Science.gov

Sample records for rocky mountain spotted

  1. Rocky Mountain spotted fever

    MedlinePlus

    Rocky Mountain spotted fever is a disease caused by a type of bacteria carried by ticks. ... Rocky Mountain spotted fever is caused by the bacteria Rickettsia rickettsii (R. Rickettsii) , which is carried by ticks. The ...

  2. Rocky Mountain spotted fever

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/000654.htm Rocky Mountain spotted fever To use the sharing features on this page, please enable JavaScript. Rocky Mountain spotted fever is a disease caused by a ...

  3. Rocky Mountain spotted fever.

    PubMed

    Comer, K M

    1991-01-01

    Rocky Mountain spotted fever is an endemic tickborne disease found throughout the United States and other regions of the world. Exposure may result in a spectrum of disease from subclinical infection to severe or fatal multiorgan collapse. The disease is maintained in nature in Ixodid tick vectors and their hosts. The most important ticks in the United States are Dermacentor variabilis and Dermacentor andersoni. Small mammals are the natural reservoirs in the wild. Dogs become infected when a tick harboring Rickettsia rickettsii feeds on the dog. Dogs do not develop sufficient rickettsemia to act as a reservoir in the transmission of Rickettsia rickettsii. Thus, although dogs act as sentinels to the presence of the disease, they cannot directly transmit infection. Signs in early stages of disease often are nonspecific. The most characteristic laboratory abnormality is thrombocytopenia, but serologic testing is necessary for confirmation of infection. Tetracycline and chloramphenicol are effective antibiotics to treat infection. Treatment should continue for 14 to 21 days to allow host immune defenses to develop and eradicate the organism. Prevention requires avoidance of tick-infested areas and rapid removal of ticks should exposure occur. PMID:2014623

  4. Rocky Mountain spotted fever in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cases of epidemic typhus have been documented in Argentina since 1919; however, no confirmed reports of spotted fever rickettsiosis were described in this country until 1999. We describe the first molecular confirmation of Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever (R...

  5. Rocky Mountain Spotted Fever in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the first molecular confirmation of Rickettsia rickettsii, the cause of Rocky Mountain spotted fever (RMSF), from a tick vector, Amblyomma cajennense, and from a cluster of fatal spotted fever cases in Argentina. Questing A. cajennense ticks were collected at or near sites of presumed or...

  6. Rocky mountain spotted fever on the arm (image)

    MedlinePlus

    Rocky Mountain Spotted Fever is a disease transmitted to humans by a tick bite. The spots begin as flat (macular) red (erythematous) patches that may bleed into the skin, causing purplish spots (purpura). The disease ...

  7. Kawasaki disease following Rocky Mountain spotted fever: a case report

    PubMed Central

    2009-01-01

    Introduction Kawasaki disease is an idiopathic acute systemic vasculitis of childhood. Although it simulates the clinical features of many infectious diseases, an infectious etiology has not been established. This is the first reported case of Kawasaki disease following Rocky Mountain spotted fever. Case presentation We report the case of a 4-year-old girl who presented with fever and petechial rash. Serology confirmed Rocky Mountain spotted fever. While being treated with intravenous doxycycline, she developed swelling of her hands and feet. She had the clinical features of Kawasaki disease which resolved after therapy with intravenous immune globulin (IVIG) and aspirin. Conclusion This case report suggests that Kawasaki disease can occur concurrently or immediately after a rickettsial illness such as Rocky Mountain spotted fever, hypothesizing an antigen-driven immune response to a rickettsial antigen. PMID:19830185

  8. Preparation of Rocky Mountain spotted fever vaccine suitable for human immunization.

    PubMed Central

    Kenyon, R H; Pedersen, C E

    1975-01-01

    Rocky Mountain spotted fever vaccine was produced from rickettsiae grown in chicken embryo cells in roller bottle cultures. The rickettsiae were concentrated and purified by passage through a sucrose gradient and inactivated with formalin. This vaccine satisfactorily passed preinactivation and final container testing and is believed to be superior to the presently available yolk sac vaccine. PMID:809483

  9. Phylogeography of Rickettsia rickettsii Genotypes Associated with Fatal Rocky Mountain Spotted Fever

    PubMed Central

    Paddock, Christopher D.; Denison, Amy M.; Lash, R. Ryan; Liu, Lindy; Bollweg, Brigid C.; Dahlgren, F. Scott; Kanamura, Cristina T.; Angerami, Rodrigo N.; Pereira dos Santos, Fabiana C.; Brasil Martines, Roosecelis; Karpathy, Sandor E.

    2014-01-01

    Rocky Mountain spotted fever (RMSF), a tick-borne zoonosis caused by Rickettsia rickettsii, is among the deadliest of all infectious diseases. To identify the distribution of various genotypes of R. rickettsii associated with fatal RMSF, we applied molecular typing methods to samples of DNA extracted from formalin-fixed, paraffin-embedded tissue specimens obtained at autopsy from 103 case-patients from seven countries who died of RMSF. Complete sequences of one or more intergenic regions were amplified from tissues of 30 (29%) case-patients and revealed a distribution of genotypes consisting of four distinct clades, including the Hlp clade, regarded previously as a non-pathogenic strain of R. rickettsii. Distinct phylogeographic patterns were identified when composite case-patient and reference strain data were mapped to the state and country of origin. The phylogeography of R. rickettsii is likely determined by ecological and environmental factors that exist independently of the distribution of a particular tick vector. PMID:24957541

  10. Rocky Mountain spotted fever: a disease in need of microbiological concern.

    PubMed Central

    Walker, D H

    1989-01-01

    Rocky Mountain spotted fever, a life-threatening tick-transmitted infection, is the most prevalent rickettsiosis in the United States. This zoonosis is firmly entrenched in the tick host, which maintains the rickettsiae in nature by transovarian transmission. Although the incidence of disease fluctuates in various regions and nationwide, the problems of a deceptively difficult clinical diagnosis and little microbiologic diagnostic effort persist. Many empiric antibiotic regimens lack antirickettsial activity. There is neither an effective vaccine nor a generally available assay that is diagnostic during the early stages of illness, when treatment is most effective. Microbiology laboratories that offer only the archaic retrospective Weil-Felix serologic tests should review the needs of their patients. Research microbiologists who tackle these challenging organisms have an array of questions to address regarding rickettsial surface composition, structure-function analysis, and pathogenic and immune mechanisms, as well as laboratory diagnosis. PMID:2504480

  11. Efficacy of doxycycline, azithromycin, or trovafloxacin for treatment of experimental Rocky Mountain spotted fever in dogs.

    PubMed

    Breitschwerdt, E B; Papich, M G; Hegarty, B C; Gilger, B; Hancock, S I; Davidson, M G

    1999-04-01

    Dogs were experimentally inoculated with Rickettsia rickettsii (canine origin) in order to compare the efficacies of azithromycin and trovafloxacin to that of the current antibiotic standard, doxycycline, for the treatment of Rocky Mountain spotted fever. Clinicopathologic parameters, isolation of rickettsiae in tissue culture, and PCR amplification of rickettsial DNA were used to evaluate the response to therapy or duration of illness (untreated infection control group) in the four groups. Concentrations of the three antibiotics in plasma and blood cells were measured by high-performance liquid chromatography. Doxycycline and trovafloxacin treatments resulted in more-rapid defervescence, whereas all three antibiotics caused rapid improvement in attitudinal scores, blood platelet numbers, and the albumin/total-protein ratio. Based upon detection of retinal vascular lesions by fluorescein angiography, trovafloxacin and doxycycline substantially decreased rickettsia-induced vascular injury to the eye, whereas the number of ocular lesions in the azithromycin group did not differ from that in the infection control group. As assessed by tissue culture isolation, doxycycline resulted in the earliest apparent clearance of viable circulating rickettsiae; however, rickettsial DNA could still be detected in the blood of some dogs from all four groups on day 21 postinfection, despite our inability to isolate viable rickettsiae at that point. As administered in this study, trovafloxacin was as efficacious as doxycycline but azithromycin proved less efficacious, possibly due to the short duration of administration. PMID:10103185

  12. Medical and Indirect Costs Associated with a Rocky Mountain Spotted Fever Epidemic in Arizona, 2002–2011

    PubMed Central

    Drexler, Naomi A.; Traeger, Marc S.; McQuiston, Jennifer H.; Williams, Velda; Hamilton, Charlene; Regan, Joanna J.

    2015-01-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health issue on some American Indian reservations in Arizona. RMSF causes an acute febrile illness that, if untreated, can cause severe illness, permanent sequelae requiring lifelong medical support, and death. We describe costs associated with medical care, loss of productivity, and death among cases of RMSF on two American Indian reservations (estimated population 20,000) between 2002 and 2011. Acute medical costs totaled more than $1.3 million. This study further estimated $181,100 in acute productivity lost due to illness, and $11.6 million in lifetime productivity lost from premature death. Aggregate costs of RMSF cases in Arizona 2002–2011 amounted to $13.2 million. We believe this to be a significant underestimate of the cost of the epidemic, but it underlines the severity of the disease and need for a more comprehensive study. PMID:26033020

  13. Medical and Indirect Costs Associated with a Rocky Mountain Spotted Fever Epidemic in Arizona, 2002-2011.

    PubMed

    Drexler, Naomi A; Traeger, Marc S; McQuiston, Jennifer H; Williams, Velda; Hamilton, Charlene; Regan, Joanna J

    2015-09-01

    Rocky Mountain spotted fever (RMSF) is an emerging public health issue on some American Indian reservations in Arizona. RMSF causes an acute febrile illness that, if untreated, can cause severe illness, permanent sequelae requiring lifelong medical support, and death. We describe costs associated with medical care, loss of productivity, and death among cases of RMSF on two American Indian reservations (estimated population 20,000) between 2002 and 2011. Acute medical costs totaled more than $1.3 million. This study further estimated $181,100 in acute productivity lost due to illness, and $11.6 million in lifetime productivity lost from premature death. Aggregate costs of RMSF cases in Arizona 2002-2011 amounted to $13.2 million. We believe this to be a significant underestimate of the cost of the epidemic, but it underlines the severity of the disease and need for a more comprehensive study. PMID:26033020

  14. Rocky Mountain Perspectives.

    ERIC Educational Resources Information Center

    Dutkiewicz, Jody Steiner, Ed.

    This publication features articles detailing the state of educational programs in the Rocky Mountain area. The articles address: 1) the impact of physical geography on culture, education, and lifestyle; 2) the education of migrant and/or agricultural workers and their children; 3) educational needs of children in rural areas; 4) outdoor education;…

  15. Rocky Mountain Spotted Fever Characterization and Comparison to Similar Illnesses in a Highly Endemic Area—Arizona, 2002–2011

    PubMed Central

    Traeger, Marc S.; Regan, Joanna J.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Hamilton, Charlene; Williams, Velda; Levy, Craig; Komatsu, Kenneth; McQuiston, Jennifer H.; Yost, David A.

    2015-01-01

    Background Rocky Mountain spotted fever (RMSF) has emerged as a significant cause of morbidity and mortality since 2002 on tribal lands in Arizona. The explosive nature of this outbreak and the recognition of an unexpected tick vector, Rhipicephalus sanguineus, prompted an investigation to characterize RMSF in this unique setting and compare RMSF cases to similar illnesses. Methods We compared medical records of 205 patients with RMSF and 175 with non-RMSF illnesses that prompted RMSF testing during 2002–2011 from 2 Indian reservations in Arizona. Results RMSF cases in Arizona occurred year-round and peaked later (July–September) than RMSF cases reported from other US regions. Cases were younger (median age, 11 years) and reported fever and rash less frequently, compared to cases from other US regions. Fever was present in 81% of cases but not significantly different from that in patients with non-RMSF illnesses. Classic laboratory abnormalities such as low sodium and platelet counts had small and subtle differences between cases and patients with non-RMSF illnesses. Imaging studies reflected the variability and complexity of the illness but proved unhelpful in clarifying the early diagnosis. Conclusions RMSF epidemiology in this region appears different than RMSF elsewhere in the United States. No specific pattern of signs, symptoms, or laboratory findings occurred with enough frequency to consistently differentiate RMSF from other illnesses. Due to the nonspecific and variable nature of RMSF presentations, clinicians in this region should aggressively treat febrile illnesses and sepsis with doxycycline for suspected RMSF. PMID:25697743

  16. Risk Factors for Fatal Outcome From Rocky Mountain Spotted Fever in a Highly Endemic Area—Arizona, 2002–2011

    PubMed Central

    Regan, Joanna J.; Traeger, Marc S.; Humpherys, Dwight; Mahoney, Dianna L.; Martinez, Michelle; Emerson, Ginny L.; Tack, Danielle M.; Geissler, Aimee; Yasmin, Seema; Lawson, Regina; Williams, Velda; Hamilton, Charlene; Levy, Craig; Komatsu, Ken; Yost, David A.; McQuiston, Jennifer H.

    2016-01-01

    Background Rocky Mountain spotted fever (RMSF) is a disease that now causes significant morbidity and mortality on several American Indian reservations in Arizona. Although the disease is treatable, reported RMSF case fatality rates from this region are high (7%) compared to the rest of the nation (<1%), suggesting a need to identify clinical points for intervention. Methods The first 205 cases from this region were reviewed and fatal RMSF cases were compared to nonfatal cases to determine clinical risk factors for fatal outcome. Results Doxycycline was initiated significantly later in fatal cases (median, day 7) than nonfatal cases (median, day 3), although both groups of case patients presented for care early (median, day 2). Multiple factors increased the risk of doxycycline delay and fatal outcome, such as early symptoms of nausea and diarrhea, history of alcoholism or chronic lung disease, and abnormal laboratory results such as elevated liver aminotransferases. Rash, history of tick bite, thrombocytopenia, and hyponatremia were often absent at initial presentation. Conclusions Earlier treatment with doxycycline can decrease morbidity and mortality from RMSF in this region. Recognition of risk factors associated with doxycycline delay and fatal outcome, such as early gastrointestinal symptoms and a history of alcoholism or chronic lung disease, may be useful in guiding early treatment decisions. Healthcare providers should have a low threshold for initiating doxycycline whenever treating febrile or potentially septic patients from tribal lands in Arizona, even if an alternative diagnosis seems more likely and classic findings of RMSF are absent. PMID:25697742

  17. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    PubMed

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed. PMID:26942604

  18. Clinical Presentation, Convalescence, and Relapse of Rocky Mountain Spotted Fever in Dogs Experimentally Infected via Tick Bite

    PubMed Central

    Levin, Michael L.; Killmaster, Lindsay F.; Zemtsova, Galina E.; Ritter, Jana M.; Langham, Gregory

    2014-01-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline) antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs. PMID:25542001

  19. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite.

    PubMed

    Levin, Michael L; Killmaster, Lindsay F; Zemtsova, Galina E; Ritter, Jana M; Langham, Gregory

    2014-01-01

    Rocky Mountain spotted fever (RMSF) is a tick-borne disease caused by R. rickettsii in North and South America. Domestic dogs are susceptible to infection and canine RMSF can be fatal without appropriate treatment. Although clinical signs of R. rickettsii infection in dogs have been described, published reports usually include descriptions of either advanced clinical cases or experimental infections caused by needle-inoculation of cultured pathogen rather than by tick bite. The natural progression of a tick-borne R. rickettsii infection has not been studied in sufficient detail. Here, we provide a detailed description of clinical, hematological, molecular, and serological dynamics of RMSF in domestic dogs from the day of experimental exposure to infected ticks through recovery. Presented data indicate that neither the height/duration of fever nor detection of rickettsial DNA in dogs' blood by PCR are good indicators for clinical prognosis. Only the apex and subsequent subsidence of neutrophilia seem to mark the beginning of recovery and allow predicting a favorable outcome in Rickettsia-infected dogs, even despite the continuing persistence of mucosal petechiae and skin rash. On the other hand the appropriate (doxycycline) antibiotic therapy of sufficient duration is crucial in prevention of RMSF relapses in dogs. PMID:25542001

  20. Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever

    PubMed Central

    Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604

  1. Developmental profiles in tick water balance with a focus on the new Rocky Mountain spotted fever vector, Rhipicephalus sanguineus.

    PubMed

    Yoder, J A; Benoit, J B; Rellinger, E J; Tank, J L

    2006-12-01

    Recent reports indicate that the common brown dog tick, or kennel tick, Rhipicephalus sanguineus (Latreille) (Acari: Ixodidae) is a competent vector of Rocky Mountain spotted fever in the U.S.A. This tick is of concern to public health because of its high frequency of contact, as it has a unique ability to thrive within human homes. To assess the moisture requirements necessary for survival, water balance characteristics were determined for each developmental stage, from egg to adult. This is the first time that water relations in ticks have been assessed throughout the complete lifecycle. Notably, R. sanguineus is differentially adapted for life in a dry environment, as characterized by a suppressed water loss rate distinctive for each stage that distinguishes it from other ticks. Analysis of its dehydration tolerance limit and percentage body water content provides no evidence to suggest that the various stages of this tick can function more effectively containing less water, indicating that this species is modified for water conservation, not desiccation hardiness. All stages, eggs excepted, absorb water vapour from the air and can drink free water to replenish water stores. Developmentally, a shift in water balance strategies occurs in the transition from the larva, where the emphasis is on water gain (water vapour absorption from drier air), to the adult, where the emphasis is on water retention (low water loss rate). These results on the xerophilic-nature of R. sanguineus identify overhydration as the primary water stress, indicating that this tick is less dependent upon a moisture-rich habitat for survival, which matches its preference for a dry environment. We suggest that the controlled, host-confined conditions of homes and kennels have played a key role in promoting the ubiquitous distribution of R. sanguineus by creating isolated arid environments that enable this tick to establish within regions that are unfavourable for maintaining water balance. PMID

  2. Rocky Mountain Spotted Fever

    MedlinePlus

    ... Patients Procedure for Accessing Lab Services Data Package Requirements AIDS Therapies Resource Guide In Vitro Efficacy Evaluations ... Assurances to Users Application and Approval Process User Requirements Malaria Vaccine Production Services Data Sharing and Release ...

  3. Rapid differentiation of rocky mountain spotted fever from chickenpox, measles, and enterovirus infections and bacterial meningitis by frequency-pulsed electron capture gas-liquid chromatographic analysis of sera.

    PubMed Central

    Brooks, J B; McDade, J E; Alley, C C

    1981-01-01

    Normal sera and sera from patients with Rocky Mountain spotted fever, chickenpox, enterovirus infections, measles, and Neisseria meningitidis infections were extracted with organic solvents under acidic and basic conditions and then derivatized with trichloroethanol or heptafluorobutyric anhydride-ethanol to form electron-capturing derivatives of organic acids, alcohols, and amines. The derivatives were analyzed by frequency-pulsed electron capture gas-liquid chromatography (FPEC-GLC). There were unique differences in the FPEC-GLC profiles of sera obtained from patients with these respective diseases. With Rocky Mountain spotted fever patients, typical profiles were detected as early as 1 day after onset of disease and before antibody could be detected in the serum. Rapid diagnosis of Rocky Mountain spotted fever by FPEC-GLC could permit early and effective therapy, thus preventing many deaths from this disease. PMID:7276147

  4. Hydrometeorology of Rocky Mountain floods

    NASA Astrophysics Data System (ADS)

    Jarrett, Robert D.

    Climatology and flood hydrology of the Rocky Mountains were the topics of a workshop held in Lakewood, Colo., October 4-5, 1990. Ninety-one people participated in the workshop, which was organized by Robert Jarrett, U.S. Geological Survey, Denver; John Liou, Federal Emergency Management Agency, Denver; and Doug Laiho, Delta Environmental Consultants, Boulder, representing the American Society of Civil Engineers.The workshop was held to address some of the recognized complexities in the hydrometeorology of floods in the Rocky Mountains. The complexities are caused by the effects of rough mountain terrain on meteorology, snowmelt and rainfall flooding, and limited rainfall and streamflow data. The current theories and methods used to estimate flood flows in the Rocky Mountains, particularly estimation of the probable maximum precipitation (PMP) and the probable maximum flood (PMF), have been questioned by hydrologists and engineers for some time. Purposes of the workshop were to review the current understanding and ongoing research of floods—both frequent and extreme, including the PMF, in the Rocky Mountains; to bring together scientists, engineers, and flood-plain managers in government, industry, consulting firms, and universities; and to provide a mechanism for the exchange of ideas and technology between climatologists, meteorologists, hydrologists, engineers, and managers.

  5. Atmospheric deposition maps for the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.

    2003-01-01

    Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.

  6. Interspecific differences between small mammals as hosts of immature Dermacentor variabilis (Acari: Ixodidae) and a model for detection of high risk areas of Rocky Mountain spotted fever.

    PubMed

    Kollars, T M

    1996-10-01

    Fourteen species of small mammals were captured from July 1990 through August 1991 in Tennessee, from which 1,217 immature Dermacentor variabilis and 1 Ixodes dentatus were collected. Mammal species were given scores of importance (TS) as hosts to immature D. variabilis based on mean intensity and prevalence. The rice rat ranked the highest, with a TS = 5, followed by the golden mouse TS = 4, white-footed mouse TS = 3, pine vole TS = 2, cotton rat TS = 1, with the Norway rat, house mouse, and short-tailed shrew all having a TS = 0. Assigning a TS allows a quantitative method for differentiating and ranking small mammals as hosts for immature D. variabilis. Relative abundance of a species can also be important in determining D. variabilis populations, even with a low TS. The potential of Rocky Mountain spotted fever (RMSFP) to occur in an area was estimated using the total score of small mammal hosts in an area and multiplying the relative abundance of important host species. The RMSFP of a site, based only upon small mammal species composition and relative abundance of important host species, was an accurate estimate of adult D. variabilis infesting raccoons and opossums at that trap site (P < or = 0.001). A RMSFP of 1.61 is needed to produce an estimated 252 adults per ha (RMSF threshold) at 98% survival of engorged immature ticks (P < 0.001). PMID:8885876

  7. Community-Based Control of the Brown Dog Tick in a Region with High Rates of Rocky Mountain Spotted Fever, 2012–2013

    PubMed Central

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F. Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H.

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003–2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives. PMID:25479289

  8. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  9. UV - ROCKY MOUNTAIN NATIONAL PARK CO

    EPA Science Inventory

    Brewer 146 is located in Rocky Mountain NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, I...

  10. Reading for Young People: The Rocky Mountains.

    ERIC Educational Resources Information Center

    Laughlin, Mildred, Ed.

    One of five annotated bibliographies that describe books about certain regions of the United States, this compilation focuses on books about the Rocky Mountain area. The stated purposes of these regional bibliographies are: (1) to introduce young people living in the subject region to books dealing with their cultural heritage, (2) to help young…

  11. Flood elevation limits in the rocky mountains

    USGS Publications Warehouse

    Jarrett, Robert D.

    1993-01-01

    An analysis of 77,987 station-years of streamflow-gaging station data from 3,748 stations in the Rocky Mountains indicates that there is a latitude-dependent elevation limit to substantial rainfall-produced flooding. The elevation limit ranges from about 1,650 m in Montana to about 2,350 m in New Mexico. Above this elevation limit, large rainfall-produced floods occur very infrequently and maximum unit discharge is 1.7 m3/s/km2 or less. Below this elevation limit, large-magnitude flooding is more common and maximum unit discharge ranges from to 30 m3/s/km2 in Idaho and Montana to 59 m3/s/km2 in New Mexico. These results emphasize the critical need for additional research to increase our knowledge of floods, and have important implications in water-resources investigations in the Rocky Mountains.

  12. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    USGS Publications Warehouse

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  13. 76 FR 9350 - Patient Safety Organizations: Voluntary Delisting From Rocky Mountain Patient Safety Organization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Delisting From Rocky Mountain Patient Safety Organization AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: Rocky Mountain Patient Safety Organization: AHRQ has accepted a notification of voluntary relinquishment from Rocky Mountain Patient Safety Organization,...

  14. 36 CFR 7.7 - Rocky Mountain National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Rocky Mountain National Park. 7.7 Section 7.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.7 Rocky Mountain National Park....

  15. Landscape Morphology of the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Quinlan, K. T.; Barnes, J. B.; Pavelsky, T.

    2013-12-01

    Glaciers and rivers can significantly modify the shape of mountain landscapes. Following deformation and glaciation, bedrock river form and incision patterns are primarily controlled by variations in geologic structure, the glacial preconditioning of the landscape, and climate. However, the extent to which these factors integrate to affect Holocene patterns and rates of fluvial processes is poorly understood. Fluvial processes dominate the morphology of the Canadian Rocky Mountains today, though the inherited imprint of glaciers remains substantial. This study of fluvial geomorphology in the Athabasca River watershed in Jasper National Park, Alberta, addresses two primary ideas: (1) the fluvial response to deglaciation in alpine environments, and (2) the role of thrust belt geology affecting differential erosion in shaping post-orogenic topography. We use the 0.75 arc-second GeoBase Digital Elevation Model (~18m resolution) to analyze patterns of river concavity (θ) and normalized steepness index (ksn), estimate rock erodibility with field-based proxy measurements, and determine basin-averaged erosion rates using existing river gauge data. We find that bedrock geology and glacial preconditioning exhibit different yet recognizable morphological signatures and that they appear to be related to basin erosion rate. The principal differences we observe include the shape and scale of knickzones, magnitude of channel steepness values, channel concavity patterns, and relationship to bedrock geology. We find that lithologically controlled channel steepness patterns are contained to local spatial scales (<500m) and feature sharp increases in channel steepness at or near contacts between lithologies with differences in measured erodibility. By contrast, glacially controlled steepness patterns are expansive in spatial extent (1-10km), are insensitive to bedrock geology, and have higher overall channel steepness values than areas of lithologically controlled channel steepness

  16. Exploring groundwater processes in Rocky Mountain headwaters

    NASA Astrophysics Data System (ADS)

    Janzen, D.; Ireson, A. M.; Yassin, F. A.

    2014-12-01

    More than one-sixth of the Earth's human population relies on freshwater originating in mountain headwaters, which is understood to be generated largely from snowpacks that melt throughout the spring and summer. Annual hydrographs in these regions are characterized by large peaks occurring in the spring, followed by slow recession towards winter baseflow conditions. However, atmospheric warming trends are found to coincide with earlier periods of snowmelt, leading to increased flows in spring and decreased flows in summer. This decreased ability of our 'water towers' to store snow late into the summer suggests that other mechanisms of storage and release may become more important in sustaining baseflows. In particular, subsurface processes leading to late summer and winter flow will become increasingly important earlier on, but are as yet poorly understood. By utilising historical data to inform a better understanding of late-season subsurface processes, we will be better prepared to predict how these mountains will temporarily store and release groundwater in a warmer climate. Here, we analyse long-term data sets from a small (Marmot Creek, Alberta ~10 km2) and a large (Bow River at Banff, Alberta ~1000 km2) basinwithin the Canadian Rocky Mountains, comparing observations with model outputs, to investigate late-season hydrological responses, and particularly the role of groundwater as a temporary storage mechanism.

  17. Terrestrial ecosystem biomonitoring at Rocky Mountain Arsenal

    SciTech Connect

    Roy, R.; Matiatos, D.; Seery, D.; Hetrick, M.; Griess, J.; Henry, C.; Vaughn, S.; Miesner, J.

    1994-12-31

    In 1987 the Fish and Wildlife Service became actively involved in wildlife population monitoring at the Arsenal because of the discovery of a bald eagle roost on the site. Since that time the Service has conducted or funded a variety of investigations to inventory the wildlife species present at the Arsenal and determine their population status. As time progressed and as a result of the passage of the Rocky Mountain Arsenal Refuge legislation in 1992, the Service developed a biomonitoring strategy to determine the current effects of contaminants on terrestrial wildlife resources at the Arsenal and evaluate the efficacy of remediation to ensure the protection and restoration of wildlife resources at the future refuge. This poster will present an overview of the species being studied, measurement and assessment endpoints, strategies, and methods being used by the Service to assess wildlife health as it relates to contaminant exposure.

  18. Utility of microfossils in Rocky Mountain exploration

    SciTech Connect

    Wornardt, W.W. Jr.

    1983-08-01

    Prior to 1960, exploration geologists in the Rocky Mountain area primarily used lithology, E-logs, geophysics, and a few microfossil groups (fusulinids, invertebrates) for stratigraphic correlations. From 1960 to about 1968, these exploration geologists added several additional groups of microfossils (spores, pollen, and foraminifers) to their tools for correlation. During the past 15 yrs, there has been an explosion in the scientific study of microfossils ranging in age from Cambrian to Holocene. Currently, oil finders are integrating the age-dates and paleoenvironmental information obtained from analyzing 20 different groups of microfossils with the stratigraphy, sedimentology, structure, and geophysical data to create a synergistic exploration program. The addition of micropaleontology and paleoenvironmental data into an exploration program has helped managers make better management decisions, save millions of dollars for the company, and find economical pools of hydrocarbons.

  19. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  20. Space Radar Image of Rocky Mountains, Montana

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a three-dimensional perspective of the eastern front range of the Rocky Mountains, about 120 kilometers (75 miles) west of Great Falls, Montana. The image was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this are useful to scientists because they show the shapes of the topographic features such as mountains and valleys. This technique helps to clarify the relationships of the different types of materials on the surface detected by the radar. The view is looking south-southeast. Along the right edge of the image is the valley of the north fork of the Sun River. The western edge of the Great Plains appears on the left side. The valleys in the lower center, running off into the plains on the left, are branches of the Teton River. The highest mountains are at elevations of 2,860 meters (9,390 feet), and the plains are about 1,400 meters (4,500 feet) above sea level. The dark brown areas are grasslands, bright green areas are farms, light brown, orange and purple areas are scrub and forest, and bright white and blue areas are steep rocky slopes. The two radar images were taken on successive days by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue are the differences seen in the L-band data between the two days. This image is centered near 47.7 degrees north latitude and 112.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a

  1. 1. SOUTH FACADE, BUILDING 742 IN BACKGROUND. Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SOUTH FACADE, BUILDING 742 IN BACKGROUND. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  2. 1. BUILDING 321. VIEW TO NORTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 321. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  3. 2. BUILDING 321. VIEW TO NORTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 321. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  4. 3. NORTH FACADE OF BUILDING 742A. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH FACADE OF BUILDING 742-A. - Rocky Mountain Arsenal, Tank House, Quadrant 1, approximately 1000 feet South of December Seventh Avenue; 2200 feet East of D Street, Commerce City, Adams County, CO

  5. 3. BUILDING 321. VIEW TO SOUTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 321. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Boiler Plant-Central Gas Heat Plant, 1022 feet South of December Seventh Avenue; 525 feet West of D Street, Commerce City, Adams County, CO

  6. Late Paleozoic paleotectonics of the northern Rocky Mountain region

    SciTech Connect

    Peterson, J.A. . Dept. of Geology)

    1993-04-01

    The present-day configuration of northern Rocky Mountain foreland uplifts and basins evolved mainly by middle to late Tertiary time. Many of these structures, however, were inherited from Paleozoic and early Mesozoic tectonic episodes and thus have a long history of influence on sediment source terranes, clastic and carbonate facies distributions, thickness relationships, and diagenetic processes. New structural growth, and renewed older growth, were particularly important during late Paleozoic time, approximately coincident in time with growth of the Ancestral Rocky Mountains. Some features tend to trend with, or are sub-parallel to elements of the Ancestral Rocky Mountains, including the Laramie-Casper Big Horn high, the Powder River, Bighorn, and Wind River sags, and the Alliance-Denver basin. Late Paleozoic growth of these features, and perhaps others, undoubtedly was affected by stresses associated with the Ancestral Rocky Mountains episode. Interpretations, however, depend on careful stratigraphic and sedimentary facies analyses.

  7. 3. FIRSTFLOOR LABORATORY. VIEW TO SOUTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. FIRST-FLOOR LABORATORY. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Administration-Laboratory- Change House-Bomb Rail, 420 feet South of December Seventh Avenue; 530 feet West of D Street, Commerce City, Adams County, CO

  8. Rocky Mountains offer plenty to keep producers looking for more

    SciTech Connect

    Duey, R.

    1995-12-01

    Throughout the Rocky Mountain region, geological variety offers everything from coalbed methane to helium and carbon dioxide, and producers keep plugging hoping that an upswing in prices could make the region more lucrative.

  9. 1. BUILDING 411A. VIEW TO NORTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 411A. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Sulfur Monochloride & Dichloride Manufacturing, 1003 feet South of December Seventh Avenue; 412 feet East of D Street, Commerce City, Adams County, CO

  10. Mercury audit at Rocky Mountain Arsenal

    SciTech Connect

    Smith, S.M.; Jensen, M.K.; Anderson, G.M.

    1994-02-01

    This report presents the results of an environmental compliance audit to identify potential mercury-containing equipment in 261 building and 197 tanks at the Rocky Mountain Arsenal (RMA). The RMA, located near Denver, Colorado, is undergoing clean up and decommissioning by the Department of the Army. Part of the decommissioning procedure is to ensure that all hazardous wastes are properly identified and disposed of. The purpose of the audit was to identify any mercury spills and mercury-containing instrumentation. The audit were conducted from April 7, 1992, through July 16, 1992, by a two-person team. The team interviewed personnel with knowledge of past uses of the buildings and tanks. Information concerning past mercury spills and the locations and types of instrumentation that contain mercury proved to be invaluable for an accurate survey of the arsenal. The team used a Jerome{reg_sign} 431-X{trademark} Mercury Vapor Analyzer to detect spills and confirm locations of mercury vapor. Twelve detections were recorded during the audit and varied from visible mercury spills to slightly elevated readings in the corners of rooms with past spills. The audit also identified instrumentation that contained mercury. All data have been incorporated into a computerized data base that is compatible with the RMA data base.

  11. The oldest know Rocky Mountain bristlecone pines (Pinus aristata Engelm. )

    SciTech Connect

    Brunstein, F.C. ); Yamaguchi, D.K. )

    1992-08-01

    We have found 12 living Rocky Mountain bristlecone pines (Pinus aristata) more than 1600 yr old, including four that are more than 2 1 00 yr old, on Black Mountain, near South Park, and on Almagre Mountain, in the southern Front Range, Colorado. A core from the oldest of these trees has an inner-ring date of 442 B.C. This tree is therefore at least 2435 yr old and exceeds the age of the oldest previously reported Rocky Mountain bristlecone pine by 846 yr, The ages of these trees show that Rocky Mountain bristlecone pines, under arid environmental conditions, achieve much older ages than have been previously reported. The ages also show that previously inferred trends in bristlecone pine ages, where maximum ages in the eastern range of Rocky Mountain bristlecone pines are much less than maximum ages in the western range of Great Basin bristlecone pines (Pinus longaea), are less strong than previously supposed. Ancient Rocky Mountain bristlecone pines, such as those found in this study, have the potential to expand our knowledge of late Holocene climatic conditions in western North America.

  12. Rocky Mountain Spotted Fever (For Parents)

    MedlinePlus

    ... to the rash, the infection can cause fever, chills, muscle aches, vomiting, and nausea. Typically, RMSF is ... often 103°-105°F (39°-40°C) — with chills, muscle aches, and a severe headache. Eyes can ...

  13. Rocky Mountain Spotted Fever: Statistics and Epidemiology

    MedlinePlus

    ... R. rickettsii in these states is the American dog tick ( Dermacentor variabilis Dermacentor andersoni ). In eastern Arizona, ... of R. rickettii in Arizona is the brown dog tick ( Rhipicephalus sanguineus ), which is found on dogs ...

  14. 245. Rocky Mountain Viaduct. This steel girder viaduct was built ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    245. Rocky Mountain Viaduct. This steel girder viaduct was built in 1942. All of the reinforced concrete was faced with a rusticated stone. It is the only structure on the parkway with stone faced arched piers. The view is facing east. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  15. Rockies

    Atmospheric Science Data Center

    2014-05-15

    ... orbit 7447) include portions of southern Wyoming, central Colorado, and western Nebraska. The top view is from the instrument's ... of the Front Range of the Rocky Mountains, located in the lower right of the images. The Rockies owe their present forms to tectonic ...

  16. View east over the Rocky Mountains and Great Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A color oblique view looking east over the Rocky Mountains and Great Plains (40.0N, 106.0W). This view covers a portion of the States of Colorado, Wyoming, and Nebraska. This entire region, covered with snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Only change to snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains that form the core of the Rocky Mountains. Individual mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton,

  17. Inversion Breakup in Small Rocky Mountain and Alpine Basins

    SciTech Connect

    Whiteman, Charles D.; Pospichal, Bernhard; Eisenbach, Stefan; Weihs, P.; Clements, Craig B.; Steinacker, Reinhold; Mursch-Radlgruber, Erich; Dorninger, Manfred

    2004-08-01

    Comparisons are made between the post-sunrise breakup of temperature inversions in two similar closed basins in quite different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes have both experienced extreme temperature minima below -50°C. On undisturbed clear nights, temperature inversions reach to 120 m heights in both sinkholes, but are much stronger in the drier Rocky Mountain basin (24K versus 13K). Inversion destruction takes place 2.6 to 3 hours after sunrise and is accomplished primarily by subsidence warming associated with the removal of air from the base of the inversion by the upslope flows that develop over the sidewalls. Differences in inversion strengths and post-sunrise heating rates are caused by differences in the surface energy budget, with drier soil and a higher sensible heat flux in the Rocky Mountain sinkhole.

  18. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  19. 78 FR 60309 - Minor Boundary Revision at Rocky Mountain National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... National Park Service Minor Boundary Revision at Rocky Mountain National Park AGENCY: National Park Service, Interior. ACTION: Notification of Boundary Revision. SUMMARY: The boundary of Rocky Mountain National Park... Larimer County, Colorado, immediately adjacent to the current eastern boundary of Rocky Mountain...

  20. 78 FR 32441 - Grand Ditch Breach Restoration, Final Environmental Impact Statement, Rocky Mountain National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... National Park Service Grand Ditch Breach Restoration, Final Environmental Impact Statement, Rocky Mountain... Availability of the Final Environmental Impact Statement for the Grand Ditch Breach Restoration, Rocky Mountain... Grand Ditch Breach Restoration, Rocky Mountain National Park, Colorado. DATES: The National Park...

  1. Natural Gas in the Rocky Mountains: Developing Infrastructure

    EIA Publications

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  2. Teacher Contract Non-Renewal: Midwest, Rocky Mountains, and Southeast

    ERIC Educational Resources Information Center

    Nixon, Andy; Dam, Margaret; Packard, Abbot L.

    2012-01-01

    This quantitative study investigated reasons that school principals recommend non-renewal of probationary teachers' contracts. Principal survey results from three regions of the US (Midwest, Rocky Mountains, & Southeast) were analyzed using the Kruskal-Wallis and Mann-Whitney U statistical procedures, while significance was tested applying a…

  3. Observations of captive Rocky Mountain mule deer behavior

    SciTech Connect

    Halford, D.K.; Arthur, W.J. III; Alldredge, A.W.

    1987-01-31

    Observations were made near Fort Collins, Colorado on the behavior of a captive herd of Rocky Mountain mule deer (Odocoileus hemionus hemionus). Comparisons in general behavior patterns were made between captive and wild deer. Similar behavior was exhibited by captive and wild deer. Captive deer (as well as other species) may be useful for study of certain behavioral aspects of their wild counterparts.

  4. Enhanced climate change and its detection over the Rocky Mountains

    SciTech Connect

    Fyfe, J.C.; Flato, G.M.

    1999-01-01

    Results from an ensemble of climate change experiments with increasing greenhouse gas and aerosols using the Canadian Centre for Climate Modeling and Analysis Coupled Climate Model are presented with a focus on surface quantities over the Rocky Mountains. There is a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains in the winter and spring seasons, with more pronounced changes at higher elevations. The elevation signal is linked to a rise in the snow line in the winter and spring seasons, which amplifies the surface warming via the snow-albedo feedback. Analysis of the winter surface energy budget shows that large changes in the solar component of the radiative input are the direct consequence of surface albedo changes caused by decreasing snow cover. Although the warming signal is enhanced at higher elevations, a two-way analysis of variance reveals that the elevation effect has no potential for early climate change detection. In the early stages of surface warming the elevation effect is masked by relatively large noise, so that the signal-to-noise ratio over the Rocky Mountains is no larger than elsewhere. Only after significant continental-scale warming does the local Rocky Mountain signal begin to dominate the pattern of climate change over western North America (and presumably also the surrounding ecosystems and hydrological networks).

  5. 7. Photographic copy of photograph (Source: National Archives, Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of photograph (Source: National Archives, Rocky Mountain Region, Denver, Salt River Project History, Final History to 1916. p. 506) Interior view of transformer house. No date. CA. 1916. - Theodore Roosevelt Dam, Transformer House, Salt River, Tortilla Flat, Maricopa County, AZ

  6. 7. Photographic copy of photograph (Source: National Archives, Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of photograph (Source: National Archives, Rocky Mountain Region, Denver, Salt River Project History, Final History to 1916. p. 504) Inside Roosevelt power plant showing size of valve. CA. 1916. - Theodore Roosevelt Dam, Power Plant, Salt River, Tortilla Flat, Maricopa County, AZ

  7. Wolf-livestock interactions in the northern Rocky Mountains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since reintroduction in 1995, gray wolf populations in the northern Rocky Mountains have increased dramatically. Although rough tallies of livestock death/injury losses resulting from wolf predation are made each year, we know almost nothing about the indirect effects of wolf-livestock interactions...

  8. Wolf-cattle interactions in the northern Rocky Mountains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since gray wolf reintroduction in 1995, wolf populations in the northern Rocky Mountains have increased dramatically. Incidents of wolf predation on livestock have increased with wolf populations. Although rough tallies of livestock death or injury losses caused by wolf predation are made each yea...

  9. Zoonotic Infections Among Employees from Great Smoky Mountains and Rocky Mountain National Parks, 2008–2009

    PubMed Central

    Weber, Ingrid B.; McQuiston, Jennifer; Griffith, Kevin S.; Mead, Paul S.; Nicholson, William; Roche, Aubree; Schriefer, Martin; Fischer, Marc; Kosoy, Olga; Laven, Janeen J.; Stoddard, Robyn A.; Hoffmaster, Alex R.; Smith, Theresa; Bui, Duy; Wilkins, Patricia P.; Jones, Jeffery L.; Gupton, Paige N.; Quinn, Conrad P.; Messonnier, Nancy; Higgins, Charles; Wong, David

    2012-01-01

    Abstract U.S. National Park Service employees may have prolonged exposure to wildlife and arthropods, placing them at increased risk of infection with endemic zoonoses. To evaluate possible zoonotic risks present at both Great Smoky Mountains (GRSM) and Rocky Mountain (ROMO) National Parks, we assessed park employees for baseline seroprevalence to specific zoonotic pathogens, followed by evaluation of incident infections over a 1-year study period. Park personnel showed evidence of prior infection with a variety of zoonotic agents, including California serogroup bunyaviruses (31.9%), Bartonella henselae (26.7%), spotted fever group rickettsiae (22.2%), Toxoplasma gondii (11.1%), Anaplasma phagocytophilum (8.1%), Brucella spp. (8.9%), flaviviruses (2.2%), and Bacillus anthracis (1.5%). Over a 1-year study period, we detected incident infections with leptospirosis (5.7%), B. henselae (5.7%), spotted fever group rickettsiae (1.5%), T. gondii (1.5%), B. anthracis (1.5%), and La Crosse virus (1.5%) in staff members at GRSM, and with spotted fever group rickettsiae (8.5%) and B. henselae (4.3%) in staff at ROMO. The risk of any incident infection was greater for employees who worked as resource managers (OR 7.4; 95% CI 1.4,37.5; p=0.02), and as law enforcement rangers/rescue crew (OR 6.5; 95% CI 1.1,36.5; p=0.03), relative to those who worked primarily in administration or management. The results of this study increase our understanding of the pathogens circulating within both parks, and can be used to inform the development of effective guidelines and interventions to increase visitor and staff awareness and help prevent exposure to zoonotic agents. PMID:22835153

  10. 76 FR 21425 - Rocky Mountain Railcar and Repair, Inc.-Acquisition and Operation Exemption-Line of Railroad in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... Surface Transportation Board Rocky Mountain Railcar and Repair, Inc.--Acquisition and Operation Exemption--Line of Railroad in Tooele County, UT Rocky Mountain Railcar and Repair, Inc. (Rocky Mountain), a... line. \\1\\ Rocky Mountain states that it currently operates a railcar repair facility, but that it...

  11. 76 FR 29264 - Minor Boundary Revision at Rocky Mountain National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... National Park Service Minor Boundary Revision at Rocky Mountain National Park AGENCY: National Park Service....S.C. 4601-9(c)(1), the boundary of Rocky Mountain National Park is modified to include an additional... in Grand County, Colorado, immediately adjacent to the current western boundary of Rocky...

  12. Rapid Oligocene Exhumation of the Western Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Szameitat, A.; Parrish, R. R.; Stuart, F. M.; Carter, A.; Fishwick, S.

    2014-12-01

    As part of the North American Cordillera the Rocky Mountains of Canada impact the deflection of weather systems and the jet stream and form a distinct barrier to Pacific moisture reaching the continental interior. The extent to which this climatic pattern extended into the past is at present uncertain, so improving our understanding of the elevation history of the Rockies is critical to determining the controls on climate change within the Northern Hemisphere. We have undertaken a comprehensive apatite (U-Th-Sm)/He and fission track study of the southeastern Canadian Cordillera, i.e. the southern Canadian Rocky Mountains, in order to provide insight into the mid to late Cenozoic uplift and exhumation history of this region. Thermal history and exhumation models of widespread low elevation samples in combination with 6 vertical profiles covering elevations from 500 up to 3100 m a.s.l. show at least 1500 m of rapid exhumation west of the Rocky Mountain Trench (RMT) during the Oligocene (Figure 1). In contrast, the ranges east of the RMT low elevation samples provide Eocene ages throughout. The data show a very different history of recent uplift of the Canadian Rockies compared to what is currently known from published work, which mostly infer that the eastern Canadian Cordillera has not experienced significant uplift since the Eocene. We propose that the most likely cause of this rock uplift was upwelling of asthenosphere around the eastward subducting Farallon Plate. This also led to the eruption of the nearby mainly Miocene Chilcotin Group flood basalts and could have caused underplating of the thin lithosphere west of the RMT, adding to the buoyancy of the plate and lifting the range. Because the Trench marks the edge of the normal thickness craton which was underthrust beneath the Rocky Mountains during the initial upper Cretaceous orogeny, the eastern Rockies have a normal lithosperic thickness. This would impede recent uplift and provides an explanation for the

  13. Cascading effects of fire exclusion in Rocky Mountain ecosystems: a literature review

    USGS Publications Warehouse

    Keane, R.E.; Ryan, K.C.; Veblen, T.T.; Allen, C.D.; Logan, J.; Hawkes, B.

    2002-01-01

    The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent of fire exclusion in the Rocky Mountains, then details the diverse and cascading effects of suppressing fires in the Rocky Mountain landscape by spatial scale, ecosystem characteristic, and vegetation type. Also discussed are the varied effects of fire exclusion on some important, keystone ecosystems and human concerns.

  14. Dynamics of Rocky Mountain Lee Waves Observed During Success

    NASA Technical Reports Server (NTRS)

    Dean-Day, J.; Chan, K. R.; Bowen, S. W.; Bui, T. P.; Gary, B. L.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    On two days during SUCCESS, the DC-8 sampled wave clouds which formed downstream of the ridges east of the Rocky Mountains. Wave morphology for both flights is deduced from temperature and 3-dimensional wind measurements from the MMS, isentrope profiles from the MTP, and linear perturbation theory. The waves observed on 960430 are smaller and found to be decaying with altitude, while the waves sampled on 960502 are vertically propagating and consist of larger, multiple wave scales. Wave orientations are consistent with the underlying topography and regions of high ice crystal concentration. Updraft velocities were estimated from the derived wave properties and are consistent with MMS vertical winds.

  15. State geothermal commercialization programs in seven Rocky Mountain states

    NASA Astrophysics Data System (ADS)

    Lunis, B. C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  16. Artificial neural network classification of Karst rocky desertification degree using SPOT satellite imagery and DEM data

    NASA Astrophysics Data System (ADS)

    Lin, Meng; Hu, Baoqing; Wu, Lianglin

    2011-12-01

    Karst rocky desertification is a significant environmental and ecological problem in Southwest China. In this paper, the spectral information, spatial context and topography information were utilized to synthetically discriminate the Karst rocky desertification degree, which are derived from The SPOT satellite imagery and DEM. By the back-propagation neural network, we proposed the classification model structure and classified the rocky desertification levels in Du'an County of Guangxi province, China. The results verified the classification model of Karst rocky desertification degree is efficient and accurate.

  17. 76 FR 47577 - Rocky Mountain Natural Gas LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Rocky Mountain Natural Gas LLC; Notice of Filing Take notice that on July 28, 2011, Rocky Mountain Natural Gas LLC filed a revised Statement of Operating Conditions to comply...

  18. Rocky Mountain National Park reduced nitrogen source apportionment

    NASA Astrophysics Data System (ADS)

    Thompson, Tammy M.; Rodriguez, Marco A.; Barna, Michael G.; Gebhart, Kristi A.; Hand, Jennifer L.; Day, Derek E.; Malm, William C.; Benedict, Katherine B.; Collett, Jeffrey L., Jr.; Schichtel, Bret A.

    2015-05-01

    Excess wet and dry deposition of nitrogen-containing compounds are a concern at a number of national parks. The Rocky Mountain Atmospheric Nitrogen and Sulfur Study Part II (RoMANS II) campaign was conducted from November 2008 to November 2009 to characterize the composition of reactive nitrogen and sulfur deposited in Rocky Mountain National Park (RMNP). RoMANS II identified reduced nitrogen as the major contributor to reactive nitrogen deposition in RMNP, making up over 50% of the total. Motivated by this finding, the particulate source apportionment technology within the Comprehensive Air Quality Model with extensions was used here to estimate source apportionment of reduced nitrogen concentrations at RMNP. Source apportionment results suggest that approximately 40% of reduced nitrogen deposition to RMNP comes from ammonia sources within Colorado. However, the model evaluation also suggests that this number could be underrepresenting ammonia sources in eastern Colorado due to the difficulty of capturing upslope airflow on the eastern side of the Continental Divide with meteorological models. Emissions from California, the western model boundary, and the Snake River Valley in Idaho, the next three most influential sources, contribute approximately 15%, 8%, and 7%, respectively, to total reduced nitrogen measured in RMNP. Within Colorado, about 61%, 26%, and 13% of the total Colorado contribution comes from sources to the east of the Continental Divide, sources to the west of the Continental Divide, and from the park itself.

  19. Dust Allergens within Rural Northern Rocky Mountain Residences

    PubMed Central

    Weiler, Emily; Semmens, Erin; Noonan, Curtis; Cady, Carol; Ward, Tony

    2015-01-01

    To date, few studies have characterized allergens within residences located in rural areas of the northern Rocky Mountain region. In this study, we collected dust samples from 57 homes located throughout western Montana and northern Idaho. Dust samples were collected and later analyzed for dust mite allergens Der f 1 and Der p 1, Group 2 mite allergens (Der p 2 and Der f 2), domestic feline (Fel d 1), and canine (Can f 1). Indoor temperature and humidity levels were also measured during the sampling program, as were basic characteristics of each home. Dog (96%) and cat (82%) allergens were the most prevalent allergens found in these homes (even when a feline or canine did not reside in the home). Results also revealed the presence of dust mites. Seven percent (7%) of homes tested positive for Der p 1, 19% of homes were positive for Der f 1, and 5% of homes were positive for the Group 2 mite allergens. Indoor relative humidity averaged 27.0 ± 7.6% within the homes. Overall, humidity was not significantly associated with dust mite presence, nor was any of the other measured home characteristics. This study provides a descriptive assessment of indoor allergen presence (including dust mites) in rural areas of the northern Rocky Mountains, and provides new information to assist regional patients with reducing allergen exposure using in-home intervention strategies. PMID:25859563

  20. A Regional Atmospheric Continuous CO2 Network In The Rocky Mountains (Rocky RACCOON)

    NASA Astrophysics Data System (ADS)

    Stephens, B.; de Wekker, S.; Watt, A.; Schimel, D.

    2005-12-01

    We have established a continuous CO2 observing network in the Rocky Mountains, building on technological and modeling advances made during the Carbon in the Mountains Experiment (CME), to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). We will present a description of the Rocky RACCOON network and early results from the first three sites. There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. NACP aims to address these concerns through a dramatic expansion in observations and modeling capabilities over North America. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. However, plans for new continuous CO2 observing sites have omitted the mountain west. This resulted from expensive instrumentation in the face of limited resources, and a perception that current atmospheric transport models are not sophisticated enough to interpret CO2 measurements made in complex terrain. Through our efforts in CME, we have a new autonomous, inexpensive, and robust CO2 analysis system and are developing mountain CO2 modeling tools that will help us to overcome these obstacles. Preliminary observational and modeling results give us confidence that continuous CO2 observations from mountain top observatories will provide useful constraints on regional carbon cycling and will be valuable in the continental inverse modeling efforts planned for NACP. We began at three Colorado sites in August 2005 and hope to add three to six sites in other western states in subsequent years, utilizing existing observatories to the maximum extent possible. The first three sites are at Niwot Ridge, allowing us to have an ongoing intercomparison with flask measurements made by NOAA CMDL; at Storm Peak Laboratory near Steamboat Springs, allowing us to investigate comparisons between these

  1. Major-ion chemistry of the Rocky Mountain snowpack, USA

    USGS Publications Warehouse

    Turk, J.T.; Taylor, H.E.; Ingersoll, G.P.; Tonnessen, K.A.; Clow, D.W.; Mast, M.A.; Campbell, D.H.; Melack, J.M.

    2001-01-01

    During 1993-97, samples of the full depth of the Rocky Mountain snowpack were collected at 52 sites from northern New Mexico to Montana and analyzed for major-ion concentrations. Concentrations of acidity, sulfate, nitrate, and calcium increased from north to south along the mountain range. In the northern part of the study area, acidity was most correlated (negatively) with calcium. Acidity was strongly correlated (positively) with nitrate and sulfate in the southern part and for the entire network. Acidity in the south exceeded the maximum acidity measured in snowpack of the Sierra Nevada and Cascade Mountains. Principal component analysis indicates three solute associations we characterize as: (1) acid (acidity, sulfate, and nitrate), (2) soil (calcium, magnesium, and potassium), and (3) salt (sodium, chloride, and ammonium). Concentrations of acid solutes in the snowpack are similar to concentrations in nearby wetfall collectors, whereas, concentrations of soil solutes are much higher in the snowpack than in wetfall. Thus, dryfall of acid solutes during the snow season is negligible, as is gypsum from soils. Snowpack sampling offers a cost-effective complement to sampling of wetfall in areas where wetfall is difficult to sample and where the snowpack accumulates throughout the winter. Copyright ?? 2001 .

  2. Overview of the Rocky Mountain Arsenal ecological risk characterization

    SciTech Connect

    Applehans, F.; Jones, M.; Osborn, S.; Tate, D.J.; Cothern, K.A.; Pavlou, S.; Toll, J.E.; Armstrong, J.P.

    1994-12-31

    The Rocky Mountain Arsenal (RMA) Endangerment Assessment was performed to characterize potential threats to human health and the environment from contaminants released as a result of historical operations and past waste disposal practices at RMA. This paper presents an overview of the Ecological Risk Characterization (ERC), one component of the RMA Endangerment Assessment. Because of the magnitude of the ERC and high public profile of RMA, the RMA ecological risk assessment reflects all aspects of SETAC`s meeting theme, Ecological Risk: Science, Policy, Law, and Perception. The conceptual framework for the ERC is described, major technical and practical issues encountered in conducting the ERC are recounted, and key insights and recommendations for future ecological risk assessments are discussed.

  3. Phytoplankton dynamics in three Rocky Mountain Lakes, Colorado, USA

    USGS Publications Warehouse

    McKnight, Diane M.; Smith, R.L.; Bradbury, J.P.; Baron, J.S.; Spaulding, S.

    1990-01-01

    In 1984 and 1985 in Loch Vale, Rocky Mountain National Park, 3 periods were evident: 1) a spring bloom, during snowmelt, of the planktonic diatom Asterionella formosa, 2) a mid-summer period of minimal algal abundance, and 3) a fall bloom of the blue-green alga Oscillatoria limnetica. Seasonal phytoplankton dynamics are controlled partially by the rapid flushing rate during snowmelt and the transport of phytoplankton from the highest lake to the lower lakes by the stream, Icy Brook. During snowmelt, the A. formosa population in the most downstream lake has a net rate of increase of 0.34 d-1. The decline in A. formosa after snowmelt may be related to grazing by developing zooplankton populations. -from Authors

  4. Field trips in the southern Rocky Mountains, USA

    SciTech Connect

    Nelson, E.P.; Erslev, E.A.

    2004-07-01

    The theme of the 2004 GSA Annual Meeting and Exposition, 'Geoscience in a Changing World' covers both new and traditional areas of the earth sciences. The Front Range of the Rocky Mountains and the High Plains preserve an outstanding record of geological processes from Precambrian through Quaternary times, and thus served as excellent educational exhibits for the meeting. The chapters in this field guide all contain technical content as well as a field trip log describing field trip routes and stops. Of the 25 field trips offered at the Meeting. 14 are described in the guidebook, covering a wide variety of geoscience disciplines, with chapters on tectonics (Precambrian and Laramide), stratigraphy and paleoenvironments (e.g., early Paleozoic environments, Jurassic eolian environments, the K-T boundary, the famous Oligocene Florissant fossil beds), economic deposits (coal and molybdenum), geological hazards, and geoarchaeology. Two papers have been abstracted separately for the Coal Abstracts database.

