock

    ERIC Educational Resources Information Center

    Allen, Danielle S.

    2007-01-01

    The famous photo of Hazel Bryan jeering at Elizabeth Eckford as a mob helped drive Elizabeth from Central High School in Little Rock, Arkansas, on September 4, 1957, compels meditation on the nature of democratic politics. This scene is commemorative of the Little Rock events where school segregation was rampant. The author believes that the photo…

  18. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  19. Small-Town Rock Trade

    ERIC Educational Resources Information Center

    Robarge, Thomas J.

    1977-01-01

    Describes an eighth grade rock exchange project in which small groups of students researched, then wrote letters to schools throughout the United States requesting samples of local rocks and minerals. Provides experience in use of the atlas and letter writing. (CS)

  20. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  1. Tracer tomography (in) rocks!

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Jalali, Mohammadreza; Jimenez Parras, Santos; Bayer, Peter

    2016-04-01

    Physical behavior of fractured aquifers is rigorously controlled by the presence of interconnected conductive fractures, as they represent the main pathways for flow and transport. Ideally, they are simulated as a discrete fracture network (DFN) in a model to capture the role of fracture system geometry, i.e. fracture length, height, and width (aperture/transmissivity). Such network may be constrained by prior geological information or direct data resources such as field mapping, borehole logging and geophysics. With the many geometric features, however, calibration of a DFN to measured data is challenging. This is especially the case when spatial properties of a fracture network need to be calibrated to flow and transport data. One way to increase the insight in a fractured rock is by combining the information from multiple field tests. In this study, a tomographic configuration that combines multiple tracer tests is suggested. These tests are conducted from a borehole with different injection levels that act as sources. In a downgradient borehole, the tracer is recorded at different levels or receivers, in order to maximize insight in the spatial heterogeneity of the rock. As tracer here we chose heat, and temperature breakthrough curves are recorded. The recorded tracer data is inverted using a novel stochastic trans-dimensional Markov Chain Monte Carlo procedure. An initial DFN solution is generated and sequentially modified given available geological information, such as expected fracture density, orientation, length distribution, spacing and persistency. During this sequential modification, the DFN evolves in a trans-dimensional inversion space through adding and/or deleting fracture segments. This stochastic inversion algorithm requires a large number of thousands of model runs to converge, and thus using a fast and robust forward model is essential to keep the calculation efficient. To reach this goal, an upwind coupled finite difference method is employed

  2. Analysis of Inflatable Rock Bolts

    NASA Astrophysics Data System (ADS)

    Li, Charlie C.

    2016-01-01

    An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt-rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young's modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while

  3. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. Shotgun cartridge rock breaker

    DOEpatents

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  5. Fracturing of rocks by ice

    NASA Astrophysics Data System (ADS)

    Vlahou, Ioanna; Grae Worster, M.

    2009-11-01

    Frost damage, caused by the freezing of water-saturated media, affects plant roots, pavements and the foundations of buildings, and is a major erosional force in rocks. The process has been studied extensively in the case of soils, and mechanisms such as the formation of ice lenses have been identified. Here, we consider the freezing of water in a three-dimensional cavity in a water-saturated, porous, elastic rock. Initially, the expansion of water as it freezes causes flow away from the solidification front, into the porous rock. The Darcy flow in the porous medium controls the pressure field and therefore the freezing temperature. At later times, disjoining thermomolecular forces create a pre-melted film of water between the ice and the rock and cause flow of pore water from the surrounding rock into the cavity. We find that the disjoining forces between the ice and the rock have the dominant effect, so we focus on those later times when the cavity is ice-filled. We solve the coupled set of integro-differential equations governing the elastic stress in the rock and the flow through its pores to determine the evolution of the shape and extent of the ice-filled cavity.

  6. Source rock potential in Pakistan

    SciTech Connect

    Raza, H.A. )

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceous rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.

  7. Rock Dusting Leaves 'Mickey Mouse' Mark

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the navigation camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Humphrey' and the circular areas on the rock that were wiped off by the rover. The rover used a brush on its rock abrasion tool to clean these spots before examining them with its miniature thermal emission spectrometer. Later, the rover drilled into the rock with its rock abrasion tool, exposing fresh rock underneath.

  8. Approaching Rock Target No. 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.

  9. Multiverso: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  10. Dynamics of rock varnish formation

    SciTech Connect

    Raymond, R. Jr.; Reneau, S.L.; Guthrie, G.D. Jr.; Bish, D.L.; Harrington, C.D.

    1991-01-01

    Our studies of rock varnish from the southwestern United States suggest that the Mn-phase in rock varnish has neither the chemistry nor the crystal structure of birnessite. Rather, the Mn-rich phase is non-crystalline and contains Ba, Ca, Fe, Al, and P. Unknowns concerning the formation of this non-crystalline Mn phase must be resolved before researchers are able to define chemical parameters of rock varnish formation based upon conditions of formation of the Mn phase. 6 refs., 9 figs.

  11. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  12. Fluid and rock interaction in permeable volcanic rock

    SciTech Connect

    Lindley, J.I.

    1985-02-01

    Four types of interrelated changes -geochemical, mineralogic, isotopic, and physical - occur in Oligocene volcanic units of the Mogollon-Datil volcanic field, New Mexico. These changes resulted from the operation of a geothermal system that, through fluid-rock interaction, affected 5 rhyolite ash-flow tuffs and an intercalated basaltic andesite lava flow causing a potassium metasomatism type of alteration. (1) Previous studies have shown enrichment of rocks in K/sub 2/O as much as 130% of their original values at the expense of Na/sub 2/O and CaO with an accompanying increase in Rb and decreases in MgO and Sr. (2) X-ray diffraction results of this study show that phenocrystic plagioclase and groundmass feldspar have been replaced with pure potassium feldspar and quartz in altered rock. Phenocrystic potassium feldspar, biotite, and quartz are unaffected. Pyroxene in basaltic andesite is replaced by iron oxide. (3) delta/sup 18/O increases for rhyolitic units from values of 8-10 permil, typical of unaltered rock, to 13-15 permil, typical of altered rock. Basaltic andesite, however, shows opposite behavior with a delta/sup 18/ of 9 permil in unaltered rock and 6 permit in altered. (4) Alteration results in a density decrease. SEM revealed that replacement of plagioclase by fine-grained quartz and potassium feldspar is not a volume for volume replacement. Secondary porosity is created in the volcanics by the chaotic arrangement of secondary crystals.

  13. ROCK DEFORMATION. Final Progress Report

    SciTech Connect

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  14. City Rocks and National Standards.

    ERIC Educational Resources Information Center

    Becker, Martin; Slattery, William; Finegan-Stoll, Colleen

    1998-01-01

    Presents a weeklong earth science module that allows students to explore the relationships between natural and manufactured materials. Relates rocks and minerals in the earth science curriculum to observations students make in their urban and suburban travels. (DDR)

  15. The Rock Your Students Dig.

    ERIC Educational Resources Information Center

    McCombs, John P.

    1990-01-01

    Described is a field trip in which eighth grade earth science students map the rock types located on the side of a mountain. Pretrip preparation, equipment, procedures, and posttrip analysis are discussed. (CW)

  16. 'White Rock' of Pollack Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 January 2004 The famous 'White Rock' of Pollack Crater has been known for three decades; it was originally found in images acquired by the Mariner 9 spacecraft in 1972. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) close-up view, obtained in October 2003, shows some of the light-toned, wind-eroded sedimentary rock that makes up 'White Rock.' It is not actually white, except when viewed in a processed, grayscale image (in color, it is more of a light butterscotch to pinkish material). The sediment that comprises 'White Rock' was deposited in Pollack Crater a long time ago, perhaps billions of years ago; the material was later eroded by wind. Dark, windblown ripples are present throughout the scene. This picture is located near 8.2oS, 335.1oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  17. Rock expansion caused by ultrasound

    NASA Astrophysics Data System (ADS)

    Hedberg, C.; Gray, A.

    2013-12-01

    It has during many years been reported that materials' elastic modulus decrease when exposed to influences like mechanical impacts, ultrasound, magnetic fields, electricity and even humidity. Non-perfect atomic structures like rocks, concrete, or damaged metals exhibit a larger effect. This softening has most often been recorded by wave resonance measurements. The motion towards equilibrium is slow - often taking hours or days, which is why the effect is called Slow Dynamics [1]. The question had been raised, if a material expansion also occurs. 'The most fundamental parameter to consider is the volume expansion predicted to occur when positive hole charge carriers become activated, causing a decrease of the electron density in the O2- sublattice of the rock-forming minerals. This decrease of electron density should affect essentially all physical parameters, including the volume.' [2]. A new type of configuration has measured expansion of a rock subjected to ultrasound. A PZT was used as a pressure sensor while the combined thickness of the rock sample and the PZT sensor was held fixed. The expansion increased the stress in both the rock and the PZT, which gave an out-put voltage from the PZT. Knowing its material properties then made it possible to calculate the rock expansion. The equivalent strain caused by the ultrasound was approximately 3 x 10-5. The temperature was monitored and accounted for during the tests and for the maximum expansion the increase was 0.7 C, which means the expansion is at least to some degree caused by heating of the material by the ultrasound. The fraction of bonds activated by ultrasound was estimated to be around 10-5. References: [1] Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soils, Concrete. Wiley-VCH 2009 [2] M.M. Freund, F.F. Freund, Manipulating the Toughness of Rocks through Electric Potentials, Final Report CIF 2011 Award NNX11AJ84A, NAS Ames 2012.

  18. 'Mazatzal' Rock on Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Spirit took this navigation camera image of the 2-meter-wide (6.6-foot-wide) rock called 'Mazatzal' on sol 76, March 21, 2004. Scientists intend to aggressively analyze this target with Spirit's microscopic imager, Moessbauer spectrometer and alpha particle X-ray spectrometer before brushing and 'digging in' with the rock abrasion tool on upcoming sols.

    Mazatzal stood out to scientists because of its large size, light tone and sugary surface texture. It is the largest rock the team has seen at the rim of the crater informally named 'Bonneville.' It is lighter-toned than previous rock targets Adirondack and Humphrey. Its scalloped pattern may be a result of wind sculpting, a very slow process in which wind-transported silt and sand abrade the rock's surface, creating depressions. This leads scientists to believe that Mazatzal may have been exposed to the wind in this location for an extremely long time.

    The name 'Mazatzal' comes from a mountain range and rock formation that was deposited around 1.2 billion years ago in the Four Peaks area of Arizona.

  19. Institute for Rock Magnetism established

    NASA Astrophysics Data System (ADS)

    Banerjee, Subir K.

    There is a new focal point for cooperative research in advanced rock magnetism. The University of Minnesota in Minneapolis has established an Institute for Rock Magnetism (IRM) that will provide free access to modern equipment and encourage visiting fellows to focus on important topics in rock magnetism and related interdisciplinary research. Funding for the first three years has been secured from the National Science Foundation, the W.M. Keck Foundation, and the University of Minnesota.In the fall of 1986, the Geomagnetism and Paleomagnetism (GP) section of the AGU held a workshop at Asilomar, Calif., to pinpoint important and emerging research areas in paleomagnetism and rock magnetism, and the means by which to achieve them. In a report of this workshop published by the AGU in September 1987, two urgent needs were set forth. The first was for interdisciplinary research involving rock magnetism, and mineralogy, petrology, sedimentology, and the like. The second need was to ease the access of rock magnetists and paleomagnetists around the country to the latest equipment in modern magnetics technology, such as magneto-optics or electronoptics. Three years after the publication of the report, we announced the opening of these facilities at the GP section of the AGU Fall 1990 Meeting. A classified advertisement inviting applications for visiting fellowships was published in the January 22, 1991, issue of Eos.

  20. Cretaceous source rocks in Pakistan

    SciTech Connect

    Kari, I.B. )

    1993-02-01

    Pakistan is located at the converging boundaries of the Indian, Arabian, and Eurasian plates. Evolution of this tectonic setting has provided an array of environmental habitats for deposition of petroleum source rocks and development of structural forms. The potential Cretaceous source rocks in Central and South Indus Basin are spread over an area of about 300,000 km[sup 2]. With 2% cutoff on Total Organic Carbon, the average source rock thickness is 30-50 m, which is estimated to have generated more than 200 billion bbl of oil equivalent. To date, production of more than 30,000 bbl of oil and about 1200 million ft[sup 3] of gas per day can be directly attributed to Cretaceous source. This basin was an area of extensional tectonics during the Lower to Middle Cretaceous associated with slightly restricted circulation of the sea waters at the north-western margin of Indian Plate. Lower Cretaceous source rocks (Sembar Formation) were deposited while the basin was opening up and anoxia was prevailing. Similarly Middle to Upper Cretaceous clastics were deposited in setting favorable for preservation of organic matter. The time and depth of burial of the Cretaceous source material and optimum thermal regime have provided the requisite maturation level for generation of hydrocarbons in the basin. Central Indus basin is characterized by Cretaceous source rocks mature for gas generation. However, in South Indus Basin Cretaceous source rocks lie within the oil window in some parts and have gone past it in others.

  1. Early Archaean rocks of Sarmatia

    NASA Astrophysics Data System (ADS)

    Shumlyanskyy, Leonid; Claesson, Stefan; Bibikova, Elena; Billström, Kjell

    2013-04-01

    Sarmatia, one of the three main crustal segments of the Precambrian East-European platform, comprises the Ukrainian shield and the Voronezh crystalline massif which are separated by the Late Palaeozoic Dnieper-Donets Depression. It is composed of a collage of terrains that were formed during over 2 billion years, from c. 3.8 to c. 1.7 Ga; some of these terrains can be traced across the Dnieper-Donets Depression. Geochronological and isotope-geochemical investigations have shown that significant portions of Sarmatia were formed already in the Early Archaean. In the Ukrainian shield Early Archaean rocks are known from the Dniester-Bug and Azov domains. Enderbites of the Dniester-Bug Series, which occur intercalated with mafic and ultramafic rocks, contain zircons as old as 3.75-3.78 Ga (Claesson et al., 2006; 2012) while initial Hf isotope ratios indicate derivation from mildly depleted sources. In the Azov domain the oldest rocks known belong to the Novopavlivka complex, which includes orthogneisses, enderbites, migmatites and related granites with up to 1 m thick enclaves of pyroxenite and peridotite, amphibolites, and schists. Zircons separated from two pyroxenite samples have yielded ages of 3633 ± 16 and 3640 ± 11 Ma, while zircons from enderbite gave 3609 ± 5 Ma (Bibikova and Williams, 1990). Zircons extracted from metasediments of the Soroki and Fedorivka greenstone belts, Azov domain, have yielded ages up to 3785 Ma (Bibikova et al, 2010) and ɛHf values of -1.6 to 1.8 for the oldest zircons. Finally, recent multigrain U-Pb dating of heavily deformed tonalitic gneisses of the Verkhnyotokmakska Stratum, Azov Domain, has given an age of 3560 ± 70 Ma (Scherbak et al., 2011). The oldest rocks of the Voronezh crystalline massif belong to the Oboyan Complex which is composed of mafic igneous rocks and sediments metamorphosed into amphibolites and gneisses. Most probably, this complex includes rocks of different ages and origins. Individual igneous zircons from

  2. Seismic response of rock joints and jointed rock mass

    SciTech Connect

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    1996-06-01

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts and the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.

  3. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  4. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  5. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  6. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  7. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect

    Not Available

    1980-01-01

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  8. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  9. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  10. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  11. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  12. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  13. 30 CFR 75.402 - Rock dusting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting. All... content to propagate an explosion, shall be rock dusted to within 40 feet of all working faces,...

  14. Surface uplift, uplift of rocks, and exhumation of rocks

    SciTech Connect

    England, P. ); Molnar, P. )

    1990-12-01

    Uplift of the surface of mountain belts requires forces that are comparable in magnitude to those associated with plate motion, and therefore determination of rates of surface uplift could provide important information on the dynamics of mountain ranges. Rates of uplift of the surfaces of mountain ranges have not, however, been quantified sufficiently well that they provide useful constraints on those processes. Many reports of surface uplift in mountain ranges are based on mistaking exhumation of rocks or uplift of rocks for surface uplift, and provide no information whatsoever on the rates of surface uplift.

  15. Uranium endowments in phosphate rock.

    PubMed

    Ulrich, Andrea E; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-04-15

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. PMID:24556272

  16. Sojourner near the Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the Sojourner rover was taken near the end of daytime operations on Sol 42. The rover is between the rocks 'Wedge' (left) and 'Flute Top' (right). Other rocks visible include 'Flat Top' (behind Flute Top) and those in the Rock Garden, at the top of the frame. The cylindrical object extending from the back end of Sojourner is the Alpha Proton X-Ray Spectrometer.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. 2012 Problem 10: Rocking Bottle

    NASA Astrophysics Data System (ADS)

    Li, Yaohua; Gao, Wenli; Wang, Sihui; Zhou, Huijun

    2015-10-01

    In this paper, the motion of a bottle partly filled with water is investigated. Two stages of motion showing different kinetic properties, named as "moving stage" and "rocking stage", can be clearly identified in the experiment. In the moving stage, the bottle moves forward with a short period vibration, while in the rocking stage, the bottle oscillates with a significantly longer period around a certain spot. Theoretical and numerical methods are employed to explain these phenomena. By simplifying the system into a rigid body model, it is found that in the moving stage, classical mechanical method gives results that fit our experiment well. And the rocking stage is thought to be the result of the asymmetric torque generated by the gravity of a liquid layer adhered to the inside wall of the bottle.

  18. Martian sediments and sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Markun, C. D.

    1988-01-01

    Martian sediments and sedimentary rocks, clastic and nonclastic, should represent a high priority target in any future return-sample mission. The discovery of such materials and their subsequent analysis in terrestrial laboratories, would greatly increase the understanding of the Martian paleoclimate. The formation of Martian clastic sedimentary rocks, under either present, low-pressure, xeric conditions or a postulated, high-pressure, hydric environment, depends upon the existence of a supply of particles, various cementing agents and depositional basins. A very high resolution (mm-cm range) photographic reconnaissance of these areas would produce a quantum jump in the understanding of Martian geological history. Sampling would be confined to more horizontal (recent) surfaces. Exploration techniques are suggested for various hypothetical Martian sedimentary rocks.

  19. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  20. Lubrication of rotary rock bits

    SciTech Connect

    MacPhail, J.; Gardner, H.

    1996-12-01

    The rotary rock bit is designed so that both the bearings and cutting structure work together as one unit. Should the bearings wear prematurely before the cutting structure is worn out, then the complete bit will rapidly deteriorate leading to a shortened bit life. The optimum bit run is when the bearings and cutting structure wear out simultaneously, having obtained a good footage and rate of penetration. This paper discusses reasons why users of rotary air blast hole bits encounter premature bit failure due to bearing failure. It also discusses a lubrication system designed for rotary rock bits to combat bearing failure.

  1. Sedimentary Rocks in Ladon Vallis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 January 2004 This is a Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture of an outcrop of light-toned, layered, sedimentary rock exposed by erosion in Ladon Vallis. These rocks preserve clues to the martian past. However, like books in a library, one needs to go there and check them out if one wishes to read what the layers have to say. This November 2003 picture is located near 21.1oS, 29.8oW, and covers an area 3km (1.9 mi.) wide. Sunlight illuminates the scene from the left.

  2. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 February 2004 Aram Chaos is a large meteor impact crater that was nearly filled with sediment. Over time, this sediment was hardened to form sedimentary rock. Today, much of the eastern half of the crater has exposures of light-toned sedimentary rock, such as the outcrops shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The picture is located near 2.0oN, 20.3oW, and covers an area 3 km (1.9 mi) wide. Sunlight illuminates the scene from the left.

  3. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  4. Rock physics properties of some lunar samples

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.

    1973-01-01

    Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.

  5. Rock 14068 - An unusual lunar breccia.

    NASA Technical Reports Server (NTRS)

    Helz, R. T.

    1972-01-01

    Rock 14068 is a walnut-sized clast of dark breccia from station C1 near Cone Crater. The rock's dominant component is an olivine-rich groundmass. Petrographic and chemical studies were made of polished sections of the rock. The origin of the material is discussed. It is thought possible that the melt was produced by remelting a preexisting lunar rock of the same composition. Another possibility considered is that the rock composition constitutes a mixture of several rock types of partly meteoritic origin.

  6. Plant Communities of Rough Rock.

    ERIC Educational Resources Information Center

    Jacobs, Linda

    A unit of study on plants grown in the Navajo community of Rough Rock, Arizona, is presented in sketches providing the common Navajo name for the plant, a literal English translation, the English name of the plant, and the Latin name. A brief description of each plant includes where the plant grows, how the Navajos use the plant, and the color and…

  7. Coal-rock interface detector

    NASA Technical Reports Server (NTRS)

    Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)

    1979-01-01

    A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.

  8. The Alum Rock Voucher Program.

    ERIC Educational Resources Information Center

    Southwest Network, Hayward, CA.

    During the 1972-73 school year, the Alum Rock Voucher Program, an experimental program, was begun in 6 neighborhood schools in East San Jose, California. The program was designed to allow greater parent participation and choice in their children's education. This illustrated, bilingual pamphlet, written as a story told by 2 caricatures, discusses…

  9. Rock Music and Music Videos.

    PubMed

    Hendren; Strasburger

    1993-10-01

    Sex, violence, sexual violence, drugs, suicide, satanic worship, and racism are common themes in modern rock lyrics. The authors examine their effect on adolescent development and identity, concluding with a discussion of the roles of parents and health care professionals in addressing the problem. PMID:10356234

  10. Texture of Rock at 'Jibsheet'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A bulbous texture is evident in this rock target at the outcrop called 'Jibsheet' in this view from the microscopic imager on NASA's Mars Exploration Rover Spirit. Frames making up this mosaic image of a target dubbed 'Reef' were taken during the rover's 481st martian day, or sol (May 11, 2005).

  11. Relevance of Computational Rock Physics

    NASA Astrophysics Data System (ADS)

    Dvorkin, J. P.

    2014-12-01

    The advent of computational rock physics has brought to light the often ignored question: How applicable are controlled-experiment data acquired at one scale to interpreting measurements obtained at a different scale? An answer is not to use a single data point or even a few data points but rather find a trend that links two or more rock properties to each other in a selected rock type. In the physical laboratory, these trends are generated by measuring a significant number of samples. In contrast, in the computational laboratory, these trends are hidden inside a very small digital sample and can be derived by subsampling it. Often, the internal heterogeneity of measurable properties inside a small sample mimics the large-scale heterogeneity, making the tend applicable in a range of scales. Computational rock physics is uniquely tooled for finding such trends: Although it is virtually impossible to subsample a physical sample and consistently conduct the same laboratory experiments on each of the subsamples, it is straightforward to accomplish this task in the computer.

