Sample records for rod photoreceptors correlates

  1. The evolution of rod photoreceptors

    PubMed Central

    Morshedian, Ala

    2017-01-01

    Photoreceptors in animals are generally of two kinds: the ciliary or c-type and the rhabdomeric or r-type. Although ciliary photoreceptors are found in many phyla, vertebrates seem to be unique in having two distinct kinds which together span the entire range of vision, from single photons to bright light. We ask why the principal photoreceptors of vertebrates are ciliary and not rhabdomeric, and how rods evolved from less sensitive cone-like photoreceptors to produce our duplex retina. We suggest that the principal advantage of vertebrate ciliary receptors is that they use less ATP than rhabdomeric photoreceptors. This difference may have provided sufficient selection pressure for the development of a completely ciliary eye. Although many of the details of rod evolution are still uncertain, present evidence indicates that (i) rods evolved very early before the split between the jawed and jawless vertebrates, (ii) outer-segment discs make no contribution to rod sensitivity but may have evolved to increase the efficiency of protein renewal, and (iii) evolution of the rod was incremental and multifaceted, produced by the formation of several novel protein isoforms and by changes in protein expression, with no one alteration having more than a few-fold effect on transduction activation or inactivation. This article is part of the themed issue ‘Vision in dim light’. PMID:28193819

  2. The evolution of rod photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-04-05

    Photoreceptors in animals are generally of two kinds: the ciliary or c-type and the rhabdomeric or r-type. Although ciliary photoreceptors are found in many phyla, vertebrates seem to be unique in having two distinct kinds which together span the entire range of vision, from single photons to bright light. We ask why the principal photoreceptors of vertebrates are ciliary and not rhabdomeric, and how rods evolved from less sensitive cone-like photoreceptors to produce our duplex retina. We suggest that the principal advantage of vertebrate ciliary receptors is that they use less ATP than rhabdomeric photoreceptors. This difference may have provided sufficient selection pressure for the development of a completely ciliary eye. Although many of the details of rod evolution are still uncertain, present evidence indicates that (i) rods evolved very early before the split between the jawed and jawless vertebrates, (ii) outer-segment discs make no contribution to rod sensitivity but may have evolved to increase the efficiency of protein renewal, and (iii) evolution of the rod was incremental and multifaceted, produced by the formation of several novel protein isoforms and by changes in protein expression, with no one alteration having more than a few-fold effect on transduction activation or inactivation.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  3. Biophysical mechanism of transient retinal phototropism in rod photoreceptors.

    PubMed

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-02-13

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  4. Biophysical mechanism of transient retinal phototropism in rod photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-03-01

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  5. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision.

    PubMed

    Beier, Corinne; Hovhannisyan, Anahit; Weiser, Sydney; Kung, Jennifer; Lee, Seungjun; Lee, Dae Yeong; Huie, Philip; Dalal, Roopa; Palanker, Daniel; Sher, Alexander

    2017-04-26

    Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring. SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support

  6. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision

    PubMed Central

    Hovhannisyan, Anahit; Kung, Jennifer; Lee, Seungjun; Lee, Dae Yeong; Huie, Philip; Dalal, Roopa; Palanker, Daniel

    2017-01-01

    Upon degeneration of photoreceptors in the adult retina, interneurons, including bipolar cells, exhibit a plastic response leading to their aberrant rewiring. Photoreceptor reintroduction has been suggested as a potential approach to sight restoration, but the ability of deafferented bipolar cells to establish functional synapses with photoreceptors is poorly understood. Here we use photocoagulation to selectively destroy photoreceptors in adult rabbits while preserving the inner retina. We find that rods and cones shift into the ablation zone over several weeks, reducing the blind spot at scotopic and photopic luminances. During recovery, rod and cone bipolar cells exhibit markedly different responses to deafferentation. Rod bipolar cells extend their dendrites to form new synapses with healthy photoreceptors outside the lesion, thereby restoring visual function in the deafferented retina. Secretagogin-positive cone bipolar cells did not exhibit such obvious dendritic restructuring. These findings are encouraging to the idea of photoreceptor reintroduction for vision restoration in patients blinded by retinal degeneration. At the same time, they draw attention to the postsynaptic side of photoreceptor reintroduction; various bipolar cell types, representing different visual pathways, vary in their response to the photoreceptor loss and in their consequent dendritic restructuring. SIGNIFICANCE STATEMENT Loss of photoreceptors during retinal degeneration results in permanent visual impairment. Strategies for vision restoration based on the reintroduction of photoreceptors inherently rely on the ability of the remaining retinal neurons to correctly synapse with new photoreceptors. We show that deafferented bipolar cells in the adult mammalian retina can reconnect to rods and cones and restore retinal sensitivity at scotopic and photopic luminances. Rod bipolar cells extend their dendrites to form new synapses with healthy rod photoreceptors. These findings support

  7. Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina

    PubMed Central

    Berta, Ágnes I.; Boesze-Battaglia, Kathleen; Genini, Sem; Goldstein, Orly; O'Brien, Paul J.; Szél, Ágoston; Acland, Gregory M.; Beltran, William A.; Aguirre, Gustavo D.

    2011-01-01

    A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene. PMID:21980341

  8. The molecular mechanism of thermal noise in rod photoreceptors.

    PubMed

    Gozem, Samer; Schapiro, Igor; Ferré, Nicolas; Olivucci, Massimo

    2012-09-07

    Spontaneous electrical signals in the retina's photoreceptors impose a limit on visual sensitivity. Their origin is attributed to a thermal, rather than photochemical, activation of the transduction cascade. Although the mechanism of such a process is under debate, the observation of a relationship between the maximum absorption wavelength (λ(max)) and the thermal activation kinetic constant (k) of different visual pigments (the Barlow correlation) indicates that the thermal and photochemical activations are related. Here we show that a quantum chemical model of the bovine rod pigment provides a molecular-level understanding of the Barlow correlation. The transition state mediating thermal activation has the same electronic structure as the photoreceptor excited state, thus creating a direct link between λ(max) and k. Such a link appears to be the manifestation of intrinsic chromophore features associated with the existence of a conical intersection between its ground and excited states.

  9. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. © 2016 The Author(s).

  10. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.

    PubMed

    Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng

    2013-10-01

    Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.

  11. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity

    PubMed Central

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Furukawa, Takahisa

    2017-01-01

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity. PMID:28900001

  12. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    PubMed

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  13. Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors

    PubMed Central

    Homma, Kohei; Okamoto, Satoshi; Mandai, Michiko; Gotoh, Norimoto; Rajasimha, Harsha K.; Chang, Yi-Sheng; Chen, Shan; Li, Wei; Cogliati, Tiziana; Swaroop, Anand; Takahashi, Masayo

    2013-01-01

    Replacement of dysfunctional or dying photoreceptors offers a promising approach for retinal neurodegenerative diseases, including age-related macular degeneration and retinitis pigmentosa. Several studies have demonstrated the integration and differentiation of developing rod photoreceptors when transplanted in wild type or degenerating retina; however, the physiology and function of the donor cells are not adequately defined. Here, we describe the physiological properties of developing rod photoreceptors that are tagged with GFP driven by the promoter of rod differentiation factor, Nrl. GFP-tagged developing rods show Ca2+ responses and rectifier outward currents that are smaller than those observed in fully developed photoreceptors, suggesting their immature developmental state. These immature rods also exhibit hyperpolarization-activated current (Ih) induced by the activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. When transplanted into the subretinal space of wild type or retinal degeneration mice, GFP-tagged developing rods can integrate into the photoreceptor outer nuclear layer in wild-type mouse retina, and exhibit Ca2+ responses and membrane current comparable to native rod photoreceptors. A proportion of grafted rods develop rhodopsin-positive outer segment-like structures within two weeks after transplantation into the retina of Crx-knockout mice, and produce rectifier outward current and Ih upon membrane depolarization and hyperpolarization. GFP-positive rods derived from induced pluripotent stem (iPS) cells also display similar membrane current Ih as native developing rod photoreceptors, express rod-specific phototransduction genes, and HCN-1 channels. We conclude that Nrl-promoter driven GFP-tagged donor photoreceptors exhibit physiological characteristics of rods and that iPS cell-derived rods in vitro may provide a renewable source for cell replacement therapy. PMID:23495178

  14. Stimulus-evoked outer segment changes in rod photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng

    2016-06-01

    Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.

  15. Stimulus-evoked outer segment changes in rod photoreceptors

    PubMed Central

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng

    2016-01-01

    Abstract. Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation. PMID:27334933

  16. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu; Norris, Jennifer L.; Cooper, Robert F.; Dubis, Adam M.; Williams, David R.; Carroll, Joseph

    2011-01-01

    The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders. PMID:21750765

  17. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals.

    PubMed

    Kim, Jung-Woong; Yang, Hyun-Jin; Oel, Adam Phillip; Brooks, Matthew John; Jia, Li; Plachetzki, David Charles; Li, Wei; Allison, William Ted; Swaroop, Anand

    2016-06-20

    Vertebrate ancestors had only cone-like photoreceptors. The duplex retina evolved in jawless vertebrates with the advent of highly photosensitive rod-like photoreceptors. Despite cones being the arbiters of high-resolution color vision, rods emerged as the dominant photoreceptor in mammals during a nocturnal phase early in their evolution. We investigated the evolutionary and developmental origins of rods in two divergent vertebrate retinas. In mice, we discovered genetic and epigenetic vestiges of short-wavelength cones in developing rods, and cell-lineage tracing validated the genesis of rods from S cones. Curiously, rods did not derive from S cones in zebrafish. Our study illuminates several questions regarding the evolution of duplex retina and supports the hypothesis that, in mammals, the S-cone lineage was recruited via the Maf-family transcription factor NRL to augment rod photoreceptors. We propose that this developmental mechanism allowed the adaptive exploitation of scotopic niches during the nocturnal bottleneck early in mammalian evolution. Published by Elsevier Inc.

  18. Differentiation of Swine iPSC into Rod Photoreceptors and Their Integration into the Retina

    PubMed Central

    Zhou, Liang; Wang, Wei; Liu, Yongqing; de Castro, Juan Fernandez; Ezashi, Toshihiko; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael; Kaplan, Henry J.; Dean, Douglas C.

    2014-01-01

    Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments utilizing stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with swine induced pluripotent stem cells (iPSC). Here, we subjected swine iPSC to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of RHO and ROM1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that swine iPSC can differentiate into photoreceptors in culture and these cells can integrate into the damaged swine neural retina thus laying a foundation for future studies using the pig as a model for retinal stem cell transplantation. PMID:21491544

  19. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina.

    PubMed

    White, David T; Sengupta, Sumitra; Saxena, Meera T; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai; Mumm, Jeff S

    2017-05-02

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration-i.e., selective cell-loss paradigms akin to degenerative disease-are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of ( i ) rod cell clearance, ( ii ) MG/progenitor cell proliferation, and ( iii ) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions.

  1. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina

    PubMed Central

    White, David T.; Sengupta, Sumitra; Saxena, Meera T.; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai

    2017-01-01

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration—i.e., selective cell-loss paradigms akin to degenerative disease—are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of (i) rod cell clearance, (ii) MG/progenitor cell proliferation, and (iii) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions. PMID:28416692

  2. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors.

    PubMed

    Zhang, Pengfei; Zawadzki, Robert J; Goswami, Mayank; Nguyen, Phuong T; Yarov-Yarovoy, Vladimir; Burns, Marie E; Pugh, Edward N

    2017-04-04

    The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors' subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice lacking the rod G-protein alpha subunit, transducin (Gα t ), revealing these responses to be triggered by phototransduction. For stimuli that photoactivated one rhodopsin per Gα t the rod OS swelling response reached a saturated elongation of 10.0 ± 2.1%, at a maximum rate of 0.11% s -1 Analyzing swelling as osmotically driven water influx, we find the H 2 O membrane permeability of the rod OS to be (2.6 ± 0.4) × 10 -5 cm⋅s -1 , comparable to that of other cells lacking aquaporin expression. Application of Van't Hoff's law reveals that complete activation of phototransduction generates a potentially harmful 20% increase in OS osmotic pressure. The increased backscattering from the base of the OS is explained by a model combining cytoplasmic swelling, translocation of dissociated G-protein subunits from the disc membranes into the cytoplasm, and a relatively higher H 2 O permeability of nascent discs in the basal rod OS. Translocation of phototransduction components out of the OS may protect rods from osmotic stress, which could be especially harmful in disease conditions that affect rod OS structural integrity.

  3. The giant mottled eel, Anguilla marmorata, uses blue-shifted rod photoreceptors during upstream migration.

    PubMed

    Wang, Feng-Yu; Fu, Wen-Chun; Wang, I-Li; Yan, Hong Young; Wang, Tzi-Yuan

    2014-01-01

    Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.

  4. Platelet-Derived Growth Factor-BB Lessens Light-Induced Rod Photoreceptor Damage in Mice.

    PubMed

    Takahashi, Kei; Shimazawa, Masamitsu; Izawa, Hiroshi; Inoue, Yuki; Kuse, Yoshiki; Hara, Hideaki

    2017-12-01

    Platelet-derived growth factor (PDGF)-BB is known to have neuroprotective effects against various neurodegenerative disorders. The purpose of this study was to determine whether PDGF-BB can be neuroprotective against light-induced photoreceptor damage in mice. Mice were exposed to 8000-lux luminance for 3 hours to induce phototoxicity. Two hours before light exposure, the experimental mice were injected with PDGF-BB intravitreally, and the control mice were injected with phosphate-buffered saline. The light-exposed PDGF-BB-injected mice and saline-injected mice were evaluated electroretinographically and histologically. The site and expression levels of PDGFR-β and PDGF-BB were determined by immunostaining and Western blotting, respectively. The effect of PDGF-BB on light-induced cone and rod photoreceptor damage was also evaluated in vitro in 661W cells, a murine cone photoreceptor cell line, and in primary retinal cell cultures. An intravitreal injection of PDGF-BB significantly reduced the decrease in the amplitudes of the electroretinograms (ERGs) and the thinning of the outer nuclear layer (ONL) induced by the light exposure. It also reduced the number of TUNEL-positive cells in the ONL. PDGFR-β was expressed in the rod outer segments (OSs) but not the cone OSs. The levels of PDGF-BB and PDGFR-β were decreased after light irradiation. In addition, PDGF-BB had protective effects against light-induced damage to cells of rod photoreceptors but had no effect on the 661W cells in vitro. These findings indicate that PDGF-BB reduces the degree of light-induced retinal damage by activating PDGFR-β in rod photoreceptors. These findings suggest that PDGF-BB could play a role in the prevention of degeneration in eyes susceptible to phototoxicity.

  5. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors

    PubMed Central

    Szikra, Tamas; Cusato, Karen; Thoreson, Wallace B; Barabas, Peter; Bartoletti, Theodore M; Krizaj, David

    2008-01-01

    Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca2+]i in rod inner segments and synaptic terminals. Sustained Ca2+ entry into rod cytosol is augmented by store depletion, blocked by La3+ and Gd3+ and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca2+ influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1–43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca2+ entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca2+ signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca2+ homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1. PMID:18755743

  6. Advances in repairing the degenerate retina by rod photoreceptor transplantation☆

    PubMed Central

    Pearson, Rachael A.

    2014-01-01

    Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. PMID:24412415

  7. Identification of a cone bipolar cell in cat retina which has input from both rod and cone photoreceptors.

    PubMed

    Fyk-Kolodziej, Bozena; Qin, Pu; Pourcho, Roberta G

    2003-09-08

    It has been generally accepted that rod photoreceptor cells in the mammalian retina make synaptic contact with only a single population of rod bipolar cells, whereas cone photoreceptors contact a variety of cone bipolar cells. This assumption has been challenged in rodents by reports of a type of cone bipolar cell which receives input from both rods and cones. Questions remained as to whether similar pathways are present in other mammals. We have used an antiserum against the glutamate transporter GLT1-B to visualize a population of cone bipolar cells in the cat retina which make flat contacts with axon terminals of both rod and cone photoreceptor cells. These cells are identified as OFF-cone bipolar cells and correspond morphologically to type cb1 (CBa2) cone bipolar cells which are a major source of input to OFF-beta ganglion cells in the cat retina. The GLT1-B transporter was also localized to processes making flat contacts with photoreceptor terminals in rat and rabbit retinas. Examination of tissue processed for the GluR1 glutamate receptor subunit showed that cb1 cone bipolar cells, like their rodent counterparts, express this alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-selective receptor at their contacts with rod spherules. Thus, a direct excitatory pathway from rod photoreceptors to OFF-cone bipolar cells appears to be a common feature of mammalian retinas. Copyright 2003 Wiley-Liss, Inc.

  8. Moderate Light-Induced Degeneration of Rod Photoreceptors with Delayed Transducin Translocation in shaker1 Mice

    PubMed Central

    Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic

    2011-01-01

    Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681

  9. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors

    PubMed Central

    Govardovskii, Victor I.

    2017-01-01

    The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse. PMID:28611079

  10. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake

    PubMed Central

    Schott, Ryan K.; Müller, Johannes; Yang, Clement G. Y.; Bhattacharyya, Nihar; Chan, Natalie; Xu, Mengshu; Morrow, James M.; Ghenu, Ana-Hermina; Loew, Ellis R.; Tropepe, Vincent; Chang, Belinda S. W.

    2016-01-01

    Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the “transmutation” theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single “cones.” Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality. PMID:26715746

  11. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  12. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression

    PubMed Central

    Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. PMID:26817768

  13. LIM Kinase, a Newly Identified Regulator of Presynaptic Remodeling by Rod Photoreceptors After Injury

    PubMed Central

    Wang, Weiwei; Townes-Anderson, Ellen

    2015-01-01

    Purpose Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. Methods Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. Results Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. Conclusions Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury. PMID:26658506

  14. Advances in repairing the degenerate retina by rod photoreceptor transplantation.

    PubMed

    Pearson, Rachael A

    2014-01-01

    Despite very different aetiologies, age-related macular degeneration (AMD) and most inherited retinal disorders culminate in the same final common pathway, loss of the light-sensitive photoreceptors. There are few clinical treatments and none can reverse the loss of vision. Photoreceptor replacement by transplantation is proposed as a broad treatment strategy applicable to all degenerations. The past decade has seen a number of landmark achievements in this field, which together provide strong justification for continuing investigation into photoreceptor replacement strategies. These include proof of principle for restoring vision by rod-photoreceptor transplantation in mice with congenital stationary night blindness and advances in stem cell biology, which have led to the generation of complete optic structures in vitro from embryonic stem cells. The latter represents enormous potential for generating suitable and renewable donor cells with which to achieve the former. However, there are still challenges presented by the degenerating recipient retinal environment that must be addressed as we move to translating these technologies towards clinical application. Copyright © 2014 The Author. Published by Elsevier Inc. All rights reserved.

  15. Physiological and Microfluorometric Studies of Reduction and Clearance of Retinal in Bleached Rod Photoreceptors

    PubMed Central

    Tsina, Efthymia; Chen, Chunhe; Koutalos, Yiannis; Ala-Laurila, Petri; Tsacopoulos, Marco; Wiggert, Barbara; Crouch, Rosalie K.; Cornwall, M. Carter

    2004-01-01

    The visual cycle comprises a sequence of reactions that regenerate the visual pigment in photoreceptors during dark adaptation, starting with the reduction of all-trans retinal to all-trans retinol and its clearance from photoreceptors. We have followed the reduction of retinal and clearance of retinol within bleached outer segments of red rods isolated from salamander retina by measuring its intrinsic fluorescence. Following exposure to a bright light (bleach), increasing fluorescence intensity was observed to propagate along the outer segments in a direction from the proximal region adjacent to the inner segment toward the distal tip. Peak retinol fluorescence was achieved after ∼30 min, after which it declined very slowly. Clearance of retinol fluorescence is considerably accelerated by the presence of the exogenous lipophilic substances IRBP (interphotoreceptor retinoid binding protein) and serum albumin. We have used simultaneous fluorometric and electrophysiological measurements to compare the rate of reduction of all-trans retinal to all-trans retinol to the rate of recovery of flash response amplitude in these cells in the presence and absence of IRBP. We find that flash response recovery in rods is modestly accelerated in the presence of extracellular IRBP. These results suggest such substances may participate in the clearance of retinoids from rod photoreceptors, and that this clearance, at least in rods, may facilitate dark adaptation by accelerating the clearance of photoproducts of bleaching. PMID:15452202

  16. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors

    PubMed Central

    Nguyen, Phuong T.; Yarov-Yarovoy, Vladimir; Burns, Marie E.; Pugh, Edward N.

    2017-01-01

    The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors’ subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice lacking the rod G-protein alpha subunit, transducin (Gαt), revealing these responses to be triggered by phototransduction. For stimuli that photoactivated one rhodopsin per Gαt the rod OS swelling response reached a saturated elongation of 10.0 ± 2.1%, at a maximum rate of 0.11% s−1. Analyzing swelling as osmotically driven water influx, we find the H2O membrane permeability of the rod OS to be (2.6 ± 0.4) × 10−5 cm⋅s−1, comparable to that of other cells lacking aquaporin expression. Application of Van’t Hoff’s law reveals that complete activation of phototransduction generates a potentially harmful 20% increase in OS osmotic pressure. The increased backscattering from the base of the OS is explained by a model combining cytoplasmic swelling, translocation of dissociated G-protein subunits from the disc membranes into the cytoplasm, and a relatively higher H2O permeability of nascent discs in the basal rod OS. Translocation of phototransduction components out of the OS may protect rods from osmotic stress, which could be especially harmful in disease conditions that affect rod OS structural integrity. PMID:28320964

  17. Mesopic and Photopic Rod and Cone Photoreceptor-Driven Visual Processes in Mice With Long-Wavelength-Shifted Cone Pigments.

    PubMed

    Tsai, Tina I; Joachimsthaler, Anneka; Kremers, Jan

    2017-10-01

    The clearer divergence in spectral sensitivity between native rod and human L-cone (L*-cone) opsins in the transgenic Opn1lwLIAIS mouse (LIAIS) allows normal visual processes mediated by these photoreceptor subtypes to be isolated effectively using the silent substitution technique. The objective of this study was to further characterize the influence of mean luminance and temporal frequency on the functional properties of signals originating in each photoreceptor separately and independently of adaptation state in LIAIS mice. Electroretinographic (ERG) recordings to sine-wave rod and L*-cone modulation at different mean luminances (0.1-130.0 cd/m2) and temporal frequencies (6-26 Hz) were examined in anesthetized LIAIS (N = 17) and C57Bl/6 mice (N = 8). We report maximum rod-driven response with 8-Hz modulation at 0.1 to 0.5 cd/m2, which was almost four times larger than maximum cone-driven response at 8 Hz, 21.5 to 130 cd/m2. Over these optimal luminances, both rod- and cone-driven response amplitudes exhibited low-pass functions with similar frequency resolution limits, albeit their distinct luminance sensitivities. There were, however, two distinguishing features: (1) the frequency-dependent amplitude decrease of rod-driven responses was more profound, and (2) linear relationships describing rod-driven response phases as a function of stimulus frequency were steeper. Employing the silent substitution method with stimuli of appropriate luminance on the LIAIS mouse (as on human observers) increases the specificity, robustness, and scope to which photoreceptor-driven responses can be reliably assayed compared to the standard photoreceptor isolation methods.

  18. LOW CONDUCTANCE HCN1 ION CHANNELS AUGMENT THE FREQUENCY RESPONSE OF ROD AND CONE PHOTORECEPTORS

    PubMed Central

    Barrow, Andrew J.; Wu, Samuel M.

    2009-01-01

    Hyperpolarization-activated cyclic nucleotide gated (HCN) ion channels are expressed in several tissues throughout the body, including the heart, the CNS, and the retina. HCN channels are found in many neurons in the retina, but their most established role is in generating the hyperpolarization-activated current, Ih, in photoreceptors. This current makes the light response of rod and cone photoreceptors more transient, an effect similar to that of a high-pass filter. A unique property of HCN channels is their small single channel current, which is below the thermal noise threshold of measuring electronics. We use nonstationary fluctuation analysis (NSFA) in the intact retina to estimate the conductance of single HCN channels, revealing a conductance of approximately 650 fS in both rod and cone photoreceptors. We also analyze the properties of HCN channels in salamander rods and cones, from the biophysical to the functional level, showing that HCN1 is the predominant isoform in both cells, and demonstrate how HCN1 channels speed up the light response of both rods and cones under distinct adaptational conditions. We show that in rods and cones, HCN channels increase the natural frequency response of single cells by modifying the photocurrent input, which is limited in its frequency response by the speed of a molecular signaling cascade. In doing so, HCN channels form the first of several systems in the retina that augment the speed of the visual response, allowing an animal to perceive visual stimuli that change more quickly than the underlying photocurrent. PMID:19420251

  19. Effective delivery of recombinant proteins to rod photoreceptors via lipid nanovesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asteriti, Sabrina; Dal Cortivo, Giuditta; Pontelli, Valeria

    2015-06-12

    The potential of liposomes to deliver functional proteins in retinal photoreceptors and modulate their physiological response was investigated by two experimental approaches. First, we treated isolated mouse retinas with liposomes encapsulating either recoverin, an important endogenous protein operating in visual phototransduction, or antibodies against recoverin. We then intravitrally injected in vivo liposomes encapsulating either rhodamin B or recoverin and we investigated the distribution in retina sections by confocal microscopy. The content of liposomes was found to be released in higher amount in the photoreceptor layer than in the other regions of the retina and the functional effects of the release weremore » in line with the current model of phototransduction. Our study sets the basis for quantitative investigations aimed at assessing the potential of intraocular protein delivery via biocompatible nanovesicles, with promising implications for the treatment of retinal diseases affecting the photoreceptor layer. - Highlights: • Recombinant proteins encapsulated in nano-sized liposomes injected intravitreally reach retinal photoreceptors. • The phototransduction cascade in rods is modulated by the liposome content. • Mathematical modeling predicts the alteration of the photoresponses following liposome fusion.« less

  20. Correlated cone noise decreases rod signal contributions to the post-receptoral pathways.

    PubMed

    Hathibelagal, Amithavikram R; Feigl, Beatrix; Zele, Andrew J

    2018-04-01

    This study investigated how invisible extrinsic temporal white noise that correlates with the activity of one of the three [magnocellular (MC), parvocellular (PC), or koniocellular (KC)] post-receptoral pathways alters mesopic rod signaling. A four-primary photostimulator provided independent control of the rod and three cone photoreceptor excitations. The rod contributions to the three post-receptoral pathways were estimated by perceptually matching a 20% contrast rod pulse by independently varying the LMS (MC pathway), +L-M (PC pathway), and S-cone (KC pathway) excitations. We show that extrinsic cone noise caused a predominant decrease in the overall magnitude and ratio of the rod contributions to each pathway. Thus, the relative cone activity in the post-receptoral pathways determines the relative mesopic rod inputs to each pathway.

  1. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography.

    PubMed

    Hood, D C; Birch, D G

    1990-10-01

    An electrical potential recorded from the cornea, the a-wave of the ERG, is evaluated as a measure of human photoreceptor activity by comparing its behavior to a model derived from in vitro recordings from rod photoreceptors. The leading edge of the ERG exhibits both the linear and nonlinear behavior predicted by this model. The capability for recording the electrical activity of human photoreceptors in vivo opens new avenues for assessing normal and abnormal receptor activity in humans. Furthermore, the quantitative model of the receptor response can be used to isolate the inner retinal contribution, Granit's PII, to the gross ERG. Based on this analysis, the practice of using the trough-to-peak amplitude of the b-wave as a proxy for the amplitude of the inner nuclear layer activity is evaluated.

  2. Role of recoverin in rod photoreceptor light adaptation.

    PubMed

    Morshedian, Ala; Woodruff, Michael L; Fain, Gordon L

    2018-04-15

    Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that can modulate the rate of rhodopsin phosphorylation. We describe two additional and perhaps more important functions during photoreceptor light adaptation. Recoverin influences the rate of change of adaptation. In wild-type rods, sensitivity and response integration time adapt with similar time constants of 150-200 ms. In Rv-/- rods lacking recoverin, sensitivity declines faster and integration time is already shorter and not significantly altered. During steady light exposure, rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is deleted, steady-state currents are already larger and rods saturate at brighter intensities. We propose that recoverin modulates spontaneous and light-activated phophodiesterase-6, the phototransduction effector enzyme, to increase sensitivity in dim light but improve responsiveness to change in brighter illumination. Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that binds to G-protein receptor kinase 1 and can alter the rate of rhodopsin phosphorylation. A change in phosphorylation should change the lifetime of light-activated rhodopsin and the gain of phototransduction, but deletion of recoverin has little effect on the sensitivity of rods either in the dark or in dim-to-moderate background light. We describe two additional functions perhaps of greater physiological significance. (i) When the ambient intensity increases, sensitivity and integration time decrease in wild-type (WT) rods with similar time constants of 150-200 ms. Recoverin is part of the mechanism controlling this process because, in Rv-/- rods lacking recoverin, sensitivity declines more rapidly and integration time is already shorter and not further altered. (ii) During steady light exposure, WT rod circulating current slowly

  3. Modeling the Flexural Rigidity of Rod Photoreceptors

    PubMed Central

    Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite

    2013-01-01

    In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852

  4. Restoration of vision after transplantation of photoreceptors.

    PubMed

    Pearson, R A; Barber, A C; Rizzi, M; Hippert, C; Xue, T; West, E L; Duran, Y; Smith, A J; Chuang, J Z; Azam, S A; Luhmann, U F O; Benucci, A; Sung, C H; Bainbridge, J W; Carandini, M; Yau, K-W; Sowden, J C; Ali, R R

    2012-05-03

    Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.

  5. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    PubMed Central

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-01-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage. PMID:25901915

  6. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  7. Prominin-1 Localizes to the Open Rims of Outer Segment Lamellae in Xenopus laevis Rod and Cone Photoreceptors

    PubMed Central

    Han, Zhou; Anderson, David W.

    2012-01-01

    Purpose. Prominin-1 expresses in rod and cone photoreceptors. Mutations in the prominin-1 gene cause retinal degeneration in humans. In this study, the authors investigated the expression and subcellular localization of xlProminin-1 protein, the Xenopus laevis ortholog of prominin-1, in rod and cone photoreceptors of this frog. Methods. Antibodies specific for xlProminin-1 were generated. Immunoblotting was used to study the expression and posttranslational processing of xlProminin-1 protein. Immunocytochemical light and electron microscopy and transgenesis were used to study the subcellular distribution of xlProminin-1. Results. xlProminin-1 is expressed and is subject to posttranslational proteolytic processing in the retina, brain, and kidney. xlProminin-1 is differently expressed and localized in outer segments of rod and cone photoreceptors of X. laevis. Antibodies specific for the N or C termini of xlProminin-1 labeled the open rims of lamellae of cone outer segments (COS) and the open lamellae at the base of rod outer segments (ROS). By contrast, anti–peripherin-2/rds antibody, Xper5A11, labeled the closed rims of cone lamellae adjacent to the ciliary axoneme and the rims of the closed ROS disks. The extent of labeling of the basal ROS by anti–xlProminin-1 antibodies varied with the light cycle in this frog. The entire ROS was also faintly labeled by both antibodies, a result that contrasts with the current notion that prominin-1 localizes only to the basal ROS. Conclusions. These findings suggest that xlProminin-1 may serve as an anti–fusogenic factor in the regulation of disk morphogenesis and may help to maintain the open lamellar structure of basal ROS and COS disks in X. laevis photoreceptors. PMID:22076989

  8. Weak endogenous Ca2+ buffering supports sustained synaptic transmission by distinct mechanisms in rod and cone photoreceptors in salamander retina

    PubMed Central

    Van Hook, Matthew J; Thoreson, Wallace B

    2015-01-01

    Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977

  9. High sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina

    PubMed Central

    Field, Greg D.; Greschner, Martin; Gauthier, Jeffrey L.; Rangel, Carolina; Shlens, Jonathon; Sher, Alexander; Marshak, David W.; Litke, Alan M.; Chichilnisky, E.J.

    2009-01-01

    Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. Here we show that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions (<0.01 P*/rod/s). Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. We discuss three implications of these findings. First, more retinal circuits than previously thought may multiplex rod and cone signals, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the <20 RGC types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels. PMID:19668201

  10. Occupancy of the Chromophore Binding Site of Opsin Activates Visual Transduction in Rod Photoreceptors

    PubMed Central

    Kefalov, Vladimir J.; Carter Cornwall, M.; Crouch, Rosalie K.

    1999-01-01

    The retinal analogue β-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to β-ionone. Our experiments show that in bleach-adapted rods β-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods β-ionone activates phototransduction in the dark. Control experiments showed no effect of β-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of β-ionone with the free opsin produced by bleaching. We speculate that β-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of β-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of

  11. Fasudil, a Clinically Used ROCK Inhibitor, Stabilizes Rod Photoreceptor Synapses after Retinal Detachment.

    PubMed

    Townes-Anderson, Ellen; Wang, Jianfeng; Halász, Éva; Sugino, Ilene; Pitler, Amy; Whitehead, Ian; Zarbin, Marco

    2017-06-01

    Retinal detachment disrupts the rod-bipolar synapse in the outer plexiform layer by retraction of rod axons. We showed that breakage is due to RhoA activation whereas inhibition of Rho kinase (ROCK), using Y27632, reduces synaptic damage. We test whether the ROCK inhibitor fasudil, used for other clinical applications, can prevent synaptic injury after detachment. Detachments were made in pigs by subretinal injection of balanced salt solution (BSS) or fasudil (1, 10 mM). In some animals, fasudil was injected intravitreally after BSS-induced detachment. After 2 to 4 hours, retinae were fixed for immunocytochemistry and confocal microscopy. Axon retraction was quantified by imaging synaptic vesicle label in the outer nuclear layer. Apoptosis was analyzed using propidium iodide staining. For biochemical analysis by Western blotting, retinal explants, detached from retinal pigmented epithelium, were cultured for 2 hours. Subretinal injection of fasudil (10 mM) reduced retraction of rod spherules by 51.3% compared to control detachments ( n = 3 pigs, P = 0.002). Intravitreal injection of 10 mM fasudil, a more clinically feasible route of administration, also reduced retraction (28.7%, n = 5, P < 0.05). Controls had no photoreceptor degeneration at 2 hours, but by 4 hours apoptosis was evident. Fasudil 10 mM reduced pyknotic nuclei by 55.7% ( n = 4, P < 0.001). Phosphorylation of cofilin and myosin light chain, downstream effectors of ROCK, was decreased with 30 μM fasudil ( n = 8-10 explants, P < 0.05). Inhibition of ROCK signaling with fasudil reduced photoreceptor degeneration and preserved the rod-bipolar synapse after retinal detachment. These results support the possibility, previously tested with Y27632, that ROCK inhibition may attenuate synaptic damage in iatrogenic detachments.

  12. Light-Regulated Thyroid Hormone Signaling Is Required for Rod Photoreceptor Development in the Mouse Retina.

    PubMed

    Sawant, Onkar; Horton, Amanda M; Shukla, Meenal; Rayborn, Mary E; Peachey, Neal S; Hollyfield, Joe G; Rao, Sujata

    2015-12-01

    Ambient light is both a stimulus for visual function and a regulator of photoreceptor physiology. However, it is not known if light can regulate any aspect of photoreceptor development. The purpose of this study was to investigate whether ambient light is required for the development of mouse rod photoreceptors. Newborn mouse pups (C57BL/6) were reared in either cyclic light (LD) or constant dark (DD). Pups were collected at postnatal day (P)5, P10, P17, or P24. We performed retinal morphometric and cell death analysis at P5, P10, and P17. Rhodopsin expression was assessed using immunofluorescence, Western blot, and quantitative RT-PCR analysis. Electroretinograms were performed at P17 and P24. Radioimmunoassay and ELISA were used to follow changes in thyroid hormone levels in the serum and vitreous. In the DD pups, the outer nuclear layer was significantly thinner at P10 and there were higher numbers of apoptotic cells at P5 compared to the LD pups. Rhodopsin expression was lower at P10 and P17 in DD pups. Electroretinogram a-waves were reduced in amplitude at P17 in the DD pups. The DD animals had lower levels of circulating thyroid hormones at P10. Light-mediated changes in thyroid hormones occur as early as P5, as we detected lower levels of total triiodothyronine in the vitreous from the DD animals. Drug-induced developmental hypothyroidism resulted in lower rhodopsin expression at P10. Our data demonstrate that light exposure during postnatal development is required for rod photoreceptor development and that this effect could be mediated by thyroid hormone signaling.

  13. Calcium-induced calcium release in rod photoreceptor terminals boosts synaptic transmission during maintained depolarization

    PubMed Central

    Cadetti, Lucia; Bryson, Eric J.; Ciccone, Cory A.; Rabl, Katalin; Thoreson, Wallace B.

    2008-01-01

    We examined the contribution of calcium-induced calcium release (CICR) to synaptic transmission from rod photoreceptor terminals. Whole-cell recording and confocal calcium imaging experiments were conducted on rods with intact synaptic terminals in a retinal slice preparation from salamander. Low concentrations of ryanodine stimulated calcium increases in rod terminals, consistent with the presence of ryanodine receptors. Application of strong depolarizing steps (−70 to −10 mV) exceeding 200 ms or longer in duration evoked a wave of calcium that spread across the synaptic terminals of voltage-clamped rods. This secondary calcium increase was blocked by high concentrations of ryanodine, indicating it was due to CICR. Ryanodine (50 μM) had no significant effect on rod calcium current (Ica) although it slightly diminished rod light-evoked voltage responses. Bath application of 50 μM ryanodine strongly inhibited light-evoked currents in horizontal cells. Whether applied extracellularly or delivered into the rod cell through the patch pipette, ryanodine (50 μM) also inhibited excitatory post-synaptic currents (EPSCs) evoked in horizontal cells by depolarizing steps applied to rods. Ryanodine caused a preferential reduction in the later portions of EPSCs evoked by depolarizing steps of 200 ms or longer. These results indicate that CICR enhances calcium increases in rod terminals evoked by sustained depolarization, which in turn acts to boost synaptic exocytosis from rods. PMID:16819987

  14. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.

    PubMed

    Sakurai, Keisuke; Young, Joyce E; Kefalov, Vladimir J; Khani, Shahrokh C

    2011-08-29

    Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.

  15. Effect of 11-Cis 13-Demethylretinal on Phototransduction in Bleach-Adapted Rod and Cone Photoreceptors

    PubMed Central

    Corson, D.Wesley; Kefalov, Vladimir J.; Cornwall, M. Carter; Crouch, Rosalie K.

    2000-01-01

    We used 11-cis 13-demethylretinal to examine the physiological consequences of retinal's noncovalent interaction with opsin in intact rod and cone photoreceptors during visual pigment regeneration. 11-Cis 13-demethylretinal is an analog of 11-cis retinal in which the 13 position methyl group has been removed. Biochemical experiments have shown that it is capable of binding in the chromophore pocket of opsin, forming a Schiff-base linkage with the protein to produce a pigment, but at a much slower rate than the native 11-cis retinal (Nelson, R., J. Kim deReil, and A. Kropf. 1970. Proc. Nat. Acad. Sci. USA. 66:531–538). Experimentally, this slow rate of pigment formation should allow separate physiological examination of the effects of the initial binding of retinal in the pocket and the subsequent formation of the protonated Schiff-base linkage. Currents from solitary rods and cones from the tiger salamander were recorded in darkness before and after bleaching and then after exposure to 11-cis 13-demethylretinal. In bleach-adapted rods, 11-cis 13-demethylretinal caused transient activation of phototransduction, as evidenced by a decrease of the dark current and sensitivity, acceleration of the dim flash responses, and activation of cGMP phosphodiesterase and guanylyl cyclase. The steady state of phototransduction activity was still higher than that of the bleach-adapted rod. In contrast, exposure of bleach-adapted cones to 11-cis 13-demethylretinal resulted in an immediate deactivation of transduction as measured by the same parameters. These results extend the validity of a model for the effects of the noncovalent binding of a retinoid in the chromophore pockets of rod and cone opsins to analogs capable of forming a Schiff-base and imply that the noncovalent binding by itself may play a role for the dark adaptation of photoreceptors. PMID:10919871

  16. Variation in Rhodopsin Kinase Expression Alters the Dim Flash Response Shut Off and the Light Adaptation in Rod Photoreceptors

    PubMed Central

    Sakurai, Keisuke; Young, Joyce E.; Kefalov, Vladimir J.; Khani, Shahrokh C.

    2011-01-01

    Purpose. Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Methods. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Results. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. Conclusions. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light. PMID:21474765

  17. Migration, Integration and Maturation of Photoreceptor Precursors Following Transplantation in the Mouse Retina

    PubMed Central

    Warre-Cornish, Katherine; Barber, Amanda C.; Sowden, Jane C.; Ali, Robin R.

    2014-01-01

    Retinal degeneration leading to loss of photoreceptors is a major cause of untreatable blindness. Recent research has yielded definitive evidence for restoration of vision following the transplantation of rod photoreceptors in murine models of blindness, while advances in stem cell biology have enabled the generation of transplantable photoreceptors from embryonic stem cells. Importantly, the amount of visual function restored is dependent upon the number of photoreceptors that migrate correctly into the recipient retina. The developmental stage of the donor cells is important for their ability to migrate; they must be immature photoreceptor precursors. Little is known about how and when donor cell migration, integration, and maturation occurs. Here, we have performed a comprehensive histological analysis of the 6-week period following rod transplantation in mice. Donor cells migrate predominately as single entities during the first week undergoing a stereotyped sequence of morphological changes in their translocation from the site of transplantation, through the interphotoreceptor matrix and into the recipient retina. This includes initial polarization toward the outer nuclear layer (ONL), followed by formation of an apical attachment and rudimentary segment during migration into the ONL. Strikingly, acquisition of a nuclear architecture typical of mature rods was accelerated compared with normal development and a feature of migrating cells. Once within the ONL, precursors formed synaptic-like structures and outer segments in accordance with normal maturation. The restoration of visual function mediated by transplanted photoreceptors correlated with the later expression of rod α-transducin, achieving maximal function by 5 weeks. PMID:24328605

  18. The physiological roles of arrestin-1 in rod photoreceptor cells.

    PubMed

    Chen, Jeannie

    2014-01-01

    Arrestin-1 is the second most abundant protein in rod photoreceptors and is nearly equimolar to rhodopsin. Its well-recognized role is to "arrest" signaling from light-activated, phosphorylated rhodopsin, a prototypical G protein-coupled receptor. In doing so, arrestin-1 plays a key role in the rapid recovery of the light response. Arrestin-1 exists in a basal conformation that is stabilized by two independent sets of intramolecular interactions. The intramolecular constraints are disrupted by encountering (1) active conformation of the receptor (R*) and (2) receptor-attached phosphates. Requirement for these two events ensures its highly specific high-affinity binding to phosphorylated, light-activated rhodopsin (P-R*). In the dark-adapted state, the basal form is further organized into dimers and tetramers. Emerging data suggest pleiotropic roles of arrestin-1 beyond the functional range of rod cells. These include light-induced arrestin-1 translocation from the inner segment to the outer segment, a process that may be protective against cellular damage incurred by constitutive signaling. Its expanding list of binding partners also hints at additional, yet to be characterized functions. Uncovering these novel roles of arrestin-1 is a subject of future studies.

  19. Transducin β-Subunit Can Interact with Multiple G-Protein γ-Subunits to Enable Light Detection by Rod Photoreceptors.

    PubMed

    Dexter, Paige M; Lobanova, Ekaterina S; Finkelstein, Stella; Spencer, William J; Skiba, Nikolai P; Arshavsky, Vadim Y

    2018-01-01

    The heterotrimeric G-protein transducin mediates visual signaling in vertebrate photoreceptor cells. Many aspects of the function of transducin were learned from knock-out mice lacking its individual subunits. Of particular interest is the knockout of its rod-specific γ-subunit (Gγ 1 ). Two studies using independently generated mice documented that this knockout results in a considerable >60-fold reduction in the light sensitivity of affected rods, but provided different interpretations of how the remaining α-subunit (Gα t ) mediates phototransduction without its cognate Gβ 1 γ 1 -subunit partner. One study found that the light sensitivity reduction matched a corresponding reduction in Gα t content in the light-sensing rod outer segments and proposed that Gα t activation is supported by remaining Gβ 1 associating with other Gγ subunits naturally expressed in photoreceptors. In contrast, the second study reported the same light sensitivity loss but a much lower, only approximately sixfold, reduction of Gα t and proposed that the light responses of these rods do not require Gβγ at all. To resolve this controversy and elucidate the mechanism driving visual signaling in Gγ 1 knock-out rods, we analyzed both mouse lines side by side. We first determined that the outer segments of both mice have identical Gα t content, which is reduced ∼65-fold from the wild-type (WT) level. We further demonstrated that the remaining Gβ 1 is present in a complex with endogenous Gγ 2 and Gγ 3 subunits and that these complexes exist in wild-type rods as well. Together, these results argue against the idea that Gα t alone supports light responses of Gγ 1 knock-out rods and suggest that Gβ 1 γ 1 is not unique in its ability to mediate vertebrate phototransduction.

  20. Correlation between photoreceptor injury-regeneration and behavior in a zebrafish model.

    PubMed

    Wang, Ya-Jie; Cai, Shi-Jiao; Cui, Jian-Lin; Chen, Yang; Tang, Xin; Li, Yu-Hao

    2017-05-01

    Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few studies examining retinal injury due to intensive light stimulation at the cellular level. Neural network arrangements and gene expression patterns in zebrafish photoreceptors are similar to those observed in humans, and photoreceptor injury in zebrafish can induce stem cell-based cellular regeneration. Therefore, the zebrafish retina is considered a useful model for studying photoreceptor injury in humans. In the current study, the central retinal photoreceptors of zebrafish were selectively ablated by stimulation with high-intensity light. Retinal injury, cell proliferation and regeneration of cones and rods were assessed at 1, 3 and 7 days post lesion with immunohistochemistry and in situ hybridization. Additionally, a light/dark box test was used to assess zebrafish behavior. The results revealed that photoreceptors were regenerated by 7 days after the light-induced injury. However, the regenerated cells showed a disrupted arrangement at the lesion site. During the injury-regeneration process, the zebrafish exhibited reduced locomotor capacity, weakened phototaxis and increased movement angular velocity. These behaviors matched the morphological changes of retinal injury and regeneration in a number of ways. This study demonstrates that the zebrafish retina has a robust capacity for regeneration. Visual impairment and stress responses following high-intensity light stimulation appear to contribute to the alteration of behaviors.

  1. Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation.

    PubMed

    Pelucchi, Bruna; Grimaldi, Annalisa; Moriondo, Andrea

    2008-01-01

    In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.

  2. Distinct and Atypical Intrinsic and Extrinsic Cell Death Pathways between Photoreceptor Cell Types upon Specific Ablation of Ranbp2 in Cone Photoreceptors

    PubMed Central

    Cho, Kyoung-in; Yu, Minzhong; Hao, Ying; Qiu, Sunny; Pillai, Indulekha C. L.; Peachey, Neal S.; Ferreira, Paulo A.

    2013-01-01

    Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial

  3. Light-Induced Translocation of RGS9-1 and Gβ5L in Mouse Rod Photoreceptors

    PubMed Central

    Tian, Mei; Zallocchi, Marisa; Wang, Weimin; Chen, Ching-Kang; Palczewski, Krzysztof; Delimont, Duane; Cosgrove, Dominic; Peng, You-Wei

    2013-01-01

    The transducin GTPase-accelerating protein complex, which determines the photoresponse duration of photoreceptors, is composed of RGS9-1, Gβ5L and R9AP. Here we report that RGS9-1 and Gβ5L change their distribution in rods during light/dark adaptation. Upon prolonged dark adaptation, RGS9-1 and Gβ5L are primarily located in rod inner segments. But very dim-light exposure quickly translocates them to the outer segments. In contrast, their anchor protein R9AP remains in the outer segment at all times. In the dark, Gβ5L's interaction with R9AP decreases significantly and RGS9-1 is phosphorylated at S475 to a significant degree. Dim light exposure leads to quick de-phosphorylation of RGS9-1. Furthermore, after prolonged dark adaptation, RGS9-1 and transducin Gα are located in different cellular compartments. These results suggest a previously unappreciated mechanism by which prolonged dark adaptation leads to increased light sensitivity in rods by dissociating RGS9-1 from R9AP and redistributing it to rod inner segments. PMID:23555598

  4. Dark adaptation of toad rod photoreceptors following small bleaches.

    PubMed

    Leibrock, C S; Reuter, T; Lamb, T D

    1994-11-01

    The recovery of toad rod photoreceptors, following exposure to intense lights that bleached 0.02-3% of the rhodopsin, has been investigated using the suction pipette technique. The post-bleach period was accompanied by reduced flash sensitivity, accelerated kinetics, and spontaneous fluctuations (noise). The power spectrum of the fluctuations had substantially the form expected for the random occurrence of single-photon events, and the noise could therefore be expressed as a "photon-noise equivalent intensity". From the level of desensitization at any time, the after-effect of the bleach could also be expressed in terms of a "desensitization-equivalent intensity", and this was found to be at least a factor of 20 times higher than the noise-equivalent intensity at the corresponding time. Our results indicate that a bleach induces two closely-related phenomena: (a) a process indistinguishable from the effect of real light, and (b) another process which desensitizes and accelerates the response in the same way that light does, but without causing photon-like noise. We propose a mechanism underlying these processes.

  5. Effect of G Protein–Coupled Receptor Kinase 1 (Grk1) Overexpression on Rod Photoreceptor Cell Viability

    PubMed Central

    Whitcomb, Tiffany; Sakurai, Keisuke; Brown, Bruce M.; Young, Joyce E.; Sheflin, Lowell; Dlugos, Cynthia; Craft, Cheryl M.; Kefalov, Vladimir J.

    2010-01-01

    Purpose. Photoreceptor rhodopsin kinase (Rk, G protein–dependent receptor kinase 1 [Grk1]) phosphorylates light-activated opsins and channels them into an inactive complex with visual arrestins. Grk1 deficiency leads to human retinopathy and heightened susceptibility to light-induced photoreceptor cell death in the mouse. The goal of this study was to determine whether excess Grk1 activity is protective against photoreceptor cell death. Methods. Grk1-overexpressing transgenic mice (Grk1+) were generated by using a bacterial artificial chromosome (BAC) construct containing mouse Grk1, along with its flanking sequences. Quantitative reverse transcription-PCR, immunoblot analysis, immunostaining, and activity assays were combined with electrophysiology and morphometric analysis, to evaluate Grk1 overexpression and its effect on physiologic and morphologic retinal integrity. Morphometry and nucleosome release assays measured differences in resistance to photoreceptor cell loss between control and transgenic mice exposed to intense light. Results. Compared with control animals, the Grk1+ transgenic line had approximately a threefold increase in Grk1 transcript and immunoreactive protein. Phosphorylated opsin immunochemical staining and in vitro phosphorylation assays confirmed proportionately higher Grk1 enzyme activity. Grk1+ mice retained normal rod function, normal retinal appearance, and lacked evidence of spontaneous apoptosis when reared in cyclic light. In intense light, Grk1+ mice showed photoreceptor damage, and their susceptibility was more pronounced than that of control mice with prolonged exposure times. Conclusions. Enhancing visual pigment deactivation does not appear to protect against apoptosis; however, excess flow of opsin into the deactivation pathway may actually increase susceptibility to stress-induced cell death similar to some forms of retinal degeneration. PMID:19834036

  6. Light-dependent translocation of arrestin in rod photoreceptors is signaled through a phospholipase C cascade and requires ATP.

    PubMed

    Orisme, Wilda; Li, Jian; Goldmann, Tobias; Bolch, Susan; Wolfrum, Uwe; Smith, W Clay

    2010-03-01

    Partitioning of cellular components is a critical mechanism by which cells can regulate their activity. In rod photoreceptors, light induces a large-scale translocation of arrestin from the inner segments to the outer segments. The purpose of this project is to elucidate the signaling pathway necessary to initiate arrestin translocation to the outer segments and the mechanism for arrestin translocation. Mouse retinal organotypic cultures and eyes from transgenic Xenopus tadpoles expressing a fusion of GFP and rod arrestin were treated with both activators and inhibitors of proteins in the phosphoinositide pathway. Confocal microscopy was used to image the effects of the pharmacological agents on arrestin translocation in rod photoreceptors. Retinas were also depleted of ATP using potassium cyanide to assess the requirement for ATP in arrestin translocation. In this study, we demonstrate that components of the G-protein-linked phospholipase C (PLC) pathway play a role in initiating arrestin translocation. Our results show that arrestin translocation can be stimulated by activators of PLC and protein kinase C (PKC), and by cholera toxin in the absence of light. Arrestin translocation to the outer segments is significantly reduced by inhibitors of PLC and PKC. Importantly, we find that treatment with potassium cyanide inhibits arrestin translocation in response to light. Collectively, our results suggest that arrestin translocation is initiated by a G-protein-coupled cascade through PLC and PKC signaling. Furthermore, our results demonstrate that at least the initiation of arrestin translocation requires energy input.

  7. Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin.

    PubMed

    Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bush, Ronald A; Sieving, Paul A

    2012-09-19

    Loss of retinoschisin (RS1) in Rs1 knock-out (Rs1-KO) retina produces a post-photoreceptor phenotype similar to X-linked retinoschisis in young males. However, Rs1 is expressed strongly in photoreceptors, and Rs1-KO mice have early reduction in the electroretinogram a-wave. We examined light-activated transducin and arrestin translocation in young Rs1-KO mice as a marker for functional abnormalities in maturing rod photoreceptors. We found a progressive reduction in luminance threshold for transducin translocation in wild-type (WT) retinas between postnatal days P18 and P60. At P21, the threshold in Rs1-KO retinas was 10-fold higher than WT, but it decreased to <2.5-fold higher by P60. Light-activated arrestin translocation and re-translocation of transducin in the dark were not affected. Rs1-KO rod outer segment (ROS) length was significantly shorter than WT at P21 but was comparable with WT at P60. These findings suggested a delay in the structural and functional maturation of Rs1-KO ROS. Consistent with this, transcription factors CRX and NRL, which are fundamental to maturation of rod protein expression, were reduced in ROS of Rs1-KO mice at P21 but not at P60. Expression of transducin was 15-30% lower in P21 Rs1-KO ROS and transducin GTPase hydrolysis was nearly twofold faster, reflecting a 1.7- to 2.5-fold increase in RGS9 (regulator of G-protein signaling) level. Transduction protein expression and activity levels were similar to WT at P60. Transducin translocation threshold elevation indicates photoreceptor functional abnormalities in young Rs1-KO mice. Rapid reduction in threshold coupled with age-related changes in transduction protein levels and transcription factor expression are consistent with delayed maturation of Rs1-KO photoreceptors.

  8. Excitation and desensitization of mouse rod photoreceptors in vivo following bright adapting light

    PubMed Central

    Kang Derwent, Jennifer J; Qtaishat, Nasser M; Pepperberg, David R

    2002-01-01

    Electroretinographic (ERG) methods were used to determine response properties of mouse rod photoreceptors in vivo following adapting illumination that produced a significant extent of rhodopsin bleaching. Bleaching levels prevailing at ∼10 min and ∼20 min after the adapting exposure were on average 14% and 9%, respectively, based on the analysis of visual cycle retinoids in the eye tissues. Recovery of the rod response to the adapting light was monitored by analysing the ERG a-wave response to a bright probe flash presented at varying times during dark adaptation. A paired-flash procedure, in which the probe flash was presented at defined times after a weak test flash of fixed strength, was used to determine sensitivity of the rod response to the test flash. Recovery of the response to the adapting light was 80% complete at 13.5 ± 3.0 min (mean ± s.d.; n = 7) after adapting light offset. The adapting light caused prolonged desensitization of the weak-flash response derived from paired-flash data. By comparison with results obtained in the absence of the adapting exposure, desensitization determined with a test-probe interval of 80 ms was ∼fourfold after 5 min of dark adaptation and ∼twofold after 20 min. The results indicate, for mouse rods in vivo, that the time scale for recovery of weak-flash sensitivity substantially exceeds that for the recovery of circulating current following significant rhodopsin bleaching. The lingering desensitization may reflect a reduced efficiency of signal transmission in the phototransduction cascade distinct from that due to residual excitation. PMID:12015430

  9. Long-Term Survival of Photoreceptors Transplanted into the Adult Murine Neural Retina Requires Immune Modulation

    PubMed Central

    West, Emma L.; Pearson, Rachael A.; Barker, Susie E.; Luhmann, Ulrich F. O.; Maclaren, Robert E.; Barber, Amanda C.; Duran, Yanai; Smith, Alexander J.; Sowden, Jane C.; Ali, Robin R.

    2012-01-01

    Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age-related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod-specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long-term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post-transplantation, albeit in significantly reduced numbers. Surviving cells had rod-like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post-transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post-transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell-mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H-2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. PMID:20857496

  10. Light adaptation and the evolution of vertebrate photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  11. Determining consequences of retinal membrane guanylyl cyclase (RetGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants

    PubMed Central

    Jacobson, Samuel G.; Cideciyan, Artur V.; Peshenko, Igor V.; Sumaroka, Alexander; Olshevskaya, Elena V.; Cao, Lihui; Schwartz, Sharon B.; Roman, Alejandro J.; Olivares, Melani B.; Sadigh, Sam; Yau, King-Wai; Heon, Elise; Stone, Edwin M.; Dizhoor, Alexander M.

    2013-01-01

    The GUCY2D gene encodes retinal membrane guanylyl cyclase (RetGC1), a key component of the phototransduction machinery in photoreceptors. Mutations in GUCY2D cause Leber congenital amaurosis type 1 (LCA1), an autosomal recessive human retinal blinding disease. The effects of RetGC1 deficiency on human rod and cone photoreceptor structure and function are currently unknown. To move LCA1 closer to clinical trials, we characterized a cohort of patients (ages 6 months—37 years) with GUCY2D mutations. In vivo analyses of retinal architecture indicated intact rod photoreceptors in all patients but abnormalities in foveal cones. By functional phenotype, there were patients with and those without detectable cone vision. Rod vision could be retained and did not correlate with the extent of cone vision or age. In patients without cone vision, rod vision functioned unsaturated under bright ambient illumination. In vitro analyses of the mutant alleles showed that in addition to the major truncation of the essential catalytic domain in RetGC1, some missense mutations in LCA1 patients result in a severe loss of function by inactivating its catalytic activity and/or ability to interact with the activator proteins, GCAPs. The differences in rod sensitivities among patients were not explained by the biochemical properties of the mutants. However, the RetGC1 mutant alleles with remaining biochemical activity in vitro were associated with retained cone vision in vivo. We postulate a relationship between the level of RetGC1 activity and the degree of cone vision abnormality, and argue for cone function being the efficacy outcome in clinical trials of gene augmentation therapy in LCA1. PMID:23035049

  12. Transcriptome Dynamics of Developing Photoreceptors in Three‐Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks

    PubMed Central

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra

    2015-01-01

    Abstract The derivation of three‐dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone‐rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp‐GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self‐organizing 3D retina‐like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S‐opsin and no rhodopsin or L/M‐opsin is present. The transcriptome profile, by RNA‐seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures. Stem Cells 2015;33:3504–3518 PMID:26235913

  13. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.

    PubMed

    Musser, Jacob M; Arendt, Detlev

    2017-11-01

    Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy.

    PubMed

    Oishi, Akio; Oishi, Maho; Ogino, Ken; Morooka, Satoshi; Yoshimura, Nagahisa

    2016-01-01

    Retinitis pigmentosa and cone/cone-rod dystrophy are inherited retinal diseases characterized by the progressive loss of rod and/or cone photoreceptors. To evaluate the status of rod/cone photoreceptors and visual function, visual acuity and visual field tests, electroretinogram, and optical coherence tomography are typically used. In addition to these examinations, fundus autofluorescence (FAF) has recently garnered attention. FAF visualizes the intrinsic fluorescent material in the retina, which is mainly lipofuscin contained within the retinal pigment epithelium. While conventional devices offer limited viewing angles in FAF, the recently developed Optos machine enables recording of wide-field FAF. With wide-field analysis, an association between abnormal FAF areas and visual function was demonstrated in retinitis pigmentosa and cone-rod dystrophy. In addition, the presence of "patchy" hypoautofluorescent areas was found to be correlated with symptom duration. Although physicians should be cautious when interpreting wide-field FAF results because the peripheral parts of the image are magnified significantly, this examination method provides previously unavailable information.