  5. Rocky Mountain Snowpack Chemistry at Selected Sites, 2004

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Handran, Heather H.; Manthorne, David J.; Hultstrand, Douglas M.

    2007-01-01

    During spring 2004, the U.S. Geological Survey in cooperation with the National Park Service and the U.S. Department of Agriculture, Forest Service collected and analyzed snowpack samples for 65 sites in the Rocky Mountain region from New Mexico to Montana. Snowpacks were sampled from late February through early April and generally had well-below-average- to near-average snow-water equivalent. Regionally, on April 1, snow-water equivalent ranged from 50 to 89 percent. At most regional sites monitored during 1993-2004, snowpack ammonium, nitrate, and sulfate concentrations for 2004 were lower than the 12-year averages. Snowpack ammonium concentrations in the region were lower than average concentrations for the period at 61 percent of sites in the region, but showed a new pattern compared to previous years with three of the four highest 2004 concentrations observed in northern Colorado. Nitrate concentrations in 2004 were lower than the 12-year average for the year at 53 percent of regional sites, and typically occurred at sites in Wyoming, Idaho, and Montana where powerplants and large industrial areas were limited. A regional decrease in sulfate concentrations across most of the Rocky Mountains (with concentrations lower than the 12-year average at 84 percent of snowpack sites) was consistent with other monitoring of atmospheric deposition in the Western United States. Total mercury concentrations, although data are only available for the past 3 years, decreased slightly for the region as a whole in 2004 relative to 2003. Ratios of stable sulfur isotopes indicated a similar regional pattern as observed in recent years with sulfur-34 (d34S) values generally increasing northward from northern New Mexico and southern Colorado to northern Colorado, Wyoming, Idaho, and Montana.

  6. Estimating Longwave Atmospheric Emissivity in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, S.; Marshall, S. J.

    2014-12-01

    Incoming longwave radiation is an important source of energy contributing to snow and glacier melt. However, estimating the incoming longwave radiation from the atmosphere is challenging due to the highly varying conditions of the atmosphere, especially cloudiness. We analyze the performance of some existing models included a physically-based clear-sky model by Brutsaert (1987) and two different empirical models for all-sky conditions (Lhomme and others, 2007; Herrero and Polo, 2012) at Haig Glacier in the Canadian Rocky Mountains. Models are based on relations between readily observed near-surface meteorological data, including temperature, vapor pressure, relative humidity, and estimates of shortwave radiation transmissivity (i.e., clear-sky or cloud-cover indices). This class of models generally requires solar radiation data in order to obtain a proxy for cloud conditions. This is not always available for distributed models of glacier melt, and can have high spatial variations in regions of complex topography, which likely do not reflect the more homogeneous atmospheric longwave emissions. We therefore test longwave radiation parameterizations as a function of near-surface humidity and temperature variables, based on automatic weather station data (half-hourly and mean daily values) from 2004 to 2012. Results from comparative analysis of different incoming longwave radiation parameterizations showed that the locally-calibrated model based on relative humidity and vapour pressure performs better than other published models. Performance is degraded but still better than standard cloud-index based models when we transfer the model to another site, roughly 900 km away, Kwadacha Glacier in the northern Canadian Rockies.

  7. 4. BUILDING 741/742. VIEW TO NORTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BUILDING 741/742. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  8. 2. BUILDING 741/742. VIEW TO SOUTHWEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUILDING 741/742. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  9. 6. BUILDING 741/742. VIEW TO SOUTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. BUILDING 741/742. VIEW TO SOUTHEAST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  10. 3. BUILDING 741/742. VIEW TO WEST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUILDING 741/742. VIEW TO WEST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  11. 1. BUILDING 741/742. VIEW TO SOUTH. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUILDING 741/742. VIEW TO SOUTH. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  12. 5. BUILDING 741/742. VIEW TO NORTHEAST. Rocky Mountain Arsenal, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. BUILDING 741/742. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Refrigeration Napalm & Incendiary Bomb Warehouse-Bomb Filling, 825 feet South of December Seventh Avenue; 2425 feet East of D Street, Commerce City, Adams County, CO

  13. 4. FIRSTFLOOR SHOWER/LOCKER ROOM. VIEW TO NORTHEAST. Rocky Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FIRST-FLOOR SHOWER/LOCKER ROOM. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Administration-Laboratory- Change House-Bomb Rail, 420 feet South of December Seventh Avenue; 530 feet West of D Street, Commerce City, Adams County, CO

  14. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    EPA Science Inventory

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  15. Convective transport of pollutants from eastern Colorado concentrated animal feeding operations into the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, A.; Schumacher, R. S.

    2013-12-01

    As the population of the urban corridor along the eastern Front Range grows at an unprecedented rate, concern about pollutant transport into the Rocky Mountains is on the rise. The confluence of mountain meteorology and major pollution sources conspire to transport pollutants across the Front Range, especially nitrogen species (NH3, NH4+, orgN, and NO3-) from concentrated animal feeding operations and urban regions, into the Rocky Mountains. The Rocky Mountains have coarse-textured soils which disallow the uptake nitrogen-rich precipitation, allowing most ions in precipitation to reach, be stored in, and eutrophicate alpine terrestrial and aquatic ecosystems. The focus of this study was to examine the meteorological conditions in which atmospheric deposition of pollutants at two mountain sites was anomalously high due to convective transport. We looked at 19 years (1994-2013) of precipitation and wet deposition data from two National Atmospheric Deposition Program (NAPD) sites in the Rocky Mountains: Beaver Meadows (CO19) and Loch Vale (CO98). Loch Vale (3159 m) and Beaver Meadows (2477 m) are located approximately 11 km apart but differ in height by 682 m resulting in different seasonal precipitation composition and totals. The Advanced Research WRF model was used to simulate the meteorology at a high resolution for the progression of the upslope event that led to high nitrogen deposition in the Rocky Mountains. Data from the North American Regional Reanalysis (NARR) was used to observe and verify synoptic conditions produced by the WRF model that influenced the high-deposition events. Dispersion plumes showed a mesoscale mountain circulation caused by differential heating between mountains-tops and the plains was the main driver of the westward convective transport towards the mountains. Additionally and unexpectedly, a lee trough and high precipitable water values associated with a cold front played significant roles in the nitrogen deposition into the Rocky

  16. Water Table Dynamics of a Canadian Rocky Mountain Peat Floodplain

    NASA Astrophysics Data System (ADS)

    Westbrook, C. J.

    2008-12-01

    Floodplains of broad mountain valleys serve as collection points for local precipitation, hillslope runoff, deeper groundwater, and channel water. Little is known about how complex hydrological interactions among these water sources govern floodplain water table dynamics, particularly on an event basis partly owing to a lack of high frequency spatial and temporal data. Here I describe the magnitude and rate of change of groundwater storage in a Canadian Rocky Mountain peat floodplain. Weekly manual measurement of groundwater levels in a network of 51 water table wells during the summers of 2006 and 2007 showed large temporal and spatial variations in well response. Cluster analysis and principle components analysis were performed on these data to objectively classify the floodplain into spatial response units. Results were classification of the standpipes into five distinct water table regimes. One well representing each water table regime was outfitted with a sensor in 2008 that collected hourly head, which was used to characterize temporal patterns of water table response. Preliminary results indicate a constant increase in heterogeneity in the spatial pattern of the water table as the floodplain dried. In spring, snowmelt runoff combined with an ice lens 20-30 cm below the ground surface led to consistently high water tables throughout the floodplain. Water table regime responses to rain events during this period were flashy, with dramatic rises and falls (up to 20 cm) in short periods of time (<30 h), suggesting the unsaturated zone was close to saturation. In summer, the water table fell throughout the floodplain in response to declining hillslope inputs and increased evaporative demand, but rates of decline were highly variable among the water table regimes. This variability reflects differences in the degree to which the water table regimes are influenced by stream stage, hillslope inputs, and proximity to beaver dams. Results from this study have

  17. Spacing of Rocky Mountain foreland arches and Laramide magmatic activity

    SciTech Connect

    Schmidt, C.J.; Evans, J.P.; Fletcher, R.C.; Spang, J.H.

    1985-01-01

    First-order Late Cretaceous and Paleocene folds in the Rocky Mountain foreland have a spacing (S) ranging from 45 to 300 km. Spacing of folds and major mountain flank thrusts was controlled in part by the depth of the brittle-ductile transition (BDT). Analysis of folding of a brittle layer of thickness H above a ductile substrate suggests S/H approx. = 4-6. Experimental data indicate that the BDT in quartz rich rock occurs at 300/sup 0/ +/- 50/sup 0/C and therefore its depth depends on geothermal gradient. Regions with high Laramide geothermal gradients should have had a shallower depth to the BDT and a shorter spacing of first-order folds than regions with low gradients. A regional compilation for the Montana and Wyoming foreland shows a correlation between the value of S and syntectonic magmatic activity. The mean S value for southwestern Montana, where Late Cretaceous and Paleocene magmatic activity was widespread, is 65 km. This value of S indicates a relatively shallow (11-16 km) depth of the BDT and suggests a relatively high (16-32/sup 0/C/km) Laramide geothermal gradient. The mean S value for the Wyoming foreland, where no syntectonic magmatic activity is indicated, is 150 km. Measurements of S may allow some predictions of depth to rheologically-controlled mid-crustal decoupling zones. They may also indicate areas where the depth to the BDT was not a major control on S. Structures with S < 40 km correspond to inadmissably shallow BDT zones and were probably controlled by other factors such as preexisting fault zones or basement lithology.

  18. Hydrogeologic data for the northern Rocky Mountains intermontane basins, Montana

    USGS Publications Warehouse

    Dutton, DeAnn M.; Lawlor, Sean M.; Briar, D.W.; Tresch, R.E.

    1995-01-01

    The U.S. Geological Survey began a Regional Aquifer- System Analysis of the Northern Rocky Mountains Intermontane Basins of western Montana and central and central and northern Idaho in 1990 to establish a regional framework of information for aquifers in 54 intermontane basins in an area of about 77,500 square miles. Selected hydrogeologic data have been used as part of this analysis to define the hydro- logic systems. Records of 1,376 wells completed in 31 of the 34 intermontane basins in the Montana part of the study area are tabulated in this report. Data consist of location, alttiude of land surface, date well constructed, geologic unit, depth of well, diameter of casing, type of finish, top of open interval, primary use of water, water level, date water level measured, discharge, specific capacity, source of discharge data, type of log available, date water-quality parameters measured, specific conductance, pH, and temperature. Hydrographs for selected wells also are included. Locations of wells and basins are shown on the accompanying plate.

  19. Status and health of biota at the Rocky Mountain Arsenal

    SciTech Connect

    Macrander, A.M.; Mackey, C.V.; Reagen, D.P.; Tate, D.J.

    1994-12-31

    Field studies have been conducted on the populations and communities of the biota at Rocky Mountain Arsenal (RMA) since the late 1950`s. While earlier studies were primarily documentation of mortality events, a diverse program of studies conducted since 1982 has assessed a number of relevant endpoints. Studies of sedentary species (e.g. plants, earthworm, grasshoppers) focused on contaminated areas within RMA to identify potential contaminant effects. Studies on more mobile species (e.g. deer, great horned owls, kestrels) were conducted throughout RMA to evaluate effects on their RMA-wide populations. Both on- and off-post reference sites were used in some of the studies. Ecological endpoints were selected that were focused upon the population-level effects that could have a causal relationship to the RMA contaminants, such as population abundance and reproductive success, biomarkers, and community organization. Current EPA guidance on conducting ecological risk assessment encourages the use of observational field studies. Although many of these studies were conducted prior to the issuance of this guidance, they are consistent with its scope and intent. Investigators on the effects of contamination at RMA during the past decade indicate that while some effects may still be present in biota at RMA, the wildlife communities and populations are viable and appear healthy.

  20. Rocky Mountain Snowpack Chemistry at Selected Sites, 2002

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Manthorne, David J.; Clow, David W.; Handran, Heather M.; Winterringer, Jesse A.; Campbell, Donald H.

    2004-01-01

    During spring 2002, the chemical composition of annual snowpacks in the Rocky Mountain region of the Western United States was analyzed. Snow samples were collected at 75 geographically distributed sites extending from New Mexico to Montana. Near the end of the 2002 snowfall season, the snow-water equivalent (SWE) in annual snowpacks sampled generally was below average in most of the region. Regional patterns in the concentrations of major ions (including ammonium, nitrate, and sulfate), mercury, and stable sulfur isotope ratios are presented. The 2002 snowpack chemistry in the region differed from the previous year. Snowpack ammonium concentrations were higher at 66 percent of sites in Montana compared to concentrations in the 2001 snowpack but were lower at 74 percent of sites in Wyoming, Colorado, and New Mexico. Nitrate was lower at all Montana sites and lower at all but one Wyoming site; nitrate was higher at all but two Colorado sites and higher at all New Mexico sites. Sulfate was lower across the region at 77 percent of sites. The range of mercury concentrations for the region was similar to those of 2001 but showed more variability than ammonium, nitrate, and sulfate concentrations. Concentrations of stable sulfur isotope ratios exhibited a strong regional pattern with values increasing northward from southern Colorado to northern Colorado and Wyoming.

  1. Trail impact monitoring in Rocky Mountain National Park, USA

    NASA Astrophysics Data System (ADS)

    Svajda, J.; Korony, S.; Brighton, I.; Esser, S.; Ciapala, S.

    2016-01-01

    This paper examines impacts of increased visitation leading to human trampling of vegetation and soil along several trails in Rocky Mountain National Park (RMNP) to understand how abiotic factors and level of use can influence trail conditions. RMNP is one of the most visited national parks in the USA, with 3.3 million visitors in 2012 across 1075 km2 and 571 km of hiking trails. 95 % of the park is designated wilderness, making the balance between preservation and visitor use challenging. This research involves the application of trail condition assessments to 56 km of trails to determine prevailing factors and what, if any, connection between them exist. The study looked at a variety of inventory and impact indicators and standards to determine their importance and to develop a baseline condition of trails. The data can be used for future comparison and evaluation of development trends. We found that trail widening (mean trail width 88.9 cm) and soil loss (cross-sectional area 172.7 cm2) are the most visible effects of trail degradation. Further statistical analyses of data identified the role and influence of various factors (e.g., use level and topography). Insights into the influence of these factors can lead to the selection of appropriate management measures to avoid or minimize negative consequences from increased visitation.

  2. Trail impact monitoring in Rocky Mountain National Park, USA

    NASA Astrophysics Data System (ADS)

    Svajda, J.; Korony, S.; Brighton, I.; Esser, S.; Ciapala, S.

    2015-11-01

    This paper examines impacts of increased visitation leading to human trampling of vegetation and soil along several trails in Rocky Mountain National Park (RMNP) to understand how abiotic factors and level of use can influence trail conditions. RMNP is one of the most visited national parks in the USA with 3.3 million visitors in 2012 across 1075 km2 and 571 km of hiking trails. 95 % of the park is designated wilderness making the balance between preservation and visitor use challenging. This research involves the application of trail condition assessments to 56 km of trails to determine prevailing factors and what, if any, connection between them exist. The study looked at a variety of inventory and impact indicators and standards to determine their importance and to develop a baseline condition of trails. The data can be used for future comparison and evaluation of development trends. We found that trail widening (mean trail width 88.9 cm) and soil loss (cross sectional area 172.7 cm2) are the most visible effects of trail degradation. Further statistical analyses of data identified the role and influence of various factors (e.g. use level and topography). Insights into the influence of these factors can lead to the selection of appropriate management measures to avoid or minimize negative consequences from increased visitation.

  3. Phylogenetic composition of Rocky Mountain endolithic microbial ecosystems.

    PubMed

    Walker, Jeffrey J; Pace, Norman R

    2007-06-01

    The endolithic environment, the pore space in rocks, is a ubiquitous microbial habitat. Photosynthesis-based endolithic communities inhabit the outer few millimeters to centimeters of rocks exposed to the surface. Such endolithic ecosystems have been proposed as simple, tractable models for understanding basic principles in microbial ecology. In order to test previously conceived hypotheses about endolithic ecosystems, we studied selected endolithic communities in the Rocky Mountain region of the United States with culture-independent molecular methods. Community compositions were determined by determining rRNA gene sequence contents, and communities were compared using statistical phylogenetic methods. The results indicate that endolithic ecosystems are seeded from a select, global metacommunity and form true ecological communities that are among the simplest microbial ecosystems known. Statistical analysis showed that biogeographical characteristics that control community composition, such as rock type, are more complex than predicted. Collectively, results of this study support the idea that patterns of microbial diversity found in endolithic communities are governed by principles similar to those observed in macroecological systems. PMID:17416689

  4. Disturbance regime and disturbance interactions in Rocky Mountain subalpine forest

    USGS Publications Warehouse

    Veblen, Thomas T.; Hadley, Keith S.; Nel, Elizabeth M.; Kitzberger, Thomas; Reid, Marion; Villalba, Ricardo

    1994-01-01

    1 The spatial and temporal patterns of fire, snow avalanches and spruce beetle out-breaks were investigated in Marvine Lakes Valley in the Colorado Rocky Mountains in forests of Picea engelmannii, Abies lasiocarpa, Pseudotsuga menziesiiand Populus tremuloides. Dates and locations of disturbances were determined by dendrochronological techniques. A geographic information system (GIS) was used to calculate areas affected by the different disturbance agents and to examine the spatial relationships of the different disturbances. 2 In the Marvine Lakes Valley, major disturbance was caused by fire in the 1470s, the 1630s and the 1870s and by spruce beetle outbreak in c. 1716, 1827 and 1949. 3 Since c. 1633, 9% of the Marvine Lakes Valley has been affected by snow avalanches, 38.6% by spruce beetle outbreak and 59.1% by fire. At sites susceptible to avalanches, avalanches occur at a near-annual frequency. The mean return intervals for fire and spruce beetle outbreaks are 202 and 116.5 years, respectively. Turnover times for fire and spruce beetle outbreaks are 521 and 259 years, respectively. 4 Several types of disturbance interaction were identified. For example, large and severe snow avalanches influence the spread of fire. Similarly, following a stand-devastating fire or avalanche, Picea populations will not support a spruce beetle outbreak until individual trees reach a minimum diameter which represents at least 70 years' growth. Thus, recent fires and beetle outbreaks have nonoverlapping distributions.

  5. Trends in Rocky Mountain amphibians and the role of beaver as a keystone species

    USGS Publications Warehouse

    Hossack, Blake R.; Gould, William R.; Patla, Debra A.; Muths, Erin L.; Daley, Rob; Legg, Kristin; Corn, P. Stephen

    2015-01-01

    Despite prevalent awareness of global amphibian declines, there is still little information on trends for many widespread species. To inform land managers of trends on protected landscapes and identify potential conservation strategies, we collected occurrence data for five wetland-breeding amphibian species in four national parks in the U.S. Rocky Mountains during 2002–2011. We used explicit dynamics models to estimate variation in annual occupancy, extinction, and colonization of wetlands according to summer drought and several biophysical characteristics (e.g., wetland size, elevation), including the influence of North American beaver (Castor canadensis). We found more declines in occupancy than increases, especially in Yellowstone and Grand Teton national parks (NP), where three of four species declined since 2002. However, most species in Rocky Mountain NP were too rare to include in our analysis, which likely reflects significant historical declines. Although beaver were uncommon, their creation or modification of wetlands was associated with higher colonization rates for 4 of 5 amphibian species, producing a 34% increase in occupancy in beaver-influenced wetlands compared to wetlands without beaver influence. Also, colonization rates and occupancy of boreal toads (Anaxyrus boreas) and Columbia spotted frogs (Rana luteiventris) were ⩾2 times higher in beaver-influenced wetlands. These strong relationships suggest management for beaver that fosters amphibian recovery could counter declines in some areas. Our data reinforce reports of widespread declines of formerly and currently common species, even in areas assumed to be protected from most forms of human disturbance, and demonstrate the close ecological association between beaver and wetland-dependent species.

  6. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Prohibition of commercial air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... Mountain National Park. All commercial air tour operations in the airspace over the Rocky Mountain...

  7. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Prohibition of commercial air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... Mountain National Park. All commercial air tour operations in the airspace over the Rocky Mountain...

  8. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Prohibition of commercial air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... Mountain National Park. All commercial air tour operations in the airspace over the Rocky Mountain...

  9. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Prohibition of commercial air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... Mountain National Park. All commercial air tour operations in the airspace over the Rocky Mountain...

  10. 14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Prohibition of commercial air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics and Space FEDERAL... Mountain National Park. All commercial air tour operations in the airspace over the Rocky Mountain...

  11. Rocky Mountain evolution: Tying Continental Dynamics of the Rocky Mountains and Deep Probe seismic experiments with receiver functions

    USGS Publications Warehouse

    Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.

    2009-01-01

    In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.

  12. Intrinsic movement patterns of grazing Rocky Mountains elk (Cervus elaphus nelsonii) and beef cattle (Bos taurus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk and cattle are important components of mountainous ecosystems in the western United States and exist contemporaneously on many landscapes. These animals utilize similar resources yet the evolutionary lines that produced them have been distinct for approximately 30 million years. ...

  13. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants

    USGS Publications Warehouse

    Munson, Seth M.; Sher, Anna A

    2015-01-01

    CONCLUSIONS: These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions.                   

  14. Isotopes in Rocky Mountain Snowpack 1993-2014

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Berkelhammer, M. B.; Mast, A.

    2015-12-01

    We present ~1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains (IRMS) that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10 to 21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by hydrogen and oxygen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding

  15. Isotopes in North American Rocky Mountain Snowpack 1993-2014

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Berkelhammer, Max; Mast, M. Alisa

    2016-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10-21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  16. Nutritional condition of elk in rocky mountain national park

    USGS Publications Warehouse

    Bender, L.C.; Cook, J.G.

    2005-01-01

    We tested the hypothesis that elk in Rocky Mountain National Park (RMNP) were at ecological carrying capacity by determining herd-specific levels of nutritional condition and fecundity. Ingesta-free body fat levels in adult cows that were lactating were 10.6% (s = 1.7; range = 6.2-15.4) and 7.7% (s = 0.5; range = 5.9-10.1) in November 2001 for the Horseshoe and Moraine Park herds, respectively. Cows that were not lactating were able to accrue significantly more body fat: 14.0% (s = 1.1; range = 7.7-19.3) and 11.5% (s = 0.8; range = 8.6-15.1) for the Horseshoe and Moraine Park herds, respectively. Cow elk lost most of their body fat over winter (April 2002 levels were 3.9% [s = 0.4] and 2.9% [s = 0.4] for the Horseshoe and Moraine Park herds, respectively). Nutritional condition indicated that both Horseshoe Park and Moraine Park elk were well below condition levels elk can achieve on very good-excellent nutrition (i.e., >15% body fat; Cook et al. 2004) and were comparable to other free-ranging elk populations. However, condition levels were higher than those expected at a "food-limited" carrying capacity, and a proportion of elk in each herd were able to achieve condition levels indicative of very good-excellent nutrition. Elk in RMNP are likely regulated and/or limited by a complex combination of density-independent (including significant heterogeneity in forage conditions across RMNP's landscape) and density-dependent processes, as condition levels contradict a simple density-dependent model of a population at ecological carrying capacity.

  17. Isotopes in North American Rocky Mountain snowpack 1993–2014

    USGS Publications Warehouse

    Anderson, Lesleigh; Max Berkelhammer; Mast, M. Alisa

    2015-01-01

    We present ∼1300 new isotopic measurements (δ18O and δ2H) from a network of snowpack sites in the Rocky Mountains that have been sampled since 1993. The network includes 177 locations where depth-integrated snow samples are collected each spring near peak accumulation. At 57 of these locations snowpack samples were obtained for 10–21 years and their isotopic measurements provide unprecedented spatial and temporal documentation of snowpack isotope values at mid-latitudes. For environments where snowfall accounts for the majority of annual precipitation, snowmelt is likely to have the strongest influence on isotope values retained in proxy archives. In this first presentation of the dataset we (1) describe the basic features of the isotope values in relation to the Global Meteoric Water Line (GMWL), (2) evaluate space for time substitutions traditionally used to establish δ18O-temperature relations, (3) evaluate site-to-site similarities across the network and identify those that are the most regionally representative, (4) examine atmospheric circulation patterns for several years with spatially coherent isotope patterns, and (5) provide examples of the implications this new dataset has for interpreting paleoclimate records (Bison Lake, Colorado and Minnetonka Cave, Idaho). Results indicate that snowpack δ18O is rarely a simple proxy of temperature. Instead, it exhibits a high degree of spatial heterogeneity and temporal variance that reflect additional processes such as vapor transport and post-depositional modification. Despite these complexities we identify consistent climate-isotope patterns and regionally representative locations that serve to better define Holocene hydroclimate estimates and their uncertainty. Climate change has and will affect western U.S. snowpack and we suggest these changes can be better understood and anticipated by oxygen and hydrogen isotope-based reconstructions of Holocene hydroclimate using a process-based understanding of the

  18. Rocky Mountain snowpack chemistry at selected sites for 2001

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Clow, David W.; Nanus, Leora; Campbell, Donald H.; Handran, Heather

    2003-01-01

    Because regional-scale atmospheric deposition data in the Rocky Mountains are sparse, a program was designed by the U.S. Geological Survey, in cooperation with the National Park Service, U.S. Department of Agriculture Forest Service, and other agencies, to more thoroughly determine the chemical composition of precipitation and to identify sources of atmospherically deposited contaminants in a network of high-elevation sites. Samples of seasonal snowpacks at 57 geographically distributed sites, in a regional network from New Mexico to Montana, were collected and analyzed for major ions (including ammonium, nitrate, and sulfate), alkalinity, and dissolved organic carbon during 2001. Sites selected in this report have been sampled annually since 1993, enabling identification of increases or decreases in chemical concentrations from year to year. Spatial patterns in snowpack-chemical data for concentrations of ammonium, nitrate, and sulfate indicate that concentrations of these acid precursors in less developed areas of the region are lower than concentrations in the heavily developed areas. Results for the 2001 snowpack-chemistry analyses, however, indicate increases in concentrations of ammonium and nitrate in particular at sites where past concentrations typically were lower. Since 1993, concentrations of nitrate and sulfate were highest from snowpack samples in northern Colorado that were collected from sites adjacent to the Denver metropolitan area to the east and the coal-fired powerplants to the west. In 2001, relatively high concentrations of nitrate (12.3 to 23.0 microequivalents per liter (?eq/L) and sulfate (7.7 to 12.5 ?eq/L) were detected in Montana and Wyoming. Ammonium concentrations were highest in north-central Colorado (14.5 to 16.9 ?eq/L) and southwestern Montana (12.8 to 14.2 ?eq/L).

  19. Science and management of Rocky Mountain grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Herrero, S.; Wright, R.G.; Pease, C.M.

    1996-01-01

    The science and management of grizzly bears (Ursus arctos horribilis) in the Rocky Mountains of North America have spawned considerable conflict and controversy. Much of this can be attributed to divergent public values, but the narrow perceptions and incomplete and fragmented problem definitions of those involved have exacerbated an inherently difficult situation. We present a conceptual model that extends the traditional description of the grizzly bear conservation system to include facets of the human domain such as the behavior of managers, elected officials, and the public. The model focuses on human-caused mortality, the key determinant of grizzly bear population growth in this region and the interactions and feedback loops among humans that have a major potential influence on bear mortality. We also briefly evaluate existing information and technical methods relevant to understanding this complex human-biophysical system. We observe not only that the extant knowledge is insufficient for prediction (and in some cases for description), but also that traditional positivistic science alone is not adequate for dealing with the problems of grizzly bear conservation. We recommend changes in science and management that could improve learning and responsiveness among the involved individuals and organizations, clarify some existing uncertainty, and thereby increase the effectiveness of grizzly bear conservation and management. Although adaptive management is a promising approach, we point out some keya??as yet unfulfilleda??contingencies for implementation of a method such as this one that relies upon social processes and structures that promote open learning and flexibility in all facets of the policy process.

  20. Water Table Dynamics of a Rocky Mountain Riparian Area

    NASA Astrophysics Data System (ADS)

    Westbrook, C. J.

    2009-05-01

    Riparian areas in mountain valleys serve as collection points for local precipitation, hillslope runoff, deeper groundwater, and channel water. Little is known about how complex hydrological interactions among these water sources govern riparian water table dynamics, particularly on an event basis partly owing to a lack of high frequency spatial and temporal data. Herein I describe the magnitude and rate of change of groundwater storage in a 1.3 km2 Canadian Rocky Mountain peat riparian area. Weekly manual measurement of hydraulic heads in a network of 51 water table wells during the summers of 2006 and 2007 showed large temporal and spatial variations in well response. A near constant increase in the spatial heterogeneity of the water table was observed as the riparian area dried. Cluster analysis and principle components analysis were performed on these weekly data to objectively classify the riparian area into spatial response units. Results were classification of the standpipes into five distinct water table regimes. One well representing each water table regime was outfitted with a sensor in 2008 that measured hourly head, which was used to characterize temporal dynamics of water table response. In spring, snowmelt runoff combined with an ice lens 20-30 cm below the ground surface led to consistently high water tables throughout the riparian area. In summer, the water table fell throughout the riparian in response to declining hillslope inputs and increased evaporative demand, but rates of decline were highly variable among the water table regimes. Chloride concentrations suggest variability reflects differences in the degree to which the water table regimes are influenced by stream stage, hillslope inputs, and proximity to beaver dams. Water table regime responses to rain events were flashy, with dramatic rises and falls (up to 20 cm) in short periods of time (<30 h), suggesting the unsaturated soil was near saturation. The stream was considerably more

  1. Body mass and antler development patterns of Rocky Mountain elk (Cervus elaphus nelsoni) in Michigan

    USGS Publications Warehouse

    Bender, L.C.; Carlson, E.; Schmitt, S.M.; Haufler, J.B.

    2003-01-01

    We documented mean and maximum body mass, mass accretion patterns and ander development patterns of Rocky Mountain elk in Michigan. Mean body mass of bulls averaged 9-11% heavier, and maximum body mass 23-27% heavier, in Michigan than in other Rocky Mountain elk populations. Mean live body mass of cows averaged 11% heavier in Michigan, but mean eviscerated body mass did not differ. Maximum body mass of cows was 10-24% heavier in Michigan. Body mass peaked at age 7.5 for bulls and 8.5 for cows, similar to other Rocky Mountain elk populations despite the greater body mass achieved in Michigan. Sexual dimorphism in bull and cow body mass increased until peak body mass was attained, whereupon bulls were ???38% heavier than cows. Antler development of bull elk peaked at age 10.5, comparable to other Rocky Mountain elk populations. Relations between antler development and body mass within age classes were highly variable, but generally weak. Greater body mass seen in Michigan, and the peaking of antler development well after body mass in bulls, suggested a phenotypic response to nutritional conditions that allow Rocky Mountain elk in Michigan to maximize the species growth potential.

  2. Climate insensitivity of treeline in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.; Macias Fauria, M.

    2011-12-01

    Successful modelling efforts demonstrate that tree presence over a ~ 200 km2 alpine/subalpine area in the Front Ranges of the Canadian Rocky Mountains results from a multi-scale spatiotemporal process competition involving not only growing season temperatures but also topographical shelter, water availability, and substrate stability and availability. The study area was selected to represent the diversity of substrates and geomorphologic processes found in the Canadian Rockies, and ranges in elevation from 1400 to > 2800 meters above sea level. Tree presence was mapped at 10m resolution using a combination of remote sensing imagery (taken in 2008) and intensive ground truthing, and modelled with an ensemble of state-of-the-art environmental envelope models. Explanatory variables chosen represented not only temperature and moisture availability (computed over 1971-2000 climate normals), but also substrate diversity, slope angle and type, geomorphologic features, modelled regolith depth, and concavity/convexity of the terrain. Such variables were meant to serve as proxies for known convergent and divergent processes that occur on steep landscapes and that have profound influence on tree establishment and survival. Model performance was very high and revealed substrate and geomorphology to be the most important explanatory variables for tree presence in the area. Available high-resolution imagery for 1954 enabled the mapping of tree presence over most of the study area and the identification of changes in the distribution of trees over the last nearly six decades. Overall, the only major observed changes were related to post-fire stand recovery, and areas with treeline advance were insignificant at the landscape scale. Tree suitable sites were projected onto high resolution grids of late 21st century climatic conditions predicted by regional climate models driven by atmosphere-ocean general circulation models. Emissions scenario was A2 (as defined in the Special

  3. A Natural Resource Condition Assessment for Rocky Mountain National Park

    USGS Publications Warehouse

    Theobald, D.M.; Baron, J.S.; Newman, P.; Noon, B.; Norman, J. B., III; Leinwand, I.; Linn, S.E.; Sherer, R.; Williams, K.E.; Hartman, M.

    2010-01-01

    We conducted a natural resource assessment of Rocky Mountain National Park (ROMO) to provide a synthesis of existing scientific data and knowledge to address the current conditions for a subset of important park natural resources. The intent is for this report to help provide park resource managers with data and information, particularly in the form of spatially-explicit maps and GIS databases, about those natural resources and to place emerging issues within a local, regional, national, or global context. With an advisory team, we identified the following condition indicators that would be useful to assess the condition of the park: Air and Climate: Condition of alpine lakes and atmospheric deposition Water: Extent and connectivity of wetland and riparian areas Biotic Integrity: Extent of exotic terrestrial plant species, extent of fish distributions, and extent of suitable beaver habitat Landscapes: Extent and pattern of major ecological systems and natural landscapes connectivity These indicators are summarized in the following pages. We also developed two maps of important issues for use by park managers: visitor use (thru accessibility modeling) and proportion of watersheds affected by beetle kill. Based on our analysis, we believe that there is a high degree of concern for the following indicators: condition of alpine lakes; extent and connectivity of riparian/wetland areas; extent of exotic terrestrial plants (especially below 9,500’); extent of fish distributions; extent of suitable beaver habitat; and natural landscapes and connectivity. We found a low degree of concern for: the extent and pattern of major ecological systems. The indicators and issues were also summarized by the 34 watershed units (HUC12) within the park. Generally, we found six watersheds to be in “pristine” condition: Black Canyon Creek, Comanche Creek, Middle Saint Vrain Creek, South Fork of the Cache la Poudre, Buchanan Creek, and East Inlet. Four watersheds were found to have

  4. 76 FR 77224 - Rocky Mountain Natural Gas LLC; Notice of Petition for Rate Approval and Revised Statement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Rocky Mountain Natural Gas LLC; Notice of Petition for Rate Approval and Revised Statement of Operating Conditions Take notice that on November 30, 2011, Rocky Mountain...

  5. Professional School Counseling in the Rocky Mountain Region: Graduation Rates of CACREP vs. Non-CACREP Accredited Programs

    ERIC Educational Resources Information Center

    Hancock, Mary D.; Boes, Susan R.; Snow, Brent M.; Chibbaro, Julia S.

    2010-01-01

    School Counseling in the Rocky Mountain region of the United States was explored with a focus on the production of professional school counselors in the Rocky Mountain region of the Association for Counselor Education and Supervision (RMACES). Comparisons of program graduates are made by state and program as well as by accreditation status. State…

  6. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  7. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains.

    PubMed

    Janes, Jasmine K; Li, Yisu; Keeling, Christopher I; Yuen, Macaire M S; Boone, Celia K; Cooke, Janice E K; Bohlmann, Joerg; Huber, Dezene P W; Murray, Brent W; Coltman, David W; Sperling, Felix A H

    2014-07-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below -40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species. PMID:24803641

  8. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    PubMed

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. PMID:26546596

  9. How the Mountain Pine Beetle (Dendroctonus ponderosae) Breached the Canadian Rocky Mountains

    PubMed Central

    Janes, Jasmine K.; Li, Yisu; Keeling, Christopher I.; Yuen, Macaire M.S.; Boone, Celia K.; Cooke, Janice E.K.; Bohlmann, Joerg; Huber, Dezene P.W.; Murray, Brent W.; Coltman, David W.; Sperling, Felix A.H.

    2014-01-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species. PMID:24803641

  10. Indicators for elevated risk of human exposure to host-seeking adults of the Rocky Mountain wood tick (Dermacentor andersoni) in Colorado.

    PubMed

    Eisen, Lars; Ibarra-Juarez, Luis A; Eisen, Rebecca J; Piesman, Joseph

    2008-06-01

    The human-biting adult stage of the Rocky Mountain wood tick (Dermacentor andersoni) can cause tick paralysis in humans and domestic animals and is the primary tick vector in the intermountain west of the pathogens causing Colorado tick fever, Rocky Mountain spotted fever, and tularemia. We conducted drag sampling studies in Poudre Canyon and Rocky Mountain National Park of Larimer County, CO, to determine microhabitat use patterns by host-seeking D. andersoni adults and find environmental factors signaling elevated risk of tick exposure. Big sagebrush (Artemisia tridentata) was found to serve as a general indicator of areas with elevated risk of exposure to host-seeking D. andersoni adults; this likely results from a shared climate tolerance of big sagebrush and D. andersoni. Grass was the favored substrate for host-seeking ticks. Drag sampling of open grass or grass bordering rock or shrub produced abundances of D. andersoni adults significantly higher than sampling of brush. Sampling sites in Rocky Mountain National Park, relative to Poudre Canyon, were characterized by more intense usage by elk (Cervus elaphus) but decreased brush coverage, smaller brush size, and lower abundances of host-seeking D. andersoni adults. There has been a tremendous increase in the population of elk in Rocky Mountain National Park over the last decades and we speculate that this has resulted in an ecological cascade where overgrazing of vegetation by elk is followed by suppression of rodent populations, decreased tick abundance, and, ultimately, reduced risk of human exposure to D. andersoni and its associated pathogens. PMID:18697314

  11. Ground-water reconnaissance of selected sites in Rocky Mountain National Park and Shadow Mountain National Recreation area, Colorado

    USGS Publications Warehouse

    Welder, F.A.

    1971-01-01

    An evaluation of the ground-water supply potential at 30 sites within the Rocky Mountain National Park and Shadow Mountain National Recreation Area was made by the U.S. Geological Survey in 1967 and 1968. The work consisted of a geohydrologic reconnaissance, well inventory, and test drilling. The study sites are underlain by. Precambrian crystalline rocks, Tertiary sediments, or Quaternary glacial and alluvial deposits. The crystalline rocks are generally poor aquifers; however, some wells intercepting fractures may yield as much as 10 gallons per minute from wells 100 to 200 feet deep. Wells drilled in Tertiary sandstones to a depth of 50 to 500 feet may supply 1 to 50 gallons per minute. Wells drilled in unconsolidated glacial and alluvial deposits of Quaternary age yield the largest supplies of ground water in the Rocky Mountain National Park. These deposits commonly can supply 5 to 100 gallons per minute to wells.

  12. Effect of lunar phase on diurnal activity of Rocky Mountain Elk (Cervus Elaphus Nelsonii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk (Cervus elaphus nelsonii) are important components in many ecosystems across the western US and are integral with both Native American and contemporary western culture. They are prized by hunters and are the object of countless works of art. These magnificent creatures are studi...

  13. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: In North America, ticks are the most economically impactful vectors of human and animal pathogens. The Rocky Mountain wood tick, Dermacentor andersoni (Acari: Ixodidae), transmits Rickettsia rickettsii and Anaplasma marginale to humans and cattle, respectively. In recent years, studies h...

  14. Abnormal prion protein in the retina of Rocky Mountain elk (Cervus Elaphus Nelsoni)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic wasting disease (CWD), a transmissible spongiform encephalopathy, has been reported in captive and free-ranging mule deer (Odocoileus hemionus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni). An abnormal isoform of a prion pro...

  15. Association analysis of PRNP gene region with chronic wasting disease in Rocky Mountain elk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids including whitetail (Odocoileus virginianus) and mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces). A leucine variant at position 132 (132L) in...

  16. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park

    EPA Science Inventory

    An analytical method was developed for the trace analysis of 98 semi-volatile organic compounds (SOCs) in remote, high elevation lake sediment. Sediment cores from Lone Pine Lake (West of the Continental Divide) and Mills Lake (East of the Continental Divide) in Rocky Mountain Na...

  17. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations and is threatened by multiple stresses, including rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and pop...

  18. Effect of lunar phase on summer activity budgets of Rocky Mountain elk (Cervus elaphus nelsonii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk (Cervus elaphus) exist in a complex biological and social environment that is marked by necessary diurnal activities such as foraging, ruminating, and resting. It has long been understood that elk demonstrate circadian rhythms. One of the most predictable variables that could af...

  19. ROCKY MOUNTAIN REGIONAL HAZARDOUS SUBSTANCE RESEARCH CENTER FOR REMEDIATION OF MINE WASTE SITES

    EPA Science Inventory

    A total of 11 research projects were funded as part of the Rocky Mountain Regional HSRC. The typical project duration was 2 years, with one project funded for 3 years and another project funded for only 1 year. Three projects were funded in each of three research focus areas, ...

  20. THE EFFECTS OF ELEVATED METALS ON BENTHIC COMMUNITY METABOLISM IN A ROCKY MOUNTAIN STREAM

    EPA Science Inventory

    The effects of elevated metals (dissolved Zn, Mn and/or Fe) in a Rocky Mountain stream were assessed using measures of primary productivity, community respiration and water-column toxicity. Primary productivity was measured as rates of O2 evolution from natural substrates incubat...

  1. National coal resource assessment: Fort Union coals of the Northern Rocky Mountains and Great Plains

    SciTech Connect

    Flores, R.M.; Bader, L.R.; Ellis, M.S. |

    1996-12-31

    The present investigation assesses geologic controls on the distribution, resource occurrence, and quality of the Paleocene Fort Union and equivalent coals in the northern Rocky Mountains and Great Plains. Results of this investigation will assist in predicting areas wit h high quality coals that will be available for development. Published products will include digital output and hard copy readily accessible for analysis and utilization.

  2. SUPERFUND TREATABILITY CLEARINGHOUSE: LITIGATION TECHNICAL SUPPORT AND SERVICES, ROCKY MOUNTAIN ARSENAL (BASIS F WASTES)

    EPA Science Inventory

    This report consists of 5 documents which cover incineration tests at the Rocky Mountain Arsenal (RMA), Denver, CO, ranging from a labor- atory test plan and bench-scale test to full-scale testing. This abstract reports only on the results of bench-scale incineration test...

  3. ENVIROBOND (TM) PROCESS ROCKY MOUNTAIN REMEDIATION SERVICES (EPA/540/MR-99/502)

    EPA Science Inventory

    The Rocky Mountain Remediation Services Environbond (TM) process was evaluated under the USEPA's SITE program for the ability of the process to reduce leachable lead in contaminated soils. The Envirobond process was either sprayed onto or directly injected into the contaminated s...

  4. Rocky Mountain Regional Resource Center: Service and Training. Volume II of III. Final Report.

    ERIC Educational Resources Information Center

    Buffmire, Judy Ann

    The second volume of a three-volume report on the Rocky Mountain Regional Resource Center provides data on service and training components of the Center's functioning from its inception in 1970 through 1974. Provided are analyses of three 1-year stages in the development of the stratistician model which was originally designed to provide a…

  5. The maintenance of a mixed mating system in the rocky mountain columbine: is it adaptive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed mating system, where both selfing and outcrossing occur in a population, is a common feature of the rocky mountain columbine, Aquilegia coerulea, where outcrossing rates vary between 0.41 and 0.93 among populations. We examined whether the maintenance of selfing in these populations is adaptiv...

  6. Rocky Mountain snowpack chemistry network; history, methods, and the importance of monitoring mountain ecosystems

    USGS Publications Warehouse

    Ingersoll, George P.; Turk, John T.; Mast, M. Alisa; Clow, David W.; Campbell, Donald H.; Bailey, Zelda C.

    2002-01-01

    Because regional-scale atmospheric deposition data in the Rocky Mountains are sparse, a program was designed by the U.S. Geological Survey to more thoroughly determine the quality of precipitation and to identify sources of atmospherically deposited pollution in a network of high-elevation sites. Depth-integrated samples of seasonal snowpacks at 52 sampling sites, in a network from New Mexico to Montana, were collected and analyzed each year since 1993. The results of the first 5 years (1993?97) of the program are discussed in this report. Spatial patterns in regional data have emerged from the geographically distributed chemical concentrations of ammonium, nitrate, and sulfate that clearly indicate that concentrations of these acid precursors in less developed areas of the region are lower than concentrations in the heavily developed areas. Snowpacks in northern Colorado that lie adjacent to both the highly developed Denver metropolitan area to the east and coal-fired powerplants to the west had the highest overall concentrations of nitrate and sulfate in the network. Ammonium concentrations were highest in northwestern Wyoming and southern Montana.

  7. The Response of Vegetation Zonation in Rocky Mountain Ecotones to Climate Change

    NASA Astrophysics Data System (ADS)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.

    2014-12-01

    Mean annual temperatures in the western United States have increased in the last few decades, and during the 21st century, it is predicted that this warming trend will continue. This change in climate may create shifts in the optimal ranges of vegetation within the Rocky Mountains, requiring species migration. For a species at the top of a mountain there may be little room for upward migration. These forests are a crucial part of the US's carbon budget, thus it is important to analyze how climate change will affect the zonation and species composition of vegetation in Rocky Mountain landscapes. UVAFME is an individual-based gap model that simulates biomass and species composition of a forest. Originally developed for northeast China and applied across all of Russia, this model has accurately simulated diverse forests in a range of climates, as well as the response of these forests to climate change. UVAFME is first calibrated to several sites along the Colorado and Wyoming Rocky Mountains using species, soil, and climate data from the US Forest Service. The initial model output of biomass and species composition is tested against forest inventory data and expected forest type ecotone along an elevational gradient. The model is then run with a linear increase in temperature of 3°C over 200 years, corresponding to the A1B IPPC climate scenario. These results are compared to current forest inventory data and to model runs without climate change. We project that with climate change species ranges will shift up the mountain, leading to an increase in the deciduous species Populus tremuloides, and a decrease in coniferous species at high elevations. These results are an important step in evaluating the response of Rocky Mountain vegetation to climate change and will help predict the future of these crucial ecosystems.

  8. Impact of horse traffic on trails in Rocky Mountain National Park.

    USGS Publications Warehouse

    Summer, R.M.

    1980-01-01

    Disturbances related to the impact of horses on trails in Rocky Mountain National Park vary across the landscape. Geomorphic monitoring of permanent sites suggests that horse traffic is not the single, dominant process active on trails, nor is degredation always a direct result of horse use. Instead, amounts and rates of change are a function of geomorphic and biologic characteristics of the terrain interacting with horse traffic of varying degrees. The most influential landscape factors governing trail deteriortion, rockiness, stoniness, vegetation, and drainage. - from Author

  9. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  10. Wind energy resource atlas. Volume 8. The southern Rocky Mountain region

    SciTech Connect

    Andersen, S.R.; Freeman, D.L.; Hadley, D.L.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    The Southern Rocky Mountain atlas assimilates five collections of wind resource data: one for the region and one for each of the four states that compose the Southern Rocky Mountain region (Arizona, Colorado, New Mexico, and Utah). At the state level, features of the climate, topography and wind resource are discussed in greater detail than is provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  11. Peneplains of the Front Range and Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Lee, Willis T.

    1923-01-01

    The purpose of this paper is to call attention to some of the major surface features in the Rocky Mountain National Park and to point out their probable correlation with similar features in neighboring regions. The observations on which the paper is based were made in the summer of 1916, during an investigation in which other work demanded first consideration. This paper may therefore be considered a by-product. For the same reason many of the observations were not followed to conclusions, yet the data obtained seem to be sufficient to establish a certain order of events, the recognition of which may be of assistance in working out in detail the geologic and geographic history of the Rocky Mountain region.

  12. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    USGS Publications Warehouse

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (-1 yr-1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha-1 yr-1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3- threshold at which ecological effects are thought to occur. Based on an NO3- threshold of 0.5 μmol L-1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  13. Late Paleozoic deformation of interior North America: The greater Ancestral Rocky Mountains

    SciTech Connect

    Ye, Hongzhuan |; Royden, L.; Burchfiel, C.; Schuepbach, M.

    1996-09-01

    Late Paleozoic deformation within interior North America has produced a series of north-northwest- to northwest-trending elongate basins that cover much of Oklahoma, Texas, New Mexico, Colorado, and Utah. Each basin thickens asymmetrically toward an adjacent region of coeval basement uplift from which it is separated by synsedimentary faults with great vertical relief. The remarkable coincidence in timing, geometry, and apparent structural style throughout the region of late Paleozoic deformation strongly suggests that these paired regions of basin subsidence and basement uplift form a unified system of regional deformation, the greater Ancestral Rocky Mountains. Over this region, basin subsidence and basement uplift were approximately synchronous, beginning in the Chesterian-Morrowan, continuing through the Pennsylvanian, and ending in the Wolfcampian (although minor post-Wolfcampian deformation occurs locally). The basement uplifts show evidence for folding and faulting in the Pennsylvanian and Early Permian. Reverse faults and thrust faults have been drilled over many of the uplifts, but only in the Anadarko region has thrusting of the basement uplifts over the adjacent basin been clearly documented. Extensive basement-involved thrusting also occurs along the margins of the Delaware and Midland basins, and suggests that the entire greater Ancestral Rocky Mountains region probably formed as the result of northeast-southwest-directed-intraplate shortening. Deformation within the greater Ancestral Rocky Mountains was coeval with late Paleozoic subduction along much of the North American plate margin, and has traditionally been related to emplacement of thrust sheets within the Ouachita-Marathon orogenic belt. The nature, timing, and orientation of events along the Ouachita-Marathon belt make it difficult to drive the deformation of the greater Ancestral Rocky Mountains by emplacement of the Ouachita-Marathon belt along the southern margin of North America.

  14. Proceedings, 95th regular meeting: The Rocky Mountain Coal Mining Institute

    SciTech Connect

    Finnie, D.G.

    1999-07-01

    In addition to the nine convention papers published in these proceedings, information is given on the membership and organization of the Rocky Mountain Coal Mining Institute. The papers are concerned with the economics and management of coal companies, occupational safety of their employees, public anxiety of the environmental impacts of surface mining, and contracting for mining equipment maintenance. Papers have been processed separately for inclusion on the data base.

  15. Lead in mule deer forage in Rocky Mountain National Park, Colorado

    SciTech Connect

    Harrison, P.D.; Dyer, M.I.

    1984-01-01

    Mule deer (Odocoileus hemionus) forage collected from roadsides in Rocky Mountain National Park, Colorado, contained lead (Pb) concentrations ranging from 0.8 to >50 ..mu..g/g. Concentrations were inversely correlated with distance from the roadway. Equations developed to estimate deer absorption of Pb from contaminated roadside vegetation indicate that deer in some age-classes need only to consume 1.4% of their daily intake of forage from roadsides before consuming excessive amounts of Pb.

  16. Distribution of corticolous noncrustose lichens on trunks of Rocky Mountain junipers in Boulder County, Colorado.

    USGS Publications Warehouse

    Peard, J.L.

    1983-01-01

    Nineteen species of noncrustose lichens were found on Juniperus scopulorum bark; 3 species had relatively high cover and frequency values and were characterized as typical lichens of Rocky Mountain junipers: Xanthoria fallax, Phaeophyscia hirsuta and Physcia caesia. Total cover per tree was low (4%) and most species preferred the N and E sides of trunk bases. These distributional trends may reflect gradients of exposure to wind, insolation, and rate of bark exfoliation. -Author Juniperus scopulorum Phaeophyscia hirsuta Physcia caesia Xanthoria fallax.

  17. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect

    Hadder, G.R.; Chin, S.M.

    1994-02-01

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  18. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains.

    PubMed

    Dechaine, Eric G; Martin, Andrew P

    2005-03-01

    Climate change during the Quaternary played an important role in the differentiation and evolution of plants. A prevailing hypothesis is that alpine and arctic species survived glacial periods in refugia at the periphery of glaciers. Though the Rocky Mountains, south of the southernmost extent of continental ice, served as an important glacial refuge, little is known about how climate cycles influenced populations within this region. We inferred the phylogeography of Sedum lanceolatum (Crassulaceae) within the Rocky Mountain refugium to assess how this high-elevation plant responded to glacial cycles. We sequenced 884 base pairs (bp) of cpDNA intergenic spacers (tRNA-L to tRNA-F and tRNA-S to tRNA-G) for 333 individuals from 18 alpine populations. Our highly variable markers allowed us to infer that populations persisted across the latitudinal range throughout the climate cycles, exhibited significant genetic structure, and experienced cycles of range expansion and fragmentation. Genetic differentiation in S. lanceolatum was most likely a product of short-distance elevational migration in response to climate change, low seed dispersal, and vegetative reproduction. To the extent that Sedum is a good model system, paleoclimatic cycles were probably a major factor preserving genetic variation and promoting divergence in high-elevation flora of the Rocky Mountains. PMID:21652425

  19. Orbital control, climate seasonality, and landscape evolution in the Quaternary Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Sewall, Jacob O.; Riihimaki, Catherine A.; Kadegis, Jeffrey

    2015-12-01

    While climate has long been implicated in the extensive erosion of Eocene through Miocene-aged basin fills in the Rocky Mountains, lack of precise, high temporal-density datasets of landform ages has made it difficult to detail the mechanisms by which climate increased relief. A dense dataset of (U-Th)/He dates from the Powder River Basin, Wyoming and Montana, USA, indicates correspondence between elevated exhumation and peaks in orbital eccentricity. Here we use an atmospheric general circulation model to investigate the potential role of eccentricity in enhancing erosion in the Rocky Mountains. We find that with high orbital eccentricity (0.05767), elevated seasonality (the moving vernal equinox of perihelion [MVELP] = 270°) results in 10-100% more summer precipitation and surface runoff than low seasonality (MVELP = 90°). Under low orbital eccentricity (0.0034), precipitation and runoff changes across a precession cycle are negligible. These results suggest that elevated eccentricity could, indeed, be associated with more intense summer precipitation and runoff, which could then drive higher landscape erosion rates. This finding could explain the occurrence of ~ 100-kyr cyclicity in Powder River Basin landform ages and provides a clear, non-glacial, link between climate variability and landscape evolution in the Rocky Mountains. In this, and other low-to-mid-latitude sedimentary basins, runoff volume and not glacier dynamics may be the variable that exerts primary control on landscape evolution.

  20. Hydrological Trends in a High Alpine Watershed in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Pina, A.; Moore, C. E.; Records, R.; Medina, I. D.; Miner, G. L.

    2014-12-01

    Recent studies reveal amplified air temperature warming trends in the Rocky Mountains than global averages, as well as earlier snowmelt timing and decreased snow-water equivalent (SWE) relative to past records in this region. Changes in SWE and snowmelt runoff timing directly impact water availability in alpine watersheds as well as downstream ecosystem services. In this study we evaluated local trends in air temperature, precipitation, snowpack, and streamflow timing to look for similarities to regional trends reported in literature. We assessed two long-term alpine data collection sites in Rocky Mountain National Park: Bear Lake SNOTEL site (2896 m; 1981-2013) and Loch Vale Watershed (3159 m; 1984-2011), using the Mann-Kendall test to examine trends in average monthly temperature, number of days above freezing, peak SWE depth and timing, number of snow-free days, and total precipitation at Bear Lake, as well as streamflow volume and timing metrics at the outlet of Loch Vale. We found seasonal patterns and magnitudes of warming similar to regional trend findings, with significant increasing trends in average monthly mean air temperatures for most months. The average number of days below 0ºC also significantly decreased in fall and winter. However, we found no significant trends in peak SWE, discharge rate, precipitation, accumulated snowfall, or the number of snow-free days at Bear Lake or Loch Vale sites. These results suggest reported regional warming trends are not reflected in localized snowmelt trends in alpine Rocky Mountain watersheds.

  1. Rocky Mountain Snowpack Physical and Chemical Data for Selected Sites, 1993-2008

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Campbell, Donald H.; Clow, David W.; Nanus, Leora; Turk, John T.

    2009-01-01

    The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow to help in the understanding of the effects of atmospheric deposition to this region. The U.S. Geological Survey, in cooperation with the National Park Service, the USDA Forest Service, Teton County in Wyoming, Rio Blanco County in Colorado, Pitkin County in Colorado, and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2008. Forty-eight of the 162 snow-sampling sites have been sampled annually since 1993. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow/ water equivalent, snow depth, stable sulfur isotope ratios, total mercury concentrations (beginning in 2001), and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for individual years (1993-2008) also are included.

  2. Rocky Mountain snowpack physical and chemical data for selected sites, 2009

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.

    2010-01-01

    The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region from New Mexico to Montana to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition. The U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, collected and analyzed snowpack samples annually for 48 or more sites in the Rocky Mountain region during 1993-2009. Sixty-three snowpack-sampling sites were sampled once each in 2009 and data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2009 also are included.

  3. Rocky Mountain snowpack physical and chemical data for selected sites, 2010

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Swank, James M.; Campbell, Chelsea D.

    2010-01-01

    The Rocky Mountain Snowpack program established a network of snowpack-sampling sites in the Rocky Mountain region, from New Mexico to Montana, to monitor the chemical content of snow and to understand the effects of regional atmospheric deposition on freshwater systems. Scientists with the U.S. Geological Survey, in cooperation with the National Park Service; the U.S. Department of Agriculture Forest Service; the Colorado Department of Public Health and Environment; Teton County, Wyoming; and others, annually collected and analyzed snow-pack samples at 48 or more sites in the Rocky Mountain region during 1993-2010. Sixty-three snowpack-sampling sites were each sampled once in 2010, and those data are presented in this report. Data include acid-neutralization capacity, specific conductance, pH, hydrogen ion concentrations, dissolved concentrations of major constituents (calcium, magnesium, sodium, potassium, ammonium, chloride, sulfate, and nitrate), dissolved organic carbon concentrations, snow-water equivalent, snow depth, total mercury concentrations, and ionic charge balance. Quality-assurance data for field and laboratory blanks and field replicates for 2010 also are included.