  12. Microwave dielectric spectrum of rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.

    1988-01-01

    A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).

  13. The Rocks of the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair; McSween, Harry Y.; Ming, Douglas W.; Morris, Richard V.; Ruff, Steven W.; Wang, Alian; Yen, Albert

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  14. 'They of the Great Rocks'-3

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D perspective image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because it has a flat surface and is relatively free of dust - ideal conditions for grinding into the rock to expose fresh rock underneath. Clean surfaces also are better for examining a rock's top coating.Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and means 'They of the great rocks.' Data from the panoramic camera's red, green and blue filters were combined to create this approximate true color image.

  15. Rock strength under confined shock conditions

    SciTech Connect

    Scholz, C.H.

    1982-10-01

    This report addresses the laboratory measurements of the static strength of rock needed to simulate the response of rock to an underground explosion. The approach is to identify the variables that affect the strength of rock and to discuss each effect in terms of the underlying processes that cause it. Most of the report is the result of a literature review, although some new analyses and concepts are presented. Attention is directed at three basic rock types: low porosity brittle rock such as granodiorite, high porosity brittle rock such as volcanic tuff, and a rock that may be ductile under the relevant conditions, salt. These three rock types are sufficiently different that somewhat different constitutive laws may have to be used to model their behavior.

  16. High-pressure mechanical instability in rocks

    USGS Publications Warehouse

    Byerlee, J.D.; Brace, W.F.

    1969-01-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  17. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  18. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  19. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  20. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  1. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  2. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  3. Fungal leaching of titanium from rock.

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.; Munoz, E. F.

    1971-01-01

    Penicillium simplicissimum is found to solubilize up to 80% of the titanium in granitic rocks but less than 2% of the titanium in basaltic rocks. These findings were made in investigating the interactions of microorganisms with rocks and minerals of the biosphere in studies aimed at developing experiments for the detection of extraterrestrial life.

  4. Feet injuries in rock climbers.

    PubMed

    Schöffl, Volker; Küpper, Thomas

    2013-01-01

    While injuries of the upper extremity are widely discussed in rock climbers, reports about the lower extremity are rare. Nevertheless almost 50 percent of acute injuries involve the leg and feet. Acute injuries are either caused by ground falls or rock hit trauma during a fall. Most frequently strains, contusions and fractures of the calcaneus and talus. More rare injuries, as e.g., osteochondral lesions of the talus demand a highly specialized care and case presentations with combined iliac crest graft and matrix associated autologous chondrocyte transplantation are given in this review. The chronic use of tight climbing shoes leads to overstrain injuries also. As the tight fit of the shoes changes the biomechanics of the foot an increased stress load is applied to the fore-foot. Thus chronic conditions as subungual hematoma, callosity and pain resolve. Also a high incidence of hallux valgus and hallux rigidus is described. PMID:24147257

  5. Layered Rocks in 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This black-and-white image shows the first layered rocks scientists have seen close up in Gusev Crater, where NASA's Mars Exploration Rover Spirit landed Jan. 4, 2004. While Spirit's twin rover, Opportunity, reached the stadium-size Endurance Crater on the other side of Mars and began exploring its many layered outcrops in early May, Spirit traveled more than 3.5 kilometers (2.2 miles) to get to this layered bedrock in the 'Columbia Hills.' Scientists are planning to conduct a study of these rocks to determine if they are volcanic or sedimentary in origin, and if they have been chemically altered. Spirit's panoramic camera took this image on sol 217 (Aug. 13, 2004).

  6. Poroelasticity of rock. Progress report

    SciTech Connect

    Wang, H.F.

    1992-03-01

    The research program is an experimental study of static and dynamic poroelastic behavior of rocks. Measurements of Skempton`s coefficient and undrained Poisson`s ratio together with drained bulk modulus and shear modulus will provide a complete set of the four poroelastic moduli. Stress coupling to fluid flow in fractured rock can occur also through changes of fracture permeability due to fracture compressibility. Numerical models that include this effect will be compared with standard double porosity models of fluid extraction from oil reservoirs. Wave velocity and attenuation measurements will be made from seismic to ultrasonic frequencies to establish a phenomenological model of the effects of permeability, porosity and saturation for seismic exploration of oil and gas and for seismic characterization of an aquifer for environmental restoration and waste remediation.

  7. Virtual Rover Drives Toward Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows a screenshot from the software used by engineers to test and drive the Mars Exploration Rover Spirit. The software simulates the rover's movements across the martian terrain, helping to plot a safe course. Here, engineers simulated Spirit's first post-egress drive on Mars Sunday. The 3-meter (10-foot) drive totaled approximately 30 minutes, including time to stop and take images. The rover drove toward its first rock target, a mountain-shaped rock called Adirondack. The blue line denotes the path of the rover's 'belly button,' as engineers like to call it, as the rover drove toward Adirondack. The virtual 3-D world around the rover was built from images taken by Spirit's stereo navigation cameras. Regions for which the rover has not yet acquired 3-D data are represented in beige.

  8. Promoting research in rock deformation

    NASA Astrophysics Data System (ADS)

    Kirby, Steve

    In response to informal discussions at the 1988 AGU Spring Meeting in Baltimore, Md., a dinner colloquium was held December 5, 1988, in San Francisco. Our purpose was to explore ways of promoting basic research in rock deformation, for which no professional organization exists that spans the full range of research interests. In spite of an informal distribution of announcements of the meeting, 54 people attended.Rock deformation is the materials science of the crystalline and amorphous materials that make up the solid Earth. As such, it includes not only the physical processes responsible for brittle and ductile deformation but also the important chemical processes that influence time-dependent inelastic deformation. Consequently, there is a continuing need to engage interest and collaboration from materials scientists, mineral physicists, metallurgists, surface chemists, and geochemists in the study of the inelastic mechanical behavior of these complex materials.

  9. Origin of lunar feldspathic rocks

    NASA Technical Reports Server (NTRS)

    Walker, D.; Grove, T. L.; Longhi, J.; Stolper, E. M.; Hays, J. F.

    1973-01-01

    Melting experiments and petrographic studies of lunar feldspathic rocks reveal possible genetic relationships among several compositionally and mineralogically distinct groups of lunar rocks and soil fragments. Dry, low PO2 partial melting of crustal anorthositic norites of the anorthositic-noritic-troctolitic (ANT) suite produces liquids of the KREEP-Fra Mauro basalt type; dry, low PO2 partial melting of pink spinel troctolite (PST) produces liquids of the 'very high alumina basalt' or microtroctolite type. Both ANT and PST are probable components of the primitive terra crust. If crystal fractionation in a cooling basaltic liquid could have produced such a crust, it would also produce a mafic interior capable of yielding mare basalts by later remelting at depth.

  10. Sojourner Sits Near Rock Garden

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Mars Pathfinder Rover Sojourner is images by the Imager for Mars Pathfinder as it nears the rock 'Wedge.' Part of the Rock Garden is visible in the upper right of the image.

    Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over the next ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.

    The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. Feet injuries in rock climbers

    PubMed Central

    Schöffl, Volker; Küpper, Thomas

    2013-01-01

    While injuries of the upper extremity are widely discussed in rock climbers, reports about the lower extremity are rare. Nevertheless almost 50 percent of acute injuries involve the leg and feet. Acute injuries are either caused by ground falls or rock hit trauma during a fall. Most frequently strains, contusions and fractures of the calcaneus and talus. More rare injuries, as e.g., osteochondral lesions of the talus demand a highly specialized care and case presentations with combined iliac crest graft and matrix associated autologous chondrocyte transplantation are given in this review. The chronic use of tight climbing shoes leads to overstrain injuries also. As the tight fit of the shoes changes the biomechanics of the foot an increased stress load is applied to the fore-foot. Thus chronic conditions as subungual hematoma, callosity and pain resolve. Also a high incidence of hallux valgus and hallux rigidus is described. PMID:24147257

  12. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  13. Sedimentary Rocks of Aram Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcroppings of light-toned, layered, sedimentary rock within Aram Chaos, an ancient, partly-filled impact crater located near 3.2oN, 19.9oW. This 1.5 meters (5 feet) per pixel picture is illuminated by sunlight from the left and covers an area about 3 km (1.9 mi) across.

  14. Relative Permeability of Fractured Rock

    SciTech Connect

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  15. Thermal conductivity of carbonate rocks

    USGS Publications Warehouse

    Thomas, J., Jr.; Frost, R.R.; Harvey, R.D.

    1973-01-01

    The thermal conductivities of several well-defined carbonate rocks were determined near 40??C. Values range from 1.2 W m-1 C-1 for a highly porous chalk to 5.1 W m-1 C-1 for a dolomite. The thermal conductivity of magnesite (5.0) is at the high end of the range, and that for Iceland Spar Calcite (3.2) is near the middle. The values for limestones decrease linearly with increasing porosity. Dolomites of comparable porosity have greater thermal conductivities than limestones. Water-sorbed samples have expected greater thermal conductivities than air-saturated (dry) samples of the same rock. An anomalously large increase in the thermal conductivity of a water-sorbed clayey dolomite over that of the same sample when dry is attributed to the clay fraction, which swells during water inhibition, causing more solid-to-solid contacts within the dolomite framework. Measurements were made with a Colora Thermoconductometer. Chemical and mineralogical analyses were made and tabulated. Porosity of the rocks was determined by mercury porosimetry and also from density measurements. The Iceland Spar Calcite and magnesite were included for reference. ?? 1973.

  16. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  17. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  18. The Call of the Dark Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color rendering from NASA's Mars Exploration Rover Spirit shows a set of darker rocks dubbed 'Toltecs' lying southeast of the rover's current position. These rocks are believed to be basaltic, or volcanic, in composition, because their spectral properties match those of other basaltic rocks studied in Gusev Crater. Scientists hope to use these presumably unaltered rocks as a geologic standard for comparison to altered rocks in the area, such as 'Clovis.' This image was taken with the panoramic camera's 600-, 530-, and 480-nanometer filters on sol 220 (Aug. 15, 2004).

  19. The Call of the Dark Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the Mars Exploration Rover Spirit shows a group of darker rocks dubbed 'Toltecs,' lying to the southeast of the rover's current position. The rocks are believed to be basaltic, or volcanic, in composition because their color and spectral properties resemble those of basaltic rocks studied so far at Gusev Crater. Scientists hope to use these presumably unaltered rocks as a geologic standard for comparison to altered rocks in the area, such as 'Clovis.' This image was taken by the 750-, 530- and 430-nanometer filters of rover's panoramic camera on sol 220 (August 15, 2004).

  20. Petrology of unshocked crystalline rocks and shock effects in lunar rocks and minerals

    USGS Publications Warehouse

    Chao, E.C.T.; James, O.B.; Minkin, J.A.; Boreman, J.A.; Jackson, E.D.; Raleigh, C.B.

    1970-01-01

    On the basis of rock modes, textures, and mineralogy, unshocked crystalline rocks are classified into a dominant ilmenite-rich suite (subdivided into intersertal, ophitic, and hornfels types) and a subordinate feldspar-rich suite (subdivided into poikilitic and granular types). Weakly to moderately shocked rocks show high strain-rate deformation and solid-state transformation of minerals to glasses; intensely shocked rocks are converted to rock glasses. Data on an unknown calcium-bearing iron metasilicate are presented.

  1. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR AFTER REMODELING INTO OFFICE SPACE. DATED FEBRUARY 13, 1943. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  2. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. LOOKING NORTH AFTER ADDITION OF CONICAL ROOF. ORIGINALLY PUBLISHED 1887. - Rock Island Arsenal, Building No. 53, North Avenue North of Midpoint, Rock Island, Rock Island County, IL

  3. 3. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION IN UNALTERED CONDITION. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 61, Rodman Avenue & First Street, Rock Island, Rock Island County, IL

  4. 8. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATON IN UNALTERED CONDITION. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 68, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  5. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  6. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR, LOOKING WEST. DATED OCTOBER 2, 1945. - Rock Island Arsenal, Building No. 138, Second Avenue between South Avenue & Ramsey Street, Rock Island, Rock Island County, IL

  7. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND WEST ELEVATIONS IN UNALTERED CONDITION. DATED APRIL 18, 1941. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL

  8. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ORIGINAL OPEN INTERIOR PLAN. DATED APRIL 7, 1942. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL

  9. 7. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 62, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  10. 3. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 103, Rodman Avenue & First Street, Rock Island, Rock Island County, IL

  11. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST ELEVATION IN UNALTERED CONDITION. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 280, Sylvan Drive, Rock Island, Rock Island County, IL

  12. 9. Photograph of photograph in possession of Rock Island Arsenal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of photograph in possession of Rock Island Arsenal Historical Office. WEST AND NORTH ELEVATIONS. ORIGINALLY PUBLISHED 1887. - Rock Island Arsenal, Building No. 90, East Avenue between North Avenue & King Drive, Rock Island, Rock Island County, IL

  13. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  14. Rock Magnetism: Successes and Mysteries

    NASA Astrophysics Data System (ADS)

    Dunlop, D. J.

    2011-12-01

    Louis Néel once proposed making ships "invisible" (i.e., magnetically undetectable) by giving them a permanent or remanent magnetism that would cancel the signal induced by the Earth's magnetic field. Like much of rock magnetism, this borders on the magical. Rocks possess a magnetic memory that verges on the phenomenal. An adequate magnetic lifetime for your credit card is until its expiry date and one must avoid exposure to magnetic fields and heat. But a rock's magnetic memory is forever, and the recipe for that durability includes, for igneous and metamorphic rocks, exposure to ancient fields while hot - near the Curie temperature in fact. The thermal remanent magnetism (TRM) thus produced is largely immune to later field changes at lower temperatures although luckily a fraction - a partial TRM overprint - does record later heating events, e.g., burial during major orogenies. When we lift the veil and look closely, on a microscale or nanoscale, it is perplexing to understand why paleomagnetism works so well when rocks seemingly contain so few of Néel's ideal recorders: single-domain grains with tightly coupled atomic spins. In larger grains with multiple domains, the walls between neighbouring domains move readily, like dislocations in crystals, enlarging some domains at the expense of others. This mutability makes any magnetic memory of multi-domain grains suspect. But around the threshold between single-domain and multi-domain structures - a specific grain size that varies widely from one magnetic mineral to another - there are recent predictions and observations of novel structures, including linked magnetic moments of nearby grains and interfacial moments of exsolved phases, that could go some way towards explaining why single-domain-like behaviour is so widespread. Many magnetic properties show an almost continuous variation with grain size, quite unlike the expected discontinuity at the single-domain threshold. Among these is initial susceptibility which

  15. Carbonate rock depositional models: A microfacies approach

    SciTech Connect

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  16. Overexpression of ROCK1 and ROCK2 inhibits human laryngeal squamous cell carcinoma

    PubMed Central

    Zhang, Junbo; He, Xue; Ma, Yueying; Liu, Yanli; Shi, Huaiyin; Guo, Weiwei; Liu, Liangfa

    2015-01-01

    Rho-associated coiled-coil containing protein kinase (ROCK) over-expression has been implicated in the progression of many tumor types. The aim of this study was to explore the roles of ROCK1 and ROCK2 in human laryngeal squamous cell carcinoma (LSCC). ROCK1 and ROCK2 expression levels were examined in 50 cases of human LSCC samples by immunohistochemistry. Effects of ROCK1 and ROCK2 on LSCC cell proliferation and motility were investigated in the presence of the ROCK inhibitor Y-27632. The results showed that ROCK1 expression was positively correlated with tumor size and lymph node metastasis (P < 0.05); ROCK2 positively correlated with tumor size (P < 0.05). Inhibition of ROCK1 and ROCK2 by Y-27632 significantly inhibits proliferation, migration, and invasion of LSCC cells. Our data indicate that expression of ROCK1 and ROCK2 are closely associated with tumor growth and lymph node metastasis of LSCC. Thus, these two ROCK isoforms may be useful as molecular makers for LSCC diagnosis and may be useful therapeutic targets as well. PMID:25755711

  17. Lander and Mini Matterhorn rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the two forward cameras aboard the Sojourner rover took this image of the Sagan Memorial Station on Sol 26. The angular resolution of the camera is about three milliradians (.018 degrees) per pixel, which is why the image appears grainy. The field of view of each rover camera is about 127 degrees horizontally and 90 degrees vertically.

    Features seen on the lander include (from left to right): the Atmospheric Structure Instrument/Meteorology Package (ASI/MET) mast with windsocks; the low-gain antenna mast, the Imager for Mars Pathfinder (IMP) on its mast at center; the disc-shaped high-gain antenna at right, and areas of deflated airbags. The dark circle on the lander body is a filtered vent that allowed air to escape during launch, and allowed the lander to repressurize upon landing. The high-gain antenna is pointed at Earth. The large rock Yogi, which Sojourner has approached and studied, as at the far right of the image. Mini Matterhorn is the large rock situated in front of the lander at left.

    The horizontal line at the center of the image is due to differences in light-metering for different portions of the image. The shadow of Sojourner and its antenna are visible at the lower section of the image. The antenna's shadow falls across a light-colored rock.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Mars Rocks Continue to Fascinate

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Proving once again that Mars is a complex and fascinating place, NASA's Opportunity rover has entered new terrain and is providing scientists with more discoveries and puzzles to solve. 'One of the things we've been wondering,' said principal investigator Steve Squyres, 'is whether the rounded concretions we call 'blueberries' are the same everywhere. It turns out they're not. The berries are more numerous here, and some seem to be smaller than any we've ever seen.'

    This microscopic image of a drill hole cut into a martian rock nicknamed 'Ice Cream' by the rover's rock abrasion tool shows cross sections of round concretions 1 to 2 millimeters (0.04 to 0.08 inches) wide. Science team members are debating whether the grayish-looking smudges that are not as round are concretions or some other feature.

    Opportunity is now almost 4 kilometers (2.5 miles) south of 'Endurance Crater,' where the rover spent from May through December of 2004 reading the story of a watery past recorded in the martian rocks. After exiting 'Endurance' on martian day, or sol, 316 (Dec. 13, 2004), Opportunity turned south and continued the trek across land where no human has trod, demonstrating that endurance is more than just a name.

    Opportunity took this mosaic of images with its microscopic imager on sol 546 (Aug. 6, 2005). The area shown is approximately 6 centimeters (2.4 inches) wide. The shaded portions on the left side of each quadrangle in the mosaic are silhouettes of the rover's robotic arm.

  19. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  20. Infiltration flux distributions in unsaturated rock deposits andtheir potential implications for fractured rock formations

    SciTech Connect

    Tokunaga, Tetsu K.; Olson, Keith R.; Wan, Jiamin

    2004-11-01

    Although water infiltration through unconsolidated rocks and fractured rock formations control flow and transport to groundwater, spatial distributions of flow paths are poorly understood. Infiltration experiments conducted on packs of rocks showed that a well-constrained distribution of fluxes develops despite differences in rock type (angular diabase and sandstone, and subangular serpentinite), rock size (30 to 200mm), and packing (up to 42 rock layers). Fluxes stabilize into a geometric (exponential) distribution that keeps about half of the system depleted of flow, retains a small fraction of high flow regions, and has a characteristic scale determined by the rock size. Modification of a statistical mechanical model shows that gravity-directed, random flowpaths evolve to the observed flux distribution, and that it represents the most probable distribution. Key similarities between infiltration in rock deposits and fractured rock formations indicate that the geometric flow distribution may also apply in the latter systems.

  1. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  2. Big Bang Day : Physics Rocks

    ScienceCinema

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  3. Big Bang Day : Physics Rocks

    SciTech Connect

    2009-10-07

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  4. Numerical study of rock blasting

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.; Yudin, A. S.; Kuznetsova, N. S.

    2015-10-01

    The paper presents numerical simulation results on fracture of a concrete block due to dynamic explosive loads applied to the walls of a blast hole. Considered in the study is the influence of the pulse shape and rock properties on the pattern of irreversible deformation and cracking. It is found that a fractured zone bounded by a plastically deformed contour always arises around the explosion site. Comparison of elastoplastic deformation and fracture induced in the concrete block by explosion pulses of different durations and amplitudes shows that shorter pulses with higher amplitudes and steeper rise times provide a higher blasting efficiency.

  5. Ambient resonance of rock arches

    NASA Astrophysics Data System (ADS)

    Starr, Alison Margaret

    Resonant frequencies of structural elements are related to fundamental material properties of mass and stiffness, and monitoring over time can thus serve as an indirect indictor of internal mechanical change. Until now, however, this methodology has not been applied to natural rock structures such as arches and towers. We evaluated the resonance characteristics of four rock arches in southeastern Utah, combining in-situ ambient vibration measurements with numerical modal analysis. At each location, we measured the spectral and polarization attributes of ambient vibrations using up to two broadband seismometers. Ambient vibration spectra measured on the arches showed clear peaks at distinct frequencies (typically between 1-10 Hz), which we interpret as resonant frequencies, as opposed to the relatively flat spectra recorded on nearby bedrock. Polarization analysis helped us identify the orientations of vibration and explore resonant mode shapes. We then verified the measured resonant frequencies through 3D finite-element numerical modal analysis, and in most cases we were able to match the fundamental along with several higher-order modes. Repeat occupation and short-term continuous ambient vibration monitoring were aimed at assessing daily and seasonal changes in resonant frequencies, which in turn may provide evidence of internal mechanical change; Mesa Arch in Canyonlands National Park served as the main focus for our repeat measurements. Results revealed that minor, reversible changes in resonant frequencies can be created by thermal effects, i.e., changes in bulk material stiffness as the arch expands and contracts on daily and seasonal time scales. No irreversible change in the resonant frequency of Mesa Arch was detected over the period of this study. Our research provides the first step towards monitoring the long-term structural health of natural rock arches as they change through time or in the wake of a damaging event. We have shown that the resonance

  6. Microcraters on Apollo 15 and 16 rocks

    NASA Technical Reports Server (NTRS)

    Morrison, D. A.; Mckay, D. S.; Fruland, R. M.; Moore, H. J.

    1973-01-01

    Microcrater frequency distributions, determined for 11 Apollo 16 rocks and three Apollo 15 rocks, fall into four categories. Category 1 rocks (68415, 68416, 62235) are angular, cratered on one side only, and have moderate crater densities. Category 2 rocks (60016, 66075, 61175) are subrounded, cratered on all sides, and have distributions suggestive of the steady state. Category 3 rocks (61015, 62295) are subangular and cratered on only one side, but the crater frequency distributions have some of the characteristics of category 2 rocks. Category 4 rocks (15015, 15017, 15076, 60335) are angular, cratered on only one side, and have moderated to very low crater densities. The crater frequency distributions of categories 1 and 4 have properties indicating the possibility of estimating the time they were exposed to micrometeor bombardment. Category 1 rocks appear to have been exposed for 2 to 3 m.y. These rocks, particularly 68415, 68416, and 69935, may be ejecta from South Ray Crater, indicating an age of 2 to 3 m.y. for South Ray Crater. Category 4 rocks have been exposed for much shorter periods.