  15. Histological techniques for study of photoreceptor orientation.

    PubMed

    Laties, A M

    1969-01-01

    An histological method for the study of photoreceptor orientation in primate eyes is described. To preserve photoreceptor orientation it is necessary to protect the fragile rod and cone outer segments to the maximum extent possible from mechanical deformation and from injury by solvent extraction. To prevent mechanical deformation the eyes are freeze-dried and embedded in plastic with or without prior vapor fixation. Solvent extraction from the lipid-rich outer segment is limited by avoidance or restriction of organic solvents. When large segments of primate eyes are so treated, it is possible to section the plastic blocks along the visual axis, polish the block surface, and view photoreceptor orientation by epi-illumination microscopy. In such specimens a differential orientation of photoreceptors exists with the long axis of photoreceptor inner and outer segments in line with incoming light rays.

  16. Optimal design of photoreceptor mosaics: why we do not see color at night.

    PubMed

    Manning, Jeremy R; Brainard, David H

    2009-01-01

    While color vision mediated by rod photoreceptors in dim light is possible (Kelber & Roth, 2006), most animals, including humans, do not see in color at night. This is because their retinas contain only a single class of rod photoreceptors. Many of these same animals have daylight color vision, mediated by multiple classes of cone photoreceptors. We develop a general formulation, based on Bayesian decision theory, to evaluate the efficacy of various retinal photoreceptor mosaics. The formulation evaluates each mosaic under the assumption that its output is processed to optimally estimate the image. It also explicitly takes into account the statistics of the environmental image ensemble. Using the general formulation, we consider the trade-off between monochromatic and dichromatic retinal designs as a function of overall illuminant intensity. We are able to demonstrate a set of assumptions under which the prevalent biological pattern represents optimal processing. These assumptions include an image ensemble characterized by high correlations between image intensities at nearby locations, as well as high correlations between intensities in different wavelength bands. They also include a constraint on receptor photopigment biophysics and/or the information carried by different wavelengths that produces an asymmetry in the signal-to-noise ratio of the output of different receptor classes. Our results thus provide an optimality explanation for the evolution of color vision for daylight conditions and monochromatic vision for nighttime conditions. An additional result from our calculations is that regular spatial interleaving of two receptor classes in a dichromatic retina yields performance superior to that of a retina where receptors of the same class are clumped together.

  17. Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2014-01-01

    Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+-induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the “added buffer” approach to measure the endogenous Ca2+ binding ratio (κendo) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types - approximately 25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of approximately 100 s−1 and 160 s−1 in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon-bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+-dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well-suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics. PMID:25049035

  18. Protein sorting, targeting and trafficking in photoreceptor cells

    PubMed Central

    Pearring, Jillian N.; Salinas, Raquel Y.; Baker, Sheila A.; Arshavsky, Vadim Y.

    2013-01-01

    Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins. PMID:23562855

  19. Human amniotic fluid promotes retinal pigmented epithelial cells' trans-differentiation into rod photoreceptors and retinal ganglion cells.

    PubMed

    Ghaderi, Shima; Soheili, Zahra-Soheila; Ahmadieh, Hamid; Davari, Maliheh; Jahromi, Fatemeh Sanie; Samie, Shahram; Rezaie-Kanavi, Mozhgan; Pakravesh, Jalil; Deezagi, Abdolkhalegh

    2011-09-01

    To evaluate the effect of human amniotic fluid (HAF) on retinal pigmented epithelial cells growth and trans-differentiation into retinal neurons, retinal pigmented epithelium (RPE) cells were isolated from neonatal human cadaver eye globes and cultured in Dulbecco's modified Eagle's medium-F12 supplemented with 10% fetal bovine serum (FBS). Confluent monolayer cultures were trypsinized and passaged using FBS-containing or HAF-containing media. Amniotic fluid samples were received from pregnant women in the first trimester of gestation. Cell proliferation and death enzyme-linked immunosorbent assays were performed to assess the effect of HAF on RPE cell growth. Trans-differentiation into rod photoreceptors and retinal ganglion cells was also studied using immunocytochemistry and real-time polymerase chain reaction techniques. Primary cultures of RPE cells were successfully established under FBS-containing or HAF-containing media leading to rapid cell growth and proliferation. When RPE cells were moved to in vitro culture system, they began to lose their differentiation markers such as pigmentation and RPE65 marker and trans-differentiated neural-like cells followed by spheroid colonies pertaining to stem/progenitor cells were morphologically detected. Immunocytochemistry (ICC) analysis of HAF-treated cultures showed a considerable expression of Rhodopsin gene (30% Rhodopsin-positive cells) indicating trans-differentiation of RPE cells to rod photoreceptors. Real-time polymerase chain reaction revealed an HAF-dose-dependant expression of Thy-1 gene (RGC marker) and significant promoting effect of HAF on RGCs generation. The data presented here suggest that HAF possesses invaluable stimulatory effect on RPE cells growth and trans-differentiation into retinal neurons. It can be regarded as a newly introduced enriched supplement in serum-free kinds of media used in neuro-retinal regeneration studies.

  20. Evolution of phototransduction, vertebrate photoreceptors and retina.

    PubMed

    Lamb, Trevor D

    2013-09-01

    Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates. Copyright © 2013 The Author. Published by Elsevier Ltd.. All

  1. Paired-Pulse Depression at Photoreceptor Synapses

    PubMed Central

    Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.

    2011-01-01

    Synaptic depression produced by repetitive stimulation is likely to be particularly important in shaping responses of second-order retinal neurons at the tonically active photoreceptor synapse. We analyzed the time course and mechanisms of synaptic depression at rod and cone synapses using paired-pulse protocols involving two complementary measurements of exocytosis: (1) paired whole-cell recordings of the postsynaptic current (PSC) in second-order retinal neurons and (2) capacitance measurements of vesicular membrane fusion in rods and cones. PSCs in ON bipolar, OFF bipolar, and horizontal cells evoked by stimulation of either rods or cones recovered from paired-pulse depression (PPD) at rates similar to the recovery of exocytotic capacitance changes in rods and cones. Correlation between presynaptic and postsynaptic measures of recovery from PPD suggests that 80 –90% of the depression at these synapses is presynaptic in origin. Consistent with a predominantly presynaptic mechanism, inhibiting desensitization of postsynaptic glutamate receptors had little effect on PPD. The depression of exocytotic capacitance changes exceeded depression of the presynaptic calcium current, suggesting that it is primarily caused by a depletion of synaptic vesicles. In support of this idea, limiting Ca2+ influx by using weaker depolarizing stimuli promoted faster recovery from PPD. Although cones exhibit much faster exocytotic kinetics than rods, exocytotic capacitance changes recovered from PPD at similar rates in both cell types. Thus, depression of release is not likely to contribute to differences in the kinetics of transmission from rods and cones. PMID:16510733

  2. Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huppertz, B.; Weyand, I.; Bauer, P.J.

    1990-06-05

    Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less

  3. Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods.

    PubMed

    Frederiksen, Rikard; Boyer, Nicholas P; Nickle, Benjamin; Chakrabarti, Kalyan S; Koutalos, Yiannis; Crouch, Rosalie K; Oprian, Daniel; Cornwall, M Carter

    2012-06-01

    We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.

  4. Modeling photo-bleaching kinetics to map local variations in rod rhodopsin density

    NASA Astrophysics Data System (ADS)

    Ehler, M.; Dobrosotskaya, J.; King, E. J.; Czaja, W.; Bonner, R. F.

    2011-03-01

    Localized rod photoreceptor and rhodopsin losses have been observed in post mortem histology both in normal aging and in age-related maculopathy. We propose to noninvasively map local rod rhodopsin density through analysis of the brightening of the underlying lipofuscin autofluorescence (LAF) in confocal scanning laser ophthalmoscopy (cSLO) imaging sequences starting in the dark adapted eye. The detected LAF increases as rhodopsin is bleached (time constant ~ 25sec) by the average retinal irradiance of the cSLO 488nm laser beam. We fit parameters of analytical expressions for the kinetics of rhodopsin bleaching that Lamb validated using electroretinogram recordings in human. By performing localized (~ 100μm) kinetic analysis, we create high resolution maps of the rhodopsin density. This new noninvasive imaging and analysis approach appears well-suited for measuring localized changes in the rod photoreceptors and correlating them at high spatial resolution with localized pathological changes of the retinal pigment epithelium (RPE) seen in steady-state LAF images.

  5. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish.

    PubMed

    Viringipurampeer, I A; Shan, X; Gregory-Evans, K; Zhang, J P; Mohammadi, Z; Gregory-Evans, C Y

    2014-05-01

    Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6c(w59) mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6c(w59) embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6c(w59) mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.

  6. Peripherin-2 couples rhodopsin to the CNG channel in outer segments of rod photoreceptors.

    PubMed

    Becirovic, Elvir; Nguyen, O N Phuong; Paparizos, Christos; Butz, Elisabeth S; Stern-Schneider, Gabi; Wolfrum, Uwe; Hauck, Stefanie M; Ueffing, Marius; Wahl-Schott, Christian; Michalakis, Stylianos; Biel, Martin

    2014-11-15

    Outer segments (OSs) of rod photoreceptors are cellular compartments specialized in the conversion of light into electrical signals. This process relies on the light-triggered change in the intracellular levels of cyclic guanosine monophosphate, which in turn controls the activity of cyclic nucleotide-gated (CNG) channels in the rod OS plasma membrane. The rod CNG channel is a macromolecular complex that in its core harbors the ion-conducting CNGA1 and CNGB1a subunits. To identify additional proteins of the complex that interact with the CNGB1a core subunit, we applied affinity purification of mouse retinal proteins followed by mass spectrometry. In combination with in vitro and in vivo co-immunoprecipitation and fluorescence resonance energy transfer (FRET), we found that the tetraspanin peripherin-2 links CNGB1a to the light-detector rhodopsin. Using immunoelectron microscopy, we found that this peripherin-2/rhodopsin/CNG channel complex localizes to the contact region between the disk rims and the plasma membrane. FRET measurements revealed that the fourth transmembrane domain (TM4) of peripherin-2 is required for the interaction with rhodopsin. Quantitatively, the binding affinity of the peripherin-2/rhodopsin interaction was in a similar range as that observed for rhodopsin dimers. Finally, we demonstrate that the p.G266D retinitis pigmentosa mutation found within TM4 selectively abolishes the binding of peripherin-2 to rhodopsin. This finding suggests that the specific disruption of the rhodopsin/peripherin-2 interaction in the p.G266D mutant might contribute to the pathophysiology in affected persons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Concentric retinitis pigmentosa: clinicopathologic correlations.

    PubMed

    Milam, A H; De Castro, E B; Smith, J E; Tang, W X; John, S K; Gorin, M B; Stone, E M; Aguirre, G D; Jacobson, S G

    2001-10-01

    Progressive concentric (centripetal) loss of vision is one pattern of visual field loss in retinitis pigmentosa. This study provides the first clinicopathologic correlations for this form of retinitis pigmentosa. A family with autosomal dominant concentric retinitis pigmentosa was examined clinically and with visual function tests. A post-mortem eye of an affected 94 year old family member was processed for histopathology and immunocytochemistry with retinal cell specific antibodies. Unrelated simplex/multiplex patients with concentric retinitis pigmentosa were also examined. Affected family members of the eye donor and patients from the other families had prominent peripheral pigmentary retinopathy with more normal appearing central retina, good visual acuity, concentric field loss, normal or near normal rod and cone sensitivity within the preserved visual field, and reduced rod and cone electroretinograms. The eye donor, at age 90, had good acuity and function in a central island. Grossly, the central region of the donor retina appeared thinned but otherwise normal, while the far periphery contained heavy bone spicule pigment. Microscopically the central retina showed photoreceptor outer segment shortening and some photoreceptor cell loss. The mid periphery had a sharp line of demarcation where more central photoreceptors were near normal except for very short outer segments and peripheral photoreceptors were absent. Rods and cones showed abrupt loss of outer segments and cell death at this interface. It is concluded that concentric retinitis pigmentosa is a rare but recognizable phenotype with slowly progressive photoreceptor death from the far periphery toward the central retina. The disease is retina-wide but shows regional variation in severity of degeneration; photoreceptor death is severe in the peripheral retina with an abrupt edge between viable and degenerate photoreceptors. Peripheral to central gradients of unknown retinal molecule(s) may be defective

  8. Minireview: The Role of Nuclear Receptors in Photoreceptor Differentiation and Disease

    PubMed Central

    Swaroop, Anand

    2012-01-01

    Rod and cone photoreceptors are specialized sensory cells that mediate vision. Transcriptional controls are critical for the development and long-term survival of photoreceptors; when these controls become ineffective, retinal dysfunction or degenerative disease may result. This review discusses the role of nuclear receptors, a class of ligand-regulated transcription factors, at key stages of photoreceptor life in the mammalian retina. Nuclear receptors with known ligands, such as retinoids or thyroid hormone, together with several orphan receptors without identified physiological ligands, complement other classes of transcription factors in directing the differentiation and functional maintenance of photoreceptors. The potential of nuclear receptors to respond to ligands introduces versatility into the control of photoreceptor development and function and may suggest new opportunities for treatments of photoreceptor disease. PMID:22556342

  9. MicroRNA changes through Müller glia dedifferentiation and early/late rod photoreceptor differentiation.

    PubMed

    Quintero, H; Gómez-Montalvo, A I; Lamas, M

    2016-03-01

    Cell-type determination is a complex process driven by the combinatorial effect of extrinsic signals and the expression of transcription factors and regulatory genes. MicroRNAs (miRNAs) are non-coding RNAs that, generally, inhibit the expression of target genes and have been involved, among other processes, in cell identity acquisition. To search for candidate miRNAs putatively involved in mice rod photoreceptor and Müller glia (MG) identity, we compared miRNA expression profiles between late-stage retinal progenitor cells (RPCs), CD73-immunopositive (CD73+) rods and postnatal MG. We found a close similarity between RPCs and CD73+ miRNA expression profiles but a divergence between CD73+ and MG miRNA signatures. We validated preferentially expressed miRNAs in the CD73+ subpopulation (miR-182, 183, 124a, 9(∗), 181c and 301b(∗)) or MG (miR-143, 145, 214, 199a-5p, 199b(∗), and 29a). Taking advantage of the unique capacity of MG to dedifferentiate into progenitor-like cells that can be differentiated to a rod phenotype in response to external cues, we evaluated changes of selected miRNAs in MG-derived progenitors (MGDP) during neuronal differentiation. We found decreased levels of miR-143 and 145, but increased levels of miR-29a in MGDP. In MGDPs committed to early neuronal lineages we found increased levels of miR-124a and upregulation of miR-124a, 9(∗) and 181c during MGDP acquisition of rod phenotypes. Furthermore, we demonstrated that ectopic miR-124 expression is sufficient to enhance early neuronal commitment of MGDP. Our data reveal a dynamic regulation of miRNAs in MGDP through early and late neuronal commitment and miRNAs that could be potential targets to exploit the silent neuronal differentiation capacity of MG in mammals. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. CRX ChIP-seq reveals the cis-regulatory architecture of mouse photoreceptors

    PubMed Central

    Corbo, Joseph C.; Lawrence, Karen A.; Karlstetter, Marcus; Myers, Connie A.; Abdelaziz, Musa; Dirkes, William; Weigelt, Karin; Seifert, Martin; Benes, Vladimir; Fritsche, Lars G.; Weber, Bernhard H.F.; Langmann, Thomas

    2010-01-01

    Approximately 98% of mammalian DNA is noncoding, yet we understand relatively little about the function of this enigmatic portion of the genome. The cis-regulatory elements that control gene expression reside in noncoding regions and can be identified by mapping the binding sites of tissue-specific transcription factors. Cone-rod homeobox (CRX) is a key transcription factor in photoreceptor differentiation and survival, but its in vivo targets are largely unknown. Here, we used chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) on CRX to identify thousands of cis-regulatory regions around photoreceptor genes in adult mouse retina. CRX directly regulates downstream photoreceptor transcription factors and their target genes via a network of spatially distributed regulatory elements around each locus. CRX-bound regions act in a synergistic fashion to activate transcription and contain multiple CRX binding sites which interact in a spacing- and orientation-dependent manner to fine-tune transcript levels. CRX ChIP-seq was also performed on Nrl−/− retinas, which represent an enriched source of cone photoreceptors. Comparison with the wild-type ChIP-seq data set identified numerous rod- and cone-specific CRX-bound regions as well as many shared elements. Thus, CRX combinatorially orchestrates the transcriptional networks of both rods and cones by coordinating the expression of photoreceptor genes including most retinal disease genes. In addition, this study pinpoints thousands of noncoding regions of relevance to both Mendelian and complex retinal disease. PMID:20693478

  11. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    PubMed

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.

    PubMed

    de Busserolles, Fanny; Cortesi, Fabio; Helvik, Jon Vidar; Davies, Wayne I L; Templin, Rachel M; Sullivan, Robert K P; Michell, Craig T; Mountford, Jessica K; Collin, Shaun P; Irigoien, Xabier; Kaartvedt, Stein; Marshall, Justin

    2017-11-01

    Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.

  13. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides

    PubMed Central

    de Busserolles, Fanny; Cortesi, Fabio; Helvik, Jon Vidar; Davies, Wayne I. L.; Templin, Rachel M.; Sullivan, Robert K. P.; Michell, Craig T.; Mountford, Jessica K.; Collin, Shaun P.; Irigoien, Xabier; Kaartvedt, Stein; Marshall, Justin

    2017-01-01

    Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides’ habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general. PMID:29134201

  14. Comparative investigation of stimulus-evoked rod outer segment movement and retinal electrophysiological activity

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Wang, Benquan; Yao, Xincheng

    2017-02-01

    Transient retinal phototropism (TRP) has been observed in rod photoreceptors activated by oblique visible light flashes. Time-lapse confocal microscopy and optical coherence tomography (OCT) revealed rod outer segment (ROS) movements as the physical source of TRP. However, the physiological source of TRP is still not well understood. In this study, concurrent TRP and electroretinogram (ERG) measurements disclosed a remarkably earlier onset time of the ROS movements (<=10 ms) than that ( 38 ms) of the ERG a-wave. Furthermore, low sodium treatment reversibly blocked the photoreceptor ERG a-wave, which is known to reflect hyperpolarization of retinal photoreceptors, but preserved the TRP associated rod OS movements well. Our experimental results and theoretical analysis suggested that the physiological source of TRP might be attributed to early stages of phototransduction, before the hyperpolarization of retinal photoreceptors.

  15. Characterization of Ether-à-go-go Channels Present in Photoreceptors Reveals Similarity to IKx, a K+ Current in Rod Inner Segments

    PubMed Central

    Frings, Stephan; Brüll, Nicole; Dzeja, Claudia; Angele, Albert; Hagen, Volker; Kaupp, U. Benjamin; Baumann, Arnd

    1998-01-01

    In this study, we describe two splice variants of an ether-à-go-go (EAG) K+ channel cloned from bovine retina: bEAG1 and bEAG2. The bEAG2 polypeptide contains an additional insertion of 27 amino acids in the extracellular linker between transmembrane segments S3 and S4. The heterologously expressed splice variants differ in their activation kinetics and are differently modulated by extracellular Mg2+. Cooperativity of modulation by Mg2+ suggests that each subunit of the putative tetrameric channel binds a Mg2+ ion. The channels are neither permeable to Ca2+ ions nor modulated by cyclic nucleotides. In situ hybridization localizes channel transcripts to photoreceptors and retinal ganglion cells. Comparison of EAG currents with IKx, a noninactivating K+ current in the inner segment of rod photoreceptors, reveals an intriguing similarity, suggesting that EAG polypeptides are involved in the formation of Kx channels. PMID:9524140

  16. Usher syndrome type 1-associated cadherins shape the photoreceptor outer segment.

    PubMed

    Schietroma, Cataldo; Parain, Karine; Estivalet, Amrit; Aghaie, Asadollah; Boutet de Monvel, Jacques; Picaud, Serge; Sahel, José-Alain; Perron, Muriel; El-Amraoui, Aziz; Petit, Christine

    2017-06-05

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis , these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23 , encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. © 2017 Schietroma et al.

  17. Physical insight into light scattering by photoreceptor cell nuclei.

    PubMed

    Kreysing, Moritz; Boyde, Lars; Guck, Jochen; Chalut, Kevin J

    2010-08-01

    A recent study showed that the rod photoreceptor cell nuclei in the retina of nocturnal and diurnal mammals differ considerably in architecture: the location of euchromatin and heterochromatin in the nucleus is interchanged. This inversion has significant implications for the refractive index distribution and the light scattering properties of the nucleus. Here, we extend previous two-dimensional analysis to three dimensions (3D) by using both a numerical finite-difference time-domain and an analytic Mie theory approach. We find that the specific arrangement of the chromatin phases in the nuclear core-shell models employed have little impact on the far-field scattering cross section. However, scattering in the near field, which is the relevant regime inside the retina, shows a significant difference between the two architectures. The "inverted" photoreceptor cell nuclei of nocturnal mammals act as collection lenses, with the lensing effect being much more pronounced in 3D than in two dimensions. This lensing helps to deliver light efficiently to the light-sensing outer segments of the rod photoreceptor cells and thereby improve night vision.

  18. Functional significance of the taper of vertebrate cone photoreceptors

    PubMed Central

    Hárosi, Ferenc I.

    2012-01-01

    Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between

  19. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade

    PubMed Central

    Astakhova, Luba A.; Samoiliuk, Evgeniia V.; Govardovskii, Victor I.

    2012-01-01

    In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. PMID:23008435

  20. Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors.

    PubMed

    Gonzalez-Cordero, Anai; Kruczek, Kamil; Naeem, Arifa; Fernando, Milan; Kloc, Magdalena; Ribeiro, Joana; Goh, Debbie; Duran, Yanai; Blackford, Samuel J I; Abelleira-Hervas, Laura; Sampson, Robert D; Shum, Ian O; Branch, Matthew J; Gardner, Peter J; Sowden, Jane C; Bainbridge, James W B; Smith, Alexander J; West, Emma L; Pearson, Rachael A; Ali, Robin R

    2017-09-12

    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Mouse rods signal through gap junctions with cones.

    PubMed

    Asteriti, Sabrina; Gargini, Claudia; Cangiano, Lorenzo

    2014-01-01

    Rod and cone photoreceptors are coupled by gap junctions (GJs), relatively large channels able to mediate both electrical and molecular communication. Despite their critical location in our visual system and evidence that they are dynamically gated for dark/light adaptation, the full impact that rod-cone GJs can have on cone function is not known. We recorded the photovoltage of mouse cones and found that the initial level of rod input increased spontaneously after obtaining intracellular access. This process allowed us to explore the underlying coupling capacity to rods, revealing that fully coupled cones acquire a striking rod-like phenotype. Calcium, a candidate mediator of the coupling process, does not appear to be involved on the cone side of the junctional channels. Our findings show that the anatomical substrate is adequate for rod-cone coupling to play an important role in vision and, possibly, in biochemical signaling among photoreceptors. DOI: http://dx.doi.org/10.7554/eLife.01386.001.

  2. Effect of hydroxylamine on photon-like events during dark adaptation in toad rod photoreceptors.

    PubMed Central

    Leibrock, C S; Lamb, T D

    1997-01-01

    1. The suction pipette technique was used to investigate the recovery of toad rod photoreceptors following small bleaches of 0.2-3% of the rhodopsin. 2. The reduction in sensitivity and the increase in noise elicited by bleaches were measured, and from these measurements the underlying rate of occurrence of photon-like events was calculated as a function of time after the bleach. 3. Exposure to hydroxylamine solution was used to hasten the decomposition of the metarhodopsin photoproducts. The outer segment was exposed to 110 mM hydroxylamine in a low-Ca2+ Ringer solution for a period of 10-50 s beginning 10-17 min after the bleaching exposure. 4. By the time of the hydroxylamine exposure, the flash sensitivity and response kinetics had returned almost to normal, and were not significantly altered by the exposure. 5. Following hydroxylamine exposure, the rate of spontaneous photon-like events in the rods declined rapidly to near pre-bleach levels. 6. We conclude that hydroxylamine reduces the rate of occurrence of photon-like events induced by a bleach, and we postulate that this reduction results from the removal of metarhodopsin (most likely metarhodopsin II) from the outer segment. 7. Our results are consistent with a model in which photon-like events result from reversal of the reactions (phosphorylation and capping by arrestin) that lead to inactivation of the activated form of rhodopsin, Rh*. PMID:9174997

  3. Characterization of the rod photoresponse isolated from the dark-adapted primate ERG.

    PubMed

    Jamison, J A; Bush, R A; Lei, B; Sieving, P A

    2001-01-01

    The a-wave of the human dark-adapted ERG is thought to derive from activity of rod photoreceptors. However, other sources within the retina could potentially perturb this simple equation. We investigated the extent to which the short-latency dark-adapted rod a-wave of the primate ERG is dominated by the rod photoresponse and the applicability of the phototransduction model to fit the rod a-wave. Dark-adapted Ganzfeld ERGs were elicited over a 5-log-unit intensity range using short bright xenon flashes, and the light-adapted cone responses were subtracted to isolate the rod ERG a-wave. Intravitreal 4-phosphono-butyric acid (APB) and cis-2,3-piperidine-dicarboxylic acid (PDA) were applied to isolate the photoreceptor response. The Hood and Birch version of the phototransduction model, Rmax[1 - e(-I x S x (t-t(eff)))2], was fitted to the a-wave data while allowing Rmax and S to vary. Three principle observations were made: (1) At flash intensities > or =0.77 log sc-td-s the leading edge of the normalized rod ERG a-wave tracks the isolated photoreceptor response across the first 20 ms or up to the point of b-wave intrusion. The rod ERG a-wave was essentially identical to the isolated receptor response for all intensities that produce peak responses within 14 ms after the flash. (2) The best fit of sensitivity (S) was not affected by APB and/or PDA, suggesting that the inner retina contributes very little to the dark-adapted a-wave. (3) APB always reduced the maximum dark-adapted a-wave amplitude (by 15-30%), and PDA always increased it (by 7-15%). Using the phototransduction model, both events can be interpreted as a scaling of the photoreceptor dark current. This suggests that activity of postreceptor cells somehow influences the rod dark current, possibly by feedback through horizontal cells (although currently not demonstrated for the rod system), or by altering the ionic concentrations near the photoreceptors, or by neuromodulator effects mediated by dopamine or

  4. Identification of endogenous fluorophores in the photoreceptors using autofluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Lingling; Qu, Junle; Niu, Hanben

    2007-11-01

    In this paper, we present our investigation on the identification of endogenous fluorophores in photoreceptors using autofluorescence spectroscopy, which is performed with an inverted laser scanning confocal microscope equipped with an Argon ion laser and a GreNe laser. In our experiments, individual cones and rods are clearly resolved even in freshly prepared retina samples, without slicing or labeling. The experiment results show that autofluorescence spectrum of the photoreceptors has three peaks approximately at 525nm, 585nm and 665nm. Furthermore, the brightest autofluorescence originates from the photoreceptor outer segments. We can, therefore, come to a conclusion that the peaks at 525nm, 585nm are corresponding to FAD and A2-PE, respectively, which are distributed in the photoreceptor outer segments.

  5. Usher syndrome type 1–associated cadherins shape the photoreceptor outer segment

    PubMed Central

    Parain, Karine; Aghaie, Asadollah; Picaud, Serge

    2017-01-01

    Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15–containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal. PMID:28495838

  6. Nanocerium oxide increases the survival of adult rod and cone photoreceptor in culture by abrogating hydrogen peroxide-induced oxidative stress.

    PubMed

    Bhargava, Neelima; Shanmugaiah, Vellasamy; Saxena, Manav; Sharma, Manish; Sethy, Niroj Kumar; Singh, Sushil Kumar; Balakrishnan, Karuppiah; Bhargava, Kalpana; Das, Mainak

    2016-09-16

    In vitro cell culture system for adult rod and cone photoreceptor (PR) is an effective and economical model for screening drug candidates against all kinds of age related retinal blindness. Interestingly, adult PR cells have a limited survival in the culture system, thus preventing full exploitation of this in vitro approach for drug screening applications. The limited survival of the adult PR cells in culture is due to their inherently high oxidative stress and photic injury. Mixed valence-state ceria nanoparticles have the ability to scavenge free radicals and reduce oxidative stress. Here, ceria nanoparticles of 5-10 nm dimensions have been synthesized, possessing dual oxidation state (+3 and +4) as evident from x-ray photoelectron spectroscopy and exhibiting real time reduction of hydrogen peroxide (H 2 O 2 ) as quantified by absorbance spectroscopy and cyclic voltammogram analysis. Using flow cytometry and cell culture assay, it has been shown that, upon one time addition of 10 nM of nanoceria in the PR culture of the 18 months old adult common carp (Cyprinus carpio) at the time of plating the cells, the oxidative stress caused due to hydrogen peroxide assault could be abrogated. A further single application of nanoceria significantly increases the survival of these fragile cells in the culture, thus paving way for developing a more robust photoreceptor culture model to study the aging photoreceptor cells in a defined condition.

  7. Rod Electroretinograms Elicited by Silent Substitution Stimuli from the Light-Adapted Human Eye

    PubMed Central

    Maguire, John; Parry, Neil R. A.; Kremers, Jan; Kommanapalli, Deepika; Murray, Ian J.; McKeefry, Declan J.

    2016-01-01

    Purpose To demonstrate that silent substitution stimuli can be used to generate electroretinograms (ERGs) that effectively isolate rod photoreceptor function in humans without the need for dark adaptation, and that this approach constitutes a viable alternative to current clinical standard testing protocols. Methods Rod-isolating and non-isolating sinusoidal flicker stimuli were generated on a 4 primary light-emitting diode (LED) Ganzfeld stimulator to elicit ERGs from participants with normal and compromised rod function who had not undergone dark-adaptation. Responses were subjected to Fourier analysis, and the amplitude and phase of the fundamental were used to examine temporal frequency and retinal illuminance response characteristics. Results Electroretinograms elicited by rod-isolating silent substitution stimuli exhibit low-pass temporal frequency response characteristics with an upper response limit of 30 Hz. Responses are optimal between 5 and 8 Hz and between 10 and 100 photopic trolands (Td). There is a significant correlation between the response amplitudes obtained with the silent substitution method and current standard clinical protocols. Analysis of signal-to-noise ratios reveals significant differences between subjects with normal and compromised rod function. Conclusions Silent substitution provides an effective method for the isolation of human rod photoreceptor function in subjects with normal as well as compromised rod function when stimuli are used within appropriate parameter ranges. Translational Relevance This method of generating rod-mediated ERGs can be achieved without time-consuming periods of dark adaptation, provides improved isolation of rod- from cone-based activity, and will lead to the development of faster clinical electrophysiologic testing protocols with improved selectivity. PMID:27617180

  8. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina.

    PubMed

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro; Furukawa, Takahisa

    2015-08-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina

    PubMed Central

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro

    2015-01-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. PMID:25986607

  10. Glycolytic reliance promotes anabolism in photoreceptors

    PubMed Central

    Chinchore, Yashodhan; Begaj, Tedi; Wu, David; Drokhlyansky, Eugene; Cepko, Constance L

    2017-01-01

    Vertebrate photoreceptors are among the most metabolically active cells, exhibiting a high rate of ATP consumption. This is coupled with a high anabolic demand, necessitated by the diurnal turnover of a specialized membrane-rich organelle, the outer segment, which is the primary site of phototransduction. How photoreceptors balance their catabolic and anabolic demands is poorly understood. Here, we show that rod photoreceptors in mice rely on glycolysis for their outer segment biogenesis. Genetic perturbations targeting allostery or key regulatory nodes in the glycolytic pathway impacted the size of the outer segments. Fibroblast growth factor signaling was found to regulate glycolysis, with antagonism of this pathway resulting in anabolic deficits. These data demonstrate the cell autonomous role of the glycolytic pathway in outer segment maintenance and provide evidence that aerobic glycolysis is part of a metabolic program that supports the biosynthetic needs of a normal neuronal cell type. DOI: http://dx.doi.org/10.7554/eLife.25946.001 PMID:28598329

  11. Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology

    PubMed Central

    Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof

    2011-01-01

    Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323

  12. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  13. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry.

    PubMed

    Schott, Ryan K; Van Nynatten, Alexander; Card, Daren C; Castoe, Todd A; S W Chang, Belinda

    2018-06-01

    The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.

  14. Quantification of Retinogenesis in 3D Cultures Reveals Epigenetic Memory and Higher Efficiency in iPSCs Derived from Rod Photoreceptors.

    PubMed

    Hiler, Daniel; Chen, Xiang; Hazen, Jennifer; Kupriyanov, Sergey; Carroll, Patrick A; Qu, Chunxu; Xu, Beisi; Johnson, Dianna; Griffiths, Lyra; Frase, Sharon; Rodriguez, Alberto R; Martin, Greg; Zhang, Jiakun; Jeon, Jongrye; Fan, Yiping; Finkelstein, David; Eisenman, Robert N; Baldwin, Kristin; Dyer, Michael A

    2015-07-02

    Cell-based therapies to treat retinal degeneration are now being tested in clinical trials. However, it is not known whether the source of stem cells is important for the production of differentiated cells suitable for transplantation. To test this, we generated induced pluripotent stem cells (iPSCs) from murine rod photoreceptors (r-iPSCs) and scored their ability to make retinae by using a standardized quantitative protocol called STEM-RET. We discovered that r-iPSCs more efficiently produced differentiated retinae than did embryonic stem cells (ESCs) or fibroblast-derived iPSCs (f-iPSCs). Retinae derived from f-iPSCs had fewer amacrine cells and other inner nuclear layer cells. Integrated epigenetic analysis showed that DNA methylation contributes to the defects in f-iPSC retinogenesis and that rod-specific CTCF insulator protein-binding sites may promote r-iPSC retinogenesis. Together, our data suggest that the source of stem cells is important for producing retinal neurons in three-dimensional (3D) organ cultures. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mouse rods signal through gap junctions with cones

    PubMed Central

    Asteriti, Sabrina; Gargini, Claudia; Cangiano, Lorenzo

    2014-01-01

    Rod and cone photoreceptors are coupled by gap junctions (GJs), relatively large channels able to mediate both electrical and molecular communication. Despite their critical location in our visual system and evidence that they are dynamically gated for dark/light adaptation, the full impact that rod–cone GJs can have on cone function is not known. We recorded the photovoltage of mouse cones and found that the initial level of rod input increased spontaneously after obtaining intracellular access. This process allowed us to explore the underlying coupling capacity to rods, revealing that fully coupled cones acquire a striking rod-like phenotype. Calcium, a candidate mediator of the coupling process, does not appear to be involved on the cone side of the junctional channels. Our findings show that the anatomical substrate is adequate for rod–cone coupling to play an important role in vision and, possibly, in biochemical signaling among photoreceptors. DOI: http://dx.doi.org/10.7554/eLife.01386.001 PMID:24399457

  16. ROLES OF CELL-INTRINSIC AND MICROENVIRONMENTAL FACTORS IN PHOTORECEPTOR CELL DIFFERENTIATION

    PubMed Central

    Bradford, Rebecca L.; Wang, Chenwei; Zack, Donald J.; Adler, Ruben

    2005-01-01

    Photoreceptor differentiation requires the coordinated expression of numerous genes. It is unknown whether those genes share common regulatory mechanisms or are independently regulated by distinct mechanisms. To distinguish between these scenarios, we have used in situ hybridization, RT-PCR and real time PCR to analyze the expression of visual pigments and other photoreceptor-specific genes during chick embryo retinal development in ovo, as well as in retinal cell cultures treated with molecules that regulate the expression of particular visual pigments. In ovo, onset of gene expression was asynchronous, becoming detectable at the time of photoreceptor generation (ED 5–8) for some photoreceptor genes, but only around the time of outer segment formation (ED 14–16) for others. Treatment of retinal cell cultures with activin, staurosporine or CNTF selectively induced or down-regulated specific visual pigment genes, but many cognate rod- or cone-specific genes were not affected by the treatments. These results indicate that many photoreceptor genes are independently regulated during development, are consistent with the existence of at least two distinct stages of gene expression during photoreceptor differentiation, suggest that intrinsic, coordinated regulation of a cascade of gene expression triggered by a commitment to the photoreceptor fate is not a general mechanism of photoreceptor differentiation, and imply that using a single photoreceptor-specific “marker” as a proxy to identify photoreceptor cell fate is problematic. PMID:16120439

  17. Retinal photoreceptors and visual pigments in Boa constrictor imperator.

    PubMed

    Sillman, A J; Johnson, J L; Loew, E R

    2001-09-01

    The photoreceptors of Boa constrictor, a boid snake of the subfamily Boinae, were examined with scanning electron microscopy and microspectrophotometry. The retina of B. constrictor is duplex but highly dominated by rods, cones comprising 11% of the photoreceptor population. The rather tightly packed rods have relatively long outer segments with proximal ends that are somewhat tapered. There are two morphologically distinct, single cones. The most common cone by far has a large inner segment and a relatively stout outer segment. The second cone, seen only infrequently, has a substantially smaller inner segment and a finer outer segment. The visual pigments of B. constrictor are virtually identical to those of the pythonine boid, Python regius. Three different visual pigments are present, all based on vitamin A(1.) The visual pigment of the rods has a wavelength of peak absorbance (lambda(max)) at 495 +/- 2 nm. The visual pigment of the more common, large cone has a lambda(max) at 549 +/- 1 nm. The small, rare cone contains a visual pigment with lambda(max) at 357 +/- 2 nm, providing the snake with sensitivity in the ultraviolet. We suggest that B. constrictor might employ UV sensitivity to locate conspecifics and/or to improve hunting efficiency. The data indicate that wavelength discrimination above 430 nm would not be possible without some input from the rods. Copyright 2001 Wiley-Liss, Inc.

  18. In Vivo Imaging of Human Cone Photoreceptor Inner Segments

    PubMed Central

    Scoles, Drew; Sulai, Yusufu N.; Langlo, Christopher S.; Fishman, Gerald A.; Curcio, Christine A.; Carroll, Joseph; Dubra, Alfredo

    2014-01-01

    Purpose. An often overlooked prerequisite to cone photoreceptor gene therapy development is residual photoreceptor structure that can be rescued. While advances in adaptive optics (AO) retinal imaging have recently enabled direct visualization of individual cone and rod photoreceptors in the living human retina, these techniques largely detect strongly directionally-backscattered (waveguided) light from normal intact photoreceptors. This represents a major limitation in using existing AO imaging to quantify structure of remnant cones in degenerating retina. Methods. Photoreceptor inner segment structure was assessed with a novel AO scanning light ophthalmoscopy (AOSLO) differential phase technique, that we termed nonconfocal split-detector, in two healthy subjects and four subjects with achromatopsia. Ex vivo preparations of five healthy donor eyes were analyzed for comparison of inner segment diameter to that measured in vivo with split-detector AOSLO. Results. Nonconfocal split-detector AOSLO reveals the photoreceptor inner segment with or without the presence of a waveguiding outer segment. The diameter of inner segments measured in vivo is in good agreement with histology. A substantial number of foveal and parafoveal cone photoreceptors with apparently intact inner segments were identified in patients with the inherited disease achromatopsia. Conclusions. The application of nonconfocal split-detector to emerging human gene therapy trials will improve the potential of therapeutic success, by identifying patients with sufficient retained photoreceptor structure to benefit the most from intervention. Additionally, split-detector imaging may be useful for studies of other retinal degenerations such as AMD, retinitis pigmentosa, and choroideremia where the outer segment is lost before the remainder of the photoreceptor cell. PMID:24906859

  19. Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior.

    PubMed

    Taylor, Scott M; Loew, Ellis R; Grace, Michael S

    2015-01-01

    Unlike the mammalian retina, the teleost fish retina undergoes persistent neurogenesis from intrinsic stem cells. In marine teleosts, most cone photoreceptor genesis occurs early in the embryonic and larval stages, and rods are added primarily during and after metamorphosis. This study demonstrates a developmental paradigm in elopomorph fishes in which retinas are rod-dominated in larvae, but undergo periods of later cone genesis. Retinal characteristics were compared at different developmental stages among three ecologically distinct elopomorph fishes-ladyfish (Elops saurus), bonefish (Albula vulpes), and speckled worm eel (Myrophis punctatus). The objectives were to improve our understanding of (1) the developmental strategy in the elopomorph retina, (2) the functional architecture of the retina as it relates to ecology, and (3) how the light environment influences photoreceptor genesis. Photoreceptor morphologies, distributions, and spectral absorption were studied at larval, juvenile, and adult stages. Premetamorphic retinas in all three species are rod-dominated, but the retinas of these species undergo dramatic change over the course of development, resulting in juvenile and adult retinal characteristics that correlate closely with ecology. Adult E. saurus has high rod densities, grouped photoreceptors, a reflective tapetum, and longer-wavelength photopigments, supporting vision in turbid, low-light conditions. Adult A. vulpes has high cone densities, low rod densities, and shorter-wavelength photopigments, supporting diurnal vision in shallow, clear water. M. punctatus loses cones during metamorphosis, develops new cones after settlement, and maintains high rod but low cone densities, supporting primarily nocturnal vision. M. punctatus secondary cone genesis occurs rapidly throughout the retina, suggesting a novel mechanism of vertebrate photoreceptor genesis. Finally, in postsettlement M. punctatus, the continuous presence or absence of visible light

  20. Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats.

    PubMed

    Cuenca, Nicolás; Pinilla, Isabel; Sauvé, Yves; Lund, Raymond

    2005-09-01

    The Royal College of Surgeons (RCS) rat has a retinal pigment epithelial cell defect that causes progressive loss of photoreceptors. Although it is extensively used in retinal degeneration and repair studies, how photoreceptor degeneration affects retinal circuitry has not been fully explored. This study examined the changes in synaptic connectivity between photoreceptors and their target cells using immunocytochemistry and correlated these changes with retinal function using the electroretinogram (ERG). Immunostaining with bassoon and synaptophysin (as presynaptic markers) and metabotropic glutamate receptor (mGluR6, a postsynaptic marker for ON-bipolar dendrites) was already impaired at postnatal day (P) 21 and progressively lost with infrequent pairing of presynaptic and postsynaptic elements at P60. By P90 to P120, staining became increasingly patchy and was eventually restricted to sparsely and irregularly distributed foci in which the normal pairing of presynaptic and postsynaptic markers was lost. ERG results showed that mixed scotopic a-waves and b-waves were already reduced by P21 but not oscillatory potentials. While cone-driven responses (photopic b-wave) reached normal levels at P30, they were impaired by P60 but could still be recorded at P120, although with reduced amplitude; rod responses never reached normal amplitudes. Thus, only cone-driven activity attained normal levels, but declined rapidly thereafter. In conclusion, the synaptic markers associated with photoreceptors and processes of bipolar and horizontal cells show abnormalities prior to significant photoreceptor loss. These changes are paralleled with the deterioration of specific aspects of ERG responsiveness with age. Besides providing information on the effects of photoreceptor dysfunction and loss on connection patterns in the retina, the work addresses the more general issue of how disorder of input neurons affects downstream circuitry.

  1. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa.

    PubMed

    Beltran, William A; Cideciyan, Artur V; Lewin, Alfred S; Iwabe, Simone; Khanna, Hemant; Sumaroka, Alexander; Chiodo, Vince A; Fajardo, Diego S; Román, Alejandro J; Deng, Wen-Tao; Swider, Malgorzata; Alemán, Tomas S; Boye, Sanford L; Genini, Sem; Swaroop, Anand; Hauswirth, William W; Jacobson, Samuel G; Aguirre, Gustavo D

    2012-02-07

    Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.

  2. Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish

    PubMed Central

    Sotolongo-Lopez, Mailin; Alvarez-Delfin, Karen; Saade, Carole J.; Vera, Daniel L.; Fadool, James M.

    2016-01-01

    The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species

  3. A FRAP-Based Method for Monitoring Molecular Transport in Ciliary Photoreceptor Cells In Vivo.

    PubMed

    Wunderlich, Kirsten A; Wolfrum, Uwe

    2016-01-01

    The outer segment of rod and cone photoreceptor cells represents a highly modified primary sensory cilium. It renews on a daily basis throughout lifetime and effective vectorial transport to the cilium is essential for the maintenance of the photoreceptor cell function. Defects in molecules of transport modules lead to severe retinal ciliopathies. We have recently established a fluorescence recovery after photobleaching (FRAP)-based method to monitor molecular trafficking in living rodent photoreceptor cells. We irreversibly bleach the fluorescence of tagged molecules (e.g. eGFP-Rhodopsin) in photoreceptor cells of native vibratome sections through the retina by high laser intensity. In the laser scanning microscope, the recovery of the fluorescent signal is monitored over time and the kinetics of movements of molecules can be quantitatively ascertained.

  4. Interaction of 4.1G and cGMP-gated channels in rod photoreceptor outer segments.

    PubMed

    Cheng, Christiana L; Molday, Robert S

    2013-12-15

    In photoreceptors, the assembly of signaling molecules into macromolecular complexes is important for phototransduction and maintaining the structural integrity of rod outer segments (ROSs). However, the molecular composition and formation of these complexes are poorly understood. Using immunoprecipitation and mass spectrometry, 4.1G was identified as a new interacting partner for the cyclic-nucleotide gated (CNG) channels in ROSs. 4.1G is a widely expressed multifunctional protein that plays a role in the assembly and stability of membrane protein complexes. Multiple splice variants of 4.1G were cloned from bovine retina. A smaller splice variant of 4.1G selectively interacted with CNG channels not associated with peripherin-2-CNG channel complex. A combination of truncation studies and domain-binding assays demonstrated that CNG channels selectively interacted with 4.1G through their FERM and CTD domains. Using immunofluorescence, labeling of 4.1G was seen to be punctate and partially colocalized with CNG channels in the ROS. Our studies indicate that 4.1G interacts with a subset of CNG channels in the ROS and implicate this protein-protein interaction in organizing the spatial arrangement of CNG channels in the plasma membrane of outer segments.

  5. FUNDUS AUTOFLUORESCENCE IN RUBELLA RETINOPATHY: Correlation With Photoreceptor Structure and Function.

    PubMed

    Bukowska, Danuta M; Wan, Sue Ling; Chew, Avenell L; Chelva, Enid; Tang, Ivy; Mackey, David A; Chen, Fred K

    2017-01-01

    To illustrate altered fundus autofluorescence in rubella retinopathy and to investigate their relationships with photoreceptor structure and function using multimodal imaging. The authors report four cases of rubella retinopathy aged 8, 33, 42, and 50 years. All patients had dilated clinical fundus examination; wide-field color photography; blue, green, and near-infrared autofluorescence imaging and spectral domain optical coherence tomography. Two patients also underwent microperimetry and adaptive optics imaging. En face optical coherence tomography, cone mosaic, and microperimetry were coregistered with autofluorescence images. The authors explored the structure-function correlation. All four patients had a "salt-and-pepper" appearance on dilated fundus examination and wide-field color photography. There were variable-sized patches of hypoautofluorescence on both blue and near-infrared excitation in all four patients. Wave-guiding cones were visible and retinal sensitivity was intact over these regions. There was no correlation between hypoautofluorescence and regions of attenuated ellipsoid and interdigitation zones. Hyperautofluorescent lesions were also noted and some of these were pseudo-vitelliform lesions. Patchy hypoautofluorescence on near-infrared excitation can be a feature of rubella retinopathy. This may be due to abnormal melanin production or loss of melanin within retinal pigment epithelium cells harboring persistent rubella virus infection. Preservation of the ellipsoid zone, wave-guiding cones, and retinal sensitivity within hypoautofluorescent lesions suggest that these retinal pigment epithelium changes have only mild impact on photoreceptor cell function.

  6. The Effects of Diabetic Retinopathy and Pan-Retinal Photocoagulation on Photoreceptor Cell Function as Assessed by Dark Adaptometry

    PubMed Central

    Bavinger, J. Clay; Dunbar, Grace E.; Stem, Maxwell S.; Blachley, Taylor S.; Kwark, Leon; Farsiu, Sina; Jackson, Gregory R.; Gardner, Thomas W.

    2016-01-01

    Purpose The pathophysiology of vision loss in persons with diabetic retinopathy (DR) is complex and incompletely defined. We hypothesized that retinal pigment epithelium (RPE) and rod and cone photoreceptor dysfunction, as measured by dark adaptometry, would increase with severity of DR, and that pan-retinal photocoagulation (PRP) would exacerbate this dysfunction. Methods Dark adaptation (DA) was measured in subjects with diabetes mellitus and healthy controls. Dark adaptation was measured at 5° superior to the fovea following a flash bleach, and the data were analyzed to yield cone and rod sensitivity curves. Retinal layer thicknesses were quantified using spectral-domain optical coherence tomography (OCT). Results The sample consisted of 23 controls and 73 diabetic subjects. Subjects with moderate nonproliferative diabetic retinopathy (NPDR) exhibited significant impairment of rod recovery rate compared with control subjects (P = 0.04). Cone sensitivity was impaired in subjects with proliferative diabetic retinopathy (PDR) (type 1 diabetes mellitus [T1DM]: P = 0.0047; type 2 diabetes mellitus [T2DM]: P < 0.001). Subjects with untreated PDR compared with subjects treated with PRP exhibited similar rod recovery rates and cone sensitivities. Thinner RPE as assessed by OCT was associated with slower rod recovery and lower cone sensitivity, and thinner photoreceptor inner segment/outer segment layer was associated with lower cone sensitivity. Conclusions The results suggest that RPE and photoreceptor cell dysfunction, as assessed by cone sensitivity level and rod- and RPE-mediated dark adaptation, progresses with worsening DR, and rod recovery dysfunction occurs earlier than cone dysfunction. Function was preserved following PRP. The findings suggest multiple defects in retinoid function and provide potential points to improve visual function in persons with PDR. PMID:26803796

  7. GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1.

    PubMed

    Sato, Shinya; Peshenko, Igor V; Olshevskaya, Elena V; Kefalov, Vladimir J; Dizhoor, Alexander M

    2018-03-21

    The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S + rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca 2+ phototransduction feedback and abnormally high free-Ca 2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2 +/+ or GCAP1,2 +/- backgrounds, was prevented in GCAP1,2 -/- mice lacking Ca 2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca 2+ levels in photoreceptors. SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D ), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to

  8. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation.

    PubMed

    Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W

    2013-12-01

    Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.

  9. Light adaptation and dark adaptation of human rod photoreceptors measured from the a-wave of the electroretinogram

    PubMed Central

    Thomas, M M; Lamb, T D

    1999-01-01

    We recorded the a-wave of the human electroretinogram from subjects with normal vision, using a corneal electrode and ganzfeld (full-field) light stimulation. From analysis of the rising phase of rod-isolated flash responses we determined the maximum size (amax) of the a-wave, a measure of the massed circulating current of the rods, and the amplification constant (A) of transduction within the rod photoreceptors.During light adaptation by steady backgrounds the maximal response was reduced, as reported previously. amax declined approximately as I0/(I0+IB), where IB is retinal illuminance and I0 is a constant. In different subjects I0 ranged from 40 to 100 trolands, with a mean of 70 trolands, corresponding to about 600 photoisomerizations s−1 per rod. (1 troland is the retinal illuminance that results when a surface luminance of 1 cd m−2 is viewed through a pupil area of 1 mm2.) The amplification constant A decreased only slightly in the presence of steady backgrounds.Following a full bleach amax recovered along an S-shaped curve over a period of 30 min. There was no detectable response for the first 5 min, and half-maximal recovery took 13-17 min.The apparent amplification constant decreased at early times after large bleaches. However, upon correction for reduced light absorption due to loss of pigment, with regeneration of rhodopsin occurring with a time constant of 9-15 min in different subjects, it appeared that the true value of A was probably unchanged by bleaching.The recovery of amax following a bleach could be converted into recovery of equivalent background intensity, using a ‘Crawford transformation’ derived from the light adaptation results. Following bleaches ranging from 10 to > 99 %, the equivalent background intensity decayed approximately exponentially, with a time constant of about 3 min.The time taken for amax to recover to a fixed proportion of its original level increased approximately linearly (rather than logarithmically) with

  10. Development of Rod Function in Term Born and Former Preterm Subjects

    PubMed Central

    Fulton, Anne B.; Hansen, Ronald M.; Moskowitz, Anne

    2009-01-01

    Purpose Provide an overview of some of our electroretinographic and psychophysical studies of normal development of rod function and their application to retinopathy of prematurity (ROP). Methods Electroretinographic (ERG) responses to full-field stimuli were recorded from dark adapted subjects. Rod photoreceptor sensitivity, SROD, was calculated by fit of a biochemical model of the activation of phototransduction to the ERG a-wave. Dark adapted psychophysical thresholds for detecting 2° spots in parafoveal (10° eccentric) and peripheral (30° eccentric) retina were measured and the difference between the thresholds, Δ10-30, was examined as a function of age. SROD and Δ10-30 in term born and former preterm subjects were compared. Results In term born infants, (1) the normal developmental increase in SROD changes proportionately with the amount of rod visual pigment, rhodopsin, and (2) rod mediated function in central retina is immature compared to that in peripheral retina. In subjects born prematurely, deficits in rod photoreceptor sensitivity persist long after active ROP has resolved. Maturation of rod mediated thresholds in the central retina is prolonged by mild ROP. Conclusions Characterization of the development of normal rod and rod mediated function provides a foundation for understanding ROP. PMID:19483509

  11. Analysis of severe photoreceptor loss and Morris water-maze performance in aged rats.

    PubMed

    O'Steen, W K; Spencer, R L; Bare, D J; McEwen, B S

    1995-06-01

    In a study of aging and memory in 25-27-month-old albino rats, performance on a Morris water maze was found to be dependent on the structural integrity of the retina. Generally, as expected, 'learners' had intact retinas, while 'non-learners' had retinas with severe photoreceptor loss and a non-continuous outer nuclear layer, consisting of scattered cell nuclei. However, contrary to this general correlation between learning ability and photoreceptor presence, some learners had severely degenerated retinas and occasionally, non-learners had photoreceptor populations that apparently were comparable to those of learners. Rat retinas from these unpredictable, borderline response categories were examined histopathologically and morphometrically with the purpose of determining the minimal number of photoreceptors (PRs) necessary for animals to be rated as learners on the Morris water maze. However, among these severely damaged retinas of borderline groups, total number of surviving photoreceptors did not vary significantly among the learner, ambiguous or marginal and non-learner groups. The population of surviving PRs in learners was as low as 0.04% and in non-learners as high as 0.4%, as compared to that of young, adult rats. Therefore, borderline learners and non-learners had overlapping surviving PR numbers and the results did not clarify the response difference between these groups in the Morris water maze. It is suggested that the pattern of surviving PRs over the retinal surface, as well as the ratio of surviving rods to cones and their connectivity with other retinal neurons, may be related to the residual function of degenerated retinas of learner rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Rod- and cone-driven responses in mice expressing human L-cone pigment

    PubMed Central

    Atorf, Jenny; Neitz, Maureen; Neitz, Jay

    2015-01-01

    The mouse is commonly used for studying retinal processing, primarily because it is amenable to genetic manipulation. To accurately study photoreceptor driven signals in the healthy and diseased retina, it is of great importance to isolate the responses of single photoreceptor types. This is not easily achieved in mice because of the strong overlap of rod and M-cone absorption spectra (i.e., maxima at 498 and 508 nm, respectively). With a newly developed mouse model (Opn1lwLIAIS) expressing a variant of the human L-cone pigment (561 nm) instead of the mouse M-opsin, the absorption spectra are substantially separated, allowing retinal physiology to be studied using silent substitution stimuli. Unlike conventional chromatic isolation methods, this spectral compensation approach can isolate single photoreceptor subtypes without changing the retinal adaptation. We measured flicker electroretinograms in these mutants under ketamine-xylazine sedation with double silent substitution (silent S-cone and either rod or M/L-cones) and obtained robust responses for both rods and (L-)cones. Small signals were yielded in wild-type mice, whereas heterozygotes exhibited responses that were generally intermediate to both. Fundamental response amplitudes and phase behaviors (as a function of temporal frequency) in all genotypes were largely similar. Surprisingly, isolated (L-)cone and rod response properties in the mutant strain were alike. Thus the LIAIS mouse warrants a more comprehensive in vivo assessment of photoreceptor subtype-specific physiology, because it overcomes the hindrance of overlapping spectral sensitivities present in the normal mouse. PMID:26245314

  13. Learned arbitrary responses to light in mice without rods or cones

    NASA Astrophysics Data System (ADS)

    Mrosovsky, N.; Salmon, Peggy

    2002-10-01

    The aim of this investigation was to discover whether mice lacking classical photoreceptors (rods and cones) can nevertheless be trained to respond to light. Mice with the coneless (cl) transgene have an attenuated diphtheria toxin fused to a cone opsin promotor. Mutant mice homozygous for the retinal degeneration (rd) gene undergo loss of their rods. By mating these two strains, mice lacking both cones and rods can be generated (Lucas et al. 1999). Such coneless-rodless mice were able to use light as a signal to make a behavioural response to avoid impending shock. Nevertheless, especially initially, they used the light as a cue less often than wildtype controls, indicating that normally the rods and cones are used for such responses. However, other photoreceptors are able to take over this role to some extent. When the lights were covered with opaque material, the performance of rodless-coneless mice dropped to chance level, indicating that they had been using the light as a cue for avoidance.

  14. Ex Vivo ERG analysis of photoreceptors using an In Vivo ERG system

    PubMed Central

    Vinberg, Frans; Kolesnikov, Alexander V.; Kefalov, Vladimir J.

    2014-01-01

    The Function of the retina and effects of drugs on it can be assessed by recording transretinal voltage across isolated retina that is perfused with physiological medium. However, building ex vivo ERG apparatus requires substantial amount of time, resources and expertise. Here we adapted a commercial in vivo ERG system for transretinal ERG recordings from rod and cone photoreceptors and compared rod and cone signalling between ex vivo and in vivo environments. We found that the rod and cone a- and b-waves recorded with the transretinal ERG adapter and a standard in vivo ERG system are comparable to those obtained from live anesthetized animals. However, ex vivo responses are somewhat slower and their oscillatory potentials are suppressed as compared to those recorded in vivo. We found that rod amplification constant (A) was comparable between ex vivo and in vivo conditions, ∼10 - 30 s-2 depending on the choice of response normalization. We estimate that the A in cones is between 3 and 6 s-2 in ex vivo conditions and by assuming equal A in vivo we arrive to light funnelling factor of 3 for cones in the mouse retina. The ex vivo ERG adapter provides a simple and affordable alternative to designing a custom-built transretinal recordings setup for the study of photoreceptors. Our results provide a roadmap to the rigorous quantitative analysis of rod and cone responses made possible with such a system. PMID:24959652

  15. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice.

    PubMed

    Sahly, Iman; Dufour, Eric; Schietroma, Cataldo; Michel, Vincent; Bahloul, Amel; Perfettini, Isabelle; Pepermans, Elise; Estivalet, Amrit; Carette, Diane; Aghaie, Asadollah; Ebermann, Inga; Lelli, Andrea; Iribarne, Maria; Hardelin, Jean-Pierre; Weil, Dominique; Sahel, José-Alain; El-Amraoui, Aziz; Petit, Christine

    2012-10-15

    The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.