  4. Oil and gas prospecting beneath the Precambrian of foreland thrust plates in the Rocky Mountains

    SciTech Connect

    Gries, R.

    1981-01-01

    Only 15 wells in the Rocky Mountain region have drilled through Precambrian to test the 3 to 6 million acres of sedimentary rocks that are concealed and virtually unexplored beneath mountain front thrusts. More than half of these wells had oil and gas shows and one was a producing oil well. These wells have not only set up an exciting play for the future, they have also helped define the structural geometry of the mountain front thrusts, including the angle of the thrust and the presence or absence of fault slivers of overturned Mesozoic or Paleozoic rocks. Most important for further geophysical exploration, these wells have provided vital data on seismic velocities in Precambrian rocks. Analysis of these data will stimulate further exploration along the fronts already drilled: the Emigrant Trail Thrust, the Washakie Thrust, the Wind River Thrust, the Uinta Mountain Thrust, and the thrust at the north end of the Laramie Range. The geologic success of these wells has encouraged leasing and seismic acquisition on every other mountain front thrust in the Rockies. Wells are presently drilling on the Casper Arch and the west flank of the Big Horn Basin adjacent Oregon Basin Field. An unsuccessful attempt to drill through the Arlington Thrust of the Medicine Bow Range will probably only momentarily daunt that play, and the attempted penetration of the Axial Arch in Colorado has not condemned that area. Untested areas that will be explored in the near future are: the south flank of the Owl Creek Range, the northeast flank of the Beartooth Mountains in Montana, the east and west flanks of the Big Horn Mountains, the north flank of the Hanna Basin, the south flank of the Uinta Mountains, the White River Uplift, the north flank of North Park Basin, and the Front Range.

  5. Differential insect and mammalian response to Late Quaternary climate change in the Rocky Mountain region of North America

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.

    2015-07-01

    Of the 200 beetle species identified from Rocky Mountain Late Pleistocene insect faunal assemblages, 23% are no longer resident in this region. None of the 200 species is extinct. In contrast to this, only 8% of 73 identified mammal species from Rocky Mountain Late Pleistocene assemblages are no longer resident in the Rockies, and 12 species are now extinct. Since both groups of organisms are highly mobile, it would appear that their responses to the large-scale fluctuations of climate associated with the last 125,000 years have been considerably different. Most strikingly contrasting with the insects, there are no mammals in the Rocky Mountain Late Pleistocene fossil record that are found exclusively today in the Pacific Northwest (PNW) region. The PNW does have a distinctive modern mammalian fauna, but only one of these, Keen's Myotis, has a fossil record outside the PNW region, in the eastern and central United States. No modern PNW vertebrate species have been found in any Rocky Mountain fossil assemblages. Based on these data, it appears that there has been little or no mammalian faunal exchange between the PNW region and the Rocky Mountains during the Late Pleistocene or Holocene. This is in stark contrast to the fossil beetle record, where PNW species are a substantial component in many faunas, right through to the Late Holocene.

  6. Land-atmosphere carbon cycle research in the southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Blanken, P.; Brooks, P. D.; Ehleringer, J. R.; Ewers, B. E.; Lehman, S.; Litvak, M. E.; Massman, W. J.; Miller, J. B.; Stephens, B. B.; Vaughn, B. H.

    2013-12-01

    The majority of land-atmosphere carbon exchange in the southern U.S. Rocky Mountains (Wyoming, Utah, Colorado, Arizona, and New Mexico) occurs in mid- to high-elevation forests, and in urban metropolitan areas. Forest-atmosphere carbon exchange is highly variable from year to year due to fluctuations in environmental conditions (particularly water availability) and following disturbances by insects and fire. A wide variety of long-term carbon cycle datasets from many locations are freely available to the scientific community from this region, varying in length from a few years to several decades. These include flask observations from the NOAA Cooperative Air Sampling Network (UTA, NWR, NWF, and BAO sites) which include CO2, CO2 stable and radioisotopes, CH4, and CO, continuous CO2 observations from the Rocky RACCOON mountaintop and Salt Lake Valley urban CO2 monitoring sites, forest flux observations from several AmeriFlux towers (GLEES, Niwot Ridge, and Valles Caldera sites), and continuous CO2 isotope observations (Niwot Ridge). Many of these sites include measurements before and after major ecological disturbances. This presentation will describe the publicly available datasets that exist, examining some of the features of these datasets that highlight the regional carbon cycle in the southern Rocky Mountains. Our goal is to encourage use and synthesis of these data by the observational, modeling, and remote sensing communities.

  7. Is there biomagnification of organochlorines in a Rocky Mountain aquatic food web?

    SciTech Connect

    Campbell, L.M.; Schindler, D.W.; Kidd, K.; Donald, D.D.; Muir, D.

    1995-12-31

    In 1991--92, 14 lakes in the Canadian Rocky Mountains were surveyed for organochlorine contamination (PCBs, DDT isomers, toxaphene, and other pesticides) of water and lake trout. Lake trout from Bow Lake, near the Continental Divide, in Banff National Park, contained particularly high concentrations of organochlorines, notably toxaphene, in their tissue compared to other mountain lake trout populations. The hypothesis that the high degree of contamination in fish is caused by biomagnification is being tested by analysis of lake trout (Salveninus namaycush), mountain whitefish (Propsopium williamsoni), benthic invertebrates, and zooplankton for organochlorine compounds and stable nitrogen isotopes (15N/14N). Fish, invertebrates, sediments and water collected from Bow Lake in 1994 were all found to contain organochlorines, and the authors are investigating the apparent patterns of contamination present. The possibility that contaminants deposited in past decades on the glaciers that feed Bow Lake contributes to the high values is also being examined.

  8. Intraspecific phylogeography of red squirrels (Tamiasciurus hudsonicus) in the central Rocky Mountain region of North America.

    PubMed

    Wilson, Gregory M; Den Bussche, Ronald A; McBee, Karen; Johnson, Lacrecia A; Jones, Cheri A

    2005-11-01

    We used variation in a portion of the mitochondrial DNA control region to examine phylogeography of Tamiasciurus hudsonicus, a boreal-adapted small mammal in the central Rocky Mountain region. AMOVA revealed that 65.66% of genetic diversity was attributable to variation within populations, 16.93% to variation among populations on different mountain ranges, and 17.41% to variation among populations within mountain ranges. Nested clade analysis revealed two major clades that likely diverged in allopatry during the Pleistocene: a southern clade from southern Colorado and a northern clade comprising northern Colorado, Wyoming, eastern Utah, and eastern Idaho. Historically restricted gene flow as a result of geographic barriers was indicated between populations on opposite sides of the Green River and Wyoming Basin and among populations in eastern Wyoming. In some instances genetic structure indicated isolation by distance. PMID:16247688

  9. Density of Freshly Fallen Snow in the Central Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Judson, Arthur; Doesken, Nolan

    2000-07-01

    New snow density distributions are presented for six measurement sites in the mountains of Colorado and Wyoming. Densities were computed from daily measurements of new snow depth and water equivalent from snow board cores. All data were measured once daily in wind-protected forest sites. Observed densities of freshly fallen snow ranged from 10 to 257 kg m-3. Average densities at each site based on four year's of daily observations ranged from 72 to 103 kg m-3. Seventy-two percent of all daily densities fell between 50 and 100 kg m-3. Approximately 5% of all daily snows had densities below 40 kg m-3. The highest frequency of low densities occurred at Steamboat Springs and Dry Lake. The relationship between air temperature and new snow density exhibited a decline of density with temperature with a correlation coefficient of 0.52. No obvious reversal toward higher densities occurred at cold temperatures, as some previous studies have reported. No clear relationship was found between snow density and the depth of new snowfalls. Correlations of daily densities between measurement sites decreased rapidly with increasing distance between sites. New snow densities are strongly influenced by orography, which contributes to density differences over short distances.

  10. Ozone in remote areas of the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Musselman, Robert C.; Korfmacher, John L.

    2014-01-01

    Ozone (O3) data are sparse for remote, non-urban mountain areas of the western U.S. Ozone was monitored 2007-2011 at high elevation sites in national forests in Colorado and northeastern Utah using a portable battery-powered O3 monitor. The data suggest that many of these remote locations already have O3 concentrations that would contribute to exceedance of the current National Ambient Air Quality Standard (NAAQS) for O3 and most could exceed a proposed more stringent secondary standard. There were significant year-to-year differences in O3 concentration. Ozone was primarily in the mid-concentration range, rarely exceeding 100 ppb or dropping below 30 ppb. The small diel changes in concentration indicate mixing ratios of NOx, VOCs, and O3 that favor stable O3 concentrations. The large number of mid-level O3 concentrations contributed to high W126 O3 values, the metric proposed as a possible new secondary standard. Higher O3 concentrations in springtime and at night suggest that stratospheric intrusion may be contributing to ambient O3 at these sites. Highest nighttime O3 concentrations occurred at the highest elevations, while daytime O3 concentrations did not have a relationship with elevation. These factors favor O3 concentrations at many of our remote locations that may exceed the O3 NAAQS, and suggest that exceedances are likely to occur at other western rural locations.

  11. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my

  12. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    PubMed

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant. PMID:21811884

  13. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  14. Descriptive risk assessment of the effects of acidic deposition on Rocky Mountain amphibians

    USGS Publications Warehouse

    Corn, Paul Stephen; Vertucci, Frank A.

    1992-01-01

    We evaluated the risk of habitat acidification to the six species of amphibians that occur in the mountains of Colorado and Wyoming. Our evaluation included extrinsic environmental factors (habitat sensitivity and amount of acidic atmospheric deposition) and species-specific intrinsic factors (sensitivity to acid conditions, habitat preferences, and timing of breeding). Only one of 57 surveyed localities had both acid neutralizing capacity μeq/L and sulfate deposition >10 kg/ha/yr, extrinsic conditions with a possible risk of acidification. Amphibian breeding habitats in the Rocky Mountains do not appear to be sufficiently acidic to kill amphibian embryos. Some species breed in high-elevation vernal pools during snowmelt, and an acidic pulse during snowmelt may pose a risk to embryos of these species. However, the acidic pulse, if present, probably occurs before open water appears and before breeding begins. Although inherent variability of amphibian population size may make detection of declines from anthropogenic effects difficult, acidic deposition is unlikely to have caused the observed declines of Bufo boreas and Rana pipiens in Colorado and Wyoming. Amphibians in the Rocky Mountains are not likely to be at risk with acidification inputs at present levels.

  15. Experimental repatriation of boreal toad (Bufo boreas) eggs, metamorphs, and adults in Rocky Mountain National Park

    USGS Publications Warehouse

    Muths, E.; Johnson, T.L.; Corn, P.S.

    2001-01-01

    The boreal toad (Bufo boreas) is an endangered species in Colorado and is considered a candidate species for federal listing by the United States Fish and Wildlife Service. Boreal toads are absent from many areas of suitable habitat in the Southern Rocky Mountains of Colorado presumably due to a combination of causes. We moved boreal toads from existing populations and from captive rearing facilities to habitat which was historically, but is not currently, occupied by toads to experimentally examine methods of repatriation for this species. Repatriation is defined as the release of individuals into areas currently of historically occupied by that species (Dodd and Seigel, 1991). This effort was in response to one of the criteria for delisting the boreal toad in Colorado stated in the conservation plan and agreement for the management and recovery of the Southern Rocky Mountain population of the boreal toad (Loeffler, 1998:16); a??a?|there must be at least 2 viable breeding populations of boreal toads in each of at least 9 of 11 mountain ranges of its historic distribution.a?? Without moving eggs from established wild populations, or from captivity to historical localities, it is doubtful whether the recovery team will attain this ambitions goal.

  16. Temperature, snowmelt, and the onset of spring season landslides in the central Rocky Mountains

    USGS Publications Warehouse

    Chleborad, Alan F.

    1997-01-01

    Snow meltwater (snowmelt) that seeps into the subsurface is a major factor contributing to the development of landslides during the spring in mountainous areas of the Rocky Mountain region. An examination of historical temperature data in relation to spring season landslide occurrences reveals an association between the landslide events and intervals of rising temperatures that accelerate the production of snow meltwater. Historical climatic data recorded at local weather stations located near the landslide sites are used to show the association and to identify a temperature threshold that may be useful for forecasting the onset of spring season landslides. Historical daily temperature maximums and minimums for unmonitored landslide sites are estimated by applying an elevation correction factor to historical temperature data from nearby weather stations. The proposed temperature threshold (a 6-day moving average of daily maximum temperature of 58? F) is defined by the number and temporal distribution of snowmelt related landslide events. The results of the study suggest that real-time temperature data recorded at weather stations throughout the Rocky Mountain region is potentially a valuable source of information that may be useful for forecasting the onset of spring season landslides.

  17. Transport of pollutants from cow feedlots in eastern Colorado into Rocky Mountain alpine lakes

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, S.; Schumacher, R. S.

    2012-12-01

    Concentrated Animal Feeding Operations (CAFOs), also called factory farms, are known for raising tens of millions head of livestock including cows (beef and dairy), swine, and poultry. With as many as 250 head of cattle per acre, a United States Department of Agriculture's (USDA) Agricultural Research Service (ARS) report showed beef cattle from CAFOs in the United States produce as much as 24.1 million tons of manure annually. Gases released from cow manure include methane (CH4), nitrous oxide (N2O), hydrogen sulfide (H2S), and ammonia (NH3). During boreal summers Colorado experiences fewer synoptic weather systems, allowing the diurnal cycle to exert greater control of meteorological events along the mountain-plains interface. Anabatic, or upslope winds induced by the diurnal cycle, contribute largely to the transport of gases and particulates from feedlots in eastern Colorado into the Rocky Mountains, presenting a potential harm to natural alpine ecosystems. This study focuses on locating the source of transport of gases from feedlots along the eastern Front Range of Colorado into alpine lakes of the Rocky Mountains. Source regions are approximated using backward time simulation of a Lagrangian Transport model.

  18. Systematics of the ectomycorrhizal genus Lactarius in the Rocky Mountain alpine zone.

    PubMed

    Barge, Edward G; Cripps, Cathy L; Osmundson, Todd W

    2016-01-01

    Lactarius (Russulales) is an important component of ectomycorrhizal fungal communities in cold-dominated contiguous arctic and disjunct alpine habitats where it associates primarily with Betula, Dryas and Salix However, little is known of this genus in the central and southern Rocky Mountain alpine zone (3000-3900 m) of North America. Molecular phylogenetic analyses of nuc rDNA ITS1-5.8S-ITS2 (ITS barcode) and the second largest subunit of the RNA polymerase II gene (RPB2) partial sequences in conjunction with detailed morphological examination confirm at least six species occurring above treeline. Most have intercontinental distributions in North America and Eurasia according to molecular comparison with type material and collections from Europe, Fennoscandia, Svalbard and Alaska. Rocky Mountain collections of L. lanceolatus (subgenus Russularia), along with the type from Alaska are paraphyletic with respect to L. aurantiacus and North American taxa L. luculentus and L. luculentus v. laetus Rocky Mountain collections of L. nanus, L. glyciosmus, L. repraesentaneus and L. salicis-reticulatae (subgenus Piperites) all form clades with European material from type localities and other arctic-alpine habitats. The arctic-alpine L. pseudouvidus/L. brunneoviolaceus group appears to be a complex containing additional taxa. North American material originally described as part of this group is well-separated phylogenetically and is described here as L. pallidomarginatus sp. nov. Lactarius lanceolatus, L. nanus and L. salicis-reticulatae appear largely restricted to arctic-alpine habitats with Salix Lactarius glyciosmus and L. repraesentaneus occur in arctic-alpine, subalpine and boreal habitats with Betula and also Picea and possibly Salix for the latter. Species distributions are hypothesized to be shaped by host ranges, glaciation and long distance dispersal. PMID:26740539

  19. Fatal Caprine arthritis encephalitis virus-like infection in 4 Rocky Mountain goats (Oreamnos americanus).

    PubMed

    Patton, Kristin M; Bildfell, Robert J; Anderson, Mark L; Cebra, Christopher K; Valentine, Beth A

    2012-03-01

    Over a 3.5-year period, 4 Rocky Mountain goats (Oreamnos americanus), housed at a single facility, developed clinical disease attributed to infection by Caprine arthritis encephalitis virus (CAEV). Ages ranged from 1 to 10 years. Three of the goats, a 1-year-old female, a 2-year-old male, and a 5-year-old male, had been fed raw domestic goat milk from a single source that was later found to have CAEV on the premises. The fourth animal, a 10-year-old male, had not ingested domestic goat milk but had been housed with the other 3 Rocky Mountain goats. All 4 animals had clinical signs of pneumonia prior to death. At necropsy, findings in lungs included marked diffuse interstitial pneumonia characterized histologically by severe lymphoplasmacytic infiltrates with massive alveolar proteinosis, interstitial fibrosis, and type II pneumocyte hyperplasia. One animal also developed left-sided hemiparesis, and locally extensive lymphoplasmacytic myeloencephalitis was present in the cranial cervical spinal cord. Two animals had joint effusions, as well as severe lymphoplasmacytic and ulcerative synovitis. Immunohistochemical staining of fixed sections of lung tissue from all 4 goats, as well as spinal cord in 1 affected animal, and synovium from 2 affected animals were positive for CAEV antigen. Serology testing for anti-CAEV antibodies was positive in the 2 goats tested. The cases suggest that Rocky Mountain goats are susceptible to naturally occurring CAEV infection, that CAEV from domestic goats can be transmitted to this species through infected milk and by horizontal transmission, and that viral infection can result in clinically severe multisystemic disease. PMID:22379056

  20. A new reference section for palynostratigraphic zonation of Paleocene rocks in the Rocky Mountain region

    USGS Publications Warehouse

    Nichols, D.J.; Flores, R.M.

    2006-01-01

    A biostratigraphic (palynostratigraphic) zonation of Paleocene rocks was established in the northeastern Wind River Basin near Waltman, Natrona County, Wyoming, in 1978 and subsequently applied extensively by various workers throughout the Rocky Mountain region. Because the original study on which the zonation was based was proprietary, precise details about the locations of the two reference sections and the samples on which the zonation was based were not published and are no longer retrievable. Therefore, it is useful (although not required) to designate formally a new reference section for the Paleocene biozones. Accordingly, exposures of Paleocene and associated strata within and west of the Castle Gardens Petroglyph Site in Fremont County, Wyoming, in the east-central part of the Wind River Basin, were selected for this purpose. At this location, composite stratigraphic sections encompassing 740 m of strata were measured, described, and sampled. Productive samples yielded characteristic Maastrichtian palynomorphs from the lower part of the sampled interval and diagnostic species of the six palynological biozones zones widely known as P1 (lower Paleocene) through P6 (upper Paleocene), through an interval of about 580 m. The Paleocene biozones are present in the same consistent stratigraphic order in the Castle Gardens area as observed in the 1978 study and subsequent studies throughout the Rocky Mountain region. In accordance with the North American Stratigraphic Code, the historical background is presented; intent to establish the Castle Gardens reference section is declared; the category, rank, and formal names of biostratigraphic units within it are specified; and the features of the biozonation are described, including biozone boundaries, ages, and regional relations. Occurrences of biostratigraphically significant palynological species within each biozone in the reference section are tabulated, and presence of these and other species in correlative

  1. Variation in fire regimes of the rocky mountains: Implications for avian communities and fire management

    USGS Publications Warehouse

    Saab, V.A.; Powell, H.D.W.; Kotliar, N.B.; Newlon, K.R.

    2005-01-01

    Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fir (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species' responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is

  2. Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming

    USGS Publications Warehouse

    Foster, Katharine

    2012-01-01

    Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.

  3. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    SciTech Connect

    Lunis, B.C.; Toth, W.J.

    1982-05-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  4. Sarcoptic mange found in wolves in the Rocky Mountains in western United States.

    PubMed

    Jimenez, Michael D; Bangs, Edward E; Sime, Carolyn; Asher, Valpa J

    2010-10-01

    We documented sarcoptic mange caused by mites (Sarcoptes scabiei) in 22 gray wolves (Canis lupus) in the northern Rocky Mountain states of Montana (n=16) and Wyoming (n=6), from 2002 through 2008. To our knowledge, this is the first report of sarcoptic mange in wolves in Montana or Wyoming in recent times. In addition to confirming sarcoptic mange, we recorded field observations of 40 wolves in Montana and 30 wolves in Wyoming displaying clinical signs of mange (i.e., alopecia, hyperkeratosis, and seborrhea). Therefore, we suspect sarcoptic mange may be more prevalent than we were able to confirm. PMID:20966263

  5. Ecological risk characterization based on exposure to contaminants through the Rocky Mountain Arsenal aquatic food chains

    SciTech Connect

    Toll, J.E.; Cothern, K.A.; Pavlou, S.; Tate, D.J.; Armstrong, J.P.

    1994-12-31

    This paper describes ecological risk characterization methods and results for characterizing potential risk from exposure to bioaccumulative contaminants of concern (aldrin, dieldrin, endrin, DDT, DDE, and mercury) through the lake food chains at Rocky Mountain Arsenal (RMA). Aquatic risks were estimated for the bald eagle, great blue heron, shorebird, and water bird using a prey-tissue-concentration-based food web model. Methods for estimating missing tissue concentration data were developed on a case-by-case basis and will be described. A sediment-based food web model was also considered and the reasons for its rejection will be described. Generalizable insights from the aquatic ecological risk characterization will be discussed.

  6. GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.

    USGS Publications Warehouse

    Spencer, Charles W.

    1985-01-01

    The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.

  7. STS-45 Earth observation of the Rocky Mountains in Montana and Alberta

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Earth observation taken onboard Atlantis, Orbiter Vehicle (OV) 104, is of the Rocky Mountains in northern Montana and southern Alberta. Glacier National Park is in the center of the snow-covered Front Range. Beyond and to the left, Flathead Lake, surrounded by dark forest, can barely be made out within the light-colored valley. This view extends across the Columbia River Basin in Oregon to the eastern Cascades. Fallow wheat land on the northern High Plains is visible in the foreground.

  8. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect

    Lunis, B.C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  9. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect

    Lunis, B. C.; Toth, W. J.

    1981-10-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  10. Comparison of precipitation chemistry in the Central Rocky Mountains, Colorado, USA

    USGS Publications Warehouse

    Heuer, K.; Tonnessen, K.A.; Ingersoll, G.P.

    2000-01-01

    Volume-weighted mean concentrations of nitrate (NO3-), ammonium (NH4+), and sulfate (SO42-) in precipitation were compared at high-elevation sites in Colorado from 1992 to 1997 to evaluate emission source areas to the east and west of the Rocky Mountains. Precipitation chemistry was measured by two sampling methods, the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and snowpack surveys at maximum accumulation. Concentrations of NO3- and SO42- in winter precipitation were greater on the western slope of the Rockies, and concentrations of NO3- and NH4+ in summer precipitation were greater on the eastern slope. Summer concentrations in general were almost twice as high as winter concentrations. Seasonal weather patterns in combination with emission source areas help to explain these differences. This comparison shows that high-elevation ecosystems in Colorado are influenced by air pollution emission sources located on both sides of the Continental Divide. It also suggests that sources of nitrogen and sulfur located east of the Divide have a greater influence on precipitation chemistry in the Colorado Rockies. Copyright (C) 2000.

  11. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  12. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  13. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  14. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  15. 36 CFR 261.72 - Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2. 261.72 Section 261.72 Parks, Forests, and Public... Regulations applicable to Region 2, Rocky Mountain Region, as defined in § 200.2....

  16. Fish assemblage structure and relations with environmental conditions in a Rocky Mountain watershed

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Isaak, D.J.

    2004-01-01

    Fish and habitat were sampled from 110 reaches in the Salt River basin (Idaho and Wyoming) during 1996 and 1997 to assess patterns in fish assemblage structure across a Rocky Mountain watershed. We identified four distinct fish assemblages using cluster analysis: (1) allopatric cutthroat trout (Oncorhynchus clarki (Richardson, 1836)); (2) cutthroat trout - brook trout (Salvelinus fontinalis (Mitchell, 1814)) - Paiute sculpin (Cottus beldingi Eigenmann and Eigenmann, 1891); (3) cutthroat trout - brown trout (Salmo trutta L., 1758) - mottled sculpin (Cottus bairdi Girard, 1850); and (4) Cyprinidae-Catostomidae. The distribution of fish assemblages was explained by thermal characteristics, stream geomorphology, and local habitat features. Reaches with allopatric cutthroat trout and the cutthroat trout - brook trout - Paiute sculpin assemblage were located in high-elevation, high-gradient streams. The other two fish assemblages were generally located in low-elevation streams. Associations between habitat gradients, locations of reaches in the watershed, and occurrence of species were further examined using canonical correspondence analysis. The results suggest that stream geomorphology, thermal conditions, and local habitat characteristics influence fish assemblage structure across a Rocky Mountain watershed, and they provide information on the ecology of individual species that can guide conservation activities. ?? 2004 NRC Canada.

  17. Aspen structure and variability in Rocky Mountain National Park, Colorado, USA

    USGS Publications Warehouse

    Kaye, M.W.; Stohlgren, T.J.; Binkley, D.

    2003-01-01

    Elk, fire and climate have influenced aspen populations in the Rocky Mountains, but mostly subjective studies have characterized these factors. A broad-scale perspective may shed new light on the status of aspen in the region. We collected field measurements of aspen (Populus tremuloides Michx.) patches encountered within 36 randomly located belt transects in 340 km2 of Rocky Mountain National Park, Colorado, to quantify the aspen population. Aspen covered 5.6% of the area in the transects, much more than expected based on previously collected remotely sensed data. The distribution and structure of aspen patches were highly heterogeneous throughout the study area. Of the 123 aspen patches encountered in the 238 ha surveyed, all but one showed signs of elk browsing or had conifer species mixed with the aspen stems. No significant difference occurred in aspen basal area, density, regeneration, browsing of regeneration and patch size, between areas of concentrated elk use (elk winter range) and areas of dispersed elk use (elk summer range). Two-thirds of the aspen patches were mixed with conifer species. We concluded that the population of aspen in our study area is highly variable in structure and that, at a landscape-scale, evidence of elk browsing is widespread but evidence of aspen decline is not.

  18. Estimation of geomorphically significant flows in alpine streams of the Rocky Mountains, Colorado (USA)

    USGS Publications Warehouse

    Surian, N.; Andrews, E.D.

    1999-01-01

    Streamflows recorded at 24 gauging stations in the Rocky Mountains of Colorado were analyzed to derive regional regression equations for estimating the natural flow duration and flood frequency in reaches where the natural flows are unknown or have been altered by diversion or regulation. The principal objective of this analysis is to determine whether the relatively high, infrequent, but geomorphically and ecologically important flows in the Rocky Mountains can be accurately estimated by regional flow duration equations. The region considered in this study is an area of relatively abundant runoff, and, consequently, intense water resources development. The specific streams analyzed here, however, are unaltered and remain nearly pristine. Regional flow duration equations are derived for two situations. When the mean annual discharge is known, flows ??? 10% of the time can be estimated with an uncertainty of ??9% for the 10% exceedance flow, to ??11%forthe 1.0% exceedance flow. When the mean annual discharge is unknown, the relatively high, infrequent flow can be estimated using the mean basin precipitation rate (in m3/s), and basin relief with an uncertainty of ??23% for the 10% exceedance flow to ??21% for the 1.0% exeedance flow. The uncertainty in estimated discharges using the equations derived in this analysis is substantially smaller than has been previously reported, especially for the geomorphically significant flows which are relatively large and infrequent. The improvement is due primarily to the quality of streamflow records analyzed and a well-defined hydrologic region.

  19. Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain National Park.

    PubMed

    Malm, William C; Schichtel, Bret A; Barna, Michael G; Gebhart, Kristi A; Rodriguez, Marco A; Collett, Jeffrey L; Carrico, Christian M; Benedict, Katherine B; Prenni, Anthony J; Kreidenweis, Sonia M

    2013-11-01

    Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of emissions of nitrogen and sulfate species along the Front Range of the Colorado Rocky Mountains, as well as sources farther east and west. The nitrogen compounds include both oxidized and reduced nitrogen. A year-long monitoring program of various oxidized and reduced nitrogen species was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases (precipitation and clouds) along the east and west sides of the Continental Divide; identify the relative contributions to atmospheric nitrogen species in RMNP from within and outside of the state of Colorado; identify the relative contributions to atmospheric nitrogen species in RMNP from emission sources along the Colorado Front Range versus other areas within Colorado; and identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. Measured ammonia concentrations are combined with modeled releases of conservative tracers from ammonia source regions around the United States to apportion ammonia to its respective sources, using receptor modeling tools. PMID:24344569

  20. Triangle zone and displacement transfer structures in the eastern Front Ranges, southern Canadian Rocky Mountains

    SciTech Connect

    Sanderson, D.A. ); Spratt, D.A. )

    1992-06-01

    The geometry of a relict triangle zone at the boundary of the Foothills and Front Ranges in the southern Canadian Rocky Mountains is constrained by detailed surface mapping over 700 m of relief and by seismic reflection data. The geometry and progressive development of the triangle zone along a strike length of 15-20 km, in the displacement transfer zone between the Coleman and Misty thrusts, is illustrated using closely spaced balanced cross sections, palinspastic restorations, and s sequentially restored cross section. Structural geometries show that a northeast- (foreland-) verging, mainly carbonate wedge of Mississippian to Triassic rock was inserted along a major upper detachment zone in shale, near the base of the Jurassic-Cretaceous clastic package. This was accompanied by southwest- (hinterland-) verging displacements along the upper detachment zone, tectonic thickening of the clastic package exceeding 200%, and backthrusting. Later northeast-verging deformation slightly modified the triangle zone by steepening structures, tightening folds, and minor thrusting. Recognition of relict triangle zones within the fold and thrust belt may document important changes in the rate of thrust front advancement, and aid in the delineation of potential hydrocarbon traps, similar to those discovered along the present-day thrust-belt margin in the southern Canadian Rocky Mountains.

  1. Brucellosis in captive Rocky Mountain bighorn sheep (Ovis canadensis) caused by Brucella abortus biovar 4.

    PubMed

    Kreeger, Terry J; Cook, Walter E; Edwards, William H; Cornish, Todd

    2004-04-01

    Nine (four female, five male) captive adult Rocky Mountain bighorn sheep (Ovis canadensis) contracted brucellosis caused by Brucella abortus biovar 4 as a result of natural exposure to an aborted elk (Cervus elaphus) fetus. Clinical signs of infection were orchitis and epididymitis in males and lymphadenitis and placentitis with abortion in females. Gross pathologic findings included enlargement of the testes or epididymides, or both, and yellow caseous abscesses and pyogranulomas of the same. Brucella abortus biovar 4 was cultured in all bighorn sheep from a variety of tissues, including testes/epididymides, mammary gland, and lymph nodes. All bighorn sheep tested were positive on a variety of standard Brucella serologic tests. This is the first report of brucellosis caused by B. abortus in Rocky Mountain bighorn sheep. It also provides evidence that bighorn sheep develop many of the manifestations ascribed to this disease and that infection can occur from natural exposure to an aborted fetus from another species. Wildlife managers responsible for bighorn sheep populations sympatric with Brucella-infected elk or bison (Bison bison) should be cognizant of the possibility of this disease in bighorn sheep. PMID:15362833

  2. Social and economic assessment: A technical report used in amending the Rocky Mountain regional guide

    SciTech Connect

    Not Available

    1992-05-01

    The purpose of the Socio-economic Assessment is threefold in nature: to describe the socio-economic forces at work within the rural and urban areas throughout the Rocky Mountain Region (the Region); to develop social and economic profiles for the Region as a whole and each of its eight subregions; and, finally, to describe the potential impacts of the above mentioned forces on the Region and to make recommendations for developing future strategies to facilitate coordination between the Forest Service, the various state, local, and other federal agencies, and Native American Indian tribes. This project involved the analysis of various social and economic variables in an attempt to determine the social and economic situation in the Rocky Mountain Region, and how it has been altered over the last three decades. To this end, data was collected on demographic changes, income growth, employment and unemployment, payrolls, number and size of firms, and SIC industrial breakdowns for various industries within each subregion and economic impact area.

  3. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    SciTech Connect

    Tuskan, Gerald A; Yin, Tongming

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  4. Relational Database for the Geology of the Northern Rocky Mountains - Idaho, Montana, and Washington

    USGS Publications Warehouse

    Causey, J. Douglas; Zientek, Michael L.; Bookstrom, Arthur A.; Frost, Thomas P.; Evans, Karl V.; Wilson, Anna B.; Van Gosen, Bradley S.; Boleneus, David E.; Pitts, Rebecca A.

    2008-01-01

    A relational database was created to prepare and organize geologic map-unit and lithologic descriptions for input into a spatial database for the geology of the northern Rocky Mountains, a compilation of forty-three geologic maps for parts of Idaho, Montana, and Washington in U.S. Geological Survey Open File Report 2005-1235. Not all of the information was transferred to and incorporated in the spatial database due to physical file limitations. This report releases that part of the relational database that was completed for that earlier product. In addition to descriptive geologic information for the northern Rocky Mountains region, the relational database contains a substantial bibliography of geologic literature for the area. The relational database nrgeo.mdb (linked below) is available in Microsoft Access version 2000, a proprietary database program. The relational database contains data tables and other tables used to define terms, relationships between the data tables, and hierarchical relationships in the data; forms used to enter data; and queries used to extract data.

  5. PBO Facility Construction: Basin and Range and Rocky Mountain Regions Status

    NASA Astrophysics Data System (ADS)

    Friesen, B.; Jenkins, F.; Kasmer, D.; Feaux, K.

    2006-12-01

    The Plate Boundary Observatory (PBO), part of the larger NSF-funded EarthScope project, will study the three- dimensional strain field resulting from active plate boundary deformation across the Western United States. PBO is a large construction project involving the reconnaissance, permitting, installation, documentation, and maintenance of 852 permanent GPS stations in five years. 163 of these stations lie within the Basin and Range and Rocky Mountain Regions consisting of the states of Montana, Idaho, Nevada, Utah, Wyoming, Colorado, New Mexico, and Arizona. During the third year of the project, the Basin and Range and Rocky Mountain regions of PBO accelerated production goals in reconnaissance, permitting, and installation activities. The summer of 2006 saw the completion of nearly all of the reconnaissance field work for the regions, with permits submitted to landholders for 88% of the total number of stations. A major milestone in the permitting phase of the construction project was the approval of 33 GPS stations located on Bureau of Land Management controlled public lands in Nevada. This transect is located along Highway 50 and will profile the extension of the Basin and Range province. Construction of these stations will be conducted throughout the fall of 2006. The focus for construction efforts in year 3 was in the state of Montana, where many of the backbone and Yellowstone cluster stations were completed. To date, construction is complete for 80 of 163 GPS stations.

  6. PBO Facility Construction: Basin and Range and Rocky Mountain Regions Status

    NASA Astrophysics Data System (ADS)

    Friesen, B.; Jenkins, F.; Kasmer, D.; Feaux, K.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the larger NSF-funded EarthScope project, will study the three- dimensional strain field resulting from active plate boundary deformation across the western United States. PBO is a large construction project involving the reconnaissance, permitting, installation, documentation, and maintenance of 875 permanent GPS stations in five years. 163 of these stations lie within the Basin and Range and Rocky Mountain Regions consisting of the states of Montana, Idaho, Nevada, Utah, Wyoming, Colorado, New Mexico, and Arizona. During the fourth year of the project, the Basin and Range and Rocky Mountain regions of PBO completed reconnaissance and nearly all permitting activities, and maintained a fast pace of station installations. The fall of 2006 and spring of 2007 were devoted to the construction of a large push of 50 stations, most located on Bureau of Land Management controlled public lands in Nevada. This transect is located along Highway 50 and will profile the extension of the Basin and Range province. The Yellowstone area, including surrounding National Parks and Forests was the target of summer 2007, during which time 10 remote stations with difficult logistics were installed. To date, construction is complete for 135 of 163 GPS stations.

  7. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    USGS Publications Warehouse

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CLNdep estimates (−1 yr−1) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha−1 yr−1), resulting in CLNdep exceedances ≥1.5 ± 1 kg N ha−1 yr−1. CLNdep and CLNdep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO3− threshold at which ecological effects are thought to occur. Based on an NO3− threshold of 0.5 μmol L−1, N deposition exceeds CLNdep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations.

  8. Hydrology of area 58, northern Great Plains and Rocky Mountain coal provinces, Colorado and Utah

    SciTech Connect

    Chaney, T.H.; Kuhn, G.; Brooks, T.

    1987-01-01

    The topics encompass the complete physical and hydrologic setting of Area 58, located primarily in west-central Colorado in the Southern Rocky Mountain and Colorado Plateau physiographic provinces. The headwaters of the Colorado and most of its tributaries originate in the mountains forming the eastern boundary of the area. Precipitation in the mountains can exceed 40 in annually, most of it as snow. Most of the runoff then is a result of snow melting in the spring. Surface water is the principal source of water supplies in the area, and irrigation is the major water use. Groundwater supplies are mainly from wells completed in alluvium or fractured bedrock. All coal mines in the basin but one are underground. Surface water quality is best in the mountains. Dissolved solids concentrations in the Colorado River increase an average of 647 mg/L as it flows through the area. The causes of this increase are nearly equally divided between natural sources and irrigation activities in the sedimentary basins. The climate in these basins is semi-arid, and the soils are not adequately leached. Concentrations of several major elements and trace elements in the groundwater can be large enough to limit water uses. Among those elements exceeding recommended or required standards for use are calcium, chromium, iron, manganese, and lead. 166 refs., 39 figs., 2 tabs.

  9. Morphological variation and zoogeography of racers (Coluber constrictor) in the central Rocky Mountains

    USGS Publications Warehouse

    Corn, Paul Stephen; Bury, R. Bruce

    1986-01-01

    We examined 63 specimens of Coluber constrictor from Colorado and Utah using eight external morphological characters that have been used to distinguish C. c. mormon from C. c. flaviventris. We grouped the snakes into three Operational Taxonomic Units (OTU's) in a transect across the Rocky Mountains: the eastern Front Range foothills in Colorado; the inter-mountain region (western slope of Colorado and northeastern Utah); and the western foothills of the Wasatch Mountains in Utah. Statistically significant variation among the OTU's was discovered for ration of tail length to total length, number of central and subcaudal scales, and number of dentary teeth. However, variation is clinal with nearly complete overlap from one end f the transect to the other for each character, suggesting a wide zone of intergradiation in the inter-mountain region. We do not believe reported differences in reproductive parameters between Great Plains and Great Basin racers are sufficient grounds for recognition of species, because clutch size is both geographically variable and dependent on the environment. The distribution of C. constrictor is similar to that of other reptiles with transmontane distributions in the western United States, and we suggest two possible routes of dispersal across the Continental Divide in southwestern Wyoming. Thus, elevation of C. c. mormon to species status is not supported by morphological, reproductive, or zoogeographic evidence.

  10. The Effects of Long Term Nitrogen Fertilization on Soil Respiration in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Allen, J.; Denning, S.; Baron, J.

    2015-12-01

    Anthropogenic activities contribute to increased levels of nitrogen deposition and elevated CO2 concentrations in terrestrial ecosystems. The role that soils play in biogeochemical cycles is an important area of uncertainty in ecosystem ecology. One of the main reasons for this uncertainty is that we have limited understanding of belowground microbial activity and how this activity is linked to soil processes. In particular, elevated CO2 may influence soil nitrogen processes that regulate nitrogen availability to plants. Warming and nitrogen fertilization may both contribute to loss of stored carbon from mountain ecosystems, because they contribute to microbial decomposition of organic matter. To study the effects of long-term nitrogen fertilization on soil respiration, we analyzed results from a 25-year field experiment in Rocky Mountain National Park. Field treatments are in old growth Engelmann spruce forests. Soil respiration responses to the effects of nitrogen fertilization on soil carbon cycling, via respiration, were investigated during the 2013 growing season. Soil moisture, temperature, and respiration rates were measured in six 30 x 30 m plots, of the six plots three are fertilized with 25 kg N ha-1 yr-1 as ammonium nitrate (NH4NO3) pellets and three receives ambient atmospheric nitrogen deposition (1-6 kg N/ha/yr) in Rocky Mountain National Park. We found that respirations rates in the fertilized plots were not significantly higher than respiration rates in the unfertilized plots. We speculate that acclimation to long-term fertilization and relatively high levels of nitrogen deposition in the control plots both contribute to the insensitivity of soil respiration to fertilization at this site.

  11. Meltwater runoff from Haig Glacier, Canadian Rocky Mountains, 2002-2013

    NASA Astrophysics Data System (ADS)

    Marshall, S. J.

    2014-07-01

    Observations of high-elevation meteorological conditions, glacier mass balance, and glacier runoff are sparse in western Canada and the Canadian Rocky Mountains, leading to uncertainty about the importance of glaciers to regional water resources. This needs to be quantified so that the impacts of ongoing glacier recession can be evaluated with respect to alpine ecology, hydroelectric operations, and water resource management. I assess the seasonal evolution of glacier runoff in an alpine watershed on the continental divide in the Canadian Rocky Mountains. Analysis is based on meteorological, snowpack and surface energy balance data collected at Haig Glacier from 2002-2013. The study area is one of several glacierized headwaters catchments of the Bow River, which flows eastward to provide an important supply of water to the Canadian prairies. Annual specific discharge from snow- and ice-melt on Haig Glacier averaged 2350 mm water equivalent (w.e.) from 2002-2013, with 42% of the runoff derived from melting of glacier ice and firn, i.e. water stored in the glacier reservoir. This is an order of magnitude greater than the annual specific discharge from non-glacierized parts of the Bow River basin. From 2002-2013, meltwater derived from the glacier storage was equivalent to 5-6% of the flow of the Bow River in Calgary in late summer and 2-3% of annual discharge. The basin is typical of most glacier-fed mountains rivers, where the modest and declining extent of glacierized area in the catchment limits the glacier contribution to annual runoff.

  12. Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2002-2013

    NASA Astrophysics Data System (ADS)

    Marshall, S. J.

    2014-12-01

    Observations of high-elevation meteorological conditions, glacier mass balance, and glacier run-off are sparse in western Canada and the Canadian Rocky Mountains, leading to uncertainty about the importance of glaciers to regional water resources. This needs to be quantified so that the impacts of ongoing glacier recession can be evaluated with respect to alpine ecology, hydroelectric operations, and water resource management. In this manuscript the seasonal evolution of glacier run-off is assessed for an alpine watershed on the continental divide in the Canadian Rocky Mountains. The study area is a headwaters catchment of the Bow River, which flows eastward to provide an important supply of water to the Canadian prairies. Meteorological, snowpack, and surface energy balance data collected at Haig Glacier from 2002 to 2013 were analysed to evaluate glacier mass balance and run-off. Annual specific discharge from snow- and ice-melt on Haig Glacier averaged 2350 mm water equivalent from 2002 to 2013, with 42% of the run-off derived from melting of glacier ice and firn, i.e. water stored in the glacier reservoir. This is an order of magnitude greater than the annual specific discharge from non-glacierized parts of the Bow River basin. From 2002 to 2013, meltwater derived from the glacier storage was equivalent to 5-6% of the flow of the Bow River in Calgary in late summer and 2-3% of annual discharge. The basin is typical of most glacier-fed mountain rivers, where the modest and declining extent of glacierized area in the catchment limits the glacier contribution to annual run-off.

  13. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains

    USGS Publications Warehouse

    Lu Liang; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li; Peng Gong

    2016-01-01

    The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.

  14. Persistence of evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Vanderhoof, Melanie; Williams, Christopher

    2014-05-01

    The current extent and high severity (percent tree mortality) of mountain pine beetle outbreaks across western North America have been attributed to regional climate change, specifically warmer summer and winter temperatures and drier summers. These outbreaks are widespread and have potentially persistent impacts on forest evapotranspiration. The few data-driven studies have largely been restricted by the temporal availability of remote sensing products. This study utilized multiple mountain pine beetle outbreak location datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains. The full seasonal evapotranspiration impact of outbreak events for decades after outbreak (0 to 60 years) and the role of outbreak severity in determining that impact were quantified. We found a 30% reduction in evapotranspiration peaking at 14-20 years post-outbreak during the spring snowmelt period, when water was not limited, but a minimal reduction in evapotranspiration during the remainder of the growing season (June - August). We also found a significant increase in evapotranspiration, relative to non-attacked stands, in intermediate aged stands (20-40 years post-disturbance) corresponding with a peak in LAI and therefore transpiration. During the snow-cover months evapotranspiration initially increased with needle fall and snag fall and corresponding increases in albedo and shortwave transmission to the surface. We found that changes in evapotranspiration during all seasons dissipated by 60 years post-attack. MODIS evapotranspiration values responded most strongly to mountain pine beetle driven changes in net radiation or available energy, and vegetation cover (e.g. LAI, fPAR and EVI). It also appears that the post-attack response of evapotranspiration may be sensitive to precipitation patterns and thus the consequences of a disturbance event may depend on the directionality of climate change conditions.

  15. ROCKY MOUNTAIN ACID DEPOSITION MODEL ASSESSMENT: ACID RAIN MOUNTAIN MESOSCALE MODEL (ARM3)

    EPA Science Inventory

    The Acid Rain Mountain Mesoscale Model (ARM3) is a mesoscale acid deposition/air quality model that was developed for calculating incremental acid deposition (sulfur and nitrogen species) and pollutant concentration impacts in complex terrain. The model was set up for operation w...

  16. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hoffmann, T.; Müller, T.; Johnson, E. A.; Martin, Y. E.

    2013-12-01

    is generally argued that Pleistocene glaciation results in increased sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial erosion is the geomorphic decoupling of cirque basins from main river systems. This study provides a quantitative link between glacier-induced basin morphology, postglacial erosion, and sediment delivery for mountain headwaters (with basin area <10 km2). We analyze the morphology of 57 headwater basins in the Canadian Rockies and establish postglacial sediment budgets for select basins. Notable differences in headwater morphology suggest different degrees of erosion by cirque glaciers, which we classify into headwater basins with either cirque or noncirque morphology. Despite steeper slope gradients in cirque basins, higher-mean postglacial erosion rates in basins with noncirque morphology (0.43-0.6 mm a-1) compared to those in cirques (0.19-0.39 mm a-1) suggest a more complex relationship between hillslope erosion and slope gradient in calcareous mountain environments than implied by the threshold hillslope concept. Higher values of channel profile concavity and lower channel gradients in cirques imply lower transport capacities and, thus, lower sediment delivery ratios (SDR). These results are supported by (i) postglacial SDR values for cirques and noncirque basins of <15% and >28%, respectively, and (ii) larger fan sizes at outlets of noncirque basins compared to cirques. Although small headwater basins represent the steepest part of mountain environments and erode significant postglacial sediment, the majority of sediment remains in storage under interglacial climatic conditions and does not affect large-scale mountain river systems.

  17. Increased risk of chronic wasting disease in Rocky Mountain elk associated with decreased magnesium and increased manganese in brain tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) or prion disease of Rocky Mountain elk in North America. CWD is a fatal neurodegenerative disease in which the prolonged and variable incubation time is controlled in part by the host prion precursor genotype. The mis...

  18. Diurnal activity of Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) grazing a northeastern Oregon summer range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rocky Mountain elk (Cervus elaphus) and beef cattle (Bos taurus) exist in a complex social environment that is marked by diurnal activities such as periods of foraging, ruminating, resting, and sheltering. Elk unlike cattle, must be continually alert to potential predators. We hypothesize that elk...

  19. The role of pollinators in maintaining variation in flower color in the Rocky Mountain columbine, Aquilegia coerulea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flower color varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea. The abundance of hawkmoths and bumble bees, the two major pollinators of this plant species, also varies among populations. We investigated the preference of hawkmoths and bumble bees for flower col...

  20. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Technical Reports Server (NTRS)

    Culp, Robert D. (Editor); Bickley, George (Editor)

    1993-01-01

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study.

  1. The Influence of Distinct Insect Pollinators on Female and Male Reproductive Success in the Rocky Mountain Columbine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different groups of pollinators with contrasting behavior may differentially affect gene dispersal and gene flow. Hawkmoths and bumble bees are the two major pollinators of the rocky mountain columbine, Aquilegia coerulea. Bumble bees collect pollen throughout the day and frequently groom; hawkmoths...

  2. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    EPA Science Inventory

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  3. Teaching Science in Public Elementary Schools of the Plains, Rocky Mountain and Southeast Regions of the United States.

    ERIC Educational Resources Information Center

    Webb, Melvin Richard

    This research presents the science teaching practices for schools in the Plains, Rocky Mountain, and Southeast regions of the United States and the all-inclusive curricular events surrounding them, as they existed during the 1970-71 school year. Subproblems investigated were relationships between teacher characteristics and science teaching…

  4. ROCKY MOUNTAIN ACID DEPOSITION MODEL ASSESSMENT: EVALUATION OF MESOSCALE ACID DEPOSITION MODELS FOR USE IN COMPLEX TERRAIN

    EPA Science Inventory

    The report includes an evaluation of candidate meteorological models and acid deposition models. The hybrid acid deposition/air quality modeling system for the Rocky Mountains makes use of a mesoscale meteorological model, which includes a new diagnostic wind model, as a driver f...

  5. Comparison of Alpine Radiation Regimes across the Colorado Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Cassidy, M. P.; Painter, T. H.

    2006-12-01

    In recent years, dramatic differences in seasonal snow pack snow melt-out timing between the San Juan Mountains and the Front Range of the Rocky Mountains of Colorado have been observed. Despite greater total accumulation of snow, the San Juan seasonal snow pack melts out significantly earlier than the Front Range snow pack at similar elevations and temperature regimes. Because the net solar and sensible heating fluxes terms dominate the energy balance of a melting snow cover, we address the differences in broadband solar irradiance and near-surface air temperature. In this work, we analyze the broadband solar irradiance and near- surface air temperature at the Senator Beck basin alpine study site (southwest Colorado, elevation 3,719 m) and the Niwot Ridge D1 study site (north central Colorado, elevation 3,743 m). The Senator Beck study site lies in the western San Juan Mountains in an east facing alpine basin, downwind of the Colorado Plateau dust emissions and the Four Corners and Navajo coal-fire power plants. The Niwot Ridge site lies in the Front Range proximal to the urban corridor that spans the foothills. The Senator Beck site is instrumented with Kipp & Zonen CM21 broadband solar pyranometers with uncertainties of < 2%. The Niwot Ridge site is instrumented with LiCor LI-200 broadband solar pyranometers with uncertainty of < 5%. We address the differences in spectral responses of the respective instruments. The study spans the record period January 2005 October 2006, spanning two dramatically different snow ablation seasons.

  6. Parameterization of incoming longwave radiation at glacier sites in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samaneh; Marshall, Shawn J.

    2015-12-01

    We examine longwave radiation fluxes in the Canadian Rocky Mountains based on multiyear observations at glaciers in the southern and northern Rockies. Our main objective is to develop improved parameterizations of incoming longwave radiation for surface energy balance and melt modeling in glaciological studies, in situations where minimal meteorological data are available. We concentrate on the summer melt season, June through August. We test several common parameterizations of mean daily incoming longwave radiation and also explore simple regression-based models of atmospheric emissivity as a function of near-surface vapor pressure, relative humidity, and a sky clearness index (i.e., a proxy for cloud cover). Multivariate regressions based on these three variables have the strongest performance at our two sites, with RMS errors of 9-13 W m-2 and biases 1-2 W m-2 when transferred to different time periods or between sites in our study region. We also find good results for all-sky atmospheric emissivity with a bivariate relation based on vapor pressure and relative humidity. This parameterization requires only screen-level temperature and humidity as input data, which has value for modeling of incoming longwave radiation and surface energy balance when observational radiation and cloud data are not available.

  7. Rapid hydrologic shifts and prolonged droughts in Rocky Mountain headwaters during the Holocene

    NASA Astrophysics Data System (ADS)

    Shuman, Bryan; Pribyl, Paul; Minckley, Thomas A.; Shinker, Jacqueline J.

    2010-03-01

    Rapid hydroclimatic shifts repeatedly generated centuries to millennia of extensive aridity across the headwaters of three of North America's largest river systems during the Holocene. Evidence of past lake-level changes at the headwaters of the Snake-Columbia, Missouri-Mississippi, and Green-Colorado Rivers in the Rocky Mountains shows that aridity as extensive and likely as severe as the CE 1930s Dust Bowl developed within centuries or less at ca. 9 ka (thousand years before CE 1950), and persisted across large areas of the watersheds until ca. 3 ka. Regional water levels also shifted abruptly at >11.3 and 1.8-1.2 ka. The record of low water levels during the mid-Holocene on the Continental Divide links similar evidence from the Great Basin and the Midwestern U.S., and shows that extensive aridity was the Holocene norm even though few GCMs have simulated such a pattern.

  8. Appraisal of the future climate of the Holocene in the Rocky Mountains

    USGS Publications Warehouse

    Richmond, G.M.

    1972-01-01

    Consideration of the history of Holocene climate in the Rocky Mountains indicates that the over-all trend during the past 2500 yr has been toward increasing warmth, interrupted by cooler times of minor advances of cirque glaciers. Comparison of Holocene climatic history with the record of past interglacials in the region suggests that the present interglacial is not complete and that the climate may become first warmer and subsequently wetter before it is completed. Correlation of the timing of the regional glacial-interglacial record for the past 140,000 yr with the record of major sea level changes and with the calculated changes in the earth's insolation suggest that the present interglacial may be completed within a few millenia and that it may be followed by a significant cooling of the climate. ?? 1972.

  9. Removal of n-nitrosodimethylamine from Rocky Mountain Arsenal waters using innovative adsorption technologies. Final report

    SciTech Connect

    Fleming, E.C.; Pennington, J.C.; Francingues, N.R.; Felt, D.R.; Wachob, B.G.

    1996-08-01

    The Rocky Mountain Arsenal (RMA) occupies 27 square miles in Adams County, Colorado, and is located adjacent to the Stapleton Airport. Figure 1 illustrates a general map of the RMA. The U.S. Department of the Army established the RMA in 1942 for the purpose of producing chemicals such as napalm, mustard agent, lewisite, and chlorine. After World War II, a number of private organizations leased the arsenal from the Army for a variety of manufacturing purposes. Most of the manufacturing activities were conducted in the South Plants area (see Figure 1). The North Plants were constructed in 1951 for GB nerve agent production, munitions filling, and demilitarization of munitions and used until 1957. During the 1950s and 1960s, the Air Force operated the hydrazine blending and storage facility (HBSF) of symmetrical and unsymmetrical dimethyl hydrazine (UDMH). The hydrazine produced at the HBSF was used for the Titan Missile and Lunar Lander programs.

  10. Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses

    USGS Publications Warehouse

    van der Pluijm, B.A.; Vrolijk, P.J.; Pevear, D.R.; Hall, C.M.; Solum, J.

    2006-01-01

    Fault rocks from the classic Rocky Mountain foreland fold-and-thrust belt in south-western Canada were dated by Ar analysis of clay grain-size fractions. Using X-ray diffraction quantification of the detrital and authigenic component of each fraction, these determinations give ages for individual faults in the area (illite age analysis). The resulting ages cluster around 72 and 52 Ma (here called the Rundle and McConnell pulses, respectively), challenging the traditional view of gradual forward progression of faulting and thrust-belt history of the area. The recognition of spatially and temporally restricted deformation episodes offers field support for theoretical models of critically stressed wedges, which result in geologically reasonable strain rates for the area. In addition to regional considerations, this study highlights the potential of direct dating of shallow fault rocks for our understanding of upper-crustal kinematics and regional tectonic analysis of ancient orogens. ?? 2006 Geological Society of America.

  11. Den-site characteristics of black bears in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2008-01-01

    We compared historic (1985-1992) and contemporary (2003-2006) black bear (Ursus americanus) den locations in Rocky Mountain National Park (RMNP), Colorado, USA, for habitat and physiographic attributes of den sites and used maximum entropy modeling to determine which factors were most influential in predicting den-site locations. We observed variability in the relationship between den locations and distance to trails and elevation over rime. Locations of historic den sites were most associated with slope, elevation, and covertype, whereas contemporary sites were associated with slope, distance to roads, aspect, and canopy height. Although relationships to covariates differed between historic and contemporary periods, preferred den-site characteristics consistently included steep slopes and factors associated with greater snow depth. Distribution of den locations shifted toward areas closer to human developments, indicating little negative influence of this factor on den-site selection by black bears in RMNP.

  12. Surface coal mining influences on macroinvertebrate assemblages in streams of the Canadian Rocky Mountains.

    PubMed

    Kuchapski, Kathryn A; Rasmussen, Joseph B

    2015-09-01

    To determine the region-specific impacts of surface coal mines on macroinvertebrate community health, chemical and physical stream characteristics and macroinvertebrate family and community metrics were measured in surface coal mine-affected and reference streams in the Canadian Rocky Mountains. Water chemistry was significantly altered in mine-affected streams, which had elevated conductivity, alkalinity, and selenium and ion concentrations compared with reference conditions. Multivariate redundancy analysis (RDA) indicated alterations in macroinvertebrate communities downstream of mine sites. In RDA ordination, Ephemeroptera family densities, family richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) richness, and % Ephemeroptera declined, whereas densities of Capniidae stoneflies increased along environmental gradients defined by variables associated with mine influence including waterborne Se concentration, alkalinity, substrate embeddedness, and interstitial material size. Shifts in macroinvertebrate assemblages may have been the result of multiple region-specific stressors related to mining influences including selenium toxicity, ionic toxicity, or stream substrate modifications. PMID:25939772

  13. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  14. Evolution of polycrystalline diamond compact bit designs for Rocky Mountain drilling

    SciTech Connect

    Pain, D.D.; Schieck, B.E.