  7. Infiltration Flow Path Distributions in Unsaturated Rocks

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Olson, K. R.; Wan, J.

    2004-12-01

    Spatial distributions of infiltration flow paths through rock formations are complex networks that determine flow velocities, control rates of natural geochemical reactions in the subsurface, as well as rates of contaminant transport to underlying groundwater. Despite these important consequences, distributions of infiltration paths and locally fast seepage rates through rocks are not well understood. Laboratory-based studies on fractured rocks cannot easily be conducted on systems large enough to include sufficient fracture network complexity, so that inferences of field-scale flux distributions cannot be reliably made. Field-based studies to date have permitted quantification of only a small fraction of the flow distribution, typically while imposing extremely high fluxes, and therefore have not allowed comprehensive delineation of flow distributions expected under natural recharge. Based on hydraulic scaling considerations, we hypothesize that unsaturated flow path distributions in rock deposits will be similar to those occurring in fractured rock formations under low overall infiltration rates. Talus rock deposits and mine waste rock piles control flow and transport into their respective underlying groundwaters. All of these reasons motivated infiltration experiments in rock packs. Experiments have been conducted on 4 different rock types and system scales ranging from 1 to 46 rock layers. Our experiments showed that infiltration through rocks conforms to no previously reported behavior in soils, and that flow paths do not progressively converge into fewer and fewer flow paths. Instead, a fundamentally different hydraulic structure develops, having an exponential (geometric) flux distribution, with the characteristic scale determined by the characteristic rock size. Although the phenomena are very different, the evolution of flow path distributions and local seepage rate distributions is predictable based on a statistical mechanical model for energy

  8. Rock Goes to School on Screen: A Model for Teaching Non-"Learned" Musics Derived from the Films "School of Rock" (2003) and "Rock School" (2005)

    ERIC Educational Resources Information Center

    Webb, Michael

    2007-01-01

    What can be learned from two films with "rock" and "school" in their titles, about rock in school and about music and schooling more broadly? "School of Rock" (2003), a "family comedy," and "Rock School" (2005), a documentary, provoke a range of questions, ideological and otherwise, surrounding the inclusion of rock in formal instructional…

  9. Electrical properties of dry rocks

    NASA Technical Reports Server (NTRS)

    Morrison, H.

    1973-01-01

    The mechanism by which atmospheric moisture affects the conductivity and dielectric constant of rock specimens was studied in time and frequency domains. It is suggested that adsorbed water molecules alter the surface conductivity in a manner similar to that observed in semiconductors and insulators. Powdered basalts show a low-frequency dispersion produced by the atmospheric moisture remaining in the pore system of the sample in a high vacuum; this effect is attributed to isolated adsorption centers. Simulated lunar permafrost at 100 K and a vacuum of 10 to the -8th power torr together with data on lunar samples contaminated with atmospheric moisture and the dielectric properties of ice at various temperatures indicate that, if permafrost exists in the moon it should present a relaxation peak at approximately 300 Hz; for temperatures up to 263 K it may go up to 20 KHz. It is concluded that in order to have electrical steady state conditions in rock samples it is necessary to have volume charge accumulations at interfaces within the sample and at the electrode sample interface. A method for measuring heterogeneous dielectrics with non-negligible ohmic and dielectric conductivities is proposed and experimentally verified.

  10. Multisensor classification of sedimentary rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    1988-01-01

    A comparison is made between linear discriminant analysis and supervised classification results based on signatures from the Landsat TM, the Thermal Infrared Multispectral Scanner (TIMS), and airborne SAR, alone and combined into extended spectral signatures for seven sedimentary rock units exposed on the margin of the Wind River Basin, Wyoming. Results from a linear discriminant analysis showed that training-area classification accuracies based on the multisensor data were improved an average of 15 percent over TM alone, 24 percent over TIMS alone, and 46 percent over SAR alone, with similar improvement resulting when supervised multisensor classification maps were compared to supervised, individual sensor classification maps. When training area signatures were used to map spectrally similar materials in an adjacent area, the average classification accuracy improved 19 percent using the multisensor data over TM alone, 2 percent over TIMS alone, and 11 percent over SAR alone. It is concluded that certain sedimentary lithologies may be accurately mapped using a single sensor, but classification of a variety of rock types can be improved using multisensor data sets that are sensitive to different characteristics such as mineralogy and surface roughness.

  11. Recent progress in rock magnetism

    NASA Astrophysics Data System (ADS)

    Courtillot, Vincent

    Availability of affordable high-performance computers has spurred research into the mathematical modelling of magnetic domain structures, stability of magnetic remanences and their experimental verification. Further, a recently substantially increased amount of observations of magnetic minerals other than magnetite in natural rocks has intitiated studies of their fundamental magnetic properties. To provide a forum for discussion of the latest developments covering these important subjects, two symposia were organized at the XXI General Assembly of the International Union of Geodesy and Geophysics (Boulder, Colorado, USA, July 2-14, 1995): New Approaches in Rock Magnetism (convened by S.L. Halgedahl and F. Heider) and Properties of minor magnetic minerals (convened by MJ. Dekkers and E. McClelland). In total 62 contributions were presented. This special section of Geophysical Research Letters comprises 19 papers, meeting, hopefully some of the most significant. The four convenors assisted me as associate-editors in preparing this special issue, and I would like to thank them. The time taken by many reviewers is also appreciated. I hope the reader will get a feeling of the excitement that was evident during the Boulder meeting and will find this a useful collection of articles for later use.

  12. DOE hot dry rock program

    SciTech Connect

    Nunz, G.J.

    1980-01-01

    Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

  13. Petroleum geology of carbonate rocks

    SciTech Connect

    Billo, S.M.

    1995-09-01

    Where oil and gas supervene in reservoirs consisting of both limestone and dolomite, the dolomite and dolomitic rocks are usually the more prolific producers of petroleum. Even the dismissal by some oil explorers of primary or evaporitic dolostones from the category of reservoir rocks have recently been challenged; for example, by the discovery of more than 500 million barrels of oil in a primary dolomite and associated dolomitized portion of the Trenton (Ordovician) limestone of the Lima-Indiana field across the Cincinnati and Findlay arches. Permeability decreased updip where oil in the magnesian phase of the limestone disposed a stratigraphic trap. Oil geologists found that both porosity and permeability developed during dolomitization. Temperature and pressure, time, pH, Eh, and salinity are all important controls. Evaporation of sea water past the point of calcium sulphate precipitation suppresses the chemically inhibiting influence of calcium sulphate in solution on dolomite precipitation and increases the Mg/Ca ration from 1:1 at low salinities to over 5:1 or 10:1 in a hypersaline environment.

  14. Multiversos: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.; Arias, A.; García, N.

    2011-11-01

    Imagine that you can use your fingers only for typing target coordinates at thetelescope, reduce images and spectra with IRAF, or write papers for Astronomy &Astrophysics, but you would never be able to play an electric guitar.Imagine that you love music, work in front of the computer always withheadphones, and dream of playing with your favourite rock band in a tumultuousconcert.Imagine that you are an astronomer who, after a "cosmic fluke", share stagewith the band which themes you have always hummed since you were a teenager.Imagine that you were born for rock, played a main role in the best Spanishalbum of the 90s (Omega, with Enrique Morente), and your songs arerutinary played by Radio 3, but you would never be able to detect an exoplanetor a galaxy at a high redshift.Imagine that you love Astronomy, try to see the Moon craters and Andromeda withyour small telescope through the light pollution of your city, and explain yourdaughter that Pluto is not a planet any longer. Imagine that you are a musician who, after a "cosmic fluke", give a talk justafter a Nobel laureate that discovered the cosmic microwave backgroundradiation.Such "cosmic flukes" sometimes happen. If you were not at the dinner of the SEA meeting and do not believe us, visithttp://www.myspace.com/antonioariasmultiverso or open the proceedings DVD andlisten "El ordenador simula el nacimiento de las estrella...".

  15. 'Pot of Gold' and 'Rotten Rocks'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. Scientists are intrigued by this unusual-looking, nodule-covered rock and plan to investigate its detailed chemistry in coming sols. This picture was taken on sol 159 (June 14, 2004).

    To the right is a set of rocks referred to as 'Rotten Rocks' for their resemblance to rotting loaves of bread. The insides of these rocks appear to have been eroded, while their outer rinds remain more intact. These outer rinds are reminiscent of those found on rocks at Meridiani Planum's 'Eagle Crater.' This image was captured on sol 158 (June 13, 2004).

  16. 'They of the Great Rocks'-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true color image taken by the panoramic camera onboard the Mars Exploration Rover Spirit shows 'Adirondack,' the rover's first target rock. Spirit traversed the sandy martian terrain at Gusev Crater to arrive in front of the football-sized rock on Sunday, Jan. 18, 2004, just three days after it successfully rolled off the lander. The rock was selected as Spirit's first target because its dust-free, flat surface is ideally suited for grinding. Clean surfaces also are better for examining a rock's top coating. Scientists named the angular rock after the Adirondack mountain range in New York. The word Adirondack is Native American and is interpreted by some to mean 'They of the great rocks.'

  17. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  18. Metamorphosed ultramafic rocks in east Greenland

    NASA Technical Reports Server (NTRS)

    Kays, M. A.; Dorais, M. J.

    1986-01-01

    The compositional and mineralogical characteristics of Archean ultramafic rocks in Kangerdlugssuaq Fjord are summarized: the first provides information important to understanding the primary character of the rock suite, whereas the latter provides data necessary to determine the conditions of their equilibrium during the latest metamorphism. This information will be of value in determining the affinity of the suite to similar Archean rocks in other areas of the North Atlantic craton.

  19. Reappraisal of hydrocarbon biomarkers in Archean rocks

    NASA Astrophysics Data System (ADS)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-05-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  20. Reappraisal of hydrocarbon biomarkers in Archean rocks.

    PubMed

    French, Katherine L; Hallmann, Christian; Hope, Janet M; Schoon, Petra L; Zumberge, J Alex; Hoshino, Yosuke; Peters, Carl A; George, Simon C; Love, Gordon D; Brocks, Jochen J; Buick, Roger; Summons, Roger E

    2015-05-12

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  1. Meteorite Linked to Rock at Meridiani

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This meteorite, a basalt lava rock nearly indistinguishable from many Earth rocks, provided the first strong proof that meteorites could come from Mars. Originally weighing nearly 8 kilograms (17.6 pounds), it was collected in 1979 in the Elephant Moraine area of Antarctica. The side of the cube at the lower left in this image measures 1 centimeter (0.4 inches).

    This picture shows a sawn face of this fine-grained gray rock. (The vertical stripes are saw marks.) The black patches in the rock are melted rock, or glass, formed when a large meteorite hit Mars near the rock. The meteorite impact probably threw this rock, dubbed 'EETA79001,' off Mars and toward Antarctica on Earth. The black glass contains traces of martian atmosphere gases.

    The Mars Exploration Rover Opportunity has discovered that a rock dubbed 'Bounce' at Meridiani Planum has a very similar mineral composition to this meteorite and likely shares common origins. Bounce itself is thought to have originated outside the area surrounding Opportunity's landing site; an impact or collision likely threw the rock away from its primary home.

  2. Evaluation of multiband photography for rock discrimination

    NASA Technical Reports Server (NTRS)

    Raines, G. L.

    1974-01-01

    An evaluation is presented of the multiband photography concept that tonal differences between rock formations on aerial photography can be improved through the selection of the appropriate bands. The concept involves: (1) acquiring band reference data for the rocks being considered; (2) selecting the best combination of bands to discriminate the rocks using these reference data; (3) acquiring aerial photography using these selected bands; and (4) extracting the desired geologic information in an optimum manner. The test site geology and rock reflectance are discussed in detail. The evaluation found that the differences in contrast ratios are not statistically significant, and the spectral information in different bands is not advantageous.

  3. Rock Art of the Greater Southwest

    NASA Astrophysics Data System (ADS)

    Krupp, Edwin C.

    Archaeoastronomical studies in the American Southwest began in 1955 with recognition of what seemed to be pictorial eyewitness records of the Crab supernova of 1054 AD In time, reports of seasonally significant light-and-shadow effects on rock art and associations of rock art with astronomical alignments also emerged. Most astronomical rock art studies remained problematic, however, because criteria for proof of ancient intent were elusive. Disciplined methods for assessing cultural function were difficult to develop, but review of ethnographically documented astronomical traditions of California Indians and of Indians in the American Southwest subsequently increased confidence in the value of some astronomical rock art initiatives.

  4. New eyes on eastern California rock varnish

    SciTech Connect

    Krinsley, D.H.; Dorn, R.I. )

    1991-05-01

    This article presents findings from recent investigations of how rock varnish forms and describes the manner in which this understanding can aid researchers. Rock varnish is typically a glossy-brown to black coating that commonly develops on rock surfaces in arid climates. It may take tens of thousands of years to form a complete coating over rock surfaces. A number of hypotheses have been proposed to explain the occurrence of rock varnish. The following explanations originated during examination of rock varnishes in the Mojave Desert: (1) the role of pollen in providing manganese, (2) the role of lichens in somehow catalyzing varnish accretion, (3) physical and chemical changes at the rock surface, and (4) the role of bacteria in concentrating manganese. Recent findings using backscatter electron microscopy are given researchers additional insights into this phenomenon. This technology permits researchers to view rock varnish chemistry and texture simultaneously and permits sources of varnish constituents, origin of manganese enhancement in varnish, reliable rock varnish dating, and new microscopic textures to be studied in great detail. It is now apparent that a number of varnish accretion processes occur other than deposition in even layers.

  5. Regulation of ROCK activity in cancer.

    PubMed

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-03-01

    Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)-loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer. PMID:23204112

  6. Dynamic tensile strength of lunar rock types

    NASA Technical Reports Server (NTRS)

    Cohn, S. N.; Ahrens, T. J.

    1981-01-01

    The dynamic tensile strength of four rocks are determined. A flat plate impact experiment is employed to generate approximately one-microsecond-duration tensile stress pulses in rock samples by superposing rarefaction waves to induce fracture. It is noted that the effect of chemical weathering and other factors has not been explicitly studied. The given tensile strengths are based on a series of experiments on each rock where determination of incipient spallation is made by terminal microscopic examination. The data are generally consistent with previous determinations, at least one of which was for a significantly chemically altered but physically coherent rock.

  7. Rayleigh wave studies in lunar rocks.

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1972-01-01

    An ultrasonic surface wave technique described by the author (1971) is used to verify a hypothesis that links the seismic wave propagation velocities in lunar crust, much too low as compared to those on earth, to the extensive fracturing of lunar rock in the absence of liquids and gases which changed drastically the elastic and inelastic properties of lunar rock. Measurements on lunar rock samples and synthetic analogs suggest that the presence of microfractures have influence on both the wave velocity and Q factor in lunar rocks.

  8. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt

  9. Kissing Mars Rocks with the Rover's RATs: An Educational Exercise to Understand Drilling Rocks on Mars

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Whelley, P. L.; Bleacher, J. E.; Cave, S. R.; Zabala-Aliberto, V. A.; Zabala, A. A.; Greeley, R.

    2007-03-01

    This abstract discusses an E/PO exercise we created for elementary school children that uses Hershey Kisses and straws to simulate the drilling of different rocks on Mars by the MER Rock Abrasion Tool.

  10. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2.

    PubMed

    Jerrell, Rachel J; Parekh, Aron

    2016-04-01

    ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis. PMID:26826790

  11. Thermal Inertia of Rocks and Rock Populations and Implications for Landing Hazards on Mars

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    Rocks represent an obvious potential hazard to a landing spacecraft. They also represent an impediment to rover travel and objects of prime scientific interest. Although Mars Orbiter Camera (MOC) images are of high enough resolution to distinguish the largest rocks (an extremely small population several meters diameter or larger), traditionally the abundance and distribution of rocks on Mars have been inferred from thermal inertia and radar measurements, our meager ground truth sampling of landing sites, and terrestrial rock populations. In this abstract, we explore the effective thermal inertia of rocks and rock populations, interpret the results in terms of abundances and populations of potentially hazardous rocks, and conclude with interpretations of rock hazards on the Martian surface and in extremely high thermal inertia areas.

  12. Elastic Properties of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Melendez Martinez, Jaime

    Sedimentary rocks are an important research topic since such rocks are associated to sources of ground water as well as oil, gas, and mineral reservoirs. In this work, elastic and physical properties of a variety of sedimentary samples that include glacial sediments, carbonates, shales, one evaporite, and one argillite from a variety of locations are investigated. Assuming vertical transverse isotropy, ultrasonic compressional- and shear-waves (at 1 MHz central frequency) were measured as a function of confining pressure on all samples with the exception of glacial samples which were tested assuming isotropy. Tensile strength tests (Brazilian test) were also carried out on selected glacial samples and, in addition, static-train measurements were conducted on shales and argillite samples. Lithological and textural features of samples were obtained through thin section techniques, scanning electron microscopy images and micro-tomography images. X-ray diffraction and X-Ray fluorescence provided the mineralogical oxides content information. Porosity, density, and pore structure were studied by using a mercury intrusion porosimeter and a helium pycnometer. The wide range of porosities of the studied samples (ranging from a minimum of 1% for shales to a maximum 45% for some glacial sediments) influence the measured velocities since high porosity sample shows an noticeable velocity increment as confining pressure increases as a consequence of closure of microcracks and pores, unlike low porosity samples where increment is quasi-lineal. Implementation of Gassmann's relation to ultrasonic velocities obtained from glacial samples has negligible impact on them when assuming water saturated samples, which suggests that state of saturation it is no so important in defining such velocities and instead they are mainly frame-controlled. On the other hand, velocities measured on carbonate and evaporite samples show that samples are at best weak anisotropic, thus the intrinsic

  13. Some influences of rock strength and strain rate on propagation of rock avalanches

    NASA Astrophysics Data System (ADS)

    Bowman, Elisabeth; Rait, Kim

    2016-04-01

    Rock avalanches are extreme and destructive mass movements in which large volumes of rock (typically >1 million cubic metres) travel at high speeds, covering large distances, and the occurrence of which is highly unpredictable. The "size effect" in rock avalanches, whereby those with larger volumes produce greater spreading efficiency (as defined by an increase in normalised runout) or lower farboschung angle (defined as the tangent of the ratio of fall height to runout length), is well known. Studies have shown that rock strength is a controlling factor in the mobility of rock avalanches - that is, mass movements involving lower strength rock are generally found to produce greater mobility as evidenced by the spread of deposits or low farboschung angle. However, there are conflicting ideas as to how and why this influence is manifested. This paper discusses different theories of rock comminution in light of numerical simulations of rock clasts undergoing normal and shear induced loading, experimental work on rock avalanche behaviour, and dynamic fracture mechanics. In doing so, we introduce the idea of thresholds of strain rate for the production of dynamic fragmentation (as opposed to pseudo-static clast crushing) that are based, inter alia, on static rock strength. To do this, we refer to data from physical models using rock analogue materials, field data on chalk cliff collapses, and field statistics from documented rock avalanches. The roles of normal and shear loading and loading rate within a rock avalanche are examined numerically using 3D Discrete Element Method models of rock clasts loaded to failure. Results may help to reconcile the observations that large rock avalanches in stronger materials tend not to fragment as much as those in weaker materials and also possess lower mobility, while small cliff collapses (typically > 1000 cubic metres) in weak chalk can exhibit rock avalanche-like behaviour at much smaller volumes.

  14. Abiogenic methanogenesis in crystalline rocks

    SciTech Connect

    Lollar, B.S.; Frape, S.K. ); Weise, S.M. , Neuherberg ); Fritz, P. ); Macko, S.A. ); Welhan, J.A. )

    1993-12-01

    Isotopically anomalous CH[sub 4]-rich gas deposits are found in mining sites on both the Canadian and Fennoscandian shields. With [delta][sup 13]C[sub CH4] values from -22.4 to -48.5% and [delta]D[sub CH4] values from -133 to -372%, these methane deposits cannot be accounted for by conventional processes for bacterial or thermogenic methanogenesis. Compositionally the gases are similar to other CH[sub 4]-rich gas occurrences found in Canadian and Fennoscandian shield rocks. However, the isotopically anomalous gases of this study are characterized by unexpectedly high concentrations of H[sub 2] gas, ranging from several volume percent up to 30 vol%. The H[sub 2] gases are consistently depleted in the heavy isotope, with [delta]D[sub H[sub 2

  15. Hydrologic imaging of fractured rock

    SciTech Connect

    Karasaki, Kenzi; Cohen, A.; Cook, P.; Freifeld, B.; Grossenbacher, K.; Peterson, J.; Vasco, D.

    1995-12-31

    Various geophysical and hydrologic tests were conducted in a cluster of nine wells to image the hydrologic connections of a fractured rock mass. Results of intra-borehole flow surveys and cross-hole radar and seismic tomography surveys correlated very well, and indicated that there is a major feature at a depth of 30m. Systematic injection tests were conducted in all nine wells. Three to four intervals in each well were isolated using pneumatic packers. Each interval was equipped with a high resolution pressure transducer. Some 130 injections tests were conducted, and more than 4,100 cross-hole transient pressure measurements were obtained. A computer algorithm was developed to analyze such massive interference data systematically. As a result of the analysis, an image of the fracture connections emerged which is consistent with the geophysical data.

  16. Manufactured caverns in carbonate rock

    DOEpatents

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  17. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified. PMID:27156090

  18. Hydraulic conductivity of rock fractures

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.

    1994-10-01

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs.

  19. Rock avalanches caused by earthquakes: Source characteristics

    USGS Publications Warehouse

    Keefer, D.K.

    1984-01-01

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed ofintensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  20. Rock Content Influence on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Parajuli, K.; Sadeghi, M.; Jones, S. B.

    2015-12-01

    Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.

  1. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  2. Little Rock Split as Historic Date Nears

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2007-01-01

    Fifty years ago, nine black students walked through the doors of Little Rock Central High School, guarded by U.S. Army and National Guard troops dispatched to protect them from angry white residents protesting integration. Now, Arkansas is inviting the world to turn its eyes to Little Rock--this time, to see how far the city has come since those…

  3. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  4. Rock Cycle. K-6 Science Curriculum.

    ERIC Educational Resources Information Center

    Blueford, J. R.; And Others

    Rock Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) chemistry (introducing the topics of matter, elements, compounds, and chemical bonding); (2) characteristics (presenting hands-on activities with rocks and minerals); (3) minerals (emphasizing the aesthetic and economic…

  5. Preparation for Moving a Rock on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander enlarged a trench beside a rock called 'Headless' during the mission's 115th Martian day (Sept. 20, 2008) in preparation for sliding the rock into the trench. The lander's Surface Stereo Imager took this image later that afternoon, showing the enlarged trench and the rock.