  16. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice

    PubMed Central

    Sahly, Iman; Dufour, Eric; Schietroma, Cataldo; Michel, Vincent; Bahloul, Amel; Perfettini, Isabelle; Pepermans, Elise; Estivalet, Amrit; Carette, Diane; Aghaie, Asadollah; Ebermann, Inga; Lelli, Andrea; Iribarne, Maria; Hardelin, Jean-Pierre; Weil, Dominique; Sahel, José-Alain

    2012-01-01

    The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins—myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans—do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner–outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients. PMID:23045546

  17. Genomic evidence for rod monochromacy in sloths and armadillos suggests early subterranean history for Xenarthra

    PubMed Central

    Emerling, Christopher A.; Springer, Mark S.

    2015-01-01

    Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann's two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution. PMID:25540280

  18. Stanniocalcin-1 Rescued Photoreceptor Degeneration in Two Rat Models of Inherited Retinal Degeneration

    PubMed Central

    Roddy, Gavin W; Rosa Jr, Robert H; Youn Oh, Joo; Ylostalo, Joni H; Bartosh, Thomas J; Choi, Hosoon; Lee, Ryang Hwa; Yasumura, Douglas; Ahern, Kelly; Nielsen, Gregory; Matthes, Michael T; LaVail, Matthew M; Prockop, Darwin J

    2012-01-01

    Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD). PMID:22294148

  19. Rods and cones contain antigenically distinctive S-antigens.

    PubMed

    Nork, T M; Mangini, N J; Millecchia, L L

    1993-09-01

    S-antigen (48 kDa protein or arrestin) is known to be present in rod photoreceptors. Its localization in cones is less clear with several conflicting reports among various species examined. This study employed three different anti-S-antigen antibodies (a48K, a polyclonal antiserum and two monoclonal antibodies, MAb A9-C6 and MAb 5c6.47) and examined their localization in rods and cones of human and cat retinas. To identify the respective cone types, an enzyme histochemical technique for carbonic anhydrase (CA) was employed to distinguish blue cones (CA-negative) from red or green cones (CA-positive). S-antigen localization was then examined by immunocytochemical staining of adjacent sections. In human retinas, a similar labeling pattern was seen with both a48K and MAb A9-C6, i.e., the rods and blue-sensitive cones were strongly positive, whereas the red- or green-sensitive cones showed little immunoreactivity. All human photoreceptors showed reactivity to MAb 5c6.47. In the cat retina, only CA-positive cones could be found. As in the human retina, both rods and cones of the cat were positive for MAb 5c6.47. A difference from the labeling pattern in human retina was noted for the other S-antigen antibodies; a48K labeled rods and all of the cones, whereas MAb A9-C6 reacted strongly with the rods but showed no cone staining. These results suggest that both rods and cones contain S-antigen but that they are antigenically distinctive.

  20. Tissue inhibitor of metalloproteinases 1 enhances rod survival in the rd1 mouse retina.

    PubMed

    Kim, Hwa Sun; Vargas, Andrew; Eom, Yun Sung; Li, Justin; Yamamoto, Kyra L; Craft, Cheryl Mae; Lee, Eun-Jin

    2018-01-01

    Retinitis pigmentosa (RP), an inherited retinal degenerative disease, is characterized by a progressive loss of rod photoreceptors followed by loss of cone photoreceptors. Previously, when tissue inhibitor of metalloproteinase 1 (TIMP1), a key extracellular matrix (ECM) regulator that binds to and inhibits activation of Matrix metallopeptidase 9 (MMP9) was intravitreal injected into eyes of a transgenic rhodopsin rat model of RP, S334ter-line3, we discovered cone outer segments are partially protected. In parallel, we reported that a specific MMP9 and MMP2 inhibitor, SB-3CT, interferes with mechanisms leading to rod photoreceptor cell death in an MMP9 dependent manner. Here, we extend our initial rat studies to examine the potential of TIMP1 as a treatment in retinal degeneration by investigating neuroprotective effects in a classic mouse retinal degeneration model, rdPde6b-/- (rd1). The results clearly demonstrate that intravitreal injections of TIMP1 produce extended protection to delay rod photoreceptor cell death. The mean total number of rods in whole-mount retinas was significantly greater in TIMP-treated rd1 retinas (postnatal (P) 30, P35 (P<0.0001) and P45 (P<0.05) than in saline-treated rd1 retinas. In contrast, SB-3CT did not delay rod cell death, leading us to further investigate alternative pathways that do not involve MMPs. In addition to inducing phosphorylated ERK1/2, TIMP1 significantly reduces BAX activity and delays attenuation of the outer nuclear layer (ONL). Physiological responses using scotopic electroretinograms (ERG) reveal b-wave amplitudes from TIMP1-treated retinas are significantly greater than from saline-treated rd1 retinas (P<0.05). In later degenerative stages of rd1 retinas, photopic b-wave amplitudes from TIMP1-treated rd1 retinas are significantly larger than from saline-treated rd1 retinas (P<0.05). Our findings demonstrate that TIMP1 delays photoreceptor cell death. Furthermore, this study provides new insights into how TIMP1

  1. Have We Achieved a Unified Model of Photoreceptor Cell Fate Specification in Vertebrates?

    PubMed Central

    Raymond, Pamela A.

    2008-01-01

    How does a retinal progenitor choose to differentiate as a rod or a cone and, if it becomes a cone, which one of their different subtypes? The mechanisms of photoreceptor cell fate specification and differentiation have been extensively investigated in a variety of animal model systems, including human and non-human primates, rodents (mice and rats), chickens, frogs (Xenopus) and fish. It appears timely to discuss whether it is possible to synthesize the resulting information into a unified model applicable to all vertebrates. In this review we focus on several widely used experimental animal model systems to highlight differences in photoreceptor properties among species, the diversity of developmental strategies and solutions that vertebrates use to create retinas with photoreceptors that are adapted to the visual needs of their species, and the limitations of the methods currently available for the investigation of photoreceptor cell fate specification. Based on these considerations, we conclude that we are not yet ready to construct a unified model of photoreceptor cell fate specification in the developing vertebrate retina. PMID:17466954

  2. Bipolar Cell-Photoreceptor Connectivity in the Zebrafish (Danio rerio) Retina

    PubMed Central

    Li, Yong N.; Tsujimura, Taro; Kawamura, Shoji; Dowling, John E.

    2013-01-01

    Bipolar cells convey luminance, spatial and color information from photoreceptors to amacrine and ganglion cells. We studied the photoreceptor connectivity of 321 bipolar cells in the adult zebrafish retina. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into whole-mounted transgenic zebrafish retinas to label bipolar cells. The photoreceptors that connect to these DiI-labeled cells were identified by transgenic fluorescence or their positions relative to the fluorescent cones, as cones are arranged in a highly-ordered mosaic: rows of alternating blue- (B) and ultraviolet-sensitive (UV) single cones alternate with rows of red- (R) and green-sensitive (G) double cones. Rod terminals intersperse among cone terminals. As many as 18 connectivity subtypes were observed, 9 of which – G, GBUV, RG, RGB, RGBUV, RGRod, RGBRod, RGBUVRod and RRod bipolar cells – accounted for 96% of the population. Based on their axon terminal stratification, these bipolar cells could be further sub-divided into ON, OFF, and ON-OFF cells. The dendritic spread size, soma depth and size, and photoreceptor connections of the 308 bipolar cells within the 9 common connectivity subtypes were determined, and their dendritic tree morphologies and axonal stratification patterns compared. We found that bipolar cells with the same axonal stratification patterns could have heterogeneous photoreceptor connectivity whereas bipolar cells with the same dendritic tree morphology usually had the same photoreceptor connectivity, although their axons might stratify on different levels. PMID:22907678

  3. A study of the human rod and cone electroretinogram a-wave component

    NASA Astrophysics Data System (ADS)

    Barraco, R.; Persano Adorno, D.; Bellomonte, L.; Brai, M.

    2009-03-01

    The study of the electrical response of the retina to a luminous stimulus is one of the main fields of research in ocular electrophysiology. The features of the first component (a-wave) of the retinal response reflect the functional integrity of the two populations of photoreceptors: rods and cones. We fit the a-wave for pathological subjects with functions that account for possible mechanisms governing the kinetics of the photoreceptors. The paper extends a previous analysis, carried out for normal subjects, in which both populations are active, to patients affected by two particular diseases that reduce the working populations to only one. The pathologies investigated are Achromatopsia, a cone disease, and Congenital Stationary Night Blindness, a rod problem. We present evidence that the analysis of a pathological a-wave can be employed to quantitatively measure either cone or rod activities and to test hypotheses about their responses. The results show that the photoreceptoral responses differ in the two cases and functions implying a different number of photocascade stages are necessary to achieve a correct modeling of the early phototransduction process. Numerical values of the parameters characterizing the best-fit functions are given and discussed.

  4. Molecular basis for photoreceptor outer segment architecture

    PubMed Central

    Goldberg, Andrew F. X.; Moritz, Orson L.; Williams, David S.

    2016-01-01

    To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ~10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained. PMID:27260426

  5. Heteromeric MT1/MT2 Melatonin Receptors Modulate Photoreceptor Function

    PubMed Central

    Baba, Kenkichi; Benleulmi-Chaachoua, Abla; Journé, Anne-Sophie; Kamal, Maud; Guillaume, Jean-Luc; Dussaud, Sébastien; Gbahou, Florence; Yettou, Katia; Liu, Cuimei; Contreras-Alcantara, Susana; Jockers, Ralf; Tosini, Gianluca

    2013-01-01

    The formation of G protein-coupled receptor (GPCR) heteromers elicits signaling diversification and holds great promise for improved drug selectivity. Most studies have been conducted in heterologous expression systems; however, in vivo validation is missing from most cases thus questioning the physiological significance of GPCR heteromerization. Melatonin MT1 and MT2 receptors have been shown to exist as homo- and heteromers in vitro. We show here that the effect of melatonin on rod photoreceptor light sensitivity is mediated by melatonin MT1/MT2 receptor heteromers. This effect involves activation of the heteromer-specific PLC/PKC pathway and is abolished in MT1−/− and MT2−/− mice as well as in mice overexpressing a non-functional MT2 receptor mutant that competes with the formation of functional MT1/MT2 heteromers in photoreceptor cells. This study establishes the essential role of melatonin receptor heteromers in retinal function and supports the physiological importance of GPCR heteromerization. Finally, our work may have important therapeutic implications, as the heteromer complex may provide a unique pharmacological target to improve photoreceptor functioning and to extend the viability of photoreceptors during aging. PMID:24106342

  6. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels.

    PubMed

    Meighan, Peter C; Meighan, Starla E; Rich, Elizabeth D; Brown, R Lane; Varnum, Michael D

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels.

  7. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels

    PubMed Central

    Meighan, Peter C.; Meighan, Starla E.; Rich, Elizabeth D.; Brown, R. Lane; Varnum, Michael D.

    2012-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels are the principal ion channels responsible for transduction of the light-induced change in cGMP concentration into an electrical signal. The ligand sensitivity of photoreceptor CNG channels is subject to regulation by intracellular signaling effectors, including calcium-calmodulin, tyrosine kinases and phosphoinositides. Little is known, however, about regulation of channel activity by modification to extracellular regions of CNG channel subunits. Extracellular proteases MMP9 and -2 are present in the interphotoreceptor matrix adjacent to photoreceptor outer segments. Given that MMPs have been implicated in retinal dysfunction and degeneration, we hypothesized that MMP activity may alter the functional properties of photoreceptor CNG channels. For heterologously expressed rod and cone CNG channels, extracellular exposure to MMPs dramatically increased the apparent affinity for cGMP and the efficacy of cAMP. These changes to ligand sensitivity were not prevented by destabilization of the actin cytoskeleton or by disruption of integrin mediated cell adhesion, but could be attenuated by inhibition of MMP catalytic activity. MMP-mediated gating changes exhibited saturable kinetic properties consistent with enzymatic processing of the CNG channels. In addition, exposure to MMPs decreased the abundance of full-length expressed CNGA3 subunits, with a concomitant increase in putative degradation products. Similar gating effects and apparent proteolysis were observed also for native rod photoreceptor CNG channels. Furthermore, constitutive apparent proteolysis of retinal CNGA1 and retinal MMP9 levels were both elevated in aged mice compared with young mice. Together, these results provide evidence that MMP-mediated proteolysis can regulate the ligand sensitivity of CNG channels. PMID:22699690

  8. Redistribution of insoluble interphotoreceptor matrix components during photoreceptor differentiation in the mouse retina.

    PubMed

    Mieziewska, K; Szél, A; Van Veen, T; Aguirre, G D; Philp, N

    1994-07-01

    The development of the nervous system is largely influenced by the extracellular matrix (ECM). In the neural retina, the photoreceptors are surrounded by a unique ECM, the interphotoreceptor matrix (IPM). The IPM plays a central and possibly crucial role in the development, maintenance and specific function of the photoreceptors. Therefore, the characterization of IPM components is necessary to understand the mechanisms regulating photoreceptor differentiation. The IPM in the mouse retina was examined during photoreceptor morphogenesis with the monoclonal antibody (MAb) F22, which recognizes a 250 kDa component of the interphotoreceptor matrix. The binding pattern of MAb F22 revealed a striking redistribution in the expression of the 250 kDa F22 antigen in late stage of postnatal photoreceptor differentiation in the mouse retina. The F22 staining was detectable in the IPM around the inner segments on the third postnatal day (P3). The MAb F22 initially labeled the region around inner segments, but as the outer segments elongated, the F22 distribution became concentrated to the matrix around the rod and cone outer segments until P16-17. At P17, the F22 label around rods began to disappear, while the label around cones became more defined. The shift in label distribution was largely completed by P20. Residual rod-associated label disappeared within a few days. In the adult animal, the F22 antibody labeled the cone-associated matrix only, and this labeling pattern remained stationary. The change in the distribution of MAb F22 demonstrated by immunolabeling was not accompanied by changes in the size of the molecule; F22 antigen isolated from the IPM of P13-15, and from adult IPM migrated with the same molecular weight on SDS gels. The distribution of MAb F22 was compared to that of chondroitin sulfate proteoglycans which are abundant in the IPM. The labeling patterns of MAbs CS-56, C6-S and C4-S were distinct from that of MAb F22. A general decrease of the label

  9. Three-dimensional organization of nascent rod outer segment disk membranes.

    PubMed

    Volland, Stefanie; Hughes, Louise C; Kong, Christina; Burgess, Barry L; Linberg, Kenneth A; Luna, Gabriel; Zhou, Z Hong; Fisher, Steven K; Williams, David S

    2015-12-01

    The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology.

  10. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy

    PubMed Central

    1991-01-01

    Cancer-associated retinopathy (CAR), a paraneoplastic syndrome, is characterized by the degeneration of retinal photoreceptors under conditions where the tumor and its metastases have not invaded the eye. The retinopathy often is apparent before the diagnosis of cancer and may be associated with autoantibodies that react with specific sites in the retina. We have examined the sera from patients with CAR to further characterize the retinal antigen. Western blot analysis of human retinal proteins reveals a prominent band at 26 kD that is labeled by the CAR antisera. Antibodies to the 26-kD protein were affinity- purified from complex CAR antisera and used for EM-immunocytochemical localization of the protein to the nuclei, inner and outer segments of both rod and cone cells. Other antibodies obtained from the CAR sera did not label photoreceptors. Using the affinity-purified antibodies for detection, the 26-kD protein, designated p26, was purified to homogeneity from the outer segments of bovine rod photoreceptor cells by Phenyl-Sepharose and ion exchange chromatography. Partial amino acid sequence of p26 was determined by gas phase Edman degradation and revealed extensive homology with a cone-specific protein, visinin. Based upon structural relatedness, both the p26 rod protein and visinin are members of the calmodulin family and contain calcium binding domains of the E-F hand structure. PMID:1999465

  11. Pineal Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral Visual Sensitivity in Zebrafish

    PubMed Central

    Li, Xinle; Montgomery, Jake; Cheng, Wesley; Noh, Jung Hyun; Hyde, David R.; Li, Lei

    2012-01-01

    In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity. PMID:22815753

  12. Lateral diffusion of rhodopsin in photoreceptor membrane: a reappraisal.

    PubMed

    Govardovskii, Victor I; Korenyak, Darya A; Shukolyukov, Sergei A; Zueva, Lidia V

    2009-08-28

    In a series of works between 1972 and 1984, it was established that rhodopsin undergoes rotational and lateral Brownian motion in the plane of photoreceptor membrane. The concept of free movement of proteins of phototransduction cascade is an essential principle of the present scheme of vertebrate phototransduction. This has recently been challenged by findings that show that in certain conditions rhodopsin in the membrane may be dimeric and form extended areas of paracrystalline organization. Such organization seems incompatible with earlier data on free rhodopsin diffusion. Thus we decided to reinvestigate lateral diffusion of rhodopsin and products of its photolysis in photoreceptor membrane specifically looking for indications of possible oligomeric organization. Diffusion exchange by rhodopsin and its photoproducts between bleached and unbleached halves of rod outer segment was traced using high-speed dichroic microspectrophotometer. Measurements were conducted on amphibian (frog, toad, and salamander) and gecko rods. We found that the curves that are supposed to reflect the process of diffusion equilibration of rhodopsin in nonuniformly bleached outer segment largely show production of long-lived bleaching intermediate, metarhodopsin III (Meta III). After experimental elimination of Meta III contribution, we observed rhodopsin equilibration time constant was threefold to tenfold longer than estimated previously. However, after proper correction for the geometry of rod discs, it translates into generally accepted value of diffusion constant of approximately 5 x 10(-9) cm(2) s(-1). Yet, we found that there exists an immobile rhodopsin fraction whose size can vary from virtually zero to 100%, depending on poorly defined factors. Controls suggest that the formation of the immobile fraction is not due to fragmentation of rod outer segment discs but supposedly reflects oligomerization of rhodopsin. Implications of the new findings for the present model of

  13. Cone and Rod Loss in Stargardt Disease Revealed by Adaptive Optics Scanning Light Ophthalmoscopy

    PubMed Central

    Song, Hongxin; Rossi, Ethan A.; Latchney, Lisa; Bessette, Angela; Stone, Edwin; Hunter, Jennifer J.; Williams, David R.; Chung, Mina

    2015-01-01

    Importance Stargardt disease (STGD1) is characterized by macular atrophy and flecks in the retinal pigment epithelium. The causative ABCA4 gene encodes a protein localizing to photoreceptor outer segments. The pathologic steps by which ABCA4 mutations lead to clinically detectable retinal pigment epithelium changes remain unclear. We investigated early STGD1 using adaptive optics scanning light ophthalmoscopy. Observations Adaptive optics scanning light ophthalmoscopy imaging of 2 brothers with early STGD1 and their unaffected parents was compared with conventional imaging. Cone and rod spacing were increased in both patients (P <.001) with a dark cone appearance. No foveal cones were detected in the older brother. In the younger brother, foveal cones were enlarged with low density (peak cone density, 48.3 × 103 cones/mm2). The ratio of cone to rod spacing was increased in both patients, with greater divergence from normal approaching the foveal center, indicating that cone loss predominates centrally and rod loss increases peripherally. Both parents had normal photoreceptor mosaics. Genetic testing revealed 3 disease-causing mutations. Conclusions and Relevance This study provides in vivo images of rods and cones in STGD1. Although the primary clinical features of STGD1 are retinal pigment epithelial lesions, adaptive optics scanning light ophthalmoscopy reveals increased cone and rod spacing in areas that appear normal in conventional images, suggesting that photoreceptor loss precedes clinically detectable retinal pigment epithelial disease in STGD1. PMID:26247787

  14. A Reinterpretation of Cell Transplantation: GFP Transfer From Donor to Host Photoreceptors.

    PubMed

    Ortin-Martinez, Arturo; Tsai, En Leh Samuel; Nickerson, Philip E; Bergeret, Miriam; Lu, Yao; Smiley, Sheila; Comanita, Lacrimioara; Wallace, Valerie A

    2017-04-01

    The utilization of fluorescent reporter transgenes to discriminate donor versus host cells has been a mainstay of photoreceptor transplantation research, the assumption being that the presence of reporter+ cells in outer nuclear layer (ONL) of transplant recipients represents the integration of donor photoreceptors. We previously reported that GFP + cells in the ONL of cone-GFP transplanted retinas exhibited rod-like characteristics, raising the possibility that GFP signal in recipient tissue may not be a consequence of donor cell integration. To investigate the basis for this mismatch, we performed a series of transplantations using multiple transgenic donor and recipient models, and assessed cell identity using nuclear architecture, immunocytochemistry, and DNA prelabeling. Our results indicate that GFP + cells in the ONL fail to exhibit hallmark elements of donor cells, including nuclear hetero/euchromatin architecture. Furthermore, GFP signal does not appear to be a consequence of classic donor/host cell fusion or transfating post-transplant, but is most likely due to material exchange between donor and host photoreceptors. This transfer can be mediated by rods and cones, is bidirectional between donor and host cells, requires viable photoreceptors, occurs preferentially at sites of outer limiting membrane disruption and can be detected in second-order retinal neurons and Müller glia. Collectively, these data warrant re-evaluation of the use of lineage tracing fluorescent reporters in transplantation studies involving the retina and other CNS tissues. Furthermore, the reinterpretation of previous functional rescue data, based on material exchange, rather than cell integration, may offer a novel approach to vision rescue. Stem Cells 2017;35:932-939. © 2016 AlphaMed Press.

  15. Long-term effects of retinopathy of prematurity (ROP) on rod and rod-driven function.

    PubMed

    Harris, Maureen E; Moskowitz, Anne; Fulton, Anne B; Hansen, Ronald M

    2011-02-01

    The purpose of this study was to determine whether recovery of scotopic sensitivity occurs in human ROP, as it does in the rat models of ROP. Following a cross-sectional design, scotopic electroretinographic (ERG) responses to full-field stimuli were recorded from 85 subjects with a history of preterm birth. In 39 of these subjects, dark adapted visual threshold was also measured. Subjects were tested post-term as infants (median age 2.5 months) or at older ages (median age 10.5 years) and stratified by severity of ROP: severe, mild, or none. Rod photoreceptor sensitivity, S (ROD), was derived from the a-wave, and post-receptor sensitivity, log σ, was calculated from the b-wave stimulus-response function. Dark adapted visual threshold was measured using a forced-choice preferential procedure. For S (ROD), the deficit from normal for age varied significantly with ROP severity but not with age group. For log σ, in mild ROP, the deficit was smaller in older subjects than in infants, while in severe ROP, the deficit was quite large in both age groups. In subjects who never had ROP, S (ROD) and log σ in both age groups were similar to those in term born controls. Deficits in dark adapted threshold and log σ were correlated in mild but not in severe ROP. The data are evidence that sensitivity of the post-receptor retina improves in those with a history of mild ROP. We speculate that beneficial reorganization of the post-receptor neural circuitry occurs in mild but not in severe ROP.

  16. The effects of low level microwaves on the fluidity of photoreceptor cell membrane.

    PubMed

    Pologea-Moraru, Roxana; Kovacs, Eugenia; Iliescu, Karina Roxana; Calota, Violeta; Sajin, Gheorghe

    2002-05-15

    Due to the extensive use of electromagnetic fields in everyday life, more information is required for the detection of mechanisms of interaction and the possible side effects of electromagnetic radiation on the structure and function of the organism. In this paper, we study the effects of low-power microwaves (2.45 GHz) on the membrane fluidity of rod photoreceptor cells. The retina is expected to be very sensitive to microwave irradiation due to the polar character of the photoreceptor cells [Biochim. Biophys. Acta 1273 (1995) 217] as well as to its high water content [Stud. Biophys. 81 (1981) 39].

  17. Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa.

    PubMed

    Blank, Thomas; Goldmann, Tobias; Koch, Mirja; Amann, Lukas; Schön, Christian; Bonin, Michael; Pang, Shengru; Prinz, Marco; Burnet, Michael; Wagner, Johanna E; Biel, Martin; Michalakis, Stylianos

    2017-01-01

    Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of the central nervous system, are activated in retinas of RP patients and in several RP mouse models. However, it is still a matter of debate whether activated microglial cells may be responsible for the amplification of the typical degenerative processes. Here, we used Cngb1 -/- mice, which represent a slow degenerative mouse model of RP, to investigate the extent of microglia activation in retinal degeneration. With a combination of FACS analysis, immunohistochemistry and gene expression analysis we established that microglia in the Cngb1 -/- retina were already activated in an early, predegenerative stage of the disease. The evidence available so far suggests that early retinal microglia activation represents a first step in RP, which might initiate or accelerate photoreceptor degeneration.

  18. Probing Mechanisms of Photoreceptor Degeneration in a New Mouse Model of the Common Form of Autosomal Dominant Retinitis Pigmentosa due to P23H Opsin Mutations*♦

    PubMed Central

    Sakami, Sanae; Maeda, Tadao; Bereta, Grzegorz; Okano, Kiichiro; Golczak, Marcin; Sumaroka, Alexander; Roman, Alejandro J.; Cideciyan, Artur V.; Jacobson, Samuel G.; Palczewski, Krzysztof

    2011-01-01

    Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1–10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development. PMID:21224384

  19. Ultra-high contrast retinal display system for single photoreceptor psychophysics

    PubMed Central

    Domdei, Niklas; Domdei, Lennart; Reiniger, Jenny L.; Linden, Michael; Holz, Frank G.; Roorda, Austin; Harmening, Wolf M.

    2017-01-01

    Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods. PMID:29359094

  20. Adaptations in rod outer segment disc membranes in response to environmental lighting conditions.

    PubMed

    Rakshit, Tatini; Senapati, Subhadip; Parmar, Vipul M; Sahu, Bhubanananda; Maeda, Akiko; Park, Paul S-H

    2017-10-01

    The light-sensing rod photoreceptor cell exhibits several adaptations in response to the lighting environment. While adaptations to short-term changes in lighting conditions have been examined in depth, adaptations to long-term changes in lighting conditions are less understood. Atomic force microscopy was used to characterize the structure of rod outer segment disc membranes, the site of photon absorption by the pigment rhodopsin, to better understand how photoreceptor cells respond to long-term lighting changes. Structural properties of the disc membrane changed in response to housing mice in constant dark or light conditions and these adaptive changes required output from the phototransduction cascade initiated by rhodopsin. Among these were changes in the packing density of rhodopsin in the membrane, which was independent of rhodopsin synthesis and specifically affected scotopic visual function as assessed by electroretinography. Studies here support the concept of photostasis, which maintains optimal photoreceptor cell function with implications in retinal degenerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: evidence of cGMP cytotoxicity independently of enhanced CNG channel function.

    PubMed

    Xu, Jianhua; Morris, Lynsie; Thapa, Arjun; Ma, Hongwei; Michalakis, Stylianos; Biel, Martin; Baehr, Wolfgang; Peshenko, Igor V; Dizhoor, Alexander M; Ding, Xi-Qin

    2013-09-11

    Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca(2+) influx in rod and cone photoreceptors. cGMP, the native ligand of the photoreceptor CNG channels, has been associated with cytotoxicity when its levels rise above normal due to defects in photoreceptor phosphodiesterase (PDE6) or regulation of retinal guanylyl cyclase (retGC). We found a massive accumulation of cGMP in CNGA3-deficient retina and investigated whether cGMP accumulation plays a role in cone degeneration in CNG channel deficiency. The time course study showed that the retinal cGMP level in Cnga3(-/-);Nrl(-/-) mice with CNGA3 deficiency on a cone-dominant background was sharply increased at postnatal day 8 (P8), peaked around P10-P15, remained high through P30-P60, and returned to near control level at P90. This elevation pattern correlated with photoreceptor apoptotic death, which peaked around P15-P20. In Cnga3(-/-);Gucy2e(-/-) mice lacking retGC1, cone density and expression levels of cone-specific proteins were significantly increased compared with Cnga3(-/-), consistent with a role of cGMP accumulation as the major contributor to cone death caused by CNG channel deficiency. The activity and expression levels of cGMP-dependent protein kinase G (PKG) were significantly increased in Cnga3(-/-);Nrl(-/-) retina compared with Nrl(-/-), suggesting an involvement of PKG regulation in cell death. Our results indicate that cGMP accumulation in photoreceptors can itself exert cytotoxic effect in cones, independently of CNG channel activity and Ca(2+) influx.

  2. Kinetics of Inhibitory Feedback from Horizontal Cells to Photoreceptors: Implications for an Ephaptic Mechanism

    PubMed Central

    Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel

    2016-01-01

    Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that

  3. Dark-Adapted Chromatic Perimetry for Measuring Rod Visual Fields in Patients with Retinitis Pigmentosa

    PubMed Central

    Bennett, Lea D.; Klein, Martin; Locke, Kirsten G.; Kiser, Kelly; Birch, David G.

    2017-01-01

    Purpose Although rod photoreceptors are initially affected in retinitis pigmentosa (RP), the full-field of rod vision is not routinely characterized due to the unavailability of commercial devices detecting rod sensitivity. The purpose of this study was to quantify rod-mediated vision in the peripheral field from patients with RP using a new commercially available perimeter. Methods Participants had one eye dilated and dark-adapted for 45 minutes. A dark-adapted chromatic (DAC) perimeter tested 80 loci 144° horizontally and 72° vertically with cyan stimuli. The number of rod-mediated loci (RML) were analyzed based on normal cone sensitivity (method 1) and associated with full-field electroretinography (ERG) responses by Pearson's r correlation and linear regression. In a second cohort of patients with RP, RML were identified by two-color perimetry (cyan and red; method 2). The two methods for ascribing rod function were compared by Bland-Altman analysis. Results Method 1 RML were correlated with responses to the 0.01 cd.s/m2 flash (P < 0.001), while total sensitivity to the cyan stimulus showed correlation with responses to the 3.0 cd.s/m2 flash (P < 0.0001). Method 2 detected a mean of 10 additional RML compared to method 1. Conclusions Scotopic fields measured with the DAC detected rod sensitivity across the full visual field, even in some patients who had nondetectable rod ERGs. Two-color perimetry is warranted when sensitivity to the cyan stimulus is reduced to ≤20 dB to get a true estimation of rod function. Translational Relevance Many genetic forms of retinitis pigmentosa (RP) are caused by mutations in rod-specific genes. However, treatment trials for patients with RP have relied primarily on photopic (cone-mediated) tests as outcome measures because there are a limited number of available testing methods designed to evaluate rod function. Thus, efficient methods for quantifying rod-mediated vision are needed for the rapidly increasing numbers of

  4. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration.

    PubMed

    Chen, Yuanyuan; Chen, Yu; Jastrzebska, Beata; Golczak, Marcin; Gulati, Sahil; Tang, Hong; Seibel, William; Li, Xiaoyu; Jin, Hui; Han, Yong; Gao, Songqi; Zhang, Jianye; Liu, Xujie; Heidari-Torkabadi, Hossein; Stewart, Phoebe L; Harte, William E; Tochtrop, Gregory P; Palczewski, Krzysztof

    2018-05-17

    Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC 50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.

  5. Immunolocalization of ciliary neurotrophic factor receptor alpha (CNTFRalpha) in mammalian photoreceptor cells.

    PubMed

    Beltran, William A; Rohrer, Hermann; Aguirre, Gustavo D

    2005-04-01

    To characterize the site of expression of the alpha subunit of the receptor for ciliary neurotrophic factor (CNTFRalpha) in the retina of a variety of mammalian species, and determine whether CNTFRalpha is localized to photoreceptor cells. The cellular distribution of CNTFRalpha(protein) was examined by immunocytochemistry in the adult retinas of several mammalian species that included mouse, rat, dog, cat, sheep, pig, horse, monkey, and human. Developing retinas from 3-day-old and 6-day-old rats were also included in this study. The molecular weight of CNTFRalpha in rat, dog, cat, pig, and human retinas was determined by immunoblotting. CNTFRalpha immunolabeling was present in the retina of all species. A common pattern was observed in all species, and represented labeling of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), and outer plexiform layer (OPL). CNTFRalpha did not immunolocalize to photoreceptor cells in both adult and developing rodent retinas, but was consistently observed in both rods and cones of non-rodent species. The molecular weight of CNTFRalpha in mammalian retinas was approximately 61-64 kDa. These findings highlight a significant difference in the expression of CNTFRalpha in the retina of rodent and non-rodent mammalian species. The expression of CNTFRalpha by rods and cones in non-rodent species may suggest a direct mechanism of action if CNTF administration results in photoreceptor rescue.

  6. Förster resonance energy transfer as a tool to study photoreceptor biology

    PubMed Central

    Hovan, Stephanie C.; Howell, Scott; Park, Paul S.-H.

    2010-01-01

    Vision is initiated in photoreceptor cells of the retina by a set of biochemical events called phototransduction. These events occur via coordinated dynamic processes that include changes in secondary messenger concentrations, conformational changes and post-translational modifications of signaling proteins, and protein-protein interactions between signaling partners. A complete description of the orchestration of these dynamic processes is still unavailable. Described in this work is the first step in the development of tools combining fluorescent protein technology, Förster resonance energy transfer (FRET), and transgenic animals that have the potential to reveal important molecular insights about the dynamic processes occurring in photoreceptor cells. We characterize the fluorescent proteins SCFP3A and SYFP2 for use as a donor-acceptor pair in FRET assays, which will facilitate the visualization of dynamic processes in living cells. We also demonstrate the targeted expression of these fluorescent proteins to the rod photoreceptor cells of Xenopus laevis, and describe a general method for detecting FRET in these cells. The general approaches described here can address numerous types of questions related to phototransduction and photoreceptor biology by providing a platform to visualize dynamic processes in molecular detail within a native context. PMID:21198205

  7. Fgf Signaling is Required for Photoreceptor Maintenance in the Adult Zebrafish Retina

    PubMed Central

    Hochmann, Sarah; Kaslin, Jan; Hans, Stefan; Weber, Anke; Machate, Anja; Geffarth, Michaela; Funk, Richard H. W.; Brand, Michael

    2012-01-01

    Fibroblast growth factors (Fgf) are secreted signaling molecules that have mitogenic, patterning, neurotrophic and angiogenic properties. Their importance during embryonic development in patterning and morphogenesis of the vertebrate eye is well known, but less is known about the role of Fgfs in the adult vertebrate retina. To address Fgf function in adult retina, we determined the spatial distribution of components of the Fgf signaling pathway in the adult zebrafish retina. We detected differential expression of Fgf receptors, ligands and downstream Fgf targets within specific retinal layers. Furthermore, we blocked Fgf signaling in the retina, by expressing a dominant negative variant of Fgf receptor 1 conditionally in transgenic animals. After blocking Fgf signaling we observe a fast and progressive photoreceptor degeneration and disorganization of retinal tissue, coupled with cell death in the outer nuclear layer. Following the degeneration of photoreceptors, a profound regeneration response is triggered that starts with proliferation in the inner nuclear layer. Ultimately, rod and cone photoreceptors are regenerated completely. Our study reveals the requirement of Fgf signaling to maintain photoreceptors and for proliferation during regeneration in the adult zebrafish retina. PMID:22291943

  8. Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa

    NASA Astrophysics Data System (ADS)

    Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen

    2016-09-01

    Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.

  9. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.

    PubMed

    Vinberg, Frans; Peshenko, Igor V; Chen, Jeannie; Dizhoor, Alexander M; Kefalov, Vladimir J

    2018-05-11

    Light adaptation of photoreceptor cells is mediated by Ca 2+ -dependent mechanisms. In darkness, Ca 2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca 2+ extrusion via Na + /Ca 2+ , K + exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca 2+ levels in photoreceptor outer segment because of continuing Ca 2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca 2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca 2+ -feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca 2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca 2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Analysis of Transcriptional Regulatory Pathways of Photoreceptor Genes by Expression Profiling of the Otx2-Deficient Retina

    PubMed Central

    Muranishi, Yuki; Chaya, Taro; Onishi, Akishi; Minami, Takashi; Fujikado, Takashi; Furukawa, Takahisa

    2011-01-01

    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease. PMID:21602925

  11. Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.

    PubMed

    Omori, Yoshihiro; Katoh, Kimiko; Sato, Shigeru; Muranishi, Yuki; Chaya, Taro; Onishi, Akishi; Minami, Takashi; Fujikado, Takashi; Furukawa, Takahisa

    2011-01-01

    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease.

  12. Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science.

    PubMed

    Nickerson, Philip E B; Ortin-Martinez, Arturo; Wallace, Valerie A

    2018-01-01

    Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME). This recent discovery has chaperoned a new era of interpretation when reviewing the field's use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment.

  13. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration

    PubMed Central

    Athanasiou, Dimitra; Aguila, Monica; Opefi, Chikwado A.; South, Kieron; Bellingham, James; Bevilacqua, Dalila; Munro, Peter M.; Kanuga, Naheed; Mackenzie, Francesca E.; Dubis, Adam M.; Georgiadis, Anastasios; Graca, Anna B.; Pearson, Rachael A.; Ali, Robin R.; Sakami, Sanae; Palczewski, Krzysztof; Sherman, Michael Y.; Reeves, Philip J.

    2017-01-01

    Abstract Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic ‘gain of function’, such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases. PMID:28065882

  14. Protein and Signaling Networks in Vertebrate Photoreceptor Cells

    PubMed Central

    Koch, Karl-Wilhelm; Dell’Orco, Daniele

    2015-01-01

    Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cyclic guanosine monophosphate (cGMP) and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase (GRK1) under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases (GCs) and is regulated by specific neuronal Ca2+-sensor proteins called guanylate cyclase-activating proteins (GCAPs). At least one GC (ROS-GC1) was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated (CNG) channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments. PMID:26635520

  15. Subunit stoichiometry of the CNG channel of rod photoreceptors.

    PubMed

    Weitz, Dietmar; Ficek, Nicole; Kremmer, Elisabeth; Bauer, Paul J; Kaupp, U Benjamin

    2002-12-05

    Cyclic nucleotide-gated (CNG) channels play a central role in the conversion of sensory stimuli into electrical signals. CNG channels form heterooligomeric complexes built of A and B subunits. Here, we study the subunit stoichiometry of the native rod CNG channel by chemical crosslinking. The apparent molecular weight (M(w)) of each crosslink product was determined by SDS-PAGE, and its composition was analyzed by Western blotting using antibodies specific for the A1 or B1 subunit. The number of crosslink products and their M(w) as well as the immunological identification of A1 and B1 subunits in the crosslink products led us to conclude that the native rod CNG channel is a tetramer composed of three A1 and one B1 subunit. This is an example of violation of symmetry in tetrameric channels.

  16. Acute Zonal Cone Photoreceptor Outer Segment Loss.

    PubMed

    Aleman, Tomas S; Sandhu, Harpal S; Serrano, Leona W; Traband, Anastasia; Lau, Marisa K; Adamus, Grazyna; Avery, Robert A

    2017-05-01

    The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy should be considered in patients with acute vision loss and abnormalities on NIR-REF imaging, especially if

  17. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.

    PubMed

    Holcman, David; Korenbrot, Juan I

    2005-06-01

    Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise is caused by continuous fluctuations in the cytoplasmic concentrations of both cGMP and Ca(2+) that arise from the activity in darkness of both guanylate cyclase (GC), the enzyme that synthesizes cGMP, and phosphodiesterase (PDE), the enzyme that hydrolyzes it. In cones loaded with high concentration Ca(2+) buffering agents, we demonstrate that variation in cGMP levels arise from fluctuations in the mean PDE enzymatic activity. The rates of PDE activation and inactivation determine the quantitative characteristics of the dark noise power density spectrum. We developed a mathematical model based on the dynamics of PDE activity that accurately predicts this power spectrum. Analysis of the experimental data with the theoretical model allows us to determine the rates of PDE activation and deactivation in the intact photoreceptor. In fish cones, the mean lifetime of active PDE at room temperature is approximately 55 ms. In nonmammalian rods, in contrast, active PDE lifetime is approximately 555 ms. This remarkable difference helps explain why cones are noisier than rods and why cone photocurrents are smaller in peak amplitude and faster in time course than those in rods. Both these features make cones less light sensitive than rods.

  18. Ciliary photoreceptors in the cerebral eyes of a protostome larva

    PubMed Central

    2011-01-01

    Background Eyes in bilaterian metazoans have been described as being composed of either ciliary or rhabdomeric photoreceptors. Phylogenetic distribution, as well as distinct morphologies and characteristic deployment of different photopigments (ciliary vs. rhabdomeric opsins) and transduction pathways argue for the co-existence of both of these two photoreceptor types in the last common bilaterian ancestor. Both receptor types exist throughout the Bilateria, but only vertebrates are thought to use ciliary photoreceptors for directional light detection in cerebral eyes, while all other invertebrate bilaterians studied utilize rhabdomeric photoreceptors for this purpose. In protostomes, ciliary photoreceptors that express c-opsin have been described only from a non-visual deep-brain photoreceptor. Their homology with vertebrate rods and cones of the human eye has been hypothesized to represent a unique functional transition from non-visual to visual roles in the vertebrate lineage. Results To test the hypothesis that protostome cerebral eyes employ exclusively rhabdomeric photoreceptors, we investigated the ultrastructure of the larval eyes in the brachiopod Terebratalia transversa. We show that these pigment-cup eyes consist of a lens cell and a shading pigment cell, both of which are putative photoreceptors, deploying a modified, enlarged cilium for light perception, and have axonal connections to the larval brain. Our investigation of the gene expression patterns of c-opsin, Pax6 and otx in these eyes confirms that the larval eye spots of brachiopods are cerebral eyes that deploy ciliary type photoreceptors for directional light detection. Interestingly, c-opsin is also expressed during early embryogenesis in all potential apical neural cells, becoming restricted to the anterior neuroectoderm, before expression is initiated in the photoreceptor cells of the eyes. Coincident with the expression of c-opsin in the presumptive neuroectoderm, we found that middle

  19. Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy.

    PubMed

    Katschke, Kenneth J; Xi, Hongkang; Cox, Christian; Truong, Tom; Malato, Yann; Lee, Wyne P; McKenzie, Brent; Arceo, Rommel; Tao, Jianhua; Rangell, Linda; Reichelt, Mike; Diehl, Lauri; Elstrott, Justin; Weimer, Robby M; Campagne, Menno van Lookeren

    2018-05-09

    Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.

  20. Cone rod dystrophies

    PubMed Central

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  1. A novel culture method reveals unique neural stem/progenitors in mature porcine iris tissues that differentiate into neuronal and rod photoreceptor-like cells.

    PubMed

    Royall, Lars N; Lea, Daniel; Matsushita, Tamami; Takeda, Taka-Aki; Taketani, Shigeru; Araki, Masasuke

    2017-11-15

    Iris neural stem/progenitor cells from mature porcine eyes were investigated using a new protocol for tissue culture, which consists of dispase treatment and Matrigel embedding. We used a number of culture conditions and found an intense differentiation of neuronal cells from both the iris pigmented epithelial (IPE) cells and the stroma tissue cells. Rod photoreceptor-like cells were also observed but mostly in a later stage of culture. Neuronal differentiation does not require any additives such as fetal bovine serum or FGF2, although FGF2 and IGF2 appeared to promote neural differentiation in the IPE cultures. Furthermore, the stroma-derived cells were able to be maintained in vitro indefinitely. The evolutionary similarity between humans and domestic pigs highlight the potential for this methodology in the modeling of human diseases and characterizing human ocular stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science

    PubMed Central

    Nickerson, Philip E. B.; Ortin-Martinez, Arturo; Wallace, Valerie A.

    2018-01-01

    Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME). This recent discovery has chaperoned a new era of interpretation when reviewing the field’s use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment. PMID:29559897

  3. A neuronal circuit for colour vision based on rod-cone opponency.

    PubMed

    Joesch, Maximilian; Meister, Markus

    2016-04-14

    In bright light, cone-photoreceptors are active and colour vision derives from a comparison of signals in cones with different visual pigments. This comparison begins in the retina, where certain retinal ganglion cells have 'colour-opponent' visual responses-excited by light of one colour and suppressed by another colour. In dim light, rod-photoreceptors are active, but colour vision is impossible because they all use the same visual pigment. Instead, the rod signals are thought to splice into retinal circuits at various points, in synergy with the cone signals. Here we report a new circuit for colour vision that challenges these expectations. A genetically identified type of mouse retinal ganglion cell called JAMB (J-RGC), was found to have colour-opponent responses, OFF to ultraviolet (UV) light and ON to green light. Although the mouse retina contains a green-sensitive cone, the ON response instead originates in rods. Rods and cones both contribute to the response over several decades of light intensity. Remarkably, the rod signal in this circuit is antagonistic to that from cones. For rodents, this UV-green channel may play a role in social communication, as suggested by spectral measurements from the environment. In the human retina, all of the components for this circuit exist as well, and its function can explain certain experiences of colour in dim lights, such as a 'blue shift' in twilight. The discovery of this genetically defined pathway will enable new targeted studies of colour processing in the brain.

  4. Successful gene therapy in the RPGRIP1-deficient dog: a large model of cone-rod dystrophy.

    PubMed

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-02-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment.

  5. PRE- AND POST-SYNAPTIC EFFECTS OF MANIPULATING SURFACE CHARGE WITH DIVALENT CATIONS AT THE PHOTORECEPTOR SYNAPSE

    PubMed Central

    CADETTI, L.; THORESON, W. B.; PICCOLINO, M.

    2006-01-01

    Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. The same concentrations of Zn2+ and Ni2+ reduced the amplitude of ICa at the rod dark potential and this reduction was relieved by a hyperpolarizing shift in voltage dependence induced by lowering [Ca2+]o. Block of ICa by Mg2+, which has weak surface charge effects, was not relieved by low [Ca2+]o. Recovery of HC responses in low [Ca2+]o was assisted by enhancement of rod light responses. To bypass light stimulation, OFF bipolar cells were stimulated by steps to −40 mV applied to presynaptic rods during simultaneous paired recordings. Consistent with surface charge theory, the post-synaptic current was inhibited by Zn2+ and this inhibition was relieved by lowering [Ca2+]o. Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors

  6. Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium.

    PubMed

    Cork, Karlene M; Thoreson, Wallace B

    2014-05-01

    Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (C m) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels.

  7. Rapid kinetics of endocytosis at rod photoreceptor synapses depends upon endocytic load and calcium

    PubMed Central

    CORK, KARLENE M.; THORESON, WALLACE B.

    2015-01-01

    Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (Cm) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels. PMID:24735554

  8. Acute Zonal Cone Photoreceptor Outer Segment Loss

    PubMed Central

    Sandhu, Harpal S.; Serrano, Leona W.; Traband, Anastasia; Lau, Marisa K.; Adamus, Grazyna; Avery, Robert A.

    2017-01-01

    Importance The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. Objective To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. Design, Setting, and Participants A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Main Outcomes and Measures Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). Results The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Conclusions and Relevance Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy

  9. Bcl-xL-mediated remodeling of rod and cone synaptic mitochondria after postnatal lead exposure: electron microscopy, tomography and oxygen consumption.

    PubMed

    Perkins, Guy A; Scott, Ray; Perez, Alex; Ellisman, Mark H; Johnson, Jerry E; Fox, Donald A

    2012-01-01

    Postnatal lead exposure produces rod-selective and Bax-mediated apoptosis, decreased scotopic electroretinograms (ERGs), and scotopic and mesopic vision deficits in humans and/or experimental animals. Rod, but not cone, inner segment mitochondria were considered the primary site of action. However, photoreceptor synaptic mitochondria were not examined. Thus, our experiments investigated the structural and functional effects of environmentally relevant postnatal lead exposure on rod spherule and cone pedicle mitochondria and whether Bcl-xL overexpression provided neuroprotection. C57BL/6N mice pups were exposed to lead only during lactation via dams drinking water containing lead acetate. The blood [Pb] at weaning was 20.6±4.7 µg/dl, which decreased to the control value by 2 months. To assess synaptic mitochondrial structural differences and vulnerability to lead exposure, wild-type and transgenic mice overexpressing Bcl-xL in photoreceptors were used. Electron microscopy, three-dimensional electron tomography, and retinal and photoreceptor synaptic terminal oxygen consumption (QO(2)) studies were conducted in adult control, Bcl-xL, lead, and Bcl-xL/lead mice. The spherule and pedicle mitochondria in lead-treated mice were swollen, and the cristae structure was markedly changed. In the lead-treated mice, the mitochondrial cristae surface area and volume (abundance: measure correlated with ATP (ATP) synthesis) were decreased in the spherules and increased in the pedicles. Pedicles also had an increased number of crista segments per volume. In the lead-treated mice, the number of segments/crista and fraction of cristae with multiple segments (branching) similarly increased in spherule and pedicle mitochondria. Lead-induced remodeling of spherule mitochondria produced smaller cristae with more branching, whereas pedicle mitochondria had larger cristae with more branching and increased crista junction (CJ) diameter. Lead decreased dark- and light-adapted photoreceptor

  10. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    PubMed

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development*

    PubMed Central

    Wong, Bernice H.; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W.; Foo, Juat Chin; Galam, Dwight L. A.; Ghosh, Sujoy; Nguyen, Long N.; Barathi, Veluchamy A.; Yeo, Sia W.; Luu, Chi D.; Wenk, Markus R.; Silver, David L.

    2016-01-01

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo. Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. PMID:27008858

  12. Arrestin in ciliary invertebrate photoreceptors: molecular identification and functional analysis in vivo.

    PubMed

    Gomez, Maria Del Pilar; Espinosa, Lady; Ramirez, Nelson; Nasi, Enrico

    2011-02-02

    Arrestin was identified in ciliary photoreceptors of Pecten irradians, and its role in terminating the light response was established electrophysiologically. Downstream effectors in these unusual visual cells diverge from both microvillar photoreceptors and rods and cones; the finding that key regulatory mechanisms of the early steps of visual excitation are conserved across such distant lineages of photoreceptors underscores that a common blueprint for phototransduction exists across metazoa. Arrestin was detected by Western blot analysis of retinal lysates, and localized in ciliary photoreceptors by immunostaining of whole-eye cryosections and dissociated cells. Two arrestin isoforms were molecularly identified by PCR; these present the canonical N- and C-arrestin domains, and are identical at the nucleotide level over much of their sequence. A high degree of homology to various β-arrestins (up to 70% amino acid identity) was found. In situ hybridization localized the two transcripts within the retina, but failed to reveal finer spatial segregation, possibly because of insufficient differences between the riboprobes. Intracellular dialysis of anti arrestin antibodies into voltage-clamped ciliary photoreceptors produced a gradual slow-down of the photocurrent falling phase, leaving a tail that decayed over many seconds after light termination. The antibodies also caused spectrally neutral flashes to elicit prolonged aftercurrents in the absence of large metarhodopsin accumulation; such aftercurrents could be quenched by chromatic illumination that photoconverts metarhodopsin back to rhodopsin. These observations indicate that the antibodies depleted functionally available arrestin, and implicate this molecule in the deactivation of the photoresponse at the rhodopsin level.

  13. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    PubMed

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  14. Color discrimination with broadband photoreceptors.

    PubMed

    Schnaitmann, Christopher; Garbers, Christian; Wachtler, Thomas; Tanimoto, Hiromu

    2013-12-02

    Color vision is commonly assumed to rely on photoreceptors tuned to narrow spectral ranges. In the ommatidium of Drosophila, the four types of so-called inner photoreceptors express different narrow-band opsins. In contrast, the outer photoreceptors have a broadband spectral sensitivity and were thought to exclusively mediate achromatic vision. Using computational models and behavioral experiments, we demonstrate that the broadband outer photoreceptors contribute to color vision in Drosophila. The model of opponent processing that includes the opsin of the outer photoreceptors scored the best fit to wavelength discrimination data. To experimentally uncover the contribution of individual photoreceptor types, we restored phototransduction of targeted photoreceptor combinations in a blind mutant. Dichromatic flies with only broadband photoreceptors and one additional receptor type can discriminate different colors, indicating the existence of a specific output comparison of the outer and inner photoreceptors. Furthermore, blocking interneurons postsynaptic to the outer photoreceptors specifically impaired color but not intensity discrimination. Our findings show that receptors with a complex and broad spectral sensitivity can contribute to color vision and reveal that chromatic and achromatic circuits in the fly share common photoreceptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    PubMed

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Cone photoreceptor definition on adaptive optics retinal imaging

    PubMed Central

    Muthiah, Manickam Nick; Gias, Carlos; Chen, Fred Kuanfu; Zhong, Joe; McClelland, Zoe; Sallo, Ferenc B; Peto, Tunde; Coffey, Peter J; da Cruz, Lyndon

    2014-01-01

    Aims To quantitatively analyse cone photoreceptor matrices on images captured on an adaptive optics (AO) camera and assess their correlation to well-established parameters in the retinal histology literature. Methods High resolution retinal images were acquired from 10 healthy subjects, aged 20–35 years old, using an AO camera (rtx1, Imagine Eyes, France). Left eye images were captured at 5° of retinal eccentricity, temporal to the fovea for consistency. In three subjects, images were also acquired at 0, 2, 3, 5 and 7° retinal eccentricities. Cone photoreceptor density was calculated following manual and automated counting. Inter-photoreceptor distance was also calculated. Voronoi domain and power spectrum analyses were performed for all images. Results At 5° eccentricity, the cone density (cones/mm2 mean±SD) was 15.3±1.4×103 (automated) and 13.9±1.0×103 (manual) and the mean inter-photoreceptor distance was 8.6±0.4 μm. Cone density decreased and inter-photoreceptor distance increased with increasing retinal eccentricity from 2 to 7°. A regular hexagonal cone photoreceptor mosaic pattern was seen at 2, 3 and 5° of retinal eccentricity. Conclusions Imaging data acquired from the AO camera match cone density, intercone distance and show the known features of cone photoreceptor distribution in the pericentral retina as reported by histology, namely, decreasing density values from 2 to 7° of eccentricity and the hexagonal packing arrangement. This confirms that AO flood imaging provides reliable estimates of pericentral cone photoreceptor distribution in normal subjects. PMID:24729030

  17. Early photoreceptor outer segment loss and retinoschisis in Cohen syndrome.

    PubMed

    Uyhazi, Katherine E; Binenbaum, Gil; Carducci, Nicholas; Zackai, Elaine H; Aleman, Tomas S

    2018-06-01

    To describe early structural and functional retinal changes in a patient with Cohen syndrome. A 13-month-old Caucasian girl of Irish and Spanish ancestry was noted to have micrognathia and laryngomalacia at birth, which prompted a genetic evaluation that revealed biallelic deletions in COH1 (VPS13B) (a maternally inherited 60-kb deletion involving exons 26-32 and a paternally inherited 3.5-kb deletion within exon 17) consistent with Cohen syndrome. She underwent a complete ophthalmic examination, full-field flash electroretinography and retinal imaging with spectral domain optical coherence tomography. Central vision was central, steady, and maintained. There was bilateral myopic astigmatic refractive error. Fundus exam was notable for dark foveolar pigmentation, but no obvious abnormalities of either eye. Spectral domain optical coherence tomography cross sections through the fovea revealed a normal appearing photoreceptor outer nuclear layer but loss of the interdigitation signal between the photoreceptor outer segments and the apical retinal pigment epithelium. Retinoschisis involving the inner nuclear layer of both eyes and possible ganglion cell layer thinning were also noted. There was a detectable electroretinogram with similarly reduced amplitudes of rod- (white, 0.01 cd.s.m -2 ) and cone-mediated (3 cd.s.m -2 , 30 Hz) responses. Photoreceptor outer segment abnormalities and retinoschisis may represent the earliest structural retinal change detected by spectral domain optical coherence tomography in patients with Cohen syndrome, suggesting a complex pathophysiology with primary involvement of the photoreceptor cilium and disorganization of the structural integrity of the inner retina.

  18. The Role of the Photoreceptor ABC Transporter ABCA4 in Lipid Transport and Stargardt Macular Degeneration

    PubMed Central

    Molday, Robert S.; Zhong, Ming; Quazi, Faraz

    2009-01-01

    ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone-rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders. PMID:19230850

  19. Facilitative glucose transporter Glut1 is actively excluded from rod outer segments.

    PubMed

    Gospe, Sidney M; Baker, Sheila A; Arshavsky, Vadim Y

    2010-11-01

    Photoreceptors are among the most metabolically active cells in the body, relying on both oxidative phosphorylation and glycolysis to satisfy their high energy needs. Local glycolysis is thought to be particularly crucial in supporting the function of the photoreceptor's light-sensitive outer segment compartment, which is devoid of mitochondria. Accordingly, it has been commonly accepted that the facilitative glucose transporter Glut1 responsible for glucose entry into photoreceptors is localized in part to the outer segment plasma membrane. However, we now demonstrate that Glut1 is entirely absent from the rod outer segment and is actively excluded from this compartment by targeting information present in its cytosolic C-terminal tail. Our data indicate that glucose metabolized in the outer segment must first enter through other parts of the photoreceptor cell. Consequently, the entire energy supply of the outer segment is dependent on diffusion of energy-rich substrates through the thin connecting cilium that links this compartment to the rest of the cell.