    1985-07-01

    The Rocky Mountain region of the U.S. has proved to be a good area for polycrystalline diamond compact (PDC) bits in selected formations. Lower costs per foot as a result of higher penetration rates and longer bit lives have been realized in many applications. PDC bits are used routinely in Wyoming in the Green River and Powder River basins. Simply using a PDC bit in these areas does not necessarily ensure an economical run. Care must be taken in choosing the correct bit design for each application to obtain the lowest cost per foot. Since the first PDC bit run, there has been an evolution of designs to enhance penetration rates, and thus to lower drilling cost per foot. This evolution has included changes in bit profile, cutter density, cutter exposure, cutter side rake, and cutter shape. When optimally combined, these features have increased penetration rates by well over 100% in many formations.

  15. Abbreviated bibliography on energy development—A focus on the Rocky Mountain Region

    USGS Publications Warehouse

    Montag, Jessica M.; Willis, Carolyn J.; Glavin, Levi W.

    2011-01-01

    Energy development of all types continues to grow in the Rocky Mountain Region of the western United States. Federal resource managers increasingly need to balance energy demands, effects on the natural landscape and public perceptions towards these issues. To assist in efficient access to valuable information, this abbreviated bibliography provides citations to relevant information for myriad of issues for which resource managers must contend. The bibliography is organized by seven large topics with various sup-topics: broad energy topics (energy crisis, conservation, supply and demand, etc.); energy sources (fossil fuel, nuclear, renewable, etc.); natural landscape effects (climate change, ecosystem, mitigation, restoration, and reclamation, wildlife, water, etc.); human landscape effects (attitudes and perceptions, economics, community effects, health, Native Americans, etc.); research and technology; international research; and, methods and modeling. A large emphasis is placed on the natural and human landscape effects.

  16. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    USGS Publications Warehouse

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  17. Ground-water levels in intermontane basins of the northern Rocky Mountains, Montana and Idaho

    USGS Publications Warehouse

    Briar, David W.; Lawlor, S.M.; Stone, M.A.; Parliman, D.J.; Schaefer, J.L.; Kendy, Eloise

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation's water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to (1) describe the groundwater systems as they exist today, (2) analyze the known changes that have led to the systems present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter B of a three-part series and shows the general distribution of ground-water levels in basin-fill deposits in the study area. Chapter A (Tuck and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter C (Clark and Dutton, 1996) describes the quality of ground and surface waters in the study area.Ground-water levels shown in this report were measured primarily during summer 1991 and summer 1992; however, historical water levels were used for areas where more recent data could not be obtained. The information provided allows for the evaluation of general directions of ground-water flow, identification of recharge and discharge areas, and determination of hydraulic gradients within basin-fill deposits.

  18. Recreational trails as corridors for alien plants in the Rocky Mountains, USA

    USGS Publications Warehouse

    Wells, Floye H.; Lauenroth, William K.; Bradford, John B.

    2012-01-01

    Alien plant species often use areas of heavy human activity for habitat and dispersal. Roads and utility corridors have been shown to harbor more alien species than the surrounding vegetation and are therefore believed to contribute to alien plant persistence and spread. Recreational trails represent another corridor that could harbor alien species and aid their spread. Effective management of invasive species requires understanding how alien plants are distributed at trailheads and trails and how their dispersal may be influenced by native vegetation. Our overall goal was to investigate the distribution of alien plants at trailheads and trails in the Rocky Mountains of Colorado. At trailheads, we found that although the number of alien species was less than the number of native species, alien plant cover ( x̄=50%) did not differ from native plant cover, and we observed a large number of alien seedlings in the soil seed bank, suggesting that alien plants are a large component of trailhead communities and will continue to be so in the future. Along trails, we found higher alien species richness and cover on trail (as opposed to 4 m from the trail) in 3 out of 4 vegetation types, and we observed higher alien richness and cover in meadows than in other vegetation types. Plant communities at both trailheads and trails, as well as seed banks at trailheads, contain substantial diversity and abundance of alien plants. These results suggest that recreational trails in the Rocky Mountains of Colorado may function as corridors that facilitate the spread of alien species into wildlands. Our results suggest that control of alien plants should begin at trailheads where there are large numbers of aliens and that control efforts on trails should be prioritized by vegetation type.

  19. Relationships between nutritional condition of adult females and relative carrying capacity for rocky mountain Elk

    USGS Publications Warehouse

    Piasecke, J.R.; Bender, L.C.

    2009-01-01

    Lactation can have significant costs to individual and population-level productivity because of the high energetic demands it places on dams. Because the difference in condition between lactating and dry Rocky Mountain elk (Cervus elaphus nelsoni) cows tends to disappear as nutritional quality rises, the magnitude of that difference could be used to relate condition to habitat quality or the capability of habitats to support elk. We therefore compared nutritional condition of ???2.5-yr-old lactating and dry cows from six free-ranging RockyMountain elk populations throughout the United States.Our goal was to quantify differential accrual of body fat (BF) reserves to determine whether the condition of dry and lactating cows could be used to define relevant management thresholds of habitat quality (i.e., relative carrying capacity) and consequently potential performance of elk populations. Levels of BF that lactating cows were able to accrue in autumn and the proportional difference in BF between dry and lactating cows in autumn were related (F 1-2,10???16.2, P<0.001). Models indicated that elk experienced no negative effects of reproduction on condition when lactating cows were able to accrue ???13.7%BF in autumn.When lactating cows are accruing ???7.9%BF, elk are in a nutritionally stressed condition, which may be limiting population performance. Using the logistic model to predict relative proximity to ecological carrying capacity (ECC), our population-years ranged from3-97%ofECCand proportion of the population lactating (an index of calf survival) was negatively related to proportion of ECC. Results indicate that the proportional difference in accrual of BF between lactating and dry cows can provide a sensitive index to where elk populations reside relative to the quality of their range.

  20. Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and probable impacts on floodplain forests

    NASA Astrophysics Data System (ADS)

    Rood, Stewart B.; Pan, Jason; Gill, Karen M.; Franks, Carmen G.; Samuelson, Glenda M.; Shepherd, Anita

    2008-02-01

    SummaryIn analyzing hydrologic consequences of climate change, we previously found declining annual discharges of rivers that drain the hydrographic apex of North America, the Rocky Mountain headwaters region for adjacent streams flowing to the Arctic, Atlantic and Pacific oceans. In this study we investigated historic changes in seasonal patterns of streamflows, by comparing mean monthly flows and analyzing cumulative hydrographs over the periods of record of about a century. We tested predictions of change due to winter and spring warming that would increase the proportion of rain versus snow, and alter snow accumulation and melt. We analyzed records from 14 free-flowing, snow-melt dominated rivers that drained relatively pristine parks and protected areas, thus avoiding the effects of river damming, flow regulation, or watershed development. The collective results indicated that: (1) winter flows (especially March) were often slightly increased, (2) spring run-off and (3) peak flows occurred earlier, and most substantially, (4) summer and early autumn flows (July-October) were considerably reduced. The greatest changes were observed for the rivers draining the east-slope of the Rocky Mountains toward the northern prairies and Hudson Bay, with late summer flow decline rates of about 0.2%/year. This would have considerable ecological impact since this is the warm and dry period when evaporative demand is maximal and reduced instream flows would reduce riparian groundwater recharge, imposing drought stress on floodplain forests. In combination with the decline in annual discharge, earlier peaks and reduced summer flows would provide chronic stress on riparian cottonwoods and willows and especially restrict seedling recruitment. We predict a loss of floodplain forests along some river reaches, the narrowing of forest bands along other reaches, and increased vulnerability of these ecosystems to other impacts including livestock grazing, encroachment of upland

  1. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    USGS Publications Warehouse

    Muths, E.; Pilliod, D.S.; Livo, L.J.

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.

  2. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  3. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  4. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  5. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh

    2012-07-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean-atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  6. Deposition of Sulphate and Nitrogen in Alpine Precipitation of the Southern Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Lafreniere, M. J.

    2011-12-01

    Atmospheric nitrogen (N) and sulphur (S) are the main contributors to acid precipitation which causes regionally persistent ecological problems. Enhanced deposition of reactive N, mainly as nitrate (NO3-) and ammonium (NH4+), also contributes to major ecological problems associated with ecosystem N saturation. Alpine ecosystems, which are generally nutrient poor and exist under extreme climatic conditions, are sensitive to environmental and climatic stressors. Studies in the USA Rocky Mountains and European Alps have shown alpine ecosystems have a particularly sensitivity to enhanced deposition of reactive N and can show ecologically destructive responses at relatively low levels of N deposition. However, evaluation of atmospheric sulphur and nitrogen deposition in mid latitude alpine Western Canada has been initiated only very recently and at only a few locations. There is little comprehension of current atmospheric flux to high altitudes or the importance of contributions from major emission sources This work quantifies the atmospheric deposition of SO42- NH4+ and NO3- to a remote alpine site in the Southern Canadian Rocky Mountains by characterizing alpine precipitation. The effect of elevation and aspect on deposition are assessed using sampling sites along elevational transects in the adjacent Haig and Robertson Valleys. Seasonal variations in deposition of SO42- NH4+ and NO3- are evaluated using the autumn, winter, and spring precipitation accumulated in the seasonal snowpack at glacial and fore glacial locations, along with collected bulk summer precipitation. Preliminary results show lower precipitation volumes, which are associated with higher SO42- and NH4+ loads, in the north west facing Robertson Valley than the south east facing Haig Glacier. However trends in deposition of SO42- NH4+ and NO3- with elevation and aspect are inconsistent over the 2008-2009 and 2009-2010 snow accumulation seasons, and 2010 bulk summer precipitation seasons that were

  7. Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks

    USGS Publications Warehouse

    Mast, M.A.; Turk, J.T.; Ingersoll, G.P.; Clow, D.W.; Kester, C.L.

    2001-01-01

    Stable sulfur isotope ratios and major ions in bulk snowpack samples were monitored at a network of 52 high-elevation sites along and near the Continental Divide from 1993 to 1999. This information was collected to better define atmospheric deposition to remote areas of the Rocky Mountains and to help identify the major source regions of sulfate in winter deposition. Average annual ??34S values at individual sites ranged from + 4.0 to + 8.2??? and standard deviations ranged from 0.4 to 1.6???. The chemical composition of all samples was extremely dilute and slightly acidic; average sulfate concentrations ranged from 2.4 to 12.2 ??eql-1 and pH ranged from 4.82 to 5.70. The range of ??34S values measured in this study indicated that snowpack sulfur in the Rocky Mountains is primarily derived from anthropogenic sources. A nearly linear relation between ??34S and latitude was observed for sites in New Mexico, Colorado, and southern Wyoming, which indicates that snowpack sulfate in the southern part of the network was derived from two isotopically distinct source regions. Because the major point sources of SO2 in the region are coal-fired powerplants, this pattern may reflect variations in the isotopic composition of coals burned by the plants. The geographic pattern in ??34S for sites farther to the north in Wyoming and Montana was much less distinct, perhaps rflecting the paucity of major point sources of SO2 in the northern part of the network.

  8. Nitrogen transport and deposition during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Raja, S.; Taylor, C.; Carrico, C.; Schwandner, F.; Beem, K.; Lee, T.; Sullivan, A.; Day, D.; McMeeking, G.; Kreidenweis, S.; Hand, J.; Schichtel, B.; Malm, W.

    2007-12-01

    A number of deleterious effects have been noted due to increasing deposition of nitrogen compounds in Rocky Mountain National Park (RMNP). The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was conducted to improve our understanding of the sources and transport of airborne nitrogen and sulfur species within RMNP as well as their deposition pathways. Two field campaigns were conducted, in spring and summer 2006, to characterize pollutant transport and deposition during seasons with historically high nitrogen inputs. Several measurements sites were operated within the park, at locations west and east of the park boundaries, and at locations near the NE, NW, and SE boundaries of the state of Colorado. Measurements at several sites included 24-hour integrated gas concentrations (ammonia, nitric acid, sulfur dioxide), PM2.5 composition, and wet deposition. A core measurement site in the park included more detailed and higher time resolution chemical, optical, and particle size distribution measurements. An overview of study findings will be presented including the composition of collected PM2.5, concentrations of key trace gas species, and observations of wet and dry deposition composition and fluxes. Concentrations of N species in RMNP varied significantly with local and regional transport patterns. High concentrations of nitrate/nitric acid and ammonia/ammonium observed routinely on the eastern plains of Colorado reflect a mixture of urban and agricultural emissions. The highest concentrations of N species in RMNP were generally associated with upslope transport from the east. Nitrogen deposition in RMNP during the spring campaign was dominated by a single, upslope snowstorm. A combination of high pollutant concentrations and heavy precipitation during this upslope event acted to produce N deposition fluxes that far outweighed other spring precipitation events. During the summer study, by contrast, numerous events contributed more equally to total N wet

  9. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  10. Provenance record of Paleogene exhumation and Laramide basin evolution along the southern Rocky Mountain front

    NASA Astrophysics Data System (ADS)

    Bush, M. A.; Horton, B. K.; Murphy, M. A.; Stockli, D. F.

    2015-12-01

    The Sangre de Cristo and Nacimiento uplifts of the southern Rocky Mountains formed key parts of a major Paleogene topographic boundary separating the Cordilleran orogenic system from the North American plate interior. This barrier largely isolated interior Laramide basins from a broad Laramide foreland with fluvial systems draining to the Gulf of Mexico, and thereby played a critical role in the evolution of continental-scale paleodrainage patterns. New detrital zircon U-Pb geochronology and heavy mineral provenance analyses of Cretaceous-Paleogene siliciclastic strata in the Raton, Galisteo-El Rito, and San Juan basins record the partitioning of the broad Cordilleran (Sevier) foreland basin by Laramide basement uplifts. These trends are recognized both in provenance signals and depositional styles corresponding to cratonward (eastward) propagation of the Laramide deformation front and resultant advance of flexural depocenters in the North American interior. Along the eastern flank of the deformation front, the Raton basin shows a mix of Cordilleran, Appalachian, and Grenville age zircons restricted to the Cretaceous Dakota and Vermejo formations, marine units of the Western Interior Seaway. Upsection, the Cordilleran age peaks are absent from Paleocene-Eocene units, consistent with significant Laramide drainage reorganization and isolation from Cordilleran sources to the west. In the Galisteo-El Rito basin system, a shift to dominantly Mazatzal-Yavapai basement ages is recognized in the Paleocene El Rito and Oligocene Ritito formations. The heavy mineral results show a corresponding shift to less mature, dominantly metamorphic source compositions. These new datasets bear upon Cretaceous-Cenozoic reconstructions of North American paleodrainage and have implications for potential linkages between major fluvial systems of the southern Rocky Mountains and Paleogene deepwater reservoir units in the Gulf of Mexico basin.

  11. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; and others

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  12. Hydraulics and sediment transport processes in a pool-riffle rocky mountain stream

    USGS Publications Warehouse

    Thompson, Douglas M.

    1994-01-01

    Sediment transport processes related to varying channel-bed morphology were investigated from April to November, 1993 along a 1 km pool-riffle and step-pool reach of North Saint Vrain Creek, a small mountain stream in the Northern Colorado Rocky Mountains. Three hundred sixteen 16-256 mm tracer particles placed in two separate pool-riffle-pool sequences, forty-three direct bedload measurements at three separate cross-sections in discharges ranging between 0.27-8.8 m3/s, and indirect velocity measurements at thirteen cross-sections in 23 discharges ranging between 0.23-9.2 m3/s are used to assess sediment sorting patterns and sediment transport capacity variations. An investigation of secondary flow features and wave patterns provides preliminary evidence of turbulent controls on sediment entrainment and transport, and was used to develop a conceptual model of bedload transport and channel-bed maintenance on North Saint Vrain Creek. Recirculating eddy systems provide a means to constrict flow in pools, leading to modeled velocity-reversals at high flows. Tracer particle depositional evidence also indicates higher sediment transport capacities in pools versus riffles at high flow. Modeled hydraulic conditions and depositional evidence of tracers indicates that high-flow recirculating-eddy-influenced velocity-reversals and associated turbulence may provide the primary pool maintenance processes in this channel.

  13. Monitoring Atmospheric Deposition of Nitrogen in Alpine Environments in Rocky Mountain and Yosemite National Parks, USA

    NASA Astrophysics Data System (ADS)

    Roop, H. A.; Clow, D. W.; Mills, J.; Fenn, M. E.

    2011-12-01

    Recent increases in atmospheric deposition of nitrogen (N) in the western U.S. have adversely impacted surface water quality and changed the composition of aquatic biota in high-elevation lakes. Existing N deposition data are generally not spatially diverse; representation of remote wilderness areas and high-elevation watersheds is often lacking, making it difficult to assess the importance of variations in N deposition on water quality impacts. This study aims to better understand N deposition in remote environments, particularly in alpine environments, where both the quantity and environmental impact of atmospheric N deposition are poorly understood. Understanding the impacts of N deposition on these environments is important for National Park resource and water-quality managers. Using ion-exchange resin (IER) collectors, seasonal through-fall of nitrogen was measured at 29 sites in the Rocky Mountains and 21 sites in the Sierra Nevada from 2006-2011. The IER collectors, deployed in pairs, represent geographically diverse transects aimed to quantify the spatial distribution of nitrogen deposition. Placed on talus slopes or in areas of exposed bedrock, the IER collectors were installed immediately following snowmelt (June/July) and replaced with new collectors prior to the first snowfall (September). Following spring melt, the collectors deployed over the winter were exchanged with new collectors. These seasonal swaps capture winter/spring and summer/fall deposition. A majority of the sites were paired with seasonal surface-water quality samples, allowing for comparison with nitrate levels in surface waters. In the lab, N compounds are eluted from the resins, then diluted and analyzed on an ion- chromatograph. Preliminary data from 2006, representing 16 sites with uncontaminated samples in Rocky Mountain National Park, suggest higher nitrogen deposition on the east side of the park. Average summer N deposition for an 85-day exposure period at the eastern slope

  14. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2015-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  15. Atmospheric Deposition and Fate of Mercury in High-altitude Watersheds of the Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Campbell, D. H.; Mast, M. A.; Ingersoll, G. P.; Manthorne, D. J.; Krabbenhoft, D. P.; Taylor, H. E.; Aiken, G. R.; Schuster, P. F.; Reddy, M. M.

    2003-12-01

    Despite the potential for cold high-altitude ecosystems to act as sinks in the global mercury cycle, atmospheric deposition and fate of mercury have not been measured extensively at mountain sites in the Western United States. At Buffalo Pass in northwestern Colorado (the highest site in the national Mercury Deposition Network at 3234 m elevation), mercury in wet deposition was 9 μ gm-2 in 2000, comparable to many sites in the upper Midwestern United States where fish consumption advisories are widespread because of elevated levels of mercury from atmospheric deposition. Similar levels of mercury deposition were measured about 90 km east of Buffalo Pass at Loch Vale in Rocky Mountain National Park (RMNP) during 2002. Concentrations of total mercury in headwater streams in RMNP averaged 2-4 ngL-1 during spring and summer of 2001-2002. Higher concentrations were observed during snowmelt and rainfall events. Dissolved mercury was generally greater than particulate mercury in these clear mountain streams. Mercury and dissolved organic carbon peaked as soils were flushed during early snowmelt and rainy summer periods. Overall, mercury deposition was greater than mercury export, indicating accumulation in alpine/subalpine ecosystems; however, the mercury exported in streamflow may contribute substantially to mercury loading in downstream lakes and reservoirs where fish consumption advisories have increased. Methyl mercury concentrations measured in the streams in 2002 were generally near or less than detection limits, however, extreme drought conditions limited hydrologic flushing of soils and wetlands that may be sources of methyl mercury. In 2003, surface and ground water from various alpine and subalpine landscapes were sampled to determine sources and transport of total and methyl mercury. The elevated levels of mercury in atmospheric deposition indicate a need for better understanding of mercury cycling and transport in high-altitude ecosystems of Western North

  16. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies

    PubMed Central

    Harvey, Brian J.; Donato, Daniel C.; Turner, Monica G.

    2014-01-01

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001–2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0–2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3–10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks. PMID:25267633

  17. Alpine Treeline Changes in the Central Rocky Mountains: A Progress Report

    NASA Astrophysics Data System (ADS)

    Woodhouse, C. A.; Lukas, J. J.

    2007-12-01

    Changes in the elevation, composition, and structure of alpine treeline can reflect climate variability and change, as well as patterns of disturbance which themselves may be mediated by climate variability. Information about past treelines may provide insight into the likely character of future changes. We have recently begun a new project to investigate changes in past treeline and determine the status of the current treeline in the central Rocky Mountains of Colorado, documenting the past and present treeline and their relationships to climate and fire using dendrochronological techniques. In summer 2007, we sampled three sites near Monarch Pass, Cottonwood Pass, and on Sheep Mountain, west of Fairplay, CO. The Monarch site shows evidence of a relict treeline of mixed Pinus flexilis and Pinus aristata above the current treeline, while the current treeline composition is predominantly Picea engelmannii. Dating, when completed, will reveal whether this relict treeline is evidence of a Medieval-era warm period in Colorado or an older period of warmth. At Sheep Mountain, remnant material above a stand of living Pinus flexilis and Pinus aristata trees of 800 years old or more was sampled. The remnant collections include samples with up to 700-1000 rings, and if they overlap in time with the living trees, will provide an extended chronology of climate variability, as well as information on the timing of tree establishment. At both of these sites, the presence of seedlings above the current tree line may be evidence of a rising treeline and warming temperatures, although this study may not be sufficient to confirm this. Evidence of fire at two of the three study sites may also shed light on the role of fire in shaping treeline in this region.

  18. Climatic controls on the snowmelt hydrology of the northern Rocky Mountains

    USGS Publications Warehouse

    Pederson, G.T.; Gray, S.T.; Ault, T.; Marsh, W.; Fagre, D.B.; Bunn, A.G.; Woodhouse, C.A.; Graumlich, L.J.

    2011-01-01

    The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ???0??C) and changes in spring minimum temperatures that correspond with atmospheric circulation changes and surface-albedo feedbacks in March and April. Warmer spring temperatures coupled with increases in mean and variance of spring precipitation correspond strongly to earlier snowmeltout, an increased number of snow-free days, and observed changes in streamflow timing and discharge. The majority of the variability in peak and total annual snowpack and streamflow, however, is explained by season-dependent interannual-to-interdecadal changes in atmospheric circulation associated with Pacific Ocean sea surface temperatures. Over recent decades, increased spring precipitation appears to be buffering NRM total annual streamflow from what would otherwise be greater snow-related declines in hydrologic yield. Results have important implications for ecosystems, water resources, and long-lead-forecasting capabilities. ?? 2011 American Meteorological Society.

  19. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2014-10-21

    Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001-2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography. In the red stage (0-2 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity with few effects detected only under extreme burning conditions. In the gray stage (3-10 y following beetle outbreak), fire severity was largely unaffected by prefire outbreak severity under moderate conditions, but several measures related to surface fire severity increased with outbreak severity under extreme conditions. Initial postfire tree regeneration of the primary beetle host tree [lodgepole pine (Pinus contorta var. latifolia)] was not directly affected by prefire outbreak severity but was instead driven by the presence of a canopy seedbank and by fire severity. Recent beetle outbreaks in subalpine forests affected few measures of wildfire severity and did not hinder the ability of lodgepole pine forests to regenerate after fire, suggesting that resilience in subalpine forests is not necessarily impaired by recent mountain pine beetle outbreaks. PMID:25267633

  20. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains

    USGS Publications Warehouse

    Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.

  1. Trends in snowpack chemistry and comparison to National Atmospheric Deposition Program results for the Rocky Mountains, US, 1993-2004

    USGS Publications Warehouse

    Ingersoll, G.P.; Mast, M.A.; Campbell, D.H.; Clow, D.W.; Nanus, L.; Turk, J.T.

    2008-01-01

    Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993-2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites. Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999-2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for

  2. Atmospheric deposition of nutrients, pesticides, and mercury in Rocky Mountain National Park, Colorado, 2002

    USGS Publications Warehouse

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.; Foreman, William T.; Krabbenhoft, David P.

    2003-01-01

    Nutrients, current-use pesticides, and mercury were measured in atmospheric deposition during summer in Rocky Mountain National Park in Colorado to improve understanding of the type and magnitude of atmospheric contaminants being deposited in the park. Two deposition sites were established on the east side of the park: one at an elevation of 2,902 meters near Bear Lake for nutrients and pesticides, and one at an elevation of 3,159 meters in the Loch Vale watershed for mercury. Concentrations of nutrients in summer precipitation at Bear Lake ranged from less than 0.007 to 1.29 mg N/L (milligrams of nitrogen per liter) for ammonium and 0.17 to 4.59 mg N/L for nitrate and were similar to those measured at the Loch Vale National Atmospheric Deposition Network station, where nitrogen concentrations in precipitation are among the highest in the Rocky Mountains. Atrazine, dacthal, and carbaryl were the most frequently detected pesticides at Bear Lake, with carbaryl present at the highest concentrations (0.0079 to 0.0952 ?g/L (micrograms per liter), followed by atrazine (less than 0.0070 to 0.0604 ?g/L), and dacthal (0.0030 to 0.0093 ?g/L). Mercury was detected in weekly bulk deposition samples from Loch Vale in concentrations ranging from 2.6 to 36.2 ng/L (nanograms per liter). Concentrations in summer precipitation were combined with snowpack data from a separate study to estimate annual deposition rates of these contaminants in 2002. Annual bulk nitrogen deposition in 2002 was 2.28 kg N/ha (kilograms of nitrogen per hectare) at Bear Lake and 3.35 kg N/ha at Loch Vale. Comparison of wet and bulk deposition indicated that dry deposition may account for as much as 28 percent of annual nitrogen deposition, most of which was deposited during the summer months. Annual deposition rates for three pesticides were estimated as 45.8 mg/ha (milligrams per hectare) of atrazine, 14.2 mg/ha of dacthal, and 54.8 mg/ha of carbaryl. Because of much higher pesticide concentrations in

  3. The Rocky Mountain population of the western Canada goose: its distribution, habitats, and management

    USGS Publications Warehouse

    Krohn, William B.; Bizeau, Elwood G.

    1980-01-01

    The western Canada goose (Branta canadensis moffitti) was divided into a Rocky Mountain population (RMP) and a Pacific population (PP) on the basis of band recovery patterns examined in this study and recovery data from other investigators. Habitat information obtained from nine cooperating wildlife agencies within the RMP's range provided a base line for evaluating future changes in nesting, molting, and wintering areas. The habitat inventory indicated that none of the seasonal habitats were currently limiting the size of the RMP. The RMP's range is divided into 15 reference areas and these are briefly described. Past studies of Canada geese in the Intermountain Region are reviewed. Topics covered in the discussion of breeding biology are nesting chronology, spring population composition, breeding age, clutch size, nesting success. artificial nesting structures, and gosling survival. Much of the mortality of Canada geese occurs before the birds are fledged. Man-made nesting structures reduce losses during incubation. but research is needed on the relations between brooding sites and gosling survival. Some western Canada geese, mainly prebreeders and unsuccessful nesters, make molt migrations to and from molting areas during and after the brood-rearing season. More than half of these molt-migrants are yearlings too young to nest; there are indications that even some successful nesters leave nesting areas to molt before the fledging of their offspring. Geese 2 years old or older may serve as guides to traditional molting areas for the first-time migrants (i.e., yearlings). Lack of disturbance appears to influence selection of specific molting areas within the nesting range of moffitti, whereas movements of molters out of the Intermountain Region may be related to the evolution of this subspecies. Apparently. molters of both the PP and RMP that leave the Region go to the Northwest Territories of Canada. Although the taxonomic status of moffitti as related to the

  4. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  5. Monitoring plan for vegetation responses to elk management in Rocky Mountain National Park

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Johnson, Therese L.; Wiebe, Zachary

    2011-01-01

    Rocky Mountain National Park (RMNP) in north-central Colorado supports numerous species of wildlife, including several large ungulate species among which Rocky Mountain elk (Cervus elaphus) are the most abundant. Elk are native to RMNP but were extirpated from the area by the late 1800s. They were reintroduced to the area in 1913-1914, and the elk herd grew to the point that it was actively managed from 1944 until 1968. In 1969, the active control of elk was discontinued and since then the herd has increased to a high point ranging from 2,800 to 3,500 between 1997 and 2001. In recent years, there has been growing concern over the condition of vegetation in the park and conflicts between elk and humans, both inside and outside the park. In response to these concerns, RMNP implemented an Elk and Vegetation Management Plan (EVMP) in 2009 to guide management actions in the park over a 20-year time period with the goal of reducing the impacts of elk on vegetation and restoring the natural range of variability in the elk population and affected plant and animal communities. The EVMP outlines the desired future condition for three vegetation communities where the majority of elk herbivory impacts are being observed: aspen, montane riparian willow, and upland herbaceous communities. The EVMP incorporates the principle of adaptive management whereby the effectiveness of management actions is assessed and adjusted as needed to successfully achieve objectives. Determination of whether vegetation objectives are being achieved requires monitoring and evaluation of target vegetation communities. The current report describes the design and implementation of a vegetation-monitoring program to help RMNP managers assess the effectiveness of their management actions and determine when and where to alter actions to achieve the EVMP's vegetation objectives. This monitoring plan details the process of selecting variables to be monitored, overall sampling design and structure, site

  6. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    USGS Publications Warehouse

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  7. Formation of the rocky mountains, Western United States: a continuum computer model.

    PubMed

    Bird, P

    1988-03-25

    One hypothesis for the information of the Rocky Mountain structures in late Cretaceous through Eocene time is that plate of oceanic lithosphere was underthrust horizontally along the base of the North American lithosphere. The horizontal components of the motion of this plate are known from paleomagnetism, and the edge of the region of flat slab can estimated from reconstructed patterns of volcanism. New techniques of finite-element modeling allow prediction of the thermal and mechanical effects of horizontal subduction on the North American plate. A model that has a realistic temperature-dependent rheology and a simple plane-layered initial condition is used to compute the consequences of horizontal underthrusting in the time interval 75 million to 30 million years before present. Successful prediction of this model include (i) the location, amount, and direction of horizontal shortening that has been inferred from Laramide structures; (ii) massive transport of lower crust from southwest to northeast; (iii) the location and timing of the subsequent extension in metamorphic core complexes and the Rio Grande rift; and (iv) the total area eventually involved in Basin-and-Range style extension. In a broad sense, this model has predicted the belt of Laramide structures, the transport of crust from the coastal region to the continental interior, the subsequent extension in metamorphic core complexes and the Rio Grande rift, and the geographic region of late Tertiary Basin-and-Range extension. Its principal defects are that (i) many events are predicted about 5 million to 10 million years too late and (ii) the wave of crustal thickening does not travel far enough to the east. Reasonable modifications to the oceanic plate kinematics and rheologies that were assumed may correct these defects. The correspondence of model predictions to actual geology is already sufficiently close to show that the hypothesis that horizontal subduction caused the Laramide orogeny is probably

  8. High concentrations of regional dust from deserts to plains across the central Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Reynolds, R. L.; Munson, S. M.; Fernandez, D. P.; Neff, J. C.

    2015-12-01

    Regional mineral dust in the American Southwest affects snow-melt rates, biogeochemical cycling, visibility, and public health. We measured total suspended particulates (TSP) across a 500-km-long sampling network of five remote sites in Utah and Colorado, USA, forming a gradient in distance from major dust emitting areas. The two westernmost sites on the Colorado Plateau desert had similar TSP concentrations (2008-2012, daily average=126 μg m-3; max. daily average over a two-week period=700 μg m-3 at Canyonlands National Park, Utah), while the easternmost High Plains site, close to cropped and grazed areas in northeastern Colorado, had an average concentration of 143 μg m-3 in 2011-2012 (max. daily average=656 μg m-3). Such concentrations rank comparably with those of TSP in several African and Asian cities in the paths of frequent dust storms. Dust loadings at the two intervening montane sites decreased from the western slope of the Rocky Mountains (Telluride, daily average=68 μg m-3) to an eastern site (Niwot Ridge, daily average=58 μg m-3). Back-trajectory analyses and satellite retrievals indicated that the three westernmost sites received most dust from large desert-source regions as far as 300 km to their southwest. These sources also sometimes sent dust to the two easternmost sites, which additionally captured dust from sources north and northwest of the central Rocky Mountains as well as locally at the Plains site. The PM10 fraction accounted for <15% of TSP, but most TSP is only slightly larger (typical median size, 15-20 μm) after about 100-800 km transport distances. Correlations between TSP and PM10 values indicate increases in both fractions during regional wind storms, especially related to Pacific frontal systems during late winter to late spring. These measurements and observations indicate that most dust deposition and associated air-quality problems in the interior American West are connected to regional dust sources and not to those in

  9. 75 FR 62519 - Rocky Mountain Natural Gas LLC; KeySpan Gas East Corporation; ECOP Gas Company, LLC; MGTC, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-130-000; PR10-131-000; PR10-132-000; PR10-133-000; PR10-134-000; PR10-135-000; PR10-136-000 (Not Consolidated)] Rocky Mountain Natural Gas LLC; KeySpan Gas...

  10. Reprocessing and Interpretation of Vintage Seismic Reflection Data: Evidence for the Tectonic History of the Rocky Mountain Trench, Northwest Montana.

    NASA Astrophysics Data System (ADS)

    Porter, M.; Speece, M. A.; Rutherford, B. S.; Constenius, K. N.

    2014-12-01

    In 1983 Techno, Inc. collected five seismic reflection profiles in the region between Whitefish, Montana and the United States-Canada border. The poulter method was used to gather four of these profiles and one profile was collected using a vibroseis source. We are currently reprocessing these data in order to construct a regional geological interpretation. The profiles cover a key position in the hinterland of the Cordillera in the lee of the Lewis thrust salient where the east-northeast verging Lewis thrust fault system translated (horizontal displacement >100 km) and inverted a thick, strong slab of primarily Belt-Purcell rocks out of a deep Precambrian depositional basin onto a cratonic platform. In this event, Belt-Purcell rocks were thrust over complexly imbricated Phanerozoic strata in the foreland. Late Mesozoic compressional deformation was followed by Cenozoic extensional collapse of the over-thickened Cordillera and subsequent basin and range style deformation that produced an array of northwest trending grabens. Three of the seismic profiles cross the Rocky Mountain Trench; the Trench is a linear structure of regional dimension that is an expression of the extensional fragmentation of the Cordillera. Strong reflections, interpreted as sills encased within Lower Belt rocks (encountered in the Arco-Marathon 1 Paul Gibbs borehole), outline the complexly folded and faulted structure of the eastern limb of the Purcell anticlinorium. East of the Rocky Mountain Trench stratified reflections within Belt rocks clearly outline the Wigwam Thrust. Beneath the Whitefish Range, an apparent inflection in the strongly reflective basal Cambrian veneer marks the westerly increase in dip of the Rocky Mountain Basal Detachment. The dip contrast between the foreland and hinterland might be a manifestation of the tectonic loading of the Belt basin margin and the loading might have localized extension across the Rocky Mountain Trench.

  11. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect

    Griffith, J.L.

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  12. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    PubMed

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region. PMID:25329514

  13. Upland Processes and Controls on September 2013 Debris Flows, Rocky Mountain National Park, Colorado

    NASA Astrophysics Data System (ADS)

    Patton, A. I.; Rathburn, S. L.; Bilderback, E. L.

    2015-12-01

    The extreme rainstorms that occurred in Colorado in September 2013 initiated numerous debris flows in the northern Front Range. These flows delivered sediment to upland streams, impacted buildings and infrastructure in and near Rocky Mountain National Park (RMNP), and underscored the importance of ongoing hazards in mountainous areas. Slope failures occurred primarily at elevations above 2600 m on south facing slopes >40 degrees. The 2013 failures provide a valuable opportunity to better understand site-specific geomorphic variables that control slope failure in the interior United States and the frequency of debris flows in steep terrain. Slope characteristics including soil depth, vegetation type and prevalence, contributing area, slope convexity/concavity and soil texture were compared between 11 debris flow sites and 30 control sites that did not fail in RMNP. This analysis indicates that slope morphology is the primary controlling factor: 45% of the debris flow sites initiated in or below a colluvial hollow and 36% of the failed sites initiated in other areas of convergent hillslope topography. Only one of the 30 control sites (3%) was located within a colluvial hollow and only two control sites (6%) were located in other areas of convergent topography. Difference in the average maximum soil thickness between debris flow sites (0.9 m) and control sites (0.7 m) is not significant but may reflect the difficulty of using a soil probe in glacially derived soils. Additional research includes field mapping and geochronologic study at one 2013 debris deposit with evidence of multiple mass movements. Preliminary results from the mapping indicate that up to six debris flows have occurred at this site. Radiocarbon analysis of organic material and 10Be analysis of quartz from boulders in old debris levees indicate the timing of past events in this area. Future land management in RMNP will utilize this understanding of controls on slope failure and event frequency.

  14. The influence of Precambrian rock compositions and fabrics on the development of Rocky Mountain foreland folds

    SciTech Connect

    Chase, R.B.; Schmidt, C.J. . Dept. of Geology); Genovese, P.W. . Dept. of Geophysical Sciences)

    1992-01-01

    The distribution of Laramide strain in the Precambrian basement rocks of four small Rocky Mountain foreland folds was controlled by lithologies and orientations of pre-existing foliation in the faulted forelimbs. Features of brittle deformation include faults, sets of parallel, conjugate, or anastomosing fractures, zones of penetrative grain cracking and intergrain slip without grain size reduction, and local zones of cataclasis or incipient mylonitization. In the London Hills anticline, Montana, foliation was nearly parallel to bedding in cover rocks prior to folding. The foliation in the forelimb was rotated and deformed by layer-parallel slip between a forelimb thrust and a hinge-controlling fault. In the Sheephead Mountain anticline, Wyoming, the forelimb fault cut foliation at a high angle. Penetrative brittle deformation occurred along a wide zone of fractures parallel to a forelimb thrust at the basement-cover contact. In the Gnat Hollow anticline, Colorado, foliation dipped about 20[degree] more steeply than the forelimb thrust. Brittle deformation was confined mainly to the fault zone. In the Romero Hills anticline, New Mexico, foliation in the basement was parallel to thrusts that cut both basement and cover rocks. Slip on foliation surfaces near the thrusts was pervasive and simple shear on foliation was distributed in both the forelimb and backlimb. Pre-existing foliation surfaces were most active where they paralleled forelimb faults and least active where foliation was at a high angle to forelimb faults or was not rotated into the forelimb orientation. If the angle between faults and foliation is 10[degree] [+-] or more, pre-existing foliation appears to have exerted little influence on Laramide strain patterns.

  15. Effect of storm trajectories on snowfall chemistry in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Ingersoll, G.P.; Tonnessen, K.A.; Campbell, D.H.; Glass, B.R.; Torizzo, A.O.

    2001-01-01

    Snowfall samples from snowstorms lasting 1 to 4 days were collected near the Bear Lake snow telemetry (SnoTel) site in Rocky Mountain National Park, Colorado (ROMO), during the 1998-99 snowfall season to determine if storms moving in from different directions affect the chemistry of precipitation in the park. Storm pathways to Bear Lake during snowfall events were estimated using the HYSPLIT4 backward-trajectory model developed by the National Oceanic and Atmospheric Administration. Deposition of acidic ions of nitrate and sulfate in snowfall during the study varied substantially (two- to threefold) depending on storm trajectory because air masses traversing the park originated from different surrounding areas, including some having large sources of emissions of nitrate and sulfate. Concentrations of nitrate and sulfate in samples were lowest when storms reached ROMO from north and east of the park and were elevated when air masses traveled from the west where a number of power plants are located. Concentrations were highest in storms reaching ROMO from the south, a region with urban areas including Metropolitan Denver.

  16. Modeling the convective transport of pollutants from eastern Colorado, USA into Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Pina, A.; Schumacher, R. S.; Denning, S.

    2015-12-01

    Rocky Mountain National Park (RMNP) is a Class I Airshed designated under the Clean Air Act. Atmospheric nitrogen (N) deposition in the Park has been a known problem since weekly measurements of wet deposition of inorganic N began in the 1980s by the National Atmospheric Deposition Program (NADP). The addition of N from urban and agriculture emissions along the Colorado Front Range to montane ecosystems degrades air quality/visibility, water quality, and soil pH levels. Based on NADP data during summers 1994-2014, wet N deposition at Beaver Meadows in RMNP exhibited a bimodal gamma distribution. In this study, we identified meteorological transport mechanisms for 3 high wet-N deposition events (all events were within the secondary peak of the gamma distribution) using the North American Regional Reanalysis (NARR) and the Weather Research and Forecasting (WRF) model. The NARR was used to identify synoptic-scale influences on the transport; the WRF model was used to analyze the convective transport of pollutants from a concentrated animal feeding operation near Greeley, Colorado, USA. The WRF simulation included a passive tracer from the feeding operation and a convection-permitting horizontal spacing of 4/3 km. The three cases suggest (a) synoptic-scale moisture and flow patterns are important for priming summer transport events and (b) convection plays a vital role in the transport of Front Range pollutants into RMNP.

  17. Hydrology of Area 61, Northern Great Plains and Rocky Mountain Coal Provinces, Colorado and New Mexico

    USGS Publications Warehouse

    Abbott, P.O.; Geldon, Arthur L.; Cain, Doug; Hall, Alan P.; Edelmann, Patrick

    1983-01-01

    Area 61 is located on the Colorado-New Mexico boundary in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico, and includes the Raton Mesa coal region. The 5 ,900-square-mile area is an asymmetrical structural trough bounded by the Rocky Mountains on the west and the Great Plains on the east. The area is drained by the Huerfano, Apishapa, Purgatoire, and Canadian Rivers (and their tributaries), all tributary to the Arkansas River. The principal coal-bearing formations are the Vermejo Formation of Late Cretaceous age and the Raton Formation of Late Cretaceous and Paleocene age. Much of the coal in the area is of coking quality, important to the metallurgical industry. Topographic relief in the area is greater than 8,700 feet, and this influences the climate which in turn affects the runoff pattern of area streams. Summer thunderstorms often result in flash floods. Virtually all geologic units in the region yield water. Depth to ground water ranges from land surface to 400 feet. Surface and ground water in the area contain mostly bicarbonate and sulfate ions; locally in the ground water, chloride ions predominate. Potential hydrologic problems associated with surface coal mining in the area are water-quality degradation, water-table decline, and increased erosion and sedimentation.

  18. Bison grazing ecology at the Rocky Mountain Arsenal National Wildlife Refuge, Colorado

    USGS Publications Warehouse

    Germaine, Stephen; Zeigenfuss, Linda C.; Schoenecker, Kathryn A.

    2013-01-01

    The Rocky Mountain Arsenal (RMA) National Wildlife Refuge reintroduced bison to a small pasture in 2007. Refuge managers needed information on the effects of bison grazing on vegetation communities in the bison pasture as well as information on how bison might affect other management priorities at RMA. In particular, RMA managers were interested in bison grazing effects on vegetation productivity, amount of vegetation utilization by bison, and habitat selection by bison to inform RMA herd managers and for potential expansion of bison range on the refuge. In 2007, U.S. Geological Survey (USGS) designed a study to investigate bison grazing effects through measurement of vegetation in the 600-hectare enclosure where the bison are currently pastured. This research was a collaborative effort between USGS and RMA refuge staff and had active field components in 2007 and 2010. We found that the effects and intensity of bison grazing on vegetation in the RMA bison pasture is linked to prairie dog presence. Where both species were present, they were removing a significant amount of biomass compared to areas where only bison were present. Also, prairie dogs appeared to enhance the greater production of native forbs, but we were not able to identify the mechanism for this increased production. We were not able, however, to generate an accurate vegetation map for the bison pasture, and this limited our ability to achieve the level of statistical precision necessary to identify grazing impacts and habitat selection of bison.

  19. Observations and methodology of atmospheric ammonia within the Colorado Rocky Mountain pine forest

    NASA Astrophysics Data System (ADS)

    Hrdina, Amy; Moravek, Alexander; Murphy, Jennifer

    2016-04-01

    Concentrations of trace gases (HCl, HNO3, HONO, NH3, SO2) and particle phase constituents from fine particulate matter (PM2.5) were continuously measured using an online ambient ion monitor ion chromatograph (AIM-IC) within the canopy at the Rocky Mountain Research Station (Manitou Experimental Forest) in Woodland Park, Colorado, from July 31 - August 12 2015. A consistent diurnal pattern of ammonia mixing ratios was observed, ranging from 0.1 - 2.6 ppb. Analysis of PM2.5ammonium was below the 130 ng m‑3 detection limit of the instrument, which was corroborated by parallel particle concentration data also gathered at the site showing extremely low overall particle concentrations in the order of 103. As a result, variability in gas phase ammonia can be attributed to surface-atmosphere exchange and/or transport rather than gas particle partitioning. Complimentary analysis of ammonium found within the pine needles and the soil was also performed on site using established extraction methods and analysis by ion chromatography. Emissions potentials calculated from observed ammonium levels were generally consistent in the pine needles showing stomatal emission potentials within the range of 28 - 60, whereas the soil data varied widely, spanning 5 - 2100. The measurements are used to quantify compensation points of ammonia representative of the canopy and ground at the site to better predict the biosphere-atmosphere exchange of ammonia within the forest.

  20. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA

    USGS Publications Warehouse

    Flores, R.M.

    1993-01-01

    Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in of the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favored by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic, raised swamps of the Baram and Mahakam Rivers of Borneo. ?? 1993.

  1. Modeling chloride movement in the alluvial aquifer at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Konikow, Leonard F.

    1977-01-01

    A solute-transport model that can be used to predict the movement of dissolved chemicals in flowing ground water was applied to a problem of ground-water contamination at the Rocky Mountain Arsenal, near Denver, Colo. The model couples a finite-difference solution to the ground-water flow equation with the method-of-characteristics solution to the solute-transport equation. From 1943 to 1956 liquid industrial wastes containing high chloride concentrations were disposed into unlined ponds at the Arsenal. Wastes seeped out of the unlined disposal ponds and spread for many square miles in the underlying shallow alluvial aquifer. Since 1956 disposal has been into an asphalt-lined reservoir, which contributed to a decline in ground-water contamination by 1972. The simulation model quantitatively integrated the effects of the major factors that controlled changes in chloride concentrations and accurately reproduced the 30-year history of chloride ground-water contamination. Analysis of the simulation results indicates that the geologic framework of the area markedly restricted the transport and dispersion of dissolved chemicals in the alluvium. Dilution, from irrigation recharge and seepage from unlined canals, was an important factor in reducing the level of chloride concentrations downgradient from the Arsenal. Similarly, recharge of uncontaminated water from the unlined ponds since 1956 has helped to dilute and flush the contaminated ground water.

  2. Terrestrial eco-risk -- Exposure assessment and risk characterization at Rocky Mountain Arsenal

    SciTech Connect

    Tate, D.J.; Cothern, K.A.; Jones, M.L.; Applehans, F. |; Armstrong, J.P.

    1994-12-31

    Terrestrial eco-risk was assessed at Rocky Mountain Arsenal using data from about 9,700 soil samples and 1,400 biota samples from 19 taxa. These databases reflect considerable spatial variability in historical uses of the 27-square mile site, in concentration of the 14 contaminants of concern (COCs) in soil, and in the distribution of soil borings and surficial soil samples, as well as spatial variability in tissue concentrations of samples that were collected from locations that were biased toward areas associated with high COC concentrations or thorough to be uncontaminated. This variability plus the considerable uncertainty in associating biota tissue concentrations with exposure soil concentrations resulted in extensive discussion and the development of an innovative and effective protocol for using interpolated soil concentrations to estimate tissue concentrations that were compared to toxicity reference values for tissue and dose concentrations. The broad outlines of the Endangerment Assessment Technical Subcommittee members` uncharted journey through literature surveys, parameter quantification, statistical nuances, exposure area soil concentration estimation, and development of a proportionality constant (e.g., a site-specific biomagnification factor) to link soil and tissue concentrations will be described and linked to a more detailed afternoon poster presentation.

  3. Effects of supplemental feeding on gastrointestinal parasite infection in Rocky Mountain Elk (Cervus elaphus)

    USGS Publications Warehouse

    Hines, Alicia M.; Ezenwa, Vanessa O.; Cross, Paul C.; Rogerson, Jared D.

    2007-01-01

    The effects of management practices on the spread and impact of parasites and infectious diseases in wildlife and domestic animals are of increasing concern worldwide, particularly in cases where management of wild species can influence disease spill-over into domestic animals. In the Greater Yellowstone Ecosystem, USA, winter supplemental feeding of Rocky Mountain elk (Cervus elaphus) may enhance parasite and disease transmission by aggregating elk on feedgrounds. In this study, we tested the effect of supplemental feeding on gastrointestinal parasite infection in elk by comparing fecal egg/oocyst counts of fed and unfed elk. We collected fecal samples from fed and unfed elk at feedground and control sites from January to April 2006, and screened all samples for parasites. Six different parasite types were identified, and 48.7% of samples were infected with at least one parasite. Gastrointenstinal (GI) nematodes (Nematoda: Strongylida), Trichuris spp., and coccidia were the most common parasites observed. For all three of these parasites, fecal egg/oocyst counts increased from January to April. Supplementally fed elk had significantly higher GI nematode egg counts than unfed elk in January and February, but significantly lower counts in April. These patterns suggest that supplemental feeding may both increase exposure and decrease susceptibility of elk to GI nematodes, resulting in differences in temporal patterns of egg shedding between fed and unfed elk.

  4. Distribution, occupancy, and habitat correlates of American martens (Martes americana) in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2008-01-01

    A clear understanding of habitat associations of martens (Martes americana) is necessary to effectively manage and monitor populations. However, this information was lacking for martens in most of their southern range, particularly during the summer season. We studied the distribution and habitat correlates of martens from 2004 to 2006 in Rocky Mountain National Park (RMNP) across 3 spatial scales: site-specific, home-range, and landscape. We used remote-sensored cameras from early August through late October to inventory occurrence of martens and modeled occurrence as a function of habitat and landscape variables using binary response (BR) and binomial count (BC) logistic regression, and occupancy modeling (OM). We also assessed which was the most appropriate modeling technique for martens in RMNP. Of the 3 modeling techniques, OM appeared to be most appropriate given the explanatory power of derived models and its incorporation of detection probabilities, although the results from BR and BC provided corroborating evidence of important habitat correlates. Location of sites in the western portion of the park, riparian mixed-conifer stands, and mixed-conifer with aspen patches were most frequently positively correlated with occurrence of martens, whereas more xeric and open sites were avoided. Additionally, OM yielded unbiased occupancy values ranging from 91% to 100% and 20% to 30% for the western and eastern portions of RMNP, respectively. ?? 2008 American Society of Mammalogists.

  5. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park.

    PubMed

    Usenko, Sascha; Landers, Dixon H; Appleby, Peter G; Simonich, Staci L

    2007-11-01

    An analytical method was developed for the trace analysis of 98 semivolatile organic compounds (SOCs) in remote, high-elevation lake sediment. Sediment cores from Lone Pine Lake (west of the Continental Divide) and Mills Lake (east of the Continental Divide) in Rocky Mountain National Park, CO, were dated using 210Pb and 137Cs and analyzed for polybrominated diphenyl ethers (PBDEs), organochlorine pesticides, phosphorothioate pesticides, thiocarbamate pesticides, amide herbicides, triazine herbicides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) using this method. SOC deposition profiles were reconstructed, and deposition half-lives and doubling times were calculated, for U.S. historic-use pesticides (HUPs) and current-use pesticides (CUPs) as well as PBDEs, PCBs, and PAHs. Sediment records indicate that the deposition of CUPs has increased in recent years, while the deposition of HUPs has decreased since U.S. restriction, but has not been eliminated. This is likely due to the revolatilization of HUPs from regional soils, atmospheric transport, and deposition. Differences in the magnitude of SOC sediment fluxes, flux profiles, time trends within those profiles, and isomeric ratios suggest that SOC deposition in high-elevation ecosystems is dependent on regional upslope wind directions and site location with respect to regional sources and topographic barriers. PMID:18044494

  6. A hybrid modeling approach for estimating reactive nitrogen deposition in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Rodriguez, Marco A.; Schichtel, Bret A.; Gebhart, Kristi A.; Thompson, Tammy M.; Barna, Michael G.; Benedict, Katherine B.; Carrico, Christian M.; Collett, Jeffrey L.

    2016-02-01

    Changes in ecosystem function at Rocky Mountain National Park (RMNP) are occurring because of nitrogen deposition associated with emissions of nitrogen from sources in Colorado as well as other areas of the North American continent and beyond. Nitrogen species are in both reduced and oxidized forms. A year-long monitoring program was initiated to better understand their origins as well as the complex chemistry occurring during transport from source to receptor. Specifically, the goals of the study were to characterize the atmospheric concentrations of nitrogen species in gaseous, particulate, and aqueous phases in RMNP and to identify the emission sources of these various species. The apportionment strategy was designed to focus on differentiating between sources within and outside the state of Colorado and then further differentiate between sources along the Front Range of Colorado and the rest of Colorado. It was also desirous to identify the relative contributions to atmospheric nitrogen species from mobile sources, agricultural activities, and large and small point sources within the state of Colorado. The Particle Source Apportionment Technology (PSAT) module available in the chemical transport model, the Comprehensive Air quality Model with extensions (CAMx), is used to develop first-principle estimates of the contributions from different areas of North America. The CAMx_PSAT results are combined with measured species concentrations in a receptor modeling approach to develop final estimates of source apportionment of the various species' concentrations and deposition.

  7. Foods and nutritional components of diets of black bear in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2009-01-01

    We used scat analysis to determine diets and relative nutritional values of diets for black bears (Ursus americanus Pallas, 1780) in Rocky Mountain National Park, Colorado, from 2003 to 2006, and compared foods consumed and nutritional components to identify important sources of fecal gross energy (GE), crude fat (CF), and fecal nitrogen (FN) in annual and seasonal diets. Patterns of use of food classes followed typical seasonal patterns for bears, although use of animal matter was among the highest reported (>49% annually). Use of animal matter increased after spring, although crude protein levels in bear diets were always >25%. GE was typically lowest for grasses and other herbaceous plants and highest for ants and ungulates; FN was strongly positively related to most animal sources, but negatively correlated with vegetative matter; and CF showed the strongest positive relationship with ungulates and berries, with the latter likely influenced by the presence of seeds. Compared with historic data (1984-1991), contemporary diets included substantially greater prevalence of anthropogenic foods, which likely contributed to increases in size, condition, and productivity of the contemporary bear population. Management strategies are needed to increase quantity and quality of natural foods while minimizing dependence on anthropogenic sources.

  8. Distribution limits of Batrachochytrium dendrobatidis: a case study in the Rocky Mountains, USA.

    USGS Publications Warehouse

    Hossack, B.R.; Muths, E.; Anderson, C.W.; Kirshtein, J.D.; Corn, P.S.

    2009-01-01

    Knowledge of the environmental constraints on a pathogen is critical to predicting its dynamics and effects on populations. Batrachochytrium dendrobatidis (Bd), an aquatic fungus that has been linked with widespread amphibian declines, is ubiquitous in the Rocky Mountains. As part of assessing the distribution limits of Bd in our study area, we sampled the water column and sediments for Bd zoospores in 30 high-elevation water bodies that lacked amphibians. All water bodies were in areas where Bd has been documented from neighboring, lower-elevation areas. We targeted areas lacking amphibians because existence of Bd independent of amphibians would have both ecologic and management implications. We did not detect Bd, which supports the hypothesis that it does not live independently of amphibians. However, assuming a detection sensitivity of 59.5% (based on sampling of water where amphibians tested positive for Bd), we only had 95% confidence of detecting Bd if it was in > or =16% of our sites. Further investigation into potential abiotic reservoirs is needed, but our results provide a strategic step in determining the distributional and environmental limitations of Bd in our study region.

  9. Development of an expert system for assessing trumpeter swan breeding habitat in the Northern Rocky Mountains.

    USGS Publications Warehouse

    Sojda, Richard S.; Cornely, John E.; Howe, Adele E.

    2002-01-01

    A decision support system for the management of the Rocky Mountain Population of Trumpeter Swans (Cygnus buccinators) is being developed. As part of this, three expert systems are also in development: one for assessing the quality of Trumpeter Swan breeding habitat; one for making water level recommendations in montane, palustrine wetlands; and one for assessing the contribution a particular site can make towards meeting objectives from as flyway perspective. The focus of this paper is the development of the breeding habitat expert system, which currently consists of 157 rules. Out purpose is to provide decision support for issues that appear to be beyond the capability of a single persons to conceptualize and solve. We propose that by involving multiple experts in the development and use of the systems, management will be significantly improved. The knowledge base for the expert system has been developed using standard knowledge engineering techniques with a small team of ecological experts. Knowledge was then coded using production rules organized in decision trees using a commercial expert system development shell. The final system has been deployed on the world wide web.