    The robotic arm successfully moved the rock two days later.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    Headless is about the size and shape of a VHS videotape. The trench, called 'Neverland,' was excavated to about 3 centimeters (1.2 inches) deep near the rock. The ground surface between the rock and the lip of the trench slopes downward about 3 degrees toward the trench.

    This image was taken at about 4:35 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  6. Making "Rock Hounds" of "City Slickers."

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; Nye, Osborne

    1980-01-01

    Described are ways in which urban "rocks" (building stones, curbstones, sidewalks, etc.) can be used as resources for earth science teachers. Discussed are such activities as: classifying buildings according to rock type and mineral composition, extrapolating geologic history by examining common building materials, economics of stone industry, and…

  7. Using Rock Music To Teach History.

    ERIC Educational Resources Information Center

    Hoffman, Paul Dennis

    1985-01-01

    A secondary history teacher describes how he uses rock and roll music to help students study and interpret modern American history. Besides being a lot of fun to teach, a rock unit makes students realize that even contemporary music has a place in history. (RM)

  8. Hot-dry-rock feasibility study

    SciTech Connect

    Not Available

    1981-08-01

    The hot-dry-rock project tasks are covered as follows: hot-dry-rock reservoir; generation facilities; water resources; transmission requirements; environmental issues; government and community institutional factors; leasing, ownership and management of facilities; regulations, permits, and laws; and financial considerations. (MHR)

  9. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability. PMID:17759365

  10. Circular Signs of the Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by Mars Exploration Rover Opportunity's front hazard-avoidance camera, providing a circular sign of the success of the rover's first grinding of a rock. The round, shallow hole seen in this image is on a rock dubbed 'McKittrick,' located in the 'El Capitan' area of the larger outcrop near Opportunity's landing site.

    Opportunity used its rock abrasion tool to grind off a patch of rock 45.5 millimeters (1.8 inches) in diameter during the 30th martian day, or sol, of its mission (Feb. 23, 2004). The grinding exposed fresh rock for close inspection by the rover's microscopic imager and two spectrometers located on its robotic arm. The Honeybee Robotics team, which designed and operates the rock abrasion tool, determined the depth of the cut at 'McKittrick' to be 4.4 millimeters (0.17 inches) deep.

    On sol 34 (Feb. 27, 2004), the rover is scheduled to grind into its second target on the 'El Capitan' area, a rock dubbed 'Guadalupe' in the upper middle part of this image. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  11. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS, BEFORE REMOVAL OF CHIMNEY, FINIALS, GINGERBREAD, AND VARIEGATED SLATE ROOFING. DATED C. 1876. - Rock Island Arsenal, Building No. 321, Rodman Avenue & Rock Island Avenue, Rock Island, Rock Island County, IL

  12. Apollo 16 rocks - Petrology and classification.

    NASA Technical Reports Server (NTRS)

    Wilshire, H. G.; Stuart-Alexander, D. E.; Jackson, E. D.

    1973-01-01

    The Apollo 16 rocks are classified in three broad intergradational groups: (1) crystalline rocks, subdivided into igneous rocks and metaclastic rocks, (2) glass, and (3) breccias, which are subdivided into five groups on the basis of clast and matrix colors. Most of the rocks were derived by impact brecciation of an anorthosite-norite suite but may represent ejecta from more than one major basin. First-cycle breccias are believed to have consisted of clasts of crushed anorthosite-norite in a fine-grained partly fused matrix with a chemical composition similar to that of the clasts. Most of the other recognized breccia types could have been produced by rebrecciation of first-cycle breccias.

  13. Evidence of Ancient Blisters in Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the panoramic camera on the Mars Exploration Rover Spirit shows scoriaceous rocks (rocks containing holes or cavities) on the ground, as well as a transition from rocky terrain (foreground) to smoother terrain (background). Spirit is heading toward the smoother terrain on its way to the 'Columbia Hills.' The holes in some of the rocks may have resulted from 'blisters' formed by water vapor as it escaped lava. This indicates that the rocks were chilled atop an ancient lava flow. Porous rocks such as these, now appearing in abundance, have not been seen since early in the mission. Scientists believe they may have been covered by crater ejecta. This image was taken on sol 110 (April 24, 2004) at a region dubbed 'site 35.'

  14. Kinetics of crystallization of igneous rocks

    SciTech Connect

    Kirkpatrick, R.J.

    1981-01-01

    The geochemistry of igneous rocks is discussed, with the primary objectives of bringing together the theories underlying the kinetics of crystallization of igneous rocks and illustrating the use of these theories in understanding experimental and observational data. The primary purpose of the chapter is to introduce current thinking about the kinetics of igneous rocks and to provide a basis for understanding other work. A basic assumption made in the discussion is that the rate of any chemical reaction, including the crystallization of igneous rocks, is zero at equilibrium and proceeds at a finite rate only at a finite deviation from equilibrium. As such, an understanding of the processes operating in igneous rocks requires an understanding of how deviation from equilibrium affects the rates and mechanisms of the processes occurring during crystallization. These processes are detailed, with special emphasis given to nucleation and crystal growth. (JMT)

  15. First Grinding of a Rock on Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The round, shallow depression in this image resulted from history's first grinding of a rock on Mars. The rock abrasion tool on NASA's Spirit rover ground off the surface of a patch 45.5 millimeters (1.8 inches) in diameter on a rock called Adirondack during Spirit's 34th sol on Mars, Feb. 6, 2004. The hole is 2.65 millimeters (0.1 inch) deep, exposing fresh interior material of the rock for close inspection with the rover's microscopic imager and two spectrometers on the robotic arm. This image was taken by Spirit's panoramic camera, providing a quick visual check of the success of the grinding. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  16. Introduction to carbonate sediments and rocks

    SciTech Connect

    Scoffin, T.P.

    1987-01-01

    The first chapter has a brief introduction to carbonate minerals and chemistry. Carbonate grains, deposition processes, and diagenesis are included in chapters 2 through 4 respectively. Chapter 5 is about carbonate environments and describes how carbonate sediments are formed in terrestrial and various marine conditions. Ancient limestones are discussed in chapter 6 and examples of representative carbonate sequences from the geologic record are included. The Permian limestone reef complex in the Guadalupe Mountains of midwestern US is included as a classic ancient limestone example in chapter 6. The book concludes with an appraisal of the economic aspects of carbonate sediments and rocks. Carbonate rocks and minerals are important as building stones, as raw materials in the manufacture of cement, and as reservoir rocks for oil and natural gas accumulation. About 40% of the world's oil is produced from carbonate rocks. In addition, valuable deposits of lead, zinc, and other metals are found in carbonate host rocks.

  17. Permanganate diffusion and reaction in sedimentary rocks.

    PubMed

    Huang, Qiuyuan; Dong, Hailiang; Towne, Rachael M; Fischer, Timothy B; Schaefer, Charles E

    2014-04-01

    In situ chemical oxidation using permanganate has frequently been used to treat chlorinated solvents in fractured bedrock aquifers. However, in systems where matrix back-diffusion is an important process, the ability of the oxidant to migrate and treat target contaminants within the rock matrix will likely determine the overall effectiveness of this remedial approach. In this study, a series of diffusion experiments were performed to measure the permanganate diffusion and reaction in four different types of sedimentary rocks (dark gray mudstone, light gray mudstone, red sandstone, and tan sandstone). Results showed that, within the experimental time frame (~2 months), oxidant migration into the rock was limited to distances less than 500 μm. The observed diffusivities for permanganate into the rock matrices ranged from 5.3 × 10(-13) to 1.3 × 10(-11) cm(2)/s. These values were reasonably predicted by accounting for both the rock oxidant demand and the effective diffusivity of the rock. Various Mn minerals formed as surface coatings from reduction of permanganate coupled with oxidation of total organic carbon (TOC), and the nature of the formed Mn minerals was dependent upon the rock type. Post-treatment tracer testing showed that these Mn mineral coatings had a negligible impact on diffusion through the rock. Overall, our results showed that the extent of permanganate diffusion and reaction depended on rock properties, including porosity, mineralogy, and organic carbon. These results have important implications for our understanding of long-term organic contaminant remediation in sedimentary rocks using permanganate. PMID:24566296

  18. Modelling Fracture Propagation in Anisotropic Rock Mass

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Siren, Topias; Rinne, Mikael

    2015-05-01

    Anisotropic rock mass is often encountered in rock engineering, and cannot be simplified as an isotropic problem in numerical models. A good understanding of rock fracturing processes and the ability to predict fracture initiation and propagation in anisotropic rock masses are required for many rock engineering problems. This paper describes the development of the anisotropic function in FRACOD—a specialized fracture propagation modelling software—and its recent applications to rock engineering issues. Rock anisotropy includes strength anisotropy and modulus anisotropy. The level of complexity in developing the anisotropic function for strength anisotropy and modulus anisotropy in FRACOD is significantly different. The strength anisotropy function alone does not require any alteration in the way that FRACOD calculates rock stress and displacement, and therefore is relatively straightforward. The modulus anisotropy function, on the other hand, requires modification of the fundamental equations of stress and displacement in FRACOD, a boundary element code, and hence is more complex and difficult. In actual rock engineering, the strength anisotropy is often considered to be more pronounced and important than the modulus anisotropy, and dominates the stability and failure pattern of the rock mass. The modulus anisotropy will not be considered in this study. This paper discusses work related to the development of the strength anisotropy in FRACOD. The anisotropy function has been tested using numerical examples. The predicted failure surfaces are mostly along the weakest planes. Predictive modelling of the Posiva's Olkiluoto Spalling Experiment was made. The model suggests that spalling is very sensitive to the direction of anisotropy. Recent observations from the in situ experiment showed that shear fractures rather than tensile fractures occur in the holes. According to the simulation, the maximum tensile stress is well below the tensile strength, but the maximum

  19. Impact loads of falling rocks

    NASA Astrophysics Data System (ADS)

    Gerber, W.

    2009-04-01

    Depending on the chosen protection system the planning engineer has to proceed differently. If the impact energies stay below 3'000 - 5'000 kJ solutions using flexible protection systems are recommended in many cases being the most efficient solution. Since 2001, such systems are type tested in Switzerland. The results are published on the internet (www.umwelt-schweiz.ch/typenpruefung). Therefore, the engineers can concentrate on the design of the anchorage and do not need to consider the brake down process of the falling rock because its details including the acting forces within the barrier are given. This is different to the design of rockfall protection earth dams. Here, the evidence of the structural safety is the major task and questions like the following ones have to be answered: What magnitude are the forces that have to be carried for a certain kinetic energy? How are the forces influenced by mass or impact velocity? What is the influence of the soil properties such as strength, density and friction angle? How deep does the rock penetrate? Previous research on the impact loads on the cushion layer of protection galleries were performed by EPFL in the mid-nineties and led to a Swiss Guideline (ASTRA/SBB 1998) to calculate an equivalent static load for the structure underneath. This approach also delivers a function to predict the penetration depth. This contribution now checks whether above approach can also be used to design earth dams or how it can be modified. For that, the results of previous experiments performed by different institutions were analysed and, if possible, compared to the guideline. This could confirm above mentioned function to predict the penetration depth. In addition, an experimental series with different bodies (800 kg, 4000 kg) falling from different heights (2 - 15 m) on differently conditioned soils were performed. Measurements were taken through accelerometers attached to the blocks and measuring the vertical deceleration. The

  20. Rocks in motion: a one parameter description

    NASA Astrophysics Data System (ADS)

    Haug, O. T.; Rosenau, M.; Leever, K.; Oncken, O.

    2013-12-01

    Rock fall, slide and avalanches are dynamically different phenomena of rocks in motion: falls are mostly dominated by free fall and elastic impacts, slides by friction at their base and avalanches by granular flow. Despite these dynamical differences, the properties of the material involved can be viewed similar, and the main (and only?) difference is typically the size of the systems (falls: 10 meters, slides: 102 meters, avalanches: 103 meters). If only size matters: can gravitational rock movements be described in a simple quantitative framework without losing any underlying physics? To explore the dynamics of gravitational rock movements we performed a dimensional analysis combined with experimental validation. Dimensional analysis suggests 9 dimensionless parameters that describe the system, one of which is Π = C/ρgh, where ρ is density, h height and C cohesion of the material and g is the gravitational acceleration. This dimensionless number describes how strong the material is compared to its size, and varies from < 103 for rock falls to > 10-4 for rock avalanches. Can this parameter be used to describe the spectrum of dynamics for rocks in motions in a physically meaningful way? To test this, we performed experiments using labscale rock analogues. Gravitational rock movements are modeled under normal gravity conditions, by releasing material down a 1 meter planar slope at an angle of 45°. The material used is a cemented granular material, the cohesion of which can be controlled over several order of magnitude (101 to 106 Pa). The experiments are monitored using a 50 Hz digital camera. Surface velocities are quantified using a Particle Image Velocimetry while other physical parameters (fragment size distribution, position, friction) are measured using optical image analysis. We perform experiments where the initial value of Π (Π0) is varied over 7 orders of magnitude (10-2 to 104), mapping a parameters space large enough to study a wide range of

  1. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of

  2. Rock avalanches: significance and progress (Invited)

    NASA Astrophysics Data System (ADS)

    Davies, T. R.

    2013-12-01

    1. The probability distribution of landslide volumes follows a power-law indicating that large rock avalanches dominate the terrestrial sediment supply from mountains, and that their source area morphologies dominate mountain topography. 2. Large rock slope failures (~ 106 m3 or greater) often mobilise into rock avalanches, which can travel extraordinarily long distances with devastating effect. This hypermobility has been the subject of many investigations; we have demonstrated that it can be explained quantitatively and accurately by considering the energetics of the intense rock fragmentation that always occurs during motion of a large rock mass. 3. Study of rock avalanche debris psd shows that the energy used in creating new rock surface area during fragmentation is not lost to surface energy, but is recycled generating a high-frequency elastic energy field that reduces the frictional resistance to motion during runout. 4. Rock avalanches that deposit on glaciers can eventually form large terminal moraines that have no connection with any climatic event; unless these are identified as rock-avalanche-influenced they can confuse palaeoclimatic inferences drawn from moraine ages. Rock-avalanche-derived fines, however, can be identified in moraine debris up to ten thousand years old by the characteristic micron-scale agglomerates that form during intense fragmentation, and which are absent from purely climatically-induced moraines; there is thus a strong case for re-examining existing palaeoclimatic databases to eliminate potentially rock-avalanche-influenced moraine ages. 5. Rock avalanches (especially coseismic ones) are a serious hazard, being very destructive in their own right; they also block river valleys, forming landslide dams and potentially devastating dambreak floods, and subsequent severe decade-scale aggradation of downstream fans and floodplains. Rock avalanches falling into lakes or fiords can cause catastrophic tsunami that pose a serious risk to

  3. Turning Bread into Rocks: A Multisensory Unit Opener.

    ERIC Educational Resources Information Center

    Smith, Shaw

    2000-01-01

    Presents an earth science activity on rocks to demonstrate the vital links between minerals and rocks. Uses different kinds of breads to demonstrate that rocks, like breads, are composed of various ingredients in different proportions. (ASK)

  4. 3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA

  5. 80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED SHEET 5; SEPTEMBER, 1922. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. View of Highway 140 and Overhang Rock. Location of junction ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Highway 140 and Overhang Rock. Location of junction with Old Coulterville Road behind rock. Looking north-northwest - All Year Highway, Between Arch Rock & Yosemite Valley, El Portal, Mariposa County, CA

  7. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Rock weathering and Carbon cycle

    NASA Astrophysics Data System (ADS)

    Strozza, Patrick

    2010-05-01

    In the history of the Earth system, we can find indicators of hot or glacial periods, as well as brutal climatic change… How can we explain those climate variations on a geological timescale ? One of the causative agents is probably the fluctuation of atmospheric CO2 amounts, (gas responsible for the greenhouse effect). A concrete study of some CO2 fluxes between Earth system reservoirs (atmo, hydro and lithosphere) is proposed in this poster. Hydrogencarbonate is the major ion in river surface waters and its amount is so high that it can not be explained by a simple atmospheric Carbon diffusion. From a simple measurement of river HCO3- concentration, we can estimate the consumption of atmospheric CO2 that arises from carbonate and silicate weathering processes. Practical experiments are proposed. These are carried out in the local environment, and are conform to the curriculums of Chemistry and Earth sciences. These tests enable us to outline long-term Carbon cycles and global climatic changes. Key words : Erosion, rock weathering, CO2 cycle, Hydrogencarbonate in waters, climatic changes

  9. Spirit Studies Rock Outcrop at 'Home Plate'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's Mars Exploration Rover Spirit acquired this false-color image at 11:48 local true solar time on Mars on the rover's 746th Martian day, or sol (Feb. 26, 2006), after using the rock abrasion tool to brush the surfaces of rock targets informally named 'Stars' (left) and 'Crawfords' (right). Small streaks of dust extend for several centimeters behind the small rock chips and pebbles in the dusty, red soils. Because the rover was looking southwest when this image was taken, the wind streaks indicate that the dominant wind direction was from the southeast.

    The targets Stars and Crawfords are on a rock outcrop located on top of 'Home Plate.' The outcrop is informally named 'James 'Cool Papa' Bell,' after a Negro Leagues Hall of Famer who played for both the Pittsburgh Crawfords and the Kansas City Stars. To some science team members, the two brushed spots resemble the eyes of a face, with rocks below and between the eyes as a nose and layered rocks at the bottom of the image as a mouth.

    The image combines frames taken by Spirit's panoramic camera through the camera's 753-nanometer, 535-namometer, and 432-nanometer filters. It is enhanced to emphasize color differences among the rocks, soils and brushed areas. The blue circular area on the left, Stars, was brushed on 761 (Feb. 22, 2006). The one on the right, Crawfords, was brushed on sol 763 (Feb. 25, 2006).

  10. The fracture criticality of crustal rocks

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart

    1994-08-01

    The shear-wave splitting observed along almost all shear-wave ray paths in the Earth's crust is interpreted as the effects of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore space. Once away from the free surface, where open joints and fractures may lead to strong anisotropy of 10 per cent or greater, intact ostensibly unfractured crustal rock exhibits a limited range of shear-wave splitting from about 1.5 to 4.5 per cent differential shear-wave velocity anisotropy. Interpreting this velocity anisotropy as normalized crack densities, a factor of less than two in crack radius covers the range from the minimum 1.5 per cent anisotropy observed in intact rock to the 10 per cent observed in heavily cracked almost disaggregated near-surface rocks. This narrow range of crack dimensions and the pronounced effect on rock cohesion suggests that there is a state of fracture criticality at some level of anisotropy between 4.5 and 10 per cent marking the boundary between essentially intact, and heavily fractured rock. When the level of fracture criticality is exceeded, cracking is so severe that there is a breakdown in shear strength, the likelihood of progressive fracturing and the dispersal of pore fluids through enhanced permeability. The range of normalized crack dimensions below fracture criticality is so small in intact rock, that any modification to the crack geometry by even minor changes of conditions or minor deformation (particularly in the presence of high pore-fluid pressures) may change rock from being essentially intact (below fracture criticality) to heavily fractured (above fracture criticality). This recognition of the essential compliance of most crustal rocks, and its effect on shear-wave splitting, has implications for monitoring changes in any conditions affecting the rock mass. These include monitoring changes in reservoir evolution during hydrocarbon production and enhanced oil recovery, and in monitoring changes before

  11. Classifying rock lithofacies using petrophysical data

    NASA Astrophysics Data System (ADS)

    Al-Omair, Osamah; Garrouch, Ali A.

    2010-09-01

    This study automates a type-curve technique for estimating the rock pore-geometric factor (λ) from capillary pressure measurements. The pore-geometric factor is determined by matching the actual rock capillary pressure versus wetting-phase saturation (Pc-Sw) profile with that obtained from the Brooks and Corey model (1966 J. Irrigation Drainage Proc. Am. Soc. Civ. Eng. 61-88). The pore-geometric factor values are validated by comparing the actual measured rock permeability to the permeability values estimated using the Wyllie and Gardner model (1958 World Oil (April issue) 210-28). Petrophysical data for both carbonate and sandstone rocks, along with the pore-geometric factor derived from the type-curve matching, are used in a discriminant analysis for the purpose of developing a model for rock typing. The petrophysical parameters include rock porosity (phi), irreducible water saturation (Swi), permeability (k), the threshold capillary-entry-pressure (Pd), a pore-shape factor (β), and a flow-impedance parameter (n) which is a property that reflects the flow impedance caused by the irreducible wetting-phase saturation. The results of the discriminant analysis indicate that five of the parameters (phi, k, Pd, λ and n) are sufficient for classifying rocks according to two broad lithology classes: sandstones and carbonates. The analysis reveals the existence of a significant discriminant function that is mostly sensitive to the pore-geometric factor values (λ). A discriminant-analysis classification model that honours both static and dynamic petrophysical rock properties is, therefore, introduced. When tested on two distinct data sets, the discriminant-analysis model was able to predict the correct lithofacies for approximately 95% of the tested samples. A comprehensive database of the experimentally collected petrophysical properties of 215 carbonate and sandstone rocks is provided with this study.

  12. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice.

    PubMed

    Kasahara, David I; Mathews, Joel A; Park, Chan Y; Cho, Youngji; Hunt, Gabrielle; Wurmbrand, Allison P; Liao, James K; Shore, Stephanie A

    2015-10-01

    Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction. PMID:26276827

  13. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  14. Microcrater populations on Apollo 17 rocks

    NASA Technical Reports Server (NTRS)

    Schneider, E.; Hoerz, F.

    1974-01-01

    Approximately 6000 microcraters were investigated using binocular microscope techniques on Apollo 17 rocks 70215, 72215, 72235, 72395, 72435, 73216, 73218, 73275, 74275, 76135, 76136, and 79155. The crater populations observed have identical characteristics to those obtained from previous missions. Special emphasis was placed on assessing the influence of target properties on the observable crater populations. Although these properties cannot be quantitatively evaluated at present, the empirical results indicate that crater populations on glass, breccia, and crystalline rock surfaces may differ fundamentally. As a consequence, lunar surface exposure ages of individual rocks based on micrometeoroid craters may be subject to criticism.

  15. Lunar rock compositions and some interpretations.

    PubMed

    Engel, A E; Engel, C G

    1970-01-30

    Samples of igneous "gabbro," "basalt," and lunar regolith have compositions fundamentally different from all meteorites and terrestrial basalts. The lunar rocks are anhydrous and without ferric iron. Amounts of titanium as high as 7 weight percent suggest either extreme fractionation of lunar rocks or an unexpected solar abundance of titanium. The differences in compositions of the known, more "primitive" rocks in the planetary system indicate the complexities inherent in defining the solar abundances of elemizents and the initial compositions of the earth and moon. PMID:17781481

  16. Lunar rock compositions and some interpretations

    USGS Publications Warehouse

    Engel, A.E.J.; Engel, C.G.