  20. Phosphorylation-independent suppression of light-activated visual pigment by arrestin in carp rods and cones.

    PubMed

    Tomizuka, Junko; Tachibanaki, Shuji; Kawamura, Satoru

    2015-04-10

    Visual pigment in photoreceptors is activated by light. Activated visual pigment (R*) is believed to be inactivated by phosphorylation of R* with subsequent binding of arrestin. There are two types of photoreceptors, rods and cones, in the vertebrate retina, and they express different subtypes of arrestin, rod and cone type. To understand the difference in the function between rod- and cone-type arrestin, we first identified the subtype of arrestins expressed in rods and cones in carp retina. We found that two rod-type arrestins, rArr1 and rArr2, are co-expressed in a rod and that a cone-type arrestin, cArr1, is expressed in blue- and UV-sensitive cones; the other cone-type arrestin, cArr2, is expressed in red- and green-sensitive cones. We quantified each arrestin subtype and estimated its concentration in the outer segment of a rod or a cone in the dark; they were ∼0.25 mm (rArr1 plus rArr2) in a rod and 0.6-0.8 mm (cArr1 or cArr2) in a cone. The effect of each arrestin was examined. In contrast to previous studies, both rod and cone arrestins suppressed the activation of transducin in the absence of visual pigment phosphorylation, and all of the arrestins examined (rArr1, rArr2, and cArr2) bound transiently to most probably nonphosphorylated R*. One rod arrestin, rArr2, bound firmly to phosphorylated pigment, and the other two, rArr1 and cArr2, once bound to phosphorylated R* but dissociated from it during incubation. Our results suggested a novel mechanism of arrestin effect on the suppression of the R* activity in both rods and cones. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Phosphorylation-independent Suppression of Light-activated Visual Pigment by Arrestin in Carp Rods and Cones*

    PubMed Central

    Tomizuka, Junko; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-01

    Visual pigment in photoreceptors is activated by light. Activated visual pigment (R*) is believed to be inactivated by phosphorylation of R* with subsequent binding of arrestin. There are two types of photoreceptors, rods and cones, in the vertebrate retina, and they express different subtypes of arrestin, rod and cone type. To understand the difference in the function between rod- and cone-type arrestin, we first identified the subtype of arrestins expressed in rods and cones in carp retina. We found that two rod-type arrestins, rArr1 and rArr2, are co-expressed in a rod and that a cone-type arrestin, cArr1, is expressed in blue- and UV-sensitive cones; the other cone-type arrestin, cArr2, is expressed in red- and green-sensitive cones. We quantified each arrestin subtype and estimated its concentration in the outer segment of a rod or a cone in the dark; they were ∼0.25 mm (rArr1 plus rArr2) in a rod and 0.6–0.8 mm (cArr1 or cArr2) in a cone. The effect of each arrestin was examined. In contrast to previous studies, both rod and cone arrestins suppressed the activation of transducin in the absence of visual pigment phosphorylation, and all of the arrestins examined (rArr1, rArr2, and cArr2) bound transiently to most probably nonphosphorylated R*. One rod arrestin, rArr2, bound firmly to phosphorylated pigment, and the other two, rArr1 and cArr2, once bound to phosphorylated R* but dissociated from it during incubation. Our results suggested a novel mechanism of arrestin effect on the suppression of the R* activity in both rods and cones. PMID:25713141

  2. Quantal mEPSCs and residual glutamate: how horizontal cell responses are shaped at the photoreceptor ribbon synapse

    PubMed Central

    Cadetti, Lucia; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2012-01-01

    At the photoreceptor ribbon synapse, glutamate released from vesicles at different positions along the ribbon reaches the same postsynaptic receptors. Thus, vesicles may not exert entirely independent effects. We examined whether responses of salamander retinal horizontal cells evoked by light or direct depolarization during paired recordings could be predicted by summation of individual miniature excitatory postsynaptic currents (mEPSCs). For EPSCs evoked by depolarization of rods or cones, linear convolution of mEPSCs with photoreceptor release functions predicted EPSC waveforms and changes caused by inhibiting glutamate receptor desensitization. A low-affinity glutamate antagonist, kynurenic acid (KynA), preferentially reduced later components of rod-driven EPSCs, suggesting lower levels of glutamate are present during the later sustained component of the EPSC. A glutamate-scavenging enzyme, glutamic-pyruvic transaminase, did not inhibit mEPSCs or the initial component of rod-driven EPSCs, but reduced later components of the EPSC. Inhibiting glutamate uptake with a low concentration of dl-threo-β-benzoyloxyaspartate (TBOA) also did not alter mEPSCs or the initial component of rod-driven EPSCs, but enhanced later components of the EPSC. Low concentrations of TBOA and KynA did not affect the kinetics of fast cone-driven EPSCs. Under both rod- and cone-dominated conditions, light-evoked currents (LECs) were enhanced considerably by TBOA. LECs were more strongly inhibited than EPSCs by KynA, suggesting the presence of lower glutamate levels. Collectively, these results indicate that the initial EPSC component can be largely predicted from a linear sum of individual mEPSCs, but with sustained release, residual amounts of glutamate from multiple vesicles pool together, influencing LECs and later components of EPSCs. PMID:18547244

  3. Cone photoreceptor definition on adaptive optics retinal imaging.

    PubMed

    Muthiah, Manickam Nick; Gias, Carlos; Chen, Fred Kuanfu; Zhong, Joe; McClelland, Zoe; Sallo, Ferenc B; Peto, Tunde; Coffey, Peter J; da Cruz, Lyndon

    2014-08-01

    To quantitatively analyse cone photoreceptor matrices on images captured on an adaptive optics (AO) camera and assess their correlation to well-established parameters in the retinal histology literature. High resolution retinal images were acquired from 10 healthy subjects, aged 20-35 years old, using an AO camera (rtx1, Imagine Eyes, France). Left eye images were captured at 5° of retinal eccentricity, temporal to the fovea for consistency. In three subjects, images were also acquired at 0, 2, 3, 5 and 7° retinal eccentricities. Cone photoreceptor density was calculated following manual and automated counting. Inter-photoreceptor distance was also calculated. Voronoi domain and power spectrum analyses were performed for all images. At 5° eccentricity, the cone density (cones/mm(2) mean±SD) was 15.3±1.4×10(3) (automated) and 13.9±1.0×10(3) (manual) and the mean inter-photoreceptor distance was 8.6±0.4 μm. Cone density decreased and inter-photoreceptor distance increased with increasing retinal eccentricity from 2 to 7°. A regular hexagonal cone photoreceptor mosaic pattern was seen at 2, 3 and 5° of retinal eccentricity. Imaging data acquired from the AO camera match cone density, intercone distance and show the known features of cone photoreceptor distribution in the pericentral retina as reported by histology, namely, decreasing density values from 2 to 7° of eccentricity and the hexagonal packing arrangement. This confirms that AO flood imaging provides reliable estimates of pericentral cone photoreceptor distribution in normal subjects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina

    PubMed Central

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-01-01

    Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single

  5. 3D printed phantoms of retinal photoreceptor cells for evaluating adaptive optics imaging modalities

    NASA Astrophysics Data System (ADS)

    Kedia, Nikita; Liu, Zhuolin; Sochol, Ryan; Hammer, Daniel X.; Agrawal, Anant

    2018-02-01

    Adaptive optics-enabled optical coherence tomography (AO-OCT) and scanning laser ophthalmoscopy (AO-SLO) devices can resolve retinal cones and rods in three dimensions. To evaluate the improved resolution of AO-OCT and AO-SLO, a phantom that mimics retinal anatomy at the cellular level is required. We used a two-photon polymerization approach to fabricate three-dimensional (3D) photoreceptor phantoms modeled on the central foveal cones. By using a femtosecond laser to selectively photocure precise locations within a liquid-based photoresist via two-photon absorption, we produced high-resolution phantoms with μm-level dimensions similar to true anatomy. In this work, we present two phantoms to evaluate the resolution limits of an AO imaging system: one that models only the outer segments of the photoreceptor cells at varying retinal eccentricities and another that contains anatomically relevant features of the full-length photoreceptor. With these phantoms we are able to quantitatively estimate transverse resolution of an AO system and produce images that are comparable to those found in the human retina.

  6. The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae)

    PubMed Central

    de Busserolles, Fanny; Fitzpatrick, John L.; Marshall, N. Justin; Collin, Shaun P.

    2014-01-01

    The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the

  7. Visual ecology and potassium conductances of insect photoreceptors.

    PubMed

    Frolov, Roman; Immonen, Esa-Ville; Weckström, Matti

    2016-04-01

    Voltage-activated potassium channels (Kv channels) in the microvillar photoreceptors of arthropods are responsible for repolarization and regulation of photoreceptor signaling bandwidth. On the basis of analyzing Kv channels in dipteran flies, it was suggested that diurnal, rapidly flying insects predominantly express sustained K(+) conductances, whereas crepuscular and nocturnally active animals exhibit strongly inactivating Kv conductances. The latter was suggested to function for minimizing cellular energy consumption. In this study we further explore the evolutionary adaptations of the photoreceptor channelome to visual ecology and behavior by comparing K(+) conductances in 15 phylogenetically diverse insects, using patch-clamp recordings from dissociated ommatidia. We show that rapid diurnal flyers such as the blowfly (Calliphora vicina) and the honeybee (Apis mellifera) express relatively large noninactivating Kv conductances, conforming to the earlier hypothesis in Diptera. Nocturnal and/or slow-moving species do not in general exhibit stronger Kv conductance inactivation in the physiological membrane voltage range, but the photoreceptors in species that are known to rely more on vision behaviorally had higher densities of sustained Kv conductances than photoreceptors of less visually guided species. No statistically significant trends related to visual performance could be identified for the rapidly inactivating Kv conductances. Counterintuitively, strong negative correlations were observed between photoreceptor capacitance and specific membrane conductance for both sustained and inactivating fractions of Kv conductance, suggesting insignificant evolutionary pressure to offset negative effects of high capacitance on membrane filtering with increased conductance. Copyright © 2016 the American Physiological Society.

  8. Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors

    PubMed Central

    Wen, Xiangyi; Saltzgaber, Grant W.; Thoreson, Wallace B.

    2017-01-01

    Accompanying sustained release in darkness, rod and cone photoreceptors exhibit rapid endocytosis of synaptic vesicles. Membrane capacitance measurements indicated that rapid endocytosis retrieves at least 70% of the exocytotic membrane increase. One mechanism for rapid endocytosis is kiss-and-run fusion where vesicles briefly contact the plasma membrane through a small fusion pore. Release can also occur by full-collapse in which vesicles merge completely with the plasma membrane. We assessed relative contributions of full-collapse and kiss-and-run in salamander photoreceptors using optical techniques to measure endocytosis and exocytosis of large vs. small dye molecules. Incubation with small dyes (SR101, 1 nm; 3-kDa dextran-conjugated Texas Red, 2.3 nm) loaded rod and cone synaptic terminals much more readily than larger dyes (10-kDa Texas Red, 4.6 nm; 10-kDa pHrodo, 4.6 nm; 70-kDa Texas Red, 12 nm) consistent with significant uptake through 2.3–4.6 nm fusion pores. By using total internal reflection fluorescence microscopy (TIRFM) to image individual vesicles, when rods were incubated simultaneously with Texas Red and AlexaFluor-488 dyes conjugated to either 3-kDa or 10-kDa dextran, more vesicles loaded small molecules than large molecules. Using TIRFM to detect release by the disappearance of dye-loaded vesicles, we found that SR101 and 3-kDa Texas Red were released from individual vesicles more readily than 10-kDa and 70-kDa Texas Red. Although 10-kDa pHrodo was endocytosed poorly like other large dyes, the fraction of release events was similar to SR101 and 3-kDa Texas Red. We hypothesize that while 10-kDa pHrodo may not exit through a fusion pore, release of intravesicular protons can promote detection of fusion events by rapidly quenching fluorescence of this pH-sensitive dye. Assuming that large molecules can only be released by full-collapse whereas small molecules can be released by both modes, our results indicate that 50%–70% of release from rods

  9. Primate Short-Wavelength Cones Share Molecular Markers with Rods

    PubMed Central

    Craft, Cheryl M.; Huang, Jing; Possin, Daniel E.; Hendrickson, Anita

    2015-01-01

    Macaca, Callithrix jacchus marmoset monkey, Pan troglodytes chim- panzee and human retinas were examined to define if short wavelength (S) cones share molecular markers with L&M cone or rod photoreceptors. S cones showed consistent differences in their immunohistochemical staining and expression levels compared to L&M cones for “rod” Arrestin1 (S-Antigen), “cone” Arrestin4, cone alpha transducin, and Calbindin. Our data verify a similar pattern of expression in these primate retinas and provide clues to the structural divergence of rods and S cones versus L&M cones, suggesting S cone retinal function is “intermediate” between them. PMID:24664680

  10. Damage to the photoreceptor cells of the rabbit retina from 56Fe ions: effect of age at exposure, 1

    NASA Technical Reports Server (NTRS)

    Williams, G. R.; Lett, J. T.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Optic and proximate tissues of New Zealand white (NZW) rabbits at ages (approximately 3.5 years) near the middle of their median lifespan (5-7 years) were given 0.5-3.5 Gy of 465 MeV u-1 56Fe ions in the Bragg plateau region of energy deposition at a linear energy transfer (LET infinity) of 220 +/- 31 keV micrometer-1. Dose-dependent losses of retinal photoreceptor cells (rods) occurred until 1-2 years after irradiation, the period of this interim report. Similar cumulative losses of photoreceptor cells were seen during the period 1-2 years post-irradiation for rabbits given comparable exposures when young (6-9 weeks old). Since losses of photoreceptor cells at early times had not been determined previously, the current experiment, which was designed to simulate the responses of mature astronauts, redressed that deficiency.

  11. Successful Gene Therapy in the RPGRIP1-deficient Dog: a Large Model of Cone–Rod Dystrophy

    PubMed Central

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-01-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod–cone dystrophies but not in large models of progressive cone–rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone–rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18–72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22–29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone–rod dystrophy provides great promise for human treatment. PMID:24091916

  12. Tauroursodeoxycholic acid preserves photoreceptor structure and function in the rd10 mouse through post-natal day 30

    PubMed Central

    Phillips, M. Joe; Walker, Tiffany A.; Choi, Hee-young; Faulkner, Amanda E.; Kim, Moon K.; Sidney, Sheree; Boyd, Amber; Nickerson, John M.; Boatright, Jeffrey H.; Pardue, Machelle T.

    2008-01-01

    Purpose Retinitis Pigmentosa (RP) is a progressive neurodegenerative disease resulting in blindness for which there is no current treatment. While the members of the family of RP diseases differ in etiology, their outcomes are the same: apoptosis of rods followed by cones. Recently, the bile acid, tauroursodeoxycholic acid (TUDCA), has been shown to have anti-apoptotic properties in neurodegenerative diseases, including those of the retina. In this study we examine the efficacy of TUDCA on preserving rod and cone function and morphology at post-natal day 30 (P30) in the rd10 mouse, a model of RP. Methods Wild-type C57BL/6J and rd10 mice were systemically injected with TUDCA (500 mg/kg) every three days from P6-P30 and compared to vehicle (0.15M NaHCO3). At P30, retinal function was measured with electroretinography (ERG) and morphological preservation of the rods and cones assessed with immunohistochemistry. Results Dark-adapted ERG responses were two-fold greater in rd10 mice treated with TUDCA compared to vehicle, while light-adapted responses were two-fold larger in TUDCA-treated mice compared to controls, at the brightest ERG flash intensities. TUDCA-treated rd10 retinas had five-fold more photoreceptors than vehicle-treated. TUDCA treatments did not alter retinal function or morphology of wild-type mice when administered to age-matched mice. Conclusions TUDCA is efficacious and safe in preserving vision in the rd10 mouse model of RP when treated between P6 and P30. At P30, a developmental stage at which nearly all rods are absent in the rd10 mouse model of RP, TUDCA treatment preserved both rod and cone function and greatly preserved overall photoreceptor numbers. PMID:18436848

  13. ATR localizes to the photoreceptor connecting cilium and deficiency leads to severe photoreceptor degeneration in mice.

    PubMed

    Valdés-Sánchez, Lourdes; De la Cerda, Berta; Diaz-Corrales, Francisco J; Massalini, Simone; Chakarova, Christina F; Wright, Alan F; Bhattacharya, Shomi S

    2013-04-15

    Ataxia-telangiectasia and Rad3 (ATR), a sensor of DNA damage, is associated with the regulation and control of cell division. ATR deficit is known to cause Seckel syndrome, characterized by severe proportionate short stature and microcephaly. We used a mouse model for Seckel disease to study the effect of ATR deficit on retinal development and function and we have found a new role for ATR, which is critical for the postnatal development of the photoreceptor (PR) layer in mouse retina. The structural and functional characterization of the ATR(+/s) mouse retinas displayed a specific, severe and early degeneration of rod and cone cells resembling some characteristics of human retinal degenerations. A new localization of ATR in the cilia of PRs and the fact that mutant mice have shorter cilia suggests that the PR degeneration here described results from a ciliary defect.

  14. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  15. Impairment of photoreceptor ribbon synapses in a novel Pomt1 conditional knockout mouse model of dystroglycanopathy.

    PubMed

    Rubio-Fernández, Marcos; Uribe, Mary Luz; Vicente-Tejedor, Javier; Germain, Francisco; Susín-Lara, Cristina; Quereda, Cristina; Montoliu, Lluis; de la Villa, Pedro; Martín-Nieto, José; Cruces, Jesús

    2018-06-04

    Hypoglycosylation of α-dystroglycan (α-DG) resulting from deficiency of protein O-mannosyltransferase 1 (POMT1) may cause severe neuromuscular dystrophies with brain and eye anomalies, named dystroglycanopathies. The retinal involvement of these disorders motivated us to generate a conditional knockout (cKO) mouse experiencing a Pomt1 intragenic deletion (exons 3-4) during the development of photoreceptors, mediated by the Cre recombinase expressed from the cone-rod homeobox (Crx) gene promoter. In this mouse, retinal α-DG was unglycosylated and incapable of binding laminin. Retinal POMT1 deficiency caused significant impairments in both electroretinographic recordings and optokinetic reflex in Pomt1 cKO mice, and immunohistochemical analyses revealed the absence of β-DG and of the α-DG-interacting protein, pikachurin, in the outer plexiform layer (OPL). At the ultrastructural level, noticeable alterations were observed in the ribbon synapses established between photoreceptors and bipolar cells. Therefore, O-mannosylation of α-DG in the retina carried out by POMT1 is crucial for the establishment of proper synapses at the OPL and transmission of visual information from cones and rods to their postsynaptic neurons.

  16. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    PubMed

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant

    PubMed Central

    Song, Xiufeng; Seo, Jungwon; Baameur, Faiza; Vishnivetskiy, Sergey A.; Chen, Qiuyan; Kook, Seunghyi; Kim, Miyeon; Brooks, Evan K.; Altenbach, Christian; Hong, Yuan; Hanson, Susan M.; Palazzo, Maria C.; Chen, Jeannie; Hubbell, Wayne L.; Gurevich, Eugenia V.; Gurevich, Vsevolod V.

    2013-01-01

    Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization. PMID:24012956

  18. Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant.

    PubMed

    Song, Xiufeng; Seo, Jungwon; Baameur, Faiza; Vishnivetskiy, Sergey A; Chen, Qiuyan; Kook, Seunghyi; Kim, Miyeon; Brooks, Evan K; Altenbach, Christian; Hong, Yuan; Hanson, Susan M; Palazzo, Maria C; Chen, Jeannie; Hubbell, Wayne L; Gurevich, Eugenia V; Gurevich, Vsevolod V

    2013-12-01

    Arrestin-1 binds light-activated phosphorhodopsin and ensures timely signal shutoff. We show that high transgenic expression of an arrestin-1 mutant with enhanced rhodopsin binding and impaired oligomerization causes apoptotic rod death in mice. Dark rearing does not prevent mutant-induced cell death, ruling out the role of arrestin complexes with light-activated rhodopsin. Similar expression of WT arrestin-1 that robustly oligomerizes, which leads to only modest increase in the monomer concentration, does not affect rod survival. Moreover, WT arrestin-1 co-expressed with the mutant delays retinal degeneration. Thus, arrestin-1 mutant directly affects cell survival via binding partner(s) other than light-activated rhodopsin. Due to impaired self-association of the mutant its high expression dramatically increases the concentration of the monomer. The data suggest that monomeric arrestin-1 is cytotoxic and WT arrestin-1 protects rods by forming mixed oligomers with the mutant and/or competing with it for the binding to non-receptor partners. Thus, arrestin-1 self-association likely serves to keep low concentration of the toxic monomer. The reduction of the concentration of harmful monomer is an earlier unappreciated biological function of protein oligomerization. © 2013.

  19. Efficiency of synaptic transmission of single-photon events from rod photoreceptor to rod bipolar dendrite.

    PubMed

    Schein, Stan; Ahmad, Kareem M

    2006-11-01

    A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. We suggested that release must be regular to narrow these distributions, reduce overlap, reduce the rate of false positives, and increase transmission efficiency (the fraction of R* events that are identified as light). Unsurprisingly, higher quantal release rates (Q(rates)) yield higher efficiencies. Focusing here on the effect of small changes in Q(rate), we find that a slightly higher Q(rate) yields greatly reduced efficiency, due to a necessarily fixed quantal-count threshold. To stabilize efficiency in the face of drift in Q(rate), the dendrite needs to regulate the biochemical realization of its quantal-count threshold with respect to its Q(count). These considerations reveal the mathematical role of calcium-based negative feedback and suggest a helpful role for spontaneous R*. In addition, to stabilize efficiency in the face of drift in degree of regularity, efficiency should be approximately 50%, similar to measurements.

  20. Photoreceptor Mediated Plant Growth Responses: Implications for Photoreceptor Engineering toward Improved Performance in Crops

    PubMed Central

    Mawphlang, Ophilia I. L.; Kharshiing, Eros V.

    2017-01-01

    Rising temperatures during growing seasons coupled with altered precipitation rates presents a challenging task of improving crop productivity for overcoming such altered weather patterns and cater to a growing population. Light is a critical environmental factor that exerts a powerful influence on plant growth and development ranging from seed germination to flowering and fruiting. Higher plants utilize a suite of complex photoreceptor proteins to perceive surrounding red/far-red (phytochromes), blue/UV-A (cryptochromes, phototropins, ZTL/FKF1/LKP2), and UV-B light (UVR8). While genomic studies have also shown that light induces extensive reprogramming of gene expression patterns in plants, molecular genetic studies have shown that manipulation of one or more photoreceptors can result in modification of agronomically beneficial traits. Such information can assist researchers to engineer photoreceptors via genome editing technologies to alter expression or even sensitivity thresholds of native photoreceptors for targeting aspects of plant growth that can confer superior agronomic value to the engineered crops. Here we summarize the agronomically important plant growth processes influenced by photoreceptors in crop species, alongwith the functional interactions between different photoreceptors and phytohormones in regulating these responses. We also discuss the potential utility of synthetic biology approaches in photobiology for improving agronomically beneficial traits of crop plants by engineering designer photoreceptors. PMID:28744290

  1. Development of rod function in term born and former preterm subjects.

    PubMed

    Fulton, Anne B; Hansen, Ronald M; Moskowitz, Anne

    2009-06-01

    To provide an overview of some of our electroretinographic (ERG) and psychophysical studies of normal development of rod function and their application to retinopathy of prematurity (ROP). ERG responses to full-field stimuli were recorded from dark adapted subjects. Rod photoreceptor sensitivity (SROD) was calculated by fit of a biochemical model of the activation of phototransduction to the ERG a-wave. Dark adapted psychophysical thresholds for detecting 2 degrees spots in parafoveal (10 degrees eccentric) and peripheral (30 degrees eccentric) retina were measured and the difference between the thresholds, Delta10-30, was examined as a function of age. SROD and Delta10-30 in term born and former preterm subjects were compared. In term born infants, (1) the normal developmental increase in SROD changes proportionately with the amount of rod visual pigment, rhodopsin, and (2) rod-mediated function in central retina is immature compared with that in peripheral retina. In subjects born prematurely, deficits in SROD persist long after active ROP has resolved. Maturation of rod-mediated thresholds in the central retina is prolonged by mild ROP. Characterization of the development of normal rod and rod-mediated function provides a foundation for understanding ROP.

  2. Meckelin 3 Is Necessary for Photoreceptor Outer Segment Development in Rat Meckel Syndrome

    PubMed Central

    Tiwari, Sarika; Hudson, Scott; Gattone, Vincent H.; Miller, Caroline; Chernoff, Ellen A. G.; Belecky-Adams, Teri L.

    2013-01-01

    Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes. PMID:23516626

  3. CHARACTERIZING PHOTORECEPTOR CHANGES IN ACUTE POSTERIOR MULTIFOCAL PLACOID PIGMENT EPITHELIOPATHY USING ADAPTIVE OPTICS.

    PubMed

    Roberts, Philipp K; Nesper, Peter L; Onishi, Alex C; Skondra, Dimitra; Jampol, Lee M; Fawzi, Amani A

    2018-01-01

    To characterize lesions of acute posterior multifocal placoid pigment epitheliopathy (APMPPE) by multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO). We included patients with APMPPE at different stages of evolution of the placoid lesions. Color fundus photography, spectral domain optical coherence tomography, infrared reflectance, fundus autofluorescence, and AOSLO images were obtained and registered to correlate microstructural changes. Eight eyes of four patients (two women) were included and analyzed by multimodal imaging. Photoreceptor reflectivity within APMPPE lesions was more heterogeneous than in adjacent healthy areas. Hyperpigmentation on color fundus photography appeared hyperreflective on infrared reflectance and on AOSLO. Irregularity of the interdigitation zone and the photoreceptor inner and outer segment junctions (IS/OS) on spectral domain optical coherence tomography was associated with photoreceptor hyporeflectivity on AOSLO. Interruption of the interdigitation zone or IS/OS was associated with loss of photoreceptor reflectivity on AOSLO. Irregularities in the reflectivity of the photoreceptor mosaic are visible on AOSLO even in inactive APMPPE lesions, where the photoreceptor bands on spectral domain optical coherence tomography have recovered. Adaptive optics scanning laser ophthalmoscopy combined with multimodal imaging has the potential to enhance our understanding of photoreceptor involvement in APMPPE.

  4. ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal.

    PubMed

    Quazi, Faraz; Molday, Robert S

    2014-04-01

    The visual cycle is a series of enzyme-catalyzed reactions which converts all-trans-retinal to 11-cis-retinal for the regeneration of visual pigments in rod and cone photoreceptor cells. Although essential for vision, 11-cis-retinal like all-trans-retinal is highly toxic due to its highly reactive aldehyde group and has to be detoxified by either reduction to retinol or sequestration within retinal-binding proteins. Previous studies have focused on the role of the ATP-binding cassette transporter ABCA4 associated with Stargardt macular degeneration and retinol dehydrogenases (RDH) in the clearance of all-trans-retinal from photoreceptors following photoexcitation. How rod and cone cells prevent the accumulation of 11-cis-retinal in photoreceptor disk membranes in excess of what is required for visual pigment regeneration is not known. Here we show that ABCA4 can transport N-11-cis-retinylidene-phosphatidylethanolamine (PE), the Schiff-base conjugate of 11-cis-retinal and PE, from the lumen to the cytoplasmic leaflet of disk membranes. This transport function together with chemical isomerization to its all-trans isomer and reduction to all-trans-retinol by RDH can prevent the accumulation of excess 11-cis-retinal and its Schiff-base conjugate and the formation of toxic bisretinoid compounds as found in ABCA4-deficient mice and individuals with Stargardt macular degeneration. This segment of the visual cycle in which excess 11-cis-retinal is converted to all-trans-retinol provides a rationale for the unusually high content of PE and its long-chain unsaturated docosahexaenoyl group in photoreceptor membranes and adds insight into the molecular mechanisms responsible for Stargardt macular degeneration.

  5. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics

    PubMed Central

    Cideciyan, Artur V.; Aleman, Tomas S.; Boye, Sanford L.; Schwartz, Sharon B.; Kaushal, Shalesh; Roman, Alejandro J.; Pang, Ji-jing; Sumaroka, Alexander; Windsor, Elizabeth A. M.; Wilson, James M.; Flotte, Terence R.; Fishman, Gerald A.; Heon, Elise; Stone, Edwin M.; Byrne, Barry J.; Jacobson, Samuel G.; Hauswirth, William W.

    2008-01-01

    The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with <1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate dramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy. PMID:18809924

  6. Histopathology and Functional Correlations in a Patient with a Mutation in RPE65, the Gene for Retinol Isomerase

    PubMed Central

    Rayborn, Mary E.; Li, Yong; Grossman, Gregory H.; Berson, Eliot L.; Hollyfield, Joe G.

    2011-01-01

    Purpose. Here the authors describe the structural features of the retina and retinal pigment epithelium (RPE) in postmortem donor eyes of a 56-year-old patient with a homozygous missense RPE65 mutation (Ala132Thr) and correlate the pathology with the patient's visual function last measured at age 51. Methods. Eyes were enucleated within 13.5 hours after death. Representative areas from the macula and periphery were processed for light and electron microscopy. Immunofluorescence was used to localize the distribution of RPE65, rhodopsin, and cone arrestin. The autofluorescence in the RPE was compared with that of two normal eyes from age-similar donors. Results. Histologic examination revealed the loss of rods and cones across most areas of the retina, attenuated retinal vessels, and RPE thinning in both eyes. A small number of highly disorganized cones were present in the macula that showed simultaneous labeling with cone arrestin and red/green or blue opsin. RPE65 immunoreactivity and RPE autofluorescence were reduced compared with control eyes in all areas studied. Rhodopsin labeling was observed in rods in the far periphery. The optic nerve showed a reduced number of axons. Conclusions. The clinical findings of reduced visual acuity, constricted fields, and reduced electroretinograms (ERGs) 5 years before death correlated with the small number of cones present in the macula and the extensive loss of photoreceptors in the periphery. The absence of autofluorescence in the RPE suggests that photoreceptor cells were probably missing across the retina for extended periods of time. Possible mechanisms that could lead to photoreceptor cell death are discussed. PMID:21931134

  7. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Corton, M.; Avila-Fernández, A.; Campello, L.; Sánchez, M.; Benavides, B.; López-Molina, M. I.; Fernández-Sánchez, L.; Sánchez-Alcudia, R.; da Silva, L. R. J.; Reyes, N.; Martín-Garrido, E.; Zurita, O.; Fernández-San José, P.; Pérez-Carro, R.; García-García, F.; Dopazo, J.; García-Sandoval, B.; Cuenca, N.; Ayuso, C.

    2016-01-01

    Retinitis pigmentosa (RP), the most frequent form of inherited retinal dystrophy is characterized by progressive photoreceptor degeneration. Many genes have been implicated in RP development, but several others remain to be identified. Using a combination of homozygosity mapping, whole-exome and targeted next-generation sequencing, we found a novel homozygous nonsense mutation in SAMD11 in five individuals diagnosed with adult-onset RP from two unrelated consanguineous Spanish families. SAMD11 is ortholog to the mouse major retinal SAM domain (mr-s) protein that is implicated in CRX-mediated transcriptional regulation in the retina. Accordingly, protein-protein network analysis revealed a significant interaction of SAMD11 with CRX. Immunoblotting analysis confirmed strong expression of SAMD11 in human retina. Immunolocalization studies revealed SAMD11 was detected in the three nuclear layers of the human retina and interestingly differential expression between cone and rod photoreceptors was observed. Our study strongly implicates SAMD11 as novel cause of RP playing an important role in the pathogenesis of human degeneration of photoreceptors. PMID:27734943

  8. Characterization of photoreceptor degeneration in the rhodopsin P23H transgenic rat line 2 using optical coherence tomography.

    PubMed

    Monai, Natsuki; Yamauchi, Kodai; Tanabu, Reiko; Gonome, Takayuki; Ishiguro, Sei-Ichi; Nakazawa, Mitsuru

    2018-01-01

    To characterize the optical coherence tomography (OCT) appearances of photoreceptor degeneration in the rhodopsin P23H transgenic rat (line 2) in relation to the histological, ultrastructural, and electroretinography (ERG) findings. Homozygous rhodopsin P23H transgenic albino rats (line 2, very-slow degeneration model) were employed. Using OCT (Micron IV®; Phoenix Research Labs, Pleasanton, CA, USA), the natural course of photoreceptor degeneration was recorded from postnatal day (P) 15 to P 287. The OCT images were qualitatively observed by comparing them to histological and ultrastructural findings at P 62 and P 169. In addition, each retinal layer was quantitatively analyzed longitudinally during degeneration, compared it to that observed in wild type Sprague-Dawley (SD) rats. The relationships between the ERG (full-field combined rod-cone response, 3.0 cds/m2 stimulation) findings and OCT images were also analyzed. In the qualitative study, the two layers presumably corresponding to the photoreceptor inner segment ellipsoid zone (EZ) and interdigitation zone (IZ) were identified in the P23H rat until PN day 32. However, the photoreceptor inner and outer segment (IS/OS) layer became diffusely hyperreflective on OCT after P 46, and the EZ and IZ zones could no longer be identified on OCT. In contrast, in the SD rats, the EZ and IZ were clearly distinguished until at least P 247. The ultrastructural study showed partial disarrangements of the photoreceptor outer segment discs in the P23H rats at P 62, although a light-microscopic histological study detected almost no abnormality in the outer segment. In the quantitative study, the outer retinal layer including the outer plexiform layer (OPL) and the outer nuclear layer (ONL) became significantly thinner in the P23H rats than in the SD rats after P 71. The thickness of the IS/OS layer was maintained in the P23H rats until P 130, and it became statistically thinner than in the SD rats at P 237. The longitudinal

  9. Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration

    PubMed Central

    Wang, Xu; Ma, Wenxin; Gonzalez, Shaimar R.; Kretschmer, Friedrich; Badea, Tudor C.

    2017-01-01

    Photoreceptor degeneration is a cause of irreversible vision loss in incurable blinding retinal diseases including retinitis pigmentosa (RP) and atrophic age-related macular degeneration. We found in two separate mouse models of photoreceptor degeneration that tamoxifen, a selective estrogen receptor modulator and a drug previously linked with retinal toxicity, paradoxically provided potent neuroprotective effects. In a light-induced degeneration model, tamoxifen prevented onset of photoreceptor apoptosis and atrophy and maintained near-normal levels of electroretinographic responses. Rescue effects were correlated with decreased microglial activation and inflammatory cytokine production in the retina in vivo and a reduction of microglia-mediated toxicity to photoreceptors in vitro, indicating a microglia-mediated mechanism of rescue. Tamoxifen also rescued degeneration in a genetic (Pde6brd10) model of RP, significantly improving retinal structure, electrophysiological responses, and visual behavior. These prominent neuroprotective effects warrant the consideration of tamoxifen as a drug suitable for being repurposed to treat photoreceptor degenerative disease. SIGNIFICANCE STATEMENT Photoreceptor degeneration is a cause of irreversible blindness in a number of retinal diseases such as retinitis pigmentosa (RP) and atrophic age-related macular degeneration. Tamoxifen, a selective estrogen receptor modulator approved for the treatment of breast cancer and previously linked to a low incidence of retinal toxicity, was unexpectedly found to exert marked protective effects against photoreceptor degeneration. Structural and functional protective effects were found for an acute model of light-induced photoreceptor injury and for a genetic model for RP. The mechanism of protection involved the modulation of microglial activation and the production of inflammatory cytokines, highlighting the role of inflammatory mechanisms in photoreceptor degeneration. Tamoxifen may be

  10. Environmental Enrichment Extends Photoreceptor Survival and Visual Function in a Mouse Model of Retinitis Pigmentosa

    PubMed Central

    Barone, Ilaria; Novelli, Elena; Piano, Ilaria; Gargini, Claudia; Strettoi, Enrica

    2012-01-01

    Slow, progressive rod degeneration followed by cone death leading to blindness is the pathological signature of all forms of human retinitis pigmentosa (RP). Therapeutic schemes based on intraocular delivery of neuroprotective agents prolong the lifetime of photoreceptors and have reached the stage of clinical trial. The success of these approaches depends upon optimization of chronic supply and appropriate combination of factors. Environmental enrichment (EE), a novel neuroprotective strategy based on enhanced motor, sensory and social stimulation, has already been shown to exert beneficial effects in animal models of various disorders of the CNS, including Alzheimer and Huntington disease. Here we report the results of prolonged exposure of rd10 mice, a mutant strain undergoing progressive photoreceptor degeneration mimicking human RP, to such an enriched environment from birth. By means of microscopy of retinal tissue, electrophysiological recordings, visual behaviour assessment and molecular analysis, we show that EE considerably preserves retinal morphology and physiology as well as visual perception over time in rd10 mutant mice. We find that protective effects of EE are accompanied by increased expression of retinal mRNAs for CNTF and mTOR, both factors known as instrumental to photoreceptor survival. Compared to other rescue approaches used in similar animal models, EE is highly effective, minimally invasive and results into a long-lasting retinal protection. These results open novel perspectives of research pointing to environmental strategies as useful tools to extend photoreceptor survival. PMID:23209820

  11. Not just signal shutoff: the protective role of arrestin-1 in rod cells.

    PubMed

    Sommer, Martha E; Hofmann, Klaus Peter; Heck, Martin

    2014-01-01

    The retinal rod cell is an exquisitely sensitive single-photon detector that primarily functions in dim light (e.g., moonlight). However, rod cells must routinely survive light intensities more than a billion times greater (e.g., bright daylight). One serious challenge to rod cell survival in daylight is the massive amount of all-trans-retinal that is released by Meta II, the light-activated form of the photoreceptor rhodopsin. All-trans-retinal is toxic, and its condensation products have been implicated in disease. Our recent work has developed the concept that rod arrestin (arrestin-1), which terminates Meta II signaling, has an additional role in protecting rod cells from the consequences of bright light by limiting free all-trans-retinal. In this chapter we will elaborate upon the molecular mechanisms by which arrestin-1 serves as both a single-photon response quencher as well as an instrument of rod cell survival in bright light. This discussion will take place within the framework of three distinct functional modules of vision: signal transduction, the retinoid cycle, and protein translocation.

  12. THE STRUCTURE AND CONCENTRATION OF SOLIDS IN PHOTORECEPTOR CELLS STUDIED BY REFRACTOMETRY AND INTERFERENCE MICROSCOPY

    PubMed Central

    Sidman, Richard L.

    1957-01-01

    Fragments of freshly obtained retinas of several vertebrate species were studied by refractometry, with reference to the structure of the rods and cones. The findings allowed a reassessment of previous descriptions based mainly on fixed material. The refractometric method was used also to measure the refractice indices and to calculate the concentrations of solids and water in the various cell segments. The main quantitative data were confirmed by interference microscopy. When examined by the method of refractometry the outer segments of freshly prepared retinal rods appear homogeneous. Within a few minutes a single eccentric longitudinal fiber appears, and transverse striations may develop. These changes are attributed to imbibition of water and swelling in structures normally too small for detection by light microscopy. The central "core" of outer segments and the chromophobic disc between outer and inner segments appear to be artifacts resulting from shrinkage during dehydration. The fresh outer segments of cones, and the inner segments of rods and cones also are described and illustrated. The volumes, refractive indices, concentrations of solids, and wet and dry weights of various segments of the photoreceptor cells were tabulated. Rod outer segments of the different species vary more than 100-fold in volume and mass but all have concentrations of solids of 40 to 43 per cent. Cone outer segments contain only about 30 per cent solids. The myoids, paraboloids, and ellipsoids of the inner segments likewise have characteristic refractive indices and concentrations of solids. Some of the limitations and particular virtues of refractometry as a method for quantitative analysis of living cells are discussed in comparison with more conventional biochemical techniques. Also the shapes and refractive indices of the various segments of photoreceptor cells are considered in relation to the absorption and transmission of light. The Stiles-Crawford effect can be accounted

  13. Clearance of Apoptotic Photoreceptors

    PubMed Central

    Hisatomi, Toshio; Sakamoto, Taiji; Sonoda, Koh-hei; Tsutsumi, Chikako; Qiao, Hong; Enaida, Hiroshi; Yamanaka, Ichiro; Kubota, Toshiaki; Ishibashi, Tatsuro; Kura, Shinobu; Susin, Santos A.; Kroemer, Guido

    2003-01-01

    The effective phagocytotic clearance of apoptotic debris is fundamental to the maintenance of neural tissues during apoptosis. Retinal photoreceptors undergo apoptosis after retinal detachment. Although their induction phase of apoptosis has been well discussed, their phagocytotic process remains quite unclear. We herein demonstrate that apoptotic photoreceptors are selectively eliminated from their physiological localization, the outer nuclear layer, to the subretinal space, and then phagocytosed by monocyte-derived macrophages. This could be shown by an ultrastructural and immunophenotypic analysis. Moreover, in chimera mice expressing transgenic green fluorescent protein in bone marrow-derived cells, the local infiltration of macrophages could be detected after retinal detachment-induced photoreceptor apoptosis. The local injection of an antibody blocking the phosphatidylserine receptor (PSR) or a peptide (GRGDSP)-blocking integrin αvβ3 revealed that phagocytotic clearance involves the PSR as well as integrin αvβ3 in vivo. Importantly, the level of blockade obtained with these reagents was different. Although anti-PSR increased the frequency of apoptotic cells that fail to bind to macrophages, GRGDSP prevented the engulfment (but not the recognition) of apoptotic photoreceptor cells by macrophages. To our knowledge, this is the first report describing the mechanisms through which apoptotic photoreceptors are selectively eliminated via a directional process in the subretinal space. PMID:12759244

  14. Fine structure of the retinal photoreceptors of the great horned owl (Bubo virginianus).

    PubMed

    Braekevelt, C R

    1993-01-01

    The retinal photoreceptors of the great horned owl (Bubo virginianus) consist of rods, single cones and unequal double cones present in a ratio of about 30:1.2. In the light-adapted state the rods are stout cells which are not felt to undergo retinomotor movements. The rod outer segment consists of a stack of scalloped membranous discs enclosed by the cell membrane. The rod inner segment shows an ellipsoid of mitochondria and a wealth of rough endoplasmic reticulum (RER) and polysomes, Golgi zones and autophagic vacuoles but not hyperboloid of glycogen. Single cones show a slightly tapered outer segment, a heterogenous oil droplet and an ellipsoid of mitochondria at the apex of the inner segment. Double cones consist of a larger chief member which also displays an oil droplet and a slightly smaller accessory member which does not. Both members of the double cone as well as the single cone show a prominent ellipsoid, plentiful polysomes and RER and Golgi zones in the inner segment. Neither single nor double cones possess a condensed paraboloid of glycogen but instead show plentiful scattered glycogen particles. Along the contiguous membranes between accessory and chief cones a few presumed junctional complexes are seen near the external limiting membrane. Judging by their morphology in light-adaptation the cones of this species do not undergo photomechanical movements. Rods and cones (both types) have both invaginated (ribbon) and numerous superficial (conventional) synaptic sites. Rods are more numerous in this nocturnally active bird than is usually noted in avian species.

  15. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors

    PubMed Central

    Pearson, R. A.; Gonzalez-Cordero, A.; West, E. L.; Ribeiro, J. R.; Aghaizu, N.; Goh, D.; Sampson, R. D.; Georgiadis, A.; Waldron, P. V.; Duran, Y.; Naeem, A.; Kloc, M.; Cristante, E.; Kruczek, K.; Warre-Cornish, K.; Sowden, J. C.; Smith, A. J.; Ali, R. R.

    2016-01-01

    Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. PMID:27701378

  16. The signal transducing photoreceptors of plants.

    PubMed

    Franklin, Keara A; Larner, Victoria S; Whitelam, Garry C

    2005-01-01

    Light signals are amongst the most important environmental cues regulating plant development. In addition to light quantity, plants measure the quality, direction and periodicity of incident light and use the information to optimise growth and development to the prevailing environmental conditions. Red and far-red wavelengths are perceived by the photoreversible phytochrome family of photoreceptors, whilst the detection of blue and ultraviolet (UV)-A wavelengths is conferred by the cryptochromes and phototropins. Higher plants contain multiple discrete phytochromes, the apoproteins of which are encoded by a small divergent gene family. In Arabidopsis, two cryptochrome and two phototropin family members have been identified and characterized. Photoreceptor action regulates development throughout the lifecycle of plants, from seed germination through to architecture of the mature plant and the onset of reproduction. The roles of individual photoreceptors in mediating plant development have, however, often been confounded by redundant, synergistic and in some cases mutually antagonistic mechanisms of action. The isolation of mutants null for individual photoreceptors and the construction of mutants null for multiple photoreceptors have therefore been paramount in elucidating photoreceptor functions. Photoreceptor action does not, however, operate in isolation from other signalling systems. The integration of light signals with other environmental cues enables plants to adapt their physiology to changing seasonal environments. This paper summarises current understanding of photoreceptor families and their functions throughout the lifecycle of plants. The integration of light signals with other environmental stimuli is also discussed.

  17. Extra-mitochondrial aerobic metabolism in retinal rod outer segments: new perspectives in retinopathies.

    PubMed

    Panfoli, I; Calzia, D; Ravera, S; Morelli, A M; Traverso, C E

    2012-04-01

    Vertebrate retinal rods are photoreceptors for dim-light vision. They display extreme sensitivity to light thanks to a specialized subcellular organelle, the rod outer segment. This is filled with a stack of membranous disks, expressing the proteins involved in visual transduction, a very energy demanding process. Our previous proteomic and biochemical studies have shed new light on the chemical energy processes that supply ATP to the outer segment, suggesting the presence of an extra-mitochondrial aerobic metabolism in rod outer segment, devoid of mitochondria, which would account for a quantitatively adequate ATP supply for phototransduction. Here the functional presence of an oxidative phosphorylation in the rod outer limb is examined for its relationship to many physiological and pathological data on the rod outer segment. We hypothesize that the rod outer limb is at risk of oxidative stress, in any case of impairment in the respiratory chain functioning, or of blood supply. In fact, the electron transfer chain is a major source of reactive O(2) species, known to produce severe alteration to the membrane lipids, especially those of the outer segment that are rich in polyunsaturated fatty acids. We propose that the disk membrane may become the target of reactive oxygen species that may be released by the electron transport chain under pathologic conditions. For example, during aging reactive oxygen species production increases, while cellular antioxidant capacity decreases. Also the apoptosis of the rod observed after exposure to bright or continuous illumination can be explained considering that an overfunctioning of phototransduction may damage the disk membrane to a point at which cytochrome c escapes from the intradiskal space, where it is presently supposed to be, activating a putative caspase 9 and the apoptosome. A pathogenic mechanism for many inherited and acquired retinal degenerations, representing a major problem in clinical ophthalmology, is

  18. Light-Dependent Redistribution of Arrestin in Vertebrate Rods Is an Energy-Independent Process Governed by Protein-Protein Interactions

    PubMed Central

    Nair, K. Saidas; Hanson, Susan M.; Mendez, Ana; Gurevich, Eugenia V.; Kennedy, Matthew J.; Shestopalov, Valery I.; Vishnivetskiy, Sergey A.; Chen, Jeannie; Hurley, James B.; Gurevich, Vsevolod V.; Slepak, Vladlen Z.

    2009-01-01

    Summary In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion. PMID:15944125

  19. Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors

    PubMed Central

    2010-01-01

    The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment's effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl− from the pigment's anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation. PMID:20231373

  20. The TRPM1 Channel Is Required for Development of the Rod ON Bipolar Cell-AII Amacrine Cell Pathway in the Retinal Circuit.

    PubMed

    Kozuka, Takashi; Chaya, Taro; Tamalu, Fuminobu; Shimada, Mariko; Fujimaki-Aoba, Kayo; Kuwahara, Ryusuke; Watanabe, Shu-Ichi; Furukawa, Takahisa

    2017-10-11

    Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1 -/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development. SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate

  1. Targeted Ablation of the Pde6h Gene in Mice Reveals Cross-species Differences in Cone and Rod Phototransduction Protein Isoform Inventory*

    PubMed Central

    Brennenstuhl, Christina; Tanimoto, Naoyuki; Burkard, Markus; Wagner, Rebecca; Bolz, Sylvia; Trifunovic, Dragana; Kabagema-Bilan, Clement; Paquet-Durand, Francois; Beck, Susanne C.; Huber, Gesine; Seeliger, Mathias W.; Ruth, Peter; Wissinger, Bernd; Lukowski, Robert

    2015-01-01

    Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3′,5′-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h−/−) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h−/− retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h−/− mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system. PMID:25739440

  2. Photoreceptor dysplasia (pd) in miniature schnauzer dogs: evaluation of candidate genes by molecular genetic analysis.

    PubMed

    Zhang, Q; Baldwin, V J; Acland, G M; Parshall, C J; Haskel, J; Aguirre, G D; Ray, K

    1999-01-01

    Photoreceptor dysplasia (pd) is one of a group of at least six distinct autosomal and one X-linked retinal disorders identified in dogs which are collectively known as progressive retinal atrophy (PRA). It is an early onset retinal disease identified in miniature schnauzer dogs, and pedigree analysis and breeding studies have established autosomal recessive inheritance of the disease. Using a gene-based approach, a number of retina-expressed genes, including some members of the phototransduction pathway, have been causally implicated in retinal diseases of humans and other animals. Here we examined seven such potential candidate genes (opsin, RDS/peripherin, ROM1, rod cGMP-gated cation channel alpha-subunit, and three subunits of transducin) for their causal association with the pd locus by testing segregation of intragenic markers with the disease locus, or, in the absence of informative polymorphisms, sequencing of the coding regions of the genes. Based on these results, we have conclusively excluded four photoreceptor-specific genes as candidates for pd by linkage analysis. For three other photoreceptor-specific genes, we did not find any mutation in the coding sequences of the genes and have excluded them provisionally. Formal exclusion would require investigation of the levels of expression of the candidate genes in pd-affected dogs relative to age-matched controls. At present we are building suitable informative pedigrees for the disease locus with a sufficient number of meiosis to be useful for genomewide screening. This should identify markers linked to the disease locus and eventually permit progress toward the identification of the photoreceptor dysplasia gene and the disease-causing mutation.

  3. Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in rd11 mice

    PubMed Central

    Friedman, James S.; Chang, Bo; Krauth, Daniel S.; Lopez, Irma; Waseem, Naushin H.; Hurd, Ron E.; Feathers, Kecia L.; Branham, Kari E.; Shaw, Manessa; Thomas, George E.; Brooks, Matthew J.; Liu, Chunqiao; Bakeri, Hirva A.; Campos, Maria M.; Maubaret, Cecilia; Webster, Andrew R.; Rodriguez, Ignacio R.; Thompson, Debra A.; Bhattacharya, Shomi S.; Koenekoop, Robert K.; Heckenlively, John R.; Swaroop, Anand

    2010-01-01

    Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420–421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14–20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis. PMID:20713727

  4. Rod phototransduction determines the trade-off of temporal integration and speed of vision in dark-adapted toads.

    PubMed

    Haldin, Charlotte; Nymark, Soile; Aho, Ann-Christine; Koskelainen, Ari; Donner, Kristian

    2009-05-06

    Human vision is approximately 10 times less sensitive than toad vision on a cool night. Here, we investigate (1) how far differences in the capacity for temporal integration underlie such differences in sensitivity and (2) whether the response kinetics of the rod photoreceptors can explain temporal integration at the behavioral level. The toad was studied as a model that allows experimentation at different body temperatures. Sensitivity, integration time, and temporal accuracy of vision were measured psychophysically by recording snapping at worm dummies moving at different velocities. Rod photoresponses were studied by ERG recording across the isolated retina. In both types of experiments, the general timescale of vision was varied by using two temperatures, 15 and 25 degrees C. Behavioral integration times were 4.3 s at 15 degrees C and 0.9 s at 25 degrees C, and rod integration times were 4.2-4.3 s at 15 degrees C and 1.0-1.3 s at 25 degrees C. Maximal behavioral sensitivity was fivefold lower at 25 degrees C than at 15 degrees C, which can be accounted for by inability of the "warm" toads to integrate light over longer times than the rods. However, the long integration time at 15 degrees C, allowing high sensitivity, degraded the accuracy of snapping toward quickly moving worms. We conclude that temporal integration explains a considerable part of all variation in absolute visual sensitivity. The strong correlation between rods and behavior suggests that the integration time of dark-adapted vision is set by rod phototransduction at the input to the visual system. This implies that there is an inexorable trade-off between temporal integration and resolution.

  5. Fundus Autofluorescence and Photoreceptor Cell Rosettes in Mouse Models

    PubMed Central

    Flynn, Erin; Ueda, Keiko; Auran, Emily; Sullivan, Jack M.; Sparrow, Janet R.

    2014-01-01

    Purpose. This study was conducted to study correlations among fundus autofluorescence (AF), RPE lipofuscin accumulation, and photoreceptor cell degeneration and to investigate the structural basis of fundus AF spots. Methods. Fundus AF images (55° lens; 488-nm excitation) and spectral-domain optical coherence tomography (SD-OCT) scans were acquired in pigmented Rdh8−/−/Abca4−/− mice (ages 1–9 months) with a confocal scanning laser ophthalmoscope (cSLO). For quantitative fundus AF (qAF), gray levels (GLs) were calibrated to an internal fluorescence reference. Retinal bisretinoids were measured by quantitative HPLC. Histometric analysis of outer nuclear layer (ONL) thicknesses was performed, and cryostat sections of retina were examined by fluorescence microscopy. Results. Quantified A2E and qAF intensities increased until age 4 months in the Rdh8−/−/Abca4−/− mice. The A2E levels declined after 4 months of age, but qAF intensity values continued to rise. The decline in A2E levels in the Rdh8−/−/Abca4−/− mice paralleled reduced photoreceptor cell viability as reflected in ONL thinning. Hyperautofluorescent puncta in fundus AF images corresponded to photoreceptor cell rosettes in SD-OCT images and histological sections stained with hematoxylin and eosin. The inner segment/outer segment–containing core of the rosette emitted an autofluorescence detected by fluorescence microscopy. Conclusions. When neural retina is disordered, AF from photoreceptor cells can contribute to noninvasive fundus AF images. Hyperautofluorescent puncta in fundus AF images are attributable, in at least some cases, to photoreceptor cell rosettes. PMID:25015357

  6. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses

    PubMed Central

    Johnson, Jerry E.; Perkins, Guy A.; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D.; Brown, Joshua M.; Waggoner, Jenna; Ellisman, Mark H.

    2007-01-01

    Purpose In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Methods Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Results Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes

  7. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.

    PubMed

    Johnson, Jerry E; Perkins, Guy A; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D; Brown, Joshua M; Waggoner, Jenna; Ellisman, Mark H; Fox, Donald A

    2007-06-15

    In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely

  8. Fly Photoreceptors Encode Phase Congruency

    PubMed Central

    Friederich, Uwe; Billings, Stephen A.; Hardie, Roger C.; Juusola, Mikko; Coca, Daniel

    2016-01-01

    More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli. PMID:27336733

  9. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.

    PubMed

    Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi

    2015-04-01

    The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Dynamical Adaptation in Photoreceptors

    PubMed Central

    Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava

    2013-01-01

    Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119

  11. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  12. Speed, spatial, and temporal tuning of rod and cone vision in mouse.

    PubMed

    Umino, Yumiko; Solessio, Eduardo; Barlow, Robert B

    2008-01-02

    Rods and cones subserve mouse vision over a 100 million-fold range of light intensity (-6 to 2 log cd m(-2)). Rod pathways tune vision to the temporal frequency of stimuli (peak, 0.75 Hz) and cone pathways to their speed (peak, approximately 12 degrees/s). Both pathways tune vision to the spatial components of stimuli (0.064-0.128 cycles/degree). The specific photoreceptor contributions were determined by two-alternative, forced-choice measures of contrast thresholds for optomotor responses of C57BL/6J mice with normal vision, Gnat2(cpfl3) mice without functional cones, and Gnat1-/- mice without functional rods. Gnat2(cpfl3) mice (threshold, -6.0 log cd m(-2)) cannot see rotating gratings above -2.0 log cd m(-2) (photopic vision), and Gnat1-/- mice (threshold, -4.0 log cd m(-2)) are blind below -4.0 log cd m(-2) (scotopic vision). Both genotypes can see in the transitional mesopic range (-4.0 to -2.0 log cd m(-2)). Mouse rod and cone sensitivities are similar to those of human. This parametric study characterizes the functional properties of the mouse visual system, revealing the rod and cone contributions to contrast sensitivity and to the temporal processing of visual stimuli.

  13. The contribution of cationic conductances to the potential of rod photoreceptors.

    PubMed

    Moriondo, Andrea; Rispoli, Giorgio

    2010-05-01

    The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V (h)) was -40 mV (i.e. corresponding to the membrane potential in the dark). At V (h) = -60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V (h) at the stimulus offset. Current steps >40 pA produced a steady depolarisation to approximately -16 mV at both V (h). The difference between the responses at the two V (h) was primarily generated by the slow delayed-rectifier-like K(+) current (I (Kx)), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V (h) in response to large current injections was instead generated by Ca-activated K(+) channels (I (KCa)), as previously found. Both I (Kx) and I (KCa) oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca(2+) channels (I (Ca)). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I (h)) and I (Ca). Blockade of all K(+) currents with external TEA unmasked a I (Ca)-dependent regenerative behaviour.

  14. Quantification of photoreceptor layer thickness in different macular pathologies using ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Drexler, Wolfgang; Hermann, Boris; Unterhuber, Angelika; Sattmann, Harald; Wirtitsch, Matthias; Stur, Michael; Scholda, Christoph; Ergun, Erdem; Anger, Elisabeth; Ko, Tony H.; Schubert, Christian; Ahnelt, Peter K.; Fujimoto, James G.; Fercher, Adolf F.

    2004-07-01

    In vivo ultrahigh resolution ophthalmic OCT has been performed in more than 300 eyes of 200 patients with several retinal pathologies, demonstrating unprecedented visualization of all major intraretinal layers, in particular the photoreceptor layer. Visualization as well as quantification of the inner and outer segment of the photoreceptor layer especially in the foveal region has been acvhieved. In normal subjects the photoreceptor layer thickness in the center of the fovea is about of 90 μm, approximately equally distributed to the inner and the outer photoreceptor segment. In the parafoveal region this thickness is reduced to ~50 μm (~30 μm for the inner and ~20 μm for the outer segment). This is in good agreement with well known increase of cone outer segments in the central foveal region. Photoreceptor layer impairment in different macular pathologies like macular hole, central serous chorioretinopathy, age related macular degeneration, foveomacular dystrophies, Stargardt dystrophy as well as retinitis pigmentosa has been investigated. Photoreceptor layer loss significantly correlated with visual acuity (R2 = 0.6, p < 0.001) and microperimetry findings for the first time in 22 eyes with Stargardt dystrophy. Visualization and quantification of photoreceptor inner and outer segment using ultrahigh resolution OCT has the potential to improve early ophthalmic diagnosis, contributes to a better understanding of pathogenesis of retinal diseases as well as might have impact in the development and monitoring of novel therapy approaches.

  15. Aerobic Glycolysis Is Essential for Normal Rod Function and Controls Secondary Cone Death in Retinitis Pigmentosa.

    PubMed

    Petit, Lolita; Ma, Shan; Cipi, Joris; Cheng, Shun-Yun; Zieger, Marina; Hay, Nissim; Punzo, Claudio

    2018-05-29

    Aerobic glycolysis accounts for ∼80%-90% of glucose used by adult photoreceptors (PRs); yet, the importance of aerobic glycolysis for PR function or survival remains unclear. Here, we further established the role of aerobic glycolysis in murine rod and cone PRs. We show that loss of hexokinase-2 (HK2), a key aerobic glycolysis enzyme, does not affect PR survival or structure but is required for normal rod function. Rods with HK2 loss increase their mitochondrial number, suggesting an adaptation to the inhibition of aerobic glycolysis. In contrast, cones adapt without increased mitochondrial number but require HK2 to adapt to metabolic stress conditions such as those encountered in retinitis pigmentosa, where the loss of rods causes a nutrient shortage in cones. The data support a model where aerobic glycolysis in PRs is not a necessity but rather a metabolic choice that maximizes PR function and adaptability to nutrient stress conditions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Store-operated channels regulate intracellular calcium in mammalian rods

    PubMed Central

    Molnar, Tünde; Barabas, Peter; Birnbaumer, Lutz; Punzo, Claudio; Kefalov, Vladimir; Križaj, David

    2012-01-01

    Exposure to daylight closes cyclic nucleotide-gated (CNG) and voltage-operated Ca2+-permeable channels in mammalian rods. The consequent lowering of the cytosolic calcium concentration ([Ca2+]i), if protracted, can contribute to light-induced damage and apoptosis in these cells. We here report that mouse rods are protected against prolonged lowering of [Ca2+]i by store-operated Ca2+ entry (SOCE). Ca2+ stores were depleted in Ca2+-free saline supplemented with the endoplasmic reticulum (ER) sequestration blocker cyclopiazonic acid. Store depletion elicited [Ca2+]i signals that exceeded baseline [Ca2+]i by 5.9 ± 0.7-fold and were antagonized by an inhibitory cocktail containing 2-APB, SKF 96365 and Gd3+. Cation influx through SOCE channels was sufficient to elicit a secondary activation of L-type voltage-operated Ca2+ entry. We also found that TRPC1, the type 1 canonical mammalian homologue of the Drosophila photoreceptor TRP channel, is predominantly expressed within the outer nuclear layer of the retina. Rod loss in Pde6brd1 (rd1), Chx10/Kip1−/−rd1 and Elovl4TG2 dystrophic models was associated with ∼70% reduction in Trpc1 mRNA content whereas Trpc1 mRNA levels in rodless cone-full Nrl−/− retinas were decreased by ∼50%. Genetic ablation of TRPC1 channels, however, had no effect on SOCE, the sensitivity of the rod phototransduction cascade or synaptic transmission at rod and cone synapses. Thus, we localized two new mechanisms, SOCE and TRPC1, to mammalian rods and characterized the contribution of SOCE to Ca2+ homeostasis. By preventing the cytosolic [Ca2+]i from dropping too low under sustained saturating light conditions, these signalling pathways may protect Ca2+-dependent mechanisms within the ER and the cytosol without affecting normal rod function. PMID:22674725

  17. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity*

    PubMed Central

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K.; Makino, Clint L.

    2015-01-01

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca2+]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mm for ROS-GC1 and 39 mm for ROS-GC2. The effect required neither Ca2+ nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca2+]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. PMID:25767116

  18. Homeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats

    PubMed Central

    Hou, Baoke; Fu, Yan; Weng, Chuanhuang; Liu, Weiping; Zhao, Congjian; Yin, Zheng Qin

    2017-01-01

    Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ERG recording in the retinae of control and retinal degenerative dystrophic RCS rats. We found that in the control animals, rod-cone gap junction coupling was regulated by the circadian clock via the modulation of the phosphorylation of the melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT). However, in dystrophic RCS rats, AANAT was constitutively phosphorylated, causing rod-cone gap junctions to remain open. A further b/a-wave ratio analysis revealed that dystrophic RCS rats had stronger synaptic strength between photoreceptors and bipolar cells, possibly because rod-cone gap junctions remained open. This was despite the fact that a decrease was observed in the amplitude of both a- and b-waves as a result of the progressive loss of rods during early degenerative stages. These results suggest that electric synaptic strength is increased during the day to allow cone signals to pass to the remaining rods and to be propagated to rod bipolar cells, thereby partially compensating for the weak visual input caused by the loss of rods. PMID:28473754

  19. The dual rod system of amphibians supports colour discrimination at the absolute visual threshold

    PubMed Central

    Yovanovich, Carola A. M.; Koskela, Sanna M.; Nevala, Noora; Kondrashev, Sergei L.