  10. Bayesian time series analysis of segments of the Rocky Mountain trumpeter swan population

    USGS Publications Warehouse

    Wright, Christopher K.; Sojda, Richard S.; Goodman, Daniel

    2002-01-01

    A Bayesian time series analysis technique, the dynamic linear model, was used to analyze counts of Trumpeter Swans (Cygnus buccinator) summering in Idaho, Montana, and Wyoming from 1931 to 2000. For the Yellowstone National Park segment of white birds (sub-adults and adults combined) the estimated probability of a positive growth rate is 0.01. The estimated probability of achieving the Subcommittee on Rocky Mountain Trumpeter Swans 2002 population goal of 40 white birds for the Yellowstone segment is less than 0.01. Outside of Yellowstone National Park, Wyoming white birds are estimated to have a 0.79 probability of a positive growth rate with a 0.05 probability of achieving the 2002 objective of 120 white birds. In the Centennial Valley in southwest Montana, results indicate a probability of 0.87 that the white bird population is growing at a positive rate with considerable uncertainty. The estimated probability of achieving the 2002 Centennial Valley objective of 160 white birds is 0.14 but under an alternative model falls to 0.04. The estimated probability that the Targhee National Forest segment of white birds has a positive growth rate is 0.03. In Idaho outside of the Targhee National Forest, white birds are estimated to have a 0.97 probability of a positive growth rate with a 0.18 probability of attaining the 2002 goal of 150 white birds.

  11. Waterfalls on the eastern side of Rocky Mountain National Park, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Ortega, Jose A.; Wohl, Ellen; Livers, Bridget

    2013-09-01

    We examined 30 waterfalls on the eastern side of Rocky Mountain National Park in Colorado, USA, to evaluate whether drainage area or bedrock properties as reflected in joint characteristics correlate more strongly with the location and characteristics of individual waterfalls. Longitudinal profiles tend to be more concave for larger drainages, to have a smaller proportion of total elevation loss in waterfalls, and to have vertical drops rather than angled or ramp waterfalls: we interpret these trends to indicate greater overall incisional capability for larger catchments. Shape of individual waterfalls and height of drop correlate more strongly with bedrock properties: waterfalls in bedrock lacking prominent vertical joints perpendicular to flow are more likely to have a single drop rather than multiple drops, and taller waterfalls correlate with more widely spaced horizontal joints. Waterfalls also noticeably correspond to resistant bedrock outcrops that form steep segments along hillslopes adjacent to the channel. We interpret these results to indicate that the location and characteristics of waterfalls along headwater streams in the study area reflect primarily a limited ability to incise through more resistant segments of the underlying bedrock.

  12. The role of colloids in the transport of contaminants at the Rocky Mountain Arsenal, Denver, CO

    SciTech Connect

    Honeyman, B.D.; Mackay, D.M.

    1993-12-31

    A forced-gradient, pilot-study of ground contaminant transport in an existing plume was conducted at the Rocky Mountain Arsenal in November 1991. Plume contaminants included halogenated VOCs, aromatic hydrocarbons, organchlorine pesticides and other more polar organic compounds. The pilot system consisted of an injection well screened over the entire saturated zone, an extraction well located 30 feet away and granulated activated carbon canisters for the treatment of extracted water. Treated water was spiked with bromide prior to reinjection. A series of observation wells was established between the injection and extraction wells. Organic analysis of extracted colloidal material (10K daltons - 0.1{mu}m) showed the colloids to be with substantional amounts of a number of the target analytes including atrazine (100{mu}g/g colloids), dde (3200{mu}g/g) and DDT (400{mu}g/g). In addition, colloidal material was found to be mobile, although slightly retarded (R{sub f} = 1.5 - 2.0) relativeomide tracer.

  13. Bighorn sheep response to road-related disturbances in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Keller, B.J.; Bender, L.C.

    2007-01-01

    Bighorn sheep (Ovis canadensis) use of Sheep Lakes mineral site, Rocky Mountain National Park, Colorado, USA, has decreased since 1996. Officials were concerned that human disturbance may have been contributing to this decline in use. We evaluated effects of vehicular traffic and other road-related disturbance on bighorn use of Sheep Lakes in the summers of 2002 and 2003. We found that the time and number of attempts required by bighorn to reach Sheep Lakes was positively related to the number of vehicles and people present at Sheep Lakes. Further, the number of bighorn individuals and groups attempting to visit Sheep Lakes were negatively affected by disturbance associated with the site. The number of vehicles recorded the hour before bighorn tried to access Sheep Lakes best predicted an animal's failure to cross Fall River Road and reach Sheep Lakes. We conclude that human and road-related disturbance at Sheep Lakes negatively affected bighorn use of the mineral site. Because Sheep Lakes may be important for bighorn sheep, especially for lamb production and survival, the negative influence of disturbance may compromise health and productivity of the Mummy Range bighorn sheep.

  14. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  15. From both sides now: librarians' experiences at the Rocky Mountain Evidence-Based Health Care Workshop

    PubMed Central

    Traditi, Lisa K.; Le Ber, Jeanne Marie; Beattie, Michelle; Meadows, Susan E.

    2004-01-01

    The Colorado Health Outcomes (COHO) Department of the School of Medicine at the University of Colorado Health Sciences Center (UCHSC) coordinates the Rocky Mountain Evidence-Based Health Care (EBHC) Workshop, which has been held annually since 1999. The goals of the workshop include helping participants—physicians, pharmacists, health care policy makers, journalists and librarians—learn and apply skills for critically appraising medical research literature and for effective use of evidence-based information resources. Participants are encouraged to share ideas and to plan local services and instruction for those working in clinical settings. Each year, librarians from UCHSC Denison Memorial Library participate as faculty by teaching searching skills (PubMed, Cochrane Library, ACP Journal Club, etc.), providing support to small groups, and staffing two computer labs. In 2002, Denison Library received a National Network of Libraries of Medicine (NN/LM) MidContinental Region Impact Award to fund the attendance of three health sciences librarians from the MidContinental Region, an academic education librarian, a clinical medical librarian, and a department librarian. In this paper, the participating librarians share the lessons they learned about how health care practitioners approach evidence-based practice. The participating librarians also share how they incorporated these lessons into their support of evidence-based practice related to teaching about evidence-based resources, assisting health care practitioners with developing answerable questions, enhancing the clinician-librarian partnership, and assisting practitioners in selecting evidence-based resources for quick answers to clinical questions. PMID:14762465

  16. Health status of mule deer and white-tailed deer herds on the Rocky Mountain Arsenal

    SciTech Connect

    Creekmore, T.E.; Franson, J.C.; Sileo, L.; Griess, J.M.; Roy, R.R.; Baker, D.L.

    1994-12-31

    The Rocky Mountain Arsenal is a fenced, 6,900-ha Superfund site under remediation by the US Army and the Shell Oil Company. A variety of environmental contaminants including organochlorine pesticides, metals, and nerve-gas-production by-products are in the soil or in the water on the site. The authors evaluated the health of 18 radio-collared deer (13 mule deer [Odocoileus hemionus] and 5 white-tailed deer [O. virginianus]) collected by gunshot. Prior to collection, more than 4,000 locations of the 18 deer were plotted during a period of more than 2 years. Blood samples from the euthanized animals were collected for serologic, hematologic, and contaminant evaluations. Necropsies were preformed and tissues collected for histopathologic examinations and environmental contaminants analyses. Results indicate that the physical conditions of the mule deer were fair/good and of the white-tailed deer were good. Antibody prevalence against epizootic hemorrhagic disease serotype 2 was 85% and bovine virus diarrhea 56%. Two mule deer had severe testicular atrophy, and one of these animals also had antler deformities. Three mule deer had alopecia with dermatitis and hyperkeratosis. Results of heavy metal, and organochlorine pesticide analyses from blood and tissue samples and other analyses will be presented.

  17. Permian tectonism in Rocky Mountain foreland and its importance in Exploration for Minnelusa and Lyons sandstones

    SciTech Connect

    Moore, W.R.

    1985-05-01

    Permian sandstones are important producers of oil in the Powder River and Denver basins of the Rocky Mountain foreland region. In the Powder River basin, Wolfcampian Minnelusa Sandstone produces oil from structural and stratigraphic traps on both sides of the basin axis, whereas in Denver basin, the Leonardian Lyons Sandstone produces oil mainly from structural traps on the west flank of the basin. Two fields, North Fork-Cellars Ranch in the Powder River basin, and Black Hollow in the Denver basin, are examples of Permian growth of structural features. At North Fork-Cellars Ranch, a period of Permian structural growth and resultant differential sedimentation is documented by structure and isopach maps of the Minnelusa and overlying Goose Egg Formation. Structural growth began at the end of Minnelusa deposition and resulted in deposition of a much thicker Goose Egg section on the west flank of the field. At Black Hollow, mapping indicates structural growth was initiated before deposition of the Lyons Sandstone and continued throughout Leonardian time. In both fields growth abruptly ceased in the Late Permian. Both North Fork-Cellars Ranch and Black Hollow are located on structural highs, or arches, which trend east-west across the Powder River and Denver basins. These arches were present during the pre-Laramide migration of Paleozoic-sourced hydrocarbons into the basins and acted as pathways for migration. Exploration for Permian reservoirs in the two basins should be concentrated on the arches, as the early formed traps were present when migration began.

  18. Nitrogen budget of alpine and aeolian Rocky Mountain sites. Doctoral thesis

    SciTech Connect

    Boston, P.J.

    1985-01-01

    Sources of nitrogen were measured for five Rocky Mountain sites including intrinsic biological N/sub 2/-fixation and atmospheric sources. Total snow, rain and dry deposition of nitrogen for a two-year period were extrapolated from direct measurements. Significant quantities of nitrogen come to these sites from external sources. Atmospheric inputs are higher than background levels for pristine areas. Agricultural and industrial sources undoubtedly contribute to this. Based on acetylene-reduction measurements (1982/1983 and 1983/1984 seasons), only 14-46% of yearly total nitrogen input was provided by biological fixation (as microbial biomass). Over half of the nitrogen (as NO/sup 3 -/ and NO/sup 4 +/) came from precipitation and dry deposition. The ultimate source may be either atmospherically fixed nitrogen or nitrogen biologically or industrially fixed elsewhere and transported to the sites by air movements. All sites are water-limited, particularly late in the growing season. This restricts microbial nitrogen fixation. Total bacterial counts are depressed by dryness. Snowpack melting inhibits densities of nitrogen fixers, nitrifiers, and denitrifiers at the barren sites. High-altitude sites are subject to wide fluctuations in all environmental parameters both seasonally and yearly. Long-term studies will be essential.

  19. Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Sueker, J.K.; Ryan, J.N.; Kendall, C.; Jarrett, R.D.

    2000-01-01

    Alpine/subalpine ecosystems in Rocky Mountain National Park may be sensitive to atmospherically derived acidic deposition. Two- and three-component hydrograph separation analyses and correlation analyses were performed for six basins to provide insight into streamflow generation during snowmelt and to assess basin sensitivity to acidic deposition. Three-component hydrograph separation results for five basins showed that streamflow contained from 42 to 57% direct snowmelt runoff, 37 to 54% subsurface water, and 4 to 13% direct rain runoff for the May through October 1994 study period. Subsurface contributions were 89% of total flow for the sixth basin. The reliability of hydrograph separation model assumptions was explored. Subsurface flow was positively correlated with the amount of surficial material in a basin and was negatively correlated with basin slope. Basins with extensive surficial material and shallow slopes are less susceptible to ecosystem changes due to acidic deposition than basins with less surficial material and steeper slopes. This study was initiated to expand the intensive hydrologic research that has been conducted in Loch Vale basin to a more regional scale.

  20. Development of a systematic methodology for evaluation of soil vapor extraction at Rocky Mountain Arsenal

    SciTech Connect

    Aamodt, E.C.; Gilmore, J.E.; Weaver, J.D.; Dahm, M.A.; Riese, A.C.; Tortoso, A.

    1994-12-31

    A systematic methodology was developed to evaluate the feasibility of using soil vapor extraction (SVE) to treat South Plants and former Basin F soil media in support of the ongoing Onpost Operable Unit Feasibility Study (FS) at Rocky Mountain Arsenal. The methodology used in situ air permeability testing, chemical and physical property characterization, and computer modeling to evaluate the potential for using SVE to treat soil contaminated with volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and pesticide manufacturing process wastes, including potential odor-causing compounds. In situ air permeability tests were performed to measure air permeabilities and extracted vapor flow rates. Soil samples were collected at each test location and were analyzed for VOCs, low molecular weight SVOCs, potential odor-causing compounds, and physical property characteristics. In situ air permeability test and chemical and physical property characterization results were used during computer modeling evaluations to develop SVE conceptual designs, estimate remediation timeframes, select appropriate treatment technologies, and develop preliminary cost estimates for full-scale implementation. The methodology developed provides information necessary to evaluate SVE at the FS stage and provides a sound technical basis for design of full-scale SVE systems.

  1. Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region.

    PubMed

    Dahm, Katharine G; Guerra, Katie L; Xu, Pei; Drewes, Jörg E

    2011-09-15

    Coalbed methane (CBM) or coalbed natural gas (CBNG) is an unconventional natural gas resource with large reserves in the United States (US) and worldwide. Production is limited by challenges in the management of large volumes of produced water. Due to salinity of CBM produced water, it is commonly reinjected into the subsurface for disposal. Utilization of this nontraditional water source is hindered by limited knowledge of water quality. A composite geochemical database was created with 3255 CBM wellhead entries, covering four basins in the Rocky Mountain region, and resulting in information on 64 parameters and constituents. Database water composition is dominated by sodium bicarbonate and sodium chloride type waters with total dissolved solids concentrations of 150 to 39,260 mg/L. Constituents commonly exceeding standards for drinking, livestock, and irrigation water applications were total dissolved solids (TDS), sodium adsorption ratio (SAR), temperature, iron, and fluoride. Chemical trends in the basins are linked to the type of coal deposits, the rank of the coal deposits, and the proximity of the well to fresh water recharge. These water composition trends based on basin geology, hydrogeology, and methane generation pathway are relevant to predicting water quality compositions for beneficial use applications in CBM-producing basins worldwide. PMID:21790201

  2. Response of Rocky Mountain elk (Cervus elaphus) to wind-power development

    USGS Publications Warehouse

    Walter, W. David; Leslie, David M., Jr.; Jenks, J.A.

    2006-01-01

    Wind-power development is occurring throughout North America, but its effects on mammals are largely unexplored. Our objective was to determine response (i.e., home-range, diet quality) of Rocky Mountain elk (Cervus elaphus) to wind-power development in southwestern Oklahoma. Ten elk were radiocollared in an area of wind-power development on 31 March 2003 and were relocated bi-weekly through March 2005. Wind-power construction was initiated on 1 June 2003 and was completed by December 2003 with 45 active turbines. The largest composite home range sizes (>80 km2) occurred April-June and September, regardless of the status of wind-power facility development. The smallest home range sizes (<50 km2) typically occurred in October-February when elk aggregated to forage on winter wheat. No elk left the study site during the study and elk freely crossed the gravel roads used to access the wind-power facility. Carbon and nitrogen isotopes and percent nitrogen in feces suggested that wind-power development did not affect nutrition of elk during construction. Although disturbance and loss of some grassland habitat was apparent, elk were not adversely affected by wind-power development as determined by home range and dietary quality.

  3. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    USGS Publications Warehouse

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  4. Air quality monitoring during building demolition activities at the Rocky Mountain Arsenal

    SciTech Connect

    Armstrong, J.A.; Ley, T.J.; Edson, H.; Edrich, J.A.; Huston, K.H.; Kutchenreiter, M.C.; Lucas, P.M.

    1997-12-31

    Rocky Mountain Arsenal (RMA) is a former production site for chemical and incendiary munitions as well as industrial chemicals, including pesticides, insecticides, and herbicides. Several contaminated areas, including former production facilities and many support buildings, currently remain on this 27-square-mile facility located just northeast of Denver, Colorado. From February 1, 1995, through June 1, 1995, a feasibility study for building demolition at RMA was conducted. This study, the Pilot Building Demolition Project (PBDP), was completed to evaluate the applicability and effectiveness of selected building remediation, emission control, and demolition techniques that may be utilized in the future during full-scale site remediation. Four buildings were demolished using a variety of strategies and techniques. The US Army conducted intensive ambient air monitoring in the vicinity of demolition activity throughout the PBDP. Monitoring was conducted for total suspended particulates (TSP), particulate matter less than 10 micrometers in diameter (PM-10), heavy metals, mercury, volatile organic compounds (VOCs), and organochlorine pesticides (OCPs). Mobile sampling platforms were placed in the four cardinal directions around each demolition area to provide intensive close-in monitoring coverage. Additional samplers, which are part of a larger, RMA-wide monitoring network, were also used to provide more distant sampling locations in the vicinity of each area. The objective of the monitoring program was to characterize the effects of demolition activities on the surrounding air quality.

  5. Distribution limits of Batrachochytrium dendrobatidis: a case study in the Rocky Mountains, USA.

    PubMed

    Hossack, Blake R; Muths, Erin; Anderson, Chauncey W; Kirshtein, Julie D; Corn, Paul Stephen

    2009-10-01

    Knowledge of the environmental constraints on a pathogen is critical to predicting its dynamics and effects on populations. Batrachochytrium dendrobatidis (Bd), an aquatic fungus that has been linked with widespread amphibian declines, is ubiquitous in the Rocky Mountains. As part of assessing the distribution limits of Bd in our study area, we sampled the water column and sediments for Bd zoospores in 30 high-elevation water bodies that lacked amphibians. All water bodies were in areas where Bd has been documented from neighboring, lower-elevation areas. We targeted areas lacking amphibians because existence of Bd independent of amphibians would have both ecologic and management implications. We did not detect Bd, which supports the hypothesis that it does not live independently of amphibians. However, assuming a detection sensitivity of 59.5% (based on sampling of water where amphibians tested positive for Bd), we only had 95% confidence of detecting Bd if it was in > or =16% of our sites. Further investigation into potential abiotic reservoirs is needed, but our results provide a strategic step in determining the distributional and environmental limitations of Bd in our study region. PMID:19901397

  6. Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available

    SciTech Connect

    Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R.

    1998-12-31

    The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

  7. The influence of distinct pollinators on female and male reproductive success in the Rocky Mountain columbine.

    PubMed

    Brunet, Johanne; Holmquist, Karsten G A

    2009-09-01

    Although there are many reasons to expect distinct pollinator types to differentially affect a plant's reproductive success, few studies have directly examined this question. Here, we contrast the impact of two kinds of pollinators on reproductive success via male and female functions in the Rocky Mountain columbine, Aquilegia coerulea. We set up pollinator exclusion treatments in each of three patches where Aquilegia plants were visited by either day pollinators (majority bumble bees), by evening pollinators (hawkmoths), or by both (control). Day pollinators collected pollen and groomed, whereas evening pollinators collected nectar but did not groom. Maternal parents, potential fathers and progeny arrays were genotyped at five microsatellite loci. We estimated female outcrossing rate and counted seeds to measure female reproductive success and used paternity analysis to determine male reproductive success. Our results document that bumble bees frequently moved pollen among patches of plants and that, unlike hawkmoths, pollen moved by bumble bees sired more outcrossed seeds when it remained within a patch as opposed to moving between patches. Pollinator type differentially affected the outcrossing rate but not seed set, the number of outcrossed seeds or overall male reproductive success. Multiple visits to a plant and more frequent visits by bumble bees could help to explain the lack of impact of pollinator type on overall reproductive success. The increase in selfing rate with hawkmoths likely resulted from the abundant pollen available in experimental flowers. Our findings highlighted a new type of pollinator interactions that can benefit a plant species. PMID:19674307

  8. Factors influencing successful eradication of nonnative brook trout from four small Rocky Mountain streams using electrofishing

    USGS Publications Warehouse

    Shepard, Bradley B.; Nelson, Lee M.; Taper, Mark L.; Zale, Alexander V.

    2014-01-01

    We successfully eradicated nonnative Brook Trout Salvelinus fontinalis by electrofishing from 2.4- to 3.0-km treatment reaches of four Rocky Mountain streams in Montana to conserve sympatric populations of native Westslope Cutthroat Trout Oncorhynchus clarkii lewisi. At least 6, and as many as 14, removal treatments of two to four electrofishing passes per treatment were required to successfully eradicate Brook Trout from these treatment reaches. We increased success by modifying our treatment efforts during this study from single annual treatments to several treatments a year to take advantage of autumn spawning and winter aggregating behavior. Eradication by electrofishing cost US \\$3,500 to \\$5,500 per kilometer where no riparian vegetation or woody debris clearing was necessary, increasing to \\$8,000 to \\$9,000 per kilometer where clearing was needed. Treatment costs without stream clearing were similar to costs of eradication using piscicides. Eradication by electrofishing may be preferable where native fish occur in sympatry with nonnative fish in smaller streams (base flow wetted widths

  9. Analysis of Rocky Mountain lichens using PIXE: Characteristics of iron and titanium

    NASA Astrophysics Data System (ADS)

    Clark, B. M.; Mangelson, N. F.; St. Clair, L. L.; Anderson, K. T.; Rees, L. B.

    1997-02-01

    Lichens have been shown to be effective biomonitors of air quality. They are currently being used to characterize background element levels and to identify air pollution effects on federally administered lands in the Rocky Mountain region of the western United States. PIXE analysis for twenty elements has been performed on over two hundred lichen specimens collected from various national forests, national monuments, and national parks in the region. This paper reports on patterns of iron and titanium accumulation in lichen tissues. Data show a strong relationship between concentrations of iron and titanium. The Fe/Ti ratios agree well with values reported in similar lichen studies; however, our values for both iron and titanium concentrations are ten times greater than other reports. A distribution function for the log of iron concentrations is distinctly bimodal. The lower concentration mode contains fruticose lichens from bark substrates and the higher concentration mode contains foliose lichens from rock substrates. High iron concentrations in fruticose lichens along the Wasatch Front suggest air pollution impact from a local steel plant.

  10. Determining Spatial and Temporal Variation in Sources of Nitrogen Deposition in the Rocky Mountains using Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Campbell, D. H.; Ingersoll, G.; Lehmann, C.; Kendall, C.; Elliott, E. M.; Bohlke, J. K.

    2009-12-01

    Variations in nitrogen (N) deposition sources to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data for water years 1995-2006. This unique dataset links N in wet deposition and snowpack to source emissions, and enhances understanding of the impacts of anthropogenic activities and environmental policies that affect N cycling in the Rocky Mountains. At 50 U.S. Geological Survey-Rocky Mountain Snowpack(USGS-RMS) sites, d15N(NO3) ranged from -3.3 permil to +6.5 permil, with a mean value of +1.4 permil for 2006. At 15 National Atmospheric Deposition Program/National Trends Network(NADP/NTN) wet-deposition sites in the Rocky Mountains, d15N(NO3) values ranged from -7.6 permil to +5.5 permil with a mean value of +0.7 permil during the cool season. The wet deposition values generally had lower d15N(NO3) values than snowpack, possibly due to the influence of dry deposition in the snowpack samples. Spatial patterns in d15N(NO3) are similar for NADP/NTN wet-only deposition and USGS-RMS winter snowpack for water year 2006, with higher d15N(NO3) values and increased NO3 concentrations in the Southern Rockies, where there are larger anthropogenic N emission sources compared to the Northern Rockies. Temporal trends in annual snowpack d15N(NO3) from USGS-RMS for 1995-2006 indicate that source signatures changed over time. Regional-Kendall statistical tests for d15N(NO3) indicate a highly significant positive temporal trend in the Southern Rockies (p = 0.006, median d15N(NO3) = +2.3 permil), a moderately significant positive trend in the Central Rockies (p = 0.08, median d15N(NO3) = -1.1 permil), and no trend in Northern Rockies (p = 1, median d15N(NO3) = -4.0 permil). Quarterly, volume-weighted mean d15N(NO3) values of precipitation at NADP/NTN sites show a strong seasonal pattern due to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in

  11. Particulate carbonate matter in snow from selected sites in the south-central Rocky Mountains

    USGS Publications Warehouse

    Clow, D.W.; Ingersoll, G.P.

    1994-01-01

    Trends in snow acidity reflect the balance between strong acid inputs and reactions with neutralizing materials. Carbonate dust can be an important contributor of buffering capacity to snow however, its concentration in snow is difficult to quantify because it dissolves rapidly in snowmelt. In snow with neutral or acidic pH, most calcite would dissolve during sample melting if snow samples were processed using standard techniques. Here a method is described for separating particulate carbonate matter from snow. Snow samples were melted in solutions close to saturation with calcite, decreasing the dissolution rate by a factor of 100-200 compared with natural melting of snow. Particulate matter larger than 0.45 ??m in diameter was then filtered from solution and analysed for carbonate content. Particulate carbonate matter concentrations are reported for 25 sites in the south-central Rocky Mountains. Results are compared with Ca2+ and H+ concentrations and regional trends are evaluated. In Colorado, mean particulate carbonate in snow was 43 ??g kg-1 at sampling sites in the southern mountains and only 4 ??g kg-1 at sites in the northern mountains. The higher calcite concentrations in the south probably are related to the proximity of sampling sites to major outcrops of limestone. Particulate carbonate at sampling sites in Utah and Wyoming ranged from 3-35 ??g kg-1. The levels of particulate calcite measured in snow samples are sufficient to neutralize an average of 0.4 ??eq H+ kg-1 snow. Strong acid anion concentrations in samples from east of Craig, Colorado, were 30-50% higher than in samples from the Colorado Front Range, but H+ concentrations were 400-600% higher east of Craig. Relatively low Ca2+ concentrations in the samples from east of Craig indicate that the difference in snow acidity was due mostly to lower concentrations of neutralizing materials.Trends in snow acidity reflect the balance between strong acid inputs and reactions with neutralizing materials

  12. Assessment of Climate Change and Freshwater Ecosystems of the Rocky Mountains, USA and Canada

    NASA Astrophysics Data System (ADS)

    Hauer, F. Richard; Baron, Jill S.; Campbell, Donald H.; Fausch, Kurt D.; Hostetler, Steve W.; Leavesley, George H.; Leavitt, Peter R.; McKnight, Diane M.; Stanford, Jack A.

    1997-06-01

    The Rocky Mountains in the USA and Canada encompass the interior cordillera of western North America, from the southern Yukon to northern New Mexico. Annual weather patterns are cold in winter and mild in summer. Precipitation has high seasonal and interannual variation and may differ by an order of magnitude between geographically close locales, depending on slope, aspect and local climatic and orographic conditions. The region's hydrology is characterized by the accumulation of winter snow, spring snowmelt and autumnal baseflows. During the 2-3-month spring runoff period, rivers frequently discharge > 70% of their annual water budget and have instantaneous discharges 10-100 times mean low flow.Complex weather patterns characterized by high spatial and temporal variability make predictions of future conditions tenuous. However, general patterns are identifiable; northern and western portions of the region are dominated by maritime weather patterns from the North Pacific, central areas and eastern slopes are dominated by continental air masses and southern portions receive seasonally variable atmospheric circulation from the Pacific and the Gulf of Mexico. Significant interannual variations occur in these general patterns, possibly related to ENSO (El Niño-Southern Oscillation) forcing.Changes in precipitation and temperature regimes or patterns have significant potential effects on the distribution and abundance of plants and animals. For example, elevation of the timber-line is principally a function of temperature. Palaeolimnological investigations have shown significant shifts in phyto- and zoo-plankton populations as alpine lakes shift between being above or below the timber-line. Likewise, streamside vegetation has a significant effect on stream ecosystem structure and function. Changes in stream temperature regimes result in significant changes in community composition as a consequence of bioenergetic factors. Stenothermic species could be extirpated as

  13. Assessment of climate change and freshwater ecosystems of the Rocky Mountains, USA and Canada

    USGS Publications Warehouse

    Hauer, F. Richard; Baron, J.S.; Campbell, D.H.; Fausch, K.D.; Hostetler, S.W.; Leavesley, G.H.; Leavitt, P.R.; McKnight, Diane M.; Stanford, J.A.

    1997-01-01

    The Rocky Mountains in the USA and Canada encompass the interior cordillera of western North America, from the southern Yukon to northern New Mexico. Annual weather patterns are cold in winter and mild in summer. Precipitation has high seasonal and interannual variation and may differ by an order of magnitude between geographically close locales, depending on slope, aspect and local climatic and orographic conditions. The region's hydrology is characterized by the accumulation of winter snow, spring snowmelt and autumnal baseflows. During the 2-3-month 'spring runoff' period, rivers frequently discharge >70% of their annual water budget and have instantaneous discharges 10-100 times mean low flow. Complex weather patterns characterized by high spatial and temporal variability make predictions of future conditions tenuous. However, general patterns are identifiable; northern and western portions of the region are dominated by maritime weather patterns from the North Pacific, central areas and eastern slopes are dominated by continental air masses and southern portions receive seasonally variable atmospheric circulation from the Pacific and the Gulf of Mexico. Significant interannual variations occur in these general patterns, possibly related to ENSO (El Nin??o-Southern Oscillation) forcing. Changes in precipitation and temperature regimes or patterns have significant potential effects on the distribution and abundance of plants and animals. For example, elevation of the timber-line is principally a function of temperature. Palaeolimnological investigations have shown significant shifts in phyto- and zoo-plankton populations as alpine lakes shift between being above or below the timber-line. Likewise, streamside vegetation has a significant effect on stream ecosystem structure and function. Changes in stream temperature regimes result in significant changes in community composition as a consequence of bioenergetic factors. Stenothermic species could be extirpated as

  14. Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA

    USGS Publications Warehouse

    Anderson, R. Scott; Allen, C.D.; Toney, J.L.; Jass, R.B.; Bair, A.N.

    2008-01-01

    Our understanding of the present forest structure of western North America hinges on our ability to determine antecedent forest conditions. Sedimentary records from lakes and bogs in the southern Rocky Mountains of Colorado and New Mexico provide information on the relationships between climate and vegetation change, and fire history since deglaciation. We present a new pollen record from Hunters Lake (Colorado) as an example of a high-elevation vegetation history from the southern Rockies. We then present a series of six sedimentary records from ???2600 to 3500-m elevation, including sites presently at the alpine?subalpine boundary, within the Picea engelmannii?Abies lasiocarpa forest and within the mixed conifer forest, to determine the history of fire in high-elevation forests there. High Artemisia and low but increasing percentages of Picea and Pinus suggest vegetation prior to 13 500 calendar years before present (cal yr BP) was tundra or steppe, with open spruce woodland to ???11 900 cal yr BP. Subalpine forest (Picea engelmannii, Abies lasiocarpa) existed around the lake for the remainder of the Holocene. At lower elevations, Pinus ponderosa and/or contorta expanded 11 900 to 10 200 cal yr BP; mixed conifer forest expanded ???8600 to 4700 cal yr BP; and Pinus edulis expanded after ???4700 cal yr BP. Sediments from lake sites near the alpine?subalpine transition contained five times less charcoal than those entirely within subalpine forests, and 40 times less than bog sites within mixed conifer forest. Higher fire episode frequencies occurred between ???12 000 and 9000 cal yr BP (associated with the initiation or expansion of south-west monsoon and abundant lightning, and significant biomass during vegetation turnover) and at ???2000?1000 cal yr BP (related to periodic droughts during the long-term trend towards wetter conditions and greater biomass). Fire episode frequencies for subalpine?alpine transition and subalpine sites were on average 5 to 10 fire

  15. Mycorrhizal and Dark-Septate Fungi in Plant Roots above 4270 Meters Elevation in the Andes and Rocky Mountains

    SciTech Connect

    Schmidt, Steven K.; Sobieniak-Wiseman, L. Cheyanne; Kageyama, Stacy A.; Halloy, Stephen; Schadt, Christopher Warren

    2008-01-01

    Arbuscular mycorrhizal (AM) and dark-septate endophytic (DSE) fungi were quantified in plant roots from high-elevation sites in the Cordillera Vilcanota of the Andes (Per ) and the Front Range of the Colorado Rocky Mountains (U.S.A.). At the highest sites in the Andes (5391 m) AM fungi were absent in the two species of plants sampled (both Compositae) but roots of both were heavily colonized by DSE fungi. At slightly lower elevations (5240 5250 m) AM fungi were present in roots while DSE fungi were rare in plants outside of the composite family. At the highest sites sampled in Colorado (4300 m) AM fungi were present, but at very low levels and all plants sampled contained DSE fungi. Hyphae of coarse AM fungi decreased significantly in plant roots at higher altitude in Colorado, but no other structures showed significant decreases with altitude. These new findings indicate that the altitudinal distribution of mycorrhizal fungi observed for European mountains do not necessarily apply to higher and drier mountains that cover much of the Earth (e.g. the Himalaya, Hindu Kush, Andes, and Rockies) where plant growth is more limited by nutrients and water than in European mountains. This paper describes the highest altitudinal records for both AM and DSE fungi, surpassing previous reported altitudinal maxima by about 1500 meters.

  16. Seismic tomography of the Colorado Rocky Mountains upper mantle from CREST: Lithosphere-asthenosphere interactions and mantle support of topography

    NASA Astrophysics Data System (ADS)

    MacCarthy, J. K.; Aster, R. C.; Dueker, K.; Hansen, S.; Schmandt, B.; Karlstrom, K.

    2014-09-01

    The CREST experiment (Colorado Rocky Mountains Experiment and Seismic Transects) integrated the EarthScope USArray Transportable Array with portable and permanent stations to provide detailed seismic imaging of crust and mantle properties beneath the highest topography region of the Rocky Mountains. Inverting approximately 14,600 P- and 3600 S-wave arrival times recorded at 160 stations for upper mantle Vp and Vs structure, we find that large Vp perturbations relative to AK135 of 7% and Vs variations of 8% take place over very short (approaching tens of kilometers) lateral distances. Highest heterogeneity is observed in the upper 300 km of the mantle, but well resolved low velocity features extend to the top of the transition zone in portions of these images. The previously noted low velocity upper mantle Aspen Anomaly is resolved into multiple features. The lowest Vp and Vs velocities in the region are found beneath the San Juan Mountains, which is clearly distinguished from other low velocity features of the northern Rio Grande Rift, Taos/Latir region, Aspen region, and below the Never Summer Mountains. We suggest that the San Juan anomaly, and a similar feature below the Taos/Latir region of northern New Mexico, are related to delamination and remnant heat (and melt) beneath these sites of extraordinarily voluminous middle-Cenozoic volcanism. We interpret a northeast-southwest grain in velocity structure that parallels the Colorado Mineral belt to depths near 150 km as being reflective of control by uppermost mantle Proterozoic accretionary lithospheric architecture. Further to the north and west, the Wyoming province and northern Colorado Plateau show high velocity features indicative of thick (∼150 km) preserved Archean and Proterozoic lithosphere, respectively. Overall, we interpret the highly heterogeneous uppermost mantle velocity structure beneath the southern Rocky Mountains as reflecting interfingered chemical Proterozoic lithosphere that has been, is

  17. Primitive and contaminated basalts from the Southern Rocky Mountains, U.S.A

    USGS Publications Warehouse

    Doe, B.R.; Lipman, P.W.; Hedge, C.E.; Kurasawa, H.

    1969-01-01

    Basalts in the Southern Rocky Mountains province have been analyzed to determine if any of them are primitive. Alkali plagioclase xenocrysts armored with calcic plagioclase seem to be the best petrographic indicator of contamination. The next best indicator of contamination is quartz xenocrysts armored with clinopyroxene. On the rocks and the region studied, K2O apparently is the only major element with promise of separating primitive basalt from contaminated basalt inasmuch as it constitutes more than 1 % in all the obviously contaminated basalts. K2O: lead (> 4 ppm) and thorium (> 2 ppm) contents and Rb/Sr (> 0.035) are the most indicative of the trace elements studied. Using these criteria, three basalt samples are primitive (although one contains 1.7% K2O) and are similar in traceelement contents to Hawaiian and Eastern Honshu, Japan, primitive basalts. Contamination causes lead isotope ratios, 206Pb/204Pb and 208Pb/204Pb, to become less radiogenic, but it has little or no effect on 87Sr/86Sr. We interpret the effect on lead isotopes to be due to assimilation either of lower crustal granitic rocks, which contain 5-10 times as much lead as basalt and which have been low in U/Pb and Th/Pb since Precambrian times, or of upper crustal Precambrian or Paleozoic rocks, which have lost much of their radiogenic lead because of heating prior to assimilation. The lack of definite effects on strontium isotopes may be due to the lesser strontium contents of granitic crustal rocks relative to basaltic rocks coupled with lack of a large radiogenic enrichment in the crustal rocks. Lead isotope ratios were found to be less radiogenic in plagioclase separates from an obviously contaminated basalt than in the primitive basalts. The feldspar separate that is rich in sodic plagioclase xenocrysts was found to be similar to the whole-rock composition for 206Pb/204Pb and 208Pb/204Pb whereas a more dense fraction probably enriched in more calcic plagioclase phenocrysts is more similar

  18. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    The date the snowpack disappears in spring is an important seasonal event at high altitudes because it determines the beginning of the growing season, which in turn influences the phenology of plant growth and flowering, and thus the availability of these resources for animal consumers. At our study site at 2,900m in the Colorado Rocky Mountains, the Rocky Mountain Biological Laboratory, snowmelt now averages two weeks earlier than in 1975. Earlier snowmelt results from a combination of lower snowfall (38 cm less since 1975), dust storms (increasing in frequency, which reduces the snowpack albedo), and warmer spring temperatures (April minimum temperature has increased 3.1°C since 1973; 2012 April mean temperature was 3.4°C above the 38-year mean). There is also a trend of increasing annual precipitation falling as rain instead of snow. We have monitored flowering phenology and abundance for about 100 species of plants in permanent plots since 1973, and use this record to look at how the change in timing of snowmelt has affected flowering. There is significant variation among years in flowering phenology (e.g., about six weeks difference between 2011 and 2012), with a mid-season decline in flowering abundance becoming apparent as the growing season starts earlier. The date of the last hard frost has not been changing in concert with the earlier growing season, with the consequence that many species now have flower buds developed that are then damaged or killed by frost. In 2012, snowmelt date was 23 April, and frost events on 27 May (-11.7°C) and 11 June (-5.6°C) did significant damage to vegetation of some species and to flower buds of many species. For example, flower abundance of the aspen sunflower Helianthella quinquenervis was 0.002% of 2011's flowering. In the absence of seed production, the demography of some plant species is likely being affected. Some animal species are also being affected by the changes in length and temperature of winter. New

  19. FRACTURED RESERVOIR E&P IN ROCKY MOUNTAIN BASINS: A 3-D RTM MODELING APPROACH

    SciTech Connect

    P. Ortoleva; J. Comer; A. Park; D. Payne; W. Sibo; K. Tuncay

    2001-11-26

    Key natural gas reserves in Rocky Mountain and other U.S. basins are in reservoirs with economic producibility due to natural fractures. In this project, we evaluate a unique technology for predicting fractured reservoir location and characteristics ahead of drilling based on a 3-D basin/field simulator, Basin RTM. Recommendations are made for making Basin RTM a key element of a practical E&P strategy. A myriad of reaction, transport, and mechanical (RTM) processes underlie the creation, cementation and preservation of fractured reservoirs. These processes are often so strongly coupled that they cannot be understood individually. Furthermore, sedimentary nonuniformity, overall tectonics and basement heat flux histories make a basin a fundamentally 3-D object. Basin RTM is the only 3-D, comprehensive, fully coupled RTM basin simulator available for the exploration of fractured reservoirs. Results of Basin RTM simulations are presented, that demonstrate its capabilities and limitations. Furthermore, it is shown how Basin RTM is a basis for a revolutionary automated methodology for simultaneously using a range of remote and other basin datasets to locate reservoirs and to assess risk. Characteristics predicted by our model include reserves and composition, matrix and fracture permeability, reservoir rock strength, porosity, in situ stress and the statistics of fracture aperture, length and orientation. Our model integrates its input data (overall sedimentation, tectonic and basement heat flux histories) via the laws of physics and chemistry that describe the RTM processes to predict reservoir location and characteristics. Basin RTM uses 3-D, finite element solutions of the equations of rock mechanics, organic and inorganic diagenesis and multi-phase hydrology to make its predictions. As our model predicts reservoir characteristics, it can be used to optimize production approaches (e.g., assess the stability of horizontal wells or vulnerability of fractures to

  20. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2011-12-01

    analysis of early Cenozoic floras from the Rocky Mountain region. Paleocene climates across the region were warm with warm winters. Mean annual temperature estimates vary from 10-18 °C depending on the time and place, and ground-freezing climates occurred only north of 40-45 °N. Plants and sedimentary environments suggest low altitude deposition, though floras are not as homogeneous as once thought, suggesting barriers existed. Eocene climates were warmer, with mean annual temperature estimates of 14-25 °C, and ground-freezing climates occurring only north of the Canadian border. Paleobotanical evidence for substantial paleoelevations in basinal areas is weak, but volcanic terrains to the west preserve floras that suggest higher paleoelevations, even in the early and middle Eocene. The terms "frost-free" and "tropical" have sometimes been used to describe Eocene climate and vegetation of the northern U.S. Rocky Mountains, but are probably not justified, with the possible exception of the the warmest early Eocene hyperthermal events at low paleoelevation.

  1. Landscape-scale factors affecting feral horse habitat use during summer within the rocky mountain foothills.

    PubMed

    Girard, Tisa L; Bork, Edward W; Nielsen, Scott E; Neilsen, Scott E; Alexander, Mike J

    2013-02-01

    Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health. PMID:23183796

  2. Dispersion by chemical reaction of Rocky Mountain Arsenal Basin F waste soils

    SciTech Connect

    Payne, J.R.; Marion, G.M.

    1997-02-01

    Many military installations have soil contamination problems that range from heavy metals to petroleum products. Rocky Mountain Arsenal (RMA) Basin F contains high concentrations of salts, heavy metals, ammonia, urea, and organics. The Dispersion by Chemical Reaction (DCR) process leads to a reduction in the mobility of the organic and inorganic constituents by first removing volatile constituents via steam stripping and volatilization, then trapping the nonvolatile contaminants in a nonmobile phase (microencapsulation), and finally compacting the treated material into large soil bodies (macroencapsulation). This report summarizes the results of the DCR testing of soil-amended Basin F sludge from RMA. The primary focus of this study is on pesticide leachability. The DCR process used to treat the Basin F waste soil produced a dry, homogeneous, soil-like material with desirable physical properties that on compaction achieved the following remediation goals: reduction of all leachable volatiles to nondetectable levels, confinement of all metals to below RCRA TCLP levels, and a decrease in pesticide leachability to levels approaching RCRA standards. For example, endrin TCLP concentration was reduced from 74 microgram/L to 20-28 microgram/L (regulatory limit = 20 ug/L). In several cases, reductions in pesticide leachability could be attributed to simple dilution with the calcium oxide (CaO) reagent. However in other cases, microencapsulation and/or macroencapsulation also played a role in reducing pesticide leachability. Additional work is necessary to optimize the amounts of lime-milk, hydrophobic CaO, and benign oil used in the processing of RMA Basin F waste soils. Ideally, the optimum design should achieve the regulatory and client goals, while minimizing materials handling, energy, and reagent inputs.

  3. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  4. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    SciTech Connect

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W.

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  5. Flood moderation: Declining peak flows along some Rocky Mountain rivers and the underlying mechanism

    NASA Astrophysics Data System (ADS)

    Rood, Stewart B.; Foster, Stephen G.; Hillman, Evan J.; Luek, Andreas; Zanewich, Karen P.

    2016-05-01

    It has been proposed that global warming will amplify the water cycle and intensify river floods. We tested this hypothesis by investigating historic trends in magnitudes, durations and timing of the annual peak flows of rivers that drain the Rocky Mountains around the North American hydrographic apex, the source for rivers flowing to the Pacific, Arctic (including Hudson Bay) and Atlantic Oceans. We sought century-long records and to reduce influences from land-use we assessed drainages from parks and protected areas. Of 30 rivers and reaches that were free-flowing or slightly regulated, seven displayed declining peak flows (7 p < 0.1, 4 p < 0.05), and one showed increase (p < 0.05); three of five moderately regulated rivers displayed decline (p < 0.05). Substantial floods, exceeding the 1-in-5 year recurrence (Q5), were more common in the early versus latter halves of the records for some Arctic drainages and were more common during the Pacific Decadal Oscillation negative phase for all regions. The timing of peak flows was relatively unchanged and Q5 flood durations declined for a few rivers. These results indicate flood moderation rather than flood intensification, particularly for Arctic Ocean drainages. This could reflect regional hydrological consequences from climate change including: (1) declining overall annual river flows; (2) winter warming that would increase the rain versus snow proportion, thus reducing snow accumulation and melt; and (3) spring warming that advances snow melt, lengthening the melt interval before peak flows. These changes would shift the seasonality of river flows and reduce annual peaks. We might expect continuing moderation of peak flows but there will probably still be occasional major floods from exceptional rain events such as occurred in northern Montana in 1964 and in southern Alberta in 2013.

  6. Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains

    USGS Publications Warehouse

    Wickland, K.P.; Striegl, R.G.; Schmidt, S.K.; Mast, M.A.

    1999-01-01

    Methane exchange between the atmosphere and subalpine wetland and unsaturated soils was evaluated over a 15-month period during 1995-1996. Four vegetation community types along a moisture gradient (wetland, moist-grassy, moist-mossy, and dry) were included in a 100 m sampling transect situated at 3200 m elevation in Rocky Mountain National Park, Colorado. Methane fluxes and soil temperature were measured during snow-free and snow-covered periods, and soil moisture content was measured during snow-free periods. The range of mean measured fluxes through all seasons (a positive value represents CH4 efflux to the atmosphere) were: 0.3 to 29.2 mmol CH4 m-2 d-1 wetland area; 0.1 to 1.8 mmol CH4 m-2 d-1, moist-grassy area; -0.04 to 0.7 mmol CH4 m-2 d-1, moist-mossy area; and -0.6 to 0 mmol CH4 m-2 d-1, dry area. Methane efflux was significantly correlated with soil temperature (5 cm) at the continuously saturated wetland area during snow-free periods. Consumption of atmospheric methane was significantly correlated with moisture content in the upper 5 cm of soil at the dry area. A model based on the wetland flux-temperature relationship estimated an annual methane emission of 2.53 mol CH4 m-2 from the wetland. Estimates of annual methane flux based on field measurements at the other sites were 0.12 mol CH4 m-2, moist-grassy area; 0.03 mol CH4 m-2, moist-mossy area; and -0.04 mol CH4 m-2, dry area. Methane fluxes during snow-covered periods were responsible for 25, 73, 23, and 43% of the annual fluxes at the wetland, moist-grassy, moist-mossy, and dry sites, respectively.

  7. Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998

    USGS Publications Warehouse

    Wickland, K.P.; Striegl, R.G.; Mast, M.A.; Clow, D.W.

    2001-01-01

    Carbon dioxide (CO2) and methane (CH4) exchange between the atmosphere and a subalpine wetland located in Rocky Mountain National Park, Colorado, at 3200 m elevation were measured during 1996-1998. Respiration, net CO2 flux, and CH4 flux were measured using the closed chamber method during snow-free periods and using gas diffusion calculations during snow-covered periods. The ranges of measured flux were 1.2-526 mmol CO2 m-2 d-1 (respiration), -1056-100 mmol CO2 m-2 d-1 (net CO2 exchange), and 0.1-36.8 mmol CH4 m-2 d-1 (a positive value represents efflux to the atmosphere). Respiration and CH4 emission were significantly correlated with 5 cm soil temperature. Annual respiration and CH4 emission were modeled by applying the flux-temperature relationships to a continuous soil temperature record during 1996-1998. Gross photosynthesis was modeled using a hyperbolic equation relating gross photosynthesis, photon flux density, and soil temperature. Modeled annual flux estimates indicate that the wetland was a net source of carbon gas to the atmosphere each of the three years: 8.9 mol C m-2 yr-1 in 1996, 9.5 mol C m-2 yr-1 in 1997, and 9.6 mol C m-2 yr-1 in 1998. This contrasts with the long-term carbon accumulation of ???0.7 mol m-2 yr-1 determined from 14C analyses of a peat core collected from the wetland.

  8. Ambient Nitrogen Deposition Gradients in the Rocky Mountains and the Effect on Alpine Moist Meadow Ecosystems

    NASA Astrophysics Data System (ADS)

    Churchill, A. C.; Bowman, W. D.

    2012-12-01

    The chronic ambient deposition of nitrogen (N) in alpine ecosystems can have cascading effects on plants, soils and hydrology in both the alpine and areas downstream through leaching and ecosystem export. Nitrogen is traditionally a nutrient limiting for plant growth in the alpine zone and the addition of anthropogenically derived nitrogen has the potential to alter nutrient composition and interactions between soil, plants and hydrology. While deposition is globally widespread its spatial impacts are associated with a proximity to agriculture (fertilizers) and industry (hydrocarbon byproducts), creating gradients of deposition with distance from point sources. Consequently, N deposition levels and potential environmental impacts on ecosystem processes increase in regions with expanding populations and changes in land use. The Rocky Mountains face both enhanced deposition associated with high levels of precipitation at high elevations and increases in anthropogenic sources of nitrogen from conversion of prairie to agricultural fields or development of new roads and housing communities. Our study focuses on linking gradients of ambient nitrogen deposition to responses within the alpine ecosystem, in particular the interactions between plants and soils within moist meadow communities. Previous studies have focused on the effects of N deposition within alpine dry meadows, as these are abundant and generally higher in elevation than other alpine meadow community types. Within these systems critical loads have been estimated to determine at what level N addition directly alters the ecosystem. Alpine moist meadows, however, also cover a substantial portion of the alpine zone, and support a very different plant community with naturally lower species richness. These areas receive heavier snowfall, and are more dependent on the snowpack for ephemeral water availability making them potentially more susceptible to nutrient loading within the snowpack. Along our ambient N

  9. Mobility of arsenic in soil from the Rocky Mountain Arsenal area

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; David, A.; Goldberg, S.

    1999-07-01

    From 1942 to the early 1980s, Rocky Mountain Arsenal (RMA), a superfund site northeast of Denver in central Colorado, served as a facility for the development, manufacture, and disposal of toxic organic and inorganic chemicals including US Army surety agents (including nerve gas and blistering agents), munitions, propellants, and pesticides. Arsenic (As) in the form of Lewisite (blistering agent), arsenic trioxide (herbicide), trisodium arsenate, and arsenic trichloride (process intermediate) was present in extremely large quantities at RMA's South Plants Processing Area. Even though current cleanup efforts are likely to remove the vast majority of As presently polluting the soil and groundwater, there is still a future potential threat for the movement of residual levels of As into groundwater supplies. The distribution and movement of As were monitored over a 2.5-year period to evaluate the threat to groundwater by low levels of As. Because of access restrictions to RMA, an off-site meso-scale (0.6 m diameter by 1.83 m in height) weighing lysimeter study was conducted using excavated soil (i.e., Ascalon sandy clay loam) associated with As contamination at RMA's South Plants Processing Area. The long-term study revealed the persistence of As under aerobic soil conditions, and a limited, but perceptible, mobility of As (0.87% of the total applied As drained beyond 1.5 m) resulting from interacting physical, chemical, and biological factors. Results suggest that even though the movement of As is significantly retarded due to adsorptive processes, preferential flow and chemical factors (i.e., pH and redox potential) can mobilize As at point locations above permissible levels, if precautionary measures are not taken.

  10. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    USGS Publications Warehouse

    Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, M.K.; McKelvey, K.; Allendorf, F.W.; Luikart, G.

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note - that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species' movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics. ?? 2011 Blackwell Publishing Ltd.

  11. Why replication is important in landscape genetics: American black bear in the Rocky Mountains.

    PubMed

    Bull, R A Short; Cushman, S A; Mace, R; Chilton, T; Kendall, K C; Landguth, E L; Schwartz, M K; McKelvey, K; Allendorf, Fred W; Luikart, G

    2011-03-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note - that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species' movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics. PMID:21261764

  12. Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Wolfe, Stephen A.

    2010-09-01

    Despite an abundance of sedimentary archives of mineral dust (i.e. loess) accumulations from cold, humid environments, the absence of contemporary process investigations limits paleoenvironmental interpretations in these settings. Dust accumulations measured at Jasper Lake, a seasonally-filled reach of the glacially-fed Athabasca River in the Canadian Rocky Mountains, are some of the highest contemporary rates recorded to date. High deposition rates, including a maximum of 27,632 kg ha -1 month -1, occur during river low-flow periods, but even the lowest deposition rates, occurring during bankfull periods, exceed other contemporary rates of deposition. High rates of dust deposition may be attributed to geomorphic and climatic controls affecting sediment supply, availability and transport, and biologic factors affecting accumulation. Localized confinement of the Jasper River by tributary river alluvial fans has caused channel expansion upstream, and formation of the shallow depositional basin known as Jasper Lake. This localized sedimentary basin, coupled with large seasonal water level fluctuations and suitably high wind speeds, favors seasonal dust production. In addition, a dense source-proximal coniferous forest stand encourages high dust accumulation, via increased aerodynamic roughness and airflow deceleration. The forest stand also appears to act as an efficient dust filter, with the interception and storage of dust by the forest canopy playing a significant role with regards to secondary fallout and sediment accumulation. Overall, these results provide new insights on the environmental controls of dust entrainment and accumulation in cold, humid settings, and help clarify controls on the formation of Holocene river-sourced loess deposits.

  13. Quaternary faults of the central Rocky Mountains, Colorado: A new seismotectonic evaluation

    SciTech Connect

    Unruh, J.R.; Noller, J.S.; Lettis, W.R. ); Wong, I.G.; Sawyer, T.L.; Bott, J.D.J. )

    1993-04-01

    Quaternary faults in the central Rocky Mountain of CO exhibit normal displacement, are generally parallel to the strike of pre-existing Larmide structures, and typically occur in the hanging walls of Laramide thrust faults. These observations are consistent with models in which Mesozoic thrust faults are being reactivated as normal faults in the contemporary extensional tectonic setting. To assess the seismogenic potential of these faults, the authors evaluated the recency of fault movement and style of deformation via aerial reconnaissance, interpretation of aerial photography and field mapping of selected sites. The 82-km-long Red Rocks-Climarron fault zone shows evidence of late Quaternary displacement and may be capable of producing an M[>=]6.75 earthquake based on its total fault length and inferred fault width. Earthquake hypocenters indicate that the thickness of the seismogence crust in CO is similar to much of the western US (ca. 15 km). In additional to tectonic deformation, numerous faults and lineaments have been identified in the Paradox Basin and along the southern Grand Hogback monocline that are active due to diapiric movement of halite. In particular, active deformation along the Grand Hogback is limited to portions of the structure underlain by a 3-km-deep Pennsylvania halite basin. Because Quaternary deformation along and near these large Laramide structures is due to the movement of halite rather than deep-seated tectonism, the maximum size of a potential earthquake is limited by the down-dip width and lateral extent of fault planes within brittle rocks overlying the halite. The authors infer that the maximum depth of brittle faulting due to diapiric halite flow is 6 km, and the earthquakes larger than M 5 are unlikely to occur on faults associated with the Grand Hogback and salt anticlines of the Paradox Basin. The 1984 Carbondale earthquake swarm (M[<=]3.2) may have been the result of such faulting.

  14. Niveograph Interpolation to Estimate Peak Accumulation of Snow Water Equivalent in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Patterson, G. G.; Fassnacht, S. R.

    2014-12-01

    Recent studies of trends in peak snow water equivalent (SWE) have underscored the value of long-term series of peak SWE. Since the late 1970s the US Department of Agriculture's Natural Resources Conservation Service (NRCS) has used snow pillows at snowpack telemetry (SNOTEL) stations to measure the pressure of the overlying snowpack to provide a real-time daily record of SWE. The SNOTEL stations therefore provide direct observations of peak SWE whenever it occurs. However, snow-course SWE measurements recorded manually by the NRCS and its predecessor, the Soil Conservation Service, date back as far as the 1930s, but typically include only four SWE measurements per year, on the first of February, March, April, and May. While the April 1 measurement is typically assumed to represent annual peak SWE, this has been shown to underestimate the actual peak by as much as 12%. To more accurately estimate peak SWE for snow-course sites, a procedure was developed to estimate daily niveographs (graphs of SWE versus time) for these sites using median daily niveographs derived from period-of-record daily SWE values for selected nearby SNOTEL sites. Recognizing that different physical processes drive the shape of the niveograph during the accumulation, peak, and melt phases, separate techniques were used to adjust the shape of the median niveographs for each of these phases. The procedure was tested by selecting two SNOTEL sites in Rocky Mountain National Park, Colorado, and treating them as though they were Snow course sites with just 4 SWE measurements per year. The estimated peak SWE values were then compared with the actual observed values. Results showed good agreement between estimated and observed peak SWE values, and an improvement over the assumption that April 1 SWE represents the peak.

  15. Biotic drivers of anastomosing channel pattern in headwater streams of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.

    2010-12-01

    Most of the headwater rivers in the Colorado Rocky Mountains, USA occur as single channels in steep, narrow valleys. Where variations in bedrock erodibility create segments of wider, lower gradient valleys, however, anastomosing channels can occur if one of two biotic drivers is present. Where a disturbance such as a forest fire or windstorm allows pioneer woody species to colonize valley bottoms, beavers can establish colonies. Beavers build dams that enhance overbank flooding and raise the local water table, limiting the return of conifers and promoting aspen-willow (Populus-Salix) forests that provide food for the beavers. Beavers facilitate the formation of multiple channels by digging small canal-like features across the floodplain and by damming the main channel and promoting channel avulsion. In old-growth conifer forests, channel-spanning logjams can enhance overbank flows that facilitate the development of multiple (sub)parallel channels that extend for 50-300 m downstream. Enhanced overbank flows and multiple channels increase the retention of instream wood, creating a self-enhancing feedback of more jams. At least two thresholds must be crossed for anastomosing driven by logjams to develop; a valley morphology threshold and a wood load threshold. Anastomosing channels are present where stream gradient < 4% and the ratio of (channel width/valley-bottom width) < 0.2; only single channels flow through old-growth forests in valley segments that are steeper and narrower. The average wood piece diameter in old-growth anastomosing channel segments > 20 cm, whereas average piece diameter in forests that have not been disturbed in a century is 10-20 cm; channels in these younger forests do not exhibit anastomosing planforms. Wood load in old-growth anastomosing channels averages 200 m3/ha; old-growth and younger forest single channels average < 100 m3/ha.