    1970-01-01

    Samples of igneous "gabbro," "basalt," and lunar regolith have compositions fundamentally different from all meteorites and terrestrial basalts. The lunar rocks are anhydrous and without ferric iron. Amounts of titanium as high as 7 weight percent suggest either extreme fractionation of lunar rocks or an unexpected solar abundance of titanium. The differences in compositions of the known, more "primitive" rocks in the planetary system indicate the complexities inherent in defining the solar abundances of elements and the initial compositions of the earth and moon.

  17. Nonmarine upper cretaceous rocks, Cook Inlet, Alaska

    SciTech Connect

    Magoon, L.B.; Griesbach, F.B.; Egbert, R.M.

    1980-08-01

    A section of Upper Cretaceous (Maestrichtian) nonmarine sandstone, conglomerate, and siltstone with associated coal is exposed near Saddle mountain on the northwest flank of Cook Inlet basin, the only known surface exposure of nonmarine Upper Cretaceous rocks in the Cook Inlet area. The section, at least 83.3 m thick, unconformably overlies the Upper Jurassic Naknek Formation and is unconformably overlain by the lower Tertiary West Foreland Formation. These upper Cretaceous rocks correlate lithologically with the second or deeper interval of nonmarine Upper Cretaceous rocks penetrated in the lower Cook Inlet COST 1 well.

  18. Erosion and the rocks of Venus

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1976-01-01

    Photographs of the surface of Venus returned by the Venera 9 and 10 spacecraft have revealed the presence of smooth and angular rockline forms. Two mechanisms previously suggested (Sagan, 1975) for erosion of crater ramparts on the surface of Venus might also explain the erosion of rocks. Chemical weathering by the hydrochloric, hydrofluoric, and sulfuric acids present in the atmosphere of Venus may have been sufficient to erode angular projections of silicous rocks. Alternatively, the contours of rocks containing such low-melting materials as NaOH, KOH, HgS and KNO2 may have softened as the result of exposure to the high surface temperatures of the planet.

  19. Dynamic response of tunnels in jointed rocks

    SciTech Connect

    Heuze, F.E.; Shaffer, R.J.; Walton, O.R.; Maddix, D.M.

    1993-09-01

    The current proposed site for an underground nuclear waste repository is at Yucca Mountain, Nevada. The host rock is a jointed tuff. The question is: how will the repository behave under strong earthquake motion. The basic requirement for analysis is an ability to follow the dynamic motion of a multiplicity of discrete particles, i.e., rock blocks separated by joints and faults. The authors describe the application of the discrete element method (DEM) to the dynamic analysis of the response of tunnels in jointed rocks to earthquake loading. In situations where large motions of many blocks and collapse occur, the discontinuum-based DEM approach appears superior to other methods of analysis.

  20. Glazed lunar rocks: origin by impact.

    PubMed

    Morgan, J W; Laul, J C; Ganapathy, R; Anders, E

    1971-05-01

    The glassy coating of lunar rock 12017 is enriched in 15 trace elements relative to the crystalline interior. It apparently consists chiefly of shock-melted rock, somewhat richer in rare earth elements and alkali metals than rock 12017 itself. The glass has been contaminated by about 0.5 percent carbonaceous-chondrite-like material or, alternatively, by a mixture of 0.06 to 0.3 percent fractionated meteoritic material and approximately 10 to 15 percent local soil. The glazing seems to represent molten material splashed from a nearby meteorite impact and not in situ melting by a sudden increase in solar luminosity. PMID:17802215

  1. Rock types present in lunar highland soils

    NASA Technical Reports Server (NTRS)

    Reid, A. M.

    1974-01-01

    Several investigators have studied soils from the lunar highlands with the objective of recognizing the parent rocks that have contributed significant amounts of material to these soils. Comparing only major element data, and thus avoiding the problems induced by individual classifications, these data appear to converge on a relatively limited number of rock types. The highland soils are derived from a suite of highly feldspathic rocks comprising anorthositic gabbros (or norites), high alumina basalts, troctolites, and less abundant gabbroic (or noritic) anorthosites, anorthosites, and KREEP basalts.

  2. Sliding rocks on Racetrack Playa, Death Valley National Park: first observation of rocks in motion.

    PubMed

    Norris, Richard D; Norris, James M; Lorenz, Ralph D; Ray, Jib; Jackson, Brian

    2014-01-01

    The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved > 60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, "windowpane" ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of -4-5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2-5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice. PMID:25162535

  3. Terrestrial impact melt rocks and glasses

    NASA Astrophysics Data System (ADS)

    Dressler, B. O.; Reimold, W. U.

    2001-12-01

    The effects of meteorite and comet impact on Earth are rock brecciation, the formation of shock metamorphic features, rock melting, and the formation of impact structures, i.e. simple craters, complex craters, and multi-ring basins. Large events, such as the 65-Ma Chicxulub impact, are believed to have had catastrophic environmental effects that profoundly influenced the development of life on Earth. In this review, an attempt is made to summarize some of the voluminous literature on impact melting, one important aspect of planetary impact, provide some comments on this process, and to make suggestions for future research. The products of impact melting are glasses, impact melt rocks, and pseudotachylites. Our treatise deals mainly with the geological setting, petrography, and major-element chemistry of melt rocks and glasses. Impact glasses, in several petrographic aspects, are similar to volcanic glasses, but they are associated with shock metamorphosed mineral and rock fragments and, in places, with siderophile element anomalies suggestive of meteoritic contamination. They are found in allogenic breccia deposits within (fall-back 'suevite') and outside (fall-out 'suevite') impact craters and, as spherules, in distal ejecta. Large events, such as the K/T boundary Chicxulub impact, are responsible for the formation of worldwide ejecta horizons which are associated with siderophile element anomalies and shock metamorphosed mineral and rock debris. Impact glasses have a bulk chemical composition that is homogeneous but exemptions to this rule are common. On a microscopic scale, however, impact glasses are commonly strikingly heterogeneous. Tektites are glasses ejected from craters over large distances. They are characterized by very low water and volatile contents and element abundances and ratios that are evidence that tektites formed by melting of upper crustal, sedimentary rocks. Four tektite strewn-fields are known, three of which can be tied to specific impact

  4. Biogenic Cracks in Porous Rock

    NASA Astrophysics Data System (ADS)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  5. Rock Port Celebrates New Technology Center.

    ERIC Educational Resources Information Center

    Grones, Freda

    1997-01-01

    Discusses the advantages dome architecture gave to a new school technology center in Rock Port, Missouri. Advantages cover energy cost savings, lighting, storage space, aesthetics, accessibility, and convenience. (GR)

  6. Cosmogenic nuclides in football-sized rocks.

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.

    1972-01-01

    The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.

  7. PSYCHOPHYSICAL BENEFITS OF ROCK-CLIMBING ACTIVITY.

    PubMed

    Gallotta, Maria Chiara; Emerenziani, Gian Pietro; Monteiro, Maria Dolores; Iasevoli, Luigi; Iazzoni, Sara; Baldari, Carlo; Guidetti, Laura

    2015-12-01

    The aim of the study was to compare the psychophysical effects of rock climbing with a supervised fitness training in adults. Thirty-three healthy participants (M age=32 yr., SD=7) participated in rock climbing or in fitness training. The participants' functional fitness, anxiety, and mood states were tested before and after 3 mo. of training. There was significant improvement of physical fitness in both groups after the intervention period. Anxiety significantly decreased after each single training session at the end of both courses. Differential effects in the rock-climbing group, as compared to the fitness group, emerged only on Vigor. Specifically, the rock-climbing group showed a decreasing trend in Vigor while the fitness group showed an increasing trend of Vigor after the intervention. PMID:26654990

  8. Igneous rocks from Apollo 16 rake samples

    NASA Technical Reports Server (NTRS)

    Dowty, E.; Keil, K.; Prinz, M.

    1974-01-01

    Results are reported for a study of seven holocrystalline feldspathic rocks (including a spinel troctolite and six melt rocks) and one mare basalt clast from the Apollo-16 rake samples. The composition and grain structure of each rock is described in detail. Only the spinel troctolite is considered a good candidate for a primary igneous cumulate formed during the original differentiation of the lunar crust. It is shown that the melt rocks probably resulted from shock melting followed by rapid crystallization of heterogeneous highland material and that compositional variations are probably due to mixing of various amounts of heterogeneous cumulates and KREEP components. It is suggested that the mare basalt clast may have been derived from Mare Fecunditatis, although the nearest mare to the Apollo-16 site is Nectaris.

  9. A rock in a hard place.

    PubMed

    Gray, C

    1998-10-20

    Federal Minister of Health Allan Rock appears committed to improved funding for the health care system, but this may be a hard sell in cabinet. He outlined his views during the CMA's recent annual meeting in Whitehorse. PMID:9834729

  10. Getting lunar ilmenite: From soils or rocks

    SciTech Connect

    Vaniman, D.T.; Heiken, G.H.

    1989-01-01

    Lunar soils or rocks can be mined as sources of ilmenite for producing oxygen. However, separable crystals of loose ilmenite in lunar soils are rare (<2%) and small (<200 {mu}); most ilmenite in the regolith is locked together with silicate minerals as rock fragments. Since fragmentation of rock sources must be attempted to win appreciable amounts of ilmenite ({approximately}10% or more), selective collection of high-Ti basalt fragments larger than 1 cm for fragmentation and ilmenite beneficiation may be advantageous over extensive processing of fine lunar soil. Many alternative processing schemes for fragmenting rocks on the Moon have been proposed; one process which was tested early in the Apollo program successfully disaggregated lunar and terrestrial basalts by passive exposure to low-pressure alkali (K) vapor. This process is worthy of reinvestigation. 14 refs., 3 figs.

  11. Wing rock suppression using forebody vortex control

    NASA Technical Reports Server (NTRS)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  12. Searching for Nectaris Basin Impact Melt Rocks

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.

    2015-07-01

    Because Nectaris Basin is a key stratigraphic marker for lunar bombardment, we are conducting an effort to identify Nectaris basin impact-melt rocks, to model their emplacement, and to examine sites where Nectaris impact melt is abundant.

  13. Origin of magnetic fabrics in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    Biedermann, A. R.; Kunze, K.; Zappone, A. S.; Hirt, A. M.

    2015-04-01

    The magnetic fabric of a rock, defined by the anisotropy of magnetic susceptibility (AMS), is often used as a tectonic indicator. In order to establish a quantitative relationship between AMS and mineral texture, it is important to understand the single crystal intrinsic AMS of each mineral that contributes to the AMS of the rock. The AMS and crystallographic preferred orientation (CPO) of amphiboles, olivine and pyroxenes has been analyzed in a series of amphibolites, peridotites and pyroxenites that do show preferred mineral alignment. The CPO of each mineral phase was determined based on electron backscatter diffraction (EBSD). Whole- rock AMS was computed based on the CPO and single crystal AMS of the respective minerals. A comparison between measured and modelled magnetic anisotropy shows that the directions of the principal susceptibility axes agree well in amphibolite and peridotite. Pyroxenite is a good example for competing AMS fabrics in polyphase rocks.

  14. Seismic and micromechanical studies of rock fracture

    NASA Astrophysics Data System (ADS)

    Young, R. Paul; Hazzard, James F.; Pettitt, Will S.

    2000-06-01

    “Earthquakes” occur as the result of stress redistribution on major fractures in the earth's crust and are also observed as scaled phenomena along grain boundaries and microcracks. Earthquake seismology has significantly contributed to our knowledge of fault processes, but our fundamental understanding of how micro-fractures progressively weaken rocks and how this contributes to macro-deformation processes is far from understood. Recent advances in particulate mechanics now mean fracture processes can be modelled dynamically to study the micromechanics of fracturing in rock. In addition, advances in recording and analysing very high frequency acoustic emissions (AE) allow for detailed examination of micro-cracking. The paper describes how particle models and AE monitoring techniques can be used in conjunction to test specific hypotheses about natural and induced rock fracture processes at the grain scale. Intermediate scale processes (between laboratory and field studies) are also studied by examining rock fracture in an underground research laboratory.

  15. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  16. 'Palenque' Rock: Tempting Target, Poor Location

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1

    A rock dubbed 'Palenque' in the 'Columbia Hills' of Mars has contrasting textures in upper and lower portions. This view of the rock combines two frames taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's 278th martian day (Oct. 14, 2004). The layers meet each other at an angular unconformity that may mark a change in environmental conditions between the formation of the two portions of the rock. Scientists would have liked the rover to take a closer look, but Palenque is not on a north-tilted slope, which is the type of terrain needed to keep the rover's solar panels tilted toward the winter sun. The exposed portion of the rock is about 100 centimeters (39 inches) long.

  17. Relating rock avalanche morphology to emplacement processes

    NASA Astrophysics Data System (ADS)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  18. Sarcocystis calchasi encephalitis in a rock pigeon

    PubMed Central

    USHIO, Nanako; WATANABE, Ken-ichi; CHAMBERS, James K.; SHIBATO, Tokuhiro; NAKAYAMA, Hiroyuki; UCHIDA, Kazuyuki

    2015-01-01

    A rock pigeon (Columba livia) caught in Akihabara, Tokyo, showed neurological symptoms, such as head tilt and circling. Pathological examinations revealed abundant Sarcocystic cysts in the skeletal muscle and myocardium with mild myositis, and numerous schizonts and sarcocysts with severe multifocal granulomatous T-lymphocytic infiltration in the central nervous system. A Sarcocystis calchasi-specific gene was detected in the muscle and brain. This case indicates S. calchasi was distributed in Japan and caused severe encephalitis to rock pigeons. PMID:26062567

  19. Sarcocystis calchasi encephalitis in a rock pigeon.

    PubMed

    Ushio, Nanako; Watanabe, Ken-ichi; Chambers, James K; Shibato, Tokuhiro; Nakayama, Hiroyuki; Uchida, Kazuyuki

    2015-11-01

    A rock pigeon (Columba livia) caught in Akihabara, Tokyo, showed neurological symptoms, such as head tilt and circling. Pathological examinations revealed abundant Sarcocystic cysts in the skeletal muscle and myocardium with mild myositis, and numerous schizonts and sarcocysts with severe multifocal granulomatous T-lymphocytic infiltration in the central nervous system. A Sarcocystis calchasi-specific gene was detected in the muscle and brain. This case indicates S. calchasi was distributed in Japan and caused severe encephalitis to rock pigeons. PMID:26062567

  20. World petroleum systems with Jurassic source rocks

    SciTech Connect

    Klemme, H.D. )

    1993-11-08

    Fourteen petroleum systems with Upper Jurassic source rocks contain one quarter of the world's discovered oil and gas. Eleven other systems with Lower and Middle Jurassic source rocks presently have a minor but significant amount of discovered oil and gas. The purpose of this article is to review the systems geologically, describe their location in space and time on a continental scale, estimate their relative petroleum system recovery efficiencies, and outline the effect their essential elements and processes have on their petroleum plumbing.

  1. Rock Moved by Mars Lander Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The robotic arm on NASA's Phoenix Mars Lander slid a rock out of the way during the mission's 117th Martian day (Sept. 22, 2008) to gain access to soil that had been underneath the rock.The lander's Surface Stereo Imager took the two images for this stereo view later the same day, showing the rock, called 'Headless,' after the arm pushed it about 40 centimeters (16 inches) from its previous location.

    'The rock ended up exactly where we intended it to,' said Matt Robinson of NASA's Jet Propulsion Laboratory, robotic arm flight software lead for the Phoenix team.

    The arm had enlarged the trench near Headless two days earlier in preparation for sliding the rock into the trench. The trench was dug to about 3 centimeters (1.2 inches) deep. The ground surface between the rock's prior position and the lip of the trench had a slope of about 3 degrees downward toward the trench. Headless is about the size and shape of a VHS videotape.

    The Phoenix science team sought to move the rock in order to study the soil and the depth to subsurface ice underneath where the rock had been.

    This image was taken at about 12:30 p.m., local solar time on Mars. The view is to the north northeast of the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  2. Technicians examine largest lunar rock sample collected

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Three Brown and Root/Northrop technicians in the Nonsterile Nitrogen Laboratory in the Lunar Receiving Laboratory (LRL) peer through glass at the much-discussed basketball size rock which Apollo 14 crewmen brought back from the Fra Mauro area of the Moon. They are, left to right, Linda Tyler, Nancy L. Trent and Sandra Richards (21244); Dr. Daniel Anderson, an aerospace technologist and test director in the LRL, looks at basketball size rock through a microscope (21245).

  3. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  4. NASA "Rocks" Problem-Based Learning

    ERIC Educational Resources Information Center

    Johnson, Carla J.

    2004-01-01

    A rock investigation set up as a problem-based learning mini-unit for the author's seventh grade integrated science students. To start this unit, she explains to students that NASA has sent us a container of rocks that they would like to have identified. It is up to the students to assume the role of geologists and come up with some way to…

  5. Peralkaline silicic volcanic rocks in northwestern nevada.

    PubMed

    Noble, D C; Chipman, D W; Giles, D L

    1968-06-21

    Late Tertiary silicic ashflow tuffs and lavas peralkaline in chemical character (atomic Na + K greater than Al), mainly comendites, occur over wide areas in northwestern Nevada and appear to be widespread in southeastern Oregon. Such peralkaline rocks-which are not uncommon in the western United States-and other chemically unusual silicic rocks are found near the margins rather than toward the center of the Great Basin. PMID:17800671

  6. Tunnel boring machine performance in sedimentary rock

    SciTech Connect

    Nelson, P.

    1983-01-01

    Full-face tunnel boring machine (TBM) performance during the excavation of six tunnels is considered in terms of utilization, penetration rate, and cutter wear. Construction records for over 75,000 ft (22,860m) of tunnel in sedimentary rock are analyzed, and the results are used to investigate factors affecting TBM performance. Machine utilization is strongly affected by site specific conditions, including geology, construction planning, and contractor practice. The relative importance of each of 21 downtime causes is discussed, and recommendations are made for modifications in excavation system design which could help to reduce delays. Effects of machine operation rate were investigated. The interrelationship among penetration, thrust, and rolling force is analyzed with a three-dimensional model which provides a rational basis for explaining variations in cutter forces and penetration rate as a function of rock type. The most useful rock index for estimating TBM performance in sedimentary rock is shown to be a combination of Schmidt Hammer rebound and abrasion hardness. Variation in cutter wear is considered as a function of position on the cutterhead and the rock type being excavated. Rolling distances for center cutters are less sensitive to rock type than for other positions. A fracture mechanics approach, of use in modeling the process chip formation, is proposed. The use of fracture material properties for empirical prediction of TBM performance is reported. Recommendations are made for future work, and observations and records required for future performance evaluations are summarized.

  7. Marine source rocks of New Zeland

    SciTech Connect

    Murray, A.P.; Norgate, C.; Summons, R.E.

    1996-12-31

    Exploration in New Zealand is moving beyond the Taranaki Basin with its mainly terrestrial source rocks. Good to excellent quality marine source rocks exist and have generated oil in the Northland, East Coast W North Taranaki Basins. These high quality source rocks are Wespread throughout the late Cretaceous - Paleocene passive margin sequence in these basins as well in offshore Canterbury and the Great South Basin. This paper details the character, distribution, generative capacity and maturation behavior of the two main source units and shows how they can be correlated to the numerous seeps and oil impregnations found in the East Coast and Northland Basins. As well as being useful in basin modelling, kinetic maturation parameters for these two source rock facies help to explain differences in the biomarker and isotopic composition of seep oils and also explain trends in Rock Eval Tmax which are unrelated to maturity. In the East Coast Basin alone, the raw oil potential of the Waipawa Black Shale approaches 80 billion barrels. An understanding of the marine source rocks described here is crucial to evaluating the hydrocarbon prospectivity of New Zealand away from the Taranaki Basin.

  8. Marine source rocks of New Zeland

    SciTech Connect

    Murray, A.P.; Norgate, C.; Summons, R.E. )

    1996-01-01

    Exploration in New Zealand is moving beyond the Taranaki Basin with its mainly terrestrial source rocks. Good to excellent quality marine source rocks exist and have generated oil in the Northland, East Coast W North Taranaki Basins. These high quality source rocks are Wespread throughout the late Cretaceous - Paleocene passive margin sequence in these basins as well in offshore Canterbury and the Great South Basin. This paper details the character, distribution, generative capacity and maturation behavior of the two main source units and shows how they can be correlated to the numerous seeps and oil impregnations found in the East Coast and Northland Basins. As well as being useful in basin modelling, kinetic maturation parameters for these two source rock facies help to explain differences in the biomarker and isotopic composition of seep oils and also explain trends in Rock Eval Tmax which are unrelated to maturity. In the East Coast Basin alone, the raw oil potential of the Waipawa Black Shale approaches 80 billion barrels. An understanding of the marine source rocks described here is crucial to evaluating the hydrocarbon prospectivity of New Zealand away from the Taranaki Basin.

  9. Calcic myrmekite in anorthositic and gabbroic rocks

    SciTech Connect

    Schiffries, C.M.; Dymek, R.F.

    1985-01-01

    Myrmekite is a common feature of granitic plutonic rocks and quartzo-feldspathic gneisses, but it is rarely reported in anorthositic and gabbroic rocks. The authors have identified myrmekitic intergrowths of quartz and calcic plagioclase in a variety of plagioclase-rich cumulate rocks, including samples from a number of massif anorthosites and layered igneous intrusions. It appears that calcic myrmekite has been frequently overlooked, and is a common accessory feature in these rock types. Chemical and textural characteristics of myrmekite in the St-Urbain massif anorthosite (Quebec) and the Bushveld Igneous Complex (South Africa) have several features in common, but this myrmekite appears to be fundamentally different from that described by most previous investigators. Whereas myrmekite typically consists of a vermicular intergrowth of sodic plagioclase and quartz that occurs adjacent to alkali feldspar, the intergrowths in these rocks contain highly calcic plagioclase and lack the intervening alkali feldspar. In addition, the plagioclase in the myrmekite is more calcic than that in the surrounding rock. The boundary between the myrmekite and the host material is generally extremely sharp, although reverse zoning of host plagioclase may obscure the contact in some cases. The textural and chemical evidence is consistent with a replacement origin for these intergrowths; the proportion of quartz in the myrmekite is in close agreement with the predicted amount of silica that is generated by the theoretical replacement reaction. It appears that water played a key role in the replacement process.