    2017-01-01

    The presence of two spectrally different kinds of rod photoreceptors in amphibians has been hypothesized to enable purely rod-based colour vision at very low light levels. The hypothesis has never been properly tested, so we performed three behavioural experiments at different light intensities with toads (Bufo) and frogs (Rana) to determine the thresholds for colour discrimination. The thresholds of toads were different in mate choice and prey-catching tasks, suggesting that the differential sensitivities of different spectral cone types as well as task-specific factors set limits for the use of colour in these behavioural contexts. In neither task was there any indication of rod-based colour discrimination. By contrast, frogs performing phototactic jumping were able to distinguish blue from green light down to the absolute visual threshold, where vision relies only on rod signals. The remarkable sensitivity of this mechanism comparing signals from the two spectrally different rod types approaches theoretical limits set by photon fluctuations and intrinsic noise. Together, the results indicate that different pathways are involved in processing colour cues depending on the ecological relevance of this information for each task. This article is part of the themed issue ‘Vision in dim light’. PMID:28193811

  20. Group III metabotropic glutamate receptors and exocytosed protons inhibit L-type calcium currents in cones but not in rods.

    PubMed

    Hosoi, Nobutake; Arai, Itaru; Tachibana, Masao

    2005-04-20

    Light responses of photoreceptors (rods and cones) are transmitted to the second-order neurons (bipolar cells and horizontal cells) via glutamatergic synapses located in the outer plexiform layer of the retina. Although it has been well established that postsynaptic group III metabotropic glutamate receptors (mGluRs) of ON bipolar cells contribute to generating the ON signal, presynaptic roles of group III mGluRs remain to be elucidated at this synaptic connection. We addressed this issue by applying the slice patch-clamp technique to the newt retina. OFF bipolar cells and horizontal cells generate a steady inward current in the dark and a transient inward current at light offset, both of which are mediated via postsynaptic non-NMDA receptors. A group III mGluR-specific agonist, L-2-amino-4-phosphonobutyric acid (L-AP-4), inhibited both the steady and off-transient inward currents but did not affect the glutamate-induced current in these postsynaptic neurons. L-AP-4 inhibited the presynaptic L-type calcium current (ICa) in cones by shifting the voltage dependence of activation to more positive membrane potentials. The inhibition of ICa was most prominent around the physiological range of cone membrane potentials. In contrast, L-AP-4 did not affect L-type ICa in rods. Paired recordings from photoreceptors and the synaptically connected second-order neurons confirmed that L-AP-4 inhibited both ICa and glutamate release in cones but not in rods. Furthermore, we found that exocytosed protons also inhibited ICa in cones but not in rods. Selective modulation of ICa in cones may help broaden the dynamic range of synaptic transfer by controlling the amount of transmitter release from cones.

  1. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.

    PubMed

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K; Makino, Clint L

    2015-04-24

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The retinal rod Na(+)/Ca(2+),K(+) exchanger contains a noncleaved signal sequence required for translocation of the N terminus.

    PubMed

    McKiernan, C J; Friedlander, M

    1999-12-31

    The retinal rod Na(+)/Ca(2+),K(+) exchanger (RodX) is a polytopic membrane protein found in photoreceptor outer segments where it is the principal extruder of Ca(2+) ions during light adaptation. We have examined the role of the N-terminal 65 amino acids in targeting, translocation, and integration of the RodX using an in vitro translation/translocation system. cDNAs encoding human RodX and bovine RodX through the first transmembrane domain were correctly targeted and integrated into microsomal membranes; deletion of the N-terminal 65 amino acids (aa) resulted in a translation product that was not targeted or integrated. Deletion of the first 65 aa had no effect on membrane targeting of full-length RodX, but the N-terminal hydrophilic domain no longer translocated. Chimeric constructs encoding the first 65 aa of bovine RodX fused to globin were translocated across microsomal membranes, demonstrating that the sequence could function heterologously. Studies of fresh bovine retinal extracts demonstrated that the first 65 aa are present in the native protein. These data demonstrate that the first 65 aa of RodX constitute an uncleaved signal sequence required for the efficient membrane targeting and proper membrane integration of RodX.

  3. Further Insights into the Ciliary Gene and Protein KIZ and Its Murine Ortholog PLK1S1 Mutated in Rod-Cone Dystrophy

    PubMed Central

    Méjécase, Cécile; Bertelli, Matteo; Terray, Angélique; Michiels, Christelle; Condroyer, Christel; Fouquet, Stéphane; Sadoun, Maxime; Clérin, Emmanuelle; Liu, Binqian; Léveillard, Thierry; Goureau, Olivier; Sahel, José-Alain; Audo, Isabelle

    2017-01-01

    We identified herein additional patients with rod-cone dystrophy (RCD) displaying mutations in KIZ, encoding the ciliary centrosomal protein kizuna and performed functional characterization of the respective protein in human fibroblasts and of its mouse ortholog PLK1S1 in the retina. Mutation screening was done by targeted next generation sequencing and subsequent Sanger sequencing validation. KIZ mRNA levels were assessed on blood and serum-deprived human fibroblasts from a control individual and a patient, compound heterozygous for the c.52G>T (p.Glu18*) and c.119_122del (p.Lys40Ilefs*14) mutations in KIZ. KIZ localization, documentation of cilium length and immunoblotting were performed in these two fibroblast cell lines. In addition, PLK1S1 immunolocalization was conducted in mouse retinal cryosections and isolated rod photoreceptors. Analyses of additional RCD patients enabled the identification of two homozygous mutations in KIZ, the known c.226C>T (p.Arg76*) mutation and a novel variant, the c.3G>A (p.Met1?) mutation. Albeit the expression levels of KIZ were three-times lower in the patient than controls in whole blood cells, further analyses in control- and mutant KIZ patient-derived fibroblasts unexpectedly revealed no significant difference between the two genotypes. Furthermore, the averaged monocilia length in the two fibroblast cell lines was similar, consistent with the preserved immunolocalization of KIZ at the basal body of the primary cilia. Analyses in mouse retina and isolated rod photoreceptors showed PLK1S1 localization at the base of the photoreceptor connecting cilium. In conclusion, two additional patients with mutations in KIZ were identified, further supporting that defects in KIZ/PLK1S1, detected at the basal body of the primary cilia in fibroblasts, and the photoreceptor connecting cilium in mouse, respectively, are involved in RCD. However, albeit the mutations were predicted to lead to nonsense mediated mRNA decay, we could not detect

  4. The phototransduction machinery in the rod outer segment has a strong efficacy gradient

    PubMed Central

    Mazzolini, Monica; Facchetti, Giuseppe; Andolfi, Laura; Proietti Zaccaria, Remo; Tuccio, Salvatore; Treu, Johannes; Altafini, Claudio; Di Fabrizio, Enzo M.; Lazzarino, Marco; Rapp, Gert; Torre, Vincent

    2015-01-01

    Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5–10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light. PMID:25941368

  5. Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats.

    PubMed

    Sauvé, Y; Pinilla, I; Lund, R D

    2006-04-01

    We quantified rod- and cone-related electroretinogram (ERG) responses following subretinal injections of the human-derived retinal pigment epithelial (hRPE) cell line ARPE-19 at age P23 to prevent progressive photoreceptor loss in the Royal College of Surgeons (RCS) rat. Culture medium-injected eyes served as sham controls. At P60, in comparison with sham-injected eyes, all recordings from hRPE-injected eyes showed preserved scotopic a- and b-waves, oscillatory potentials, double-flash-derived rod b-waves and photopic cone b-waves, and flicker critical fusion frequencies and amplitudes. Although the actual preservation did not exceed 10% of a-wave and 20% of b-wave amplitude values in non-dystrophic RCS and deteriorated rapidly by P90, rod- and cone-related ERG parameters were still recordable up to P120 unlike the virtually unresponsive sham-injected eyes.

  6. Membrane attachment is key to protecting transducin GTPase-activating complex from intracellular proteolysis in photoreceptors.

    PubMed

    Gospe, Sidney M; Baker, Sheila A; Kessler, Christopher; Brucato, Martha F; Winter, Joan R; Burns, Marie E; Arshavsky, Vadim Y

    2011-10-12

    The members of the R7 regulator of G-protein signaling (RGS) protein subfamily are versatile regulators of G-protein signaling throughout the nervous system. Recent studies indicate that they are often found in complexes with membrane anchor proteins that serve as versatile modulators of their activity, intracellular targeting, and stability. One striking example is the interplay between the membrane anchor R9AP and the RGS9-1 · Gβ5 GTPase-activating complex responsible for the rapid inactivation of the G-protein transducin in vertebrate photoreceptor cells during their recovery from light excitation. The amount of this complex in photoreceptors sets their temporal resolution and is precisely regulated by the expression level of R9AP, which serves to protect the RGS9-1 and Gβ5 subunits from intracellular proteolysis. In this study, we investigated the mechanism by which R9AP performs its protective function in mouse rods and found that it is entirely confined to recruiting RGS9-1 · Gβ5 to cellular membranes. Furthermore, membrane attachment of RGS9-1 · Gβ5 is sufficient for its stable expression in rods even in the absence of R9AP. Our second finding is that RGS9-1 · Gβ5 possesses targeting information that specifies its exclusion from the outer segment and that this information is neutralized by association with R9AP to allow outer segment targeting. Finally, we demonstrate that the ability of R9AP · RGS9-1 · Gβ5 to accelerate GTP hydrolysis on transducin is independent of its means of membrane attachment, since replacing the transmembrane domain of R9AP with a site for lipid modification did not impair the catalytic activity of this complex.

  7. Caspase-9 Mediates Photoreceptor Death After Blunt Ocular Trauma

    PubMed Central

    Blanch, Richard J.; Ahmed, Zubair; Thompson, Adam R.; Akpan, Nsikan; Snead, David R. J.; Berry, Martin; Troy, Carol M.; Scott, Robert A. H.; Logan, Ann

    2014-01-01

    Purpose. Ocular trauma is common in civilian and military populations. Commotio retinae involves acute disruption of photoreceptor outer segments after blunt ocular trauma, with subsequent photoreceptor apoptosis causing permanent visual impairment. The mechanisms of photoreceptor death in commotio retinae have not previously been described, although caspase-dependent death is important in other nontraumatic retinal degenerations. We assessed the role of caspase-9 as a mediator of photoreceptor death in a rat model of ballistic ocular trauma causing commotio retinae. Methods. Bilateral commotio retinae was induced in rats by ballistic ocular trauma. Caspase-9 activity was assessed by immunohistochemistry, Western blotting, and bVAD-fmk active caspase capture. Caspase-9 was inhibited by unilateral intravitreal injection of highly specific X-linked inhibitor of apoptosis (IAP) baculoviral IAP repeat 3 (XBIR3) domain linked to the cell transduction peptide penetratin 1 (Pen-1) after ballistic injury, and the affected eyes were compared with control eyes treated with Pen-1 injection alone, and retinal function was assessed by electroretinogram a-wave amplitude and photoreceptor survival by outer nuclear layer thickness. Results. Increased levels of cleaved caspase-9 were shown in photoreceptors 5 hours after injury, and catalytically active full-length caspase-9 was isolated from retinas. Photoreceptor death after commotio retinae was reduced by caspase-9 inhibition by using Pen-1–XBIR3, and electroretinographic measurements of photoreceptor function was preserved, providing structural and functional neuroprotection. Conclusions. The time course of caspase-9 activation and the neuroprotective effects of inhibition suggest that caspase-9 initiates cell death in a proportion of photoreceptors after blunt ocular trauma and that an intravitreally delivered biologic inhibitor may be an effective translational treatment strategy. PMID:25190658

  8. Mutation in rod PDE6 linked to congenital stationary night blindness impairs the enzyme inhibition by its gamma-subunit.

    PubMed

    Muradov, Khakim G; Granovsky, Alexey E; Artemyev, Nikolai O

    2003-03-25

    Photoreceptor cGMP phosphodiesterase (PDE6) is the effector enzyme in the vertebrate visual transduction cascade. The activity of rod PDE6 catalytic alpha- and beta-subunits is blocked in the dark by two inhibitory Pgamma-subunits. The inhibition is released upon light-stimulation of photoreceptor cells. Mutation H258N in PDE6beta has been linked to congenital stationary night blindness (CSNB) in a large Danish family (Rambusch pedigree) (Gal, A., Orth, U., Baehr, W., Schwinger, E., and Rosenberg, T. (1994) Nat. Genet. 7, 64-67.) We have analyzed the consequences of this mutation for PDE6 function using a Pgamma-sensitive PDE6alpha'/PDE5 chimera, Chi16. Biochemical analysis of the H257N mutant, an equivalent of PDE6betaH258N, demonstrates that this substitution does not alter the ability of chimeric PDE to dimerize or the enzyme's catalytic properties. The sensitivity of H257N to a competitive inhibitor zaprinast was also unaffected. However, the mutant displayed a significant impairment in the inhibitory interaction with Pgamma, which was apparent from a approximately 20-fold increase in the K(i) value (46 nM) and incomplete maximal inhibition. The inhibitory defect of H257N is not due to perturbation of noncatalytic cGMP binding to the PDE6alpha' GAF domains. The noncatalytic cGMP-binding characteristics of the H257N mutant were similar to those of the parent PDE6alpha'/PDE5 chimera. Since rod PDE6 in the Rambusch CSNB is a catalytic heterodimer of the wild-type PDE6alpha and mutant PDE6beta, Chi16 and H257N were coexpressed, and a heterodimeric PDE, Chi16/H257N, was isolated. It displayed two Pgamma inhibitory sites with the K(i) values of 5 and 57 nM. Our results support the hypothesis that mutation H258N in PDE6beta causes CSNB through incomplete inhibition of PDE6 activity by Pgamma, which leads to desensitization of rod photoreceptors.

  9. Differences in photoreceptor recovery among patients and between different parts of the posterior pole in Vogt–Koyanagi–Harada disease

    PubMed Central

    Zhou, M; Gu, R P; Sun, Z; Jiang, C H; Chang, Q; Xu, G Z

    2018-01-01

    Purpose To investigate the recovery of photoreceptors following the treatment in Vogt–Koyanagi–Harada (VKH) disease. Patients and methods This was a retrospective study. We enrolled 28 patients with VKH (56 eyes). The clinical and optical coherence tomography (OCT) findings were recorded for 12 months after treatment. The patterns of photoreceptor recovery on OCT were defined: pattern F group=Foveal photoreceptor recovery visible first; pattern E group=Extrafoveal photoreceptor recovery visible first; and pattern S group=Simultaneous foveal and extrafoveal photoreceptor recovery. Results Photoreceptor recovery varied in different parts of the fundus among patients. Among the 56 eyes, the ellipsoid zone (EZ) recovery of 10 eyes and the interdigitation zone (IZ) recovery of 17 eyes belonged to pattern F group. In most eyes (46 eyes for EZ and 26 eyes for IZ), the recovery of these structures were pattern S. Only in 10 eyes, the recovery of IZ was pattern E. The different patterns of recovery correlated with how promptly the patients had been treated and with the anatomical and visual outcomes at 12 months. Patients in pattern F group were characterized by delayed treatment, delayed recovery of EZ or IZ, and a less favourable prognosis at 12 months relative to other patients, while those in pattern E group had the most prompt treatment and recovery as well as a more favourable outcome at 12 months. Conclusions In VKH patients with delayed treatment, foveal photoreceptors tended to recover more rapidly than photoreceptors in other regions. PMID:29148525

  10. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation.

    PubMed

    Chaney, Shawnta Y; Mukherjee, Shradha; Giddabasappa, Anand; Rueda, Elda M; Hamilton, W Ryan; Johnson, Jerry E; Fox, Donald A

    2016-01-01

    Studies of neuronal development in the retina often examine the stages of proliferation, differentiation, and synaptic development, albeit independently. Our goal was to determine if a known neurotoxicant insult to a population of retinal progenitor cells (RPCs) would affect their eventual differentiation and synaptic development. To that end, we used our previously published human equivalent murine model of low-level gestational lead exposure (GLE). Children and animals with GLE exhibit increased scotopic electroretinogram a- and b-waves. Adult mice with GLE exhibit an increased number of late-born RPCs, a prolonged period of RPC proliferation, and an increased number of late-born rod photoreceptors and rod and cone bipolar cells (BCs), with no change in the number of late-born Müller glial cells or early-born neurons. The specific aims of this study were to determine whether increased and prolonged RPC proliferation alters the spatiotemporal differentiation and synaptic development of rods and BCs in early postnatal GLE retinas compared to control retinas. C57BL/6N mouse pups were exposed to lead acetate via drinking water throughout gestation and until postnatal day 10, which is equivalent to the human gestation period for retinal neurogenesis. RT-qPCR, immunohistochemical analysis, and western blots of well-characterized, cell-specific genes and proteins were performed at embryonic and early postnatal ages to assess rod and cone photoreceptor differentiation, rod and BC differentiation and synaptic development, and Müller glial cell differentiation. Real-time quantitative PCR (RT-qPCR) with the rod-specific transcription factors Nrl , Nr2e3 , and Crx and the rod-specific functional gene Rho , along with central retinal confocal studies with anti-recoverin and anti-rhodopsin antibodies, revealed a two-day delay in the differentiation of rod photoreceptors in GLE retinas. Rhodopsin immunoblots supported this conclusion. No changes in glutamine synthetase gene

  11. A Novel In Vivo Model of Focal Light Emitting Diode-Induced Cone-Photoreceptor Phototoxicity: Neuroprotection Afforded by Brimonidine, BDNF, PEDF or bFGF

    PubMed Central

    García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A.; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model

  12. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF.

    PubMed

    Ortín-Martínez, Arturo; Valiente-Soriano, Francisco Javier; García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.

  13. Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects.

    PubMed

    Nikopoulos, Konstantinos; Farinelli, Pietro; Giangreco, Basilio; Tsika, Chrysanthi; Royer-Bertrand, Beryl; Mbefo, Martial K; Bedoni, Nicola; Kjellström, Ulrika; El Zaoui, Ikram; Di Gioia, Silvio Alessandro; Balzano, Sara; Cisarova, Katarina; Messina, Andrea; Decembrini, Sarah; Plainis, Sotiris; Blazaki, Styliani V; Khan, Muhammad Imran; Micheal, Shazia; Boldt, Karsten; Ueffing, Marius; Moulin, Alexandre P; Cremers, Frans P M; Roepman, Ronald; Arsenijevic, Yvan; Tsilimbaris, Miltiadis K; Andréasson, Sten; Rivolta, Carlo

    2016-09-01

    Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. What determines the relationship between color naming, unique hues, and sensory singularities: Illuminations, surfaces, or photoreceptors?

    PubMed

    Witzel, Christoph; Cinotti, François; O'Regan, J Kevin

    2015-01-01

    The relationship between the sensory signal of the photoreceptors on one hand and color appearance and language on the other hand is completely unclear. A recent finding established a surprisingly accurate correlation between focal colors, unique hues, and so-called singularities in the laws governing how sensory signals for different surfaces change across illuminations. This article examines how this correlation with singularities depends on reflectances, illuminants, and cone sensitivities. Results show that this correlation holds for a large range of illuminants and for a large range of sensors, including sensors that are fundamentally different from human photoreceptors. In contrast, the spectral characteristics of the reflectance spectra turned out to be the key factor that determines the correlation between focal colors, unique hues, and sensory singularities. These findings suggest that the origins of color appearance and color language may be found in particular characteristics of the reflectance spectra that correspond to focal colors and unique hues.

  15. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina.

    PubMed

    López-Begines, Santiago; Plana-Bonamaisó, Anna; Méndez, Ana

    2018-02-13

    Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.

  16. UV-B photoreceptor-mediated signalling in plants.

    PubMed

    Heijde, Marc; Ulm, Roman

    2012-04-01

    Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Photoreceptor layer map using spectral-domain optical coherence tomography.

    PubMed

    Lee, Ji Eun; Lim, Dae Won; Bae, Han Yong; Park, Hyun Jin

    2009-12-01

    To develop a novel method for analysis of the photoreceptor layer map (PLM) generated using spectral-domain optical coherence tomography (OCT). OCT scans were obtained from 20 eyes, 10 with macular holes (MH) and 10 with central serous chorioretinopathy (CSC) using the Macular Cube (512 x 128) protocol of the Cirrus HD-OCT (Carl Zeiss). The scanned data were processed using embedded tools of the advanced visualization. A partial thickness OCT fundus image of the photoreceptor layer was generated by setting the region of interest to a 50-microm thick layer that was parallel and adjacent to the retinal pigment epithelium. The resulting image depicted the photoreceptor layer as a map of the reflectivity in OCT. The PLM was compared with fundus photography, auto-fluorescence, tomography, and retinal thickness map. The signal from the photoreceptor layer of every OCT scan in each case was demonstrated as a single image of PLM in a fundus photograph fashion. In PLM images, detachment of the sensory retina is depicted as a hypo-reflective area, which represents the base of MH and serous detachment in CSC. Relative hypo-reflectivity, which was also noted at closed MH and at recently reattached retina in CSC, was associated with reduced signal from the junction between the inner and outer segments of photoreceptors in OCT images. Using PLM, changes in the area of detachment and reflectivity of the photoreceptor layer could be efficiently monitored. The photoreceptor layer can be analyzed as a map using spectral-domain OCT. In the treatment of both MH and CSC, PLM may provide new pathological information about the photoreceptor layer to expand our understanding of these diseases.

  18. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  19. Whirlin Replacement Restores the Formation of the USH2 Protein Complex in Whirlin Knockout Photoreceptors

    PubMed Central

    Zou, Junhuang; Luo, Ling; Shen, Zuolian; Chiodo, Vince A.; Ambati, Balamurali K.; Hauswirth, William W.

    2011-01-01

    Purpose. Whirlin is the causative gene for Usher syndrome type IID (USH2D), a condition manifested as both retinitis pigmentosa and congenital deafness. Mutations in this gene cause disruption of the USH2 protein complex composed of USH2A and VLGR1 at the periciliary membrane complex (PMC) in photoreceptors. In this study, the adeno-associated virus (AAV)-mediated whirlin replacement was evaluated as a treatment option. Methods. Murine whirlin cDNA driven by the human rhodopsin kinase promoter (hRK) was packaged as an AAV2/5 vector and delivered into the whirlin knockout retina through subretinal injection. The efficiency, efficacy, and safety of this treatment were examined using immunofluorescent staining, confocal imaging, immunoelectron microscopy, Western blot analysis, histologic analysis, and electroretinogram. Results. The AAV-mediated whirlin expression started at two weeks, reached its maximum level at 10 weeks, and lasted up to six months post injection. The transgenic whirlin product had a molecular size and an expression level comparable to the wild-type. It was distributed at the PMC in both rod and cone photoreceptors from the central to peripheral retina. Importantly, the transgenic whirlin restored the cellular localization and expression level of both USH2A and VLGR1 and did not cause defects in the retinal histology and function in the whirlin knockout mouse. Conclusions. Whirlin transgene recruits USH2A and VLGR1 to the PMC and is sufficient for the formation of the USH2 protein complex in photoreceptors. The combined hRK and AAV gene delivery system could be an effective gene therapy approach to treat retinal degeneration in USH2D patients. PMID:21212183

  20. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1.

    PubMed

    Luo, Ling; Uehara, Hironori; Zhang, Xiaohui; Das, Subrata K; Olsen, Thomas; Holt, Derick; Simonis, Jacquelyn M; Jackman, Kyle; Singh, Nirbhai; Miya, Tadashi R; Huang, Wei; Ahmed, Faisal; Bastos-Carvalho, Ana; Le, Yun Zheng; Mamalis, Christina; Chiodo, Vince A; Hauswirth, William W; Baffi, Judit; Lacal, Pedro M; Orecchia, Angela; Ferrara, Napoleone; Gao, Guangping; Young-Hee, Kim; Fu, Yingbin; Owen, Leah; Albuquerque, Romulo; Baehr, Wolfgang; Thomas, Kirk; Li, Dean Y; Chalam, Kakarla V; Shibuya, Masabumi; Grisanti, Salvatore; Wilson, David J; Ambati, Jayakrishna; Ambati, Balamurali K

    2013-06-18

    Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI:http://dx.doi.org/10.7554/eLife.00324.001.

  1. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1

    PubMed Central

    Luo, Ling; Uehara, Hironori; Zhang, Xiaohui; Das, Subrata K; Olsen, Thomas; Holt, Derick; Simonis, Jacquelyn M; Jackman, Kyle; Singh, Nirbhai; Miya, Tadashi R; Huang, Wei; Ahmed, Faisal; Bastos-Carvalho, Ana; Le, Yun Zheng; Mamalis, Christina; Chiodo, Vince A; Hauswirth, William W; Baffi, Judit; Lacal, Pedro M; Orecchia, Angela; Ferrara, Napoleone; Gao, Guangping; Young-hee, Kim; Fu, Yingbin; Owen, Leah; Albuquerque, Romulo; Baehr, Wolfgang; Thomas, Kirk; Li, Dean Y; Chalam, Kakarla V; Shibuya, Masabumi; Grisanti, Salvatore; Wilson, David J; Ambati, Jayakrishna; Ambati, Balamurali K

    2013-01-01

    Optimal phototransduction requires separation of the avascular photoreceptor layer from the adjacent vascularized inner retina and choroid. Breakdown of peri-photoreceptor vascular demarcation leads to retinal angiomatous proliferation or choroidal neovascularization, two variants of vascular invasion of the photoreceptor layer in age-related macular degeneration (AMD), the leading cause of irreversible blindness in industrialized nations. Here we show that sFLT-1, an endogenous inhibitor of vascular endothelial growth factor A (VEGF-A), is synthesized by photoreceptors and retinal pigment epithelium (RPE), and is decreased in human AMD. Suppression of sFLT-1 by antibodies, adeno-associated virus-mediated RNA interference, or Cre/lox-mediated gene ablation either in the photoreceptor layer or RPE frees VEGF-A and abolishes photoreceptor avascularity. These findings help explain the vascular zoning of the retina, which is critical for vision, and advance two transgenic murine models of AMD with spontaneous vascular invasion early in life. DOI: http://dx.doi.org/10.7554/eLife.00324.001 PMID:23795287

  2. Photoreceptor Layer Thickness Changes During Dark Adaptation Observed With Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Lu, Chen D.; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N.; Fujimoto, James G.

    2017-01-01

    Purpose To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Methods Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. Results The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. Conclusions With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function. PMID:28898357

  3. Photoreceptor Layer Thickness Changes During Dark Adaptation Observed With Ultrahigh-Resolution Optical Coherence Tomography.

    PubMed

    Lu, Chen D; Lee, ByungKun; Schottenhamml, Julia; Maier, Andreas; Pugh, Edward N; Fujimoto, James G

    2017-09-01

    To examine outer retinal band changes after flash stimulus and subsequent dark adaptation with ultrahigh-resolution optical coherence tomography (UHR-OCT). Five dark-adapted left eyes of five normal subjects were imaged with 3-μm axial-resolution UHR-OCT during 30 minutes of dark adaptation following 96%, 54%, 23%, and 0% full-field and 54% half-field rhodopsin bleach. We identified the ellipsoid zone inner segment/outer segment (EZ[IS/OS]), cone interdigitation zone (CIZ), rod interdigitation zone (RIZ), retinal pigment epithelium (RPE), and Bruch's membrane (BM) axial positions and generated two-dimensional thickness maps of the EZ(IS/OS) to the four bands. The average thickness over an area of the thickness map was compared against that of the dark-adapted baselines. The time-dependent thickness changes (photoresponses) were statistically compared against 0% bleach. Dark adaptometry was performed with the same bleaching protocol. The EZ(IS/OS)-CIZ photoresponse was significantly different at 96% (P < 0.0001) and 54% (P = 0.006) bleach. At all three bleaching levels, the EZ(IS/OS)-RIZ, -RPE, and -BM responses were significantly different (P < 0.0001). The EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ time courses were similar to the recovery of rod- and cone-mediated sensitivity, respectively, measured with dark adaptometry. The maximal EZ(IS/OS)-CIZ and EZ(IS/OS)-RIZ response magnitudes doubled from 54% to 96% bleach. Both EZ(IS/OS)-RPE and EZ(IS/OS)-BM responses resembled dampened oscillations that were graded in amplitude and duration with bleaching intensity. Half-field photoresponses were localized to the stimulated retina. With noninvasive, near-infrared UHR-OCT, we characterized three distinct, spatially localized photoresponses in the outer retinal bands. These photoresponses have potential value as physical correlates of photoreceptor function.

  4. Mouse Cone Photoreceptors Co-express Two Functional Visual Arrestins

    PubMed Central

    Nikonov, Sergei S.; Brown, Bruce M.; Davis, Jason A.; Zuniga, Freddi I.; Bragin, Alvina; Pugh, Edward N.; Craft, Cheryl M.

    2008-01-01

    Arrestins are members of a superfamily of proteins that arrest the activity of G-protein coupled receptors. Mouse cone photoreceptors express two visual arrestins, Arr1 and Arr4 (Carr). We quantified their expression levels and subcellular distributions in mouse cones: total Arr1 was estimated to be in an ~ 6:1 ratio to cone opsin, about 50-fold higher than Arr4. Recordings from single cones of Arr1−/− and Arr4−/− mice establish that both proteins are competent to arrest the activity of photoactivated S- and M- cone opsins. Recordings from Arr1−/− , Arr4−/− double-knockout mice establish a requirement for at least one of the two visual arrestins for normal cone opsin inactivation at all flash intensities. These recordings also reveal low activity photoproducts of S- and M-opsins that are absent when Grk1 and an arrestin are co-expressed, but which decay 70-fold more rapidly than the comparable photoproducts of rhodopsin in rods. PMID:18701071

  5. pH and rate of ‘dark’ events in toad retinal rods: test of a hypothesis on the molecular origin of photoreceptor noise

    PubMed Central

    Firsov, Mikhail L; Donner, Kristian; Govardovskii, Victor I

    2002-01-01

    Thermal activation of the visual pigment constitutes a fundamental constraint on visual sensitivity. Its electrical correlate in the membrane current of dark-adapted rods are randomly occurring discrete ‘dark events’ indistinguishable from responses to single photons. It has been proposed that thermal activation occurs in a small subpopulation of rhodopsin molecules where the Schiff base linking the chromophore to the protein part is unprotonated. On this hypothesis, rates of thermal activation should increase strongly with rising pH. The hypothesis has been tested by measuring the effect of pH changes on the frequency of discrete dark events in red rods of the common toad Bufo bufo. Dark noise was recorded from isolated rods using the suction pipette technique. Changes in cytoplasmic pH upon manipulations of extracellular pH were quantified by measuring, using fast single-cell microspectrophotometry, the pH-dependent metarhodopsin I-metarhodopsin II equilibrium and subsequent metarhodopsin III formation. These measurements show that, in the conditions of the electrophysiological experiments, changing perfusion pH from 6.5 to 9.3 resulted in a cytoplasmic pH shift from 7.6 to 8.5 that was readily sensed by the rhodopsin. This shift, which implies an 8-fold decrease in cytoplasmic [H+], did not increase the rate of dark events. The results contradict the hypothesis that thermal pigment activation depends on prior deprotonation of the Schiff base. PMID:11897853

  6. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate.

    PubMed

    Thompson, Stewart; Lupi, Daniela; Hankins, Mark W; Peirson, Stuart N; Foster, Russell G

    2008-08-01

    Behavioral responses to light indirectly affect cardiovascular output, but in anesthetized rodents a direct effect of light on heart rate has also been described. Both the basis for this response and the contribution of rods, cones and melanopsin-based photosensitive retinal ganglion cells (pRGCs) remains unknown. To understand how light acutely regulates heart rate we studied responses to light in mice lacking all rod and cone photoreceptors (rd/rd cl ) along with wild-type controls. Our initial experiments delivered light to anesthetized mice at Zeitgeber time (ZT)16 (4 h after lights off, mid-activity phase) and produced an increase in heart rate in wild-type mice, but not in rd/rd cl animals. By contrast, parallel experiments in freely-moving mice demonstrated that light exposure at this time suppressed heart rate and activity in both genotypes. Because of the effects of anesthesia, all subsequent studies were conducted in freely-moving animals. The effects of light were also assessed at ZT6 (mid-rest phase). At this timepoint, wild-type mice showed an irradiance-dependent increase in heart rate and activity. By contrast, rd/rd cl mice failed to show any modulation of heart rate or activity, even at very high irradiances. Increases in heart rate preceded increases in locomotor activity and remained elevated when locomotor activity ceased, suggesting that these two responses are at least partially uncoupled. Collectively, our results show an acute and phase-dependent effect of light on cardiovascular output in mice. Surprisingly, this irradiance detection response is dependent upon rod and cone photoreceptors, with no apparent contribution from melanopsin pRGCs.

  7. Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival

    PubMed Central

    Rice, Dennis S.; Calandria, Jorgelina M.; Gordon, William C.; Jun, Bokkyoo; Zhou, Yongdong; Gelfman, Claire M.; Li, Songhua; Jin, Minghao; Knott, Eric J.; Chang, Bo; Abuin, Alex; Issa, Tawfik; Potter, David; Platt, Kenneth A.; Bazan, Nicolas G.

    2015-01-01

    The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells’ functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1−/− mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1−/− mice. RPE-rich eyecup cultures from AdipoR1−/− reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity. PMID:25736573

  8. Usher protein functions in hair cells and photoreceptors

    PubMed Central

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. PMID:24239741

  9. Usher protein functions in hair cells and photoreceptors.

    PubMed

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Declines in arrestin and rhodopsin in the macula with progression of age-related macular degeneration.

    PubMed

    Ethen, Cheryl M; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2005-03-01

    Biochemical analysis of age-related macular degeneration (AMD) at distinct stages of the disease will help further understanding of the molecular events associated with disease progression. This study was conducted to determine the ability of a new grading system for eye bank eyes, the Minnesota Grading System (MGS), to discern distinct stages of AMD so that retinal region-specific changes in rod photoreceptor protein expression from donors could be determined. Donor eyes were assigned to a specific level of AMD by using the MGS. Expression of the rod photoreceptor proteins rhodopsin and arrestin was evaluated by Western immunoblot analysis in the macular and peripheral regions of the neurosensory retina from donors at different stages of AMD. A significant linear decline in both arrestin and rhodopsin content correlated with progressive MGS levels in the macula. In contrast, the peripheral region showed no significant correlation between MGS level and the content of either protein. The statistically significant relationship between decreasing macular rod photoreceptor proteins and progressive MGS levels of AMD demonstrates the utility of the clinically based MGS to correspond with specific protein changes found at known, progressive stages of degeneration. Future biochemical analysis of clinically characterized donor eyes will further understanding of the pathobiochemistry of AMD.

  11. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.

    PubMed

    Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L

    2010-01-01

    The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS

  12. Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis.

    PubMed Central

    Bowmaker, J K; Dartnall, H J; Mollon, J D

    1980-01-01

    1. Microspectrophotometric measurements reveal four classes of photoreceptor in the retina of the cynomolgus monkey, Macaca fascicularis, which is known to possess colour vision similar to that of a normal human trichromat. 2. Although the eyes were removed in bright illumination, the densities of pigment were comparable to those we have measured in dark-adapted rhesus retinae. 3. The mean wave-lengths of peak sensitivity (lambda max) for the four classes of photoreceptor were 415, 500, 535 and 567 nm. 4. The band widths of the absorbance spectra decreased linearly as the wave-number of peak sensitivity decreased. 5. If, by assuming a reasonable value for the axial density of the rod outer segment and correcting for lens absorption, a spectral sensitivity for human vision is reconstructed from the P500 pigment, it is found to be systematically broader than the CIE scotopic sensitivity function. 6. Given explicit assumptions, it is possible from the P535 and P567 pigments to reconstruct human psychophysical sensitivities that resemble the pi 4 and pi 5 mechanisms of W. S. Stiles. 7. Although the P415 pigment has a lambda max much shorter than that of the psychophysically measured blue mechanisms, the two spectral-sensitivity functions are brought into proximity when the microspectrophotometric data are corrected for absorption by the optic media. Images Fig. 1 PMID:6767023

  13. Complete Volumetric Decomposition of Individual Trabecular Plates and Rods and Its Morphological Correlations With Anisotropic Elastic Moduli in Human Trabecular Bone

    PubMed Central

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-01-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Introduction Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type–associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Materials and Methods Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using μCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type–associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. Results The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r 2 = 0.95∼0.99) compared with BV/TV (r 2 = 0.93∼0.94). The plate-associated morphological parameters generally showed higher

  14. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.

    PubMed

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-02-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the

  15. Global gene expression analysis in a mouse model for Norrie disease: late involvement of photoreceptor cells.

    PubMed

    Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang

    2002-09-01

    Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.

  16. Gating by Cyclic Gmp and Voltage in the α Subunit of the Cyclic Gmp–Gated Channel from Rod Photoreceptors

    PubMed Central

    Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin

    1999-01-01

    Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels

  17. [Effects of Nomega-nitro-L-arginine on photoreceptor apoptosis in inherited retinal degeneration of RCS rats].

    PubMed

    Li, Ai-jun; Fang, Jun; Zhu, Xiu-an

    2004-08-18

    To investigate inducible nitric oxide synthase(iNOS) activity of retina and the effects of N(omega)-nitro-L-arginine(N-Arg) on photoreceptor apoptosis in inherited retinal degeneration of Royal College of Surgeons (RCS) rats. iNOS activity was assayed in the whole retinal homogenates of RCS rats and Wistar rats by monitoring the conversion rate of (3)H-arginine to (3)H-citrulline. Intravitreal injection of the NOS inhibitor, N(omega)-nitro-L-arginine(N-Arg), in one lateral eye on postnatal days 17 (P17), P22, P27 and P32 was performed, while the other lateral eye was treated with PBS by intravitreal injection as controls. Then the retinas of the RCS rats were studied by TdT-mediated biotin-dUTP nick-end labeling (TUNEL) for apoptosis on P38. The enzymatic activity of iNOS was elevated in RCS rat retinas on P25. In RCS rats on P38, the percent area of apoptotic photoreceptor nuclei and the thickness of rod and cone layer in the treated group were significantly reduced compared with the controls, while the thickness of outer nuclear layer (ONL) was increased. The inhibitor of NOS might supply a potential medicine for inherited retinal degeneration.

  18. [Modification of retinal photoreceptor membranes and Ca ion binding].

    PubMed

    Korchagin, V P; Berman, A L; Shukoliukov, S A; Rychkova, M P; Etingof, R N

    1978-10-01

    Calcium binding by modified photoreceptor membranes of cattle retina has been studied. Ca2+-binding the membranes significantly changes after C-phospholipase treatment, displaying the initial growth (less than 65% of lipid phosphorus removed) with subsequent decrease (more than 65% of phosphorus removed). Liposomes of the photoreceptor membranes lipids were found to bind more calcium than do the native photoreceptor membranes. Proteolytic enzymes (papaine, pronase) splitting some rhodopsin fragments do not affect the ability of the membrane to bind Ca2+. The increase of light-induced Ca-binding is observed only after the outer segments preincubation under conditions providing for rhodopsin phosphorylation. This effect was observed also after the splitting of the rhodopsin fragment by papaine. It is concluded that calcium binding in the photoreceptor membranes is mainly due to the phosphate groups of phospholipids.

  19. Mechanisms of photoreceptor patterning in vertebrates and invertebrates

    PubMed Central

    Johnston, Robert J

    2016-01-01

    Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. The visual acuity and color perception of organisms depend on the distribution of photoreceptor subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. Here, we describe the retinal mosaics of flies, zebrafish, chickens, mice, and humans and the gene regulatory networks controlling proper photoreceptor specification in each. By drawing parallels in eye development between these divergent species, we identify a set of conserved organizing principles and transcriptional networks that govern photoreceptor subtype differentiation. PMID:27615122

  20. Silencing of Tuberin Enhances Photoreceptor Survival and Function in a Preclinical Model of Retinitis Pigmentosa (An American Ophthalmological Society Thesis)

    PubMed Central

    Tsang, Stephen H.; Chan, Lawrence; Tsai, Yi-Ting; Wu, Wen-Hsuan; Hsu, Chun-Wei; Yang, Jin; Tosi, Joaquin; Wert, Katherine J.; Davis, Richard J.; Mahajan, Vinit B.

    2014-01-01

    Purpose: To assess the functional consequences of silencing of tuberin, an inhibitor of the mTOR signaling pathway, in a preclinical model of retinitis pigmentosa (RP) in order to test the hypothesis that insufficient induction of the protein kinase B (PKB)-regulated tuberin/mTOR self-survival pathway initiates apoptosis. Methods: In an unbiased genome-scale approach, kinase peptide substrate arrays were used to analyze self-survival pathways at the onset of photoreceptor degeneration. The mutant Pde6bH620Q/Pde6bH620Q at P14 and P18 photoreceptor outer segment (OS) lysates were labeled with P-ATP and hybridized to an array of 1,164 different synthetic peptide substrates. At this stage, OS of Pde6bH620Q/Pde6bH620Q rods are morphologically normal. In vitro kinase assays and immunohistochemistry were used to validate phosphorylation. Short hairpin RNA (shRNA) gene silencing was used to validate tuberin’s role in regulating survival. Results: At the onset of degeneration, 162 peptides were differentially phosphorylated. Protein kinases A, G, C (AGC kinases), and B exhibited increased activity in both peptide array and in vitro kinase assays. Immunohistochemical data confirmed altered phosphorylation patterns for phosphoinositide-dependent kinase-1 (PDK1), ribosomal protein S6 (RPS6), and tuberin. Tuberin gene silencing rescued photoreceptors from degeneration. Conclusions: Phosphorylation of tuberin and RPS6 is due to the upregulated activity of PKB. PKB/tuberin cell growth/survival signaling is activated before the onset of degeneration. Substrates of the AGC kinases in the PKB/tuberin pathway are phosphorylated to promote cell survival. Knockdown of tuberin, the inhibitor of the mTOR pathway, increased photoreceptor survival and function in a preclinical model of RP. PMID:25646031

  1. CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration.

    PubMed

    Xu, Jianhua; Morris, Lynsie M; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin

    2012-03-01

    To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3-/- mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3-/- mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3-/- retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%-40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3-/- retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised.

  2. The Effect of PKCα on the Light Response of Rod Bipolar Cells in the Mouse Retina

    PubMed Central

    Xiong, Wei-Hong; Pang, Ji-Jie; Pennesi, Mark E.; Duvoisin, Robert M.; Wu, Samuel M.; Morgans, Catherine W.

    2015-01-01

    Purpose Protein kinase C α (PKCα) is abundantly expressed in rod bipolar cells (RBCs) in the retina, yet the physiological function of PKCα in these cells is not well understood. To elucidate the role of PKCα in visual processing in the eye, we examined the effect of genetic deletion of PKCα on the ERG and on RBC light responses in the mouse. Methods Immunofluorescent labeling was performed on wild-type (WT), TRPM1 knockout, and PKCα knockout (PKC-KO) retina. Scotopic and photopic ERGs were recorded from WT and PKC-KO mice. Light responses of RBCs were measured using whole-cell recordings in retinal slices from WT and PKC-KO mice. Results Protein kinase C alpha expression in RBCs is correlated with the activity state of the cell. Rod bipolar cells dendrites are a major site of PKCα phosphorylation. Electroretinogram recordings indicated that loss of PKCα affects the scotopic b-wave, including a larger peak amplitude, longer implicit time, and broader width of the b-wave. There were no differences in the ERG a- or c-wave between PKCα KO and WT mice, indicating no measurable effect of PKCα in photoreceptors or the RPE. The photopic ERG was unaffected consistent with the lack of detectable PKCα in cone bipolar cells. Whole-cell recordings from RBCs in PKC-KO retinal slices revealed that, compared with WT, RBC light responses in the PKC-KO retina are delayed and of longer duration. Conclusions Protein kinase C alpha plays an important modulatory role in RBCs, regulating both the peak amplitude and temporal properties of the RBC light response in the rod visual pathway. PMID:26230760

  3. Responses of photoreceptors in Hermissenda.

    PubMed

    Akon, D L; Fuortes, M G

    1972-12-01

    The five photoreceptors in the eye of the mollusc Hermissenda crassicornis respond to light with depolarization and firing of impulses. The impulses of any one cell inhibit other cells, but the degree of inhibition differs in different pairs. Evidence is presented to show that the interactions occur at terminal branches of the photoreceptor axons, inside the cerebropleural ganglion. Properties of the generator potential are examined and it is shown that the depolarization develops in two phases which are affected differently by extrinsic currents. Finally, it is shown that by enhancing the differences in the responses of individual cells to a variety of stimuli, the interactions may facilitate a number of simple discriminations.

  4. Programming Retinal Stem Cells into Cone Photoreceptors

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0566 TITLE: Programming Retinal Stem Cells into Cone Photoreceptors PRINCIPAL INVESTIGATOR: Joseph A. Brzezinski IV...SUBTITLE 5a. CONTRACT NUMBER Programming Retinal Stem Cells into Cone Photoreceptors 5b. GRANT NUMBER W81XWH-14-1-0566 5c. PROGRAM ELEMENT NUMBER 6...to program human stem cells directly into cones. Using RNA-seq, we identified several genes that are upregulated in advance of the earliest

  5. Variation of cone photoreceptor packing density with retinal eccentricity and age.

    PubMed

    Song, Hongxin; Chui, Toco Yuen Ping; Zhong, Zhangyi; Elsner, Ann E; Burns, Stephen A

    2011-09-01

    To study the variation of cone photoreceptor packing density across the retina in healthy subjects of different ages. High-resolution adaptive optics scanning laser ophthalmoscope (AOSLO) systems were used to systematically image the retinas of two groups of subjects of different ages. Ten younger subjects (age range, 22-35 years) and 10 older subjects (age range, 50-65 years) were tested. Strips of cone photoreceptors, approximately 12° × 1.8° long were imaged for each of the four primary retinal meridians: superior, inferior, nasal, and temporal. Cone photoreceptors within the strips were counted, and cone photoreceptor packing density was calculated. Statistical analysis (three-way ANOVA) was used to calculate the interaction for cone photoreceptor packing density between age, meridian, and eccentricity. As expected, cone photoreceptor packing density was higher close to the fovea and decreased with increasing retinal eccentricity from 0.18 to 3.5 mm (∼0.6-12°). Older subjects had approximately 75% of the cone density at 0.18 mm (∼0.6°), and this difference decreased rapidly with eccentricity, with the two groups having similar cone photoreceptor packing densities beyond 0.5 mm retinal eccentricity on average. Cone packing density in the living human retina decreases as a function of age within the foveal center with the largest difference being found at our most central measurement site. At all ages, the retina showed meridional difference in cone densities, with cone photoreceptor packing density decreasing faster with increasing eccentricity in the vertical dimensions than in the horizontal dimensions.

  6. Insect photoreceptor adaptations to night vision

    PubMed Central

    Honkanen, Anna; Salmela, Iikka; Weckström, Matti

    2017-01-01

    Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals. This article is part of the themed issue ‘Vision in dim light’. PMID:28193821

  7. Insect photoreceptor adaptations to night vision.

    PubMed

    Honkanen, Anna; Immonen, Esa-Ville; Salmela, Iikka; Heimonen, Kyösti; Weckström, Matti

    2017-04-05

    Night vision is ultimately about extracting information from a noisy visual input. Several species of nocturnal insects exhibit complex visually guided behaviour in conditions where most animals are practically blind. The compound eyes of nocturnal insects produce strong responses to single photons and process them into meaningful neural signals, which are amplified by specialized neuroanatomical structures. While a lot is known about the light responses and the anatomical structures that promote pooling of responses to increase sensitivity, there is still a dearth of knowledge on the physiology of night vision. Retinal photoreceptors form the first bottleneck for the transfer of visual information. In this review, we cover the basics of what is known about physiological adaptations of insect photoreceptors for low-light vision. We will also discuss major enigmas of some of the functional properties of nocturnal photoreceptors, and describe recent advances in methodologies that may help to solve them and broaden the field of insect vision research to new model animals.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  8. In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones

    PubMed Central

    Sharma, Robin; Schwarz, Christina; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.

    2016-01-01

    Purpose The retinoid cycle maintains vision by regenerating bleached visual pigment through metabolic events, the kinetics of which have been difficult to characterize in vivo. Two-photon fluorescence excitation has been used previously to track autofluorescence directly from retinoids and pyridines in the visual cycle in mouse and frog retinas, but the mechanisms of the retinoid cycle are not well understood in primates. Methods We developed a two-photon fluorescence adaptive optics scanning light ophthalmoscope dedicated to in vivo imaging in anesthetized macaques. Using pulsed light at 730 nm, two-photon fluorescence was captured from rods and cones during light and dark adaptation through the eye's pupil. Results The fluorescence from rods and cones increased with light exposure but at different rates. During dark adaptation, autofluorescence declined, with cone autofluorescence decreasing approximately 4 times faster than from rods. Rates of autofluorescence decrease in rods and cones were approximately 4 times faster than their respective rates of photopigment regeneration. Also, subsets of sparsely distributed cones were less fluorescent than their neighbors immediately following bleach at 565 nm and they were comparable with the S cone mosaic in density and distribution. Conclusions Although other molecules could be contributing, we posit that these fluorescence changes are mediated by products of the retinoid cycle. In vivo two-photon ophthalmoscopy provides a way to monitor noninvasively stages of the retinoid cycle that were previously inaccessible in the living primate eye. This can be used to assess objectively photoreceptor function in normal and diseased retinas. PMID:26903225

  9. The rod-driven a-wave of the dark-adapted mammalian electroretinogram.

    PubMed

    Robson, John G; Frishman, Laura J

    2014-03-01

    The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Effect of Cone Opsin Mutations on Retinal Structure and the Integrity of the Photoreceptor Mosaic

    PubMed Central

    Carroll, Joseph; Dubra, Alfredo; Gardner, Jessica C.; Mizrahi-Meissonnier, Liliana; Cooper, Robert F.; Dubis, Adam M.; Nordgren, Rick; Genead, Mohamed; Connor, Thomas B.; Stepien, Kimberly E.; Sharon, Dror; Hunt, David M.; Banin, Eyal; Hardcastle, Alison J.; Moore, Anthony T.; Williams, David R.; Fishman, Gerald; Neitz, Jay; Neitz, Maureen; Michaelides, Michel

    2012-01-01

    Purpose. To evaluate retinal structure and photoreceptor mosaic integrity in subjects with OPN1LW and OPN1MW mutations. Methods. Eleven subjects were recruited, eight of whom have been previously described. Cone and rod density was measured using images of the photoreceptor mosaic obtained from an adaptive optics scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner retinal thickness, and outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness were measured using cross-sectional spectral-domain optical coherence tomography (SD-OCT) images. Molecular genetic analyses were performed to characterize the OPN1LW/OPN1MW gene array. Results. While disruptions in retinal lamination and cone mosaic structure were observed in all subjects, genotype-specific differences were also observed. For example, subjects with “L/M interchange” mutations resulting from intermixing of ancestral OPN1LW and OPN1MW genes had significant residual cone structure in the parafovea (∼25% of normal), despite widespread retinal disruption that included a large foveal lesion and thinning of the parafoveal inner retina. These subjects also reported a later-onset, progressive loss of visual function. In contrast, subjects with the C203R missense mutation presented with congenital blue cone monochromacy, with retinal lamination defects being restricted to the ONL+HFL and the degree of residual cone structure (8% of normal) being consistent with that expected for the S-cone submosaic. Conclusions. The photoreceptor phenotype associated with OPN1LW and OPN1MW mutations is highly variable. These findings have implications for the potential restoration of visual function in subjects with opsin mutations. Our study highlights the importance of high-resolution phenotyping to characterize cellular structure in inherited retinal disease; such information will be critical for selecting patients most likely to respond to therapeutic intervention and for establishing a baseline for

  11. Ectopic expression of cone-specific G-protein-coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses

    PubMed Central

    Vogalis, F; Shiraki, T; Kojima, D; Wada, Y; Nishiwaki, Y; Jarvinen, J L P; Sugiyama, J; Kawakami, K; Masai, I; Kawamura, S; Fukada, Y; Lamb, T D

    2011-01-01

    Abstract To investigate the roles of G-protein receptor kinases (GRKs) in the light responses of vertebrate photoreceptors, we generated transgenic zebrafish lines, the rods of which express either cone GRK (GRK7) or rod GRK (GRK1) in addition to the endogenous GRK1, and we then measured the electrophysiological characteristics of single-cell responses and the behavioural responses of intact animals. Our study establishes the zebrafish expression system as a convenient platform for the investigation of specific components of the phototransduction cascade. The addition of GRK1 led to minor changes in rod responses. However, exogenous GRK7 in GRK7-tg animals led to lowered rod sensitivity, as occurs in cones, but surprisingly to slower response kinetics. Examination of responses to long series of very dim flashes suggested the possibility that the GRK7-tg rods generated two classes of single-photon response, perhaps corresponding to the interaction of activated rhodopsin with GRK1 (giving a standard response) or with GRK7 (giving a very small response). Behavioural measurement of optokinetic responses (OKR) in intact GRK7-tg zebrafish larvae showed that the overall rod visual pathway was less sensitive, in accord with the lowered sensitivity of the rods. These results help provide an understanding for the molecular basis of the electrophysiological differences between cones and rods. PMID:21486791

  12. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.

    PubMed

    el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C

    1996-08-01

    Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.

  13. A-Si Photoreceptors At The Threshold Of Industrial Application

    NASA Astrophysics Data System (ADS)

    Senske, W.; Marschall, N.

    1986-03-01

    A-Si has become an attractive alternative for conventional electrophotographic photoreceptors. A-Si photoreceptors have been prepared by other laboratories by plasma deposition with blocking and protection layers. These photoreceptors are highly photosensitive and show low fatigue. Using sputtering we have shown that this technique is capable of produc-ing films with high charge acceptance. The increase of the deposition rate is presently un-der intensive investigation. High rates can be achieved by a higher degree of silane decomposition or by magnetron sputtering together with a higher power level. Deposition rates of more than 20 pm/h have been obtained by both techniques.

  14. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa.

    PubMed

    Tojo, Naoki; Nakamura, Tomoko; Fuchizawa, Chiharu; Oiwake, Toshihiko; Hayashi, Atsushi

    2013-01-01

    The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence. We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed. An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities. Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of patients with retinitis pigmentosa, which corresponded to changes in the optical coherence tomographic and fundus autofluorescence images.

  15. Variation of Cone Photoreceptor Packing Density with Retinal Eccentricity and Age

    PubMed Central

    Song, Hongxin; Chui, Toco Yuen Ping; Zhong, Zhangyi; Elsner, Ann E.

    2011-01-01

    Purpose. To study the variation of cone photoreceptor packing density across the retina in healthy subjects of different ages. Methods. High-resolution adaptive optics scanning laser ophthalmoscope (AOSLO) systems were used to systematically image the retinas of two groups of subjects of different ages. Ten younger subjects (age range, 22–35 years) and 10 older subjects (age range, 50–65 years) were tested. Strips of cone photoreceptors, approximately 12° × 1.8° long were imaged for each of the four primary retinal meridians: superior, inferior, nasal, and temporal. Cone photoreceptors within the strips were counted, and cone photoreceptor packing density was calculated. Statistical analysis (three-way ANOVA) was used to calculate the interaction for cone photoreceptor packing density between age, meridian, and eccentricity. Results. As expected, cone photoreceptor packing density was higher close to the fovea and decreased with increasing retinal eccentricity from 0.18 to 3.5 mm (∼0.6–12°). Older subjects had approximately 75% of the cone density at 0.18 mm (∼0.6°), and this difference decreased rapidly with eccentricity, with the two groups having similar cone photoreceptor packing densities beyond 0.5 mm retinal eccentricity on average. Conclusions. Cone packing density in the living human retina decreases as a function of age within the foveal center with the largest difference being found at our most central measurement site. At all ages, the retina showed meridional difference in cone densities, with cone photoreceptor packing density decreasing faster with increasing eccentricity in the vertical dimensions than in the horizontal dimensions. PMID:21724911

  16. Genetic Interaction of Centrosomin and Bazooka in Apical Domain Regulation in Drosophila Photoreceptor

    PubMed Central

    Chen, Geng; Rogers, Alicia K.; League, Garrett P.; Nam, Sang-Chul

    2011-01-01

    Background Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes' role in photoreceptor morphogenesis. Methodology/Principal Findings Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye development. This role of Cnn in apical domain modulation was further supported by Cnn's gain-of-function phenotype. Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens junctions (AJs). Conclusions/Significance These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the Drosophila photoreceptor. PMID:21253601

  17. CNGA3 Deficiency Affects Cone Synaptic Terminal Structure and Function and Leads to Secondary Rod Dysfunction and Degeneration

    PubMed Central

    Xu, Jianhua; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J.; Sherry, David M.

    2012-01-01

    Purpose. To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Methods. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3−/− mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. Results. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3−/− mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3−/− retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%–40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3−/− retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. Conclusions. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised. PMID:22247469

  18. Colored lenses suppress blue light-emitting diode light-induced damage in photoreceptor-derived cells.

    PubMed

    Hiromoto, Kaho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Tadokoro, Nobuyuki; Kaneko, Nobuyuki; Shimazawa, Masamitsu; Hara, Hideaki

    2016-03-01

    Blue light-emitting diodes (LEDs) in liquid crystal displays emit high levels of blue light, exposure to which is harmful to the retina. Here, we investigated the protective effects of colored lenses in blue LED light-induced damage to 661W photoreceptor-derived cells. We used eight kinds of colored lenses and one lens that reflects blue light. Moreover, we evaluated the relationship between the protective effects of the lens and the transmittance of lens at 464 nm. Lenses of six colors, except for the SY, PN, and reflective coating lenses, strongly decreased the reduction in cell damage induced by blue LED light exposure. The deep yellow lens showed the most protective effect from all the lenses, but the reflective coating lens and pink lens did not show any effects on photoreceptor-derived cell damage. Moreover, these results were correlated with the lens transmittance of blue LED light (464 nm). These results suggest that lenses of various colors, especially deep yellow lenses, may protect retinal photoreceptor cells from blue LED light in proportion to the transmittance for the wavelength of blue LED and the suppression of reactive oxygen species production and cell damage.

  19. Characterisation of the canine rod-cone dysplasia type one gene (rod photoreceptor cGMP phosphodiesterase beta subunit (PDEB)) - a model for human retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, P.J.M.; Gregory, C.Y.; Petersen-Jones, S.M.

    1994-09-01

    Rod-cone dysplasia type one (rod-1) is an early onset, autosomal recessive retinal dystrophy segregating in the Irish setter breed. It is a model for certain forms of human autosomal recessive retinitis pigmentosa (arRP) caused by mutations in the same gene, PDEB. We confirmed the codon 807 Trp to Stop mutation and were the first to show cosegregation of the mutant allele with disease in a pedigree. We believe that this currently represents the best animal model available for some aspects of arRP, since canine tissues are relatively easy to access compared to human and yet the canine eye is ofmore » comparable size, unlike that of the rd mouse. This facilitates therapeutic intervention particularly at the subretinal level. In order to more fully investigate this model we have been characterizing the PDEB gene in the normal dog. Using PCR we have partially mapped the intron/exon structure, demonstrating a very high degree of evolutionary conservation with the mouse and human genes. RT-PCR has been used to reveal expression in a variety of neural and non-neural tissues. A PCR product spanning exons 19 to 22 (which also contains the site for the rcd-1 mutation) is detected in retina but also in tissues such as visual cortex, cerebral cortex, cerebellum, lateral geniculate nucleus, adrenal gland, lung, kidney and ovary. All of these tissues gave a negative result with primers for rds/peripherin, a gene which is expressed in rods and cones. This raises interesting questions about the regulation of PDEB transcripts which is initially being investigated by Northern analysis. In addition, anchored PCR techniques have generated upstream genomic sequences and we are currently mapping the 5{prime} extent of the mRNA transcript in the retina. This will facilitate the analysis of potential upstream promoter elements involved in directing expression.« less

  20. Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors.