  16. Mercury transport in a high-elevation watershed in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Mast, M.A.; Campbell, D.H.; Krabbenhoft, D.P.; Taylor, H.E.

    2005-01-01

    Mercury (Hg) was measured in stream water and precipitation in the Loch Vale watershed in Rocky Mountain National Park, Colorado, during 2001-2002 to investigate processes controlling Hg transport in high-elevation ecosystems. Total Hg concentrations in precipitation ranged from 2.6 to 36.2 ng/L and showed a strong seasonal pattern with concentrations that were 3 to 4 times higher during summer months. Annual bulk deposition of Hg was 8.3 to 12.4 ?? g/m 2 and was similar to deposition rates in the Midwestern and Northeastern U.S. Total Hg concentrations in streams ranged from 0.8 to 13.5 ng/L and were highest in mid-May on the rising limb of the snowmelt hydrograph. Stream-water Hg was positively correlated with dissolved organic carbon suggesting organically complexed Hg was flushed into streams from near-surface soil horizons during the early stages of snowmelt. Methylmercury (MeHg) in stream water peaked at 0.048 ng/L just prior to peak snowmelt but was at or below detection (< 0.040 ng/L) for the remainder of the snowmelt season. Annual export of total Hg in Loch Vale streams ranged from 1.2 to 2.3 ?? g/m2, which was less than 20% of wet deposition, indicating the terrestrial environment is a net sink of atmospheric Hg. Concentrations of MeHg in stream water and corresponding watershed fluxes were low, indicating low methylation rates or high demethylation rates or both. ?? Springer 2005.

  17. Landscape-Scale Factors Affecting Feral Horse Habitat Use During Summer Within The Rocky Mountain Foothills

    NASA Astrophysics Data System (ADS)

    Girard, Tisa L.; Bork, Edward W.; Neilsen, Scott E.; Alexander, Mike J.

    2013-02-01

    Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health.

  18. Background atmospheric sulfate deposition at a remote alpine site in the Southern Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, Vivian; Norman, Ann-Lise; Lafrenière, Melissa J.; Hastings, Meredith G.

    2015-11-01

    We report observations of stable isotope ratios and ion concentrations from seasonal snowpack and summer bulk precipitation from remote alpine sites in the Southern Canadian Rocky Mountains. Spatial deposition patterns for sulfur (S) and δ34S-SO42- values indicate dominantly distant sources with little impact from local to regional pollution. Comparable S loads and total snowpack δ34S-SO42- values for glacier snowpack indicates S emissions were well mixed prior to dry deposition or incorporation into snowfall. A uniform S load and similar δ34S-SO42- values in a detailed study of summer bulk precipitation implies well-mixed distant emissions. We interpret the deposited 0.9 kg S ha-1yr-1 as atmospheric background deposition in midlatitude Western Canada. This study will improve calculations for sites impacted by point source emissions and provide a baseline for attributing changes associated with climate change, industrialization, and urban growth. Field evidence from this study supports theoretical and laboratory research on the relative importance of oxidation pathways on atmospheric δ34S-SO42- values for long-range transported sulfate. δ34S-SO42- of the dominant S source in summer bulk precipitation (~ +2‰) versus snowpack (≥ +9‰) cannot be explained by seasonal emission sources, temperature effects on fractionation, or Rayleigh distillation. The study supports a seasonal difference in the relative importance of the different SO2 to SO42- oxidation pathways with homogeneous oxidation by OH and heterogeneous oxidation by H2O2 most important in summer, and O2 catalyzed by transition metal ions in a radical chain reaction pathway more significant in winter.

  19. Estimating visitor use in the backcountry of Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Bates, Matthew L.

    This study estimated the number of visitors to the backcountry areas of Rocky Mountain National Park (ROMO), using an active infrared monitoring system. Techniques for conducting this type of visitor use estimation in not only a national park, but also in rugged wilderness areas are presented and include; proper placement of field equipment and the calibration to correct monitor error. Conducted during the summer and fall seasons of 2002, 2003 and 2004 the use estimation study utilized active infrared monitors placed at 59 locations along the major trails leading into the backcountry and other locations of interest to park staff. Monitors operated continuously during data collection. Visitor numbers for ROMO from the three sampling seasons (2002-2004) totaled 629,685. However taking into consideration a 95% confidence interval to account for monitor error, these visitor numbers could be as low 585,436 or as high as 670,934. The highest visitor numbers were recorded in the Bear Lake area totaling 287,125 with most of this use occurring at the Alberta Falls area (140,083). Other areas of interest include the Longs Peak area where use at the trailhead was estimated at approximately 42,000 visitors while use at the summit via the Keyhole Route was approximately 11,600. Visitor numbers on the western side of ROMO were considerably lower only accounting for roughly 13% of total visitors recreating in the parks' backcountry. Results from this study provided park staff with actual backcountry visitor numbers allowing them to make informed decisions regarding the Park's trail systems. Further, this study provided a model for ROMO to replicate for future use estimation. Results from the three year use estimation study conducted at ROMO are discussed with implications for the park and other protected areas.

  20. Structure and Propagation of Fronts East of the Rocky Mountains and Their Relationship to Precipitation

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan Edward

    1992-01-01

    The role of frontogenetic processes in generating and distributing precipitation east of the Rocky Mountains in the United States is examined using data collected during the Genesis of Atlantic Lows Experiment (GALE). A set of mid-tropospheric, frontogenetic, precipitation -producing features are discussed. A recurrent, non-classical, synoptic scale structure characterized these cases. Based on observations from four cases, a conceptual model is proposed for these structures; the cold frontogenesis aloft (CFA) model. In one case study, the secondary circulation about an upper-level front, in a region of conditional symmetric instability (CSI), produced a rainband of moderate intensity. The potential influence of upper-level frontogenesis processes on the evolution of the CSI is explored through Lagrangian, adiabatic changes in the equivalent potential vorticity. The interactions between a surface cold front and an upper-level front that resulted in the production of a deep, precipitating frontal structure is examined. An increase in the vigor of the frontal convection is attributed to favorable vertical superposition of the surface cold front and the upper-level front. Mid-level latent heat release was likely responsible for the diabatic steepening of the dynamic tropopause. This steepening contributed to the subsequent rapid development of a surface cyclone on the East Coast. The mesoscale structure and distribution of precipitation along a surface cold front is investigated. The precipitation cores in a narrow cold-frontal rainband (NCFR) showed some differences, as well as similarities, to previously observed NCFRs. A correspondence between precipitation intensity and the slope of the frontal surface was observed for a wide cold-frontal rainband (WCFR) associated with this cold front. The nature of this correspondence is investigated and some possible mechanisms for changing the slope of the frontal topography are examined.

  1. Increased Flight Altitudes among Migrating Golden Eagles Suggest Turbine Avoidance at a Rocky Mountain Wind Installation

    PubMed Central

    Johnston, Naira N.; Bradley, James E.; Otter, Ken A.

    2014-01-01

    Potential wind-energy development in the eastern Rocky Mountain foothills of British Columbia, Canada, raises concerns due to its overlap with a golden eagle (Aquila chrysaetos) migration corridor. The Dokie 1 Wind Energy Project is the first development in this area and stands as a model for other projects in the area because of regional consistency in topographic orientation and weather patterns. We visually tracked golden eagles over three fall migration seasons (2009–2011), one pre- and two post-construction, to document eagle flight behaviour in relation to a ridge-top wind energy development. We estimated three-dimensional positions of eagles in space as they migrated through our study site. Flight tracks were then incorporated into GIS to ascertain flight altitudes for eagles that flew over the ridge-top area (or turbine string). Individual flight paths were designated to a category of collision-risk based on flight altitude (e.g. flights within rotor-swept height; ≤150 m above ground) and wind speed (winds sufficient for the spinning of turbines; >6.8 km/h at ground level). Eagles were less likely to fly over the ridge-top area within rotor-swept height (risk zone) as wind speed increased, but were more likely to make such crosses under headwinds and tailwinds compared to western crosswinds. Most importantly, we observed a smaller proportion of flights within the risk zone at wind speeds sufficient for the spinning of turbines (higher-risk flights) during post-construction compared to pre-construction, suggesting that eagles showed detection and avoidance of turbines during migration. PMID:24671199

  2. Carbon Dioxide and CO2 Isotopes at Three Spatial Scales Over the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Bowling, D. R.; Schaeffer, S. M.; Miller, J. B.; Stephens, B. B.

    2006-12-01

    Recent studies highlight the importance of western mountain regions to the North American carbon sink, suggesting 25 to 50 percent of the U.S. sink can be attributed to montane ecosystems. Isotopes of CO2 provide insight into ecosystem carbon cycling, plant physiological processes, and atmospheric boundary-layer dynamics, and are useful in integration of processes over multiple scales. CO2 isotopes have played a central role in our understanding of the magnitude and inter-annual dynamics of the terrestrial carbon sink at a variety of spatial and temporal scales, and will be crucial to understanding the carbon balance and carbon accounting of the North American continent. In 2005, we began a long-term study examining biosphere- atmosphere exchange of CO2 and its stable isotopes over the Rocky Mountains in Colorado. Measurements are made at 3 sites representing 3 different spatial scales. These include a subalpine forest site (3050 m elevation, the Niwot Ridge AmeriFlux site), a tundra site 3 km away (3520 m, representing the overlying forest air), and an aircraft site 125 km to the northeast over the plains (vertical profiles from ground level at 1740 m to 8000 m, representing the regional convective boundary layer and the free troposphere). The tundra (NWR) and aircraft (CAR) sites have been part of NOAA/CCGG Cooperative Air Sampling Network for many years. Observed CO2 and δ13C showed seasonal variation (> 10 ppm and >0.5 permil) and strong local variation at all sites (>100 ppm and >5 permil at the forest site). The forest exerted a strong respiratory influence on the overlying air during the fall and winter. Measurements 10m above the top of the forest canopy in winter were always higher in CO2 (~ 3 ppm) and more negative in δ13C of CO2 ~ 0.3 permil) than those at the tundra site. Summer data are still being analyzed, but we expect this to shift in the other direction during the growing season. Substantial synoptic variation in CO2 and δ13C was observed at

  3. Land-Cover Change Within the Peatlands Along the Rocky Mountain Front, Montana: 1937-2009

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Milbrath, J. T.; Shelly, J. S.

    2013-12-01

    While peatlands are globally abundant, the fens of the Rocky Mountain Front (RMF), are the eastern-most, rich, peatlands in Montana, and are unique wetland habitats in this region of semi-arid continental climate. The peatlands provide critical riparian connectivity between the mountains and the plains and are habitat for grizzly bears, wolves, and within just the 450 ha Pine Butte Fen at least 93 species of vascular plants, including seven of Montana's Plant Species of Concern. Aerial photographs of the nine peatlands along the RMF in Montana were analyzed in a GIS. The boundary of each wetland was hand-digitized and the area within was classified into land-cover types: total area, open fen, open water, woody vegetation, and non-wetland/agriculture. Changes in wetland extent and land-cover categories were evaluated from the earliest available imagery in 1937 to the last available imagery in 2009. Images prior to 1995 were orthorectified, and all georectified. Climate change, wildlife, and agriculture were examined as potential drivers of land-cover change at these sites. Results indicate little change in overall peatland area between 1937 and 2009 despite increasing air temperatures in the region. Approximately 16% of these peatlands is 'open fen' and that proportion remained stable over the last seventy years. Area of open water quadrupled and the number of ponds which could be delineated tripled over the study period, reflecting a recovering beaver population. The non-wetland/agricultural area halved over the course of the study, primarily due to declines in agriculture within the three largest remaining peatlands: Pine Butte Fen, McDonald Swamp, and the Blackleaf Creek wetland complex. Most of the first two fens were purchased outright by the Nature Conservancy (TNC) and they hold a conservation easement on the third (as well as two other fens), all of which have been been put in place since the late 1970s. One fen is owned by the State of Montana and another

  4. Predictive Modeling and Mapping of Fish Distributions in Small Streams of the Canadian Rocky Mountain Foothills

    NASA Astrophysics Data System (ADS)

    McCleary, R. J.; Hassan, M. A.

    2006-12-01

    reach-scale maps indicate specific reaches where interactions between these two species are likely to occur. With regional calibration, this automated modeling and mapping procedure could apply in headwater catchments throughout the Rocky Mountain Foothills and other areas where sporadic waterfalls or other natural migration barriers are not an important feature limiting fish distribution.

  5. Hydrology of Area 62, Northern Great Plains and Rocky Mountain Coal Provinces, New Mexico and Arizona

    USGS Publications Warehouse

    Roybal, F.E.; Wells, J.G.; Gold, R.L.; Flager, J.V.

    1984-01-01

    This report summarizes available hydrologic data for Area 62 and will aid leasing decisions, and the preparation and appraisal of environmental impact studies and mine-permit applications. Area 62 is located at the southern end of the Rocky Mountain Coal Province in parts of New Mexico and Arizona and includes approximately 9,500 square miles. Surface mining alters, at least temporarily, the environment; if the areas are unreclaimed, there can be long-term environmental consequences. The land-ownership pattern in Area 62 is complicated. The checkerboard pattern created by several types of ownership makes effective management of these lands difficult. The climate generally is semiarid with average annual precipitation ranging from 10 to 20 inches. Pinons, junipers, and grasslands cover most of the area, and much of it is used for grazing by livestock. Soils vary with landscape, differing from flood plains and hillslopes to mountain slopes. The major structural features of this area were largely developed during middle Tertiary time. The main structural features are the southern San Juan Basin and the Mogollon slope. Coal-bearing rocks are present in four Cretaceous rock units of the Mesaverde Group: the Gallup Sandstone, the Dileo Coal Member, and the Gibson Coal Member of the Crevasse Canyon Formation, and the Cleary Coal Member of the Menefee Formation. Area 62 is drained by Black Creek, the Puerco River, the Zuni River, Carrizo Wash-Largo Creek, and the Rio San Jose. Only at the headwaters of the Zuni River is the flow perennial. The streamflow-gaging station network consists of 25 stations operated for a variety of needs. Streamflow changes throughout the year with variation related directly to rainfall and snowmelt. Base flow in Area 62 is zero indicating no significant ground-water discharge. Mountainous areas contribute the highest mean annual runoff of 1.0 inch. Very few water-quality data are available for the surface-water stations. Of the nine surface

  6. Evaluating regional patterns in nitrate sources to watersheds in national parks of the rocky mountains using nitrate isotopes

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Elliott, E.M.; Kendall, C.

    2008-01-01

    In the Rocky Mountains, there is uncertainty about the source areas and emission types that contribute to nitrate (NO3) deposition, which can adversely affect sensitive aquatic habitats of high-elevation watersheds. Regional patterns in NO3 deposition sources were evaluated using NO3 isotopes in five National Parks, including 37 lakes and 7 precipitation sites. Results indicate that lake NO3 ranged from detection limit to 38 ??eq/L, ??18O (NO3) ranged from -5.7 to +21.3???, and ??15N (NO3) ranged from -6.6 to +4.6???. ??18O (NO3) in precipitation ranged from +71 to +78???. ??15N (NO 3) in precipitation and lakes overlap; however, ??15N (NO3) in precipitation is more depleted than ??15N (NO3) in lakes, ranging from -5.5 to -2.0???. ??15N (NO3) values are significantly related (p < 0.05) to wet deposition of inorganic N, sulfate, and acidity, suggesting that spatial variability of ??15N (NO3) over the Rocky Mountains may be related to source areas of these solutes. Regional patterns show that NO3 and ??15N (NO3) are more enriched in lakes and precipitation from the southern Rockies and at higher elevations compared to the northern Rockies. The correspondence of high NO 3 and enriched ??15N (NO3) in precipitation with high NO3 and enriched ??15N (NO3) in lakes, suggests that deposition of inorganic N in wetfall may affect the amount of NO3 in lakes through a combination of direct and indirect processes such as enhanced nitrification. ?? 2008 American Chemical Society.

  7. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect

    Chatelain, E.E.

    1997-09-01

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  8. The architecture of the porphyry-metal system as a prospecting stratagem in the Southern Rocky Mountains

    USGS Publications Warehouse

    Neuerburg, George J.

    1978-01-01

    A model of the porphyry-metal system characteristic of the consanguineous Cretaceous and Tertiary igneous rocks and associated ores of the southern Rocky Mountains is constructed from the bits and pieces exposed in the Colorado mineral belt and the San Juan volcanic field. Hydrothermally altered rocks in a part of the areas of mineralized rock associated with the Platoro caldera are matched against the model, to locate and to characterize latent mineral deposits for optimal prospecting and exploration. The latent deposits are two stockwork molybdenite deposits (porphyry-molybdenum) and one or two copper-gold-silver chimney deposits.

  9. Effects of urban development on stream ecosystems alongthe Front Range of the Rocky Mountains, Colorado and Wyoming

    USGS Publications Warehouse

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    The U.S. Geological Survey (USGS) conducted a study from 2002 through 2003 through its National Water-Quality Assessment (NAWQA) Program to determine the effects of urbanization on the physical, chemical, and biological characteristics of stream ecosystems along the Front Range of the Rocky Mountains. The objectives of the study were to (1) examine physical, chemical, and biological responses at sites ranging from minimally to highly developed; (2) determine the major physical, chemical, and landscape variables affecting aquatic communities at these sites; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin.

  10. MULTIVARIATE ANALYSIS OF MACROINVERTEBRATE ASSEMBLAGES TO DETERMINE IMPACTS ON ROCKY MOUNTAIN STREAM ECOSYSTEMS

    EPA Science Inventory

    Using reduncancy (RDA) and canonical correlation analysis (CCA) we assessed relationships between chemical and physical characteristics and periphyton at 105 stream sites sampled by REMAP in the mineral belt of the southern Rockies ecoregion in Colorado. We contrasted results ob...

  11. COMPARATIVE APPLICATION OF PERIPHYTON, MACROINVERTEBRATE AND FISH INDICES OF BIOTIC INTEGRITY TO SOUTHERN ROCKY MOUNTAIN STREAMS

    EPA Science Inventory

    We compared three assessments using macroinvertebrate, periphyton, and fish assemblages in streams sampled by the Regional Environmental Monitoring and Assessment Program (REMAP) in Colorado's Southern Rockies Ecoregion. We contrasted analyses using metrics for each group selecte...

  12. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    USGS Publications Warehouse

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  13. Mercury and Selenium in a Mining-Affected Watershed of the Rocky Mountain Northwest

    NASA Astrophysics Data System (ADS)

    Langner, H.

    2011-12-01

    mercury in the food web of a large river system in the Rocky Mountain Northwest.

  14. Land use change and nitrogen enrichment of a Rocky Mountain watershed.

    PubMed

    Kaushal, Sujay S; Lewis, William M; McCutchan, James H

    2006-02-01

    Headwater ecosystems may have a limited threshold for retaining and removing nutrients delivered by certain types of land use. Nitrogen enrichment was studied in a Rocky Mountain watershed undergoing rapid expansion of population and residential development. Study sites were located along a 30-km transect from the headwaters of the Blue River to Lake Dillon, a major source of drinking water for Denver, Colorado. Ground water in residential areas with septic systems showed high concentrations of nitrate-N (4.96 +/- 1.22 mg/L, mean +/- SE), and approximately 40% of wells contained nitrate with delta15N values in the range of wastewater. Concentrations of dissolved inorganic nitrogen (DIN) in tributaries with residential development peaked during spring snowmelt as concentrations of DIN declined to below detection limits in undeveloped tributaries. Annual export of dissolved organic nitrogen (DON) was considerably lower in residential streams, suggesting a change in forms of N with development. The seasonal delta15N of algae in residential streams was intermediate between baseline values from undeveloped streams and stream algae grown on wastewater. Between 19% and 23% of the annual N export from developed tributaries was derived from septic systems, as estimated from the delta15N of algae. This range was similar to the amount of N export above background determined independently from mass-balance estimates. From a watershed perspective, total loading of N to the Blue River catchment from septic and municipal wastewater (2 kg x ha(-1) x yr(-1)) is currently less than the amount from background atmospheric sources (3 kg x ha(-1) x yr(-1)). Nonetheless, nitrate-N concentrations exceeded limits for safe drinking water in some groundwater wells (10 mg/L), residential streams showed elevated seasonal patterns of nitrate-N concentration and ratios of DIN to total dissolved phosphorus, and seasonal minimum concentrations of nitrate-N in Lake Dillon have increased

  15. Alpine Microbial Community Responses to Climate Change and Atmospheric Nitrogen Deposition in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Osborne, B. B.; Baron, J.; Wallenstein, M. D.; Richer, E.

    2010-12-01

    Remote alpine ecosystems of the western US exhibit vulnerability to anthropogenic drivers of change. Atmospheric nitrogen (N) deposition and a changing climate introduce nutrients, alter hydrological processes, and expose soils to modified temperature regimes. We cannot yet predict the interacting effects and far-reaching biogeochemical consequences of this influence. Importantly, long-term data reveal headwater nitrate (NO3-) concentration trends increasing >50% from the 1990s to 2006 along the Colorado Front Range in conjunction with warm summer temperatures. Such a change in nutrient cycling raises concern for eutrophication in nutrient-poor alpine lakes. Increasing stream NO3- suggests terrestrial microbes may be responding to changes in important controls of community development and activity: temperature and ammonium (NH4+) availability. Nitrifying bacteria and archaea strongly influence alpine soil NO3- concentrations. Little is understood about alpine microbes. Our research characterizes nitrifier abundance and activity in alpine substrates by exposing them to experimental NH4+ and temperature treatments. Soil substrates fall along a gradient of succession commonly represented in alpine catchments due to deglaciation. These include well-developed meadow soils, unvegetated talus substrate, and newly-exposed glacial sediments. All three substrate types were collected from the Loch Vale watershed in Rocky Mountain National Park, a long-term research site in the Colorado Front Range known to receive elevated levels of atmospheric N deposition. All soils have been evaluated for initial %C, %N, microbial biomass, NO3-, NH4+, and DOC concentrations, and nitrifier abundance. After temperature and NH4+ treatments, samples will be evaluated for changes in biomass and nitrifier abundance as well as net and gross nitrification. Linking the influence of relative soil temperature and NH4+ concentrations on alpine substrates, at a range of successional stages, will

  16. At the Cratonic Crossroads: A geochronologic and geochemical perspective on the Little Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Gifford, J. N.; Mueller, P. A.; Foster, D. A.; Mogk, D. W.

    2012-12-01

    The Medicine Hat Block (MHB) is a poorly constrained structural element in the Paleoproterozoic amalgamation of Laurentia. It lies between the Wyoming and Hearne cratons along the northern margin of the Great Falls Tectonic Zone. The block was caught between the Hearne and Wyoming cratons during the Paleoproterozoic closure of an ocean and subsequent continental collision. The majority of the MHB is concealed by younger material, and it is recognized primarily by its seismic signature and its influence on the geochemistry of younger igneous rocks. The MHB appears to be composed of Archean (2.6-3.1 Ga) and Proterozoic (1.75 Ga) continental crust based on limited data from drill holes and xenoliths. The Little Rocky Mountains (LRM) are the only potential exposure of Precambrian basement rocks in the northeastern GFTZ, and represent unique surface exposure of the MHB. The LRM is cored by a dome-shaped Tertiary syenite intrusion, with Precambrian metamorphic units exposed along the margins of the dome. Limited previous geochronology from the LRM includes K/Ar ages of 1.7-1.75 Ga and a Rb/Sr age of c. 2.55 Ga from a quartzofeldspathic paragneisses. These data leave the affinity of the LRM uncertain, either representing reworked Archean crust and/or Paleoproterozoic material generated during the subduction of oceanic lithosphere and formation of the GFTZ. New U/Pb ages of zircons from the Precambrian meta-igneous rocks in the LRM range from 2.2 - 3.3 Ga, with prominent peaks between 2.6 - 2.8 Ga. Outliers clustering around 1.7 - 1.8 Ga are rare and likely reflect Paleoproterozoic reworking of older material. These ages are consistent with a MHB affinity for the LRM. Pb-isotope data define a 3.1 Ga model age, which suggests some influence of older Wyoming Craton or MHB crust. The dominance of 2.6-2.8 Ga U/Pb ages suggests that the Paleoproterozoic igneous arc was constructed on pre-existing MHB crust. Models for reconciling the high angle junction between the GFTZ and

  17. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    USGS Publications Warehouse

    Zeigenfuss, Linda C.; Binkley, Dan; Tuskan, Gerald A.; Romme, William H.; Yin, Tongming; DiFazio, Stephen; Singer, Francis J.

    2008-01-01

    Lack of recruitment and canopy replacement of aspen (Populus tremuloides) stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado have been a cause of concern for more than 70 years. We used a combination of traditional dendrochronology and genetic techniques as well as measuring the characteristics of regenerating and nonregenerating stands on the elk winter range to determine when and under what conditions and estimated elk densities these stands established and through what mechanisms they may regenerate. The period from 1975 to 1995 at low elevation on the east side had 80-95 percent fewer aspen stems than would be expected based on the trend from 1855 through 1965. The age structure of aspen in the park indicates that the interacting effects of fires, elk population changes, and livestock grazing had more-or-less consistent effects on aspen from 1855 to 1965. The lack of a significant change in aspen numbers in recent decades in the higher elevation and west side parts of the park supports the idea that the extensive effects of elk browsing have been more important in reducing aspen numbers than other factors. The genetic variation of aspen populations in RMNP is high at the molecular level. We expected to find that most patches of aspen in the park were composed of a single clone of genetically identical trees, but in fact just 7 percent of measured aspen patches consisted of a single clone. A large frequency of polyploid (triploid and tetraploid) genotypes were found on the low elevation, east-side elk winter range. Nonregenerating aspen stands on the winter range had greater annual offtake, shorter saplings, and lower density of mid-height (1.5-2.5 m) saplings than regenerating stands. Overwinter elk browsing, however, did not appear to inhibit the leader length of aspen saplings. The winter range aspen stands of RMNP appear to be highly resilient in the face of

  18. Groundwater contributions and age dating in an alpine basin in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Clow, D. W.; Michel, R.

    2005-12-01

    Groundwater occurrence, age, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Colorado Rocky Mountains. Hydro-geomorphologic mapping, seismic refraction measurements, and porosity estimates indicate that talus slopes are the primary groundwater reservoir, with a storage capacity of 5 to 17 x 106 m3. Ice stored in permafrost is the second largest groundwater reservoir in Loch Vale, accounting for 2 to 4 x 106 m3 of water. The estimated storage capacity of bedrock fractures is comparatively small (0.007 to 0.013 x 106 m3). Although snowmelt provides the majority of annual water flux from the basin, tracer tests and gaging along a stream transect indicate that groundwater flowing from talus can account for ?75% of streamflow at certain times. Talus springs respond quickly to storms, then slowly recede, reflecting rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth. CFC and tritium (3H) data permit setting bounds on mean residence times and on the relative contributions of "new" (< 1year old) and "older" (45 - 50 years old) water under two different simplifying scenarios. The first scenario assumes piston subsurface flow, and the second assumes water is a mixture of "new" and "older" water. CFC samples collected from two springs in Loch Vale during August 2003 had piston-flow model ages of 17 to 22 years, based on CFC-12 and CFC-113 results. Under the old water - new water mixture scenario, 55 to 65% of the water was "new". Monthly samples collected from one of the springs and a nearby creek had 3H concentrations ranging from 9.6 (near current precipitation values) to 17.1 TU. Minimum values occurred during snowmelt and peak values occurred during winter baseflow; this pattern indicates a large new water influence during snowmelt, with a noticeable component of older water during winter. Piston-flow model 3H ages are poorly constrained due to

  19. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem.

    PubMed

    Averett, Joshua P; McCune, Bruce; Parks, Catherine G; Naylor, Bridgett J; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones. PMID:26824750

  20. Non-Native Plant Invasion along Elevation and Canopy Closure Gradients in a Middle Rocky Mountain Ecosystem

    PubMed Central

    Averett, Joshua P.; McCune, Bruce; Parks, Catherine G.; Naylor, Bridgett J.; DelCurto, Tim; Mata-González, Ricardo

    2016-01-01

    and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones. PMID:26824750

  1. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  2. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    PubMed

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Environ Toxicol Chem 2016;35:1087-1096. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. PMID:26588039

  3. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.

    USGS Publications Warehouse

    Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.

    2013-01-01

    We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.

  4. Drought tolerance of leaves from plants exposed to a global warming manipulation in the Rocky Mountains of Colorado

    SciTech Connect

    Loik, M.E.

    1995-06-01

    Drought tolerance was compared for leaves of Artemisia tridentata, Festuca thurberi and Potentilla gracilis exposed to a global warming manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, CO. Leaves of the three species were collected from plants growing in situ in heated and control plots then dried for various periods of time up to 24 h. Tolerance was compared in terms of reduction of relative water content, change in water potential, and changes in chlorophyll a fluorescence quenching kinetics. Relative water content decreased by about 80% for F. thurberi and P. gracilis, but by less than 50% for A. tridentata. Also, plants from heated plots lost water faster than controls for F. thurberi and P. gracilis; for A. tridentata the opposite was true. Water potential for both control and heated-plot leaves decreased below -10 MPa after 24 h drying for F. thurberi and P. gracilis; water potential for A. tridentata decreased little and averaged -2.0 MPa. Quenching of chlorophyll a fluorescence was abolished for F. thurberi and P. gracilis leaves after 8 h drying, and there was little difference between heated and control leaves. Quenching decreased for A. tridentata, but was slower for leaves from heated plots. Leaves from A. tridentata may be better adapted than F. thurberi and P. gracilis to a drier climate in the Rocky Mountains under global warming.

  5. Remote continental aerosol characteristics in the Rocky Mountains of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Levin, Ezra J. T.

    The Rocky Mountains of Colorado and Wyoming enjoy some of the cleanest air in the United States, with few local sources of particulate matter or its precursors apart from fire emissions, windblown dust, and biogenic emissions. However, anthropogenic influences are also present with sources as diverse as the populated Front Range, large isolated power plants, agricultural emissions, and more recently emissions from increased oil and gas exploration and production. While long-term data exist on the bulk composition of background fine particulate matter at remote sites in the region, few long-term observations exist of aerosol size distributions, number concentrations and size resolved composition, although these characteristics are closely tied to important water resource issues through the potential aerosol impacts on clouds and precipitation. Recent modeling work suggests sensitivity of precipitation-producing systems to the availability of aerosols capable of serving as cloud condensation nuclei (CCN); however, model inputs for these aerosols are not well constrained due to the scarcity of data. In this work I present aerosol number and volume concentrations, size distributions, chemical composition and hygroscopicity measurements from long-term field campaigns. I also explore the volatility of organic material from biomass burning and the potential impacts on aerosol loading. Relevant aerosol observations were obtained in several long-term field studies: the Rocky Mountain Atmospheric Nitrogen and Sulfur study (RoMANS, Colorado), the Grand Tetons Reactive Nitrogen Deposition Study (GrandTReNDS, Wyoming) and as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen project (BEACHON, Colorado). Average number concentrations (0.04 < Dp < 20 mum) measured during the field studies ranged between 1000 -- 2000 cm-3 during the summer months and decreased to 200 -- 500 cm-3 during the winter. These seasonal changes in aerosol

  6. Dramatic increase in late Cenozoic alpine erosion rates recorded by cave sediment in the southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Refsnider, Kurt A.

    2010-09-01

    Apparent increases in sedimentation rates during the past 5 Ma have been inferred at sites around the globe to document increased terrestrial erosion rates, but direct erosion rate records spanning this period are sparse. Modern and paleo-erosion rates for a small alpine catchment (3108 m above sea level) in the Southern Rocky Mountains are measured using the cosmogenic radionuclides (CRNs) 10Be and 26Al in cave sediment, bedrock on the overlying landscape surface, and coarse bedload in a modern fluvial drainage. The unique setting of the Marble Mountain cave system allows the inherited erosion rates to be interpreted as basin-averaged erosion rates, resulting in the first CRN-based erosion rate record from the Rocky Mountains spanning 5 Myr. Pliocene erosion rates, derived from the oldest cave sample (4.9 ± 0.4 Ma), for the landscape above the cave are 4.9 ± 1.1 m Myr - 1 . Mid Pleistocene erosion rates are nearly an order of magnitude higher (33.1 ± 2.7 to 41.3 ± 3.9 m Myr - 1 ), and modern erosion rates are similar; due to the effects of snow shielding, these erosion rate estimates are likely higher than actual rates by 10-15%. The most likely explanation for this dramatic increase in erosion rates, which likely occurred shortly before 1.2 Ma, is an increase in the effectiveness of periglacial weathering processes at high elevations related to a cooler and wetter climate during the Pleistocene, providing support for the hypothesis that changes in late Cenozoic climate are responsible for increased continental erosion.

  7. Tectonics vs. eustasy: Mid Pennsylvanian carbonate-ramp cycles, ancestral Rocky Mountains, north-central New Mexico

    SciTech Connect

    Wiberg, T.L. . Dept. of Geology); Smith, G.A. . Dept. of Geology)

    1992-01-01

    Detailed stratigraphic and sedimentologic analysis of measured sections within the Madera Limestone in the Sandia Mountains, New Mexico, characterize depositional environments and transgressive-regressive (T-R) cycles across a west-dipping ramp, situated approximately 70 kilometers west of the Pedernal uplift, a tectonically active element of the Ancestral Rocky Mountains. The ramp setting was separated from the Pedernal Uplift by the deep, clastic-filled Estancia Basin. T-R cycles are 2--12 meters thick and consist of asymmetric, shoaling-upward calcareous shales, thick skeletal wackestones, packstones-grainstones, and are capped by subaerial exposure surfaces or terrigenous clastics. The presence of subaerial exposure features upon subtidal carbonates argues for an allogenic control on cycle formation. 15 T-R cycles are interpreted to coincide with 3rd-order eustatic curves of Ross and Ross (1987). Following the convention of most workers, these 3rd-order cycles are herein referred to as 4th-order. No higher-order cycles have been recognized. Cycles exhibit a bundling of 4, 4th-order cycles into larger, asymmetric 3rd-order cycles, similar in pattern to those described by Ross and Ross (1987). Correlation of Madera Limestone cycles with those in other regions indicates that ancestral Rocky Mountains tectonism was less effective than eustasy in controlling the stratigraphy of Middle Pennsylvanian sediments. Using various time scales for the Desmoinesian, cycle periodicities range between 200,000--370,000 years. This average cycle periodicity is similar to other 4th-order cycles reported in the literature for the Pennsylvanian and suggests a Milankovitch orbital forcing mechanism.

  8. Ubiquitous Low-Velocity Layer Atop the 410-km Discontinuity in the Northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Jasbinsek, J. J.; Dueker, K. G.

    2006-12-01

    Receiver functions (RF) from three 30-station IRIS-PASSCAL small aperture arrays (2-15 km station spacing) operated for ten months each in the northern Rocky Mountains show a ubiquitous negative polarity P to S arrival (NPA) just preceding the 410-km discontinuity arrival. Data from the arrays was divided into NW, SE and SW backazimuths and stacked to form nine quadrant stacks (QS). Remarkably, the NPA is apparent in 8 of the 9 QS, with 7 of the 8 displaying a similar dipole shape (paired negative and positive swings). Each QS contains clear P to S arrivals from the 410- and 660-km discontinuities and display the correct moveout. To model the NPA, a "double gradient slab" model consisting of five parameters is used: top gradient thickness and shear wave velocity drop; a constant velocity layer; bottom gradient thickness and shear wave velocity increase. Model misfit is assessed via a grid search over the model space using a reflectivity code to calculate synthetic seismograms. Assessment of model likelihood is done by calculating 1- and 2-D marginal probability density functions (PDF). Model parameters for each QS are well resolved and uncorrelated, with the exception of the anti-correlation of the top and bottom gradients. To define an average model, the probability distributions of each QS for each parameter are multiplied to form summary 1-D marginal PDF from which 90% probability bounds are calculated. These probability bounds are: the top gradient is < 8 km with a velocity decrement of 0.3-0.5 km/s; the constant velocity layer thickness is < 5 km; and, the bottom gradient is 29-37 km with a velocity increase of 0.4-0.6 km/s. The effective width of the low velocity layer atop the 410 (herein called the 410-LVL) is characterized as the layer thickness plus half the two gradient widths. Thus, the 410-LVL is found to have a mean thickness of 26 km and a mean shear wave velocity decrement of 8.3%. These results contrast with 410-LVL widths of 25-90 km and shear

  9. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    NASA Astrophysics Data System (ADS)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    The possible economic and environmental ramifications of climate change have stimulated a range of atmospheric carbon mitigation actions, as well as, studies to understand and quantify potential carbon sinks. However, current carbon management strategies for reducing atmospheric emissions underestimate a critical component. Soils represent between 18 - 30% of the terrestrial carbon sink needed to prevent atmospheric doubling of CO2 by 2050 and a crucial element in mitigating climate change, natural terrestrial sequestration (NTS), is required. NTS includes all naturally occurring, cumulative, biologic and geologic processes that either remove CO2 from the atmosphere or prevent net CO2 emissions through photosynthesis and microbial fixation, soil formation, weathering and adsorption or chemical reactions involving principally alumino- ferromagnesium minerals, volcanic glass and clays. Additionally, NTS supports ecosystem services by improving soil productivity, moisture retention, water purification and reducing erosion. Thus, 'global climate triage' must include the protection of high NTS areas, purposeful enhancement of NTS processes and reclamation of disturbed and mined lands. To better understand NTS, we analyzed soil-cores from Colorado, Rocky Mountain Cordillera sites. North-facing, high-plains to alpine sites in non-wetland environments were selected to represent temperate soils that may be less susceptible to carbon pool declines due to global warming than soils in warmer regions. Undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global TOSC averages (4 - 5 Wt. %). Forest soils derived from weathering of intermediate to mafic volcanic bedrock have the highest C (34.15 Wt. %), C:N (43) and arylsulfatase (ave. 278, high 461 μg p-nitrophenol/g/h). Intermediate TOSC was identified in soils derived from Cretaceous shale (7.2 Wt. %) and Precambrian, felsic gneiss (6.2 Wt. %). Unreclaimed mine-sites have the lowest C (0

  10. Sustainability of vegetation communities grazed by elk in Rocky Mountain National Park

    USGS Publications Warehouse

    Schoenecker, K.A.; Singer, F.J.; Menezes, R.S.C.; Zeigenfuss, L.C.; Binkley, D.

    2002-01-01

    Current management of the worldsa?? grazing lands in either based on changes in plant species composition or on other management evaluation programs that emphasize changes in net aboveground production. Management is based solely on changes in aboveground production has been criticized as too limited in view, because it ignores root production, nitrogen pools, nutrient processes, and the long-term sustainability of the ecosystem. The purpose of this study was to compare the effects of elk (Cervus elaphus) grazing on aboveground production, internal nitrogen (N) fluxes, N pools and inputs, and elk nutrient transfers across the landscape in different vegetation types in Rocky Mountain National Park (RMNP), Colorado. Nitrogen processes and possibly N pools were significantly reduced in the willow community, but not in the upland grass/shrub community. Nitrogen mineralization rates were lower in grazed versus ungrazed short willow sites (P = 0.07; n = 4 sites), as were nitrate (NO3) pools (P = 0.10), but not in tall willow sites (P > 1.10 n = 4 sites) after 4 years. There was about half the annual N inputs to the soil surface in grazed willow sites (5.79g N/m2/yr = annual herbaceous biomass a?? offtake + litterfall + elk urine and feces) compared to ungrazed sites (9.66 g N/m2/yr = annual herbaceous biomass + litterfall), suggesting elk herbivory and movement led to a net loss of N in the willow vegetation type. Elk substantially reduced the annual growth of willows (Salix spp.) by 98% after 35 years and 66% after 4 years of treatment. Thus, height and canopy and N yield of willows were reduced as well as willow litter biomass (65 g/m2/yr in ungrazed versus 33 g/m2/yr in grazed), and N yield of willows was 64% less in grazed plots. Elk grazing had no significant effect on other soil N pools (NH4) or litter decomposition rates in either of the two willow types, nor on any nitrogen process rates or pools in the upland grass/shrub type (P > 0.10). Nitrogen concentrations

  11. Geologic and geomorphic controls of altitudinal treeline in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Macias Fauria, M.; Johnson, E. A.

    2010-12-01

    We hypothesize that a multi-scale (in both time and space) process competition affecting topographical shelter (e.g. sites favoring snow accumulation which prevents dissecation and abrasion), and substrate and water availability, ultimately set the distribution of suitable sites where trees can establish and survive in the altitudinal treeline. Terrain characteristics on which altitudinal treelines occur are ultimately set by geological history, which determines the distribution of slope aspects, angles, and lengths, as well as the distribution, depth, transport, and texture of the regolith on which trees grow. Erosive processes (landscape evolution) create concave features where flow converges (water, avalanches, debris) - channels - and convex or planar slopes. A spatially explicit model is presented at 1m resolution which predicts tree presence on a ~ 200 km2 area in the Front Ranges of the Canadian Rocky Mountains as a function of landscape topographical variables key in water and energy balances and surface transport/instability. The model was validated with independent data from an adjacent area and successfully captures tree presence/absence. Subalpine forests form a mosaic of stand ages which is a function of the last disturbance (mostly wildfire), where the main differences from their lowland counterparts are 1) a higher portion of areas where stand dynamics are affected by disturbances linked to the presence of slopes (i.e. gravitational: avalanches, flooding/flushing events), and 2) an upslope declining frequency of sites favorable for tree establishment and survival. Thus, the presence of trees in the uppermost part of these forests largely depends on the existence of suitable conditions largely linked to topography. Such places are the result of geomorphologic processes acting on a framework set by the structural geology of the region, and thus the appearance of new sites suitable for tree growth does not depend on short (i.e. yearly to decadal) time

  12. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S. L.; Stephens, B.; Watt, A.

    2007-12-01

    We will present preliminary carbon flux estimates from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). In order to improve our understanding of regional carbon fluxes in the Rocky Mountain West, we have developed and deployed autonomous, inexpensive, and robust CO2 analyzers (AIRCOA) at five sites throughout Colorado and Utah, and plan additional deployments on the Navajo Reservation, Arizona in September 2007 and atop Mount Kenya, Africa in November 2007. We have used a one- dimensional CO2 budget equation, following Bakwin et al. (2004), to estimate regional monthly-mean fluxes from our continuous CO2 concentrations. These comparisons between our measurements and estimates of free- tropospheric background concentrations reveal regional-scale CO2 flux signals that are generally consistent with one another across the Rocky RACCOON sites. We will compare the timing and magnitude of these estimates with expectations from local-scale eddy-correlation flux measurements and bottom-up ecosystem models. We will also interpret the differences in monthly-mean flux signals between our sites in terms of their varying upwind areas of influence and inferred regional variations in CO2 fluxes. Our measurements will be included in future CarbonTracker assimilation runs and other planned model-data fusion efforts. However, questions still exist concerning the ability of these models to accurately represent the various influences on CO2 concentrations in continental boundary layers, and at mountaintop sites in particular. We will present an analysis of the diurnal cycles in CO2 concentration and CO2 variability at our sites, and compare these to various model estimates. Several of our sites near major population centers reflect the influence of industrial CO2 sources in afternoon upslope flows, with CO2 concentration increasing and variable in the mid to late afternoon. Other more remote sites show more consistent and decreasing CO2

  13. Pollinators of the Rocky Mountain Columbine: Temporal Variation, Functional Groups and Association with Floral Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollinators together with other biotic and some abiotic factors can select for floral traits. However, variation in pollinator abundance over time and space can weaken such selection. In this study, we examined the variation in pollinator abundance over time and space in populations of the rocky mou...

  14. Detection of PrP**CWD in retinal tissues in white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) with CWD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. Chronic wasting disease (CWD), a transmissible spongiform encephalopathy, has been reported in captive and free-ranging mule deer (Odocoileus hemionus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni). An abnormal isoform of a prion p...

  15. FIELD ACTIVITIES AND PRELIMINARY RESULTS FROM THE INVESTIGATION OF WESTERN AIRBORNE CONTAMINANTS IN TWO HIGH ELEVATION WATERSHEDS OF ROCKY MOUNTAIN NATIONAL PARK

    EPA Science Inventory

    The National Park Service initiated the Western Airborne Contaminants Assessment Project (WACAP) in 2002 to determine if airborne contaminants from long-range transport and/or regional sources are having an impact on remote western ecosystems, including AK. Rocky Mountain Nation...

  16. Regional Comparative Unit Cost Studies for Maintenance and Operation of Physical Plants in Universities and Colleges in Central States Region and Rocky Mountain Region.

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators, Corvallis, OR.

    Presented in this document are data pertaining to maintenance and operations costs at colleges and universities in the central states region and the Rocky Mountain region. The major accounts included in the cost analysis are: (1) physical plant administration, (2) building maintenance, (3) custodial services, (4) utilities, (5) landscape and…

  17. College-Bound Seniors, 1979. [College Board ATP Summary Reports for: National, New England, Middle States, Southern, Midwestern, Southwestern, Rocky Mountain, and Western Regions.

    ERIC Educational Resources Information Center

    College Entrance Examination Board, Princeton, NJ.

    The Admissions Testing Program (ATP) is a service of the College Board. The 1979 ATP summary reports on college-bound seniors were produced for each region of the United States, including New England, the Middle, Southern, Midwestern, Southwestern, Rocky Mountain, and Western States. The national and each regional report are in separate booklets.…

  18. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE PAGESBeta

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  19. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2014-12-01

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.

  20. A Global Model Simulation for 3-D Radiative Transfer Impact on Surface Hydrology over Sierra Nevada and Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Lee, W. L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. H.

    2014-12-01

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra-Nevada using the CCSM4 (CAM4/CLM) global model with a 0.25 degree resolution for a 6-year climate run. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 meters using the Shuttle Radar Topography Mission (SRTM) global dataset to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3D - PP) adjustment to ensure that energy balance at the top of the atmosphere is conserved in climate simulations involving the 3-D radiation parameterization in a global model. We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by cloud feedback in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.

  1. Lake-specific responses to elevated atmospheric nitrogen deposition in the Colorado Rocky Mountains, U.S.A.

    USGS Publications Warehouse

    Nydick, K.R.; LaFrancois, B.M.; Baron, J.S.; Johnson, B.M.

    2003-01-01

    We explored variability among subalpine lakes sharing very similar climate and atmospheric conditions, but differing in watershed characteristics, hydrology, and food web structure. Special attention was given to nitrogen (N) dynamics because the study area receives some of the highest levels of atmospheric N deposition in the Rocky Mountains. We asked if the effect of regional N deposition would be manifested uniformly among neighboring lakes both in terms of ambient conditions and responses to greater nutrient inputs. Catchment vegetation appeared to be the main determinant of ambient nitrate (NO3), phosphate (PO4), and dissolved organic carbon (DOC) concentrations, although in-lake differences in recycling produced variable and contrasting NH4 levels. Phytoplankton chlorophyll a temporarily responded to early season NO3 peaks in the lakes with rocky watersheds, but chlorophyll means over the ice-free season were remarkably similar among lakes despite differences in both nutrient supply and zooplankton grazing. In most cases, phosphorus was limiting to phytoplankton growth, although the importance of N deficiencies was greater in lakes with forested watersheds and fringing wetlands.

  2. 1999 resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Fort Union Coal Assessment Team

    1999-01-01

    The USGS has assessed resources of selected coal of the Fort Union Formation and equivalent units in the Northern Rocky Mountains and Great Plains region. The assessment focused on coal in the Powder River, Williston, Hanna-Carbon, and Greater Green River basins most likely to be utilized in the next few decades. In other basins in the region Tertiary coal resources are summarized but not assessed. Disc 1, in PDF files, includes results of the assessment and chapters on coal geology, quantity and quality, and land use and ownership. Disc 2 provides GIS files for land use and ownership maps and geologic maps, and basic GIS data for the assessed basins. ArcView shapefiles, PDF files for cross sections and TIFF files are included along with ArcView Datapublisher software for Windows-based computer systems.

  3. Genetic structure in the Anaxyrus boreas species group (anura, Bufonidae): an evaluation of the Southern Rocky Mountain population

    USGS Publications Warehouse

    Switzer, John F.; Johnson, Robin L.; Lubinski, Barbara A.; King, Tim L.

    2009-01-01

    The Anaxyrus boreas species group is comprised of four species endemic to the western United States: A. boreas, A. canorus, A. exsul, and A. nelsoni. Disjunct populations of the widespread western toad Anaxyrus boreas from Colorado and southern Wyoming, the southern rocky mountain population (SRMP), were previously candidates for listing under the United States Endangered Species Act (ESA) as a distinct population segment (DPS), but were removed due to a lack of significant genetic differentiation in preliminary studies. The purpose of this study was to conduct phylogeographic and population genetic analyses of A. boreas and three related species using mitochondrial DNA sequence data and nuclear microsatellite genotype data. The study is specifically focused on testing the evolutionary significance of the SRMP.

  4. Effects of temperature and precipitation on snowpack variability in the Central Rocky Mountains as a function of elevation

    NASA Astrophysics Data System (ADS)

    Sospedra-Alfonso, Reinel; Melton, Joe R.; Merryfield, William J.

    2015-06-01

    We employ a regression-based methodology to study the impact of temperature and precipitation on snowpack variability as a function of elevation in the Central Rocky Mountains. Because of the broad horizontal coverage and thermal heterogeneity of the measurement sites employed, we introduce an elevation correction based on the sites' climatological temperature. For the elevation range investigated (1295-2256 m), and assuming an average atmospheric lapse rate of -6.5°C/km, we find a mostly linear relationship between effective elevation and correlation of temperature or precipitation with snow water equivalent and snowpack duration. We estimate a threshold elevation, 1560 ± 120 m, below (above) which temperature (precipitation) is the main driver of the snowpack. This threshold elevation is robust under a range of assumed atmospheric lapse rates. Locations below this elevation are likely to be affected by projected rising temperatures, with important effects on ecosystems and economic activities dependent on snow.

  5. Spring stopover food resources and land use patterns of Rocky Mountain population Sandhill Carnes in the San Luis Valley, Colorado

    USGS Publications Warehouse

    Laubhan, M.K.; Gammonley, J.H.

    2001-01-01

    Virtually the entire Rocky Mountain population (RMP) of greater sandhill cranes uses the San Luis Valley (SLV) of Colorado as a spring stopover area. RMP cranes in the SLV depend on unharvested grain provided on Monte Vista National Wildlife Refuge, and on waste grain in privately owned fields. In recent years, however, fall tillage and irrigation of grain fields has become increasingly widespread in the SLV. These changes in farming practices have resulted in an unmeasured reduction in waste grain availability for RMP cranes during spring and have prompted concern over whether current or projected foods are adequate to meet spring demands of the target population size of 18,000-20,000 RMP cranesa?|

  6. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record

    PubMed Central

    McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution

  7. Molecular detection of vertebrates in stream water: A demonstration using rocky mountain tailed frogs and Idaho giant salamanders

    USGS Publications Warehouse

    Goldberg, C.S.; Pilliod, D.S.; Arkle, R.S.; Waits, L.P.

    2011-01-01

    Stream ecosystems harbor many secretive and imperiled species, and studies of vertebrates in these systems face the challenges of relatively low detection rates and high costs. Environmental DNA (eDNA) has recently been confirmed as a sensitive and efficient tool for documenting aquatic vertebrates in wetlands and in a large river and canal system. However, it was unclear whether this tool could be used to detect low-density vertebrates in fast-moving streams where shed cells may travel rapidly away from their source. To evaluate the potential utility of eDNA techniques in stream systems, we designed targeted primers to amplify a short, species-specific DNA fragment for two secretive stream amphibian species in the northwestern region of the United States (Rocky Mountain tailed frogs, Ascaphus montanus, and Idaho giant salamanders, Dicamptodon aterrimus). We tested three DNA extraction and five PCR protocols to determine whether we could detect eDNA of these species in filtered water samples from five streams with varying densities of these species in central Idaho, USA. We successfully amplified and sequenced the targeted DNA regions for both species from stream water filter samples. We detected Idaho giant salamanders in all samples and Rocky Mountain tailed frogs in four of five streams and found some indication that these species are more difficult to detect using eDNA in early spring than in early fall. While the sensitivity of this method across taxa remains to be determined, the use of eDNA could revolutionize surveys for rare and invasive stream species. With this study, the utility of eDNA techniques for detecting aquatic vertebrates has been demonstrated across the majority of freshwater systems, setting the stage for an innovative transformation in approaches for aquatic research.

  8. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S.; Stephens, B.; Watt, A.; Schimel, D.; Aulenbach, S.

    2006-12-01

    We have established a Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON) to improve our understanding of regional carbon fluxes and to fill key gaps in the North American Carbon Program (NACP). There are strong scientific and societal motivations for determining CO2 exchanges on regional scales. Mountain forests in particular represent a significant potential net CO2 sink in the U.S. and are highly sensitive to land-use practices and climate change. We have developed a new autonomous, inexpensive, and robust CO2 analysis system (AIRCOA) and have deployed these systems at 4 sites: Niwot Ridge (NWR), near Ward, Colorado (August, 2005); Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado (September, 2005); Fraser Experimental Forest (FEF), near Fraser Colorado (August, 2005); and Hidden Peak (HDP), near Snowbird, Utah (April, 2006). We will deploy a fifth site in Northeastern Arizona in September 2006. Measurements of surveillance gas cylinders, and an ongoing intercomparison with flask measurements made by NOAA GMD at Niwot Ridge, show measurement biases of 0.2 ppm or better. Preliminary analysis of CO2 variability at our sites provides valuable information on the usefulness of mountaintop observations in data-assimilation and inverse modeling. Comparisons between our sites and to background sites can give direct regional-scale flux estimates, and analysis of the nocturnal CO2 build-ups at FEF provides unique insights into valley-scale respiration rates. We will present results of these preliminary analyses and plans for future integration with the NACP effort.

  9. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: Implications for winter dry deposition

    USGS Publications Warehouse

    Clow, D.W.; Ingersoll, G.P.; Mast, M.A.; Turk, J.T.; Campbell, D.H.

    2002-01-01

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO42- or NO3- (p>0.1). Small, but statistically significant differences (p???0.03) were indicated for all other solutes analyzed. Differences were largest for Ca2+ concentrations, which on average were 2.3??eql-1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9??eql-1 and a maximum of 12??eql-1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO42- and NO3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO42- and NO3- across the Rocky Mountain region.

  10. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

  11. Host associations and incidence of Diuraphis spp. in the Rocky Mountain region of the United States, and pictorial key for their identification.

    PubMed

    Puterka, Gary J; Hammon, Robert W; Burd, John D; Peairs, Frank B; Randolph, Terri; Cooper, W Rodney

    2010-10-01

    The Russian wheat aphid, Diuraphis noxia Kurdjumov, is an introduced species first identified in 1986 into the United States. It has since become a major pest of wheat, Triticum aestivum L., and other small grains in the western United States. Three other Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were already endemic to the United States before the introduction of D. noxia. The objective of this study was to determine the occurrence and host associations of these four Diuraphis spp. in the Rocky Mountain region that borders the western Great Plains to better understand their distribution and ecological interactions. In addition, a key to these species with photographs of live or fresh preparations of specimens is presented to aid in their identification. D. noxia was the most widely distributed species in the study area spanning the Rocky Mountain areas of Wyoming, New Mexico, Utah, and Colorado. This species was most common in the cereal-producing areas of the Colorado Plateau ecoregion. D. frequens was found to be the predominant species in the Alpine/Aspen Mountain areas of the South Central Rockies and Colorado Rockies ecoregions. The other Diuraphis species were rarely encountered even though their plant hosts occurred in the ecoregions sampled. D. noxia shared common hosts and was found co-infesting grasses with other Diuraphis species. Therefore, the potential exists for D. noxia to impact the other native Diuraphis species. PMID:21061992

  12. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    SciTech Connect

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  13. Estimates of evapotranspiration or effective moisture in Rocky Mountain watersheds from chloride ion concentrations in stream baseflow

    USGS Publications Warehouse

    Claassen, H.C.; Halm, D.R.

    1996-01-01

    The principle that atmospherically derived chloride is a conservative tracer in many watersheds can be used to calculate average annual evapotranspiration or effective moisture if estimates are available for (1) the average annual chloride input to the watershed, (2) the average annual precipitation, and (3) the baseflow chloride concentration are known. The method assumes that no long-term storage of chloride occurs and there is no lithologic source of chloride, or that such source releases only insignificant amounts to groundwater compared to the atmospheric source. National Atmospheric Deposition Program estimates of chloride wet deposition, watershed precipitation records or hyetal map estimates of precipitation input to watersheds, and a single sample of chloride concentration in base flow were used to calculate evapotranspiration for diverse Rocky Mountain watersheds. This estimate was compared to evapotranspiration determined by subtracting mean discharge from precipitation. Of the 19 watersheds used to test the method, 13 agreed within 10%, 2 appear to have not met the lithology criterion, 1 appears to have not met the flow criterion, and 1 neither criterion. The method's greatest strength is the minimal data requirements and its greatest weakness is that for some watersheds it may be difficult to obtain reliable estimates of precipitation and chloride deposition. If reliable discharge data are available, the method may be used to estimate watershed-average precipitation; this is especially useful in high-altitude mountain watersheds where little or no precipitation data are available.