  10. Quantification of rock fall processes on recently deglaciated rock slopes, Gepatsch glacier, Tyrol (Austria)

    NASA Astrophysics Data System (ADS)

    Vehling, Lucas; Rohn, Joachim; Moser, Michael

    2014-05-01

    The recently deglaciated area in alpine glacier forefields is characterized by intensified mass movement processes in particular debris flows, shallow landslides and rockfalls. Due to enhanced geomorphic activity, rock slopes adjacent to shrinking glaciers contribute in a substantial way to the sediment budget. In this study, direct measurements of rock fall intensity are conducted by rock fall collector nets and natural sediment traps. The study area is a high mountain (1750-3520m a.s.l) catchment, which is recently about 30% glaciated. The extension of the Gepatsch glacier has been reducing since the little ice age maximum in the mid of the 19th century with an average annual shrinking rate of a few decameters at its tongue. The first results of the direct measurements demonstrate that on the recently deglaciated rock slopes, rock fall intensity is at least one order of magnitude higher (2,38-6,64 g/m2/d - corresponding backweathering rate: 0,3-0,9 mm/a) than on rock slopes which had has ice free since the last Pleistocene deglaciation (0,04-0,38 g/m2/d - backweathering rate: 0,005-0,05 mm/a). The highest rock fall intensity is attributed to the recent deglaciated rock slopes which are located close to larger fault systems (>60 g/m2/d - backweathering rate: >8 mm/a). Rock fall intensity shows also considerable intra-annual variations which are related to cold climate weathering processes and rainstorm activity.

  11. Rock Cracking Indices for Improved Tunnel Support Design: A Case Study for Columnar Jointed Rock Masses

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Hao, Xian-Jie; Jiang, Quan; Li, Shao-jun; Hudson, John A.

    2016-06-01

    Measurements indicate that the development of cracking is a key feature relating to the strength and collapse of a columnar jointed rock mass. In this context, a new support design method utilising rock cracking indices for columnar jointed rock mass under high stress is proposed to restrain the development of cracking in the surrounding rock mass. The method involves limiting the cracking evolution of the surrounding rock mass by designing the appropriate parameters and time of installation of the support system. Two indices are suggested: the allowable depth of the excavation damaged zone (EDZ); and the allowable damage extent of the rock mass in the EDZ. The method involves limiting the evolution of cracking in the surrounding rock mass by designing the parameters and time of installation of the support system. The support system should have a suitable stiffness and installation time so as to restrain the evolution of the depth and damage extent of the EDZ within the surrounding rock. Therefore, the depth and damage extent of the EDZ, as well as the axial stress in the anchor bolts, are calculated at different distances between the support location and the tunnel working face to find the appropriate stiffness and installation time of the support system. The method has been successfully adopted to determine the thickness of shotcrete, the arrangement and installation time of rockbolts, and other parameters, for five large diversion tunnels at the Baihetan hydropower station, China, which were excavated in columnar jointed rock masses.

  12. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  13. 78 FR 38287 - Bitterroot National Forest, Darby Ranger District, Como Forest Health Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    .... Correction In the Federal Register of June 17, 2013, in FR DOC 2013- 14229 on page 36163 in the second column...,640 acres of national forest between Lake Como and Lost Horse roads, about 6 miles northwest of...

  14. 78 FR 36163 - Bitterroot National Forest, Darby Ranger District, Como Forest Health Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... FHP covers approximately 5,640 acres of national forest land between Lake Como and Lost Horse Roads... project area lies between Lake Como Road and Lost Horse Road, about three miles northwest of...

  15. Exploring fault rocks at the nanoscale

    NASA Astrophysics Data System (ADS)

    Viti, Cecilia

    2010-05-01

    The mechanical properties of a fault are strongly dependent on mineralogy and microstructure of the fault rocks. X-ray diffraction (XRD) methods, combined with optical and scanning electron microscopies (OM and SEM, respectively), are the conventional tools to investigate bulk mineralogy and microstructures of the fault rocks. However, fault rocks are often formed by ultrafine-grained minerals (below 1 - 2 microns, i.e., below the resolution limits of OM and SEM), requiring the use of a high-resolution technique, such as the transmission electron microscopy (TEM), that combines images, diffraction and chemical data, down to the nanoscale. Here, I summarize a few examples of TEM study on fault rocks, obtained from both nature and deformation experiments and covering different kinds of rocks, from carbonates to ultramafics and quartz-feldspatic rocks. In particular: 1) Mineralogical and micro/nanostructural study of fault core samples from the Zuccale low-angle normal fault (Elba Island, Italy; carbonatic protolite). TEM investigation showed large amounts of oriented and interconnected talc lamellae, affected by intense interlayer delamination, giving rise to "sublamellae" down to 10 - 20 nm thick. This peculiar nanotexture suggests easy frictional sliding along an almost infinite number of sliding surfaces, thus explaining the weakness of this fault. 2) Mineralogical and micro/nanostructural characterization of the slip zones produced by high-velocity friction experiments on carbonatic and ultramafic rocks. TEM investigation of the slip zones revealed thermal decomposition (by frictional heating) of the starting minerals (dolomite and antigorite, respectively), and allowed the accurate characterization of the high-temperature, ultrafine-grained mineral assemblages (grain size from a few nm to 200 nm). 3) Mineralogical and micro/nanostructural study of a natural pseudotachylite in quartz-feldspatic rocks (northern Victoria land, Antarctica), showing thermal

  16. Phosphate rock resources of the United States

    USGS Publications Warehouse

    Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.

    1984-01-01

    In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern

  17. Detection of anorthosite rocks on Mars

    NASA Astrophysics Data System (ADS)

    Carter, J.; Poulet, F.; Flahaut, J.; Ody, A.

    2012-12-01

    The surface of Mars is primarily made up of basaltic (volcanic) rocks comprised of pyroxene, olivine and intermediate felsic plagioclase minerals [e.g. 1,2] and additionally a smaller fraction of sedimentary rocks, at times composed of hydrated salt and clay minerals [3,4]. A few localized eruptive sequences may indicate some compositional evolution from basaltic to dacitic rocks [1], but these remain in essence volcanic rocks. Using the CRISM (Compact Imaging Reconnaissance Spectrometer for Mars) near-infrared imaging spectrometer orbiting Mars [5], we report the detection of a new rock type on Mars, anorthosite. Anorthosite is a highly felsic (>90% plagioclase, <10% mafic minerals) non-volcanic igneous rock which peculiar composition requires very specific formation processes. On Earth, anorthosite is a rare rock found mostly in plutonic rocks in continental areas sharing locations with granitoid rocks. Anorthosite is also a major component of the lunar crust and ubiquitous in the lunar highlands where it is interpreted to be the result of the crystallisation of the primordial magma ocean of the Moon > 4.3 Gyrs ago [6]. At least 8 anorthosite exposures have been found scattered over the southern highlands of Mars. These are found in the rims of large (D > 50 km) craters or as outcrops in massif units. The unit age for these anorthosite exposures places their formation early in the planet's history (> 4 Gyrs). The massifs exposures are interpreted as deep crustal material uplifted from the Hellas basin forming event [7], which together with the crater rim exposures, suggest a formation at depth in all cases. The preferential co-occurrence of Al-rich clays mixed with several anorthosite exposures also suggests that these rocks were later altered by water at or near the surface. On Mars, there are several reasons to explain why such rocks would not have been formed during its primordial differentiation. In particular, the production of significant quantities of

  18. Gusev Rocks Solidified from Lava (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  19. Gusev Rocks Solidified from Lava (3-D)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin.

    Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy.

    The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks.

    As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography

  20. 27 CFR 9.203 - Saddle Rock-Malibu.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Saddle Rock-Malibu. 9.203... Saddle Rock-Malibu. (a) Name. The name of the viticultural area described in this section is “Saddle Rock-Malibu”. For purposes of part 4 of this chapter, “Saddle Rock-Malibu” is a term of...

  1. 9. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SECOND FLOOR, EAST WING. MOTORIZED MACHINING EQUIPMENT USED IN MANUFACTURE OF MACHINE GUN PARTS. SHOWN IN THE FOREGROUND IS A PRATT & WHITNEY VERTICAL MILLING MACHINE. DATED JANUARY 21, 1943. - Rock Island Arsenal, Building No. 68, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  2. Soil Genesis and Development, Lesson 1 - Rocks and Minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All soil ultimately forms from rocks or their weathering products. Geologists classify rocks according to their origins. General rock types can weather to give soils with distinctive properties. The objectives of this lesson are: 1. To be able to classify rocks based on visual characteristics accord...

  3. 14. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. CENTER CRANEWAY, SHOWING MACHINING OF BREECH MECHANISM FOR 155MM ARTILLERY GUN. DATED JUNE 12, 1945. - Rock Island Arsenal, Building No. 250, Gillespie Avenue between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL

  4. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS BEFORE REMODELING OF PARAPET AND AFTER REMOVAL OF SMOKESTACK FROM SOUTH ELEVATION. DATED APRIL 7, 1941. - Rock Island Arsenal, Building No. 133, Gillespie Avenue between South Avenue & Ramsey Street, Rock Island, Rock Island County, IL

  5. 12. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS AFTER REMODELING OF FRONT PORCH. DATED AUGUST 19, 1919. - Rock Island Arsenal, Building No. 3, Terrace Drive between Gillespie & East Avenues, Rock Island, Rock Island County, IL

  6. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. EAST AND NORTH ELEVATIONS BEFORE REMODELING OF FRONT PORCH. DATED C. 1875. - Rock Island Arsenal, Building No. 3, Terrace Drive between Gillespie & East Avenues, Rock Island, Rock Island County, IL

  7. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION BEFORE REMODELING OF FRONT PORCH. PROBABLY TAKEN IN THE 1870S. - Rock Island Arsenal, Building No. 4, Terrace Avenue between Gillespie & East Avenues, Rock Island, Rock Island County, IL

  8. 6. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office, SOUTH AND EAST ELEVATIONS BEFORE REMODELING OF PARAPET. DATED MARCH 8, 1945. - Rock Island Arsenal, Building No. 251, Gillespie Avenue & Ramsey Street, Rock Island, Rock Island County, IL

  9. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. EAST AND NORTH ELEVATIONS BEFORE REMODELING OF FRONT PORCH AND ADDITION OF SECOND STORY TO REAR WING. DATED C. 1875. - Rock Island Arsenal, Building No. 2, Terrace Drive between Gillespie Avenue & East Avenue, Rock Island, Rock Island County, IL

  10. 12. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS AFTER REMODELING OF FRONT PORCH. DATED APRIL 3, 1905. - Rock Island Arsenal, Building No. 2, Terrace Drive between Gillespie Avenue & East Avenue, Rock Island, Rock Island County, IL

  11. Politics Revisited: Metatextual Implications of Rock and Roll Criticism.

    ERIC Educational Resources Information Center

    McDonald, James R.

    1988-01-01

    By viewing rock lyrics as a vehicle that demands a sociopolitical response, rock and roll critics place in the hands of rock artists a responsibility that is not warranted. Particularly with regard to political messages, rock and roll should be viewed from a more individualized perspective. (BJV)

  12. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION AFTER ADDITION OF REINFORCED-CONCRETE SECTION WITH CYCLONE SEPARATOR. DATED NOVEMBER 11, 1944. - Rock Island Arsenal, Building No. 105, South Avenue between Gillespie Avenue & Second Street, Rock Island, Rock Island County, IL

  13. 6. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. FIRST FLOOR, EAST WING, SHOWING BELT-DRIVEN EQUIPMENT (LATHES, DRILLS, SCREW MACHINES) USED IN MACHINING COMPONENTS FOR ARTILLERY GUN CARRIAGES. DATED MAY 12, 1904. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  14. 6. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS IN FINAL STAGE OF CONSTRUCTION. DATED C. 1870. - Rock Island Arsenal, Building No. 60, Rodman Avenue between Gillespie Avenue & First Street, Rock Island, Rock Island County, IL

  15. 7. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS, IN UNALTERED CONDITION. PROBABLY TAKEN ABOUT 1910. - Rock Island Arsenal, Building No. 60, Rodman Avenue between Gillespie Avenue & First Street, Rock Island, Rock Island County, IL

  16. 6. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ORIGINAL OPEN INTERIOR FLOOR PLAN. DATED C. 1898. - Rock Island Arsenal, Building No. 62, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  17. 9. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION AFTER ADDITION OF HOSE DRYING TOWER. DATED SEPTEMBER 26, 1919. - Rock Island Arsenal, Building No. 225, Rodman Avenue between Flagler Street & Gillespie Avenue, Rock Island, Rock Island County, IL

  18. 8. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office, NORTH AND WEST ELEVATIONS (ABOVE) DURING FINAL STAGE OF CONSTRUCTION. ORIGINALLY PUBLISHED 1922. - Rock Island Arsenal, Building No. 210, Rodman Avenue & Gronen Street, Rock Island, Rock Island County, IL

  19. 3. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. LOOKING NORTH; BUILDING IS SHOWN WITH ORIGINAL COPING. DATED C. 1873. - Rock Island Arsenal, Building No. 53, North Avenue North of Midpoint, Rock Island, Rock Island County, IL

  20. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION BEFORE REPLACEMENT OF STEEL SASH WITH CONCRETE BLOCK. DATED NOVEMBER 11, 1944. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  1. 6. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR SHOWING STORAGE OF WALNUT FOR GUN STOCKS. ORIGINALLY PUBLISHED 1922. - Rock Island Arsenal, Building No. 140, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL

  2. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION BEFORE REPLACEMENT OF STEEL SASH WITH CONCRETE BLOCK. DATED APRIL 27, 1956. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  3. 7. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ASSEMBLING OF 75MM GUN CARRIAGES. DATED AUGUST 23, 1918. - Rock Island Arsenal, Building No. 110, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  4. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS BEFORE REPLACEMENT OF STRAP-HINGE DOOR. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 140, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL

  5. 9. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR OF STEEL-FRAMED SECTION showing ASSEMBLING OF GUN MOUNTS. DATED MAY 24, 1939. - Rock Island Arsenal, Building No. 210, Rodman Avenue & Gronen Street, Rock Island, Rock Island County, IL

  6. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF WING TO CENTER OF EAST FACADE. DATED NOVEMBER 4, 1944. - Rock Island Arsenal, Building No. 90, East Avenue between North Avenue & King Drive, Rock Island, Rock Island County, IL

  7. 6. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SECOND FLOOR; WOOD WORKING EQUIPMENT IN CARPENTRY SHOP, ORIGINALLY PUBLISHED 1905. - Rock Island Arsenal, Building No. 104, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  8. 10. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND WEST (FRONT) ELEVATIONS; EAST (REAR) AND NORTH ELEVATIONS, BEFORE REMOVAL OF CHIMNEYS AND ADDITION OF WING TO CENTER OF EAST FACADE. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 90, East Avenue between North Avenue & King Drive, Rock Island, Rock Island County, IL

  9. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. EAST AND NORTH ELEVATIONS BEFORE REMOVAL OF STRAP-HINGE DOOR. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 139, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL

  10. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS DURING FINAL STAGE OF CONSTRUCTION. DATED 1871. - Rock Island Arsenal, Building No. 104, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  11. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF BRICK STAIR TOWERS ON SOUTH FACADE. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 110, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  12. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF STAIR TOWERS ON SOUTH FACADE. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 104, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL

  13. 9. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS BEFORE REMOVAL OF VENTILATORS. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 138, Second Avenue between South Avenue & Ramsey Street, Rock Island, Rock Island County, IL

  14. 8. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND EAST ELEVATIONS, DOCUMENTING ORIGINAL CONSTRUCTION. DATED C. 1875. - Rock Island Arsenal, Building No. 225, Rodman Avenue between Flagler Street & Gillespie Avenue, Rock Island, Rock Island County, IL

  15. 7. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR LOOKING EAST, SHOWING STORAGE OF LUMBER. DATED OCTOBER 2, 1945. - Rock Island Arsenal, Building No. 140, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL

  16. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ASSEMBLING OF ARTILLERY GUN CARRIAGES. DATED MAY 12, 1904. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL

  17. Automatic Rock Detection and Mapping from HiRISE Imagery

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Adams, Douglas S.; Cheng, Yang

    2008-01-01

    This system includes a C-code software program and a set of MATLAB software tools for statistical analysis and rock distribution mapping. The major functions include rock detection and rock detection validation. The rock detection code has been evolved into a production tool that can be used by engineers and geologists with minor training.

  18. 6. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office, FIRST FLOOR, SHOWING POWER PRESSES FOR LEATHER WORKING IN HARNESS SHOP. ORIGINALLY PUBLISHED 1905. - Rock Island Arsenal, Building No. 110, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL

  19. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. ORIGINAL STEAM HAMMER USED IN FORGING IRON-WORK FOR CONSTRUCTION OF SHOPS. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 64, Rodman Avenue between Second & Third Streets, Rock Island, Rock Island County, IL

  20. 8. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. FIRST FLOOR, WEST WING; SHOWING PRATT & WHITNEY RIFLING MACHINES FOR MANUFACTURING 1903 MODEL SPRING-FIELD RIFLE. DATED JULY 4, 1904. - Rock Island Arsenal, Building No. 60, Rodman Avenue between Gillespie Avenue & First Street, Rock Island, Rock Island County, IL

  1. New Rock Physical Properties Assessments From the Mars Exploration Rover Rock Abrasion Tool (RAT).

    NASA Astrophysics Data System (ADS)

    Bartlett, P. W.; Basso, B.; Kusack, A.; Wilson, J.; Zacny, K.

    2005-12-01

    The Rock Abrasion Tool (RAT) serves as the sample preparation device on the Mars Exploration Rovers (MER) science payload. The RAT grinds a circular area 45 millimeter in diameter, and on the order of a few millimeters deep, into a rock face. This process removes surface fines and weathered layers in preparation for imaging and spectral observations of the rock. As of September 2005, 15 grinding operations have been performed at Gusev Crater and 26 at Meridiani Planum. Since the RAT performs a mechanical operation on a rock, deductions can be made via the RAT's engineering data about the rock's physical properties. For each grinding operation, the energy consumed while grinding is converted to provide a physically relevant Specific Grind Energy (SGE) in terms of Joules per cubic millimeter of rock removed. The calculation is performed over the last 0.25 millimeter of a grinding operation, where it is possible, by taking measurements from Microscopic Imager images of the abraded area, to make an accurate estimate of the volume of rock removed. Progress is presented on recent refinement of the SGE calculation methods including decoupling of artifacts. Environmental factors and differing parameters used to command the RAT operations are among the key artifacts recently analyzed. Progress is also presented on further characterization of the dynamics and wear mechanics involved in the grinding process, and how they influence SGE. A library of Earth rocks has been assembled and it is being used with the RAT Engineering Model to create a set of similar SGE data products that can be compared to Mars rocks in order to contribute to physical properties assessments of the Mars rocks. Initial results indicate that the Martian rocks are analogous to a range of Earth rocks, from gypsum to low-strength basalt in terms of grindability; however, caution needs to be exercised in making a direct comparison of grinding energies. This is because the grindability of rocks was found to

  2. Performance Assessment of Hard Rock TBM and Rock Boreability Using Punch Penetration Test

    NASA Astrophysics Data System (ADS)

    Jeong, Ho-Young; Cho, Jung-Woo; Jeon, Seokwon; Rostami, Jamal

    2016-04-01

    Rock indentation tests are often called punch penetration tests and are known to be related to penetration rates of drilling equipment and hard rock tunnel boring machines (TBMs). Various indices determined from analysis of the force-penetration plot generated from indentation tests have been used to represent the drillability, boreability, and brittleness of rocks. However, no standard for the punch penetration test procedure or method for calculating the related indices has been suggested or adopted in the rock mechanics community. This paper introduces new indices based on the punch test to predict the performance of hard rock TBMs. A series of punch tests was performed on rock specimens representing six rock formations in Korea with different dimensions, i.e., the core specimens had different lengths and diameters. Of the indices obtained from the punch tests, the peak load index and mean load index showed good correlations with the cutting forces measured in full-scale linear cutting machine tests on the same rock types. The indices also showed good linear correlations with the ratio of uniaxial strength to Brazilian tensile strength, which indicates the brittleness of rock. The scale effect of using core specimens was investigated, and a preferred dimension for the punch test specimens is proposed. This paper also discusses the results of the punch test and full-scale rock cutting tests using LCM. The results of this study confirm that the proposed indices from the punch tests can be used to provide a reliable prediction of the cutting forces that act on a disc cutter. The estimated cutting forces can then be used for optimization of cutter-head design and performance prediction of hard rock TBMs.

  3. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.

    PubMed

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. PMID:24077359

  4. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sumit; Liu, H.-H.; Spycher, N.; Kennedy, B. M.

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area.

  5. Compact rock material gas permeability properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanling; Xu, Weiya; Zuo, Jing

    2014-09-01

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.

  6. Modeling Transport of Viruses in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Sleep, B. E.; Mondal, P. K.

    2011-12-01

    Fractured rock aquifers are frequently used for water supply for human consumption. In many instances the fractured rock aquifers are vulnerable to contamination by pathogens, including viruses, due to co-location of on-site septic systems, wastewater discharges, biosolids and agricultural activities. Approximately half of the illnesses associated with groundwater consumption in the Unites States have been attributed to viral contamination. A number of these cases have been related to transport of viruses from septic systems to drinking water wells. Despite the potential for rapid transport of viruses through rock fractures to drinking water wells, the understanding of virus transport in fractured rock is limited. In particular, the impacts of virus size, fracture aperture variability and roughness, matrix porosity, groundwater velocity, and geochemical conditions have not been well studied. In this study, a multidimensional model for virus transport in variable aperture fractures is presented. The model is applied to laboratory experiments on transport of virus-sized latex microspheres (0.02 and 0.2 microns) and bacteriophages (MS2 and PR772) in artificially fractured dolomite rocks. In these experiments significant impacts of particle size, fracture characteristics, groundwater velocity, and geochemistry were observed. Given the variability in aperture distribution and associated spatial variation in groundwater flow field, one-dimensional models were not suitable for a comprehensive evaluation of the mechanisms governing the microsphere and bacteriophage transport. Various relationships for virus retention (attachment and detachment) are evaluated to provide insight into the governing processes in virus transport in fractured rock. In addition, the role of virus size, fracture aperture variability, fracture roughness, fracture surface charge, matrix porosity, groundwater velocity, and ionic strength in virus transport are evaluated. Scale-up to the field is

  7. Weak Elastic Anisotropy in a Cracked Rock

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wong, T.