    PubMed

    Abrahan, Carolina E; Miranda, Gisela E; Agnolazza, Daniela L; Politi, Luis E; Rotstein, Nora P

    2010-02-01

    Oxidative stress is involved in inducing apoptosis of photoreceptors in many retinal neurodegenerative diseases. It has been shown that oxidative stress increases in photoreceptors the synthesis of ceramide, a sphingolipid precursor that then activates apoptosis. In several cell types, ceramide is converted by ceramidases to sphingosine (Sph), another apoptosis mediator; hence, this study was undertaken to determine whether Sph participates in triggering photoreceptor apoptosis. Rat retina neurons were incubated with [(3)H]palmitic acid and treated with the oxidant paraquat (PQ) to evaluate Sph synthesis. Sph was added to cultures with or without docosahexaenoic acid (DHA), the major retina polyunsaturated fatty acid and a photoreceptor survival factor, to evaluate apoptosis. Synthesis of Sph and sphingosine-1-phosphate (S1P), a prosurvival signal, were inhibited with alkaline ceramidase or sphingosine kinase inhibitors, respectively, before adding PQ, C(2)-ceramide, or Sph. Apoptosis, mitochondrial membrane polarization, cytochrome c localization, and reactive oxygen species (ROS) production were determined. PQ increased [(3)H]Sph synthesis in photoreceptors and blocking this synthesis by inhibiting alkaline ceramidase decreased PQ-induced apoptosis. Addition of Sph induced photoreceptor apoptosis, increased ROS production, and promoted cytochrome c release from mitochondria. Although DHA prevented this apoptosis, inhibiting Sph conversion to S1P blocked DHA protection. These results suggest that oxidative stress enhances formation of ceramide and its subsequent breakdown to Sph; ceramide and/or Sph would then trigger photoreceptor apoptosis. Preventing Sph synthesis or promoting its phosphorylation to S1P rescued photoreceptors, suggesting that Sph is a mediator of their apoptosis and modulation of Sph metabolism may be crucial for promoting photoreceptor survival.

  1. Freeze-fracture studies of photoreceptor membranes: new observations bearing upon the distribution of cholesterol

    PubMed Central

    1983-01-01

    We performed electron microscopy of replicas from freeze-fractured retinas exposed during or after fixation to the cholesterol-binding antibiotic, filipin. We observed characteristic filipin-induced perturbations throughout the disk and plasma membranes of retinal rod outer segments of various species. It is evident that a prolonged exposure to filipin in fixative enhances rather than reduces presumptive cholesterol detection in the vertebrate photoreceptor cell. In agreement with the pattern seen in our previous study (Andrews, L.D., and A. I. Cohen, 1979, J. Cell Biol., 81:215-228), filipin- binding in membranes exhibiting particle-free patches seemed largely confined to these patches. Favorably fractured photoreceptors exhibited marked filipin-binding in apical inner segment plasma membrane topologically confluent with and proximate to the outer segment plasma membrane, which was comparatively free of filipin binding. A possible boundary between these differing membrane domains was suggested in a number of replicas exhibiting lower filipin binding to the apical plasma membrane of the inner segment in the area surrounding the cilium. This area contains a structure (Andrews, L. D., 1982, Freeze- fracture studies of vertebrate photoreceptors, In Structure of the Eye, J. G. Hollyfield and E. Acosta Vidrio, editors, Elsevier/North-Holland, New York, 11-23) that resembles the active zones of the nerve terminals for the frog neuromuscular junction. These observations lead us to hypothesize that these structures may function to direct vesicle fusion to occur near them, in a domain of membrane more closely resembling outer than inner segment plasma membrane. The above evidence supports the views that (a) all disk membranes contain cholesterol, but the particle-free patches present in some disks trap cholesterol from contiguous particulate membrane regions; (b) contiguous inner and outer segment membranes may greatly differ in cholesterol content; and (c) the suggested

  2. CNG-Modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels

    PubMed Central

    Rebrik, Tatiana I.; Botchkina, Inna; Arshavsky, Vadim Y.; Craft, Cheryl M.; Korenbrot, Juan I.

    2012-01-01

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide gated ion channels (CNG channels). The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 amino acid protein that interacts with the N-terminus of the β-subunit of the cGMP-gated channel, and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxitilis). Immunohistochemistry and single cell PCR demonstrate that CNG-modulin is expressed in cone, but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP-dependence from ~91 μM in the absence of Ca2+ to ~332 μM in the presence of 20 μM Ca2+. At a fixed cGMP concentration, the midpoint of the Ca2+ dependence is ~857 nM Ca2+. These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca2+ with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca2+-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium and the inner ear and may modulate the function of ion channels in those tissues as well. PMID:22378887

  3. CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels.

    PubMed

    Rebrik, Tatiana I; Botchkina, Inna; Arshavsky, Vadim Y; Craft, Cheryl M; Korenbrot, Juan I

    2012-02-29

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide-gated (CNG) ion channels. The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 aa protein that interacts with the N terminus of the β subunit of the cGMP-gated channel and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxatilis). Immunohistochemistry and single-cell PCR demonstrate that CNG-modulin is expressed in cone but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP dependence from ∼91 μM in the absence of Ca(2+) to ∼332 μM in the presence of 20 μM Ca(2+). At a fixed cGMP concentration, the midpoint of the Ca(2+) dependence is ∼857 nM Ca(2+). These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca(2+) with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca(2+)-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium, and the inner ear, and may modulate the function of ion channels in those tissues as well.

  4. Integrity of the Cone Photoreceptor Mosaic in Oligocone Trichromacy

    PubMed Central

    Rha, Jungtae; Dees, Elise W.; Baraas, Rigmor C.; Wagner-Schuman, Melissa L.; Mollon, John D.; Dubis, Adam M.; Andersen, Mette K. G.; Rosenberg, Thomas; Larsen, Michael; Moore, Anthony T.

    2011-01-01

    Purpose. Oligocone trichromacy (OT) is an unusual cone dysfunction syndrome characterized by reduced visual acuity, mild photophobia, reduced amplitude of the cone electroretinogram with normal rod responses, normal fundus appearance, and normal or near-normal color vision. It has been proposed that these patients have a reduced number of normal functioning cones (oligocone). This paper has sought to evaluate the integrity of the cone photoreceptor mosaic in four patients previously described as having OT. Methods. Retinal images were obtained from two brothers (13 and 15 years) and two unrelated subjects, one male (47 years) and one female (24 years). High-resolution images of the cone mosaic were obtained using high-speed adaptive optics (AO) fundus cameras. Visible structures were analyzed for density using custom software. Additional retinal images were obtained using spectral domain optical coherence tomography (SD-OCT), and the four layers of the photoreceptor-retinal pigment epithelium complex (ELM, IS/OS, RPE1, RPE2) were evaluated. Cone photoreceptor length and the thickness of intraretinal layers were measured and compared to previously published normative data. Results. The adult male subject had infantile onset nystagmus while the three other patients did not. In the adult male patient, a normal appearing cone mosaic was observed. However, the three other subjects had a sparse mosaic of cones remaining at the fovea, with no structure visible outside the central fovea. On SD-OCT, the adult male subject had a very shallow foveal pit, with all major retinal layers being visible, and both inner segment (IS) and outer segment (OS) length were within normal limits. In the other three patients, while all four layers were visible in the central fovea and IS length was within normal limits, the OS length was significantly decreased. Peripherally the IS/OS layer decreased in intensity, and the RPE1 layer was no longer discernable, in keeping with the lack of cone

  5. Photoreceptor dystrophy in the RCS rat: roles of oxygen, debris, and bFGF.

    PubMed

    Valter, K; Maslim, J; Bowers, F; Stone, J

    1998-11-01

    To examine the roles of oxygen, basic fibroblast growth factor (bFGF), and photoreceptor debris in the photoreceptor dystrophy of the Royal College of Surgeons (RCS) rat. Pups were exposed during the critical period of their development (postnatal day [P] 16-24) and for some days thereafter to hypoxia and hyperoxia. The effects of these exposures on photoreceptor death, debris accumulation in the subretinal space, and the expression of bFGF protein and mRNA by surviving cells were studied. During the critical period hyperoxia slowed photoreceptor death in a dose-related fashion and decreased bFGF protein levels, whereas hypoxia accelerated death and increased bFGF levels. At the edges of the retina, where photoreceptors survive longest in normoxia, hypoxia had little effect on either photoreceptor death or bFGF protein levels. Oxygen-induced modulation of rates of death could not be related to the accumulation of debris in the subretinal space. After P27, the relationship between oxygen and photoreceptor death changed markedly, hyperoxia no longer delaying and hypoxia no longer accelerating death. The death of RCS rat photoreceptors in the period P16 to P27 is precipitated by hypoxia that may result from the accumulation of photoreceptor debris in the subretinal space. This debris, the result of the phagocytotic failure of the retinal pigment epithelium in this strain, lies in the normal pathway of oxygen diffusing to the photoreceptors from the choriocapillaris. During this period the retina responds to hypoxia by increasing expression of a potentially protective protein (bFGF), but hypoxia-induced damage overwhelms any protection provided by this or other mechanisms. Later stages of the dystrophy may not be hypoxia-induced.

  6. Intraocular gene transfer of ciliary neurotrophic factor rescues photoreceptor degeneration in RCS rats.

    PubMed

    Huang, Shun-Ping; Lin, Po-Kang; Liu, Jorn-Hon; Khor, Chin-Ni; Lee, Yih-Jing

    2004-01-01

    Ciliary neurotrophic factor (CNTF) is known as an important factor in the regulation of retinal cell growth. We used both recombinant CNTF and an adenovirus carrying the CNTF gene to regulate retinal photoreceptor expression in a retinal degenerative animal, Royal College of Surgeons (RCS) rats. Cells in the outer nuclear layer of the retinae from recombinant-CNTF-treated, adenoviral-CNTF-treated, saline-operated, and contralateral untreated preparations were examined for those exhibiting CNTF photoreceptor protective effects. Cell apoptosis in the outer nuclear layer of the retinae was also detected. It was found that CNTF had a potent effect on delaying the photoreceptor degeneration process in RCS rats. Furthermore, adenovirus CNTF gene transfer was proven to be better at rescuing photoreceptors than that when using recombinant CNTF, since adenoviral CNTF prolonged the photoreceptor protection effect. The function of the photoreceptors was also examined by taking electroretinograms of different animals. Adenoviral-CNTF-treated eyes showed better retinal function than did the contralateral control eyes. This study indicates that adenoviral CNTF effectively rescues degenerating photoreceptors in RCS rats. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  7. Roles of glucose in photoreceptor survival.

    PubMed

    Chertov, Andrei O; Holzhausen, Lars; Kuok, Iok Teng; Couron, Drew; Parker, Ed; Linton, Jonathan D; Sadilek, Martin; Sweet, Ian R; Hurley, James B

    2011-10-07

    Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.

  8. Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development

    PubMed Central

    Rosa, Juliana M.; Morrie, Ryan D.; Baertsch, Hans C.

    2016-01-01

    Direction selectivity is a robust computation across a broad stimulus space that is mediated by activity of both rod and cone photoreceptors through the ON and OFF pathways. However, rods, S-cones, and M-cones activate the ON and OFF circuits via distinct pathways and the relative contribution of each to direction selectivity is unknown. Using a variety of stimulation paradigms, pharmacological agents, and knockout mice that lack rod transduction, we found that inputs from the ON pathway were critical for strong direction-selective (DS) tuning in the OFF pathway. For UV light stimulation, the ON pathway inputs to the OFF pathway originated with rod signaling, whereas for visible stimulation, the ON pathway inputs to the OFF pathway originated with both rod and M-cone signaling. Whole-cell voltage-clamp recordings revealed that blocking the ON pathway reduced directional tuning in the OFF pathway via a reduction in null-side inhibition, which is provided by OFF starburst amacrine cells (SACs). Consistent with this, our recordings from OFF SACs confirmed that signals originating in the ON pathway contribute to their excitation. Finally, we observed that, for UV stimulation, ON contributions to OFF DS tuning matured earlier than direct signaling via the OFF pathway. These data indicate that the retina uses multiple strategies for computing DS responses across different colors and stages of development. SIGNIFICANCE STATEMENT The retina uses parallel pathways to encode different features of the visual scene. In some cases, these distinct pathways converge on circuits that mediate a distinct computation. For example, rod and cone pathways enable direction-selective (DS) ganglion cells to encode motion over a wide range of light intensities. Here, we show that although direction selectivity is robust across light intensities, motion discrimination for OFF signals is dependent upon ON signaling. At eye opening, ON directional tuning is mature, whereas OFF DS tuning is

  9. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors

    PubMed Central

    Tam, Shu K. E.; Hasan, Sibah; Hughes, Steven; Hankins, Mark W.; Foster, Russell G.; Bannerman, David M.

    2016-01-01

    Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless–coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance. PMID:28003454

  10. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors.

    PubMed

    Tam, Shu K E; Hasan, Sibah; Hughes, Steven; Hankins, Mark W; Foster, Russell G; Bannerman, David M; Peirson, Stuart N

    2016-12-28

    Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless-coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance. © 2016 The Authors.

  11. In-vivo imaging of photoreceptor structure and laser injury pathophysiology in the snake eye

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Elliot, Rowe; Li, Guo; Akers, Andre; Edsall, Peter R.; Stuck, Bruce E.

    1999-06-01

    Confocal scanning laser ophthalmoscopy (CSLO) combined with the high numerical aperture of the snake eye was used to evaluate laser injury at the photoreceptor and vascular retinal layers. An Argon laser source focused within a 35 micron retinal spot was used to produce a range of exposures from 152 to 1000 μjoules in the retinas of the Checkered Garter and Great Plains Rat snake. Anesthesia was induced with ketamine and xylazine. In vivo exposure sites measured post exposure showed unique photoreceptor damage characterized by surviving photoreceptors that were highly reflective and saturated, swollen and revealed more complex mode structure than normal photoreceptors when imaged under higher magnification. Evidence of oxidative stress was observed in photoreceptor cells peripheral to the lesion site as a late developing fluorescence (1-2 hour post exposure) following injection of Dichlorodihydrofluorescein diacetate, a marker of oxidative stress. At the anterior retina, acute exposure produced `sticky' blood cells, identified as leukocytes with Acridine orange. These findings indicate that laser retinal injury in large eyes, such as the human eye may involve pathophysiological cellular dynamics in both posterior and anterior retina and in normal retina adjacent to lesion sites. Photoreceptor movement outside the lesion site may relate to alterations in photoreceptor orientation and the efficiency of the photoreceptors quantal catch.

  12. Drosophila Fatty Acid Transport Protein Regulates Rhodopsin-1 Metabolism and Is Required for Photoreceptor Neuron Survival

    PubMed Central

    Dourlen, Pierre; Bertin, Benjamin; Chatelain, Gilles; Robin, Marion; Napoletano, Francesco; Roux, Michel J.; Mollereau, Bertrand

    2012-01-01

    Tight regulation of the visual response is essential for photoreceptor function and survival. Visual response dysregulation often leads to photoreceptor cell degeneration, but the causes of such cell death are not well understood. In this study, we investigated a fatty acid transport protein (fatp) null mutation that caused adult-onset and progressive photoreceptor cell death. Consistent with fatp having a role in the retina, we showed that fatp is expressed in adult photoreceptors and accessory cells and that its re-expression in photoreceptors rescued photoreceptor viability in fatp mutants. The visual response in young fatp-mutant flies was abnormal with elevated electroretinogram amplitudes associated with high levels of Rhodopsin-1 (Rh1). Reducing Rh1 levels in rh1 mutants or depriving flies of vitamin A rescued photoreceptor cell death in fatp mutant flies. Our results indicate that fatp promotes photoreceptor survival by regulating Rh1 abundance. PMID:22844251

  13. Mapping networks of light-dark transition in LOV photoreceptors.

    PubMed

    Kaur Grewal, Rajdeep; Mitra, Devrani; Roy, Soumen

    2015-11-15

    In optogenetics, designing modules of long or short signaling state lifetime is necessary for control over precise cellular events. A critical parameter for designing artificial or synthetic photoreceptors is the signaling state lifetime of photosensor modules. Design and engineering of biologically relevant artificial photoreceptors is based on signaling mechanisms characteristic of naturally occurring photoreceptors. Therefore identifying residues important for light-dark transition is a definite first step towards rational design of synthetic photoreceptors. A thorough grasp of detailed mechanisms of photo induced signaling process would be immensely helpful in understanding the behaviour of organisms. Herein, we introduce the technique of differential networks. We identify key biological interactions, using light-oxygen-voltage domains of all organisms whose dark and light state crystal structures are simultaneously available. Even though structural differences between dark and light states are subtle (other than the covalent bond formation between flavin chromophore and active site Cysteine), our results successfully capture functionally relevant residues and are in complete agreement with experimental findings from literature. Additionally, using sequence-structure alignments, we predict functional significance of interactions found to be important from network perspective yet awaiting experimental validation. Our approach would not only help in minimizing extensive photo-cycle kinetics procedure but is also helpful in providing first-hand information on the fundamentals of photo-adaptation and rational design of synthetic photoreceptors in optogenetics. devrani.dbs@presiuniv.ac.in or soumen@jcbose.ac.in Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The evolution of early vertebrate photoreceptors.

    PubMed

    Collin, Shaun P; Davies, Wayne L; Hart, Nathan S; Hunt, David M

    2009-10-12

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.

  15. Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease

    PubMed Central

    Beltran, William A.; Cideciyan, Artur V.; Iwabe, Simone; Swider, Malgorzata; Kosyk, Mychajlo S.; McDaid, Kendra; Martynyuk, Inna; Ying, Gui-Shuang; Shaffer, James; Deng, Wen-Tao; Boye, Sanford L.; Lewin, Alfred S.; Hauswirth, William W.; Jacobson, Samuel G.; Aguirre, Gustavo D.

    2015-01-01

    Inherited retinal degenerations cause progressive loss of photoreceptor neurons with eventual blindness. Corrective or neuroprotective gene therapies under development could be delivered at a predegeneration stage to prevent the onset of disease, as well as at intermediate-degeneration stages to slow the rate of progression. Most preclinical gene therapy successes to date have been as predegeneration interventions. In many animal models, as well as in human studies, to date, retinal gene therapy administered well after the onset of degeneration was not able to modify the rate of progression even when successfully reversing dysfunction. We evaluated consequences of gene therapy delivered at intermediate stages of disease in a canine model of X-linked retinitis pigmentosa (XLRP) caused by a mutation in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene. Spatiotemporal natural history of disease was defined and therapeutic dose selected based on predegeneration results. Then interventions were timed at earlier and later phases of intermediate-stage disease, and photoreceptor degeneration monitored with noninvasive imaging, electrophysiological function, and visual behavior for more than 2 y. All parameters showed substantial and significant arrest of the progressive time course of disease with treatment, which resulted in long-term improved retinal function and visual behavior compared with control eyes. Histology confirmed that the human RPGR transgene was stably expressed in photoreceptors and associated with improved structural preservation of rods, cones, and ON bipolar cells together with correction of opsin mislocalization. These findings in a clinically relevant large animal model demonstrate the long-term efficacy of RPGR gene augmentation and substantially broaden the therapeutic window for intervention in patients with RPGR-XLRP. PMID:26460017

  16. Laser induced photoreceptor damage and recovery in the high numerical aperture eye of the garter snake.

    PubMed

    Zwick, H; Edsall, P; Stuck, B E; Wood, E; Elliott, R; Cheramie, R; Hacker, H

    2008-02-01

    The garter snake provides a unique model for in-vivo imaging of photoreceptor damage induced by laser retinal exposure. Laser thermal/mechanical retinal injury induced alterations in photoreceptor structure and leukocyte cellular behavior. Photoreceptors turned white, lost mode structure, and swelled; leukocyte activity was observed in the vicinity of photoreceptor cells. Non-thermal alterations were identified with a bio-tag for oxidative stress. Mechanisms of photoreceptor recovery and replacement were observed and evaluated for active cytoskeletal systems by using an anti-actin tag that could detect the presence of active cytoskeletal systems resident in photoreceptors as well as other retinal systems.

  17. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.

    PubMed

    Gunkel, Monika; Schöneberg, Johannes; Alkhaldi, Weaam; Irsen, Stephan; Noé, Frank; Kaupp, U Benjamin; Al-Amoudi, Ashraf

    2015-04-07

    The visual pigment rhodopsin belongs to the family of G protein-coupled receptors that can form higher oligomers. It is controversial whether rhodopsin forms oligomers and whether oligomers are functionally relevant. Here, we study rhodopsin organization in cryosections of dark-adapted mouse rod photoreceptors by cryoelectron tomography. We identify four hierarchical levels of organization. Rhodopsin forms dimers; at least ten dimers form a row. Rows form pairs (tracks) that are aligned parallel to the disk incisures. Particle-based simulation shows that the combination of tracks with fast precomplex formation, i.e. rapid association and dissociation between inactive rhodopsin and the G protein transducin, leads to kinetic trapping: rhodopsin first activates transducin from its own track, whereas recruitment of transducin from other tracks proceeds more slowly. The trap mechanism could produce uniform single-photon responses independent of rhodopsin lifetime. In general, tracks might provide a platform that coordinates the spatiotemporal interaction of signaling molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.

    PubMed

    Aher, Avinash J; McKeefry, Declan J; Parry, Neil R A; Maguire, John; Murray, I J; Tsai, Tina I; Huchzermeyer, Cord; Kremers, Jan

    2018-02-01

    To study how rod- and cone-driven responses depend on stimulus size in normal subjects and patients with retinitis pigmentosa (RP), and to show that comparisons between responses to full-field (FF) and smaller stimuli can be useful in diagnosing and monitoring disorders of the peripheral retina without the need for lengthy dark adaptation periods. The triple silent substitution technique was used to isolate L-cone-, M-cone- and rod-driven ERGs with 19, 18 and 33% photoreceptor contrasts, respectively, under identical mean luminance conditions. Experiments were conducted on five normal subjects and three RP patients. ERGs on control subjects were recorded at nine different temporal frequencies (between 2 and 60 Hz) for five different stimulus sizes: FF, 70°, 60°, 50° and 40° diameter circular stimuli. Experiments on RP patients involved rod- and L-cone-driven ERG measurements with FF and 40° stimuli at 8 and 48 Hz. Response amplitudes were defined as those of the first harmonic component after Fourier analysis. In normal subjects, rod-driven responses displayed a fundamentally different behavior than cone-driven responses, particularly at low temporal frequencies. At low and intermediate temporal frequencies (≤ 12 Hz), rod-driven signals increased by a factor of about four when measured with smaller stimuli. In contrast, L- and M-cone-driven responses in this frequency region did not change substantially with stimulus size. At high temporal frequencies (≥ 24 Hz), both rod- and cone-driven response amplitudes decreased with decreasing stimulus size. Signals obtained from rod-isolating stimuli under these conditions are likely artefactual. Interestingly, in RP patients, both rod-driven and L-cone-driven ERGs were similar using 40° and FF stimuli. The increased responses with smaller stimuli in normal subjects to rod-isolating stimuli indicate that a fundamentally different mechanism drives the ERGs in comparison with the cone-driven responses. We

  19. Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images.

    PubMed

    Lazareva, Anfisa; Liatsis, Panos; Rauscher, Franziska G

    2016-01-01

    Automated analysis of retinal images plays a vital role in the examination, diagnosis, and prognosis of healthy and pathological retinas. Retinal disorders and the associated visual loss can be interpreted via quantitative correlations, based on measurements of photoreceptor loss. Therefore, it is important to develop reliable tools for identification of photoreceptor cells. In this paper, an automated algorithm is proposed, based on the use of the Hessian-Laplacian of Gaussian filter, which allows enhancement and detection of photoreceptor cells. The performance of the proposed technique is evaluated on both synthetic and high-resolution retinal images, in terms of packing density. The results on the synthetic data were compared against ground truth as well as cone counts obtained by the Li and Roorda algorithm. For the synthetic datasets, our method showed an average detection accuracy of 98.8%, compared to 93.9% for the Li and Roorda approach. The packing density estimates calculated on the retinal datasets were validated against manual counts and the results obtained by a proprietary software from Imagine Eyes and the Li and Roorda algorithm. Among the tested methods, the proposed approach showed the closest agreement with manual counting.

  20. Steroidal and nonsteroidal antiinflammatory medications can improve photoreceptor survival after laser retinal photocoagulation.

    PubMed

    Brown, Jeremiah; Hacker, Henry; Schuschereba, Steven T; Zwick, Harry; Lund, David J; Stuck, Bruce E

    2007-10-01

    To determine whether methylprednisolone or indomethacin can enhance photoreceptor survival after laser retinal injury in an animal model. Experimental study. Twenty rhesus monkeys. Twenty rhesus monkeys (Macaca mulatta) received a grid of argon green (514.5 nm, 10 ms) laser lesions in the macula of the right eye and a grid of neodymium:yttrium-aluminum-garnet (Nd:YAG; 1064 nm, 10 ns) lesions in the macula of the left eye, followed by randomization to 2 weeks of treatment in 1 of 4 treatment groups: high-dose methylprednisolone, moderate-dose methylprednisolone, indomethacin, or control. The lesions were assessed at day 1, day 14, 2 months, and 4 months. The authors were masked to the treatment group. This report discusses the histologic results of ocular tissue harvested at 4 months. The number of surviving photoreceptor cell nuclei within each lesion was compared with the number of photoreceptor nuclei in surrounding unaffected retina. The proportion of surviving photoreceptor nuclei was compared between each treatment group. Argon retinal lesions in the high-dose steroid treatment group and the indomethacin treatment group demonstrated improved photoreceptor survival compared with the control group (P = 0.004). Hemorrhagic Nd:YAG lesions demonstrated improved survivability with indomethacin treatment compared with controls (P = 0.003). In nonhemorrhagic Nd:YAG laser retinal lesions, the lesions treated with moderate-dose steroids demonstrated improved photoreceptor survival compared with the control group (P = 0.004). Based on histologic samples of retinal laser lesions 4 months after injury, treatment with indomethacin resulted in improved photoreceptor survival in argon laser lesions and hemorrhagic Nd:YAG laser lesions. Treatment with systemic methylprednisolone demonstrated improved photoreceptor survival in argon retinal lesions and in nonhemorrhagic Nd:YAG lesions.

  1. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lau, Timothy; Hatzikirou, Haralampos; Meyer-Hermann, Michael; Corbo, Joseph C.; Torquato, Salvatore

    2014-02-01

    Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their photoreceptor patterns are not perfectly regular. By analyzing the chicken cone photoreceptor system consisting of five different cell types using a variety of sensitive microstructural descriptors, we find that the disordered photoreceptor patterns are "hyperuniform" (exhibiting vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified in a unique subset of physical systems, but had never been observed in any living organism. Remarkably, the patterns of both the total population and the individual cell types are simultaneously hyperuniform. We term such patterns "multihyperuniform" because multiple distinct subsets of the overall point pattern are themselves hyperuniform. We have devised a unique multiscale cell packing model in two dimensions that suggests that photoreceptor types interact with both short- and long-ranged repulsive forces and that the resultant competition between the types gives rise to the aforementioned singular spatial features characterizing the system, including multihyperuniformity. These findings suggest that a disordered hyperuniform pattern may represent the most uniform sampling arrangement attainable in the avian system, given intrinsic packing constraints within the photoreceptor epithelium. In addition, they show how fundamental physical constraints can change the course of a biological optimization process. Our results suggest that multihyperuniform disordered structures have implications for the design of materials with novel physical properties and therefore may represent a fruitful area for future

  2. Tauroursodeoxycholic Acid (TUDCA) Protects Photoreceptors from Cell Death after Experimental Retinal Detachment

    PubMed Central

    Mantopoulos, Dimosthenis; Murakami, Yusuke; Comander, Jason; Thanos, Aristomenis; Roh, Miin; Miller, Joan W.; Vavvas, Demetrios G.

    2011-01-01

    Background Detachment of photoreceptors from the underlying retinal pigment epithelium is seen in various retinal disorders such as retinal detachment and age-related macular degeneration and leads to loss of photoreceptors and vision. Pharmacologic inhibition of photoreceptor cell death may prevent this outcome. This study tests whether systemic administration of tauroursodeoxycholic acid (TUDCA) can protect photoreceptors from cell death after experimental retinal detachment in rodents. Methodology/Principal Findings Retinal detachment was created in rats by subretinal injection of hyaluronic acid. The animals were treated daily with vehicle or TUDCA (500 mg/kg). TUNEL staining was used to evaluate cell death. Photoreceptor loss was evaluated by measuring the relative thickness of the outer nuclear layer (ONL). Macrophage recruitment, oxidative stress, cytokine levels, and caspase levels were also quantified. Three days after detachment, TUDCA decreased the number of TUNEL-positive cells compared to vehicle (651±68/mm2 vs. 1314±68/mm2, P = 0.001) and prevented the reduction of ONL thickness ratio (0.84±0.03 vs. 0.65±0.03, P = 0.002). Similar results were obtained after 5 days of retinal detachment. Macrophage recruitment and expression levels of TNF-a and MCP-1 after retinal detachment were not affected by TUDCA treatment, whereas increases in activity of caspases 3 and 9 as well as carbonyl-protein adducts were almost completely inhibited by TUDCA treatment. Conclusions/Significance Systemic administration of TUDCA preserved photoreceptors after retinal detachment, and was associated with decreased oxidative stress and caspase activity. TUDCA may be used as a novel therapeutic agent for preventing vision loss in diseases that are characterized by photoreceptor detachment. PMID:21961034

  3. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. © 2015 International Society for Neurochemistry.

  4. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  5. Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica.

    PubMed

    Burton, Brian G; Laughlin, Simon B

    2003-11-01

    Male houseflies use a sex-specific frontal eye region, the lovespot, to detect and pursue mates. We recorded the electrical responses of photoreceptors to optical stimuli that simulate the signals received by a male or female photoreceptor as a conspecific passes through its field of view. We analysed the ability of male and female frontal photoreceptors to code conspecifics over the range of speeds and distances encountered during pursuit, and reconstructed the neural images of these targets in photoreceptor arrays. A male's lovespot photoreceptor detects a conspecific at twice the distance of a female photoreceptor, largely through better optics. This detection distance greatly exceeds those reported in previous behavioural studies. Lovespot photoreceptors respond more strongly than female photoreceptors to targets tracked during pursuit, with amplitudes reaching 25 mV. The male photoreceptor also has a faster response, exhibits a unique preference for stimuli of 20-30 ms duration that selects for conspecifics and deblurs moving images with response transients. White-noise analysis substantially underestimates these improvements. We conclude that in the lovespot, both optics and phototransduction are specialised to enhance and deblur the neural images of moving targets, and propose that analogous mechanisms may sharpen the neural image still further as it is transferred to visual interneurones.

  6. Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells.

    PubMed

    Thumann, Gabriele; Salz, Anna Katharina; Walter, Peter; Johnen, Sandra

    2009-03-01

    To examine whether iris pigment epithelial (IPE) cells transplanted into the subretinal space of Royal College of Surgeons (RCS) rats have the ability to rescue photoreceptors. Rat IPE (rIPE) or human IPE (hIPE) cells were transplanted subretinally in 23-day-old RCS rats. Sham injection and transplantation of ARPE-19 cells served as controls. After 12 weeks, eyes were evaluated for photoreceptor survival by morphometric analysis and electron microscopy. Morphometric analysis showed photoreceptor rescue in all transplanted and sham-injected animals (number of photoreceptors/300 microm retina+/-sd: rIPE 41.67 +/- 28; hIPE 29.50 +/- 16; ARPE-19 36.12 +/- 21; sham 16.56 +/- 6) compared to age-matched, control rats (number of photoreceptors/300 microm retina+/-sd: 9.71 +/- 4). Photoreceptor rescue was prominent in IPE cell-transplanted rats and was significantly greater than sham-injected eyes (p = 0.02 for rIPE and p = 0.04 for hIPE). Since IPE cells transplanted into the subretinal space have the ability to rescue photoreceptors from degeneration in the RCS rat without any harmful effects, IPE cells may represent an ideal cell to genetically modify and thus carry essential genetic information for the repair of defects in the subretinal space.

  7. Genome Editing to Study Ca2+ Homeostasis in Zebrafish Cone Photoreceptors.

    PubMed

    Brockerhoff, Susan E

    2017-01-01

    Photoreceptors are specialized sensory neurons with unique biological features. Phototransduction is well understood due in part to the exclusive expression and function of the molecular components of this cascade. Many other processes are less well understood, but also extremely important for understanding photoreceptor function and for treating disease. One example is the role of Ca 2+ in the cell body and overall compartmentalization and regulation of Ca 2+ within the cell. The recent development of CRISPR/Cas9 genome editing techniques has made it possible to rapidly and cheaply alter specific genes. This will help to define the biological function of elusive processes that have been more challenging to study. CRISPR/Cas9 has been optimized in many systems including zebrafish, which already has some distinct advantages for studying photoreceptor biology and function. These new genome editing technologies and the continued use of the zebrafish model system will help advance our understanding of important understudied aspects of photoreceptor biology.

  8. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

    PubMed Central

    Zieger, Marina; Punzo, Claudio

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199

  9. Idiopathic multifocal choroiditis/punctate inner choroidopathy with acute photoreceptor loss or dysfunction out of proportion to clinically visible lesions

    PubMed Central

    Munk, Marion R.; Jung, Jesse J.; Biggee, Kristin; Tucker, William R.; Sen, H. Nida; Schmidt-Erfurth, Ursula; Fawzi, Amani A.; Jampol, Lee M.

    2014-01-01

    Purpose To report acute/subacute vision loss and paracentral scotomata in patients with idiopathic multifocal choroiditis/punctate inner choroidopathy (MFC/PIC) due to large zones of acute photoreceptor attenuation surrounding the chorioretinal lesions. Methods Multimodal-imaging case-series Results Six females and 2 males were included (mean age 31.5±5.8 years). Vision ranged from 20/20-1 to hand motion (mean 20/364). SD-OCT demonstrated extensive attenuation of the external limiting membrane (ELM), ellipsoid and interdigitation zones, adjacent to the visible MFC/PIC lesions. The corresponding areas were hyperautofluorescent on fundus-autofluorescence (FAF), and were associated with corresponding visual field defects. Full-field ERG (available in 3 cases) showed markedly decreased cone/rod response and multifocal ERG revealed reduced amplitudes and increased implicit times in 2 cases. Three patients received no treatment, the remaining were treated with oral corticosteroids (n=4), oral acyclovir/valacyclovir (n=2), intravitreal/posterior subtenon triamcinolone-acetate (n=3) and anti-VEGF (n=2). Visual recovery occurred in only 3 cases, of whom 2 were treated. Varying morphological recovery was found in 6 cases, associated with decrease in hyperautofluorescence on FAF. Conclusions MFC/PIC can present with transient or permanent central photoreceptor attenuation/loss. This presentation is likely a variant of MFC/PIC with chorioretinal atrophy. Associated changes are best evaluated using multimodal imaging. PMID:25322466

  10. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa.

    PubMed

    Clérin, Emmanuelle; Wicker, Nicolas; Mohand-Saïd, Saddek; Poch, Olivier; Sahel, José-Alain; Léveillard, Thierry

    2011-12-20

    Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. The automated platform ℮-conome used here for retinal disease is a tool that

  11. Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants.

    PubMed

    Ogawa, Yuri; Falkowski, Marcin; Narendra, Ajay; Zeil, Jochen; Hemmi, Jan M

    2015-06-07

    Ants are thought to be special among Hymenopterans in having only dichromatic colour vision based on two spectrally distinct photoreceptors. Many ants are highly visual animals, however, and use vision extensively for navigation. We show here that two congeneric day- and night-active Australian ants have three spectrally distinct photoreceptor types, potentially supporting trichromatic colour vision. Electroretinogram recordings show the presence of three spectral sensitivities with peaks (λmax) at 370, 450 and 550 nm in the night-active Myrmecia vindex and peaks at 370, 470 and 510 nm in the day-active Myrmecia croslandi. Intracellular electrophysiology on individual photoreceptors confirmed that the night-active M. vindex has three spectral sensitivities with peaks (λmax) at 370, 430 and 550 nm. A large number of the intracellular recordings in the night-active M. vindex show unusually broad-band spectral sensitivities, suggesting that photoreceptors may be coupled. Spectral measurements at different temporal frequencies revealed that the ultraviolet receptors are comparatively slow. We discuss the adaptive significance and the probability of trichromacy in Myrmecia ants in the context of dim light vision and visual navigation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Defining the Catalytic Activity of Nanoceria in the P23H-1 Rat, a Photoreceptor Degeneration Model

    PubMed Central

    Wong, Lily L.; Pye, Quentin N.; Chen, Lijuan; Seal, Sudipta; McGinnis, James F.

    2015-01-01

    Purpose Inorganic catalytic nanoceria or cerium oxide nanoparticles (CeNPs) are bona fide antioxidants that possess regenerative radical scavenging activities in vitro. Previously, we demonstrated that CeNPs had neuroprotective and anti-angiogenic properties in rodent retinal degeneration and neovascularization models. However, the cellular mechanisms and duration of the catalytic activity of CeNPs in preventing photoreceptor cell loss are still unknown. In this study, we sought to answer these questions using the P23H-1 rat, an autosomal dominant retinitis pigmentosa (adRP) model. Methods A single dose of either saline or CeNPs was delivered intravitreally into the eyes of P23H-1 rats at 2–3 weeks of age. Retinal functions were examined at 3 to 7 weeks post injection. We quantified retinal proteins by Western blot analyses and counted the number of apoptotic (TUNEL+) profiles in the outer nuclear layer (ONL) of retinal sections. We measured free 8-isoprostanes to quantify lipid peroxidation in retinal tissues. Results We observed increased rod and cone cell functions up to three weeks post injection. Apoptotic cells were reduced by 46%, 56%, 21%, and 24% at 3, 7, 14, 21 days, respectively, after CeNPs injection compared to saline. Additionally, reduction of lipid peroxidation in the retinas of CeNPs-treated vs saline-treated animals was detected 14 days post injection. Conclusions We validated that CeNPs were effective in delaying loss of photoreceptor cell function in an adRP rat model. This represents the fourth rodent retinal disease model that shows delay in disease progression after a single application of CeNPs. We further demonstrated that CeNPs slowed the rate of photoreceptor cell death. We deduced that the catalytic activity of CeNPs in vivo in this rat model to be undiminished for at least 7 days and then declined over the next 14 days after CeNPs administration. PMID:25822196

  13. Arap1 Deficiency Causes Photoreceptor Degeneration in Mice.

    PubMed

    Moshiri, Ala; Humpal, Devin; Leonard, Brian C; Imai, Denise M; Tham, Addy; Bower, Lynette; Clary, Dave; Glaser, Thomas M; Lloyd, K C Kent; Murphy, Christopher J

    2017-03-01

    Small guanosine triphosphatase (GTPase) ADP-ribosylation factors (Arfs) regulate membrane traffic and actin reorganization under the control of GTPase-activating proteins (GAPs). Arap1 is an Arf-directed GAP that inhibits the trafficking of epidermal growth factor receptor (EGFR) to the early endosome, but the diversity of its functions is incompletely understood. The aim of this study was to determine the role of Arap1 in the mammalian retina. Genetically engineered Arap1 knockout mice were screened for ocular abnormalities in the National Institutes of Health Knockout Mouse Production and Phenotyping (KOMP2) Project. Arap1 knockout and wild-type eyes were imaged using optical coherence tomography and fundus photography, and analyzed by immunohistochemistry. Arap1-/- mice develop a normal appearing retina, but undergo photoreceptor degeneration starting at 4 weeks postnatal age. The fundus appearance of mutants is notable for pigmentary changes, optic nerve pallor, vascular attenuation, and outer retinal thinning, reminiscent of retinitis pigmentosa in humans. Immunohistochemical studies suggest the cell death is predominantly in the outer nuclear layer. Functional evaluation of the retina by electroretinography reveals amplitudes are reduced. Arap1 is detected most notably in Müller glia, and not in photoreceptors, implicating a role for Müller glia in photoreceptor survival. Arap1 is necessary for normal photoreceptor survival in mice, and may be a novel gene relevant to human retinal degenerative processes, although its mechanism is unknown. Further studies in this mouse model of retinal degeneration will give insights into the cellular functions and signaling pathways in which Arap1 participates.

  14. Stochastic, adaptive sampling of information by microvilli in fly photoreceptors.

    PubMed

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A; Coca, Daniel; Hardie, Roger C; Juusola, Mikko

    2012-08-07

    In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (~100-200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors

    PubMed Central

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A.; Coca, Daniel; Hardie, Roger C.; Juusola, Mikko

    2012-01-01

    Summary Background In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. Results We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. Conclusions These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. PMID:22704990

  16. Photoreceptor perturbation around subretinal drusenoid deposits revealed by adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Zhang, Yuhua; Wang, Xiaolin; Rivero, Ernesto Blanco; Clark, Mark E; Witherspoon, Clark Douglas; Spaide, Richard F; Girkin, Christopher A.; Owsley, Cynthia; Curcio, Christine A.

    2014-01-01

    Purpose To describe the microscopic structure of photoreceptors impacted by subretinal drusenoid deposits, also called pseudodrusen, an extracellular lesion associated with age-related macular degeneration (AMD), using adaptive optics scanning laser ophthalmoscopy (AOSLO). Design Observational case series. Methods Fifty-three patients with AMD and 10 age-similar subjects in normal retinal health were recruited. All subjects underwent color fundus photography, infrared reflectance, red-free reflectance, autofluorescence, and spectral-domain optical coherence tomography (SD-OCT). Subretinal drusenoid deposits were classified with a 3-stage OCT-based grading system. Lesions and surrounding photoreceptors were examined with AOSLO. Results Subretinal drusenoid deposits were found in 26 eyes of 13 patients with AMD and imaged by AOSLO and SD-OCT in 18 eyes (n=342 lesions). SD-OCT showed subretinal drusenoid deposits as highly reflective material accumulated internal to the retinal pigment epithelium. AOSLO revealed that photoreceptor reflectivity was qualitatively reduced by stage 1 subretinal drusenoid deposits and greatly reduced by stage 2. AOSLO presented a distinct structure in stage 3, a hyporeflective annulus consisting of deflected, degenerated or absent photoreceptors. A central core with a reflectivity superficially resembling photoreceptors is formed by the lesion material itself. A hyporeflective gap in the photoreceptor ellipsoid zone on either side of this core shown in SD-OCT corresponded to the hyporeflective annulus seen by AOSLO. Conclusions AOSLO and multimodal imaging of subretinal drusenoid deposits indicate solid, space filling lesions in the subretinal space. Associated retinal reflectivity changes are related to lesion stages and are consistent with perturbations to photoreceptors, as suggested by histology. PMID:24907433

  17. Evaluation of spinal instrumentation rod bending characteristics for in-situ contouring.

    PubMed

    Noshchenko, Andriy; Xianfeng, Yao; Armour, Grant Alan; Baldini, Todd; Patel, Vikas V; Ayers, Reed; Burger, Evalina

    2011-07-01

    Bending characteristics were studied in rods used for spinal instrumentation at in-situ contouring conditions. Five groups of five 6 mm diameter rods made from: cobalt alloy (VITALLIUM), titanium-aluminum-vanadium alloy (SDI™), β-titanium alloy (TNTZ), cold worked stainless steel (STIFF), and annealed stainless steel (MALLEABLE) were studied. The bending procedure was similar to that typically applied for in-situ contouring in the operating room and included two bending cycles: first--bending to 21-24° under load with further release of loading for 10 min, and second--bending to 34-37° at the previously bent site and release of load for 10 min. Applied load, bending stiffness, and springback effect were studied. Statistical evaluation included ANOVA, correlation and regression analysis. TNTZ and SDI™ rods showed the highest (p < 0.05) springback at both bending cycles. VITALLIUM and STIFF rods showed mild springback (p < 0.05). The least (p < 0.05) springback was observed in the MALLEABLE rods. Springback significantly correlated with the bend angle under load (p < 0.001). To reach the necessary bend angle after unloading, over bending should be 37-40% of the required angle in TNTZ and SDI™ rods, 27-30% in VITALLIUM and STIFF rods, and around 20% in MALLEABLE rods. Copyright © 2011 Wiley Periodicals, Inc.

  18. NMNAT1 variants cause cone and cone-rod dystrophy.

    PubMed

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  19. Lrit1, a Retinal Transmembrane Protein, Regulates Selective Synapse Formation in Cone Photoreceptor Cells and Visual Acuity.

    PubMed

    Ueno, Akiko; Omori, Yoshihiro; Sugita, Yuko; Watanabe, Satoshi; Chaya, Taro; Kozuka, Takashi; Kon, Tetsuo; Yoshida, Satoyo; Matsushita, Kenji; Kuwahara, Ryusuke; Kajimura, Naoko; Okada, Yasushi; Furukawa, Takahisa

    2018-03-27

    In the vertebrate retina, cone photoreceptors play crucial roles in photopic vision by transmitting light-evoked signals to ON- and/or OFF-bipolar cells. However, the mechanisms underlying selective synapse formation in the cone photoreceptor pathway remain poorly understood. Here, we found that Lrit1, a leucine-rich transmembrane protein, localizes to the photoreceptor synaptic terminal and regulates the synaptic connection between cone photoreceptors and cone ON-bipolar cells. Lrit1-deficient retinas exhibit an aberrant morphology of cone photoreceptor pedicles, as well as an impairment of signal transmission from cone photoreceptors to cone ON-bipolar cells. Furthermore, we demonstrated that Lrit1 interacts with Frmpd2, a photoreceptor scaffold protein, and with mGluR6, an ON-bipolar cell-specific glutamate receptor. Additionally, Lrit1-null mice showed visual acuity impairments in their optokinetic responses. These results suggest that the Frmpd2-Lrit1-mGluR6 axis regulates selective synapse formation in cone photoreceptors and is essential for normal visual function. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Photocurrents in retinal rods of pigeons (Columba livia): kinetics and spectral sensitivity.

    PubMed Central

    Palacios, A G; Goldsmith, T H

    1993-01-01

    1. Membrane photocurrents were recorded from outer segments of isolated retinal rods of pigeons (Columba livia), the first such measurements on the photoreceptors of a bird. The amplitude of the response to 20 ms flashes of narrow wavelength bands of light increases linearly with intensity at low photon fluxes and saturates at higher intensities. The maximum (saturating) photocurrent observed in forty-nine rod cells was 50 pA. Larger responses with less variability in the intensity for half-maximal responses were observed when the physiological saline contained 20 mM bicarbonate (in addition to Hepes buffer). 2. The dependence of peak amplitude on intensity is well fitted by an exponential function; it is usually less well fitted by the Michaelis-Menten (Naka-Rushton) equation. 3. In the presence of bicarbonate, the average sensitivity of pigeon rods to dim flashes was 0.56 pA photon-1 microns -2. The effective collecting area per photon was 1.8 microns 2. About 83 +/- 26 (mean +/- S.D.) photoisomerizations were required for a half-saturating response. 4. The response kinetics of rods to dim flashes can be reasonably well described by a series of four to five either Poisson or independent filters. The time to peak, measured from the mid-point of a 20 ms flash, was 319 +/- 83 ms (mean +/- S.D.). The integration time of the response was 851 +/- 86 ms (mean +/- S.D.) with bicarbonate present and 572 +/- 126 ms in the absence of bicarbonate. The responses of pigeon rods appear to be slower than those of mammals at the same temperature. The fraction of current suppressed by a single photoisomerization is smaller in pigeon than in mammalian rods by a factor of at least two. 5. The spectral sensitivity function was measured between 680 and 330 nm. The maximum at about 505 nm (range 497-508 nm) corresponds to the alpha-band of a vertebrate rhodopsin and agrees with previous behavioural measurements of scotopic sensitivity of pigeons as well as the absorption spectrum of

  1. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine

    PubMed Central

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K.; Hardie, Roger C.; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1–R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1–R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1–R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  2. Identifying Key Networks Linked to Light-Independent Photoreceptor Degeneration in Visual Arrestin 1 Knockout Mice.

    PubMed

    Kim, Hwa Sun; Huang, Shun-Ping; Lee, Eun-Jin; Craft, Cheryl Mae

    2018-01-01

    When visual arrestin 1 (ARR1, S-antigen, 48 KDa protein) was genetically knocked out in mice (original Arr1 -/- , designated Arr1 -/-A ), rod photoreceptors degenerated in a light-dependent manner. Subsequently, a light-independent cone dystrophy was identified with minimal rod death in ARR1 knockout mice (Arr1 -/-A Arr4 +/+ , designated Arr1 -/-B ), which were F2 littermates from breeding the original Arr1 -/-A and cone arrestin knockout 4 (Arr4 -/- ) mice. To resolve the genetic and phenotypic differences between the two ARR1 knockouts, we performed Affymetrix™ exon array analysis to focus on the potential differential gene expression profile and to explore the molecular and cellular pathways leading to this observed susceptibility to cone dystrophy in Arr1 -/-B compared to Arr1 -/-A or control Arr1 +/+ Arr4 +/+ (wild type [WT]). Only in the Arr1 -/-B retina did we observe an up-regulation of retinal transcripts involved in the immune response, inflammatory response and JAK-STAT signaling molecules, OSMRβ and phosphorylation of STAT3. Of these responses, the complement system was significantly higher, and a variety of inflammatory responses by complement regulation and anti-inflammatory cytokine or factors were identified in Arr1 -/-B retinal transcripts. This discovery supports that Arr1 -/-B has a distinct genetic background from Arr1 -/-A that results in alterations in its retinal phenotype leading to susceptibility to cone degeneration induced by inappropriate inflammatory and immune responses.

  3. Edaravone, an ROS Scavenger, Ameliorates Photoreceptor Cell Death after Experimental Retinal Detachment

    PubMed Central

    Roh, Mi In; Murakami, Yusuke; Thanos, Aristomenis; Miller, Joan W.

    2011-01-01

    Purpose. To investigate whether edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, would be neuroprotective against photoreceptor cell death in a rat model of retinal detachment (RD). Methods. RD was induced in adult Brown Norway rats by subretinal injection of sodium hyaluronate. Edaravone (3, 5, or 10 mg/kg) or physiologic saline was administered intraperitoneally once a day until death on day 3 or 5. Oxidative stress in the retina was assessed by 4-hydroxynonenal staining or ELISA for protein carbonyl content. Photoreceptor death was assessed by TUNEL and measurement of the outer nuclear layer thickness. Western blot analysis and caspase activity assays were performed. Inflammatory cytokine secretion and inflammatory cell infiltration were evaluated by ELISA and immunostaining, respectively. Results. RD resulted in increased generation of ROS. Treatment with 5 mg/kg edaravone significantly reduced the ROS level, along with a decrease in TUNEL-positive cells in the photoreceptor layer. A caspase assay also confirmed decreased activation of caspase-3, -8, and -9 in RD treated with edaravone. The level of the antiapoptotic Bcl-2 was increased in detached retinas after edaravone treatment, whereas the levels of the stress-activated p-ERK1/2 were decreased. In addition, edaravone treatment resulted in a significant decrease in the levels of TNF-α, MCP-1, and macrophage infiltration. Conclusions. Oxidative stress plays an important role in photoreceptor cell death after RD. Edaravone treatment may aid in preventing photoreceptor cell death after RD by suppressing ROS-induced photoreceptor damage. PMID:21310909

  4. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light.

    PubMed

    Chen, Wan-Ju; Wu, Caiying; Xu, Zhenhua; Kuse, Yoshiki; Hara, Hideaki; Duh, Elia J

    2017-01-01

    Oxidative stress plays a key role in age-related macular degeneration and hereditary retinal degenerations. Light damage in rodents has been used extensively to model oxidative stress-induced photoreceptor degeneration, and photo-oxidative injury from blue light is particularly damaging to photoreceptors. The endogenous factors protecting photoreceptors from oxidative stress, including photo-oxidative stress, are continuing to be elucidated. In this study, we evaluated the effect of blue light exposure on photoreceptors and its relationship to Nrf2 using cultured murine photoreceptor (661W) cells. 661W cells were exposed to blue light at 2500 lux. Exposure to blue light for 6-24 h resulted in a significant increase in intracellular reactive oxygen species (ROS) and death of 661W cells in a time-dependent fashion. Blue light exposure resulted in activation of Nrf2, as indicated by an increase in nuclear translocation of Nrf2. This was associated with a significant induction of expression of Nrf2 as well as an array of Nrf2 target genes, including antioxidant genes, as indicated by quantitative reverse transcription PCR (qRT-PCR). In order to determine the functional role of Nrf2, siRNA-mediated knockdown studies were performed. Nrf2-knockdown in 661W cells resulted in significant exacerbation of blue light-induced reactive oxygen species levels as well as cell death. Taken together, these findings indicate that Nrf2 is an important endogenous protective factor against oxidative stress in photoreceptor cells. This suggests that drugs targeting Nrf2 could be considered as a neuroprotective strategy for photoreceptors in AMD and other retinal conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells.

    PubMed

    Mellough, Carla B; Sernagor, Evelyne; Moreno-Gimeno, Inmaculada; Steel, David H W; Lako, Majlinda

    2012-04-01

    Recent successes in the stem cell field have identified some of the key chemical and biological cues which drive photoreceptor derivation from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC); however, the efficiency of this process is variable. We have designed a three-step photoreceptor differentiation protocol combining previously published methods that direct the differentiation of hESC and hiPSC toward a retinal lineage, which we further modified with additional supplements selected on the basis of reports from the eye field and retinal development. We report that hESC and hiPSC differentiating under our regimen over a 60 day period sequentially acquire markers associated with neural, retinal field, retinal pigmented epithelium and photoreceptor cells, including mature photoreceptor markers OPN1SW and RHODOPSIN with a higher efficiency than previously reported. In addition, we report the ability of hESC and hiPSC cultures to generate neural and retinal phenotypes under minimal culture conditions, which may be linked to their ability to endogenously upregulate the expression of a range of factors important for retinal cell type specification. However, cultures that were differentiated with full supplementation under our photoreceptor-induction regimen achieve this within a significantly shorter time frame and show a substantial increase in the expression of photoreceptor-specific markers in comparison to cultures differentiated under minimal conditions. Interestingly, cultures supplemented only with B27 and/or N2 displayed comparable differentiation efficiency to those under full supplementation, indicating a key role for B27 and N2 during the differentiation process. Furthermore, our data highlight an important role for Dkk1 and Noggin in enhancing the differentiation of hESC and hiPSC toward retinal progenitor cells and photoreceptor precursors during the early stages of differentiation, while suggesting that further

  6. Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice.

    PubMed

    Fu, Zhongjie; Wang, Zhongxiao; Liu, Chi-Hsiu; Gong, Yan; Cakir, Bertan; Liegl, Raffael; Sun, Ye; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Moran, Elizabeth; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Talukdar, Saswata; Akula, James D; Hellström, Ann; Smith, Lois E H

    2018-05-01

    Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes. © 2018 by the American Diabetes Association.

  7. Signal coding in cockroach photoreceptors is tuned to dim environments.

    PubMed

    Heimonen, K; Immonen, E-V; Frolov, R V; Salmela, I; Juusola, M; Vähäsöyrinki, M; Weckström, M

    2012-11-01

    In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.

  8. Chemically induced and light-independent cryptochrome photoreceptor activation.

    PubMed

    Rosenfeldt, Gesa; Viana, Rafael Muñoz; Mootz, Henning D; von Arnim, Albrecht G; Batschauer, Alfred

    2008-01-01

    The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.

  9. In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.

    PubMed

    Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E

    2018-01-01

    DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.

  10. Presynaptic dystroglycan-pikachurin complex regulates the proper synaptic connection between retinal photoreceptor and bipolar cells.

    PubMed

    Omori, Yoshihiro; Araki, Fumiyuki; Chaya, Taro; Kajimura, Naoko; Irie, Shoichi; Terada, Koji; Muranishi, Yuki; Tsujii, Toshinori; Ueno, Shinji; Koyasu, Toshiyuki; Tamaki, Yasuhiro; Kondo, Mineo; Amano, Shiro; Furukawa, Takahisa

    2012-05-02

    Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex (DGC) at the neuromuscular junction postsynapse. In the mouse retina, the DGC is localized at the presynapse of photoreceptor cells, however, the function of presynaptic DGC is poorly understood. Here, we developed and analyzed retinal photoreceptor-specific DG conditional knock-out (DG CKO) mice. We found that the DG CKO retina showed a reduced amplitude and a prolonged implicit time of the ERG b-wave. Electron microscopic analysis revealed that bipolar dendrite invagination into the photoreceptor terminus is perturbed in the DG CKO retina. In the DG CKO retina, pikachurin, a DG ligand in the retina, is markedly decreased at photoreceptor synapses. Interestingly, in the Pikachurin(-/-) retina, the DG signal at the ribbon synaptic terminus was severely reduced, suggesting that pikachurin is required for the presynaptic accumulation of DG at the photoreceptor synaptic terminus, and conversely DG is required for pikachurin accumulation. Furthermore, we found that overexpression of pikachurin induces formation and clustering of a DG-pikachurin complex on the cell surface. The Laminin G repeats of pikachurin, which are critical for its oligomerization and interaction with DG, were essential for the clustering of the DG-pikachurin complex as well. These results suggest that oligomerization of pikachurin and its interaction with DG causes DG assembly on the synapse surface of the photoreceptor synaptic terminals. Our results reveal that the presynaptic interaction of pikachurin with DG at photoreceptor terminals is essential for both the formation of proper photoreceptor ribbon synaptic structures and normal retinal electrophysiology.

  11. Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels

    PubMed Central

    2017-01-01

    Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike’s information criterion (AICc) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis, the branchiopod water flea, Daphnia magna, normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus, which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei. The modeling approach presented here will be useful in selecting the most likely

  12. Using electroretinograms and multi-model inference to identify spectral classes of photoreceptors and relative opsin expression levels.

    PubMed

    Lessios, Nicolas

    2017-01-01

    Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike's information criterion (AIC c ) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm, Principapillatus hitoyensis , the branchiopod water flea, Daphnia magna , normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail, Papilio xuthus , which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish, Lucania goodei . The modeling approach presented here will be useful in selecting the most

  13. Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice

    PubMed Central

    Thompson, Stewart; Blodi, Frederick R.; Lee, Swan; Welder, Chris R.; Mullins, Robert F.; Tucker, Budd A.; Stasheff, Steven F.; Stone, Edwin M.

    2014-01-01

    Purpose. In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell–derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Methods. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (RdsP90). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Results. RdsP90 mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that RdsP90 mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m2). Conclusions. Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision. PMID:24569582

  14. Retinal Thickening and Photoreceptor Loss in HIV Eyes without Retinitis.

    PubMed

    Arcinue, Cheryl A; Bartsch, Dirk-Uwe; El-Emam, Sharif Y; Ma, Feiyan; Doede, Aubrey; Sharpsten, Lucie; Gomez, Maria Laura; Freeman, William R

    2015-01-01

    To determine the presence of structural changes in HIV retinae (i.e., photoreceptor density and retinal thickness in the macula) compared with age-matched HIV-negative controls. Cohort of patients with known HIV under CART (combination Antiretroviral Therapy) treatment were examined with a flood-illuminated retinal AO camera to assess the cone photoreceptor mosaic and spectral-domain optical coherence tomography (SD-OCT) to assess retinal layers and retinal thickness. Twenty-four eyes of 12 patients (n = 6 HIV-positive and 6 HIV-negative) were imaged with the adaptive optics camera. In each of the regions of interest studied (nasal, temporal, superior, inferior), the HIV group had significantly less mean cone photoreceptor density compared with age-matched controls (difference range, 4,308-6,872 cones/mm2). A different subset of forty eyes of 20 patients (n = 10 HIV-positive and 10 HIV-negative) was included in the retinal thickness measurements and retinal layer segmentation with the SD-OCT. We observed significant thickening in HIV positive eyes in the total retinal thickness at the foveal center, and in each of the three horizontal B-scans (through the macular center, superior, and inferior to the fovea). We also noted that the inner retina (combined thickness from ILM through RNFL to GCL layer) was also significantly thickened in all the different locations scanned compared with HIV-negative controls. Our present study shows that the cone photoreceptor density is significantly reduced in HIV retinae compared with age-matched controls. HIV retinae also have increased macular retinal thickness that may be caused by inner retinal edema secondary to retinovascular disease in HIV. The interaction of photoreceptors with the aging RPE, as well as possible low-grade ocular inflammation causing diffuse inner retinal edema, may be the key to the progressive vision changes in HIV-positive patients without overt retinitis.