  14. Microhabitat differences impact phylogeographic concordance of codistributed species: genomic evidence in montane sedges (Carex L.) from the Rocky Mountains.

    PubMed

    Massatti, Rob; Knowles, L Lacey

    2014-10-01

    By selecting codistributed, closely related montane sedges from the Rocky Mountains that are similar in virtually all respects but one-their microhabitat affinities-we test predictions about how patterns of genetic variation are expected to differ between Carex nova, an inhabitant of wetlands, and Carex chalciolepis, an inhabitant of drier meadows, slopes, and ridges. Although contemporary populations of the taxa are similarly isolated, the distribution of glacial moraines suggests that their past population connectedness would have differed. Sampling of codistributed population pairs from different mountain ranges combined with the resolution provided by over 24,000 single nucleotide polymorphism loci supports microhabitat-mediated differences in the sedges' patterns of genetic variation that are consistent with their predicted differences in the degree of isolation of ancestral source populations. Our results highlight how microhabitat preferences may interact with glaciations to produce fundamental differences in the past distributions of presently codistributed species. We discuss the implications of these findings for generalizing the impacts of climate-induced distributional shifts for communities, as well as for the prospects of gaining insights about species-specific deterministic processes, not just deterministic community-level responses, from comparative phylogeographic study. PMID:25041894

  15. Beaver dams and overbank floods influence groundwater-surface water interactions of a Rocky Mountain riparian area

    NASA Astrophysics Data System (ADS)

    Westbrook, Cherie J.; Cooper, David J.; Baker, Bruce W.

    2006-06-01

    Overbank flooding is recognized by hydrologists as a key process that drives hydrogeomorphic and ecological dynamics in mountain valleys. Beaver create dams that some ecologists have assumed may also drive riparian hydrologic processes, but empirical evidence is lacking. We examined the influence of two in-channel beaver dams and a 10 year flood event on surface inundation, groundwater levels, and flow patterns in a broad alluvial valley during the summers of 2002-2005. We studied a 1.5 km reach of the fourth-order Colorado River in Rocky Mountain National Park (RMNP), Colorado, USA. The beaver dams and ponds greatly enhanced the depth, extent, and duration of inundation associated with floods; they also elevate the water table during both high and low flows. Unlike previous studies we found the main effects of beaver on hydrologic processes occurred downstream of the dam rather than being confined to the near-pond area. Beaver dams on the Colorado River caused river water to move around them as surface runoff and groundwater seepage during both high- and low-flow periods. The beaver dams attenuated the expected water table decline in the drier summer months for 9 and 12 ha of the 58 ha study area. Thus we provide empirical evidence that beaver can influence hydrologic processes during the peak flow and low-flow periods on some streams, suggesting that beaver can create and maintain hydrologic regimes suitable for the formation and persistence of wetlands.

  16. Beaver dams and overbank floods influence groundwater-surface water interactions of a Rocky Mountain riparian area

    USGS Publications Warehouse

    Westbrook, C.J.; Cooper, D.J.; Baker, B.W.

    2006-01-01

    Overbank flooding is recognized by hydrologists as a key process that drives hydrogeomorphic and ecological dynamics in mountain valleys. Beaver create dams that some ecologists have assumed may also drive riparian hydrologic processes, but empirical evidence is lacking. We examined the influence of two in-channel beaver dams and a 10 year flood event on surface inundation, groundwater levels, and flow patterns in a broad alluvial valley during the summers of 2002-2005. We studied a 1.5 km reach of the fourth-order Colorado River in Rocky Mountain National Park (RMNP), Colorado, USA. The beaver dams and ponds greatly enhanced the depth, extent, and duration of, inundation associated with floods; they also elevate the water table during both high and low flows. Unlike previous studies we found the main effects of beaver on hydrologic processes occurred downstream of the dam rather than being confined to the near-pond area. Beaver dams on the Colorado River caused river water to move around them as surface runoff and groundwater seepage during both high- and low-flow periods. The beaver dams attenuated the expected water table decline in the drier summer months for 9 and 12 ha of the 58 ha study area. Thus we provide empirical evidence that beaver can influence hydrologic processes during the peak flow and low-flow periods on some streams, suggesting that beaver can create and maintain hydrologic regimes suitable for the formation and persistence of wetlands. Copyright 2006 by the American Geophysical Union.

  17. Prevalence of antibodies to canine parvovirus and distemper virus in wolves in the Canadian Rocky Mountains.

    PubMed

    Nelson, Brynn; Hebblewhite, Mark; Ezenwa, Vanessa; Shury, Todd; Merrill, Evelyn H; Paquet, Paul C; Schmiegelow, Fiona; Seip, Dale; Skinner, Geoff; Webb, Nathan

    2012-01-01

    Wild carnivores are often exposed to diseases via contact with peridomestic host species that travel through the wildland-urban interfaces. To determine the antibody prevalences and relationships to human activity for two common canid pathogens, we sampled 99 wolves (Canis lupus) from 2000 to 2008 for antibodies to canine parvovirus (CPV) and canine distemper virus (CDV) in Banff and Jasper National Parks and surrounding areas of the Canadian Rockies. This population was the source for wolves reintroduced into the Northern Rockies of the US. Of 99 wolves sampled, 94 had detectable antibody to CPV (95%), 24 were antibody-positive for CDV (24%), and 24 had antibodies to both pathogens (24%). We tested whether antibody prevalences for CPV and CDV were higher closer to human activity (roads, town sites, First Nation reserves) and as a function of sex and age class. Wolves ≥2 yr old were more likely to be have antibodies to CPV. For CDV, male wolves, wolves ≥2 yr, and those closer to First Nation reserves were more likely to have antibodies. Overall, however, we found minimal support for human influence on antibody prevalence for CDV and CPV. The similarity between our antibody prevalence results and results from recent studies in Yellowstone National Park suggests that at least in the case of CDV, and perhaps CPV, these could be important pathogens with potential effects on wolf populations. PMID:22247375

  18. Impacts of insect-related forest mortality on hydrologic partitioning and forest productivity in the Southern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Molotch, N. P.

    2014-12-01

    Recent large-scale changes in forest cover over Western North America associated with insect-related forest mortality may have widespread impacts on water availability. These changes have potentially varied impacts on water availability as forest mortality influences rates of snow accumulation, snowmelt, and evapotranspiration. These changes may significantly alter runoff production and gross primary productivity in mountain forests. Analysis of remotely sensed vegetation greenness data indicate strong forest and understory growth dependencies associated with snow accumulation and snowmelt with peak snow water equivalent explaining 40-50% of inter-annual greenness variability in the Rocky Mountains. Examples of these dependencies will be presented based on the 2012 drought in the Southwestern US whereby near record low snow accumulation and record high potential evapotranspiration have resulted in record low forest greening as evident in the 30+ year satellite record. Forest response to aridity in 2012 was exacerbated by forest disturbance with greenness anomalies 90% greater in magnitude in Bark Beetle and Spruce Budworm affected areas versus undisturbed areas and 182% greater in magnitude in areas impacted by fire. Growing season length was inversely proportional to peak greenness with record high Normalized Difference Vegetation Index (NDVI) values in April (14% above average) corresponding with record low NDVI values in July (7% below average). Gross primary productivity (GPP) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Niwot Ridge, Colorado Ameriflux tower indicate record high April GPP (30% and 90% above average for MODIS and the tower, respectively) correspodning with record low July GPP (19% and 30% below average, respectively). Differences in these energy, water, ecosystem relationships among difference distrurbance regimes indicate that the sensitivity of ecosystems to changes in climate is heavily dependent on

  19. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGESBeta

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  20. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-01

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model - CAM4/CLM4) with a 0.23° x 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D-PP (plane-parallel)) adjustment to ensure that the energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.

  1. Climate Change and Water Quality in the Rocky Mountains: challenges of too much summer for addressing acid rock drainage (Invited)

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Crouch, C. M.; Rue, G. P.

    2013-12-01

    A major water quality concern in the Rocky Mountains is acid rock drainage, which causes acidic conditions and high metal concentrations. The 30-year water quality record for the Snake River watershed in Colorado, USA, shows that for the summer low-flow period zinc concentrations have increased four- to six-fold concurrently with a two- to three week advancement in spring snowmelt. We found that the main source of acidity, zinc and other metals, including rare earth elements to the upper Snake River was a tributary draining an alpine area rich in disseminated pyrite. By conducting a tracer experiment in this tributary, we demonstrated that more than half of the trace metal and acidity loading entered in an upper steep, rocky reach where the tributary is fed by an alpine spring. Another increase in flow and metal loading occurred where the tributary flows through a gently-sloped wetland area containing a bog iron deposit. Analysis of the tracer experiment indicated a significant increase in hyporheic exchange along this wetland reach, where decreases in pH of the water exchanging in the hyporheic zone may be mobilizing metals that had been sequestered in the wetland through sorption to iron oxides. One possible scenario is that decreasing pH in the upper reach has reached a threshold, resulting in mobilization of metals from the hyporheic zone of the wetland. This study illustrates how changes in hydrologic regime may cause changes in biogeochemical processes that exacerbate the danger to aquatic ecosystems associated with acid rock drainage.

  2. Phosphorus and nitrogen limitations to photosynthesis in Rocky Mountain bristlecone pine (Pinus aristata) in Colorado.

    PubMed

    Boyce, Richard L; Larson, Jennifer R; Sandford, Robert L

    2006-11-01

    We examined Pinus aristata Engelm. stands in four locations in Colorado: Almagre Mountain, Black Mountain, Goliath Peak and Quartzville. All stands are located at 3200-3700 m and face south-southeast. We measured maximum mass-based assimilation rates (A(max)) and nitrogen (N) and phosphorus (P) foliar concentrations on six foliar age classes, from which instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE, respectively) and P:N ratios were estimated. Leaf mass per area (LMA) was also determined for each foliar age class from each site. Foliar age, P and N concentrations, and the P:N ratio explained the most variation in A(max) when data from all sites were combined. Leaf mass per area did not vary with foliar age class. Both P and N limit A(max), although P appears to be more limiting. The critical P:N ratio is approximately 0.12. Results for Black Mountain differed from the other sites, as A(max) was not correlated with age and was negatively correlated with LMA and P. Current findings showed no evidence of N saturation at the Front Range sites (Almagre Mountain and Goliath Peak); however, because P is a limiting nutrient, increased anthropogenic N availability at sites in the Front Range may cause adverse effects on photosynthesis, and perhaps growth, in the future. PMID:16877332

  3. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.

    2013-07-01

    In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF) are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE), and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg-1, 135 g kg-1, 7.30 g kg-1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO, and CH4; however, we

  4. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  5. Biotic and abiotic processes controlling water chemistry during snowmelt at rabbit ears pass, Rocky Mountains, Colorado, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.; Leavesley, G.H.

    1995-01-01

    The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO4/2-, and NO3/-. Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO3/- (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO3/- concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate thai most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH4/+, NO3/-, SO4/2- and Cl- and was the primary source of base cations and other weathering products. Proportionally more SO4/2- was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO3/- was higher in snowmelt and Cl- was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH4/+ retained by the watershed and greater than 50% of the NO3/-.The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs

  6. The Effect of Forest Structure on Snow Hydrology in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Pomeroy, J.; Ellis, C.; MacDonald, J.

    2008-12-01

    Mountain evergreen forests exert two primary effects on the formation and ablation of the seasonal snowcover. The first is the interception of snowfall in the forest canopy, resulting in sublimation, melt or unloading from the canopy. Snow interception can capture a very large percentage of the seasonal snowfall and in cold conditions this snow can be held for many days in the canopy. In the canopy snow is exposed to high rates of turbulent transfer and so can sublimate rapidly where unsaturated conditions prevail. Snow also metamorphoses in the canopy and some intercepted snow is unloaded to the surface, depending on the mechanics of slippage between branch and intercepted snow and the failure of intercepted snow clumps. The result of the snow interception, sublimation and unloading processes is that snow accumulation usually declines with increasing forest cover. This effect is most pronounced in cold, dry and windy conditions. The second primary effect of mountain forests is that snow on the ground is subjected to modified radiation regimes due to the extinction of shortwave radiation and emission of longwave radiation by the forest canopy. Some extinguished shortwave energy is also emitted as longwave energy. The result is to sometimes reduce and sometimes increase the incoming radiation available to the snowpack compared to open areas, the direction of change depending on cloudiness, solar angle, canopy structure, snow albedo, degree of slope and aspect. In cold continental mountain environments, net radiation available for snowmelt is generally reduced by increasing forest cover on level sites and south facing slopes but is enhanced by increasing forest cover on north facing slopes. The dramatic implications of the combined effects on snow hydrology of changing snow interception and radiation regimes as mountain forest cover is reduced from insect infestation, logging and burning are demonstrated and discussed.

  7. Joint interpretation of seismic tomography and new magnetotelluric results provide evidence for support of high topography in the Southern Rocky Mountains and High Plains of eastern Colorado, USA

    NASA Astrophysics Data System (ADS)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P.

    2015-12-01

    A recent magnetotelluric (MT) survey in central Colorado, USA, when interpreted alongside existing seismic tomography, reveals potential mechanisms of support for high topography both regionally and locally. Broadband and long period magnetotelluric data were collected at twenty-three sites along a 330 km E-W profile across the Southern Rocky Mountains and High Plains of central North America as part of the Deep RIFT Electrical Resistivity (DRIFTER) experiment. Remote-reference data processing yielded high quality MT data over a period range of 100 Hz to 10,000 seconds. A prominent feature of the regional geo-electric structure is the Denver Basin, which contains a thick package of highly conductive shales and porous sandstone aquifers. One-dimensional forward modeling was performed on stations within the Denver Basin to estimate depth to the base of this shallow conductor. Those estimates were then used to place a horizontal penalty cut in the model mesh of a regularized two-dimensional inversion. Two-dimensional modeling of the resistivity structure reveals two major anomalous regions in the lithosphere: 1) a high conductivity region in the crust under the tallest peaks of the Rocky Mountains and 2) a lateral step increase in lithospheric resistivity beneath the plains. The Rocky Mountain crustal anomaly coincides with low seismic wave speeds and enhanced heat flow and is thus interpreted as evidence of partial melt and/or high temperature fluids emplaced in the crust by tectonic activity along the Rio Grande Rift. The lateral variation in the mantle lithosphere, while co-located with a pronounced step increase in seismic velocity, appears to be a gradational boundary in resistivity across eastern Colorado and could indicate a small degree of compositional modification at the edge of the North American craton. These inferred conductivity mechanisms, namely crustal melt and modification of mantle lithosphere, likely contribute to high topography locally in the

  8. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980

    SciTech Connect

    Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

    1981-01-01

    The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

  9. Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981

    SciTech Connect

    Not Available

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  10. Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region

    SciTech Connect

    Ellis, M.S.; Stricker, G.D.; Flores, R.M.

    1994-12-31

    Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

  11. Organosulfates and Carboxylic Acids in Secondary Organic Aerosols in Coniferous Forests in Rocky Mountains (USA), Sierra Nevada Mountains (USA) and Northern Europe (Finland and Denmark)

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Hansen, A. M. K.; Kristensen, K.; Kristensen, T. B.; Mccubbin, I. B.; Hallar, A. G.; Petäjä, T.; Surratt, J. D.; Worton, D. R.; Bilde, M.; Kulmala, M. T.; Goldstein, A. H.

    2014-12-01

    Levels and chemical composition of secondary organic aerosols affect their climate effects and properties. Organosulfates (OS) are formed through heterogeneous reactions involving oxidized sulfur compounds, primarily originating from anthropogenic sources. Availability of authentic standards have until now been an obstacle to quantitative investigations of OS in atmospheric aerosols. We have developed a new, facile method for synthesis and purification of OS standards. Here we have used 7 standards to quantify OS and nitrooxy organosulfates (NOS) observed in aerosols collected at four sites in coniferous forests in USA and Europe during spring or summer. The two American sites were Storm Peak Laboratory, Colorado (Rocky Mountains, elevation 3220 m a.s.l) and Sierra Nevada Mountains, California (as part of BEARPEX 2007 and 2009). The European sites were Hyytiälä Forest Station, Finland (in the boreal zone) and Silkeborg, Denmark (temperate forest). Aerosol filter samples were extracted and analyzed using a high performance liquid chromatograph coupled through an electrospray inlet to a quadrupole time-of-flight mass spectrometer (HPLC-QTOF-MS). We identified 11 carboxylic acids using authentic standards, while 16 different OS and 8 NOS were identified based on their molecular mass and MS fragmentation patterns, as well as comparison with available standards. OS were ubiquitous in the atmospheric aerosol samples, even at the high elevation mountain station. Levels of carboxylic acids from oxidation of monoterpenes were 8-25 ng m-3 at Silkeborg and Storm Peak Laboratory, while concentrations at the sites with strong regional monoterpene emissions (Sierra Nevada Mountains and Hyytiälä) were much higher (10-200 ng m-3). At all sites, the dominant group of OS were derived from isoprene (IEPOX) and related compounds, while OS of monoterpenes showed lower concentrations, except at Hyytiälä during periods of north-westerly winds when monoterpene OS were at similar or

  12. Late Paleogene topography of the Central Rocky Mountains and western Great Plains region using hydrogen isotope ratios in volcanic glass

    NASA Astrophysics Data System (ADS)

    Rossetto, G.; Fricke, H. C.; Cassel, E. J.; Evanoff, E.

    2015-12-01

    The Central Rocky Mountains (CRM), located in southern Wyoming, Colorado, and northern New Mexico, are characterized by the highest elevation basins (up to 2500 m) and mountains (over 4000 m) in the North American Cordillera. The timing and drivers for surface uplift of the CRM have not been conclusively determined. The goal of this study is to constrain the timing of surface uplift of the CRM by comparing hydrogen isotope ratios of hydration waters (δDglass) in late Paleogene volcanic glasses preserved in felsic tuffs deposited in CRM basins to δDglass values from glasses of similar age (34.9 to 32.2 Ma) preserved in tuffs from the surrounding Great Plains. The tuffs deposited in the Great Plains, to the north and east of the CRM, are currently at elevations of 1100-1600 m. Volcanic glass hydrates shortly after deposition, preserving the δD of ancient meteoric water on geologic timescales, and can thus be used as a proxy for ancient precipitation δD values. Volcanic glasses from the CRM have δDglass values that are an average of ~31‰ higher than δDglass values from the Great Plains, while modern day precipitation δD values in the CRM are ~25‰ lower than δD values in the Great Plains. These results suggest that the uplift of the CRM relative to the surrounding Great Plains occurred after ~32 Ma. This requires a mechanism such as mantle upwelling or differential crustal hydration, not solely Laramide tectonism, to uplift the CRM to current elevations. Elevation, however, may not have been the only control on the spatial distribution of precipitation δD values across the western US. Similar to the modern, mixing of Pacific and Gulf coast air masses likely occurred during the latest Paleogene, driving regional variability in δD values of precipitation.

  13. Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century.

    PubMed

    Boisvenue, Céline; Running, Steven W

    2010-07-01

    Climate change has altered the environment in which forests grow, and climate change models predict more severe alterations to come. Forests have already responded to these changes, and the future temperature and precipitation scenarios are of foremost concern, especially in the mountainous western United States, where forests occur in the dry environments that interface with grasslands. The objective of this study was to understand the trade-offs between temperature and water controls on these forested sites in the context of available climate projections. Three temperature and precipitation scenarios from IPCC AR4 AOGCMs ranging in precipitation levels were input to the process model Biome-BGC for key forested sites in the northern U.S. Rocky Mountains. Despite the omission of natural and human-caused disturbances in our simulations, our results show consequential effects from these conservative future temperature and precipitation scenarios. According to these projections, if future precipitation and temperatures are similar to or drier than the dry scenario depicted here, high-elevation forests on both the drier and wetter sites, which have in the absence of disturbance accumulated carbon, will reduce their carbon accumulation. Under the marginally drier climate projections, most forests became carbon sources by the end of the simulation horizon (2089). Under all three scenarios, growing season lengthened, the number of days with snow on the ground decreased, peak snow occurred earlier, and water stress increased through the projection horizon (1950-2089) for all sites, which represent the temperature and precipitation spectrum of forests in this region. The quantity, form, and timing of precipitation ultimately drive the carbon accumulation trajectory of forests in this region. PMID:20666251

  14. Resilience of a Subalpine Ecosystem in the Southern Rocky Mountains to Past Changes in Hydroclimate and Disturbance Regimes

    NASA Astrophysics Data System (ADS)

    Minckley, T. A.; Shuman, B. N.

    2011-12-01

    Concerns about the impact of predicted future water deficits on mountain ecosystems can be assessed though analyses of past ecosystem responses to hydrologic variability. Paleoecological records indicate that the composition of subalpine forests in western North America have been resilient to multiple influences over millennia, including severe droughts, insect outbreaks, and widely varying fire regimes. We evaluate the hypothesis that early-succession conifer forests with broad climatic tolerances, such as those dominated by lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) persist because forest dynamics are disrupted by frequent disturbance and climate variations. To assess this prolonged resilience, we use independently reconstructed vegetation, fire, and drought history for a small, forested watershed in southeastern, Wyoming, based on sedimentary pollen and charcoal counts in conjunction with sedimentary lake-level indicators. Our data indicate that prominent vegetation shifts (from sagebrush steppe to spruce-fir parkland at ca. 10.7 ka and spruce-fir parkland to pine-dominated forest at ca. 8.5 ka) coincided with changes in effective moisture. However, once the modern subalpine, lodgepole pine forests establish at ca. 8.5 ka, similar hydroclimatic changes did not produce detectable changes in forest composition. Fire history data show that other aspects of the ecosystem were responsive to changes in effective moisture at multi-centennial-to-millennial timescales with prolonged fire-free episodes coinciding with periods of low effective moisture at >7.2-5.6 and 3.7-1.6 ka. Our results suggest that although current climate changes favor widespread disturbance in Rocky Mountain forests, the composition of these ecosystems could recover through succession dynamics over the next few decades to centuries.

  15. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Goode, Jaime R.; Luce, Charles H.; Buffington, John M.

    2012-02-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to increase sediment yield primarily through changes in temperature and hydrology that promote vegetation disturbances (i.e., wildfire, insect/pathogen outbreak, drought-related die off). Here, we synthesize existing data from central Idaho to explore (1) how sediment yields are likely to respond to climate change in semi-arid basins influenced by wildfire, (2) the potential consequences for aquatic habitat and water resource infrastructure, and (3) prospects for mitigating sediment yields in forest basins. Recent climate-driven increases in the severity and extent of wildfire suggest that basin-scale sediment yields within the next few years to decades could be greater than the long-term average rate of 146 T km - 2 year - 1 observed for central Idaho. These elevated sediment yields will likely impact downstream reservoirs, which were designed under conditions of historically lower sediment yield. Episodic erosional events (massive debris flows) that dominate post-fire sediment yields are impractical to mitigate, leaving road restoration as the most viable management opportunity for offsetting climate-related increases in sediment yield. However, short-term sediment yields from experimental basins with roads are three orders of magnitude smaller than those from individual fire-related events (on the order of 10 1 T km - 2 year - 1 compared to 10 4 T km - 2 year - 1 , respectively, for similar contributing areas), suggesting that road restoration would provide a relatively minor reduction in sediment loads at the basin-scale. Nevertheless, the ecologically damaging effects of fine sediment (material < 6 mm

  16. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Hawbaker, T. J.; Briggs, J. S.; Cigan, P. W.; Stitt, S.

    2013-08-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70-80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  17. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Caldwell, M. K.; Hawbaker, T. J.; Briggs, J. S.; Cigan, P. W.; Stitt, S.

    2013-12-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused remarkable levels of tree mortality. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole-pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70-80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  18. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA-a critical review.

    PubMed

    Burns, Douglas A

    2004-01-01

    The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha(-1) yr(-1), and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is <50% in some watersheds east of the Continental Divide, which reflects low biomass and a short growing season relative to the timing and N load in deposition. Regional upward temporal trends in surface water NO(3)(-) concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. PMID:14568725

  19. Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park

    PubMed Central

    West, Amanda M.; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S.; Stohlgren, Thomas J.; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum. PMID:25695255

  20. Terrestrial eco-risk -- Details and compromises in exposure assessment and risk characterization at Rocky Mountain Arsenal

    SciTech Connect

    Tate, D.J.; Cothern, K.A.; Jones, M.J.; Applehans, F. |; Armstrong, J.P.

    1994-12-31

    The soil and biota databases used to assess terrestrial eco-risk at Rocky Mountain Arsenal reflect considerable spatial variability in soil and biota tissue concentrations. The variability in soil concentrations reflects variability in historical uses of the 27-square mile site, in concentrations of the 14 contaminants of concern (COCS) in soil, and in the distribution of soil borings and surficial soil samples. The spatial variability in tissue concentrations results especially from collection of samples from locations that were biased toward areas associated with high COC concentrations or thought to be uncontaminated and from biota mobility. This variability plus the considerable uncertainty in associating biota tissue concentrations with their exposure soil concentrations resulted in considerable discussion and the development of an innovative and effective protocol for, using interpolated soil concentrations to estimate tissue concentrations that were compared to toxicity reference values for tissue and dose concentrations. Specific examples and the opportunity for discussion of the Endangerment Assessment Technical Subcommittee members` uncharted journey through literature surveys, parameter quantification, statistical nuances, exposure area soil concentration estimation, and development of a proportionality constant (e.g., a site-specific biomagnification factor) to link soil and tissue concentrations will be presented.

  1. The US Geological Survey's side-looking airborne radar acquisition program: Image data from the Rocky Mountains to the Pacific

    SciTech Connect

    Kovar, A.N.; Schoonmaker, J.W. Jr. )

    1993-04-01

    The US Geological Survey (USGS) has been systematically collecting side-looking airborne radar (SLAR) image data for the US since 1980. The image strip swaths, ranging in width from 20 to 46 km, are acquired commercially by X-band (3 cm) radar systems. Data are acquired with 60 percent side-lap for better mosaic preparation and stereoscopic capability. The image strips are assembled into 1[degree] x 2[degree] mosaic quadrangles that are based on the USGS 1:250,000-topographic map series for control, format, and nomenclature. These mosaics present the data in a broad synoptic view that facilitates geologic interpretation. SLAR image mosaics have been prepared for more than 35 percent of the US west of the Rocky Mountain front. In addition to quadrangle mosaics, regional composite mosaics have been prepared as value-added products. These include Pacific Northwest (14 quadrangles), southern California Coastal (from San Francisco to San Diego), Reno-Walker (includes parts of Yellowstone and Grand Teton National Parks), Uinta Basin (Salt Lake City, Price and Grand Junction), and Salton Sea Region (San Diego, Santa Ana, El Centro and Salton Sea). Most of the image data are available on computer compatible tapes and photographic products. To make the data more accessible and reasonably priced, the strip images are being processed into CD-ROM (compact disc, read-only memory). One demonstration CD-ROM includes the mosaics of Las Vegas, Mariposa, Ritzville, Walla Walla, and Pendleton quadrangles.

  2. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    USGS Publications Warehouse

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  3. Organochlorine compounds in trout from lakes over a 1600 meter elevation gradient in the Canadian Rocky Mountains.

    PubMed

    Demers, Marc J; Kelly, Erin N; Blais, Jules M; Pick, Frances R; St Louis, Vincent L; Schindler, David W

    2007-04-15

    The effect of altitude on the concentration and composition of organochlorine compounds (OC) in troutwas investigated along an elevation gradient of 1600 m in the Canadian Rocky Mountains. The eight lakes sampled were within or adjacent to national parks in sparsely settled parts of Alberta and British Columbia, thus contaminants were assumed to have derived from long-range atmospheric transport. Concentrations of several OCs in trout increased significantly with lake elevation. In general, these increases were most pronounced for the higher K(ow) pesticides (i.e., dieldrin and DDTs), and less pronounced for lower K(ow) pesticides (e.g., HCHs and HCB) and PCBs. Most OC concentrations in trout were inversely correlated with fish growth rate. Growth rate explained more of the variation for some OCs (particularly PCBs) than lake elevation. Differences in trophic position (indicated by delta15N) explained little of the variation in OC concentration in comparison to other factors such as lake elevation and the growth rate and age of trout. Using principal component analysis (PCA), we identified the importance of lake elevation and octanol/water partition coefficient (K(ow)) to the OC composition of trout. PMID:17533830

  4. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute`s Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  5. Results of Phase 2 postburn drilling, coring, and logging: Rocky Mountain 1 Underground Coal Gasification Test, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Lindblom, S.R.; Covell, J.R.

    1991-02-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) site consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in Western Research Institute's Annual Project Plan for 1989 (Western Research Institute 1989). The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed during the summer of 1989 and served to partially accomplish all seven objectives. A detailed description of Phase 1 results was presented in a separate report (Lindblom et al. 1990). Phase 2, completed during the summer of 1990, was designed to complete the seven objectives; more specifically, to further define the areal extent and location of the cavities, to evaluate the outflow channels for both modules, and to further characterize the structural geology in the ELW module area.

  6. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park.

    PubMed

    West, Amanda M; Kumar, Sunil; Wakie, Tewodros; Brown, Cynthia S; Stohlgren, Thomas J; Laituri, Melinda; Bromberg, Jim

    2015-01-01

    National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum. PMID:25695255

  7. Basin and range-age reactivation of the ancestral Rocky Mountains in Texas Panhandle: evidence from Ogallala Formation

    SciTech Connect

    Budnik, R.T.

    1984-04-01

    The Ogallala Formation (Neogene) is a widespread syntectonic alluvial apron that was shed eastward from the Rio Grande rift and related uplifts in Colorado and New Mexico during Basin and Range extension. In the Texas Panhandle, the Ogallala completely buried Ancestral Rocky Mountain (Pennsylvanian) structures. Renewed movement on these older structures during the Neogene influenced the thickness and facies distribution of the Ogallala. The Ogallala thickens into the Palo Duro, Dalhart, and Anadarko basins. Major distributary channels on Ogallala alluvial fans coincide with the axes of these basins, whereas major interchannel areas overlie intervening uplifts. Second-order structures subtly influenced the unit as well. For example, the Carson basin, a Pennsylvanian rhomb graben along the Amarillo uplift, the Ogallala is over 250 m (820 ft) thick compared with 90 m (275 ft) in adjacent areas. Within the Palo Duro basin, local highs controlled the distribution of thin, interchannel flood-basin and lacustrine deposits. Thicker, braided-stream channel deposits follow local lows. Later movement on the Amarillo uplift broadly folded the Ogallala. The southern high plains surface subtly reflects basement structure, with topographic highs overlying basement highs, suggesting post-Ogallala deformation within the Palo Duro basin. The Amarillo uplift is approximately perpendicular to the Rio Grande rift and parallel to the direction of Basin and Range extension. Thus, the stress field that produced the rift may have caused strike-slip movement and reactivation of the Carson basin along the Amarillo uplift.

  8. Evaluation of community-level end points used in ecological risk assessments for Rocky Mountain streams impacted by mining

    SciTech Connect

    Clements, W.H.; Kiffney, P.M.; Medley, N.

    1994-12-31

    The objective of this research was to measure sensitivity and variability of community-level end points (e.g., species diversity, richness, abundance of dominant taxa) used in ecological risk assessments for Rocky Mountain streams impacted by mining. The authors used results from stream microcosm experiments and field biomonitoring studies to examine community responses of periphyton and benthic macroinvertebrates to heavy metals. In addition, they measured effects of potential confounding variables (e.g., stream size, elevation, discharge) on these responses. Field studies were conducted at six metal-impacted streams in central Colorado. Although all community end points were significantly affected at stations with the highest metal levels, results of multiple regression analysis showed that most variables were also affected by elevation. To validate benthic community end points and to measure sensitivity of these end points to metals, exposed periphyton and benthic macroinvertebrate communities to Cd, Cu, and Zn in stream microcosms. Results support findings of field studies and show that abundance of sensitive macroinvertebrates and tolerant diatoms were most useful for distinguishing among reference, impacted, and recovery sites. Because stream elevation confounds benthic community responses to metals, the authors suggest that experimental studies are necessary to validate the usefulness of community end points.

  9. The relative influences of climate and competition on tree growth along montane ecotones in the Rocky Mountains.

    PubMed

    Copenhaver-Parry, Paige E; Cannon, Ellie

    2016-09-01

    Distribution shifts of tree species are likely to be highly dependent upon population performance at distribution edges. Understanding the drivers of aspects of performance, such as growth, at distribution edges is thus crucial to accurately predicting responses of tree species to climate change. Here, we use a Bayesian model and sensitivity analysis to partition the effects of climate and crowding, as a metric of competition, on radial growth of three dominant conifer species along montane ecotones in the Rocky Mountains. These ecotones represent upper and lower distribution edges of two species, and span the distribution interior of the third species. Our results indicate a greater influence of climate (i.e., temperature and precipitation) than crowding on radial growth. Competition importance appears to increase towards regions of more favorable growing conditions, and precise responses to crowding and climate vary across species. Overall, our results suggest that climate will likely be the most important determinant of changes in tree growth at distribution edges of these montane conifers in the future. PMID:26873606

  10. The past as prelude to the future for understanding 21st-century climate effects on Rocky Mountain Trout

    USGS Publications Warehouse

    Isaak, Daniel J.; Muhlfeld, Clint C.; Todd, Andrew S.; Al-chokhachy, Robert; Roberts, James; Kershner, Jeffrey L.; Fausch, Kurt D.; Hostetler, Steven W.

    2012-01-01

    Bioclimatic models predict large reductions in native trout across the Rocky Mountains in the 21st century but lack details about how changes will occur. Through five case histories across the region, we explore how a changing climate has been affecting streams and the potential consequences for trout. Monitoring records show trends in temperature and hydrographs consistent with a warming climate in recent decades. Biological implications include upstream shifts in thermal habitats, risk of egg scour, increased wildfire disturbances, and declining summer habitat volumes. The importance of these factors depends on the context, but temperature increases are most relevant where population boundaries are mediated by thermal constraints. Summer flow declines and wildfires will be important where trout populations are fragmented and constrained to small refugia. A critical information gap is evidence documenting how populations are adjusting to long-term habitat trends, so biological monitoring is a priority. Biological, temperature, and discharge data from monitoring networks could be used to develop accurate vulnerability assessments that provide information regarding where conservation actions would best improve population resilience. Even with better information, future uncertainties will remain large due to unknowns regarding Earth's ultimate warming trajectory and how effects translate across scales. Maintaining or increasing the size of habitats could provide a buffer against these uncertainties.

  11. Relationship between deer mouse population parameters and dieldrin contamination in the Rocky Mountain Arsenal National Wildlife Refuge

    USGS Publications Warehouse

    Allen, D.L.; Otis, D.L.

    1998-01-01

    A small-mammal capture-recapture study was conducted in the Rocky Mountain Arsenal National Wildlife Refuge to quantify the effects of soil contamination with dieldrin on demographic parameters of deer mouse (Peromyscus maniculatus) populations. Increased dieldrin concentrations were significantly associated with larger deer mouse populations, although the size of populations on contaminated sites decreased during the study. The most parsimonious model for estimating survival rates was one in which survival was a decreasing function of dieldrin concentration. A significantly higher proportion of female deer mice in the populations residing on the more highly contaminated sites exhibited signs of reproductive activity. Development of genetic resistance in P. maniculatus to chronic chemical exposure is suggested as a possible mechanism responsible for the species' observed dominance and relatively high densities on contaminated sites. Under the additional stress of unfavorable environmental conditions, however, these populations may suffer disproportionately greater mortality. The design and analytical methods presented offer a rigorous statistical approach to assessing the effects of environmental contamination on small mammals at the population level.

  12. Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Emanuel, Ryan E.; Epstein, Howard E.; McGlynn, Brian L.; Welsch, Daniel L.; Muth, Daniel J.; D'Odorico, Paolo

    2010-11-01

    Vegetation water stress plays an important role in the movement of water through the soil-plant-atmosphere continuum. However, the effects of water stress on evapotranspiration (ET) and other hydrological processes at the watershed scale remain poorly understood due in part to spatially and temporally heterogeneous conditions within the watershed, especially in areas of mountainous terrain. We used a spatially distributed model to understand and evaluate the relationship between water stress and ET in a forested mountain watershed during the snow-free growing season. Vegetation water stress increased as the growing season progressed, due to continued drying of soils, and persisted late into the growing season, even as vapor pressure deficit decreased with lower temperatures. As a result, ET became decoupled from vapor pressure deficit and became increasingly dependent on soil moisture later in the growing season, shifting from demand limitation to supply limitation. We found water stress and total growing season ET to be distributed nonuniformly across the watershed due to interactions between topography and vegetation. Areas having tall vegetation and low topographic index experienced the greatest water stress, yet they had some of the highest evapotranspiration rates in the watershed.

  13. Measurements of surface energy budgets in the rocky mountains of Colorado

    NASA Technical Reports Server (NTRS)

    Sheaffer, John D.; Reiter, Elmar R.

    1987-01-01

    The surface energy balance of a mountain valley and a mountain peak were continuously monitored for periods of 126 and 34 days, respectively. The data yielded temporally resolved, high-quality measurements of the radiative, soil, and total atmospheric turbulent heat fluxes. Comparative data for the two sites reveal the effects of terrain setting and surface cover in modulating the heat balance. A procedure is suggested for accommodating local advective affects due to variable terrain and surface cover to allow partitioning of the total turbulent flux into values for sensible and latent heat. This procedure relies on a stability-dependent coefficient of turbulent transfer which is locally calibrated to systematically minimize advection-related errors. Scaling functions for the transfer coeffient are based on the effective blackbody temperature of the surface. Consequently, the procedure offers an opportunity for developing reliable bulk representations of heat transfer at the surface for use with remote sensing data and with models of the soil and surface cover in complex terrain.

  14. Diagnosis of Hydrological Resiliency and Functional Change in a Canadian Rockies Mountain Basin

    NASA Astrophysics Data System (ADS)

    Harder, P.; Pomeroy, J. W.; Siemens, E.; Fang, X.

    2015-12-01

    A well-instrumented headwater basin in the Canadian Rockies, Marmot Creek Research Basin, has experienced substantial warming at a range of elevations with evidence of hydrological functional change, but there has been no change observed in the streamflow regime over the last 50 years. Despite observations of increased air temperature of up to 4 oC in winter, concentration of precipitation into multiple day events in the spring, decreased peak snow accumulation at lower elevations by 50%, and decreased (increased) low (high) elevation groundwater storage; there are no trends in streamflow timing, peak or seasonal volumes since records began in 1962. This suggests a remarkable resilience in runoff generation to changing temperature and precipitation regime in a cold regions basin. To diagnose possible reasons for this resilience the Cold Regions Hydrological Model (CRHM) simulated the basin hydrological processes and response over two periods that had excellent driving meteorology; 1969-1987 and 2006-2013. CRHM calculates all of the relevant hydrological processes including blowing snow redistribution, intercepted snow and rain loss, sublimation, snowmelt, evapotranspiration, infiltration into frozen and unfrozen soils, overland flow, interflow in organic soils, sub-surface runoff in mineral soils, soil water redistribution and groundwater flow. Model results show that compared to the first period, increases in annual, basin-averaged fluxes occurred in the latter period for rainfall (37%), snowfall (20%), snowmelt (30%), evapotranspiration (23%), and sublimation (42%), but no significant trend in runoff developed between the two periods. Snowmelt, sublimation and runoff increases were primarily at high elevations and sometimes reversed at lower elevations, whilst evapotranspiration and rainfall increases were at all elevations. This suggests that there are compensatory, altitude dependent increases in evaporative losses from sublimation and evapotranspiration that

  15. The influence of topographic setting and weather type on the correlation between elevation and daily temperature measures in mountainous terrain in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wood, Wendy; Marshall, Shawn

    2016-04-01

    Temperature estimates for hydrological and ecological studies in mountainous regions are often based on lapse rate adjustments using sparse low elevation measurements. These measurements may not be representative of the area where estimates are required. This study examines the effects varying topographic settings under different weather types have on the temperature/elevation relationship. The Foothills Climate Array study recorded hourly temperature between 2004 and 2010 at ˜230 weather stations over an area of approximately 24 000 km2 in the Canadian Rocky mountains, extending to the Canadian prairies. 132 sites are considered mountain sites, comprising a range of elevation values, surface types and varied terrain morphology. Correlations are calculated between all station pairs for daily minimum and maximum temperatures, grouped by weather type for the 2006 data. Topographic and surface type characteristics - horizontal and vertical separation, height above valley bottom, slope aspect and angle and land surface type - for the 10 highest correlated neighbours for each site are examined as a means of determining which of these measures drives a similar behavior in temperature. Results indicate a weak temperature/elevation relationship for daily minimum temperatures. The average temperature/elevation correlation coefficient is -0.31 for daily minimum temperatures, varying from weaker than -0.2 for weather types where cold air pooling is a common occurrence to stronger than -0.6 for cool wet weather days. Daily maximum temperatures have an average correlation coefficient of -0.78, but the correlation weakens to -0.4 for cold weather events. There is a nonlinear maximum temperature/elevation relationship, with weak correlations below 2000 m and stronger correlations at higher elevations. Choosing sites with similar topographic settings does strengthen the correlation coefficient, but the temperature/elevation relationship remains weak due to large day to day

  16. Measuring Postfire Erosion Using Simulated Rill Experiments in Rocky Mountain Forests

    NASA Astrophysics Data System (ADS)

    Robichaud, P. R.; Wagenbrenner, J. W.; Elliot, W.; Brown, R.; Jordan, P.

    2012-12-01

    Increased wildfire activities near the wildland-urban interface and significant postfire hydrologic events have made the understanding and prediction of increased flood flows and erosion critical to land managers and water providers in recent years. Fire's consumption of the vegetation, litter and duff layer removes resistances to overland flow and surface erosion. Rill erosion is an important dominant process in burnt forests, is highly spatially variable, depends in part of soil burn severity, and local soil conditions. Increased knowledge of fire's effect on this erosion process will improve our understanding of variable postfire erosion rates from geographically different areas. This study quantified the effects of wildfire on rill erosion rates in steep burnt forest sites in southeastern and north central Washington (Columbia Complex Fire, North 25 Fire, School Fire, and Tripod Fire), north central Oregon (Tower Fire), northern Montana (Red Eagle Fire), central Colorado (Hayman Fire) and southern British Columbia (Terrace Mountain Fire). At each location, we applied concentrated flow at the top of each 9-m plot at five inflow rates for 12 min each. Runoff was sampled and flow properties were measured at each flow rate in each plot. Runoff rates varied by a factor of 2 and sediment fluxes varied by a factor of 10 in the first post-fire year. Further reduction occurred in the first few years after the fire at some sites corresponding to increases in vegetation and litter cover, indicating the vegetation recovery was an important factor in reducing rill runoff and erosion rates. The northernmost sites (Terrace Mountain Fire) had the lowest sediment flux, and the southernmost site (Hayman Fire) had some of the highest sediment flux rates. The differences in the measured responses indicate that a range of parameters is needed to accurately model rill erosion in burnt forests and that local conditions, such as geology and soil properties, can influence the erosion

  17. Home range characteristics of Mexican Spotted Owls in the Rincon Mountains, Arizona

    USGS Publications Warehouse

    Willey, David W.; Van Riper, Charpes III

    2014-01-01

    We studied a small isolated population of Mexican Spotted Owls (Strix occidentalis lucida) from 1996–1997 in the Rincon Mountains of Saguaro National Park, southeastern Arizona, USA. All mixed-conifer and pine-oak forest patches in the park were surveyed for Spotted Owls, and we located, captured, and radio-tagged 10 adult birds representing five mated pairs. Using radio-telemetry, we examined owl home range characteristics, roost habitat, and monitored reproduction within these five territories. Breeding season (Mar–Sep) home range size for 10 adult owls (95% adaptive kernel isopleths) averaged 267 ha (±207 SD), and varied widely among owls (range 34–652 ha). Mean home range size for owl pairs was 478 ha (±417 ha SD), and ranged from 70–1,160 ha. Owls that produced young used smaller home ranges than owls that had no young. Six habitat variables differed significantly between roost and random sites, including: percent canopy cover, number of trees, number of vegetation layers, average height of trees, average diameter of trees, and tree basal area. Radio-marked owls remained in their territories following small prescribed management fires within those territories, exhibiting no proximate effects to the presence of prescribed fire.

  18. Impacts of Wildfire on Interception Losses and Net Precipitation in a Sub-Alpine Rocky Mountain Watershed in Alberta, Canada.

    NASA Astrophysics Data System (ADS)

    Williams, C.; Silins, U.; Wagner, M. J.; Bladon, K. D.; Martens, A. M.; Anderson, A.; Stone, M.; Emelko, M. B.

    2014-12-01

    Interception of precipitation in sub-alpine forests is likely to be strongly reduced after wildfire, potentially producing large increases in net precipitation. Objectives of this study were to describe changes in rainfall and snow interception, and net precipitation after the severe 2003 Lost Creek wildfire as part of the Southern Rockies Watershed Project in the south-west Rocky Mountains of Alberta, Canada. Throughfall troughs and stemflow gauges were used to explore relationships between throughfall, stemflow, and net rainfall with variation in gross rainfall in burned and undisturbed stands during the summers of 2006-2008. These relationships were used to scale the effects of the wildfire on net rainfall for the first decade after the wildfire (2004-2013) using a 10 year rainfall record in the watershed. Annual snowpack surveys (5 snow courses in each of burned and reference stands) measured peak snowpack depth, density, and snow water equivalent (SWE) for this same period. Mean annual P was 1140 mm (684-1519 mm) during the first 10 years after the wildfire, with 61% falling as snow. Throughfall and stemflow in the burned forest accounted for 86% and 7% of gross rainfall, respectively, compared with 53% and 0.002% in the unburned stands in the summers of 2006-2008. Scaled rainfall interception relationships (=f(rainfall event size)) indicated annual increases in net rainfall were 192 mm/yr (133-347 mm) for 10 years after the fire. Similarly, mean increases in peak SWE were 134 mm/yr (93-216 mm). Collectively, the mean increase in net precipitation was 325 mm/yr (226-563 mm; 29%) for the first decade after the wildfire. Hydrologic forcing by increased net precipitation may be a particularly important element of wildfire impacts on sub-alpine watersheds. Furthermore, because of the very slow growth rates of sub-alpine forests, increases in net precipitation are likely to persist and affect precipitation-runoff relationships for decades in these environments.

  19. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    USGS Publications Warehouse

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; and others

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  20. Regional Assessment of the Relationship Between Landscape Attributes and Water Quality in Five National Parks of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Williams, M. W.; Campbell, D. H.

    2005-12-01

    Atmospheric deposition of pollutants threatens pristine environments around the world. However, scientifically-based decisions regarding management of these environments has been confounded by spatial variability of atmospheric deposition, particularly across regional scales at which resource management is typically considered. A statistically based methodology coupled within GIS is presented that builds on small alpine lake and sub-alpine catchments scale to identify deposition-sensitive lakes across larger watershed and regional scales. The sensitivity of 874 alpine and subalpine lakes to acidification from atmospheric deposition of nitrogen and sulfur was estimated using statistical models relating water quality and landscape attributes in Glacier National Park, Yellowstone National Park, Grand Teton National Park, Rocky Mountain National Park and Great Sand Dunes National Park and Preserve. Water-quality data measured during synoptic lake surveys were used to calibrate statistical models of lake sensitivity. In the case of nitrogen deposition, water quality data were supplemented with dual isotopic measurements of d15N and d18O of nitrate. Landscape attributes for the lake basins were derived from GIS including the following explanatory variables; topography (basin slope, basin aspect, basin elevation), bedrock type, vegetation type, and soil type. Using multivariate logistic regression analysis, probability estimates were developed for acid-neutralizing capacity, nitrate, sulfate and DOC concentrations, and lakes with a high probability of being sensitive to atmospheric deposition were identified. Water-quality data collected at 60 lakes during fall 2004 were used to validate statistical models. Relationships between landscape attributes and water quality vary by constituent, due to spatial variability in landscape attributes and spatial variation in the atmospheric deposition of pollutants within and among the five National Parks. Predictive ability, model

  1. Catchment response to bark beetle outbreak and dust-on-snow in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Livneh, Ben; Deems, Jeffrey S.; Buma, Brian; Barsugli, Joseph J.; Schneider, Dominik; Molotch, Noah P.; Wolter, K.; Wessman, Carol A.

    2015-04-01

    Since 2002, the headwaters of the Colorado River and nearby basins have experienced extensive changes in land cover at sub-annual timescales. Widespread tree mortality from bark beetle infestation has taken place across a range of forest types, elevation, and latitude. Extent and severity of forest structure alteration have been observed through a combination of aerial survey, satellite remote-sensing, and in situ measurements. Additional perturbations have resulted from deposition of dust from regional dry-land sources on mountain snowpacks that strongly alter the snow surface albedo, driving earlier and faster snowmelt runoff. One challenge facing past studies of these forms of disturbance is the relatively small magnitude of the disturbance signals within the larger climatic signal. The combined impacts of forest disturbance and dust-on-snow are explored within a hydrologic modeling framework. We drive the Distributed Hydrology Soil and Vegetation Model (DHSVM) with observed meteorological data, time-varying maps of leaf area index and forest properties to emulate bark beetle impacts, and parameterizations of snow albedo based on observations of dust forcing. Results from beetle-killed canopy alteration suggest slightly greater snow accumulation as a result of less interception and reduced canopy sublimation and evapotranspiration, contributing to overall increases in annual water yield between 8% and 13%. However, understory regeneration roughly halves the changes in water yield. A purely observation-based estimate of runoff coefficient change with cumulative forest mortality shows comparable sensitivities to simulated results; however, positive water yield changes are not statistically significant (p ⩽ 0.05). The primary hydrologic impact of dust-on-snow forcing is an increased rate of snowmelt associated with more extreme dust deposition, producing earlier peak streamflow rates on the order of 1-3 weeks. Simulations of combined bark beetle and dust

  2. Alpine plant community trends on the elk summer range of Rocky Mountain National Park, Colorado: An analysis of existing data

    USGS Publications Warehouse

    Zeigenfuss, Linda C.

    2006-01-01

    The majority of the elk (Cervus elaphus) population of Rocky Mountain National Park in Colorado summer in the park’s high-elevation alpine and subalpine meadows and willow krummholz. The park’s population of white-tailed ptarmigan (Lagopus leucurus altipetens) depends on both dwarf and krummholz willows for food and cover. Concern about the effects of elk herbivory on these communities prompted the monitoring of 12 vegetation transects in these regions from 1971 to 1996. Over this 25-year period, data were collected on plant species cover and frequency and shrub heights. These data have not been statistically analyzed for trends in the measured variables over time to determine changes in species abundance. Krummholz willow species (Salix planifolia, S. brachycarpa) declined 17–20 percent in cover and about 25 centimeters in height over the study period. Graminoids (particularly Deschampsia caespitosa, Carex, and Poa) increased slightly from 1971 to 1996. No significant increases of nonnative plant species were observed. An increase in presence of bare ground over the 25-year period warrants continued measurement of these transects. Lack of good data on elk density, distribution, or use levels precludes correlating changes in plant species cover, frequency, or heights with elk population trends. I recommend development of a more rigorously designed monitoring program that includes these transects as well as others chosen on a random or stratified design and consistent measurement protocol and sampling intervals. Some method of quantifying elk use, either through measurement of plant utilization, pellet counts, or census-type surveys, would allow correlation of changes in plant species over time with changes in elk distribution and density on the park’s alpine and subalpine regions.

  3. Sediment Transport and Bed Material Grain Size Distributions along the Upper Colorado River, Rocky Mountain National Park, CO

    NASA Astrophysics Data System (ADS)

    Rathburn, S. L.; Grimsley, K. J.; Rubin, Z.

    2011-12-01

    The Upper Colorado River in Rocky Mountain National Park is dynamically adjusting to approximately 35,000 m3 of sediment introduced by a debris flow in May 2003. Bed material and sediment transport measurements since 2003 indicate that the debris flow source material is the dominant control on grain size distributions of bed material and bedload in transport. Hydrothermally altered Tertiary welded rhyolite tuff within moraines on hillslopes comprised the bulk of debris flow material initially and this material has since been remobilized and sorted by fluvial processes, forming extensive alluvium along the Colorado River. Oxidation of the ~5% pyrite in the tuff causes volume changes and in-situ disintegration of the alluvium, creating abundant sand- and gravel-sized material. At temporary gaging stations installed downstream from the main debris flow fan, measured water discharge spans a threefold range and bedload a six order-of-magnitude range in transport rate. Maximum bedload transport exceeds 1000 g/s at the highest measured discharge (3.5 m3/s) when the proportion of sand was >80%. Fractional bedload transport is related to proximity to the fan source, bed slope, and discharge, with 4-16 mm gravel mobilized closer to the source at higher bed slopes and discharges. The high sand content within transported bedload is in contrast to bed material grain size distributions which, during low flow, contain less than 15% sand and a D50 that has varied from fine to very coarse gravel. The bed D50 declined by two size classes at gaging stations in 2011 due to extensive aggradation as a result of the highest discharge in 60 years of record. Understanding the river's response to the sand and gravel input, as well as the fate of the hydrothermally altered material, will facilitate decisions on the appropriate mixed-size sediment transport model to predict size sorting and transient channel adjustments to plan for restoration along the Upper Colorado River.

  4. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea

    PubMed Central

    Thairu, Margaret W.; Brunet, Johanne

    2015-01-01

    Background and Aims Flower colour varies within and among populations of the Rocky Mountain columbine, Aquilegia coerulea, in conjunction with the abundance of its two major pollinators, hawkmoths and bumble-bees. This study seeks to understand whether the choice of flower colour by these major pollinators can help explain the variation in flower colour observed in A. coerulea populations. Methods Dual choice assays and experimental arrays of blue and white flowers were used to determine the preference of hawkmoths and bumble-bees for flower colour. A test was made to determine whether a differential preference for flower colour, with bumble-bees preferring blue and hawkmoths white flowers, could explain the variation in flower colour. Whether a single pollinator could maintain a flower colour polymorphism was examined by testing to see if preference for a flower colour varied between day and dusk for hawkmoths and whether bumble-bees preferred novel or rare flower colour morphs. Key Results Hawkmoths preferred blue flowers under both day and dusk light conditions. Naïve bumble-bees preferred blue flowers but quickly learned to forage randomly on the two colour morphs when similar rewards were presented in the flowers. Bees quickly learned to associate a flower colour with a pollen reward. Prior experience affected the choice of flower colour by bees, but they did not preferentially visit novel flower colours or rare or common colour morphs. Conclusions Differences in flower colour preference between the two major pollinators could not explain the variation in flower colour observed in A. coerulea. The preference of hawkmoths for flower colour did not change between day and dusk, and bumble-bees did not prefer a novel or a rare flower colour morph. The data therefore suggest that factors other than pollinators may be more likely to affect the flower colour variation observed in A. coerulea. PMID:25808657

  5. Wolf population dynamics in the U.S. Northern Rocky Mountains are affected by recruitment and human-caused mortality

    USGS Publications Warehouse

    Gude, J.A.; Mitchell, M.S.; Russell, R.E.; Sime, C.A.; Bangs, E.E.; Mech, L.D.; Ream, R.R.

    2012-01-01

    Reliable analyses can help wildlife managers make good decisions, which are particularly critical for controversial decisions such as wolf (Canis lupus) harvest. Creel and Rotella (2010) recently predicted substantial population declines in Montana wolf populations due to harvest, in contrast to predictions made by Montana Fish, Wildlife and Parks (MFWP). We replicated their analyses considering only those years in which field monitoring was consistent, and we considered the effect of annual variation in recruitment on wolf population growth. Rather than assuming constant rates, we used model selection methods to evaluate and incorporate models of factors driving recruitment and human-caused mortality rates in wolf populations in the Northern Rocky Mountains. Using data from 27 area-years of intensive wolf monitoring, we show that variation in both recruitment and human-caused mortality affect annual wolf population growth rates and that human-caused mortality rates have increased with the sizes of wolf populations. We document that recruitment rates have decreased over time, and we speculate that rates have decreased with increasing population sizes and/or that the ability of current field resources to document recruitment rates has recently become less successful as the number of wolves in the region has increased. Estimates of positive wolf population growth in Montana from our top models are consistent with field observations and estimates previously made by MFWP for 2008-2010, whereas the predictions for declining wolf populations of Creel and Rotella (2010) are not. Familiarity with limitations of raw data, obtained first-hand or through consultation with scientists who collected the data, helps generate more reliable inferences and conclusions in analyses of publicly available datasets. Additionally, development of efficient monitoring methods for wolves is a pressing need, so that analyses such as ours will be possible in future years when fewer resources

  6. Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Alisa, Mast M.; Wickland, K.P.; Striegl, R.T.; Clow, D.W.