    2006-12-01

    Crack and textural fabrics have significant control over the development of mechanical anisotropy in a rock. Bedding in sedimentary rocks, cleavage in slates, preferred orientation of anisotropic minerals and anisotropic distribution of microcracks can all contribute to elastic anisotropy. Using Kachanov's (1992, 1993) formulation we analyzed the effects of an axisymmetric system of microcracks on seismic anisotropy. The elastic behavior of such a cracked rock is transversely isotropic, and its seismic properties can be characterized by the three Thomsen parameters. In this study we calculated the parameters ɛ, δ and γ under dry and saturated conditions. We derived analytic expressions for the model proposed by Sayers & Kachanov (1995), which assumes that the contribution from the fourth rank crack density tensor is negligible. This model predicts that the elliptic anisotropy condition ɛ=δ is obeyed in a dry rock. Guided by microstructural observations we adopted a two-parameter axisymmetric distribution to characterize the crack density, which predicts that δ and γ in a fluid saturated rock are related to ɛ in a nonlinear manner. All three Thomsen parameters are sensitively dependent on the crack density difference. While our model shows basic agreement with some of the laboratory data on seismic anisotropy in saturated shale, there are discrepancies which suggest that the petrofabric associated with preferred orientation of clay minerals and elastic anisotropy of the rock matrix may have considerable influence which should not be neglected in model. Preliminary comparison with borehole log data suggests rock physics tests which may be useful for interpreting the shear wave anisotropy observations.

  8. Abraded Target on Rock 'Champagne' in Gusev Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Spirit took this microscopic image of a target called 'Bubbles' on a rock called 'Champagne' after using its rock abrasion tool to grind a hole through the rock's outer surface. The circular area where the rock's interior is exposed is about 5 centimeters (2 inches) across. This rock is different from rocks out on the plains of Gusev Crater but is similar to other rocks in this area of the 'Columbia Hills' in that it rich in phosphorus. Plagioclase, a mineral commonly found in igneous rocks, is also present in these rocks, according to analysis with Spirit's miniature thermal emission spectrometer. By using the rover's alpha particle X-ray spectrometer to collect data for multiple martian days, or sols, scientists are also beginning to get measurements of trace elements in the rocks. Spirit took the images that are combined into this mosaic on sol 358 (Jan. 3, 2005).

  9. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    SciTech Connect

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  10. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans

    PubMed Central

    USHIDA, Kazunari; SEGAWA, Takahiro; TSUCHIDA, Sayaka; MURATA, Koichi

    2015-01-01

    Preservation of indigenous gastrointestinal microbiota is deemed to be critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we investigated cecal bacterial communities in wild Japanese rock ptarmigans (Lagopus muta japonica) and compared them with those in Svalbard rock ptarmigans (L. m. hyperborea) in captivity. Ultra-deep sequencing of 16S rRNA gene indicated that the community structure of cecal microbiota in wild rock ptarmigans was remarkably different from that in captive Svalbard rock ptarmigans. Fundamental differences between bacterial communities in the two groups of birds were detected at the phylum level. Firmicutes, Actinobacteria, Bacteroidetes and Synergistetes were the major phyla detected in wild Japanese rock ptarmigans, whereas Firmicutes alone occupied more than 80% of abundance in captive Svalbard rock ptarmigans. Furthermore, unclassified genera of Coriobacteriaceae, Synergistaceae, Bacteroidaceae, Actinomycetaceae, Veillonellaceae and Clostridiales were the major taxa detected in wild individuals, whereas in zoo-reared birds, major genera were Ruminococcus, Blautia, Faecalibacterium and Akkermansia. Zoo-reared birds seemed to lack almost all rock ptarmigan-specific bacteria in their intestine, which may explain the relatively high rate of pathogenic infections affecting them. We show evidence that preservation and reconstitution of indigenous cecal microflora are critical for successful ex situ conservation and future re-introduction plan for the Japanese rock ptarmigan. PMID:26468217

  11. Cecal bacterial communities in wild Japanese rock ptarmigans and captive Svalbard rock ptarmigans.

    PubMed

    Ushida, Kazunari; Segawa, Takahiro; Tsuchida, Sayaka; Murata, Koichi

    2016-02-01

    Preservation of indigenous gastrointestinal microbiota is deemed to be critical for successful captive breeding of endangered wild animals, yet its biology is poorly understood. Here, we investigated cecal bacterial communities in wild Japanese rock ptarmigans (Lagopus muta japonica) and compared them with those in Svalbard rock ptarmigans (L. m. hyperborea) in captivity. Ultra-deep sequencing of 16S rRNA gene indicated that the community structure of cecal microbiota in wild rock ptarmigans was remarkably different from that in captive Svalbard rock ptarmigans. Fundamental differences between bacterial communities in the two groups of birds were detected at the phylum level. Firmicutes, Actinobacteria, Bacteroidetes and Synergistetes were the major phyla detected in wild Japanese rock ptarmigans, whereas Firmicutes alone occupied more than 80% of abundance in captive Svalbard rock ptarmigans. Furthermore, unclassified genera of Coriobacteriaceae, Synergistaceae, Bacteroidaceae, Actinomycetaceae, Veillonellaceae and Clostridiales were the major taxa detected in wild individuals, whereas in zoo-reared birds, major genera were Ruminococcus, Blautia, Faecalibacterium and Akkermansia. Zoo-reared birds seemed to lack almost all rock ptarmigan-specific bacteria in their intestine, which may explain the relatively high rate of pathogenic infections affecting them. We show evidence that preservation and reconstitution of indigenous cecal microflora are critical for successful ex situ conservation and future re-introduction plan for the Japanese rock ptarmigan. PMID:26468217

  12. Analyzing failure modes of rock mass based on statistical mechanics of rock mass

    NASA Astrophysics Data System (ADS)

    Bao, H.; Wu, F.

    2015-12-01

    Joints influence mechanical properties of rock mass. Based on the strength criterion of statistical mechanics of rock mass, we analyzed the four different failure modes of rock mass with a group of joints by combining with Mohr-Coulomb strength criterion. We also deduced an expression of the critical confining pressure for explaining the transformation from structure control to stress control of rock mass strength. On this basis, rock mass with a group of joints were divided into four classes according to the relations between rock mass and joints parameters. Then, the possible failure modes and their corresponding conditions were discussed. At last, the strength characteristics of diorite with a group of joints were analyzed. The results showed that the diorite belonged to class rock mass and performed significant anisotropy in compressive strength. At the condition of vertical pressure, the rock start failing after joints at the critical confining pressure of 9.12MPa. However, with the confining pressure increasing, the anisotropy of strength became weak, and the strength of diorite would convert from structure control to stress control under some particular loading directions.

  13. 26. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SERIES OF VIEWS BEFORE CONSTRUCTION OF LOCK AND DAM, SHOWING RAIL BED ON UPPER DECK (UPPER LEFT), SWING SPAN IN ROTATION (UPPER RIGHT), EAST ELEVATION OF SWING SPAN AND BALTIMORE TRUSSES (CENTER), VEHICULAR ROADWAY ON LOWER DECK (LOWER LEFT), AND DRAW PIER. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Rock Island Bridge, Fort Armstrong Avenue, Rock Island, Rock Island County, IL

  14. Geophysical imaging of alpine rock glaciers

    NASA Astrophysics Data System (ADS)

    Maurer, Hansruedi; Hauck, Christian

    Slope instabilities caused by the disappearance of ice within alpine rock glaciers are an issue of increasing concern. Design of suitable counter-measures requires detailed knowledge of the internal structures of rock glaciers, which can be obtained using geophysical methods. We examine benefits and limitations of diffusive electromagnetics, geoelectrics, seismics and ground-penetrating radar (georadar) for determining the depth and lateral variability of the active layer, the distributions of ice and water, the occurrence of shear horizons and the bedrock topography. In particular, we highlight new developments in data acquisition and data analysis that allow 2-D or even 3-D structures within rock glaciers to be imaged. After describing peculiarities associated with acquiring appropriate geophysical datasets across rock glaciers and emphasizing the importance of state-of-the-art tomographic inversion algorithms, we demonstrate the applicability of 2-D imaging techniques using two case studies of rock glaciers in the eastern Swiss Alps. We present joint interpretations of geoelectric, seismic and georadar data, appropriately constrained by information extracted from boreholes. A key conclusion of our study is that the different geophysical images are largely complementary, with each image resolving a different suite of subsurface features. Based on our results, we propose a general template for the cost-effective and reliable geophysical characterization of mountain permafrost.

  15. Nitrogen in rock: Occurrences and biogeochemical implications

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  16. Airbag roll marks & displaced rocks and soil

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Looking southwest from the lander, soil disturbances indicating the spacecraft rolled through the landing site are visible. Arriving from the east, the lander, still encased in its protective airbags, rolled up a slight rise and then rolled back down to its final position. The inset at left shows displaced rocks near the rock 'Flat Top.' Dark patches of disturbed soil indicate where the rocks had originally rested Both insets show rocks that were pushed into the soil from the weight of the lander, visible from the areas of raised rims of dark, disturbed soil around several rocks. The south summit of Twin Peaks is in the background, while a lander petal, deflated airbag, and rear rover deployment ramp are in the foreground.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  17. The lunar highland melt-rock suite

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1978-01-01

    Size can be used as a criterion to select 18 large (larger than 1 cm) samples from among 148 melt-rock fragments of all sizes. This selection provides a suite of large samples which represent the important chemical variants among highland melt rocks; each large sample has enough material for a number of sample-destructive studies, as well as for future reference. Cluster analysis of the total data base of 148 highland melt rocks shows six distinct groups: anorthosite, gabbroic anorthosite, anorthositic gabbro ('highland basalt'), low K Fra Mauro, intermediate-K Fra Mauro, and high-K. Large samples are available for four of the melt-rock groups (gabbroic anorthosite, anorthositic gabbro, low-K Fra Mauro, and intermediate-K Fra Mauro). This sample selection reveals two subgroups of anorthositic gabbro (one anorthite-poor with negative Eu anomaly and one anorthite-rich without Eu anomaly). There is a sharp distinction between those Apollo 16 melt rocks and glasses which have both been classified as 'gabbroic anorthosite'.

  18. Hand Injury in Rock Climbing: Literature Review.

    PubMed

    Pozzi, A; Pivato, G; Pegoli, L

    2016-02-01

    With the amazing increasing in number of participants, rock climbing has become a popular sport in the last decade. A growing number of participants, with different skill level, inevitably leads to an increased number of injuries related to this practice. The kind of lesions that can be observed in rock-climbers is very specific and often involves the hand. For this reason is very important for any hand surgeon that is exposed to sport injuries to know which and the most common injuries related to this sport and which are the basic principles for the treatment of those. The aim of this article is to review the literature that has been published in the last ten year in this topic. On the NCBI database 22 articles where found that where related to rock climbing lesion affecting the hand or the whole body. Differences where found according to kind of rock climbing activity that was analyzed, alpine climb leads to more serious injuries, often affecting the lower limb, while in sport and recreational rock climbing the upper limb and the hand are definitely the most affected parts. Flexor pulley lesions, followed by fractures and strains are the most common lesions affecting the hand that are related to this practice. PMID:27454496

  19. How 'hard' are hard-rock deformations?

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2003-04-01

    The study of soft-rock deformations has received increasing attention during the past two decades, and much progress has been made in the understanding of their genesis. It is also recognized now that soft-rock deformations—which show a wide variety in size and shape—occur frequently in sediments deposited in almost all types of environments. In spite of this, deformations occurring in lithified rocks are still relatively rarely attributed to sedimentary or early-diagenetic processes. Particularly faults in hard rocks are still commonly ascribed to tectonics, commonly without a discussion about a possible non-tectonic origin at a stage that the sediments were still unlithified. Misinterpretations of both the sedimentary and the structural history of hard-rock successions may result from the negligence of a possible soft-sediment origin of specific deformations. It is therefore suggested that a re-evaluation of these histories, keeping the present-day knowledge about soft-sediment deformations in mind, may give new insights into the geological history of numerous sedimentary successions in which the deformations have not been studied from both a sedimentological and a structural point of view.

  20. Phosphate rock costs, prices and resources interaction.

    PubMed

    Mew, M C

    2016-01-15

    This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation. PMID:26412420

  1. A rock-/ice mechanical model for the destabilisation of permafrost rocks

    NASA Astrophysics Data System (ADS)

    Krautblatter, Michael; Funk, Daniel

    2010-05-01

    The destabilisation of permafrost rocks is commonly attributed to changes in ice-mechanical properties (Davies et al. 2001). The effect of low temperatures on intact rock strength and its mechanical relevance for shear strength and brittle fracture propagation has not been considered yet. But this effect is significant since compressive and tensile strength are reduced by up to 50% and more when rock thaws (Mellor, 1973). Here we show, that the reduction of the shear resistance of rock-rock contacts in joints plays a key role for the onset of larger instabilities in thawing permafrost rocks. Based on a Mohr-Coulomb assumption, we defined a failure criterion of an ice-filled rock cleft, with cohesive rock bridges, contact of rough fracture surfaces, ductile creep of ice and with a representation of rock-ice "failure" mechanisms along the surface and inside the ice body. The synoptic models are based on the principle of superposition, i.e. that shear stress "absorbed" by one component reduces the amount of shear stress applied to the other components. Failure along existing sliding planes can be explained by the impact of temperature on shear stress uptake by creep deformation of ice, the propensity of failure along rock-ice fractures and reduced total friction along rough rock-rock contacts. This model may account for the rapid response of rockslides to warming (reaction time). In the long term, brittle fracture propagation is initialised. Warming reduces the shear stress uptake by total friction and decreases the critical fracture toughness along rock bridges. The latter model accounts for slow subcritical destabilisation of whole rock slopes over decades to millennia, subsequent to the warming impulse (relaxation time). To test the importance of reduced friction, we conducted shearing tests on homogeneous fine-grained limestone specimen taken from a permafrost site (Zugspitze, Germany). In a temperature-controlled shearing box, we repeatedly tested mechanical

  2. An evaluation of multiband photography for rock discrimination. [sedimentary rocks of Front Range, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Principal Investigator); Raines, G. L.

    1974-01-01

    The author has identified the following significant results. With the advent of ERTS and Skylab satellites, multiband imagery and photography have become readily available to geologists. The ability of multiband photography to discriminate sedimentary rocks was examined. More than 8600 in situ measurements of band reflectance of the sedimentary rocks of the Front Range, Colorado, were acquired. Statistical analysis of these measurements showed that: (1) measurements from one site can be used at another site 100 miles away; (2) there is basically only one spectral reflectance curve for these rocks, with constant amplitude differences between the curves; and (3) the natural variation is so large that at least 150 measurements per formation are required to select best filters. These conclusions are supported by subjective tests with aerial multiband photography. The designed multiband photography concept for rock discrimination is not a practical method of improving sedimentary rock discrimination capabilities.

  3. Effects of atmospheric moisture on rock resistivity.

    NASA Technical Reports Server (NTRS)

    Alvarez, R.

    1973-01-01

    This study examines the changes in resistivity of rock samples as induced by atmospheric moisture. Experiments were performed on samples of hematitic sandstone, pyrite, and galena. The sandstone underwent a change in resistivity of four orders of magnitude when it was measured in a vacuum of 500 ntorr and in air of 37% relative humidity. Pyrite and galena showed no variations in resistivity when they were measured under the same conditions. These results, plus others obtained elsewhere, indicate that rocks of the resistive type are affected in their electrical properties by atmospheric moisture, whereas rocks of the conductive type are not. The experimental evidence obtained is difficult to reconcile with a model of aqueous electrolytic conduction on the sample surface. It is instead suggested that adsorbed water molecules alter the surface resistivity in a manner similar to that observed in semiconductors and insulators.

  4. Rock climbing-related subclavian vein thrombosis.

    PubMed

    Lutter, Christoph; Monasterio, Erik; Schöffl, Volker

    2015-01-01

    Paget-Schroetter syndrome, also known as upper extremity deep venous thrombosis (UEDVT), is a rare condition, characterised by a (sub-) total occlusion of the axillary-subclavian venous system due to thrombosis. UEDVT is the most common vascular condition among athletes so far; although the general incidence is low, this problem will become more frequent as a result of increased participation in climbing sports. The purpose of this report is to illustrate two cases in rock climbers where UEDVT developed during rock climbing or bouldering. Fortunately, both patients were diagnosed relatively early after the symptoms began, despite the ambiguity of UEDVT symptoms. This relatively unfamiliar condition may become more highly recognised as a potentially serious differential diagnosis of unspecific pain of the shoulder. Rock climbers are disposed to develop UEDVT due to frequent stress on the upper extremities during training or competition. PMID:26430234

  5. ROCK inhibition impedes macrophage polarity and functions.

    PubMed

    Liu, Yianzhu; Tejpal, Neelam; You, Junping; Li, Xian C; Ghobrial, Rafik M; Kloc, Malgorzata

    2016-02-01

    Macrophages play an important role in immune responses including allograft rejection and they are one of the potential targets of anti-rejection therapies in organ transplantation. Macrophage alloreactivity relies on their phenotype/polarity, motility, phagocytosis and matrix degradation, which in turn depend on proper functioning of actin cytoskeleton and its regulators, the small GTPase RhoA and its downstream effector the Rho-associated protein kinase (ROCK). Several laboratories showed that administration of ROCK inhibitor Y-27632 to the graft recipient inhibits chronic rejection or rodent cardiac allografts. Here we studied the effect of Y-27632 on mouse peritoneal macrophage structure, polarity and functions in in vitro assays. We show that Y-27632 inhibitor affects macrophage phenotype/polarity, phagocytosis, migration, and matrix degradation. These novel findings suggest that the impediment of macrophage structure and function via interference with the RhoA/ROCK pathway has a potential to be therapeutically effective in organ transplantation. PMID:26711331

  6. Stochastic multiscale model for carbonate rocks.

    PubMed

    Biswal, B; Oren, P-E; Held, R J; Bakke, S; Hilfer, R

    2007-06-01

    A multiscale model for the diagenesis of carbonate rocks is proposed. It captures important pore scale characteristics of carbonate rocks: wide range of length scales in the pore diameters; large variability in the permeability; and strong dependence of the geometrical and transport parameters on the resolution. A pore scale microstructure of an oolithic dolostone with generic diagenetic features is successfully generated. The continuum representation of a reconstructed cubic sample of side length 2mm contains roughly 42 x 10{6} crystallites and pore diameters varying over many decades. Petrophysical parameters are computed on discretized samples of sizes up to 1000{3}. The model can be easily adapted to represent the multiscale microstructure of a wide variety of carbonate rocks. PMID:17677251

  7. Remote sensing of some sedimentary rocks.

    NASA Technical Reports Server (NTRS)

    Brennan, P. A.; Lintz, J., Jr.

    1971-01-01

    Sedimentary rocks including varying sized clastics and carbonates were overflown by aircraft between 1966 and 1971 producing data in the ultraviolet to microwave regions of the electromagnetic spectrum. This paper reports that multispectral analysis increases the ease and rapidity of discrimination of rock types having subtle differences in physical characteristics, but fails to enhance and may degrade distinctions where physical characteristics are significantly different. Brief resumes of color and color IR photographic data are presented. Thermal infrared is found to be useful in the mapping of rock units, but limitations such as moisture variation, soil cover, and vegetation may exceed in one formation the distinction between differing lithologies. A brief review of previously published SLAR data is included for completeness. Remote sensing techniques should reduce field geological effort by as much as 50%.

  8. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  9. Surface conductivity in rocks: a review

    NASA Astrophysics Data System (ADS)

    Ruffet, C.; Darot, M.; Guéguen, Y.

    1995-01-01

    Electrical properties of rocks depend on composition (i.e. bulk properties of the constituents), micro structure (i.e. geometrical arrangement of the constituents) and interfacial effects. We consider here a rock as a three component system — grains, pores, and interfaces — in order to account for the observed behaviour. We review first the main results relative to DC. conductivity. Surface conductivity effects show up clearly in the case of shaly formations or at low salinities. Although Archies' law (1942) and Waxman and Smits model (1968) are widely used, a more physically based model is that of Johnson and Sen (1988). We review also the variable frequency conductivity (complex conductivity) data and models. The important effect in that case is the enhancement of the dielectric constant at low frequencies (Knight and Nur, 1987) which can be interpreted as a geometrical effect although electrochemical interactions may also play an important role at low frequencies, depending on the rock type.

  10. Zapping Mars Rocks with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    1999-12-01

    Because we do not know what deadly microorganisms might be lurking inside samples returned from Mars, the samples will either have to be sterilized before release or kept in isolation until biological studies declare them safe. One way to execute microorganisms is with radiation, such as gamma rays. Although quite effective in snuffing out bacteria and viruses, gamma rays might also affect the mineralogical, chemical, and isotopic compositions of the zapped rocks and soils. Carl Allen (Lockheed Martin Space Operations, Houston) and a team of 18 other analysts tested the effect of gamma rays on rock and mineral samples like those we expect on Mars. Except for some darkening of some minerals, high doses of gamma rays had no significant effect on the rocks, making gamma radiation a feasible option for sterilizing samples returned from Mars.

  11. Siliceous microfossil extraction from altered Monterey rocks

    SciTech Connect

    Nelson, C.O.; Casey, R.E.

    1986-04-01

    Samples of altered Monterey rocks of differing lithologies were processed by various methods to develop new techniques for extracting siliceous microfossils. The preliminary use of thin sections made from the same rocks reduced the number of probable samples (samples worth further processing) by about one-third. Most of the siliceous microfossils contained in altered Monterey rocks appear to be highly recrystallized and are extremely fragile; however, some contained silicified and silica-infilled radiolarians and planktonic and benthonic foraminifera, which are very tough. In general the most useful techniques were gently hydrochloric acid, hydrogen peroxide, formic acid, monosodium glutamate, and regular siliceous microfossil extraction techniques. Unsuccessful techniques and a new siliceous microfossil flotation technique are also documented.

  12. Rocks of the early lunar crust

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1980-01-01

    Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.

  13. Chromian spinels from Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Steele, I. M.

    1972-01-01

    Results of electron microprobe analysis of 13 pink, isotropic, high-relief grains from Apollo 14 elastic rock 14063,14 and a lithic fragment from the 1 to 2 mm fines, 14002,7, identifying them as spinel minerals dominated by the spinel component MgAl2O4 associated with a moderate content of chromite and hercynite. The spinel is thought to have crystallized from a magma high in aluminum and low in iron, with possible crystal separation, followed by incorporation in clastic rocks by impacts. Many bulk compositions of the elastic fragments fall near the field of primary spinel in the model system An-Fo-SiO2. Experimental syntheses of Apollo 14 rocks are needed to test the suggested primary origin.

  14. Petromagnetic characteristics of Cameroon Line volcanic rocks

    NASA Astrophysics Data System (ADS)

    Ubangoh, R. U.; Pacca, I. G.; Nyobe, J. B.; Hell, J.; Ateba, B.