  15. C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish.

    PubMed

    Corral-Serrano, Julio C; Messchaert, Muriël; Dona, Margo; Peters, Theo A; Kamminga, Leonie M; van Wijk, Erwin; Collin, Rob W J

    2018-06-26

    Mutations in C2orf71 are causative for autosomal recessive retinitis pigmentosa and occasionally cone-rod dystrophy. We have recently discovered that the protein encoded by this gene is important for modulation of the ciliary membrane through the recruitment of an actin assembly module, and have therefore renamed the gene to PCARE (photoreceptor cilium actin regulator). Here, we report on the identification of two copies of the c2orf71/pcare gene in zebrafish, pcare1 and pcare2. To study the role of the gene most similar to human PCARE, pcare1, we have generated a stable pcare1 mutant zebrafish model (designated pcare1 rmc100/rmc100 ) in which the coding sequence was disrupted using CRISPR/Cas9 technology. Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1 rmc100/rmc100 zebrafish display a clear disorganization of photoreceptor outer segments, resembling the phenotype observed in Pcare -/- mice. Optokinetic response and visual motor response measurements indicated visual impairment in pcare1 rmc100/rmc100 zebrafish larvae at 5 dpf. In addition, electroretinogram measurements showed decreased b-wave amplitudes in pcare1 rmc100/rmc100 zebrafish as compared to age- and strain-matched wild-type larvae, indicating a defect in the transretinal current. Altogether, our data show that lack of pcare1 causes a retinal phenotype in zebrafish and indicate that the function of the PCARE gene is conserved across species.

  16. Dissecting the determinants of light sensitivity in amphioxus microvillar photoreceptors: possible evolutionary implications for melanopsin signaling.

    PubMed

    Ferrer, Camilo; Malagón, Gerardo; Gomez, María Del Pilar; Nasi, Enrico

    2012-12-12

    Melanopsin, a photopigment related to the rhodopsin of microvillar photoreceptors of invertebrates, evolved in vertebrates to subserve nonvisual light-sensing functions, such as the pupillary reflex and entrainment of circadian rhythms. However, vertebrate circadian receptors display no hint of a microvillar specialization and show an extremely low light sensitivity and sluggish kinetics. Recently in amphioxus, the most basal chordate, melanopsin-expressing photoreceptors were characterized; these cells share salient properties with both rhabdomeric photoreceptors of invertebrates and circadian receptors of vertebrates. We used electrophysiology to dissect the gain of the light-transduction process in amphioxus and examine key features that help outline the evolutionary transition toward a sensor optimized to report mean ambient illumination rather than mediating spatial vision. By comparing the size of current fluctuations attributable to single photon melanopsin isomerizations with the size of single-channels activated by light, we concluded that the gain of the transduction cascade is lower than in rhabdomeric receptors. In contrast, the expression level of melanopsin (gauged by measuring charge displacements during photo-induced melanopsin isomerization) is comparable with that of canonical visual receptors. A modest amplification in melanopsin-using receptors is therefore apparent in early chordates; the decrease in photopigment expression-and loss of the anatomical correlates-observed in vertebrates subsequently enabled them to attain the low photosensitivity tailored to the role of circadian receptors.

  17. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.

    PubMed

    Pridmore, Ralph W

    2013-01-01

    This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.

  18. Responses of crayfish photoreceptor cells following intense light adaptation.

    PubMed

    Cummins, D R; Goldsmith, T H

    1986-01-01

    After intense orange adapting exposures that convert 80% of the rhodopsin in the eye to metarhodopsin, rhabdoms become covered with accessory pigment and appear to lose some microvillar order. Only after a delay of hours or even days is the metarhodopsin replaced by rhodopsin (Cronin and Goldsmith 1984). After 24 h of dark adaptation, when there has been little recovery of visual pigment, the photoreceptor cells have normal resting potentials and input resistances, and the reversal potential of the light response is 10-15 mV (inside positive), unchanged from controls. The log V vs log I curve is shifted about 0.6 log units to the right on the energy axis, quantitatively consistent with the decrease in the probability of quantum catch expected from the lowered concentration of rhodopsin in the rhabdoms. Furthermore, at 24 h the photoreceptors exhibit a broader spectral sensitivity than controls, which is also expected from accumulations of metarhodopsin in the rhabdoms. In three other respects, however, the transduction process appears to be light adapted: The voltage responses are more phasic than those of control photoreceptors. The relatively larger effect (compared to controls) of low extracellular Ca++ (1 mmol/l EGTA) in potentiating the photoresponses suggests that the photoreceptors may have elevated levels of free cytoplasmic Ca++. The saturating depolarization is only about 30% as large as the maximal receptor potentials of contralateral, dark controls, and by that measure the log V-log I curve is shifted downward by 0.54 log units.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Light-Dependent OCT Structure Changes in Photoreceptor Degenerative rd 10 Mouse Retina

    PubMed Central

    Li, Yichao; Zhang, Yikui; Chen, Sonia; Vernon, Gregory; Wong, Wai T.

    2018-01-01

    Purpose Using optical coherence tomography (OCT) to analyze the effects of light/dark adaptation in a mouse model of inherited photoreceptor degeneration (rd10), and to study dynamics of subretinal fluid during the progress of retinal degeneration. Methods rd10 and wild-type (WT) C57BL/6J mice were reared in cyclic light or darkness and imaged with Bioptigen UHR-OCT or Spectralis HRA+OCT after adaptation to either light or darkness. Results OCT images from rd10 mice were analyzed at three progressive stages of degeneration. After light-adaptation, stage I (postnatal age [P]26–29) eyes demonstrated no apparent subretinal fluid. At stage II (P32–38), subretinal fluid was present and restricted to parapapillary area, while at stage III (P44–45) extensive subretinal fluid was present across many retinal areas. Following overnight dark-adaptation, WT eyes showed a large reduction in outer retinal thickness (4.6 ± 1.4 μm, n = 16), whereas this change was significantly smaller in stage I rd10 eyes (1.5 ± 0.5 μm, n = 14). In stage II rd10 eyes, dark-adaptation significantly reduced the extent of subretinal fluid, with the amount of reduction correlating with the amount of fluid pre-existing in the light-adapted state. However, dark-adaptation did not significantly alter the amount of subretinal fluid observed in stage III rd10 mice. In addition, dark-rearing of rd10 mice from P6 to P30 slowed retinal degeneration. Conclusions Visual experience in the form of light/dark adaptation exerts a significant effect on outer retinal structure in the context of photoreceptor degeneration. This effect may arise from light-dependent alterations in fluid transport across the RPE monolayer, and promote photoreceptor survival as induced by dark-rearing. PMID:29490345

  20. Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa

    PubMed Central

    Murakami, Y; Ikeda, Y; Nakatake, S; Tachibana, T; Fujiwara, K; Yoshida, N; Notomi, S; Nakao, S; Hisatomi, T; Miller, J W; Vavvas, DG; Sonoda, KH; Ishibashi, T

    2015-01-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal degenerations resulting form rod and cone photoreceptor cell death. The rod cell death due to deleterious genetic mutations has been shown to occur mainly through apoptosis, whereas the mechanisms and features of the secondary cone cell death have not been fully elucidated. Our previous study showed that the cone cell death in rd10 mice, an animal model of RP, involves necrotic features and is partly mediated by the receptor interacting protein kinase. However, the relevancy of necrotic cone cell death in human RP patients remains unknown. In the present study, we showed that dying cone cells in rd10 mice exhibited cellular enlargement, along with necrotic changes such as cellular swelling and mitochondrial rupture. In human eyes, live imaging of cone cells by adaptive optics scanning laser ophthalmoscopy revealed significantly increased percentages of enlarged cone cells in the RP patients compared with the control subjects. The vitreous of the RP patients contained significantly higher levels of high-mobility group box-1, which is released extracellularly associated with necrotic cell death. These findings suggest that necrotic enlargement of cone cells is involved in the process of cone degeneration, and that necrosis may be a novel target to prevent or delay the loss of cone-mediated central vision in RP. PMID:27551484

  1. In vitro transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells

    PubMed Central

    Komuta, Yukari; Ishii, Toshiyuki; Kaneda, Makoto; Ueda, Yasuji; Miyamoto, Kiyoko; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    ABSTRACT Direct reprogramming is a promising, simple and low-cost approach to generate target cells from somatic cells without using induced pluripotent stem cells. Recently, peripheral blood mononuclear cells (PBMCs) have attracted considerable attention as a somatic cell source for reprogramming. As a cell source, PBMCs have an advantage over dermal fibroblasts with respect to the ease of collecting tissues. Based on our studies involving generation of photosensitive photoreceptor cells from human iris cells and human dermal fibroblasts by transduction of photoreceptor-related transcription factors via retrovirus vectors, we transduced these transcription factors into PBMCs via Sendai virus vectors. We found that retinal disease-related genes were efficiently detected in CRX-transduced cells, most of which are crucial to photoreceptor functions. In functional studies, a light-induced inward current was detected in some CRX-transduced cells. Moreover, by modification of the culture conditions including additional transduction of RAX1 and NEUROD1, we found a greater variety of retinal disease-related genes than that observed in CRX-transduced PBMCs. These data suggest that CRX acts as a master control gene for reprogramming PBMCs into photoreceptor-like cells and that our induced photoreceptor-like cells might contribute to individualized drug screening and disease modeling of inherited retinal degeneration. PMID:27170256

  2. In vivo observation of transient photoreceptor movement correlated with oblique light stimulation

    NASA Astrophysics Data System (ADS)

    Lu, Yiming; Liu, Changgeng; Yao, Xincheng

    2018-02-01

    Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.

  3. Psychophysical Measurement of Rod and Cone Thresholds in Stargardt Disease with Full-Field Stimuli

    PubMed Central

    Collison, Frederick T.; Fishman, Gerald A.; McAnany, J. Jason; Zernant, Jana; Allikmets, Rando

    2014-01-01

    Purpose To investigate psychophysical thresholds in Stargardt disease with the full-field stimulus test (FST). Methods Visual acuity (VA), spectral-domain optical coherence tomography (SD-OCT), full-field electroretinogram (ERG), and FST measurements were made in one eye of 24 patients with Stargardt disease. Dark-adapted rod FST thresholds were measured with short-wavelength stimuli, and cone FST thresholds were obtained from the cone plateau phase of dark adaptation using long-wavelength stimuli. Correlation coefficients were calculated for FST thresholds versus macular thickness, VA and ERG amplitudes. Results Stargardt patient FST cone thresholds correlated significantly with VA, macular thickness, and ERG cone-response amplitudes (all P<0.01). The patients’ FST rod thresholds correlated with ERG rod-response amplitudes (P<0.01), but not macular thickness (P=0.05). All Stargardt disease patients with flecks confined to the macula and most of the patients with flecks extending outside of the macula had normal FST thresholds. All patients with extramacular atrophic changes had elevated FST cone thresholds and most had elevated FST rod thresholds. Conclusion FST rod and cone threshold elevation in Stargardt disease patients correlated well with measures of structure and function, as well as ophthalmoscopic retinal appearance. FST appears to be a useful tool for assessing rod and cone function in Stargardt disease. PMID:24695063

  4. Structure and function of the UV-B photoreceptor UVR8.

    PubMed

    Jenkins, Gareth I

    2014-12-01

    UVR8 is a UV-B photoreceptor that employs specific tryptophans in its primary sequence as chromophores in photoreception. UV-B absorption causes dissociation of the dimeric photoreceptor by neutralizing interactions between monomers. The monomeric form initiates signalling through interaction with the COP1 protein, leading to transcriptional responses. This article discusses the structural basis of UVR8 function, highlighting recent research on the mechanism of photoreception and on interactions with other proteins involved in signalling and regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Control rod drive

    DOEpatents

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  6. Structural Integrity Testing Method for PRSEUS Rod-Wrap Stringer Design

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Grenoble, Ray W.; Pickell, Robert D.

    2012-01-01

    NASA Langley Research Center and The Boeing Company are developing an innovative composite structural concept, called PRSEUS, for the flat center section of a future environmentally friendly hybrid wing body (HWB) aircraft. The PRSEUS (Pultruded Rod Stitched Efficient Unitized Structure) concept uses dry textile preforms for the skins, frames, and stiffener webs. The highly loaded stiffeners are made from precured unidirectional carbon/epoxy rods and dry fiber preforms. The rods are wrapped with the dry fiber preforms and a resin infusion process is used to form the rod-wrap stiffeners. The structural integrity of the rod-wrap interface is critical for maintaining the panel s high strength and bending rigidity. No standard testing method exists for testing the strength of the rod-wrap bondline. Recently, Boeing proposed a rod push-out testing method and conducted some preliminary tests using this method. This paper details an analytical study of the rod-wrap bondline. The rod-wrap interface is modeled as a cohesive zone for studying the initiation and growth of interfacial debonding during push-out testing. Based on the correlations of analysis results and Boeing s test data, the adequacy of the rod-wrap testing method is evaluated, and potential approaches for improvement of the test method are proposed.

  7. Natural photoreceptors and their application to synthetic biology.

    PubMed

    Schmidt, Daniel; Cho, Yong Ku

    2015-02-01

    The ability to perturb living systems is essential to understand how cells sense, integrate, and exchange information, to comprehend how pathologic changes in these processes relate to disease, and to provide insights into therapeutic points of intervention. Several molecular technologies based on natural photoreceptor systems have been pioneered that allow distinct cellular signaling pathways to be modulated with light in a temporally and spatially precise manner. In this review, we describe and discuss the underlying design principles of natural photoreceptors that have emerged as fundamental for the rational design and implementation of synthetic light-controlled signaling systems. Furthermore, we examine the unique challenges that synthetic protein technologies face when applied to the study of neural dynamics at the cellular and network level. Published by Elsevier Ltd.

  8. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration.

    PubMed

    Zhang, Qian; Zhang, Zuo-Ming

    2014-04-25

    It is reported that retinal neovascularization seems to rarely co-exist with retinitis pigmentosa in patients and in some mouse models; however, it is not widely acknowledged as a universal phenomenon in all strains of all animal species. We aimed to further explore this phenomenon with an oxygen-induced retinopathy model in mice with retinal photoreceptor cell degeneration. Oxygen-induced retinopathy of colored and albino mice with rapid retinal degeneration were compared to homologous wild-type mice. The retinas were analyzed using high-molecular-weight FITC-dextran stained flat-mount preparation, hematoxylin and eosin (H&E) stained cross-sections, an immunohistochemical test for vascular endothelial growth factor (VEGF) distribution and Western blotting for VEGF expression after exposure to hyperoxia between postnatal days 17 (P17) and 21. Leakage and areas of non-perfusion of the retinal blood vessels were alleviated in the retinal degeneration mice. The number of preretinal vascular endothelial cell nuclei in the retinal degeneration mice was smaller than that in the homologous wild-type mice after exposure to hyperoxia (P<0.01). The degree of oxygen-induced retinopathy was positively correlated with the VEGF expression level. However, the VEGF expression level was lower in the retinal degeneration mice. Proliferative retinopathy occurred in mice with rapid retinal degeneration, but retinal photoreceptor cell degeneration could partially restrain the retinal neovascularization in this rapid retinal degeneration mouse model. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    PubMed Central

    Saxena, Sandeep; Srivastav, Khushboo; Cheung, Chui M; Ng, Joanne YW; Lai, Timothy YY

    2014-01-01

    Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. PMID:25525329

  10. cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration

    PubMed Central

    Sato, Shinya

    2016-01-01

    Key points This study explores the nature of the cis retinol that Müller cells in the retina provide to cones for the regeneration of their visual pigment.We report that the retina visual cycle provides cones exclusively with 11‐cis chromophore in both salamander and mouse and show that this selectivity is dependent on the 11‐cis‐specific cellular retinaldehyde binding protein (CRALBP) present in Müller cells.Even though salamander blue cones and green rods share the same visual pigment, only blue cones but not green rods are able to dark‐adapt in the retina following a bleach and to use exogenous 9‐cis retinol for pigment regeneration, suggesting that access to the retina visual cycle is cone‐specific and pigment‐independent.Our results show that the retina produces 11‐cis retinol that can be oxidized and used for pigment regeneration and dark adaptation selectively in cones and not in rods. Abstract Chromophore supply by the retinal Müller cells (retina visual cycle) supports the efficient pigment regeneration required for cone photoreceptor function in bright light. Surprisingly, a large fraction of the chromophore produced by dihydroceramide desaturase‐1, the putative all‐trans retinol isomerase in Müller cells, appears to be 9‐cis retinol. In contrast, the canonical retinal pigment epithelium (RPE) visual cycle produces exclusively 11‐cis retinal. Here, we used the different absorption spectra of 9‐cis and 11‐cis pigments to identify the isoform of the chromophore produced by the visual cycle of the intact retina. We found that the spectral sensitivity of salamander and mouse cones dark‐adapted in the isolated retina (with only the retina visual cycle) was similar to that of cones dark‐adapted in the intact eye (with both the RPE and retina visual cycles) and consistent with pure 11‐cis pigment composition. However, in mice lacking the cellular retinaldehyde binding protein (CRALBP), cone spectral sensitivity contained a

  11. Short-term psychosocial stress protects photoreceptors from damage via corticosterone-mediated activation of the AKT pathway.

    PubMed

    Forkwa, Tembei K; Neumann, Inga D; Tamm, Ernst R; Ohlmann, Andreas; Reber, Stefan O

    2014-02-01

    Apoptotic death of photoreceptors in hereditary retinal degenerations can be prevented by neuroprotective molecules. Here, we report that adrenal glucocorticoids (GC) released during psychosocial stress protect photoreceptors from apoptosis after light damage. Psychosocial stress is known to be the main type of stressor humans are exposed to and was induced here in mice by 10h of chronic subordinate colony housing (CSC). Photoreceptor damage was generated by subsequent exposure to white light. Short-term psychosocial stress prior to illumination significantly reduced the number of apoptotic photoreceptors, an effect that was absent in adrenalectomized (ADX) mice. The neuroprotective effect was completely restored in ADX mice substituted with GC. Moreover, phosphorylation of retinal AKT increased following CSC or exogenous GC treatment, an effect that was again absent in ADX mice exposed to CSC. Finally, inhibition of AKT signaling with triciribine blocked the stress- and GC-mediated neuroprotective effects on photoreceptors. In summary, we provide evidence that 1) short-term psychosocial stress protects photoreceptors from light-induced damage and 2) the protective effect is most likely mediated by GC-induced activation of the AKT signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa.

    PubMed

    Paquet-Durand, François; Beck, Susanne; Michalakis, Stylianos; Goldmann, Tobias; Huber, Gesine; Mühlfriedel, Regine; Trifunović, Dragana; Fischer, M Dominik; Fahl, Edda; Duetsch, Gabriele; Becirovic, Elvir; Wolfrum, Uwe; van Veen, Theo; Biel, Martin; Tanimoto, Naoyuki; Seeliger, Mathias W

    2011-03-01

    The rd1 natural mutant is one of the first and probably the most commonly studied mouse model for retinitis pigmentosa (RP), a severe and frequently blinding human retinal degeneration. In several decades of research, the link between the increase in photoreceptor cGMP levels and the extremely rapid cell death gave rise to a number of hypotheses. Here, we provide clear evidence that the presence of cyclic nucleotide gated (CNG) channels in the outer segment membrane is the key to rod photoreceptor loss. In Cngb1(-/-) × rd1 double mutants devoid of regular CNG channels, cGMP levels are still pathologically high, but rod photoreceptor viability and outer segment morphology are greatly improved. Importantly, cone photoreceptors, the basis for high-resolution daylight and colour vision, survived and remained functional for extended periods of time. These findings strongly support the hypothesis of deleterious calcium (Ca(2+))-influx as the cause of rapid rod cell death and highlight the importance of CNG channels in this process. Furthermore, our findings suggest that targeting rod CNG channels, rather than general Ca(2+)-channel blockade, is a most promising symptomatic approach to treat otherwise incurable forms of cGMP-related RP.

  13. Pupillometer-based objective chromatic perimetry in normal eyes and patients with retinal photoreceptor dystrophies.

    PubMed

    Skaat, Alon; Sher, Ifat; Kolker, Andrew; Elyasiv, Sivan; Rosenfeld, Elkana; Mhajna, Mohamad; Melamed, Shlomo; Belkin, Michael; Rotenstreich, Ygal

    2013-04-17

    To evaluate a novel objective perimetry using multifocal chromatic pupil light reflex in normal participants and patients with photoreceptor dysfunction, and to relate this new technique with subjective dark-adapted chromatic Goldmann perimetry. Thirty-two eyes of 17 retinitis pigmentosa (RP) or cone-rod dystrophy patients and 20 eyes of 12 healthy individuals were tested. A computerized infrared video pupillometer was used to record changes in pupil diameter in response to short- and long-wavelength stimuli (peak 485 and 640 nm, respectively; light intensity 40 cd/m(2)) at 13 different points of the 30° visual field (VF), under background illumination of 2.7 cd/m(2). The pupillary response (PR) of patients was compared with PR obtained from normal control participants. In 11 patients, the pupillary responses were also compared with their findings on dark-adapted chromatic Goldmann perimetry. Significantly reduced pupillary responses were obtained in RP patients in response to the short-wavelength stimulus in nearly all perimetric locations (P < 0.03). By contrast, in response to the long-wavelength stimulus, RP patients demonstrated significantly reduced PR mostly in peripheral locations (P ≤ 0.02). In a cone-rod dystrophy patient, the PR to both long- and short-wavelength stimuli was significantly lower in the scotoma area identified by the dark-adapted chromatic Goldmann perimetry. In all patients that were tested by the chromatic Goldmann, minimal PR was recorded in areas that were nondetected in the chromatic Goldmann perimetry. This study demonstrates the potential feasibility of using pupillometer-based chromatic perimetry for objectively assessing VF defects and retinal function in patients with retinal dystrophies. (ClinicalTrials.gov number, NCT01021982.).

  14. CRB2 in immature photoreceptors determines the superior-inferior symmetry of the developing retina to maintain retinal structure and function.

    PubMed

    Quinn, Peter M; Alves, C Henrique; Klooster, Jan; Wijnholds, Jan

    2018-06-08

    The mammalian apical-basal determinant Crumbs homolog-1 (CRB1) plays a crucial role in retinal structure and function by the maintenance of adherens junctions between photoreceptors and Müller glial cells. Patients with mutations in the CRB1 gene develop retinal dystrophies, including early-onset retinitis pigmentosa and Leber congenital amaurosis. Previously, we showed that Crb1 knockout mice developed a slow-progressing retinal phenotype at foci in the inferior retina, whiles specific ablation of Crb2 in immature photoreceptors lead to an early-onset phenotype throughout the retina. Here, we conditionally disrupted one or both alleles of Crb2 in immature photoreceptors, on a genetic background lacking Crb1, and studied the retinal dystrophies thereof. Our data showed that disruption of one allele of Crb2 in immature photoreceptors caused a substantial aggravation of the Crb1 phenotype in the entire inferior retina. The photoreceptor layer showed early-onset progressive thinning limited to the inferior retina while the superior retina maintained intact. Surprisingly, disruption of both alleles of Crb2 in immature photoreceptors further aggravated the phenotype. Throughout the retina, photoreceptor synapses were disrupted and photoreceptor nuclei intermingled with nuclei of the inner nuclear layer. In the superior retina, the ganglion cell layer appeared thicker due to ectopic nuclei of photoreceptors. In conclusion, the data suggest that CRB2 is required to maintain retinal progenitor and photoreceptor cell adhesion and prevent photoreceptor ingression into the immature inner retina. We hypothesise, from these animal models, that decreased levels of CRB2 in immature photoreceptors adjust retinitis pigmentosa due to loss of CRB1 into Leber congenital amaurosis phenotype.

  15. Predicted molecular signaling guiding photoreceptor cell migration following transplantation into damaged retina

    NASA Astrophysics Data System (ADS)

    Unachukwu, Uchenna John; Warren, Alice; Li, Ze; Mishra, Shawn; Zhou, Jing; Sauane, Moira; Lim, Hyungsik; Vazquez, Maribel; Redenti, Stephen

    2016-03-01

    To replace photoreceptors lost to disease or trauma and restore vision, laboratories around the world are investigating photoreceptor replacement strategies using subretinal transplantation of photoreceptor precursor cells (PPCs) and retinal progenitor cells (RPCs). Significant obstacles to advancement of photoreceptor cell-replacement include low migration rates of transplanted cells into host retina and an absence of data describing chemotactic signaling guiding migration of transplanted cells in the damaged retinal microenvironment. To elucidate chemotactic signaling guiding transplanted cell migration, bioinformatics modeling of PPC transplantation into light-damaged retina was performed. The bioinformatics modeling analyzed whole-genome expression data and matched PPC chemotactic cell-surface receptors to cognate ligands expressed in the light-damaged retinal microenvironment. A library of significantly predicted chemotactic ligand-receptor pairs, as well as downstream signaling networks was generated. PPC and RPC migration in microfluidic ligand gradients were analyzed using a highly predicted ligand-receptor pair, SDF-1α - CXCR4, and both PPCs and RPCs exhibited significant chemotaxis. This work present a systems level model and begins to elucidate molecular mechanisms involved in PPC and RPC migration within the damaged retinal microenvironment.

  16. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  17. Cone Photoreceptor Sensitivities and Unique Hue Chromatic Responses: Correlation and Causation Imply the Physiological Basis of Unique Hues

    PubMed Central

    Pridmore, Ralph W.

    2013-01-01

    This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95–1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision. PMID:24204755

  18. Allele-Specific Inhibition of Rhodopsin With an Antisense Oligonucleotide Slows Photoreceptor Cell Degeneration

    PubMed Central

    Murray, Susan F.; Jazayeri, Ali; Matthes, Michael T.; Yasumura, Douglas; Yang, Haidong; Peralta, Raechel; Watt, Andy; Freier, Sue; Hung, Gene; Adamson, Peter S.; Guo, Shuling; Monia, Brett P.; LaVail, Matthew M.; McCaleb, Michael L.

    2015-01-01

    Purpose To preserve photoreceptor cell structure and function in a rodent model of retinitis pigmentosa with P23H rhodopsin by selective inhibition of the mutant rhodopsin allele using a second generation antisense oligonucleotide (ASO). Methods Wild-type mice and rats were treated with ASO by intravitreal (IVT) injection and rhodopsin mRNA and protein expression were measured. Transgenic rats expressing the murine P23H rhodopsin gene (P23H transgenic rat Line 1) were administered either a mouse-specific P23H ASO or a control ASO. The contralateral eye was injected with PBS and used as a comparator control. Electroretinography (ERG) measurements and analyses of the retinal outer nuclear layer were conducted and correlated with rhodopsin mRNA levels. Results Rhodopsin mRNA and protein expression was reduced after a single ASO injection in wild-type mice with a rhodopsin-specific ASO. Transgenic rat eyes that express a murine P23H rhodopsin gene injected with a murine P23H ASO had a 181 ± 39% better maximum amplitude response (scotopic a-wave) as compared with contralateral PBS-injected eyes; the response in control ASO eyes was not significantly different from comparator contralateral eyes. Morphometric analysis of the outer nuclear layer showed a significantly thicker nuclear layer in eyes injected with murine P23H ASO (18%) versus contralateral PBS-injected eyes. Conclusions Allele-specific ASO-mediated knockdown of mutant P23H rhodopsin expression slowed the rate of photoreceptor degeneration and preserved the function of photoreceptor cells in eyes of the P23H rhodopsin transgenic rat. Our data indicate that ASO treatment is a potentially effective therapy for the treatment of retinitis pigmentosa. PMID:26436889

  19. Mapping of photoreceptor dysfunction using high resolution three-dimensional spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sikorski, B. L.; Szkulmowski, M.; Kałużny, J. J.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M.

    2008-02-01

    The ability to obtain reliable information on functional status of photoreceptor layer is essential for assessing vision impairment in patients with macular diseases. The reconstruction of three-dimensional retinal structure in vivo using Spectral Optical Coherence Tomography (Spectral OCT) became possible with a recent progress of the OCT field. Three-dimensional data collected by Spectral OCT devices comprise information on light intensity back-reflected from the junction between photoreceptor outer and inner segments (IS/OS) and thus can be used for evaluating photoreceptors impairment. In this paper, we introduced so called Spectral OCT reflectivity maps - a new method of selecting and displaying the spatial distribution of reflectivity of individual retinal layers. We analyzed the reflectivity of the IS/OS layer in various macular diseases. We have measured eyes of 49 patients with photoreceptor dysfunction in course of age-related macular degeneration, macular holes, central serous chorioretinopathy, acute zonal occult outer retinopathy, multiple evanescent white dot syndrome, acute posterior multifocal placoid pigment epitheliopathy, drug-induced retinopathy and congenital disorders.

  20. Transduction of Photoreceptors With Equine Infectious Anemia Virus Lentiviral Vectors: Safety and Biodistribution of StarGen for Stargardt Disease

    PubMed Central

    Binley, Katie; Widdowson, Peter; Loader, Julie; Kelleher, Michelle; Iqball, Sharifah; Ferrige, Georgina; de Belin, Jackie; Carlucci, Marie; Angell-Manning, Diana; Hurst, Felicity; Ellis, Scott; Miskin, James; Fernandes, Alcides; Wong, Paul; Allikmets, Rando; Bergstrom, Christopher; Aaberg, Thomas; Yan, Jiong; Kong, Jian; Gouras, Peter; Prefontaine, Annick; Vezina, Mark; Bussieres, Martin; Naylor, Stuart; Mitrophanous, Kyriacos A.

    2013-01-01

    Purpose. StarGen is an equine infectious anemia virus (EIAV)-based lentiviral vector that expresses the photoreceptor-specific adenosine triphosphate (ATP)-binding cassette transporter (ABCA4) protein that is mutated in Stargardt disease (STGD1), a juvenile macular dystrophy. EIAV vectors are able to efficiently transduce rod and cone photoreceptors in addition to retinal pigment epithelium in the adult macaque and rabbit retina following subretinal delivery. The safety and biodistribution of StarGen following subretinal delivery in macaques and rabbits was assessed. Methods. Regular ophthalmic examinations, IOP measurements, ERG responses, and histopathology were carried out in both species to compare control and vector-treated eyes. Tissue and fluid samples were obtained to evaluate the persistence, biodistribution, and shedding of the vector following subretinal delivery. Results. Ophthalmic examinations revealed a slightly higher level of inflammation in StarGen compared with control treated eyes in both species. However, inflammation was transient and no overt toxicity was observed in StarGen treated eyes and there were no abnormal clinical findings. There was no StarGen-associated rise in IOP or abnormal ERG response in either rabbits or macaques. Histopathologic examination of the eyes did not reveal any detrimental changes resulting from subretinal administration of StarGen. Although antibodies to StarGen vector components were detected in rabbit but not macaque serum, this immunologic response did not result in any long-term toxicity. Biodistribution analysis demonstrated that the StarGen vector was restricted to the ocular compartment. Conclusions. In summary, these studies demonstrate StarGen to be well tolerated and localized following subretinal administration. PMID:23620430

  1. FUEL ROD ASSEMBLY

    DOEpatents

    Hutter, E.

    1959-09-01

    A cluster of nuclear fuel rods aod a tubular casing through which a coolant flows in heat-change contact with the ruel rods are described. The casting is of trefoil section and carries the fuel rods, each of which has two fin engaging the serrated fins of the other two fuel rods, whereby the fuel rods are held in the casing and are interlocked against relative longitudinal movement.

  2. Understanding innate preferences of wild bee species: responses to wavelength-dependent selective excitation of blue and green photoreceptor types.

    PubMed

    Ostroverkhova, Oksana; Galindo, Gracie; Lande, Claire; Kirby, Julie; Scherr, Melissa; Hoffman, George; Rao, Sujaya

    2018-06-05

    Bees have a trichromatic vision with ultraviolet, blue, and green photoreceptors in their compound eyes. While the three photoreceptor types comprise the 'color space' at the perceptual level, preferential excitation of one or two of the photoreceptor types has been shown to play an important role in innate color preferences of bumble bees. Bees have been shown to exhibit strong attraction to fluorescence emission exclusively in the blue spectral region. It is not known if emission exclusively in the green spectral region produces similar attraction. Here, we examined responses of wild bees to traps designed to selectively stimulate either the blue or the green photoreceptor using sunlight-induced fluorescence in the 420-480 or 510-540 nm region, respectively. Additionally, we probed how subtle changes in the spectral characteristics of the traps affect the bee captures once a highly selective excitation of the blue photoreceptor is achieved. It was established that selective excitation of the green photoreceptor type was not attractive, in contrast to that of the blue photoreceptor type. However, once a highly selective excitation of the blue photoreceptor type (at ~ 400-480 nm) was achieved, the wild bees favored strong excitation at 430-480 nm over that in the 400-420 nm region.

  3. HWCTR CONTROL ROD AND SAFETY ROD DRIVE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kale, S.H.

    1963-07-01

    The Heavy Water Components Test Reactor (HWCTR) is a pressurized, D/sub 2/O reactor designed for operation up to 70 Mw at 1500 psig and 3l5 deg C. It has 18 control rods and six safety rods, each driven by an electric motor through a rack and pinion gear train. Racks, pinions, and bearings are located inside individual pressure housings that are penetrated by means of floating ring labyrinth seals. The drives are mounted on the reactor vessel top head. Safety rods have electromagnetic clutches and fall into the reactor when scrammed. The reliability and performance of the rod drives aremore » very good. Seal leakage is well within design limits. Recent inspections of seals and control rod plants showed no evidence of crud buildup or stress corrosion cracking of type 17- 4PH'' stainless steel components. (auth)« less

  4. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms.

    PubMed

    Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław

    2006-06-01

    Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates. This light-avoiding response is observed during a relatively rapid increase in illumination intensity (light stimulus) and consists of cessation of cell movement, a period of backward movement (ciliary reversal), followed by a forward swimming, usually in a new direction. The photosensitivity of ciliates is ascribed to their photoreceptor system, composed of pigment granules, containing the endogenous photoreceptor -- blepharismin in Blepharisma japonicum, and stentorin in Stentor coeruleus. A light stimulus, applied to both ciliates activates specific stimulus transduction processes leading to the electrical changes at the plasma membrane, correlated with a ciliary reversal during photophobic response. These data indicate that both ciliates Blepharisma japonicum and Stentor coeruleus, the lower eukaryotes, are capable of transducing the perceived light stimuli in a manner taking place in some photoreceptor cells of higher eukaryotes. Similarities and differences concerning particular stages of light transduction in eukaryotes at different evolutional levels are discussed in this article.

  5. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man

    PubMed Central

    Cideciyan, Artur V.; Zhao, Xinyu; Nielsen, Lori; Khani, Shahrokh C.; Jacobson, Samuel G.; Palczewski, Krzysztof

    1998-01-01

    Rhodopsin kinase (RK), a specialized G-protein-coupled receptor kinase expressed in retina, is involved in quenching of light-induced signal transduction in photoreceptors. The role of RK in recovery after photoactivation has been explored in vitro and in vivo experimentally but has not been specifically defined in humans. We investigated the effects on human vision of a mutation in the RK gene causing Oguchi disease, a recessively inherited retinopathy. In vitro experiments demonstrated that the mutation, a deletion of exon 5, abolishes the enzymatic activity of RK and is likely a null. Both a homozygote and heterozygote with this RK mutation had recovery phase abnormalities of rod-isolated photoresponses by electroretinography (ERG); photoactivation was normal. Kinetics of rod bleaching adaptation by psychophysics were dramatically slowed in the homozygote but normal final thresholds were attained. Light adaptation was normal at low backgrounds but became abnormal at higher backgrounds. A slight slowing of cone deactivation kinetics in the homozygote was detected by ERG. Cone bleaching adaptation and background adaptation were normal. In this human in vivo condition without a functional RK and probable lack of phosphorylation and arrestin binding to activated rhodopsin, reduction of photolyzed chromophore and regeneration processes with 11-cis-retinal probably constitute the sole pathway for recovery of rod sensitivity. The role of RK in rods would thus be to accelerate inactivation of activated rhodopsin molecules that in concert with regeneration leads to the normal rate of recovery of sensitivity. Cones may rely mainly on regeneration for the inactivation of photolyzed visual pigment, but RK also contributes to cone recovery. PMID:9419375

  6. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  7. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors

    PubMed Central

    Piccoli, Giuseppe; del Pilar Gomez, Maria; Nasi, Enrico

    2002-01-01

    The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular ‘light-transduction complex’ in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCα in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCα localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCα immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the Gq/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal. PMID:12205183

  8. Multimodal Imaging of Photoreceptor Structure in Choroideremia.

    PubMed

    Sun, Lynn W; Johnson, Ryan D; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V; Stepien, Kimberly E; Fishman, Gerald A; Carroll, Joseph

    2016-01-01

    Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors.

  9. Photoreceptor disc shedding in the living human eye

    PubMed Central

    Kocaoglu, Omer P.; Liu, Zhuolin; Zhang, Furu; Kurokawa, Kazuhiro; Jonnal, Ravi S.; Miller, Donald T.

    2016-01-01

    Cone photoreceptors undergo a daily cycle of renewal and shedding of membranous discs in their outer segments (OS), the portion responsible for light capture. These physiological processes are fundamental to maintaining photoreceptor health, and their dysfunction is associated with numerous retinal diseases. While both processes have been extensively studied in animal models and postmortem eyes, little is known about them in the living eye, in particular human. In this study, we report discovery of the optical signature associated with disc shedding using a method based on adaptive optics optical coherence tomography (AO-OCT) in conjunction with post-processing methods to track and monitor individual cone cells in 4D. The optical signature of disc shedding is characterized by an abrupt transient loss in the cone outer segment tip (COST) reflection followed by its return that is axially displaced anteriorly. Using this signature, we measured the temporal and spatial properties of shedding events in three normal subjects. Average duration of the shedding event was 8.8 ± 13.4 minutes, and average length loss of the OS was 2.1 μm (7.0% of OS length). Prevalence of cone shedding was highest in the morning (14.3%) followed by the afternoon (5.7%) and evening (4.0%), with load distributed across the imaged patch. To the best of our knowledge these are the first images of photoreceptor disc shedding in the living retina. PMID:27895995

  10. Rod outer segment-associated N-acetylgalactosaminylphosphotransferase.

    PubMed

    Sweatt, A J; Balsamo, J; Lilien, J

    1995-01-01

    To determine the exact location of a cell surface glycosyltransferase (N-acetylgalactosaminylphosphotransferase, (GalNAcPTase) immunochemically identified in mammalian rod outer segments (ROS), to determine whether anti-GalNAcPTase antibody recognizes retinal molecules that possess transferase activity and to characterize ROS transferase enzyme activity and acceptors. The GalNAcPTase is known to be associated with the adhesion molecule N-cadherin in embryonic avian retinas and with E-cadherin in mammalian pancreatic islet cells. Purified, fixed ROS were reacted with anti-chick GalNAcPTase antibody followed by secondary antibody conjugated to colloidal gold and were examined by electron microscopy. Fractions of retinal and ROS proteins enriched in the transferase were obtained through batch adsorption on Sepharose, separated by gel electrophoresis, transferred to nitrocellulose, and either reacted with anti-GalNAcPTase antibody or assayed for transferase activity. Interphotoreceptor matrix (IPM) was examined for the presence of immunoreactive GalNAcPTase by gel electrophoresis and immunoblot. The kinetics and endogenous acceptors of the cow ROS transferase were characterized. ROS are specifically labeled by anti-GalNAcPTase antibody at the cell surface. The immunogold label was associated with the cell surface and with flocculent material adherent to the cell surface. In addition, soluble and particulate fractions of the IPM showed GalNAcPTase-like immunoreactivity. The transferase appears as single immunoreactive band at or near 220 kd. Transferase enzyme activity was present at this position on Western transfers of retinal and ROS proteins. In whole ROS, transferase activity was directed toward endogenous acceptors of very high molecular mass. The GalNAcPTase is localized on ROS in association with the cell surface and with components of the IPM. The molecule recognized by the anti-GalNAcPTase antibody possesses transferase activity toward itself and a few other

  11. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.

    PubMed

    Klevering, B Jeroen; Yzer, Suzanne; Rohrschneider, Klaus; Zonneveld, Marijke; Allikmets, Rando; van den Born, L Ingeborgh; Maugeri, Alessandra; Hoyng, Carel B; Cremers, Frans P M

    2004-12-01

    Mutations in the ABCA4 gene have been associated with autosomal recessive Stargardt disease (STGD1), cone-rod dystrophy (CRD), and retinitis pigmentosa (RP). We employed a recently developed genotyping microarray, the ABCR400-chip, to search for known ABCA4 mutations in patients with isolated or autosomal recessive CRD (54 cases) or RP (90 cases). We performed detailed ophthalmologic examinations and identified at least one ABCA4 mutation in 18 patients (33%) with CRD and in five patients (5.6%) with RP. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequencing revealed four novel missense mutations (R24C, E161K, P597S, G618E) and a novel 1-bp deletion (5888delG). Ophthalmoscopic abnormalities in CRD patients ranged from minor granular pigmentary changes in the posterior pole to widespread atrophy. In 12 patients with recordable electroretinogram (ERG) tracings, a cone-rod pattern was detected. Three patients demonstrated progression from a retinal dystrophy resembling STGD1 to a more widespread degeneration, and were subsequently diagnosed as CRD. In addition to a variable degree of atrophy, all RP patients displayed ophthalmologic characteristics of classic RP. When detectable, ERG recordings in these patients demonstrated rod-cone patterns of photoreceptor degeneration. In conclusion, in this study, we show that the ABCA4 mutation chip is an efficient first screening tool for arCRD.

  12. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  13. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    PubMed

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  14. Variation in rod and cone density from the fovea to the mid-periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Wells-Gray, E M; Choi, S S; Bries, A; Doble, N

    2016-01-01

    Purpose To characterize the rod and cone photoreceptor mosaic at retinal locations spanning the central 60° in vivo using adaptive optics scanning laser ophthalmoscopy (AO-SLO) in healthy human eyes. Methods AO-SLO images (0.7 × 0.9°) were acquired at 680 nm from 14 locations from 30° nasal retina (NR) to 30° temporal retina (TR) in 5 subjects. Registered averaged images were used to measure rod and cone density and spacing within 60 × 60 μm regions of interest. Voronoi analysis was performed to examine packing geometry at all locations. Results Average peak cone density near the fovea was 164 000±24 000 cones/mm2 and decreased to 6700±1500 and 5400±700 cones/mm2 at 30° NR and 30° TR, respectively. Cone-to-cone spacing increased from 2.7±0.2 μm at the fovea to 14.6±1.4 μm at 30° NR and 16.3±0.7 μm at 30° TR. Rod density peaked at 25° NR (124 000±20 000 rods/mm2) and 20° TR (120 000±12 000 rods/mm2) and decreased at higher eccentricities. Center-to-center rod spacing was lowest nasally at 25° (2.1±0.1 μm). Temporally, rod spacing was lowest at 20° (2.2±0.1 μm) before increasing to 2.3±0.1 μm at 30° TR. Conclusions Both rod and cone densities showed good agreement with histology and prior AO-SLO studies. The results demonstrate the ability to image at higher retinal eccentricities than reported previously. This has clinical importance in diseases that initially affect the peripheral retina such as retinitis pigmentosa. PMID:27229708

  15. Multimodal Imaging of Photoreceptor Structure in Choroideremia

    PubMed Central

    Johnson, Ryan D.; Williams, Vesper; Summerfelt, Phyllis; Dubra, Alfredo; Weinberg, David V.; Stepien, Kimberly E.; Fishman, Gerald A.; Carroll, Joseph

    2016-01-01

    Purpose Choroideremia is a progressive X-linked recessive dystrophy, characterized by degeneration of the retinal pigment epithelium (RPE), choroid, choriocapillaris, and photoreceptors. We examined photoreceptor structure in a series of subjects with choroideremia with particular attention to areas bordering atrophic lesions. Methods Twelve males with clinically-diagnosed choroideremia and confirmed hemizygous mutations in the CHM gene were examined. High-resolution images of the retina were obtained using spectral domain optical coherence tomography (SD-OCT) and both confocal and non-confocal split-detector adaptive optics scanning light ophthalmoscope (AOSLO) techniques. Results Eleven CHM gene mutations (3 novel) were identified; three subjects had the same mutation and one subject had two mutations. SD-OCT findings included interdigitation zone (IZ) attenuation or loss in 10/12 subjects, often in areas with intact ellipsoid zones; RPE thinning in all subjects; interlaminar bridges in the imaged areas of 10/12 subjects; and outer retinal tubulations (ORTs) in 10/12 subjects. Only split-detector AOSLO could reliably resolve cones near lesion borders, and such cones were abnormally heterogeneous in morphology, diameter and density. On split-detector imaging, the cone mosaic terminated sharply at lesion borders in 5/5 cases examined. Split-detector imaging detected remnant cone inner segments within ORTs, which were generally contiguous with a central patch of preserved retina. Conclusions Early IZ dropout and RPE thinning on SD-OCT are consistent with previously published results. Evidence of remnant cone inner segments within ORTs and the continuity of the ORTs with preserved retina suggests that these may represent an intermediate state of retinal degeneration prior to complete atrophy. Taken together, these results supports a model of choroideremia in which the RPE degenerates before photoreceptors. PMID:27936069

  16. The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats.

    PubMed

    Pennesi, Mark E; Nishikawa, Shimpei; Matthes, Michael T; Yasumura, Douglas; LaVail, Matthew M

    2008-12-01

    The early loss of photoreceptors in some retinal degenerations in mice has been shown to have a profound effect on vascular development of the retina. To better characterize this relationship, we have examined the formation of retinal blood vessels during the first month of life in 8 lines of transgenic rats with different ages of onset and rates of photoreceptor cell loss mediated by the expression of mutant rhodopsin (P23H and S334ter). The number of capillary profiles in the superficial plexus (SP) and deep capillary plexus (DCP) of the retina were quantified in retinal sections taken at postnatal day (P) 8, 10, 12, 15 and 30. In normal wild-type rats, the SP and DCP had mostly established mature, adult patterns by P15, as previously shown. In the transgenic rats, the loss of photoreceptors had relatively little effect on the SP. By contrast, the loss of photoreceptors during vascular development had a major impact on the DCP. In the two lines with early and most rapid photoreceptor loss, S334ter-7 and S334ter-3, where about 90% and 65%, respectively, of the photoreceptors were already lost by P15, the DCP either failed to form (S334ter-7) or the number of capillary profiles was less than 7% of controls (S334ter-3). In lines where almost all photoreceptors were still present at P15 (S334ter-4, S334ter-9, P23H-2 and P23H-3), the number of profiles in the DCP were the same as in wild-type controls at P30. In two lines with an intermediate rate of degeneration (S334ter-5 and P23H-1), where only about 25% of the photoreceptors were lost by P15, there was an intermediate number of vascular profiles in the DCP at P30. Thus, a very close relationship between the number of photoreceptors and vessel profiles in the DCP during its development exists in the transgenic rats, and the loss of photoreceptors results in the failure or inhibition of the DCP to develop. Several mechanisms may explain this relationship including changes in the level of physiological oxygen tension

  17. NAD+ maintenance attenuates light induced photoreceptor degeneration Δ

    PubMed Central

    Bai, Shi; Sheline, Christian T.

    2013-01-01

    Light-induced retinal damage (LD) occurs after surgery or sun exposure. We previously showed that zinc (Zn2+) accumulated in photoreceptors and RPE cells after LD but prior to cell death, and pyruvate or nicotinamide attenuated the resultant death perhaps by restoring nicotinamide adenine dinucleotide (NAD+) levels. We first examined the levels of NAD+ and the efficacy of pyruvate or nicotinamide in oxidative toxicities using primary retinal cultures. We next manipulated NAD+ levels in vivo and tested the affect on LD to photoreceptors and RPE. NAD+ levels cycle with a 24-h rhythm in mammals, which is affected by the feeding schedule. Therefore, we tested the affect of increasing NAD+ levels on LD by giving nicotinamide, inverting the feeding schedule, or using transgenic mice which overexpress cytoplasmic nicotinamide mononucleotide adenyl-transferase-1 (cytNMNAT1), an NAD+ synthetic enzyme. Zn2+ accumulation was also assessed in culture and in retinal sections. Retinas of light damaged animals were examined by OCT and plastic sectioning, and retinal NAD levels were measured. Day fed, or nicotinamide treated rats showed less NAD+ loss, and LD compared to night fed rats or untreated rats without changing the Zn2+ staining pattern. CytNMNAT1 showed less Zn2+ staining, NAD+ loss, and cell death after LD. In conclusion, intense light, Zn2+ and oxidative toxicities caused an increase in Zn2+, NAD+ loss, and cell death which were attenuated by NAD+ restoration. Therefore, NAD+ levels play a protective role in LD-induced death of photoreceptors and RPE cells. PMID:23274583

  18. Differential distribution of fibroblast growth factor receptors (FGFRs) on foveal cones: FGFR-4 is an early marker of cone photoreceptors.

    PubMed

    Cornish, Elisa E; Natoli, Riccardo C; Hendrickson, Anita; Provis, Jan M

    2004-01-08

    development and is not detected in rods. The fibers of Henle are intensely FGFR4 immunoreactive in adult cones. The results show high levels of FGF receptor expression in developing and adult retina. Differential distribution of FGF receptors across developing and adult photoreceptors suggests specific roles for FGF signalling in development and maintenance of photoreceptors, particularly the specialized cones of the fovea.

  19. Kinetics of Exocytosis Is Faster in Cones Than in Rods

    PubMed Central

    Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.

    2006-01-01

    Cone-driven responses of second-order retinal neurons are considerably faster than rod-driven responses. We examined whether differences in the kinetics of synaptic transmitter release from rods and cones may contribute to differences in postsynaptic response kinetics. Exocytosis from rods and cones was triggered by membrane depolarization and monitored in two ways: (1) by measuring EPSCs evoked in second-order neurons by depolarizing steps applied to presynaptic rods or cones during simultaneous paired whole-cell recordings or (2) by direct measurements of exocytotic increases in membrane capacitance. The kinetics of release was assessed by varying the length of the depolarizing test step. Both measures of release revealed two kinetic components to the increase in exocytosis as a function of the duration of a step depolarization. In addition to slow sustained components in both cell types, the initial fast component of exocytosis had a time constant of <5 ms in cones, >10-fold faster than that of rods. Rod/cone differences in the kinetics of release were substantiated by a linear correlation between depolarization-evoked capacitance increases and EPSC charge transfer. Experiments on isolated rods indicate that the slower kinetics of exocytosis from rods was not a result of rod–rod coupling. The initial rapid release of vesicles from cones can shape the postsynaptic response and may contribute to the faster responses of cone-driven cells observed at light offset. PMID:15872111

  20. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

    PubMed Central

    Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2014-01-01

    Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301

  1. Behavioural and physiological limits to vision in mammals

    PubMed Central

    Field, Greg D.

    2017-01-01

    Human vision is exquisitely sensitive—a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold. This article is part of the themed issue ‘Vision in dim light’. PMID:28193817

  2. Photobiomodulation reduces photoreceptor death and regulates cytoprotection in early states of P23H retinal dystrophy

    NASA Astrophysics Data System (ADS)

    Kirk, Diana K.; Gopalakrishnan, Sandeep; Schmitt, Heather; Abroe, Betsy; Stoehr, Michele; Dubis, Adam; Carroll, Joseph; Stone, Jonathan; Valter, Krisztina; Eells, Janis

    2013-03-01

    Irradiation by light in the far-red to near-infrared (NIR) region of the spectrum (photobiomodulation, PBM) has been demonstrated to attenuate the severity of neurodegenerative disease in experimental and clinical studies. The purpose of this study was to test the hypothesis that 670 nm PBM would protect against the loss of retinal function and improve photoreceptor survival in a rodent model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated once per day with a 670 nm LED array (180 sec treatments at 50 mW/cm2; fluence 9 joules/cm2) (Quantum Devices Inc., Barneveld WI) from postnatal day (p) 16-20 or from p10-20. Sham-treated rats were restrained, but not exposed to NIR light. The status of the retina was determined at p22 by assessment of mitochondrial function, oxidative stress and cell death. In a second series of studies, retinal status was assessed at p30 by measuring photoreceptor function by ERG and retinal morphology by Spectral Domain Optical Coherence Tomography (SD-OCT). 670 nm PBM increased retinal mitochondrial cytochrome oxidase activity and upregulated the retina's production of the key mitochondrial antioxidant enzyme, MnSOD. PBM also attenuated photoreceptor cell loss and improved photoreceptor function. PBM protects photoreceptors in the developing P23H retina, by augmenting mitochondrial function and stimulating antioxidant protective pathways. Photobiomodulation may have therapeutic potential, where mitochondrial damage is a step in the death of photoreceptors.

  3. Mef2d is essential for the maturation and integrity of retinal photoreceptor and bipolar cells.

    PubMed

    Omori, Yoshihiro; Kitamura, Tamiki; Yoshida, Satoyo; Kuwahara, Ryusuke; Chaya, Taro; Irie, Shoichi; Furukawa, Takahisa

    2015-05-01

    Mef2 transcription factors play a crucial role in cardiac and skeletal muscle differentiation. We found that Mef2d is highly expressed in the mouse retina and its loss causes photoreceptor degeneration similar to that observed in human retinitis pigmentosa patients. Electroretinograms (ERGs) were severely impaired in Mef2d-/- mice. Immunohistochemistry showed that photoreceptor and bipolar cell synapse protein levels severely decreased in the Mef2d-/- retina. Expression profiling by microarray analysis showed that Mef2d is required for the expression of various genes in photoreceptor and bipolar cells, including cone arrestin, Guca1b, Pde6h and Cacna1s, which encode outer segment and synapse proteins. We also observed that Mef2d synergistically activates the cone arrestin (Arr3) promoter with Crx, suggesting that functional cooperation between Mef2d and Crx is important for photoreceptor cell gene regulation. Taken together, our results show that Mef2d is essential for photoreceptor and bipolar cell gene expression, either independently or cooperatively with Crx. © 2015 Institution for Protein Research. Genes to Cells published by Wiley Publishing Asia Pty Ltd and the Molecular Biology Society of Japan.

  4. Correlation of Mechanical Properties with Diameter and Cooling Rate of 1080 Wire-Rod

    NASA Astrophysics Data System (ADS)

    Kohli, A.; Poirier, D. R.

    2017-12-01

    More than 540 heats of 1080 wire-rod were statistically analyzed by regression analyses to see whether tensile strength and percent reduction in area (%RA) relate to wire-rod diameter and composition. As diameter increases from 5.6 to 12.7 mm, the trend in %RA shows a decrease with negligible effect on the trend of the tensile strength. It was found that the estimated cooling rate at 700 °C during controlled cooling is responsible for the "diameter effect." The effect of composition on %RA is minor when contrasted to the "diameter effect." In particular, the effect of the concentrations of the residual elements on %RA within the compositional range studied is negligible.

  5. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting

    PubMed Central

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-01-01

    Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics. PMID:28873173

  6. CRUCIFORM CONTROL ROD JOINT

    DOEpatents

    Thorp, A.G. II

    1962-08-01

    An invention is described which relates to nuclear reactor control rod components and more particularly to a joint between cruciform control rod members and cruciform control rod follower members. In one embodiment this invention provides interfitting crossed arms at adjacent ends of a control rod and its follower in abutting relation. This holds the members against relative opposite longitudinal movement while a compression member keys the arms against relative opposite rotation around a common axis. Means are also provided for centering the control rod and its follower on a common axis and for selectively releasing the control rod from its follower for the insertion of a replacement of the control rod and reuse of the follower. (AEC)

  7. Simple explant culture of the embryonic chicken retina with long-term preservation of photoreceptors.

    PubMed

    Thangaraj, Gopenath; Greif, Alexander; Layer, Paul G

    2011-10-01

    Structurally stable in vitro-model systems are indispensible to analyse neural development during embryogenesis, follow cellular differentiation and evaluate neurotoxicological or growth factor effects. Here we describe a three-dimensional, long-term in vitro-culture system of the embryonic chick retina which supports photoreceptor development. Retinal tissue was isolated from E6 chick eye, and cultured as explants by continuous orbital rotation to allow free floatation without any supporting materials. Young stage (E6) immature retinas were cultured for various time periods in order to follow the differentiation of cell types and plexiform layers by immunocytochemical methods. These explants could be cultured for at least 2-3 weeks with remarkable retention of retinal architecture. Interestingly, photoreceptors developed in the absence of pigment epithelium. Electron microscopic studies revealed formation of structures resembling photoreceptor outer segments, a feature not reported previously. Thus, the verification of photoreceptors, Müller cells, inner retinal cells and the inner plexiform layer described in our study establishes this explant culture as a valuable in vivo-like model system. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. Robust technology and system for management of sucker rod pumping units in oil wells

    NASA Astrophysics Data System (ADS)

    Aliev, T. A.; Rzayev, A. H.; Guluyev, G. A.; Alizada, T. A.; Rzayeva, N. E.

    2018-01-01

    We propose a technology for calculating the robust, normalized correlation functions of the signal from the force sensor on the rod string attached to the hanger of the sucker rod pumping unit. The robust normalized correlation functions are used to form sets of informative attribute combinations, each of which corresponds to a technical condition of the sucker rod pumping unit. We demonstrate how these sets can be used to solve identification and management problems in the oil production process in real time using inexpensive controllers. The results obtained from using the system on real objects are also presented in this paper. It was determined that the energy saved and prolonged overhaul period substantially increased the cost-effectiveness.

  9. Control rod driveline and grapple

    DOEpatents

    Germer, John H.

    1987-01-01

    A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.

  10. Interaction of arrestin with enolase1 in photoreceptors.

    PubMed

    Smith, W Clay; Bolch, Susan; Dugger, Donald R; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J Hugh

    2011-03-01

    Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors.

  11. Lightning discharge protection rod

    NASA Technical Reports Server (NTRS)

    Bryan, Charles F., Jr. (Inventor)

    1987-01-01

    A system for protecting an in-air vehicle from damage due to a lighning strike is disclosed. It is an extremely simple device consisting of a sacrificial graphite composite rod, approximately the diameter of a pencil with a length of about five inches. The sacrificial rod is constructed with the graphite fibers running axially within the rod in a manner that best provides a path of conduction axially from the trailing edge of an aircraft to the trailing end of the rod. The sacrificial rod is inserted into an attachment hole machined into trailing edges of aircraft flight surfaces, such as a vertical fin cap and attached with adhesive in a manner not prohibiting the conduction path between the rod and the aircraft. The trailing end of the rod may be tapered for aerodynamic and esthetic requirements. This rod is sacrificial but has the capability to sustain several lightning strikes and still provide protection.