    1998-01-01

    Fluxes of CO2 and CH4 through a seasonal snowpack were measured in and adjacent to a subalpine wetland in Rocky Mountain National Park, Colorado. Gas diffusion through the snow was controlled by gas production or consumption in the soil and by physical snowpack properties. The snowpack insulated soils from cold midwinter air temperatures allowing microbial activity to continue through the winter. All soil types studied were net sources of CO2 to the atmosphere through the winter, whereas saturated soils in the wetland center were net emitters of CH4 and soils adjacent to the wetland were net CH4 consumers. Most sites showed similar temporal patterns in winter gas fluxes; the lowest fluxes occurred in early winter, and maximum fluxes occurred at the onset of snowmelt. Temporal changes in fluxes probably were related to changes in soil-moisture conditions and hydrology because soil temperatures were relatively constant under the snowpack. Average winter CO2 fluxes were 42.3, 31.2, and 14.6 mmol m-2 d-1 over dry, moist, and saturated soils, respectively, which accounted for 8 to 23% of the gross annual CO2 emissions from these soils. Average winter CH4 fluxes were -0.016, 0.274, and 2.87 mmol m-2 d-1 over dry, moist, and saturated soils, respectively. Microbial activity under snow cover accounted for 12% of the annual CH4 consumption in dry soils and 58 and 12% of the annual CH4 emitted from moist and saturated soils, respectively. The observed ranges in CO2 and CH4 flux through snow indicated that winter fluxes are an important part of the annual carbon budget in seasonally snow-covered terrains.

  7. Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal

    SciTech Connect

    Swanstrom, C.P.; Besmer, M.

    1995-03-09

    Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

  8. Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky Mountain streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2003-01-01

    Secondary production estimates from several Rocky Mountain streams were used to test hypotheses about the effects of chronic metal contamination on insect populations and ecosystem processes. Quantitative samples of chemistry, habitat, and benthic insects were collected monthly during the ice-free period (May-November) from five 2nd- to 3rd-order streams that varied primarily in Zn contamination. Secondary production was estimated for the 19 dominant taxa using increment-summation, size-frequency, and P/B methods. Uncertainty was estimated by bootstrapping estimates of mean abundance, biomass, and cohort production intervals. Secondary production of metal-sensitive Heptageniidae (Rhithrogena robusta, Cinygmula spp., and Epeorus longimanus) was lower in lightly to moderately contaminated streams than in reference streams. Experiments were done to determine whether herbivore growth was influenced by food quality in contaminated streams. Growth estimates from field and microcosm experiments revealed that low mayfly production in contaminated streams was caused mostly by reduced population abundances. Production of predatory stoneflies was also lower in contaminated streams than reference streams. Estimates of the trophic basis of production revealed that, although the relative contribution to community production from various food sources was similar among streams, total production attributable to algae and animal prey declined in contaminated streams. Much of the reduction in herbivory in contaminated streams was the result of lower production of heptageniids, especially R. robusta. Assemblage and taxon-specific estimates of secondary production were sensitive to variation in metal contamination and indicated that relatively low metal concentrations may have ecosystem-wide consequences for energy flow.

  9. PAN Among the Peaks: A preliminary analysis of new peroxyacetyl nitrate (PAN) measurements in Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Callahan, S. L.; Fischer, E. V.; Zhou, Y.; Sive, B. C.

    2014-12-01

    Several different classes of organic nitrogen compounds are produced when volatile organic compounds (VOCs) are oxidized in the presence of nitrogen oxide radicals (NOx). The peroxyacyl nitrates and organic nitrates are particularly important as they serve as temporary or permanent sinks for NOx. PAN (peroxyacetyl nitrate, CH3C(O)O2NO2) is the most important NOx reservoir, and its eventual decomposition acts as a pathway by which NOx reaches the remote troposphere. The emissions from oil and gas extraction represent a new VOC regime that could change the local fate of NOx because the particular mix of VOCs emitted from oil and gas operations should favor PAN formation. We present new PAN observations from Rocky Mountain National Park (ROMO) for the period 11 July to 15 August. The observations were collected during the Colorado Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ). PAN was measured at ROMO with a custom built gas chromatograph with an electron capture detector (GC-ECD). At the time of submission, preliminary campaign mean and maximum PAN mixing ratios were 170 pptv and 1345 pptv respectively. Initial analyses of the data collected to date suggest that the maximum PAN mixing ratios at ROMO occurred on the afternoons of 22 and 23 July. Co-located measurements of VOCs on 22 July indicate that the elevated PAN coincided with elevated abundances light alkanes and other secondary species (O3 and alkyl nitrates). The ratio of i-pentane to n- pentane (≤1) indicates that this air mass was strongly impacted by oil and gas production operations.

  10. Mineral nitrogen transformations in and under seasonal snow in a high- elevation catchment in the Rocky Mountains, United States

    USGS Publications Warehouse

    Williams, M.W.; Brooks, P.D.; Mosier, A.; Tonnessen, K.A.

    1996-01-01

    In an effort to understand sources of nitrate (NO3/-) in surface waters of high-elevation catchments, nitrogen (N) transformations in and under seasonal snow were investigated from 1993 to 1995 on Niwot Ridge, an alpine ecosystem at 3,500 m located in the Colorado Front Range of the Rocky Mountains. Ammonium (NH4/+) and NO3/- labeled with 15N applied as nonconservative tracers to the snow showed no evidence of nitrification in the snowpack. Furthermore, NH4/+ movement through the amended snowpack was highly correlated with a conservative chloride tracer (r2 = 0.99). In an unamended snowpack NH4/+ concentrations in meltwater before contact with the ground were highly correlated with NO3/- concentrations (r2 = 0.98), which is consistent with no nitrification in the snowpack. The isotopically labeled 15NH4/+ applied to the snowpack was found in underlying soils, showing that NH4/+ released from snow can be rapidly immobilized. Resin bag (mixed-bed ion-exchange resins) measurements (n = 22) showed that 80% of the mobile inorganic N in unamended subnivial soils was NO3/-. Measurements of KCl-extractable inorganic N from surface soils showed that highest values were prior to the initiation of snowmelt and lowest values were during the growing season. The natural ??15N abundance of unamended soils was negative and ranged from -12 to -2, suggesting that atmospheric deposition of ??15N- depleted N is an important component of N cycling in these alpine soils. These results suggest that soil mineralization under seasonal snow, rather than snowmelt release of NO3/-, may control NO3/- concentrations in surface waters of high-elevation catchments.

  11. Stream-Aquifer Exchange of Water and Nitrogen Along a Beaver-Dammed Stream Draining a Rocky Mountain Valley

    NASA Astrophysics Data System (ADS)

    Shaw, E. L.; Westbrook, C. J.

    2009-05-01

    Dynamic exchange of water across the stream-riparian zone interface is important in increasing stream water transit time through basins and enhancing redox-sensitive biogeochemical reactions that influence downstream water quality and ecosystem health. Such exchange may be enhanced by beaver dams, which are common throughout lower-order streams in North America and Europe. We investigated lateral exchanges of water and nitrogen along a beaver dammed, second-order stream draining a ˜1.3 km2 Canadian Rocky Mountain peat valley bottom. Measurements of hydraulic heads and chloride concentrations from a network of 80 water table wells were used to identify areas of stream water and groundwater mixing in the riparian zone, and their spatiotemporal dynamics in summer 2008. Stream stage was found to be the greatest factor affecting lateral movement of channel water into the riparian zone. Channel water flowed laterally into the riparian area upstream of the dams and back to the channel downstream of the dams. Little stream-aquifer exchange was found where dams were not present except during an overbank flood. Nitrate and DON concentrations were similar across the riparian area (P>0.05), regardless of whether the water was classified as groundwater, stream water or mixed water. In contrast, ammonium and DOC concentrations were significantly higher in the wells classified as groundwater or mixed water than those classified as stream water. Potential mass flux calculations show the riparian area immediately downstream of the beaver dam was a source of ammonium and nitrate to the stream, and a sink along the rest of the reach. DON shows similar trends with the exception of a net potential influx immediately upstream of the beaver dam. This work will aid in the understanding of stream-aquifer exchange and nitrogen cycling in riparian areas, and the effects that beaver have on these processes.

  12. Using Seismic Refraction and Ground Penetrating Radar (GPR) to Characterize the Valley Fill in Beaver Meadows, Rocky Mountain National Park

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Harry, D. L.; Wohl, E. E.

    2010-12-01

    This study is one of the first to use near surface geophysical techniques to characterize the subsurface stratigraphy in a high alpine, low gradient valley with a past glacial history and to obtain a preliminary grasp on the impact of Holocene beaver activity. Approximately 1 km of seismic refraction data and 5 km of GPR data were collected in Beaver Meadows, Rocky Mountain National Park. An asymmetric wedge of sediment ranging in depth from 0-20 m transverse to the valley profile was identified using seismic refraction. Complementary analysis of the GPR data suggests that the valley fill can be subdivided into till deposited during the Pleistocene glaciations and alluvium deposited during the Holocene. Two main facies were identified in the GPR profiles through pattern recognition. Facie Fd, which consists of chaotic discontinuous reflectors with an abundance of diffractions, is interpreted to be glacial till. Facie Fc, which is a combination of packages of complex slightly continuous reflectors interfingered with continuous horizontal to subhorizontal reflectors, is interpreted to be post-glacial alluvium and includes overbank, pond and in-channel deposits. Fc consistently overlies Fd throughout the study area and is no more than 7 m thick in the middle of the valley. The thickness of Holocene sedimentation (<7 m) is much less than the total amount of valley fill identified in the seismic refraction survey (0-20 m). A subfacie of Fc, Fch, which has reflectors with long periods was identified within Fc and is interpreted to be ponded sediments. The spatial distribution of facie Fch, along with: slight topographical features resembling buried beaver dams, a high abundance of fine sediment including silts and clays, historical records of beavers, and the name "Beaver Meadows" all suggest that Holocene beaver activity played a large role in sediment accumulation at this site, despite the lack of surficial relict beaver dams containing wood.

  13. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park

    USGS Publications Warehouse

    McKnight, Diane M.; Harnish, R.; Wershaw, R. L.; Baron, J.S.; Schiff, S.

    1997-01-01

    The chemical relationships among particulate and colloidal organic material and dissolved fulvic acid were examined in an alpine and subalpine lake and two streams in Loch Vale Watershed, Rocky Mountain National Park. The alpine lake, Sky Pond, had the lowest dissolved organic carbon (DOC) (0.37 mgC/L), the highest particulate carbon (POC) (0.13 mgC/L), and high algal biomass. The watershed of Sky Pond is primarily talus slope, and DOC and POC may be autochthonous. Both Andrews Creek and Icy Brook gain DOC as they flow through wet sedge meadows. The subalpine lake, The Loch, receives additional organic material from the surrounding forest and had a higher DOC (0.66 mgC/L). Elemental analysis, stable carbon isotopic compositon, and 13C-NMR characterization showed that: 1) particulate material had relatively high inorganic contents and was heterogeneous in compositon, 2) colloidal material was primarily carbohydrate material with a low inorganic content at all sites; and 3) dissolved fulvic acid varied in compositon among sites. The low concentration and carbohydrate-rich character of the colloidal material suggests that this fraction is labile to microbial degradation and may be turning over more rapidly than particulate fractions or dissolved fulvic acid. Fulvic acid from Andrews Creek had the lowest N content and aromaticity, whereas Sky Pond fulvic acid had a higher N content and lower aromaticity than fulvic acid from The Loch. The UV-visible spectra of the fulvic acids demonstrate that variation in characteristics with sources of organic carbon can explain to some extent the observed nonlinear relationship between UV-B extinction coefficients and DOC concentrations in lakes.

  14. Reactive nitrogen in Rocky Mountain National Park during the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ)

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Benedict, K. B.; Evanoski-Cole, A. R.; Zhou, Y.; Sullivan, A.; Day, D.; Sive, B. C.; Zondlo, M. A.; Schichtel, B. A.; Vimont, J.; Collett, J. L., Jr.

    2014-12-01

    The Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) took place in July-August 2014. This collaborative study was aimed at characterizing those processes which control air quality along Colorado's Front Range. Although the study was largely focused on ozone, an additional goal of the study included characterizing contributions from Front Range sources and long-range transport to total reactive nitrogen in Rocky Mountain National Park (ROMO). Import of reactive nitrogen into ROMO and other pristine, high elevation areas has the potential to negatively impact terrestrial and aquatic ecosystems. We present measurements of reactive nitrogen species measured within ROMO during FRAPPÉ, and compare these data to measurements made in the surrounding areas. At our monitoring site in ROMO, co-located with IMPROVE and CASTNet monitoring, measurements of NO, NO2, NOx, NOy, NH3, and total reactive nitrogen (TNx) were made at high time resolution. Additional measurements of NH3, HNO3 and PM2.5 ions were made at hourly resolution using a MARGA and also at 24-hour time resolution using URG denuder-filter pack sampling. Precipitation samples also were collected to quantify wet deposition of ammonium, nitrate, and organic nitrogen. Finally, measurements of organic gases were made using online gas chromatography and proton transfer reaction-mass spectrometry. Preliminary results for ammonia show both a diel pattern, with concentrations increasing each morning, and a strong dependence on wind direction, implicating the importance of transport. Higher concentrations of NOx and NOy also were observed in the daytime, but in general these patterns differed from that of ammonia. Several upslope events were observed during the measurement period during which NOx, NH3, 2-propylnitrate, 2-butylnitrate, ethane, butane, and pentane were observed to increase in concentration along with ozone.

  15. Meltwater Runoff and Storage Based on Dielectric Properties of the Supraglacial Snowpack on Haig Glacier, Canadian Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Samimi, S.; Marshall, S. J.

    2015-12-01

    Meltwater refreezing and storage in the supraglacial snowpack can reduce and delay meltwater runoff on temperate alpine glaciers, but models of glacier runoff that are used to examine mass balance and glacier water resources do not generally account for this storage. Past studies on Haig Glacier in the Canadian Rocky Mountains show a consistent over-estimate of the amount of summer runoff from the glacier, based on modeled melt vs. measured discharge. We hypothesized that much of the 'missing runoff' was associated with overnight refreezing of meltwater that is ponded on the glacier surface and stored in pore space of the seasonal snowpack. Additional energy is required to melt this refrozen water each day, such that a large fraction of the meltwater that is generated on the glacier is 'recycled' water. To test this idea, we measured the temperature and meltwater content in the upper 40 cm of the supraglacial snowpack of Haig Glacier in spring and summer 2015. Thermistors and TDR probes were installed at 10-cm intervals at two sites in the glacier accumulation area. A Denoth meter was used to make point measurements for comparison with the TDR inferences of snowpack dielectric properties. These data are supplemented by automatic weather station data, used to calculate surface melt rates, and discharge measurements in the glacier outlet stream. We observed a strong diurnal cycle in snow water content, with the snowpack drying out overnight, but contrary to what we expected, there was negligible subsurface meltwater refreezing during our study. Overnight refreezing was restricted to a thin surface layer of the snowpack, while overnight drying was likely due to meltwater drainage to the snow-ice interface. We use our observations to calibrate and test a model of meltwater runoff from the glacier from summer 2015.

  16. In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk.

    PubMed

    Selariu, Anca; Powers, Jenny G; Nalls, Amy; Brandhuber, Monica; Mayfield, Amber; Fullaway, Stephenie; Wyckoff, Christy A; Goldmann, Wilfred; Zabel, Mark M; Wild, Margaret A; Hoover, Edward A; Mathiason, Candace K

    2015-11-01

    The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam-calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations. PMID:26358706

  17. Forecasting Distributional Responses of Limber Pine to Climate Change at Management-Relevant Scales in Rocky Mountain National Park

    PubMed Central

    Monahan, William B.; Cook, Tammy; Melton, Forrest; Connor, Jeff; Bobowski, Ben

    2013-01-01

    Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m2) show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change vulnerability and used to

  18. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  19. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    USGS Publications Warehouse

    Miao, X.; Lindsey, D.A.; Lai, Z.; Liu, Xiuying

    2010-01-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2. Ma) and the youngest terraces (T0-T3, ?. 0.15. Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology. ?? 2009.

  20. Contingency table analysis of pebble lithology and roundness: A case study of Huangshui River, China and comparison to rivers in the Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Miao, Xiaodong; Lindsey, David A.; Lai, Zhongping; Liu, Xiaodong

    2010-03-01

    Contingency table analysis of pebble lithology and roundness is an effective way to identify the source terrane of a drainage basin and to distinguish changes in basin size, piracy, tectonism, and other events. First, the analysis to terrace gravel deposited by the Huangshui River, northeastern Tibet Plateau, China, shows statistically contrasting pebble populations for the oldest terrace (T7, Dadongling, 1.2 Ma) and the youngest terraces (T0-T3, ≤ 0.15 Ma). Two fluvial processes are considered to explain the contrast in correlation between lithology and roundness in T7 gravel versus T0-T3 gravel: 1) reworking of T7 gravel into T0-T3 gravel and 2) growth in the size of the river basin between T7 and T0-T3 times. We favor growth in basin size as the dominant process, from comparison of pebble counts and contingency tables. Second, comparison of results from Huangshui River of China to three piedmont streams of the Rocky Mountains, USA highlights major differences in source terrane and history. Like Rocky Mountain piedmont gravel from Colorado examples, the Huangshui gravels show a preference (observed versus expected frequency) for rounded granite. But unlike Rocky Mountain gravel, Huangshui gravel shows a preference for angular quartzite and for rounded sandstone. In conclusion, contrasting behavior of lithologies during transport, not always apparent in raw pebble counts, is readily analyzed using contingency tables to identify the provenance of individual lithologies, including recycled clasts. Results of the analysis may help unravel river history, including changes in basin size and lithology.

  1. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    NASA Astrophysics Data System (ADS)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  2. Engelmann spruce tree-ring chronologies from Fraser Experimental Forest, Colorado: Potential for a long-term temperature reconstruction in the central Rocky Mountains

    SciTech Connect

    Brown, P.M.; Shepperd, W.D.

    1995-12-31

    Tree-ring width chronologies from Engelmann spruce at two treeline sites in the central Rocky Mountains contain similar high and low frequency patterns in ring width, indicative of regional climate control on tree growth. Comparisons of annual ring widths with instrumental climate data show relationships with late spring temperature fluctuations on annual to century time scales. Ring width patterns in the earliest dated trees at one of the sites also infers upward migration in treeline at the site around A.D. 1250. No unusual growth increases were seen in recent years, suggesting that these trees have not recorded warmer conditions possibly associated with global climate change.

  3. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    SciTech Connect

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  4. Mantle source volumes and the origin of the mid-Tertiary ignimbrite flare-up in the southern Rocky Mountains, western U.S.

    NASA Astrophysics Data System (ADS)

    Farmer, G. Lang; Bailley, Treasure; Elkins-Tanton, Linda T.

    2008-04-01

    Voluminous intermediate to silicic composition volcanic rocks were generated throughout the southern Rocky Mountains, western U.S., during the mid-Tertiary "ignimbrite flare-up", principally at the San Juan and Mogollon-Datil volcanic fields. At both volcanic centers, radiogenic isotope data have been interpreted as evidence that 50% or more of the volcanic rocks (by mass) were derived from mantle-derived, mafic parental magmas, but no consensus exists as to whether melting was largely of lithospheric or sub-lithospheric mantle. Recent xenolith studies, however, have revealed that thick (> 100 km), fertile, and hydrated continental lithosphere was present beneath at least portions of the southern Rocky Mountains during the mid-Tertiary. The presence of such thick mantle lithosphere, combined with an apparent lack of syn-magmatic extension, leaves conductive heating of lithospheric mantle as a plausible method of generating the mafic magmas that fueled the ignimbrite flare-up in this inland region. To further assess this possibility, we estimated the minimum volume of mantle needed to generate the mafic magmas parental to the preserved mid-Tertiary igneous rocks. Conservative estimates of the mantle source volumes that supplied the Mogollon-Datil and San Juan volcanic fields are ˜ 2 M km 3 and ˜ 7 M km 3, respectively. These volumes could have comprised only lithospheric mantle if at least the lower ˜ 20 km of the mantle lithosphere beneath the entire southern Rocky Mountains region underwent partial melting during the mid-Tertiary and if the resulting mafic magmas were drawn laterally for distances of up to ˜ 300 km into each center. Such widespread melting of lithospheric mantle requires that the lithospheric mantle have been uniformly fertile and primed for melting in the mid-Tertiary, a possibility if the lithospheric mantle had experienced widespread hydration and refrigeration during early Tertiary low angle subduction. Exposure of the mantle lithosphere

  5. Rocky Mountain Arsenal pilot exposure study. Part 2. Analysis of exposure to diisopropylmethylphosphate, aldrin, dieldrin, endrin, isodrin and chlorophenylmethsulfone. Final report

    SciTech Connect

    Tsongas, T.A.; Reif, J.S.; Mitchel, J.

    1996-08-01

    A pilot exposure study was undertaken in communities surrounding Rocky Mountain Arsenal (RMA) in order to determine whether exposures to several chemicals were greater among persons who resided there than among residents of a comparison area. In Part II of the exposure study, participants were screened for four organochlorine pesticides (dieldrin, endrin, aldrin, and isodrin): and diisopropylmethylphosphonate (DIMP), and byproduct of nerve agent manufacture, which was producted at RMA by the the United States Army. Urine samples were also screen for chlorophenyl-methylsulfone (CPMSO2), and oxidation product of chlorophenyl-methylsulfide (CPMS). CPMS is an intermediate in the synthesis of nitralin, a herbicide once manufactured at the RMA.

  6. Simulating the effects of fire and climate change on northern Rocky Mountain landscapes using the ecological process model FIRE-BGC

    SciTech Connect

    Keane, R.E.; Ryan, K.; Running, S.W.

    1995-12-31

    A mechanistic successional model, FIRE-BGC (a FIRE BioGeoChemical succession model), has been developed to investigate the role of fire and climate on long-term landscape dynamics in northern Rocky Mountain coniferous forests. This FIRE-BGC application explicitly simulates fire behavior and effects on landscape characteristics. Predictions of evapotranspiration are contrasted with and without fire over 200 years of simulation for the McDonald Drainage, Glacier National Park under current climate conditions are provided as an example of the potential of FIRE-BGC.

  7. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Fang, X.; Pomeroy, J. W.; Ellis, C. R.; MacDonald, M. K.; DeBeer, C. M.; Brown, T.

    2013-04-01

    One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM) is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4 km2), located in the Front Ranges of the Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil, and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during the period 2005-2011 and were compared with detailed field observations of several hydrological cycle components. The results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during the period 2007-2011, with a small bias and normalised root mean square difference (NRMSD) ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and treeline larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during the period 2006-2011, with a NRMSD ranging from 17 to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during the period 2006-2011 revealed that the model generally predicted well compared to observations at the basin scale, with a NRMSD of 60% and small model bias (1%), while at the sub-basin scale NRMSDs were larger, ranging from 72 to 76%, though overestimation or underestimation for the cumulative seasonal discharge was within 29%. Timing of discharge was better predicted at the Marmot Creek basin outlet, having a Nash

  8. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Fang, X.; Pomeroy, J. W.; Ellis, C. R.; MacDonald, M. K.; DeBeer, C. M.; Brown, T.

    2012-11-01

    One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM) is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4km2), located in the Front Ranges of Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during 2005-2011 and were compared with detailed field observations of several hydrological cycle components. Results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during 2007-2011, with a small bias and normalized root mean square difference (NRMSD) ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and tree-line larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during 2006-2011, with a NRMSD ranging from 17% to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during 2006-2011 revealed the model generally predicted well compared to observations at the basin scale, with a NRMSD of 77% and small model bias (6%), but at the sub-basin scale NRMSD were larger, ranging from 86 to 106%; though overestimation or underestimation for the cumulative seasonal discharge was within 24%. Timing of discharge was better predicted at the Marmot Creek basin outlet having a Nash-Sutcliffe efficiency (NSE) of 0.31 compared to the outlets of the sub

  9. Digital-transport model study of Diisopropylmethylphosphonate (DIMP) ground-water contamination at the Rocky Mountain Arsenal, Colorado

    USGS Publications Warehouse

    Warner, James W.

    1979-01-01

    Diisopropylmethylphosphonate (DIMP) is an organic compound produced as a by-product of the manufacture and detoxification of GB nerve gas. Ground-water contamination by DIMP from the disposal of wastes into unlined surface ponds at the Rocky Mountain Arsenal occurred from 1952 to 1956. A digital-transport model was used to determine the effects on ground-water movement and on DIMP concentrations in the ground water of a bentonite barrier in the aquifer near the northern boundary of the arsenal. The transport model is based on an iterative-alternating-direction-implicit mathematical solution of the ground-water-flow equation coupled with a method-of-characteristics solution of the solute-transport equation. The model assumes conservative (nonreactive) transient transport of DIMP and steady-state ground-water flow. In the model simulations, a bentonite barrier was assumed that was impermeable and penetrated the entire saturated thickness of the aquifer. Ground water intercepted by the barrier was assumed to be pumped by wells located south (upgradient) of the barrier, to be treated to remove DIMP, and to be recharged by pits or wells to the aquifer north (downgradient) of the barrier. The amount of DIMP transported across the northern boundary of the arsenal was substantially reduced by a ground-water-barrier system of this type. For a 1,500-foot-long bentonite barrier located along the northern boundary of the arsenal near D Street, about 50 percent of the DIMP that would otherwise cross the boundary would be intercepted by the barrier. This barrier configuration and location were proposed by the U.S. Army. Of the ground water with DIMP concentrations greater than 500 micrograms per liter, the safe DIMP-concentration level determined by the U.S. Army, about 72 percent would be intercepted by the barrier system. The amount of DIMP underflow intercepted may be increased to 65 percent by doubling the pumpage, or to 73 percent by doubling the length of the barrier

  10. New paleomagnetic results from Middle and Late Proterozoic intrusive rocks of the central and southern Rocky Mountains

    SciTech Connect

    Harlan, S.S. )

    1993-04-01

    Paleomagnetic results from Proterozoic intrusive rocks from the central and southern Rocky Mountains yield data that provide definition to the North American APW path. Results from the ca. 1420 Ma Laramie anorthosite (LA) and Sherman Granite (SG) yield dual polarity magnetizations; a combined pole (7[degree]S, 215[degree]E, A[sub 95] = 4[degree]) is essentially identical to 1400 Ma poles from elsewhere in North America. Group A dikes from the Tobacco Root (TR) Mtns, MT, along the southern margin of the Belt Basin, have a dual-polarity remanence with a pole at 10[degree]N, 222[degree]E (A[sub 95] = 11[degree]) that plots slightly north of the LA/SG and other poles of ca. 1450 Ma. Comparison of Belt Supergroup poles, assuming coherence of the Belt terrane and interior Laurentia, with 1400 Ma poles and those of the well-defined western arm of the Logan Loop of the N. American APW path, would seem to indicate that the age of most Belt poles are in the range of 1300--1400 Ma, although this age assignment conflicts with available geochronologic data. Results from 1100 Ma diabase sheets from central AZ yield two distinct, normal and reverse polarity magnetizations: ADn and ADr. ADn gives a pole at 23[degree]N, 181[degree]E (A[sub 95] = 8[degree]) that overlaps poles of ca. 1100 Ma from the midcontinent rift (MR). Pole ADr is located at 38[degree]N, 248[degree]E (A[sub 95] = 39[degree]); the large uncertainty of this pole precludes its use in defining the APW path. All dikes are of WNW trend and several from the TR Mtns and the Christmas Lake dike from the Beartooth uplift give hornblende [sup 40]Ar/[sup 39]Ar ages of 760--770 Ma. The data are interpreted to provide evidence for Late Proterozoic mafic magmatism along the W and SW margin of the Wyoming Province, possibly related to crustal extension accompanying deposition of the Windermere Group in the northern part of the Cordillera and volcanism and sedimentation in SE Idaho and NE Washington.

  11. A New Look at the Lithospheric Structure of the Southern Rocky Mountains and the Cheyenne Belt Suture

    NASA Astrophysics Data System (ADS)

    Rumpfhuber, E.; Keller, G.; Velasco, A. A.

    2008-12-01

    We have used the Southern Rocky Mountains and the Cheyenne belt suture as a test bed for integrating tectonic scale controlled- and passive-source seismic datasets. The CD-ROM 1999 experiment in the western U.S. was an example of a multi-discipline geoscientific experiment, including a 1000 km long controlled-source seismic line that extended from central Wyoming to central New Mexico. In addition, two passive source seismic transacts focusing on the Cheyenne belt and the Jemez lineament were deployed for one year along the controlled-source seismic (CSS) line. For the large-scale refraction/wide-angle reflection seismic dataset, we applied a new picking strategy and forward-modeled and inverted the resulting seismic picks for a 2-D velocity and interface model of the area. Furthermore, we identified and picked the S-wave phases that were present, and established an independent S-wave velocity model, which allowed us to construct the Vp/Vs and Poisson's ratios. We calculated teleseismic receiver functions for the area based on northern passive seismic transect, which targeted the Cheyenne belt. We then applied a slant stacking technique to determine crustal thickness and Vp/Vs ratios, as well as common conversion point (CCP) stacking and migration techniques, which provide us with additional two-dimensional images of the target area. Only the joint interpretation of both the CSS and receiver function results enabled us to undertake a detailed interpretation of the Cheyenne belt area, which constitutes the transition zone between the 2.7 Ga Archean Wyoming craton to the north and the Proterozoic terranes to the south. The crustal structure is distinctively different between these two areas. A strong mid-crustal layer underneath the Wyoming craton was confirmed, which was identified in the earlier Deep Probe seismic experiment. Furthermore, this layer terminates at depth ~100 km north of the Cheyenne belt, which represents the surface expression of the suture. Our

  12. Atmospheric deposition of sulfur and inorganic nitrogen in the Southern Canadian Rocky Mountains from seasonal snowpacks and bulk summer precipitation

    NASA Astrophysics Data System (ADS)

    Wasiuta, Vivian; Lafrenière, Melissa J.; Norman, Ann-Lise

    2015-04-01

    This study quantified atmospheric deposition of sulfur (S) and nitrogen (N) in the alpine of the Southern Canadian Rocky Mountains and evaluated loads relative to critical limits for ecologic effects on alpine ecosystems from N saturation and acidification. Deposition was evaluated by collecting seasonal snowpack and summer bulk precipitation samples along elevational transects in the alpine Haig Valley and given regional context using snowpack samples from six additional glacier sites. S and N deposition were evaluated in terms of two conceptual models. Model 1 representing deposition from emissions that are mainly distant and Model 2 representing deposition from a mixture of distant and local to regional emissions. Annual S and N (including ammonium (NH4+), nitrate (NO3-) and nitrite (NO2-)) deposition in the alpine Haig Valley was 0.74 ± 0.18 kg S ha-1 and 1.10 ± 0.18 kg N ha-1 yr-1, which is sufficiently high for the occurrence of detrimental ecologic effects related to N saturation in the most sensitive alpine ecosystems, but lower than the critical limit for acidification. Snowpack S and N deposition was consistent with well mixed air mainly from distant sources (Model 1), therefore indicating S and N were largely transported within the precipitating air mass and or picked up by the air mass in transit to the alpine Haig Valley. Relatively consistent deposition of S and N in seasonal glacier snowpacks at sites extending 210 km along the Continental Divide and 100 km west of the divide supports the interpretation that Model 1 describes deposition in alpine glacier snowpack. Similar deposition values for the highest site in the Haig Valley and the mean from the regional snowpack study indicate the highest site in the Haig Valley represents regional conditions of S and N deposition. Summer deposition of sulfate (SO42-) and ammonium (NH4+) was also consistent with dominantly distant emission sources (Model 1). In contrast there was enhanced transport and

  13. Knickzone propagation in the Black Hills and northern High Plains: a different perspective on the late Cenozoic exhumation of the Laramide Rocky Mountains

    USGS Publications Warehouse

    Zaprowski, Brent J.; Evenson, Edward B.; Pazzaglia, Frank J.; Epstein, Jack B.

    2001-01-01

    Geomorphic research in the Black Hills and northern High Plains poses an intriguing hypothesis for the Cenozoic evolution of this salient of the Laramide Rockies. Most recently, geologists have appealed to late Cenozoic epeirogenic uplift or climate change to explain the post-Laramide unroofing of the Rockies. On the basis of field mapping and the interpretation of long-valley profiles, we conclude that the propagation of knickzones is the primary mechanism for exhumation in the Black Hills. Long profiles of major drainages show discrete breaks in the slope of the channel gradient that are not coincident with changes in rock type. We use the term knickzones to describe these features because their profiles are broadly convex over tens of kilometers. At and below the knickzone, the channel is incising into bedrock, abandoning a flood plain, and forming a terrace. Above the knickzone, the channel is much less incised, resulting in a broad valley bottom. Numerous examples of stream piracy are documented, and in each case, the capture is recorded in the same terrace level. These observations are consistent with migrating knickzones that have swept through Black Hills streams, rearranging drainages in their wake. We demonstrate there are two knickzone fronts associated with mapped terraces. Preliminary field evidence of soil development shows that these terraces are time transgressive in nature. Our data strongly suggest that knickzone propagation must be considered a viable mechanism driving late Cenozoic fluvial incision and exhumation of the northern High Plains and adjacent northern Rocky Mountains.

  14. Assessment of Historical Water-Quality Data for National Park Units in the Rocky Mountain Network, Colorado and Montana, through 2004

    USGS Publications Warehouse

    Mast, M. Alisa

    2007-01-01

    This report summarizes historical water-quality data for six National Park units that compose the Rocky Mountain Network. The park units in Colorado are Florissant Fossil Beds National Monument, Great Sand Dunes National Park and Preserve, and Rocky Mountain National Park; and in Montana, they are Glacier National Park, Grant-Kohrs Ranch National Historic Site, and Little Bighorn Battlefield National Monument. This study was conducted in cooperation with the Inventory and Monitoring Program of the National Park Service to aid in the design of an effective and efficient water-quality monitoring plan for each park. Data were retrieved from a number of sources for the period of record through 2004 and compiled into a relational database. Descriptions of the environmental setting of each park and an overview of the park's water resources are presented. Statistical summaries of water-quality constituents are presented and compared to aquatic-life and drinking-water standards. Spatial, seasonal, and temporal patterns in constituent concentrations also are described and suggestions for future water-quality monitoring are provided.

  15. Patterns and sources of multidecadal oscillations in drought-sensitive tree-ring records from the central and southern Rocky Mountains

    USGS Publications Warehouse

    Gray, S.J.; Betancourt, J.L.; Fastie, C.L.; Jackson, S.T.

    2003-01-01

    Tree-ring records spanning the past seven centuries from the central and southern Rocky Mountains were studied using wavelet analysis to examine multidecadal (>30-70 yr) patterns of drought variation. Fifteen tree-ring series were grouped into five regional composite chronologies based on shared low-frequency behavior. Strong multidecadal phasing of moisture variation was present in all regions during the late 16th century megadrought. Oscillatory modes in the 30-70 yr domain persisted until the mid-19th century in two regions, and wet-dry cycles were apparently synchronous at some sites until the 1950s drought. The 16th/17th century pattern of severe multidecadal drought followed by decades of wet conditions resembles the 1950s drought and post-1976 wet period. The 16th century megadrought, which may have resulted from coupling of a decadal (???20-30 yr) Pacific cool phase with a multidecadal warm phase in the North Atlantic, marked a substantial reorganization of climate in the Rocky Mountain region.

  16. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30

    The purpose of this report is to provide a summary of individual local-­scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­ specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­scale analyses is to provide a basis for regional-­scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­ resolution characterization of a state-­sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­scale geology. For the RMCCS project, the outcomes of these local-­scale studies provide a starting point for future local-­scale site characterization efforts in the Rocky Mountain region.

  17. Evidence of climate-induced range contractions in bull trout Salvelinus confluentus in a Rocky Mountain watershed, U.S.A.

    PubMed

    Eby, Lisa A; Helmy, Olga; Holsinger, Lisa M; Young, Michael K

    2014-01-01

    Many freshwater fish species are considered vulnerable to stream temperature warming associated with climate change because they are ectothermic, yet there are surprisingly few studies documenting changes in distributions. Streams and rivers in the U.S. Rocky Mountains have been warming for several decades. At the same time these systems have been experiencing an increase in the severity and frequency of wildfires, which often results in habitat changes including increased water temperatures. We resampled 74 sites across a Rocky Mountain watershed 17 to 20 years after initial samples to determine whether there were trends in bull trout occurrence associated with temperature, wildfire, or other habitat variables. We found that site abandonment probabilities (0.36) were significantly higher than colonization probabilities (0.13), which indicated a reduction in the number of occupied sites. Site abandonment probabilities were greater at low elevations with warm temperatures. Other covariates, such as the presence of wildfire, nonnative brook trout, proximity to areas with many adults, and various stream habitat descriptors, were not associated with changes in probability of occupancy. Higher abandonment probabilities at low elevation for bull trout provide initial evidence validating the predictions made by bioclimatic models that bull trout populations will retreat to higher, cooler thermal refuges as water temperatures increase. The geographic breadth of these declines across the region is unknown but the approach of revisiting historical sites using an occupancy framework provides a useful template for additional assessments. PMID:24897341

  18. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Natural Asbestos Occurrences in the Rocky Mountain States of the United States (Colorado, Idaho, Montana, New Mexico, and Wyoming)

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2007-01-01

    This map and its accompanying dataset provide information for 48 natural asbestos occurrences in the Rocky Mountain States of the United States (U.S.), using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Rocky Mountain States. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the U.S., which thus far includes similar maps and datasets of natural asbestos occurrences within the Eastern U.S. (http://pubs.usgs.gov/of/2005/1189/) and the Central U.S. (http://pubs.usgs.gov/of/2006/1211/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the U.S.

  19. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming - A review and new analysis of past study results

    USGS Publications Warehouse

    Burns, Douglas A.

    2003-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.

  20. 2007 Rocky Mountain Section Friends of the Pleistocene Field Trip - Quaternary Geology of the San Luis Basin of Colorado and New Mexico, September 7-9, 2007

    USGS Publications Warehouse

    Machette, Michael N.; Coates, Mary-Margaret; Johnson, Margo L.

    2007-01-01

    Prologue Welcome to the 2007 Rocky Mountain Cell Friends of the Pleistocene Field Trip, which will concentrate on the Quaternary geology of the San Luis Basin of Colorado and New Mexico. To our best knowledge, Friends of the Pleistocene (FOP) has never run a trip through the San Luis Basin, although former trips in the region reviewed the 'Northern Rio Grande rift' in 1987 and the 'Landscape History and Processes on the Pajarito Plateau' in 1996. After nearly a decade, the FOP has returned to the Rio Grande rift, but to an area that has rarely hosted a trip with a Quaternary focus. The objective of FOP trips is to review - in the field - new and exciting research on Quaternary geoscience, typically research being conducted by graduate students. In our case, the research is more topically oriented around three areas of the San Luis Basin, and it is being conducted by a wide range of Federal, State, academic, and consulting geologists. This year's trip is ambitious?we will spend our first day mainly on the Holocene record around Great Sand Dunes National Park and Preserve, the second day on the Quaternary stratigraphy around the San Luis Hills, including evidence for Lake Alamosa and the 1.0 Ma Mesita volcano, and wrap up the trip's third day in the Costilla Plain and Sunshine Valley reviewing alluvial stratigraphy, the history of the Rio Grande, and evidence for young movement on the Sangre de Cristo fault zone. In the tradition of FOP trips, we will be camping along the field trip route for this meeting. On the night before our trip, we will be at the Great Sand Dunes National Park and Preserve's Pinyon Flats Campground, a group facility located about 2 miles north of the Visitors Center. After the first day's trip, we will dine and camp in the Bachus pit, about 3 miles southwest of Alamosa. For the final night (after day 2), we will bed down at La Junta Campground at the Bureau of Land Management (BLM) Wild and Scenic Rivers State Recreation Area, west of Questa

  1. Energy budget increases reduce mean streamflow more than snow–rain transitions: using integrated modeling to isolate climate change impacts on Rocky Mountain hydrology

    NASA Astrophysics Data System (ADS)

    Foster, Lauren M.; Bearup, Lindsay A.; Molotch, Noah P.; Brooks, Paul D.; Maxwell, Reed M.

    2016-04-01

    In snow-dominated mountain regions, a warming climate is expected to alter two drivers of hydrology: (1) decrease the fraction of precipitation falling as snow; and (2) increase surface energy available to drive evapotranspiration. This study uses a novel integrated modeling approach to explicitly separate energy budget increases via warming from precipitation phase transitions from snow to rain in two mountain headwaters transects of the central Rocky Mountains. Both phase transitions and energy increases had significant, though unique, impacts on semi-arid mountain hydrology in our simulations. A complete shift in precipitation from snow to rain reduced streamflow between 11% and 18%, while 4 °C of uniform warming reduced streamflow between 19% and 23%, suggesting that changes in energy-driven evaporative loss, between 27% and 29% for these uniform warming scenarios, may be the dominant driver of annual mean streamflow in a warming climate. Phase changes induced a flashier system, making water availability more susceptible to precipitation variability and eliminating the runoff signature characteristic of snowmelt-dominated systems. The impact of a phase change on mean streamflow was reduced as aridity increased from west to east of the continental divide.

  2. Record-setting forest stress in the Rocky Mountains caused by low snowfall and high potential evapotranspiration, consistent with expected future conditions

    NASA Astrophysics Data System (ADS)

    Molotch, Noah; Trujillo, Ernesto

    2014-05-01

    Projections of future climate for the Southwestern U.S. and other semi-arid regions globally include reductions in mountain snow accumulation and increased summer potential evapotranspiration. These changes may significantly alter runoff production, evapotranspiration, and gross primary productivity in mountain forests. Analysis of remotely sensed vegetation greenness data indicate strong forest and understory growth dependencies associated with snow accumulation and snowmelt with peak snow water equivalent explaining 40-50% of inter-annual variability in forest greenness in the Sierra Nevada and Rocky Mountains. Examples of these dependencies will be presented based on the 2012 drought in the Southwestern US whereby near record low snow accumulation and record high potential evapotranspiration have resulted in record low forest greening as evident in the 30+ year satellite record. Forest response to aridity in 2012 was exacerbated by forest disturbance with greenness anomalies 90% greater in magnitude in Bark Beetle and Spruce Budworm affected areas versus undisturbed areas and 182% greater in magnitude in areas impacted by fire. Given potential future changes in the hydroclimatology of mountainous regions, the results of these measurements may identify tipping points regarding ecosystem responses to water availability across gradients in physiography.

  3. Interconnections Between the Mantle and the Near-Surface System Above the Aspen Anomaly, Central Colorado, and Implications for Cenozoic Uplift of the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Karlstrom, K. E.; Project, C.

    2007-12-01

    Teleseismic studies indicate that the upper mantle beneath the Colorado Rocky Mountains has a small percentage of partial melt and dramatic velocity variations that occur across sharp domain boundaries. The CREST (Colorado Rockies Experiment and Seismic Transects) project is investigating an enigmatic low velocity mantle domain that we refer to as the Aspen anomaly. This region has geologic as well as geophysical similarities to the Yellowstone and Jemez Mountain anomalies, including complex magmatic histories, an association with highest topography of the Rockies, radial drainage patterns, high active mantle devolatilization documented by 3He/4He ratios, and high heat flow. Collectively and individually, these low velocity mantle domains constitute enigmatic, world-class, upper mantle features that can be used to test models for the origin of upper mantle velocity variations in the western U.S. and the formation and stabilization of continental lithosphere. Near 3-D teleseismic images will be produced of the geometry of the Aspen Anomaly. The planned CREST experiment involves 83 sites, recording for 14 months. There will be 60 passive IRIS PASSCAL-supported stations coordinated with 23 Transportable Array stations. Siting is complete, installation begins in 2008, first data results will be in 2009, final data analysis is anticipated for 2010. Station lattice spacing of 15-40 km will allow good images of Moho topography as well as mantle structure. Integration with the Transportable Array sites will provide excellent regional context for CREST images. Geologic studies are ongoing and emphasize the time-space correlations among Cenozoic rock and surface uplift, denudation patterns, magmatism, and the modern day mantle anomaly. We seek to understand when and why changes in lithospheric buoyancy occurred in the Rockies and how these changes have been expressed in the lithosphere and at the surface. Recent modeling of AFT results from the MWX well on the edge of the

  4. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Felix C.; Rittger, Karl; McKenzie Skiles, S.; Molotch, Noah P.; Painter, Thomas H.

    2016-06-01

    Quantifying the spatial distribution and temporal change in mountain snow cover, microphysical and optical properties is important to improve our understanding of the local energy balance and the related snowmelt and hydrological processes. In this paper, we analyze changes of snow cover, optical-equivalent snow grain size (radius), snow albedo and radiative forcing by light-absorbing impurities in snow and ice (LAISI) with respect to terrain elevation and aspect at multiple dates during the snowmelt period. These snow properties are derived from the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from 2009 in California's Sierra Nevada and from 2011 in Colorado's Rocky Mountains, USA. Our results show a linearly decreasing snow cover during the ablation period in May and June in the Rocky Mountains and a snowfall-driven change in snow cover in the Sierra Nevada between February and May. At the same time, the snow grain size is increasing primarily at higher elevations and north-facing slopes from 200 microns to 800 microns on average. We find that intense snowmelt renders the mean grain size almost invariant with respect to elevation and aspect. Our results confirm the inverse relationship between snow albedo and grain size, as well as between snow albedo and radiative forcing by LAISI. At both study sites, the mean snow albedo value decreases from approximately 0.7 to 0.5 during the ablation period. The mean snow grain size increased from approximately 150 to 650 microns. The mean radiative forcing increases from 20 W m-2 up to 200 W m-2 during the ablation period. The variability of snow albedo and grain size decreases in general with the progression of the ablation period. The spatial variability of the snow albedo and grain size decreases through the melt season while the spatial variability of radiative forcing remains constant.

  5. The Satah Mountain and Baldface Mountain volcanic fields: Pleistocene hot spot volcanism in the Anahim Volcanic Belt, west-central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian; Guest, Bernard; Russell, James K.; Benowitz, Jeff A.

    2015-03-01

    The Satah Mountain and Baldface Mountain volcanic fields (SMVF, BMVF) comprise more than three dozen small volcanic centers and erosional remnants thereof. These fields are located in the Chilcotin Highland of west-central British Columbia, Canada, and are spatially associated with the Anahim Volcanic Belt (AVB), a linear feature of alkaline to peralkaline plutonic and volcanic centers of Miocene to Holocene ages. The AVB has been postulated to be the track of a hot spot passing beneath the westward moving Cordilleran lithosphere. We test the AVB hot spot model by applying whole-rock 40Ar/39Ar geochronology ( n = 24) and geochemistry. Whole-rock chemical compositions of volcanic rock samples ( n = 59) from these two fields suggest a strong geochemical affinity with the nearby Itcha Range shield volcano; however, SMVF and BMVF centers are mostly small in volume (<1 km3) and differ in composition from one another, even where they are in close spatial proximity. Trace element and REE patterns of mafic AVB lavas are similar to ocean island basalts (OIB), suggesting a mantle source for these lavas. The age ranges for the SMVF ( n = 11; ~2.21 to ~1.43 Ma) and BMVF ( n = 7; ~3.91 to ~0.91 Ma) are largely coeval with the Itcha Range. The distribution of volcanoes in these two volcanic fields is potentially consistent with the postulated AVB hot spot track. Eruption rates in the SMVF were high enough to build an elongated ridge that deviates from the E-W trend of the AVB by almost 90°. This deviation might reflect the mechanisms and processes facilitating magma generation and ascent through the lithosphere in this tectonically complex region and may also indicate interaction of the potential hot spot with (pre)existing fracture systems in vicinity of the Itcha Range.

  6. REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS

    SciTech Connect

    Ronald C. Surdam

    2003-12-29

    An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide

  7. Patterns of LGM precipitation in the U.S. Rocky Mountains: results from regional application of a glacier mass/energy balance and flow model

    NASA Astrophysics Data System (ADS)

    Leonard, E. M.; Laabs, B. J.; Refsnider, K. A.; Plummer, M. A.; Jacobsen, R. E.; Wollenberg, J. A.

    2010-12-01

    Global climate model (GCM) simulations of the last glacial maximum (LGM) in the western United States predict changes in atmospheric circulation and storm tracks that would have resulted in significantly less-than-modern precipitation in the Northwest and northern Rockies, and significantly more-than-modern precipitation in the Southwest and southern Rockies. Model simulations also suggest that late Pleistocene pluvial lakes in the intermontane West may have modified local moisture regimes in areas immediately downwind. In this study, we present results of the application of a coupled energy/mass balance and glacier-flow model (Plummer and Phillips, 2003) to reconstructed paleoglaciers in Rocky Mountains of Utah, New Mexico, Colorado, and Wyoming to assess the changes from modern climate that would have been necessary to sustain each glacier in mass-balance equilibrium at its LGM extent. Results demonstrate that strong west-to-east and north-to-south gradients in LGM precipitation, relative to present, would be required if a uniform LGM temperature depression with respect to modern is assumed across the region. At an assumed 7oC temperature depression, approximately modern precipitation would have been necessary to support LGM glaciation in the Colorado Front Range, significantly less than modern precipitation to support glaciation in the Teton Range, and almost twice modern precipitation to sustain glaciers in the Wasatch and Uinta ranges of Utah and the New Mexico Sangre de Cristo Range. The observed west-to-east (Utah-to-Colorado) LGM moisture gradient is consistent with precipitation enhancement from pluvial Lake Bonneville, decreasing with distance downwind from the lake. The north-to-south (Wyoming-to-New Mexico) LGM moisture gradient is consistent with a southward LGM displacement of the mean winter storm track associated with the winter position of the Pacific Jet Stream across the western U.S. Our analysis of paleoglacier extents in the Rocky Mountain

  8. Regional Climate Change Influences Frequency of Frost Damage via Changes in Phenology: Effects of the North Pacific Oscillation (Pacific Decadal Oscillation) on Rocky Mountain Wildflowers

    NASA Astrophysics Data System (ADS)

    Inouye, D. W.

    2004-12-01

    There is a significant correlation (P = .049) between the state of the North Pacific Oscillation (Pacific Decadal Oscillation) and the amount of winter snowfall at the Rocky Mountain Biological Laboratory (2,800m in the Colorado Rocky Mountains). The 1998 change of this inter-decadal mode of variability of the north Pacific atmosphere system to a dry phase has resulted in decreased snowpack, reversing a trend for increasing snowfall since the previous phase change in 1976. The seasonal timing (phenology) of plant growth and flowering at high altitudes is determined almost entirely by the timing of spring snowmelt, even for species that flower at the end of the season, and the decreased snowpack since 1998 combined with warming air temperatures has resulted in significantly earlier initiation of the growing season and subsequent flowering. Flowering in 2002, for example, was the earliest recorded during my 31-year study, and probably the earliest since at least 1935. Frost (with temperatures as low as -6 or -7ºC) is still likely to occur as late as mid-June, however, and a consequence of the earlier beginning of the growing season is that many species have developed sensitive flower buds or other tissues by mid-June that are likely to be killed by frost. From 1994-1998 the average percentage of flower buds of Helianthella quinquenervis (Asteraceae; aspen sunflower) killed by frost was 26 percent(range 0-81), but since the 1998 NPO phase change a mean of 75 percent of flower buds have been killed (range 0-100; over 90 percent for each of the past four years). The loss of flowers from these frosts has consequences for plant demography (fewer seeds results in fewer seedlings), pollinators (which have fewer floral resources), seed predators (e.g., tephritid flies), and parasitoids (e.g., wasps, which have fewer seed predators to parasitize). A suite of wildflower species whose flowering abundance is positively correlated with the amount of winter snowfall has also

  9. Timing and driving mechanisms for multi-stage uplift of the Southern Rocky Mountains: Evidence from thermochronology and detrital zircon analysis

    NASA Astrophysics Data System (ADS)

    Donahue, M. S.; Ricketts, J. W.; Karlstrom, K. E.; Kelley, S.

    2014-12-01

    A compilation of apatite fission track (AFT) and (U-Th)/He (AHe) thermochronologic data from the southern Rocky Mountains reveals spatial and temporal patterns in Cenozoic cooling corresponding to discrete uplift pulses: 1) 70-45 Ma cooling ages are best preserved in hangingwall blocks of Laramide uplifts, especially in the northern Rockies with apparent exhumation rates (AER) of ~ 60 m/Ma based on age-elevation transects and modeled cooling paths; 2) Relative tectonic quiescence from 45-35 Ma coincided with the establishment of the Rocky Mountain erosion surface; 3) 35-25 Ma cooling ages variably overprint Laramide cooling histories south of central Colorado and much of the Great Plains topographic ramp; this episode had apparent exhumation rates of ~100 m/Ma and was driven by heating and mantle buoyancy during the ignimbrite flare-up concentrated beneath the San Juan and Mogollon Datil volcanic fields, with associated long wavelength uplift in central Colorado; 4) 20-10 Ma shorter wavelength uplifts in Rio Grande rift flanks at rates of ~ 150 m/Ma from Wyoming to Mexico in response to simultaneous opening of the Rio Grande rift; 5) Ongoing post-10 Ma uplift at rates > 120 m/Ma especially in areas of faulting and areas overlying marked mantle velocity transitions due to small scale upper mantle convection and response to land surface uplift, river integration, and isostatic rebound due to differential erosion. To investigate the sedimentary record of mid-Tertiary events, detrital zircon analysis of the Telluride Conglomerate and Blanco Basin Formation of the western and southeastern flanks of the San Juan volcanic field reveals youngest grain clusters of 28 Ma and 33 Ma, respectively. These units record unroofing, first of Paleozoic sedimentary units, then Proterozoic basement and Oligocene volcanics. AHe of these units constrains burial to less than 1-1.5 km. We interpret these units to record the uplift and erosion associated with the inflating San Juan volcanic

  10. Progressive accumulation of the abnormal conformer of the prion protein and spongiform encephalopathy in the obex of nonsymptomatic and symptomatic Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy, has been reported in captive and free-ranging cervids. An abnormal isoform of a prion protein (PrP-CWD) has been associated with CWD in Rocky Mountain elk (Cervus elaphus nelsoni) and this prion protein can be detected with i...

  11. Detection of the Abnormal Isoform of the Prion Protein Associated With Chronic Wasting Disease in the Optic Pathways of the Brain and Retina of Rocky Mountain Elk (Cervus elaphus nelsoni)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eyes and nuclei of the visual pathways in the brain from 30 Rocky Mountain elk representing 3 PRNP genotypes, naturally or experimentally infected with chronic wasting disease, a prion disease of deer and elk. Elk were scored for relative disease progression by immunohistochemistry analysis of the ...

  12. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    SciTech Connect

    Tidwell, Vincent C.; Wolfsberg, Andrew; Macknick, Jordan; Middleton, Richard

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  13. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Enders, S.K.; Pagani, M.; Pantoja, S.; Baron, J.S.; Wolfe, A.P.; Pedentchouk, N.; Nunez, L.

    2008-01-01

    Compound-specific nitrogen, carbon, and hydrogen isotope records from sediments of Sky Pond, an alpine lake in Rocky Mountain National Park (Colorado, United States of America), were used to evaluate factors contributing to changes in diatom assemblages and bulk organic nitrogen isotope records identified in lake sediments across Colorado, Wyoming, and southern Montana. Nitrogen isotopic records of purified algal chlorins indicate a substantial shift in nitrogen cycling in the region over the past ???60 yr. Temporal changes in the growth characteristics of algae, captured in carbon isotope records in and around Sky Pond, as well as a -60??? excursion in the hydrogen isotope composition of algal-derived palmitic acid, are coincident with changes in nitrogen cycling. The confluence of these trends is attributed to an increase in biologically available nitrogenous compounds caused by an expansion of anthropogenic influences and temporal changes in catchment hydrology and nutrient delivery associated with meltwater dynamics. ?? 2008, by the American Society of Limnology and Oceanography, Inc.

  14. Simulation model analysis of the most promising geological sequestration formation candidates in the Rocky Mountain region, USA, with focus on uncertainty assessment

    SciTech Connect

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-12-31

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  15. Organochlorine compounds and current-use pesticides in snow and lake sediment in Rocky Mountain National Park, Colorado, and Glacier National Park, Montana, 2002-03

    USGS Publications Warehouse

    Mast, M. Alisa; Foreman, William T.; Skaates, Serena V.

    2006-01-01

    Organochlorine compounds and current-use pesticides were measured in snow and lake-sediment samples from Rocky Mountain National Park in Colorado and Glacier National Park in Montana to determine their occurrence and distribution in high-elevation aquatic ecosystems. The U.S. Geological Survey, in cooperation with the National Park Service, collected snow samples at eight sites in Rocky Mountain National Park and at eight sites in Glacier National Park during spring of 2002 and 2003 just prior to the start of snowmelt. Surface sediments were collected from 11 lakes in Rocky Mountain National Park and 10 lakes in Glacier National Park during summer months of 2002 and 2003. Samples were analyzed for organochlorine compounds by gas chromatography with electron-capture detection and current-use pesticides by gas chromatography with electron-impact mass spectrometry. A subset of samples was reanalyzed using a third instrumental technique (gas chromatography with electron-capture negative ion mass spectrometry) to verify detected concentrations in the initial analysis and to investigate the presence of additional compounds. For the snow samples, the pesticides most frequently detected were endosulfan, dacthal, and chlorothalonil, all of which are chlorinated pesticides that currently are registered for use in North America. Concentrations of these pesticides in snow were very low, ranging from 0.07 to 2.36 nanograms per liter. Of the historical-use pesticides, hexachlorobenzene, dieldrin, and trans-nonachlor were detected in snow but only in one sample each. Annual deposition rates of dacthal, endosulfan, and chlorothalonil were estimated at 0.7 to 3.0 micrograms per square meter. These estimates are likely biased low because they do not account for pesticide deposition during summer months. For the lake-sediment samples, DDE (p,p'-dichlorodiphenyldichoroethene) and DDD (p,p'-dichlorodiphenyldichoroethane) were the most frequently detected organochlorine compounds. DDE