    2005-04-01

    Volcanic rock samples collected from 154 sites on the Cameroon Line (CL) have been analysed to study their petromagnetic characteristics. Thermomagnetic experiments and electron microscope observations on the samples indicate that the principal magnetic mineral and carrier of Natural Remanent Magnetisation (NRM) in these rocks is titanomagnetite rich in titanium. These also indicate that the level and stability of magnetisation are dependent on the quantity and composition of the magnetic minerals (which are controlled by the composition of the original liquid magma), their oxidation states and grain sizes. The contribution of high- and low-temperature oxidation observed in some of the magnetic minerals was that of increasing their magnetic resistance. Rocks with abundant ilmenite lamellae in their titanomagnetite showed increased magnetic resistance during demagnetisation experiments. In the analysis, the samples exhibited a considerable magnetisation spectrum indicating that most of them are strongly magnetic. The general tendency in experimental magnetism of an increase in magnetic resistance with decrease in grain sizes of discrete magnetic minerals is not respected in this natural system because of the effects of the presence of many ilmenite lamellae and mini-fractures in some of the titanomagnetite grains. In this way, the conditions of low crystallisation temperature, high fO2 and high PH 2O , which were the conditions for the crystallisation of the most stable rocks (the hawaiites) on the line, were the conditions favourable for the acquisition of a stable magnetisation in the region. The low Curie temperatures (74-250 °C) found for a majority of the rocks indicate that the lower crust in the region and the upper mantle could be nonmagnetic. The high regional negative magnetic anomaly over the Cameroon Line that is not consistent with the small depth previewed by the Curie system and by the paramagnetic effect of the acid volcanic rocks in the region is

  15. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  16. Source rock maturation, San Juan sag

    SciTech Connect

    Gries, R.R.; Clayton, J.L.

    1989-09-01

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  17. Geomechanical rock properties of a basaltic volcano

    NASA Astrophysics Data System (ADS)

    Schaefer, Lauren; Kendrick, Jackie; Lavallée, Yan; Oommen, Thomas; Chigna, Gustavo

    2015-06-01

    In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.

  18. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease

    PubMed Central

    Hartmann, Svenja; Ridley, Anne J.; Lutz, Susanne

    2015-01-01

    Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases that are downstream targets of the small GTPases RhoA, RhoB, and RhoC. ROCKs are involved in diverse cellular activities including actin cytoskeleton organization, cell adhesion and motility, proliferation and apoptosis, remodeling of the extracellular matrix and smooth muscle cell contraction. The role of ROCK1 and ROCK2 has long been considered to be similar; however, it is now clear that they do not always have the same functions. Moreover, depending on their subcellular localization, activation, and other environmental factors, ROCK signaling can have different effects on cellular function. With respect to the heart, findings in isoform-specific knockout mice argue for a role of ROCK1 and ROCK2 in the pathogenesis of cardiac fibrosis and cardiac hypertrophy, respectively. Increased ROCK activity could play a pivotal role in processes leading to cardiovascular diseases such as hypertension, pulmonary hypertension, angina pectoris, vasospastic angina, heart failure, and stroke, and thus ROCK activity is a potential new biomarker for heart disease. Pharmacological ROCK inhibition reduces the enhanced ROCK activity in patients, accompanied with a measurable improvement in medical condition. In this review, we focus on recent findings regarding ROCK signaling in the pathogenesis of cardiovascular disease, with a special focus on differences between ROCK1 and ROCK2 function. PMID:26635606

  19. Correlation of Rock Spectra with Quantitative Morphologic Indices: Evidence for a Single Rock Type at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Biedermann, K. L.; Pierre, N. M.; Haldemann, A. F. C.; Johnson, J. R.

    2005-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder (IMP) visible/near-infrared data, efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, as many factors influencing spectral signatures cannot be quantified to a sufficient level to be removed. It has not been fully determined which spectral categories stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique rock mineralogies difficult. Morphology, like composition, is a characteristic tied to the intrinsic properties and geologic and weathering history of rocks. Rock morphologies can be assessed quantitatively and compared with spectral data, to identify and classify rock types at the MPF landing site. They can also isolate actual rock spectra from spectral types that are surficial in origin, as compositions associated with mantling dust or chemical coatings would presumably not influence rock morphology during weathering events. We previously reported on an initial classification of rocks using the quantitative morphologic indices of size, roundness, sphericity and elongation. Here, we compare this database of rock characteristics with associated rock surface spectra to improve our ability to discriminate between spectra associated with rock types and those from other sources.

  20. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  1. Rock melting tool with annealer section

    DOEpatents

    Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.

    1998-01-01

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  2. Correlation between roughness and porosity in rocks

    NASA Astrophysics Data System (ADS)

    Rebollo, M. A.; Hogert, E. N.; Albano, J.; Raffo, C. A.; Gaggioli, N. G.

    1996-02-01

    The porosity of rocks is a very important parameter in the determination of the performance of oil wells. Optical methods allow us to study surface roughness and different materials that have surface properties with random characteristics. Therefore, we have extended these applications to porosity analysis. In our method, we have used the speckle produced by the scattered light from a porous rock, illuminated by a laser beam, and found a linear relationship between the decorrelation of the speckle intensity distribution and the porosity magnitude. In this paper we present the results for samples extracted from oil wells in Argentina.

  3. First look at rock & soil properties

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The earliest survey of spectral properties of the rocks and soils surrounding Pathfinder was acquired as a narrow strip covering the region just beyond the where the rover made its egress from the lander. The wavelength filters used, all in the binocular camera's right eye, cover mainly visible wavelengths. These data reveal at least five kinds of rocks and soil in the immediate vicinity of the lander. All of the spectra are ratioed to the mean spectrum of bright red drift to highlight the differences. Different occurrences of drift (pink spectra) are closely similar. Most of the rocks (black spectra) have a dark gray color, and are both darker and less red than the drift, suggesting less weathering. Typical soils (green spectra) are intermediate in properties to the rocks and drift. Both these data and subsequent higher resolution images show that the typical soil consists of a mixture of drift and small dark gray particles resembling the rock. However, two other kinds of materials are significantly different from the rocks and drift. Pinkish or whitish pebbles and crusts on some of the rocks (blue spectra) are brighter in blue light and darker in near-infrared light than is the drift, and they lack the spectral characteristics closely associated with iron minerals. Dark red soils in the lee of several rocks are about as red as the drift, but consistently darker. The curvature in the spectrum at visible wavelengths suggests either more ferric iron minerals than in the drift or a larger particle size.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division

  4. Blast energy mitigation in porous rocks

    NASA Astrophysics Data System (ADS)

    Essink, Brittany C.

    Geo-materials are commonly used and sought after for blast mitigation applications due to their wide availability and low cost compared to industry trademarked materials. Characterization of these natural geo-materials such as volcanic rocks is of paramount importance in determining their blast mitigation capabilities. While there is a large amount of information available for materials such as concrete or sand blasts, information on the properties of volcanic rocks is far more scarce. This lack of data is due to the wide range of existing natural volcanic rocks and the variation in the minerals and pore structures of the rocks. In this thesis, silicate volcanic rock samples are characterized both through static and dynamic experimental methods. Initial X-ray powder diffraction scans have been conducted and analyzed to obtain the mineral composition information of the rock samples. Additional tomographic scans under quasi-static loading have been recorded to better understand the internal composition of the material pore structure and the material fracture. For this study, standard compression experiments were conducted at two separate strain rates for ten samples each on a UTM test frame to characterize the behavior of the rock under quasi-static conditions. High strain rate uniaxial compression tests were conducted for three strain rates using a split-Hopkinson pressure bar with pulse shaping to determine the dynamic response of the material. The stress-strain data from the experiments was used to determine the modulus of toughness of the material. Due to the high porosity and heterogeneity of the material, 25 samples were used for dynamic experimentation to attempt to capture and minimize the effects of scatter in the natural material. High speed photography was used to capture the sample deformation during two separate strain rates and to visualize crack propagation and strain rate in the samples. It was found that after an initial yielding, the material is

  5. Automated igneous rock identifiers for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.

    2003-04-01

    A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions [1]. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. Our algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high-resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples. Our prototype image analysis system identifies some igneous rocks from texture and color information. Spectral analysis algorithms have also been developed that successfully identify quartz, silica polymorphs, calcite, pyroxene, and jarosite from both visible/near-IR and mid-IR spectra. We have also developed spectral recognizers that identify high-iron pyroxenes and iron-bearing minerals using visible/near-IR spectra only. We are building a combined image and spectral database of rocks and minerals with which to continue development of our algorithms. Future plans include developing algorithms to identify

  6. Rock property measurements and analysis of selected igneous, sedimentary, and metamorphic rocks from worldwide localities

    USGS Publications Warehouse

    Johnson, Gordon R.

    1983-01-01

    Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.

  7. Geochemistry of Manson impact structure rocks - Target rocks, impact glasses, and microbreccias

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Hartung, Jack B.

    A representative set of samples of target rocks from the Manson Crater have been studied for the first time, and the results are reported. The target rocks show a wide range of composition for all elements. For most elements the range exhibited by the Manson Crater rocks (MCRs) plots within the range of the target rocks; however, a few elements are enriched in the MCR. The REE abundances are generally higher in the MCRs than the target rock; this may indicate a selective volatilization of low-REE target rocks such as carbonates and subsequent concentration of the REE-bearing accessory minerals in the MCRs. The composition of the MCRs indicate that those rocks comprise both Archean and post-Archean sedimentary sequences. All microbreccia samples and most glass samples have narrow range in the REE patterns. The chemistry of the MCRs is only marginally compatible with the composition of the newly discovered black impact glasses from the Haiti K/T boundary and is incompatible with the composition of the yellow glasses.

  8. The surface orientation of some Apollo 14 rocks.

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Morrison, D. A.; Hartung, J. B.

    1972-01-01

    Detailed stereomicroscopic studies of the distribution of microcraters, soil covers, and glass coatings were performed to reconstruct the most recent surface orientations of selected Apollo 14 rocks. Surface orientations could be established for rocks 14053, 14073, 14301, 14303, 14307, 14310, and 14311 (which includes rock 14308). A tentative orientation of rock 14055 is suggested, and comments concerning the surface history of rocks 14302, 14305, and 14318 are presented. The examination of rocks 14066, 14306, and 14321 indicates that these specimens have complicated surface histories that prevent reconstruction of their orientation by the criteria that were established in these stereomicroscopic studies.

  9. Radiocarbon dating of ancient rock paintings

    SciTech Connect

    Ilger, W.A.; Hyman, M.; Rowe, M.W.; Southon, J.

    1995-06-20

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  10. Mars Exploration Rovers' Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Gorevan, S.; Myrick, T.; Davis, K.; Ji, J.; Bartlett, P.; Mukherjee, S.; Arafat, T.

    2003-04-01

    Each of the twin 2003 Mars Exploration Rovers will be equipped with a Rock Abrasion Tool (RAT) designed and tested by Honeybee Robotics. The RAT is a robotic grinding tool and science instrument about the size of a soda can and weighing less than 690 grams that is carried by the robotic arm or Instrument Deployment Device (IDD) of the rover. The primary purpose of the RAT is to remove the dust and surface rind from Mars rock targets to reveal the underlying petrographic features. After the RAT is placed and preloaded against the target rock by the IDD, all operations of the RAT are performed autonomously. Using three small motors to drive the rotation, revolve and z-axis subassemblies the RAT removes a 45 mm diameter, 5 mm deep patch of rock. The RAT has a resin-bonded diamond abrasion wheel and two brushes to provide a clean observation surface for the three surface instruments - APXS, Microscopic Imager and Moessbauer Spectrometer. Detailed design and operation descriptions, as well as recent qualification and operational testing results will be presented.

  11. Middle Triassic source rocks in north Lombardy

    SciTech Connect

    Gnaccolini, M.; Gaetani, M.; Mattavelli, L.; Leoni, C.; Poliani, G.; Riva, A.

    1988-08-01

    Using molecular geochemistry techniques, we established that the Perledo-Verenna and Meride Formations (Middle Triassic, southern Alps) represent the source rocks of the Gaggiano and Villafortuna deep oil fields discovered 40 km northwest of Milan. To find the geological factors which control the areal extent thickness and organic matter distribution relative to these sequences, a sedimentological and geochemical study was undertaken.

  12. Procedures for Identifying Rocks with Similar Features.

    ERIC Educational Resources Information Center

    Powell, William E.

    1984-01-01

    The purpose of this article is to provide college level physical geography and geology teachers with practical and simple techniques to help students classify and understand igneous, sedimentary, and metamorphic rocks. Essential equipment is also discussed, and recommended readings are listed. (RM)

  13. Lithologic mapping of silicate rocks using TIMS

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    Common rock-forming minerals have thermal infrared spectral features that are measured in the laboratory to infer composition. An airborne Daedalus scanner (TIMS) that collects six channels of thermal infrared radiance data (8 to 12 microns), may be used to measure these same features for rock identification. Previously, false-color composite pictures made from channels 1, 3, and 5 and emittance spectra for small areas on these images were used to make lithologic maps. Central wavelength, standard deviation, and amplitude of normal curves regressed on the emittance spectra are related to compositional information for crystalline igneous silicate rocks. As expected, the central wavelength varies systematically with silica content and with modal quartz content. Standard deviation is less sensitive to compositional changes, but large values may result from mixed admixture of vegetation. Compression of the six TIMS channels to three image channels made from the regressed parameters may be effective in improving geologic mapping from TIMS data, and these synthetic images may form a basis for the remote assessment of rock composition.

  14. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  15. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  16. Rock melting technology and geothermal drilling

    NASA Technical Reports Server (NTRS)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  17. Electromagnetic emission in mineral and rock dehydration

    NASA Astrophysics Data System (ADS)

    Salnikov, V.; Popov, V.; Terre, D.

    2016-03-01

    The article considers regularities of radiofrequency electromagnetic radiation from minerals and rocks, with samples being heated in a vacuum to 20° C- 1000° C. The examples of electromagnetic emission correlation with electric conductivity, thermoluminescence and thermographic analysis during physic-chemical processes resulting from diagenesis, catagenesis and metagenesis have been provided.

  18. Instrumented Pick Detects Coal/Rock Interface

    NASA Technical Reports Server (NTRS)

    Wu, T.; Erkes, J. W.

    1983-01-01

    Instrumented pick installed on cutting drum of coal shearer for longwall mining measures cutting force with strain-gage-bridge load cell. Force signal transmitted to remote recorder. Transmitter located in base of pick assembly. Antenna located in shadow of rotating pick. Changes in characteristics of force signals from pick used to determine whether pick is cutting coal or rock.

  19. Sedimentary Rocks and Methane - Southwest Arabia Terra

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.; Venechuk, Elizabeth M.

    2006-01-01

    We propose to land the Mars Science Laboratory in southwest Arabia Terra to study two key aspects of martian history the extensive record of sedimentary rocks and the continuing release of methane. The results of this exploration will directly address the MSL Scientific Objectives regarding biological potential, geology and geochemistry, and past habitability.

  20. Transient Non Lin Deformation in Fractured Rock

    Energy Science and Technology Software Center (ESTSC)

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  1. Digging into Rocks with Young Children

    ERIC Educational Resources Information Center

    Trundle, Kathy; Miller, Heather; Krissek, Lawrence

    2013-01-01

    Rocks and other Earth materials are included in national, state, and local standards. For example, "A Framework for K-12 Science Education" (NRC 2012) contains topics related to Earth systems, which include the hydrosphere, atmosphere, biosphere, and geosphere. By second grade, students should be able to describe how most areas where…

  2. Getting Off the Ground with Rock Climbing.

    ERIC Educational Resources Information Center

    McNamee, Jeff; Steffen, Jeff

    2001-01-01

    Describes how to teach rock climbing to elementary school students using balance dome cones, which are small, cylindrical- shaped cones that are rounded at the top, seven inches in diameter, and four inches high. Students step on the cones as they explore and discover their balance limits in various unnatural movement positions. Individual and…

  3. Determining multiple length scales in rocks

    NASA Astrophysics Data System (ADS)

    Song, Yi-Qiao; Ryu, Seungoh; Sen, Pabitra N.

    2000-07-01

    Carbonate reservoirs in the Middle East are believed to contain about half of the world's oil. The processes of sedimentation and diagenesis produce in carbonate rocks microporous grains and a wide range of pore sizes, resulting in a complex spatial distribution of pores and pore connectivity. This heterogeneity makes it difficult to determine by conventional techniques the characteristic pore-length scales, which control fluid transport properties. Here we present a bulk-measurement technique that is non-destructive and capable of extracting multiple length scales from carbonate rocks. The technique uses nuclear magnetic resonance to exploit the spatially varying magnetic field inside the pore space itself-a `fingerprint' of the pore structure. We found three primary length scales (1-100µm) in the Middle-East carbonate rocks and determined that the pores are well connected and spatially mixed. Such information is critical for reliably estimating the amount of capillary-bound water in the rock, which is important for efficient oil production. This method might also be used to complement other techniques for the study of shaly sand reservoirs and compartmentalization in cells and tissues.

  4. The Weathering of Rocks: Three Activities.

    ERIC Educational Resources Information Center

    McLure, John W.

    1991-01-01

    Integrates science and social studies in several activities that study weathering caused by the freezing and thawing of rocks, wind erosion, and the effects of weathering on tombstones. Cites the possibility of these activities leading to an interdisciplinary exploration of pollution, customs, and populations. (MCO)

  5. Education Vouchers: The Experience at Alum Rock.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC.

    In 1970, the Office of Economic Opportunity tried to establish several voucher test sites to evaluate the voucher concept. Alum Rock Union School District, San Jose, California, was the only district in the country to agree to be a test site. In July 1973, responsibility for the Education Voucher Program was transferred to the National Institute…

  6. Petroleum source rock potential on Jamaica

    SciTech Connect

    Rodrigues, K.

    1983-01-10

    By means of standard geochemical techniques, geologists evaluated the hydrocarbon source rock potential of Jamaican shales and mudstones in terms of the amount, type, and maturity of the organic matter preserved in these sediments. Samples taken from outcrops and well cores revealed that shales from the Chapelton and Windsor formations may have the best potential for hydrocarbon generation.

  7. Hot-dry-rock geothermal resource 1980

    SciTech Connect

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  8. Herpesvirus infections in rock hyraxes (Procavia capensis).

    PubMed

    Galeota, Judith A; Napier, Julia E; Armstrong, Douglas L; Riethoven, Jean-Jack; Rogers, Douglas G

    2009-07-01

    Seven juveniles and 3 adults from a closed group of 19 rock hyraxes (Procavia capensis) housed in a zoo's indoor rock exhibit died or were euthanized after developing blepharoconjunctivitis and orofacial ulcers over a 2-week period. Histopathologic examination of dermal ulcers and ulcerated tongues revealed amphophilic to basophilic intranuclear inclusion bodies in epithelial cells bordering ulcers. Epithelial cells with inclusion bodies were often characterized by cytomegaly and karyomegaly, and many cells had formed syncytia. Examination of inclusion bodies in tongue epithelium by transmission electron microscopy revealed icosahedral nucleocapsids, approximately 80-95 nm in diameter, with morphologic features consistent with herpesvirus. Cytopathic effect (CPE) typical of alphaherpesvirus infection was seen in bovine turbinate, equine dermal, and Vero cell monolayers after inoculation with homogenates of the skin lesions, but CPE was not seen after inoculation onto Madin-Darby canine kidney or swine testicle cell monolayers. Polymerase chain reaction analysis using degenerate primers that targeted a portion of the herpesvirus polymerase gene generated a product of approximately 227 base pairs. The product was cloned, sequenced, and then analyzed using BLAST. At the nucleotide level, there was 86%, 77%, and 76% shared identity with Eidolon herpesvirus 1, Human herpesviruses 1 and 2, and Cercopithecine herpesvirus 2, respectively. Herpesvirus infections in rock hyraxes have not been characterized. The data presented in the current study suggest that a novel alphaherpesvirus caused the lesions seen in these rock hyraxes. The molecular characteristics of this virus would tentatively support its inclusion in the genus Simplexvirus. PMID:19564505

  9. Accurate phase-shift velocimetry in rock.

    PubMed

    Shukla, Matsyendra Nath; Vallatos, Antoine; Phoenix, Vernon R; Holmes, William M

    2016-06-01

    Spatially resolved Pulsed Field Gradient (PFG) velocimetry techniques can provide precious information concerning flow through opaque systems, including rocks. This velocimetry data is used to enhance flow models in a wide range of systems, from oil behaviour in reservoir rocks to contaminant transport in aquifers. Phase-shift velocimetry is the fastest way to produce velocity maps but critical issues have been reported when studying flow through rocks and porous media, leading to inaccurate results. Combining PFG measurements for flow through Bentheimer sandstone with simulations, we demonstrate that asymmetries in the molecular displacement distributions within each voxel are the main source of phase-shift velocimetry errors. We show that when flow-related average molecular displacements are negligible compared to self-diffusion ones, symmetric displacement distributions can be obtained while phase measurement noise is minimised. We elaborate a complete method for the production of accurate phase-shift velocimetry maps in rocks and low porosity media and demonstrate its validity for a range of flow rates. This development of accurate phase-shift velocimetry now enables more rapid and accurate velocity analysis, potentially helping to inform both industrial applications and theoretical models. PMID:27111139

  10. 30 CFR 57.3203 - Rock fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock fixtures. 57.3203 Section 57.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling...

  11. 30 CFR 57.3203 - Rock fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock fixtures. 57.3203 Section 57.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling...

  12. 30 CFR 57.3203 - Rock fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock fixtures. 57.3203 Section 57.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling...

  13. 30 CFR 57.3203 - Rock fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock fixtures. 57.3203 Section 57.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling...

  14. 30 CFR 56.3203 - Rock fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock fixtures. 56.3203 Section 56.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Ground Control Scaling and...

  15. 30 CFR 56.3203 - Rock fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock fixtures. 56.3203 Section 56.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Ground Control Scaling and...

  16. 30 CFR 56.3203 - Rock fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock fixtures. 56.3203 Section 56.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Ground Control Scaling and...

  17. 30 CFR 56.3203 - Rock fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock fixtures. 56.3203 Section 56.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Ground Control Scaling and...

  18. 30 CFR 56.3203 - Rock fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock fixtures. 56.3203 Section 56.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Ground Control Scaling and...

  19. 30 CFR 57.3203 - Rock fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock fixtures. 57.3203 Section 57.3203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Ground Control Scaling...

  20. Youth, Rock 'n' Roll, and Electronic Media.

    ERIC Educational Resources Information Center

    Snow, Robert P.

    1987-01-01

    Rock 'n' Roll as a form of electronic communication is central to youth culture. There are procedural rules similar to grammatical structures which allow meaningful interpretation of this musical experience. As new forms of communication appear both youth culture and the meaning of music are altered to encompass the changes. (VM)