  12. Molecular and functional identification of a novel photopigment in Pecten ciliary photoreceptors.

    PubMed

    Arenas, Oscar; Osorno, Tomás; Malagón, Gerardo; Pulido, Camila; Gomez, María Del Pilar; Nasi, Enrico

    2018-01-26

    The two basic animal photoreceptor types, ciliary and microvillar, use different light-transduction schemes: their photopigments couple to G t versus G q proteins, respectively, to either mobilize cyclic nucleotides or trigger a lipid signaling cascade. A third class of photoreceptors has been described in the dual retina of some marine invertebrates; these present a ciliary morphology but operate via radically divergent mechanisms, prompting the suggestion that they comprise a novel lineage of light sensors. In one of these organisms, an uncommon putative opsin was uncovered that was proposed to signal through G o Orthologues subsequently emerged in diverse phyla, including mollusks, echinoderms, and chordates, but the cells in which they express have not been identified, and no studies corroborated their function as visual pigments or their suggested signaling mode. Conversely, in only one invertebrate species, Pecten irradians , have the ciliary photoreceptors been physiologically characterized, but their photopigment has not been identified molecularly. We used the transcriptome of Pecten retina to guide the cloning by polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) extensions of a new member of this group of putative opsins. In situ hybridization shows selective transcription in the distal retina, and specific antibodies identify a single band of the expected molecular mass in Western blots and distinctly label ciliary photoreceptors in retina sections. RNA interference knockdown resulted in a reduction in the early receptor current-the first manifestation of light transduction-and prevented the prolonged aftercurrent, which requires a large buildup of activated rhodopsin. We also obtained a full-length clone of the α-subunit of a G o from Pecten retina complementary DNA and localized it by in situ hybridization to the distal photoreceptors. Small interfering RNA targeting this G o caused a specific depression of the photocurrent

  13. Piston rod seal

    DOEpatents

    Lindskoug, Stefan

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  14. A second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes.

    PubMed

    Morrow, James M; Lazic, Savo; Dixon Fox, Monica; Kuo, Claire; Schott, Ryan K; de A Gutierrez, Eduardo; Santini, Francesco; Tropepe, Vincent; Chang, Belinda S W

    2017-01-15

    Rhodopsin (rh1) is the visual pigment expressed in rod photoreceptors of vertebrates that is responsible for initiating the critical first step of dim-light vision. Rhodopsin is usually a single copy gene; however, we previously discovered a novel rhodopsin-like gene expressed in the zebrafish retina, rh1-2, which we identified as a functional photosensitive pigment that binds 11-cis retinal and activates in response to light. Here, we localized expression of rh1-2 in the zebrafish retina to a subset of peripheral photoreceptor cells, which indicates a partially overlapping expression pattern with rh1 We also expressed, purified and characterized Rh1-2, including investigation of the stability of the biologically active intermediate. Using fluorescence spectroscopy, we found the half-life of the rate of retinal release of Rh1-2 following photoactivation to be more similar to that of the visual pigment rhodopsin than to the non-visual pigment exo-rhodopsin (exorh), which releases retinal around 5 times faster. Phylogenetic and molecular evolutionary analyses show that rh1-2 has ancient origins within teleost fishes, is under similar selective pressure to rh1, and likely experienced a burst of positive selection following its duplication and divergence from rh1 These findings indicate that rh1-2 is another functional visual rhodopsin gene, which contradicts the prevailing notion that visual rhodopsin is primarily found as a single copy gene within ray-finned fishes. The reasons for retention of this duplicate gene, as well as possible functional consequences for the visual system, are discussed. © 2017. Published by The Company of Biologists Ltd.

  15. Redox proteomic identification of visual arrestin dimerization in photoreceptor degeneration after photic injury.

    PubMed

    Lieven, Christopher J; Ribich, Jonathan D; Crowe, Megan E; Levin, Leonard A

    2012-06-26

    Light-induced oxidative stress is an important risk factor for age-related macular degeneration, but the downstream mediators of photoreceptor and retinal pigment epithelium cell death after photic injury are unknown. Given our previous identification of sulfhydryl/disulfide redox status as a factor in photoreceptor survival, we hypothesized that formation of one or more disulfide-linked homo- or hetero-dimeric proteins might signal photoreceptor death after light-induced injury. Two-dimensional (non-reducing/reducing) gel electrophoresis of Wistar rat retinal homogenates after 10 hours of 10,000 lux (4200°K) light in vivo, followed by mass spectrometry identification of differentially oxidized proteins. The redox proteomic screen identified homodimers of visual arrestin (Arr1; S antigen) after toxic levels of light injury. Immunoblot analysis revealed a light duration-dependent formation of Arr1 homodimers, as well as other Arr1 oligomers. Immunoprecipitation studies revealed that the dimerization of Arr1 due to photic injury was distinct from association with its physiological binding partners, rhodopsin and enolase1. Systemic delivery of tris(2-carboxyethyl)phosphine, a specific disulfide reductant, both decreased Arr1 dimer formation and protected photoreceptors from light-induced degeneration in vivo. These findings suggest a novel arrestin-associated pathway by which oxidative stress could result in cell death, and identify disulfide-dependent dimerization as a potential therapeutic target in retinal degeneration.

  16. Adaptations for vision in dim light: impulse responses and bumps in nocturnal spider photoreceptor cells (Cupiennius salei Keys).

    PubMed

    Pirhofer-Walzl, Karin; Warrant, Eric; Barth, Friedrich G

    2007-10-01

    The photoreceptor cells of the nocturnal spider Cupiennius salei were investigated by intracellular electrophysiology. (1) The responses of photoreceptor cells of posterior median (PM) and anterior median (AM) eyes to short (2 ms) light pulses showed long integration times in the dark-adapted and shorter integration times in the light-adapted state. (2) At very low light intensities, the photoreceptors responded to single photons with discrete potentials, called bumps, of high amplitude (2-20 mV). When measured in profoundly dark-adapted photoreceptor cells of the PM eyes these bumps showed an integration time of 128 +/- 35 ms (n = 7) whereas in dark-adapted photoreceptor cells of AM eyes the integration time was 84 +/- 13 ms (n = 8), indicating that the AM eyes are intrinsically faster than the PM eyes. (3) Long integration times, which improve visual reliability in dim light, and large responses to single photons in the dark-adapted state, contribute to a high visual sensitivity in Cupiennius at night. This conclusion is underlined by a calculation of sensitivity that accounts for both anatomical and physiological characteristics of the eye.

  17. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms

  18. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina.

    PubMed

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M; Hyde, David R

    2015-11-25

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms that regulate retinal

  19. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR).

    PubMed

    Beharry, Seelochan; Zhong, Ming; Molday, Robert S

    2004-12-24

    ABCA4, a member of the family of ATP binding cassette (ABC) proteins found in rod and cone photoreceptors, has been implicated in the transport of retinoid compounds across the outer segment disk membrane following the photoactivation of rhodopsin. Mutations in the ABCA4 gene are responsible for Stargardt macular dystrophy and related retinal degenerative diseases that cause a loss in vision. To identify the retinoid substrate that interacts with ABCA4, we have isolated ABCA4 from rod outer segment disk membranes on an immunoaffinity matrix and analyzed retinoid compounds that bind to ABCA4 using high performance liquid chromatography and radiolabeling methods. When all-trans-retinal was added to ABCA4 in the presence of phosphatidylethanolamine, approximately 0.9 mol of N-retinylidene-phosphatidylethanolamine and 0.3 mol of all-trans-retinal were bound per mol of ABCA4 with an apparent K(d) of 2-5 microm. ATP and GTP released these retinoids from ABCA4, whereas ADP, GDP, and nonhydrolyzable derivatives, adenosine 5'-(beta,gamma-imido)triphosphate and guanosine 5'-(beta,gamma-imido)triphosphate, were ineffective. One mole of N-retinyl-phosphatidylethanolamine, the reduced form of N-retinylidene-phosphatidylethanolamine, bound per mol of ABCA4, whereas 0.3 mol of all-trans-retinal were bound in the absence of phosphatidylethanolamine. No binding of all-trans-retinol to ABCA4 was observed. Our results indicate that ABCA4 preferentially binds N-retinylidene-phosphatidylethanolamine with high affinity in the absence of ATP. Our studies further suggest that ATP binding and hydrolysis induces a protein conformational change that causes N-retinylidene-phosphatidylethanolamine to dissociate from ABCA4.

  20. Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    PubMed Central

    Seko, Yuko; Azuma, Noriyuki; Kaneda, Makoto; Nakatani, Kei; Miyagawa, Yoshitaka; Noshiro, Yuuki; Kurokawa, Reiko; Okano, Hideyuki; Umezawa, Akihiro

    2012-01-01

    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases. PMID:22558175

  1. Generation of three-dimensional retinal organoids expressing rhodopsin and S- and M-cone opsins from mouse stem cells.

    PubMed

    Ueda, Kaori; Onishi, Akishi; Ito, Shin-Ichiro; Nakamura, Makoto; Takahashi, Masayo

    2018-01-22

    Three-dimensional retinal organoids can be differentiated from embryonic stem cells/induced pluripotent stem cells (ES/iPS cells) under defined medium conditions. We modified the serum-free floating culture of embryoid body-like aggregates with quick reaggregation (SFEBq) culture procedure to obtain retinal organoids expressing more rod photoreceptors and S- and M-cone opsins. Retinal organoids differentiated from mouse Nrl-eGFP iPS cells were cultured in various mediums during photoreceptor development. To promote rod photoreceptor development, organoids were maintained in media containing 9-cis retinoic acids (9cRA). To obtain retinal organoids with M-opsin expression, we cultured in medium with 1% fetal bovine serum (FBS) supplemented with T3, BMP4, and DAPT. Section immunohistochemistry was performed to visualize the expression of photoreceptor markers. In three-dimensional (3D) retinas exposed to 9cRA, rhodopsin was expressed earlier and S-cone opsins were suppressed. We could maintain 3D retinas up to DD 35 in culture media with 1% FBS. The 3D retinas expressed rhodopsin, S- and M-opsins, but most cone photoreceptors expressed either S- or M-opsins. By modifying culture conditions in the SFEBq protocol, we obtained rod-dominated 3D retinas and S- and M-opsin expressing 3D retinas. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A technique for in vivo measurement of photoreceptor orientation in the chicken retina.

    PubMed

    Beresford, J A; Crewther, S G; Crewther, D P

    1999-01-01

    The aim of the current study was to develop a method for simultaneously assessing central and peripheral photoreceptor alignment in vivo in animal models. The stimulus apparatus consisted of nine light-emitting diodes (LED) positioned 7.5 degrees apart around an arc. The stimulus was viewed through a pinhole imaged into the entrance pupil of the eye using a telecentric lens system. Photodiodes placed over an array of the VERIS imaging system stimulated the electroretinogram. Data were obtained by positioning the pinhole at 0.25-mm intervals across the pupil and recording (Volk Optical, Mentor, OH, USA) at each location. Orientation assessed in normal chickens demonstrates that photoreceptors orientate towards a locus near the centre of the pupil and that there is a systematic change in peak location with eccentricity. This technique provides a valuable method for determining photoreceptor orientation properties in vivo and can be applied to animal models of pathology.

  3. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock

    PubMed Central

    Katti, C.; Kempler, K.; Porter, M. L.; Legg, A.; Gonzalez, R.; Garcia-Rivera, E.; Dugger, D.; Battelle, B.-A.

    2010-01-01

    A long-standing concept in vision science has held that a single photoreceptor expresses a single type of opsin, the protein component of visual pigment. However, the number of examples in the literature of photoreceptors from vertebrates and invertebrates that break this rule is increasing. Here, we describe a newly discovered Limulus opsin, Limulus opsin5, which is significantly different from previously characterized Limulus opsins, opsins1 and 2. We show that opsin5 is co-expressed with opsins1 and 2 in Limulus lateral and ventral eye photoreceptors and provide the first evidence that the expression of co-expressed opsins can be differentially regulated. We show that the relative levels of opsin5 and opsin1 and 2 in the rhabdom change with a diurnal rhythm and that their relative levels are also influenced by the animal's central circadian clock. An analysis of the sequence of opsin5 suggests it is sensitive to visible light (400–700 nm) but that its spectral properties may be different from that of opsins1 and 2. Changes in the relative levels of these opsins may underlie some of the dramatic day–night changes in Limulus photoreceptor function and may produce a diurnal change in their spectral sensitivity. PMID:20639420

  4. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    PubMed

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  5. Locked-wrap fuel rod

    DOEpatents

    Kaplan, Samuel; Chertock, Alan J.; Punches, James R.

    1977-01-01

    A method for spacing fast reactor fuel rods using a wire wrapper improved by orienting the wire-wrapped fuel rods in a unique manner which introduces desirable performance characteristics not attainable by previous wire-wrapped designs. Use of this method in a liquid metal fast breeder reactor results in: (a) improved mechanical performance, (b) improved rod-to-rod contact, (c) reduced steel volume, and (d) improved thermal-hydraulic performance. The method produces a "locked wrap" design which tends to lock the rods together at each of the wire cluster locations.

  6. Rod outer segment retinol formation is independent of Abca4, arrestin, rhodopsin kinase, and rhodopsin palmitylation.

    PubMed

    Blakeley, Lorie R; Chen, Chunhe; Chen, Ching-Kang; Chen, Jeannie; Crouch, Rosalie K; Travis, Gabriel H; Koutalos, Yiannis

    2011-06-01

    The reactive aldehyde all-trans retinal is released in rod photoreceptor outer segments by photoactivated rhodopsin and is eliminated through reduction to all-trans retinol. This study was undertaken to determine whether all-trans retinol formation depends on Abca4, arrestin, rhodopsin kinase, and the palmitylation of rhodopsin, all of which are factors that affect the release and sequestration of all-trans retinal. Experiments were performed in isolated retinas and single living rods derived from 129/sv wild-type mice and Abca4-, arrestin-, and rhodopsin kinase-deficient mice and in genetically modified mice containing unpalmitylated rhodopsin. Formation of all-trans retinol was measured by imaging its fluorescence and by HPLC of retina extracts. The release of all-trans retinal from photoactivated rhodopsin was measured in purified rod outer segment membranes according to the increase in tryptophan fluorescence. All experiments were performed at 37°C. The kinetics of all-trans retinol formation in the different types of genetically modified mice are in reasonable agreement with those in wild-type animals. The kinetics of all-trans retinol formation in 129/sv mice are similar to those in C57BL/6, although the latter are known to regenerate rhodopsin much more slowly. The release of all-trans retinal from rhodopsin in purified membranes is significantly faster than the formation of all-trans retinol in intact cells and is independent of the presence of the palmitate groups. The regeneration of rhodopsin and the recycling of its chromophore are not strongly coupled. Neither the activities of Abca4, rhodopsin kinase, and arrestin, nor the palmitylation of rhodopsin affects the formation of all-trans retinol.

  7. Interaction of Arrestin with Enolase1 in Photoreceptors

    PubMed Central

    Bolch, Susan; Dugger, Donald R.; Li, Jian; Esquenazi, Isi; Arendt, Anatol; Benzenhafer, Del; McDowell, J. Hugh

    2011-01-01

    Purpose. Arrestin is in disequilibrium in photoreceptors, translocating between inner and outer segments in response to light. The purpose of this project was to identify the cellular component with which arrestin associates in the dark-adapted retina. Methods. Retinas were cross-linked with 2.5 mM dithiobis(succinimidylpropionate) (DSP), and arrestin-containing complexes purified by anion-exchange chromatography. Tandem mass spectrometric analysis was used to identify the protein components in the complex. Enolase localization in photoreceptors was assessed by immunohistochemistry. Confirmation of interacting components was performed using immunoprecipitation and surface plasmon resonance (SPR). Enolase activity was also assessed in the presence of arrestin1. Results. In retinas treated with DSP, arrestin cross-linked in a 125-kDa complex. The principal components of this complex were arrestin1 and enolase1. Both arrestin1 and -4 were pulled down with enolase1 when enolase1 was immunoprecipitated. In the dark-adapted retina, enolase1 co-localized with arrestin1 in the inner segments and outer nuclear layer, but remained in the inner segments when arrestin1 translocated in response to light adaptation. SPR of purified arrestin1 and enolase1 demonstrated direct binding between arrestin1 and enolase1. Arrestin1 modulated the catalytic activity of enolase1, slowing it by as much as 24%. Conclusions. The results show that in the dark-adapted retina, arrestin1 and -4 interact with enolase1. The SPR data show that the interaction between arrestin1 and enolase1 was direct, not requiring a third element to form the complex. Arrestin1 slowed the catalytic activity of enolase1, suggesting that light-driven translocation of arrestin1 may modulate the metabolic activity of photoreceptors. PMID:21051714

  8. Sorting of colors in the retina

    NASA Astrophysics Data System (ADS)

    Ribak, Erez; Labin, Amichai; Safuri, Shadi; Perlman, Ido

    2015-03-01

    Our image of the world is detected by photoreceptors, lying at the bottom of the nearly-transparent retina. Lateral neural layers for processing the image temporally, spectrally, and spatially come in front the photoreceptors, not behind them. This reverse order is a long-standing puzzle, which we wish to explain. We found out that cone photoreceptors are attached to metabolic Muller cells which span the retina. Cones provide colour vision at day time, and are surrounded by sensitive rods which function at night. We showed by an analytical and a computational method that the Müller cells also serve as fibre optics, concentrating green-red light into the cones, while the excessive blue is scattered to the nearby rods. Spatial and spectral laboratory measurements validate that indeed the shapes and refractive index values of the Muller cells and the surrounding retina separate the colours according to the spectral sensitivities of both cones and rods. These results also explain other effects of vision acuity and colour sensitivity.

  9. Gene replacement therapy for retinal CNG channelopathies.

    PubMed

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2013-10-01

    Visual phototransduction relies on the function of cyclic nucleotide-gated channels in the rod and cone photoreceptor outer segment plasma membranes. The role of these ion channels is to translate light-triggered changes in the second messenger cyclic guanosine 3'-5'-monophosphate levels into an electrical signal that is further processed within the retinal network and then sent to higher visual centers. Rod and cone photoreceptors express distinct CNG channels. The rod photoreceptor CNG channel is composed of one CNGB1 and three CNGA1 subunits, whereas the cone channel is formed by one CNGB3 and three CNGA3 subunits. Mutations in any of these channel subunits result in severe and currently untreatable retinal degenerative diseases like retinitis pigmentosa or achromatopsia. In this review, we provide an overview of the human diseases and relevant animal models of CNG channelopathies. Furthermore, we summarize recent results from preclinical gene therapy studies using adeno-associated viral vectors and discuss the efficacy and translational potential of these gene therapeutic approaches.

  10. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival.

    PubMed

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-12-28

    Cilia function as cell sensors in many organs, and their disorders are referred to as "ciliopathies." Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors.

  11. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival

    PubMed Central

    Omori, Yoshihiro; Chaya, Taro; Katoh, Kimiko; Kajimura, Naoko; Sato, Shigeru; Muraoka, Koichiro; Ueno, Shinji; Koyasu, Toshiyuki; Kondo, Mineo; Furukawa, Takahisa

    2010-01-01

    Cilia function as cell sensors in many organs, and their disorders are referred to as “ciliopathies.” Although ciliary components and transport machinery have been well studied, regulatory mechanisms of ciliary formation and maintenance are poorly understood. Here we show that male germ cell-associated kinase (Mak) regulates retinal photoreceptor ciliary length and subcompartmentalization. Mak was localized both in the connecting cilia and outer-segment axonemes of photoreceptor cells. In the Mak-null retina, photoreceptors exhibit elongated cilia and progressive degeneration. We observed accumulation of intraflagellar transport 88 (IFT88) and IFT57, expansion of kinesin family member 3A (Kif3a), and acetylated α-tubulin signals in the Mak-null photoreceptor cilia. We found abnormal rhodopsin accumulation in the Mak-null photoreceptor cell bodies at postnatal day 14. In addition, overexpression of retinitis pigmentosa 1 (RP1), a microtubule-associated protein localized in outer-segment axonemes, induced ciliary elongation, and Mak coexpression rescued excessive ciliary elongation by RP1. The RP1 N-terminal portion induces ciliary elongation and increased intensity of acetylated α-tubulin labeling in the cells and is phosphorylated by Mak. These results suggest that Mak is essential for the regulation of ciliary length and is required for the long-term survival of photoreceptors. PMID:21148103

  12. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  13. Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis

    PubMed Central

    Khattree, Nidhi; Ritter, Linda M.; Goldberg, Andrew F. X.

    2013-01-01

    Summary Vertebrate vision requires photon absorption by photoreceptor outer segments (OSs), structurally elaborate membranous organelles derived from non-motile sensory cilia. The structure and function of OSs depends on a precise stacking of hundreds of membranous disks. Each disk is fully (as in rods) or partially (as in cones) bounded by a rim, at which the membrane is distorted into an energetically unfavorable high-curvature bend; however, the mechanism(s) underlying disk rim structure is (are) not established. Here, we demonstrate that the intrinsically disordered cytoplasmic C-terminus of the photoreceptor tetraspanin peripherin-2/rds (P/rds) can directly generate membrane curvature. A P/rds C-terminal domain and a peptide mimetic of an amphipathic helix contained within it each generated curvature in liposomes with a composition similar to that of OS disks and in liposomes generated from native OS lipids. Association of the C-terminal domain with liposomes required conical phospholipids, and was promoted by membrane curvature and anionic surface charge, results suggesting that the P/rds C-terminal amphipathic helix can partition into the cytosolic membrane leaflet to generate curvature by a hydrophobic insertion (wedging) mechanism. This activity was evidenced in full-length P/rds by its induction of small-diameter tubulovesicular membrane foci in cultured cells. In sum, the findings suggest that curvature generation by the P/rds C-terminus contributes to the distinctive structure of OS disk rims, and provide insight into how inherited defects in P/rds can disrupt organelle structure to cause retinal disease. They also raise the possibility that tethered amphipathic helices can function for shaping cellular membranes more generally. PMID:23886945

  14. Maximum striking velocities in strikes with steel rods-the influence of rod length, rod mass and volunteer parameters.

    PubMed

    Trinh, T X; Heinke, S; Rode, C; Schenkl, S; Hubig, M; Mall, G; Muggenthaler, Holger

    2018-03-01

    In blunt force trauma to the head caused by attacks with blunt instruments, contact forces can be estimated based on the conservation of momentum if impact velocities are known. The aims of this work were to measure maximum striking velocities and to examine the influence of rod parameters such as rod mass and length as well as volunteer parameters such as sex, age, body height, body mass, body mass index and the average amount of physical exercise. Steel rods with masses of 500, 1000 and 1500 g as well as lengths of 40, 65 and 90 cm were exemplarily tested as blunt instruments. Twenty-nine men and 22 women participated in this study. Each volunteer performed several vertical strikes with the steel rods onto a passive immobile target. Maximum striking velocities were measured by means of a Qualisys motion capture system using high-speed cameras and infrared light. Male volunteers achieved maximum striking velocities between 14.0 and 35.5 m/s whereas female volunteers achieved values between 10.4 and 28.3 m/s. Results show that maximum striking velocities increased with smaller rod masses and less consistently with higher rod lengths. Statistically significant influences were found in the volunteers' sex and average amount of physical exercise.

  15. Optical Coherence Tomography of Retinal Degeneration in Royal College of Surgeons Rats and Its Correlation with Morphology and Electroretinography

    PubMed Central

    Yamauchi, Kodai; Mounai, Natsuki; Tanabu, Reiko; Nakazawa, Mitsuru

    2016-01-01

    Purpose To evaluate the correlation between optical coherence tomography (OCT) and the histological, ultrastructural and electroretinography (ERG) findings of retinal degeneration in Royal College of Surgeons (RCS-/-) rats. Materials and Methods Using OCT, we qualitatively and quantitatively observed the continual retinal degeneration in RCS-/- rats, from postnatal (PN) day 17 until PN day 111. These findings were compared with the corresponding histological, electron microscopic, and ERG findings. We also compared them to OCT findings in wild type RCS+/+ rats, which were used as controls. Results After PN day 17, the hyperreflective band at the apical side of the photoreceptor layer became blurred. The inner segment (IS) ellipsoid zone then became obscured, and the photoreceptor IS and outer segment (OS) layers became diffusely hyperreflective after PN day 21. These changes correlated with histological and electron microscopic findings showing extracellular lamellar material that accumulated in the photoreceptor OS layer. After PN day 26, the outer nuclear layer became significantly thinner (P < 0.01) and hyperreflective compared with that in the controls; conversely, the photoreceptor IS and OS layers, as well as the inner retinal layers, became significantly thicker (P < 0.001 and P = 0.05, respectively). The apical hyperreflective band, as well as the IS ellipsoid zone, gradually disappeared between PN day 20 and PN day 30; concurrently, the ERG a- and b-wave amplitudes deteriorated. In contrast, the thicknesses of the combined retinal pigment epithelium and choroid did not differ significantly between RCS-/- and RCS+/+ rats. Conclusion Our results suggest that OCT demonstrates histologically validated photoreceptor degeneration in RCS rats, and that OCT findings partly correlate with ERG findings. We propose that OCT is a less invasive and useful method for evaluating photoreceptor degeneration in animal models of retinitis pigmentosa. PMID:27644042

  16. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness

    PubMed Central

    Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  17. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia

    PubMed Central

    Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.

    2006-01-01

    Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831

  18. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2015-02-01

    Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study

  19. Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease.

    PubMed

    Paavo, Maarjaliis; Lee, Winston; Allikmets, Rando; Tsang, Stephen; Sparrow, Janet R

    2018-04-27

    Bisretinoid fluorophores form in photoreceptor outer segments from nonenzymatic reactions of vitamin A aldehyde. The short-wavelength autofluorescence (SW-AF) of fundus flecks in recessive Stargardt disease (STGD1) suggests a connection to these fluorophores. Through multimodal imaging, we sought to elucidate this link. Flecks observed in SW-AF images often colocalized with foci exhibiting reduced or absent near-infrared autofluorescence signal, the source of which is melanin in retinal pigment epithelial (RPE) cells. With serial imaging, changes in near-infrared autofluorescence (NIR-AF) preceded the onset of fleck hyperautofluorescence in SW-AF images and fleck profiles in NIR-AF images tended to be larger. Flecks in SW-AF and NIR-AF images also corresponded to hyperreflective lesions traversing photoreceptor-attributable bands in horizontal SD-OCT scans. The hyperreflective lesions interrupted adjacent OCT reflectivity bands and were associated with thinning of the outer nuclear layer. These SD-OCT findings are attributable to photoreceptor cell degeneration. Progressive increases and decreases in the SW-AF intensity of flecks were evident in color-coded quantitative fundus autofluorescence maps. In some cases, flecks appeared to spread radially from the fovea to approximately 8° of eccentricity, beyond which a circumferential spread characterized the distribution. Since the NIR-AF signal is derived from melanin and loss of this autofluorescence is indicative of RPE atrophy, the SW-AF of flecks cannot be accounted for by bisretinoid lipofuscin in RPE. Instead, we suggest that the bisretinoid serving as the source of the SW-AF signal, resides in photoreceptors, the cell that is also the site of bisretinoid synthesis. © 2018 Wiley Periodicals, Inc.

  20. Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding

    PubMed Central

    Niven, Jeremy E; Anderson, John C; Laughlin, Simon B

    2007-01-01

    Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s−1 in D. melanogaster to ∼1,000 bits s−1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput. PMID:17373859

  1. Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod L-Type Calcium Channel Function In Vivo.

    PubMed

    Berkowitz, Bruce A; Schmidt, Tiffany; Podolsky, Robert H; Roberts, Robin

    2016-10-01

    In humans, rodents, and pigeons, the dark → light transition signals nonretinal brain tissue to increase choroidal thickness, a major control element of choroidal blood flow, and thus of photoreceptor and retinal pigment epithelium function. However, it is unclear which photopigments in the retina relay the light signal to the brain. Here, we test the hypothesis that melanopsin (Opn4)-regulated phototransduction modulates light-evoked choroidal thickness expansion in mice. Two-month-old C57Bl/6 wild-type (B6), 4- to 5-month-old C57Bl/6/129S6 wild-type (B6 + S6), and 2-month-old melanopsin knockout (Opn4-/-) on a B6 + S6 background were studied. Retinal anatomy was evaluated in vivo by optical coherence tomography and MRI. Choroidal thickness in dark and light were measured by diffusion-weighted MRI. Rod cell L-type calcium channel (LTCC) function in dark and light (manganese-enhanced MRI [MEMRI]) was also measured. Opn4-/- mice did not show the light-evoked expansion of choroidal thickness observed in B6 and B6 + S6 controls. Additionally, Opn4-/- mice had lower than normal rod cell and inner retinal LTCC function in the dark but not in the light. These deficits were not due to structural abnormalities because retinal laminar architecture and thickness, and choroidal thickness in the Opn4-/- mice were similar to controls. First time evidence is provided that melanopsin phototransduction contributes to dark → light control of murine choroidal thickness. The data also highlight a contribution in vivo of melanopsin phototransduction to rod cell and inner retinal depolarization in the dark.

  2. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices.

    PubMed

    Santer, Roger D

    2017-03-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the

  3. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices

    PubMed Central

    2017-01-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for

  4. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  5. Directionality of Individual Cone Photoreceptors in the Parafoveal Region

    PubMed Central

    Morris, Hugh J.; Blanco, Leonardo; Codona, Johanan L.; Li, Simone; Choi, Stacey S.; Doble, Nathan

    2015-01-01

    The pointing direction of cone photoreceptors can be inferred from the Stiles-Crawford Effect of the First Kind (SCE-I) measurement. Healthy retinas have tightly packed cones with a SCE-I function peak either centered in the pupil or with a slight nasal bias. Various retinal pathologies can change the profile of the SCE-I function implying that the arrangement or the light capturing properties of the cone photoreceptors are affected. Measuring the SCE-I may reveal early signs of photoreceptor change before actual cell apoptosis occurs. In vivo retinal imaging with adaptive optics (AO) was used to measure the pointing direction of individual cones at eight retinal locations in four control human subjects. Retinal images were acquired by translating an aperture in the light delivery arm through 19 different locations across a subject’s entrance pupil. Angular tuning properties of individual cones were calculated by fitting a Gaussian to the reflected intensity profile of each cone projected onto the pupil. Results were compared to those from an accepted psychophysical SCE-I measurement technique. The maximal difference in cone directionality of an ensemble of cones, ρ̄, between the major and minor axes of the Gaussian fit was 0.05 versus 0.29 mm−2 in one subject. All four subjects were found to have a mean nasal bias of 0.81 mm with a standard deviation of ±0.30 mm in the peak position at all retinal locations with mean ρ̄ value decreasing by 23% with increasing retinal eccentricity. Results show that cones in the parafoveal region converge towards the center of the pupillary aperture, confirming the anterior pointing alignment hypothesis. PMID:26494187

  6. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia.

    PubMed

    Schön, Christian; Asteriti, Sabrina; Koch, Susanne; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Herms, Jochen; Seeliger, Mathias W; Cangiano, Lorenzo; Biel, Martin; Michalakis, Stylianos

    2016-03-15

    Most inherited blinding diseases are characterized by compromised retinal function and progressive degeneration of photoreceptors. However, the factors that affect the life span of photoreceptors in such degenerative retinal diseases are rather poorly understood. Here, we explore the role of hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in this context. HCN1 is known to adjust retinal function under mesopic conditions, and although it is expressed at high levels in rod and cone photoreceptor inner segments, no association with any retinal disorder has yet been found. We investigated the effects of an additional genetic deletion of HCN1 on the function and survival of photoreceptors in a mouse model of CNGB1-linked retinitis pigmentosa (RP). We found that the absence of HCN1 in Cngb1 knockout (KO) mice exacerbated photoreceptor degeneration. The deleterious effect was reduced by expression of HCN1 using a viral vector. Moreover, pharmacological inhibition of HCN1 also enhanced rod degeneration in Cngb1 KO mice. Patch-clamp recordings revealed that the membrane potentials of Cngb1 KO and Cngb1/Hcn1 double-KO rods were both significantly depolarized. We also found evidence for altered calcium homeostasis and increased activation of the protease calpain in Cngb1/Hcn1 double-KO mice. Finally, the deletion of HCN1 also exacerbated degeneration of cone photoreceptors in a mouse model of CNGA3-linked achromatopsia. Our results identify HCN1 as a major modifier of photoreceptor degeneration and suggest that pharmacological inhibition of HCN channels may enhance disease progression in RP and achromatopsia patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  8. A study of factors affecting the human cone photoreceptor density measured by adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Park, Sung Pyo; Chung, Jae Keun; Greenstein, Vivienne; Tsang, Stephen H.; Chang, Stanley

    2015-01-01

    To investigate the variation in human cone photoreceptor packing density with various demographic or clinical factors, cone packing density was measured using a Canon prototype adaptive optics scanning laser ophthalmoscope and compared as a function of retinal eccentricity, refractive error, axial length, age, gender, race/ethnicity and ocular dominance. We enrolled 192 eyes of 192 subjects with no ocular pathology. Cone packing density was measured at three different retinal eccentricities (0.5 mm, 1.0 mm, and 1.5 mm from the foveal center) along four meridians. Cone density decreased from 32,200 to 11,600 cells/mm2 with retinal eccentricity (0.5 mm to 1.5 mm from the fovea, P < 0.001). A trend towards a slightly negative correlation was observed between age and density (r = −0.117, P = 0.14). There was, however, a statistically significant negative correlation (r = −0.367, P = 0.003) between axial length and cone density. Gender, ocular dominance, and race/ethnicity were not important determinants of cone density (all, P > 0.05). In addition, to assess the spatial arrangement of the cone mosaics, the nearest-neighbor distances (NNDs) and the Voronoi domains were analyzed. The results of NND and Voronoi analysis were significantly correlated with the variation of the cone density. Average NND and Voronoi area were gradually increased (all, P ≤ 0.001) and the degree of regularity of the cone mosaics was decreased (P ≤ 0.001) with increasing retinal eccentricity. In conclusion, we demonstrated cone packing density decreases as a function of retinal eccentricity and axial length and the results of NND and Voronoi analysis is a useful index for cone mosaics arrangements. The results also serve as a reference for further studies designed to detect or monitor cone photoreceptors in patients with retinal diseases. PMID:23276813

  9. Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria

    PubMed Central

    Kooragayala, Keshav; Gotoh, Norimoto; Cogliati, Tiziana; Nellissery, Jacob; Kaden, Talia R.; French, Stephanie; Balaban, Robert; Li, Wei; Covian, Raul; Swaroop, Anand

    2015-01-01

    Purpose Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl−/− retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1−/− mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges. PMID:26747773

  10. Cone Structure in Retinal Degeneration Associated with Mutations in the peripherin/RDS Gene

    PubMed Central

    Talcott, Katherine E.; Ratnam, Kavitha; Sundquist, Sanna M.; Lucero, Anya S.; Day, Shelley; Zhang, Yuhua; Roorda, Austin

    2011-01-01

    Purpose. To study cone photoreceptor structure and function associated with mutations in the second intradiscal loop region of peripherin/RDS. Methods. High-resolution macular images were obtained with adaptive optics scanning laser ophthalmoscopy and spectral domain optical coherence tomography in four patients with peripherin/RDS mutations and 27 age-similar healthy subjects. Measures of retinal structure and fundus autofluorescence (AF) were correlated with visual function, including best-corrected visual acuity (BCVA), kinetic and static perimetry, fundus-guided microperimetry, full-field electroretinography (ERG), and multifocal ERG. The coding regions of the peripherin/RDS gene were sequenced in each patient. Results. Heterozygous mutations in peripherin/RDS were predicted to affect protein structure in the second intradiscal domain in each patient (Arg172Trp, Gly208Asp, Pro210Arg and Cys213Tyr). BCVA was at least 20/32 in the study eye of each patient. Diffuse cone-greater-than-rod dysfunction was present in patient 1, while rod-greater-than-cone dysfunction was present in patient 4; macular outer retinal dysfunction was present in all patients. Macular AF was heterogeneous, and the photoreceptor-retinal pigment epithelial (RPE) junction layer showed increased reflectivity at the fovea in all patients except patient 1, who showed cone-rod dystrophy. Cone packing was irregular, and cone spacing was significantly increased (z-scores >2) at most locations throughout the central 4° in each patient. Conclusions. peripherin/RDS mutations produced diffuse AF abnormalities, disruption of the photoreceptor/RPE junction, and increased cone spacing, consistent with cone loss in the macula. The abnormalities observed suggest that the integrity of the second intradiscal domain of peripherin/RDS is critical for normal macular cone structure. PMID:21071739

  11. Sexual dimorphism in the compound eye of Heliconius erato: a nymphalid butterfly with at least five spectral classes of photoreceptor.

    PubMed

    McCulloch, Kyle J; Osorio, Daniel; Briscoe, Adriana D

    2016-08-01

    Most butterfly families expand the number of spectrally distinct photoreceptors in their compound eye by opsin gene duplications together with lateral filter pigments; however, most nymphalid genera have limited diversity, with only three or four spectral types of photoreceptor. Here, we examined the spatial pattern of opsin expression and photoreceptor spectral sensitivities in Heliconius erato, a nymphalid with duplicate ultraviolet opsin genes, UVRh1 and UVRh2 We found that the H. erato compound eye is sexually dimorphic. Females express the two UV opsin proteins in separate photoreceptors, but males do not express UVRh1. Intracellular recordings confirmed that females have three short wavelength-sensitive photoreceptors (λmax=356, ∼390 and 470 nm), while males have two (λmax=390 and ∼470 nm). We also found two long wavelength-sensitive photoreceptors (green, λmax∼555 nm, and red, λmax∼600 nm), which express the same LW opsin. The red cell's shifted sensitivity is probably due to perirhabdomal filtering pigments. Sexual dimorphism of the UV-absorbing rhodopsins may reflect the females' need to discriminate conspecifics from co-mimics. Red-green color vision may be used to detect differences in red coloration on Heliconius wings, or for host-plant identification. Among nymphalids so far investigated, only H. erato is known to possess five spectral classes of photoreceptor; sexual dimorphism of the eye via suppression of one class of opsin (here UVRh1 in males) has not - to our knowledge - been reported in any animal. © 2016. Published by The Company of Biologists Ltd.

  12. A five-primary photostimulator suitable for studying intrinsically photosensitive retinal ganglion cell functions in humans

    PubMed Central

    Cao, Dingcai; Nicandro, Nathaniel; Barrionuevo, Pablo A.

    2015-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) can respond to light directly through self-contained photopigment, melanopsin. IpRGCs also receive synaptic inputs from rods and cones. Thus, studying ipRGC functions requires a novel photostimulating method that can account for all of the photoreceptor inputs. Here, we introduced an inexpensive LED-based five-primary photostimulator that can control the excitations of rods, S-, M-, L-cones, and melanopsin-containing ipRGCs in humans at constant background photoreceptor excitation levels, a critical requirement for studying the adaptation behavior of ipRGCs with rod, cone, or melanopsin input. We described the theory and technical aspects (including optics, electronics, software, and calibration) of the five-primary photostimulator. Then we presented two preliminary studies using the photostimulator we have implemented to measure melanopsin-mediated pupil responses and temporal contrast sensitivity function (TCSF). The results showed that the S-cone input to pupil responses was antagonistic to the L-, M- or melanopsin inputs, consistent with an S-OFF and (L + M)-ON response property of primate ipRGCs (Dacey et al., 2005). In addition, the melanopsin-mediated TCSF had a distinctive pattern compared with L + M or S-cone mediated TCSF. Other than controlling individual photoreceptor excitation independently, the five-primary photostimulator has the flexibility in presenting stimuli modulating any combination of photoreceptor excitations, which allows researchers to study the mechanisms by which ipRGCs combine various photoreceptor inputs. PMID:25624466

  13. Precise correlation of histopathological and fluorescein angiographic morphology using retinal vascular casting.

    PubMed

    Bek, T; Prause, J U

    1996-12-01

    The histopathology of three eyes obtained post mortem from 2 patients with age-related macular degeneration was correlated with the pre mortem fluorescein angiographic morphology. A precise point-by-point correlation between histopathology and the corresponding angiographic appearance was ensured by using the cast retinal vascular system as a pattern of reference. The study showed that both the photoreceptors, the pigment epithelium, and substances accumulated between the retinal and the choroidal vascular systems, may have a blocking effect on choroidal background fluorescence as seen on fluorescein angiograms. Furthermore, it is confirmed that fluorescein angiographic hyperfluorescence may be due to a lack of blocking of the choroidal fluorescence because of a window defect in the retinal photoreceptor layer and/or the pigment epithelium.

  14. Dynamic Rod Worth Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Y.A.; Chapman, D.M.; Hill, D.J.

    2000-12-15

    The dynamic rod worth measurement (DRWM) technique is a method of quickly validating the predicted bank worth of control rods and shutdown rods. The DRWM analytic method is based on three-dimensional, space-time kinetic simulations of the rapid rod movements. Its measurement data is processed with an advanced digital reactivity computer. DRWM has been used as the method of bank worth validation at numerous plant startups with excellent results. The process and methodology of DRWM are described, and the measurement results of using DRWM are presented.

  15. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    PubMed

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical

  16. Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells

    PubMed Central

    Liu, Chunming; Sherpa, Tshering

    2013-01-01

    Purpose To determine if achromatopsia associated F525N and T383fsX mutations in the CNGB3 subunit of cone photoreceptor cyclic nucleotide-gated (CNG) channels increases susceptibility to cell death in photoreceptor-derived cells. Methods Photoreceptor-derived 661W cells were transfected with cDNA encoding wild-type (WT) CNGA3 subunits plus WT or mutant CNGB3 subunits, and incubated with the membrane-permeable CNG channel activators 8-(4-chlorophenylthio) guanosine 3′,5′-cyclic monophosphate (CPT-cGMP) or CPT-adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Cell viability under these conditions was determined by measuring lactate dehydrogenase release. Channel ligand sensitivity was calibrated by patch-clamp recording after expression of WT or mutant channels in Xenopus oocytes. Results Coexpression of CNGA3 with CNGB3 subunits containing F525N or T383fsX mutations produced channels exhibiting increased apparent affinity for CPT-cGMP compared to WT channels. Consistent with these effects, cytotoxicity in the presence of 0.1 μM CPT-cGMP was enhanced relative to WT channels, and the increase in cell death was more pronounced for the mutation with the largest gain-of-function effect on channel gating, F525N. Increased susceptibility to cell death was prevented by application of the CNG channel blocker L-cis-diltiazem. Increased cytotoxicity was also found to be dependent on the presence of extracellular calcium. Conclusions These results indicate a connection between disease-associated mutations in cone CNG channel subunits, altered CNG channel-activation properties, and photoreceptor cytotoxicity. The rescue of cell viability via CNG channel block or removal of extracellular calcium suggests that cytotoxicity in this model depends on calcium entry through hyperactive CNG channels. PMID:23805033

  17. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  18. ARL2BP, a protein linked to Retinitis Pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure.

    PubMed

    Moye, Abigail R; Singh, Ratnesh; Kimler, Victoria A; Dilan, Tanya L; Munezero, Daniella; Saravanan, Thamaraiselvi; Goldberg, Andrew F X; Ramamurthy, Visvanathan

    2018-05-02

    The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous discs that contain the proteins needed for phototransduction and vision. Though cilia formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins which often result in malformed outer segments and lead to blinding diseases. To investigate how ciliary proteins contribute to outer segment formation, we generated a knockout mouse model for ARL2BP, a ciliary protein linked to Retinitis Pigmentosa. The knockout mice display an early and progressive reduction in visual response. Prior to photoreceptor degeneration we observed disorganization of the photoreceptor OS, with vertically aligned discs and shortened axonemes. Interestingly, ciliary doublet microtubule structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet microtubules. Based on results from this study, we conclude that ARL2BP is necessary for photoreceptor cilia doublet formation and axoneme elongation, which is required for outer segment morphogenesis and vision.

  19. Cell Fate of Müller Cells During Photoreceptor Regeneration in an N-Methyl-N-nitrosourea-Induced Retinal Degeneration Model of Zebrafish.

    PubMed

    Ogai, Kazuhiro; Hisano, Suguru; Sugitani, Kayo; Koriyama, Yoshiki; Kato, Satoru

    2016-01-01

    Zebrafish can regenerate several organs such as the tail fin, heart, central nervous system, and photoreceptors. Very recently, a study has demonstrated the photoreceptor regeneration in the alkylating agent N-methyl-N-nitrosourea (MNU)-induced retinal degeneration (RD) zebrafish model, in which whole photoreceptors are lost within a week after MNU treatment and then regenerated within a month. The research has also shown massive proliferation of Müller cells within a week. To address the question of whether proliferating Müller cells are the source of regenerating photoreceptors, which remains unknown in the MNU-induced zebrafish RD model, we employed a BrdU pulse-chase technique to label the proliferating cells within a week after MNU treatment. As a result of the BrdU pulse-chase technique, a number of BrdU(+) cells were observed in the outer nuclear layer as well as the inner nuclear layer. This implies that regenerating photoreceptors are derived from proliferating Müller cells in the zebrafish MNU-induced RD model.

  20. Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration

    PubMed Central

    Zhang, Lijuan; Du, Jianhai; Justus, Sally; Hsu, Chun-Wei; Bonet-Ponce, Luis; Wu, Wen-Hsuan; Tsai, Yi-Ting; Wu, Wei-Pu; Jia, Yading; Duong, Jimmy K.; Mahajan, Vinit B.; Lin, Chyuan-Sheng; Wang, Shuang; Hurley, James B.

    2016-01-01

    Retinitis pigmentosa (RP) encompasses a diverse group of Mendelian disorders leading to progressive degeneration of rods and then cones. For reasons that remain unclear, diseased RP photoreceptors begin to deteriorate, eventually leading to cell death and, consequently, loss of vision. Here, we have hypothesized that RP associated with mutations in phosphodiesterase-6 (PDE6) provokes a metabolic aberration in rod cells that promotes the pathological consequences of elevated cGMP and Ca2+, which are induced by the Pde6 mutation. Inhibition of sirtuin 6 (SIRT6), a histone deacetylase repressor of glycolytic flux, reprogrammed rods into perpetual glycolysis, thereby driving the accumulation of biosynthetic intermediates, improving outer segment (OS) length, enhancing photoreceptor survival, and preserving vision. In mouse retinae lacking Sirt6, effectors of glycolytic flux were dramatically increased, leading to upregulation of key intermediates in glycolysis, TCA cycle, and glutaminolysis. Both transgenic and AAV2/8 gene therapy–mediated ablation of Sirt6 in rods provided electrophysiological and anatomic rescue of both rod and cone photoreceptors in a preclinical model of RP. Due to the extensive network of downstream effectors of Sirt6, this study motivates further research into the role that these pathways play in retinal degeneration. Because reprogramming metabolism by enhancing glycolysis is not gene specific, this strategy may be applicable to a wide range of neurodegenerative disorders. PMID:27841758

  1. CONTROL RODS FOR NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-01-16

    A means for controlling the control rod in emergency, when it is desired to shutdown the reactor with the shortest possible delay, is described. When the emergency occurs the control rod is allowed to drop freely under gravity from the control rod support tube into the bore in the reactor core. A normal shutdown is reached almost at the lowest rod position. In the shut-down position and also below it, the control rod had its full effect of reducing the level of activity in the core. When the shut-down position was reached, a brake came into action to decelerate themore » rod and reduce shock and the likelihood of damage. (C.E.S.)« less

  2. Synthetic 9-cis-beta-carotene inhibits photoreceptor degeneration in cultures of eye cups from rpe65rd12 mouse model of retinoid cycle defect.

    PubMed

    Sher, Ifat; Tzameret, Adi; Peri-Chen, Sara; Edelshtain, Victoria; Ioffe, Michael; Sayer, Alon; Buzhansky, Ludmila; Gazit, Ehud; Rotenstreich, Ygal

    2018-04-17

    The retinoid cycle enzymes regenerate the visual chromophore 11-cis retinal to enable vision. Mutations in the genes encoding the proteins of the retinoid cycle are the leading cause for recessively inherited retinal dystrophies such as retinitis pigmentosa, Leber congenital amaurosis, congenital cone-rod dystrophy and fundus albipunctatus. Currently there is no treatment for these blinding diseases. In previous studies we demonstrated that oral treatment with the 9-cis-β-carotene rich Dunaliella Bardawil algae powder significantly improved visual and retinal functions in patients with retinitis pigmentosa and fundus albipunctatus. Here we developed a convenient and economical synthetic route for biologically active 9-cis-β-carotene from inexpensive building materials and demonstrated that the molecule is stable for at least one month. Synthetic 9-cis-β-carotene rescued cone photoreceptors from degeneration in eye cup cultures of mice with a retinoid cycle genetic defect. This study suggests that synthetic 9-cis-β-carotene may serve as an effective treatment for retinal dystrophies involving the retinoid cycle.

  3. Reactor control rod timing system

    DOEpatents

    Wu, Peter T. K.

    1982-01-01

    A fluid driven jet-edge whistle timing system for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  4. Association of serum levels of anti-myeloperoxidase antibody with retinal photoreceptor ellipsoid zone disruption in diabetic retinopathy.

    PubMed

    Sinha, Shivani; Saxena, Sandeep; Prasad, Senthamizh; Mahdi, Abbas Ali; Bhasker, Shashi Kumar; Das, Siddharth; Krasnik, Vladimir; Caprnda, Martin; Opatrilova, Radka; Kruzliak, Peter

    2017-05-01

    To study the association of serum levels of anti-myeloperoxidase (MPO) antibody with retinal photoreceptor ellipsoid zone (EZ) disruption in diabetic retinopathy. Consecutive patients with type 2 DM [diabetes mellitus with no retinopathy (NODR; n=20); non-proliferative diabetic retinopathy (NPDR; n=18); proliferative diabetic retinopathy (PDR; n=16)] and healthy controls (n=20) between the ages of 40 and 65years were included. Disruption of EZ was graded by spectral domain optical coherence tomography as no disruption of EZ and disrupted EZ. The serum levels of anti-MPO antibody was analyzed using standard protocol. Association between the variables was evaluated using multiple regression analysis. A significant difference was found between the serum levels of anti-MPO antibody in various study groups (p<0.001). A positive association was found between EZ disruption and levels of anti-MPO antibody [adjusted odd's ratio (AOR)=1.079, CI 1.010-1.124, p=0.04]. A significant positive correlation was found between logMAR visual acuity and grade of disruption (AOR=1.008, CI 1.006-5.688, p=0.04). An increased serum anti-MPO antibody levels is associated with retinal photoreceptor EZ disruption and decreased visual acuity in diabetic retinopathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.

    PubMed

    Okazaki, Toshio

    2018-02-01

    I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.

  6. Systems analysis of the single photon response in invertebrate photoreceptors.

    PubMed

    Pumir, Alain; Graves, Jennifer; Ranganathan, Rama; Shraiman, Boris I

    2008-07-29

    Photoreceptors of Drosophila compound eye employ a G protein-mediated signaling pathway that transduces single photons into transient electrical responses called "quantum bumps" (QB). Although most of the molecular components of this pathway are already known, the system-level understanding of the mechanism of QB generation has remained elusive. Here, we present a quantitative model explaining how QBs emerge from stochastic nonlinear dynamics of the signaling cascade. The model shows that the cascade acts as an "integrate and fire" device and explains how photoreceptors achieve reliable responses to light although keeping low background in the dark. The model predicts the nontrivial behavior of mutants that enhance or suppress signaling and explains the dependence on external calcium, which controls feedback regulation. The results provide insight into physiological questions such as single-photon response efficiency and the adaptation of response to high incident-light level. The system-level analysis enabled by modeling phototransduction provides a foundation for understanding G protein signaling pathways less amenable to quantitative approaches.

  7. Asymmetric activation mechanism of a homodimeric red light regulated photoreceptor.

    PubMed

    Gourinchas, Geoffrey; Heintz, Udo; Winkler, Andreas

    2018-06-05

    Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl-cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes. © 2018, Gourinchas et al.

  8. SAFETY SYSTEM FOR CONTROL ROD

    DOEpatents

    Paget, J.A.

    1963-05-14

    A structure for monitoring the structural continuity of a control rod foi a neutron reactor is presented. A electric conductor readily breakable under mechanical stress is fastened along the length of the control rod at a plurality of positions and forms a closed circuit with remote electrical components responsive to an open circuit. A portion of the conductor between the control rod and said components is helically wound to allow free and normally unrestricted movement of the segment of conductor secured to the control rod relative to the remote components. Any break in the circuit is indicative of control rod breakage. (AEC)

  9. Photonic mesophases from cut rod rotators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu; Avendano, Carlos

    2016-01-14

    The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magneticmore » polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.« less

  10. Photoreceptor protection by adeno-associated virus-mediated LEDGF expression in the RCS rat model of retinal degeneration: probing the mechanism.

    PubMed

    Raz-Prag, Dorit; Zeng, Yong; Sieving, Paul A; Bush, Ronald A

    2009-08-01

    Lens epithelium-derived growth factor (LEDGF) is upregulated in response to stress and enhances the survival of neurons in the retina and optic nerve, as well as a wide range of other cells, such as fibroblasts and keratinocytes. Photoreceptor protection was investigated in the RCS rat retinal degeneration model after Ledgf delivery with an adeno-associated virus (AAV) and the mechanism of protection explored. Thirty-six RCS and nine P23H rats had bilateral subretinal injections of AAV-Ledgf in one eye and buffer in the contralateral eye as the control. Retinal function was evaluated 8 weeks later by the electroretinogram and compared with photoreceptor cell layer count. LEDGF mRNA and protein levels and mRNA levels of known stress-related factors were compared in treated and control retinas to explore the mechanism of LEDGF protection. Nine RCS rats were treated with adenovirus-heat shock protein 27 (Ad-HSP27) and examined for protection. Significant photoreceptor protection was evident functionally and morphologically in 65% to 100% of the RCS rats treated at early ages of up to 7 weeks. Cell protection was more prominent in the superior retinal hemisphere which has a slower natural degeneration rate in untreated eyes. Although many of the heat shock proteins and other stress-related genes showed significant elevation in the AAV-Ledgf-treated eyes, all increases were approximately twofold or less. Transduction of retinal cells with Ad-HSP27 also resulted in photoreceptor protection. AAV-Ledgf elicited no photoreceptor functional protection in P23H rhodopsin transgenic rat retina. Chronic LEDGF treatment via AAV-Ledgf administration gave successful protection of photoreceptors in the RCS rat retina and retarded cell death by about 2 weeks. Induction of heat shock proteins also gave photoreceptor protection. However, compelling evidence was not found that LEDGF protection was associated with upregulation of heat shock proteins.

  11. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness

    PubMed Central

    Kmoch, S.; Majewski, J.; Ramamurthy, V.; Cao, S.; Fahiminiya, S.; Ren, H.; MacDonald, I.M.; Lopez, I.; Sun, V.; Keser, V.; Khan, A.; Stránecký, V.; Hartmannová, H.; Přistoupilová, A.; Hodaňová, K.; Piherová, L.; Kuchař, L.; Baxová, A.; Chen, R.; Barsottini, O.G.P.; Pyle, A.; Griffin, H.; Splitt, M.; Sallum, J.; Tolmie, J.L.; Sampson, J.R.; Chinnery, P.; Canada, Care4Rare; Banin, E.; Sharon, D.; Dutta, S.; Grebler, R.; Helfrich-Foerster, C.; Pedroso, J.L.; Kretzschmar, D.; Cayouette, M.; Koenekoop, R.K.

    2015-01-01

    Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness. PMID:25574898

  12. Rescue of photoreceptors by BDNF gene transfer using in vivo electroporation in the RCS rat of retinitis pigmentosa.

    PubMed

    Zhang, Meng; Mo, Xiaofen; Fang, Yuan; Guo, Wenyi; Wu, Jihong; Zhang, Shenghai; Huang, Qian

    2009-09-01

    To investigate the feasibility of introducing brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial cells in vivo by electroporation and whether this method can rescue photoreceptors of retinitis pigmentosa in Royal College Surgeons (RCS) rats. The BDNF-GFP fusion eukaryotic-expressing plasmid was constructed and subretinally or intravitreously injected into the eyes of RCS rats followed by in vivo electroporation. The expression of BDNF mRNA and protein was detected by RT-PCR and Western immunoblot analysis. The number of surviving photoreceptors was counted, and the TdT-dUTP terminal nick-end labeling (TUNEL) method was used to detect the apoptotic retinal cells at different timepoints after introduction of BDNF plasmid. Treated eyes showed a significantly higher rescue ratio and a lower number of TUNEL-positive photoreceptors than did the control eyes at various timepoints. These findings provide evidence that electroporation is an effective method for gene transfer into retinal pigment epithelial cells, and the rescue of photoreceptors can be achieved by BDNF gene transfection with electroporation.

  13. Solid-state-laser-rod holder

    DOEpatents

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  14. The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch

    PubMed Central

    Daum, Janine M; Keles, Özkan; Holwerda, Sjoerd JB; Kohler, Hubertus; Rijli, Filippo M

    2017-01-01

    High-resolution daylight vision is mediated by cone photoreceptors. The molecular program responsible for the formation of their light sensor, the outer segment, is not well understood. We correlated daily changes in ultrastructure and gene expression in postmitotic mouse cones, between birth and eye opening, using serial block-face electron microscopy (EM) and RNA sequencing. Outer segments appeared rapidly at postnatal day six and their appearance coincided with a switch in gene expression. The switch affected over 14% of all expressed genes. Genes that switched off were rich in transcription factors and neurogenic genes. Those that switched on contained genes relevant for cone function. Chromatin rearrangements in enhancer regions occurred before the switch was completed, but not after. We provide a resource comprised of correlated EM, RNAseq, and ATACseq data, showing that the growth of a key compartment of a postmitotic cell involves an extensive switch in gene expression and chromatin accessibility. PMID:29106373

  15. Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using arsenazo III

    PubMed Central

    Brown, J. E.; Brown, P. K.; Pinto, L. H.

    1977-01-01

    1. The metallochromic indicator dye, arsenazo III, was injected intracellularly into Limulus ventral photoreceptor cells to concentrations greater than 1 mM. 2. The absorption spectrum (450-750 nm) of the dye in single dark-adapted cells was measured by a scanning microspectrophotometer. When a cell was light-adapted, the absorption of the dye changed; the difference spectrum had two maxima at about 610 and 660 nm, a broad minimum at about 540 nm and an isosbestic point at about 585 nm. 3. When intracellular calcium concentration was raised in dark-adapted cells previously injected with arsenazo III, the difference spectum had two maxima at about 610 and 660 nm, a broad minimum at about 530 nm and an isosbestic point at about 585 nm. The injection of Mg2+ into dark-adapted cells previously injected with the dye induced a difference spectrum that had a single maximum at about 620 nm. Also, decreasing the intracellular pH of cells previously injected with the dye induced a difference spectrum that had a minimum at about 620 nm. The evidence suggests that there is a rise of intracellular ionized calcium when a Limulus ventral photoreceptor is light-adapted. 4. The intracellular calcium concentration, [Ca2+]1, in light-adapted photoreceptors was estimated to reach at least 10-4 M by compaing the light-induced difference spectra measured in ventral photoreceptors with a standard curve determined in microcuvettes containing 2mM arsenazo III in 400 mM-KCl, 1 mM-MgCl2 and 25 mM MOPS at pH 7·0. 5. In cells injected to less than 3 mM arsenazo III, light induced a transient decrease in optical transmission at 660 nm (T660). This decrease in T660 indicates that illumination of a ventral photoreceptor normally causes a transient increase of [Ca2+]1. 6. Arsenazo III was found to be sensitive, selective and rapid enough to measure light-induced changes of intracellular ionized calcium in Limulus ventral photoreceptor cells. PMID:17732

  16. Fuel rod assembly to manifold attachment

    DOEpatents

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  17. Mathematical models of retinitis pigmentosa: The oxygen toxicity hypothesis.

    PubMed

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2017-07-21

    The group of genetically mediated diseases, known collectively as retinitis pigmentosa (RP), cause retinal degeneration and, hence, loss of vision. The most common inherited retinal degeneration, RP is currently untreatable. The retina detects light using cells known as photoreceptors, of which there are two types: rods and cones. In RP, genetic mutations cause patches of photoreceptors to degenerate and typically directly affect either rods or cones, but not both. During disease progression, degenerate patches spread and the unaffected photoreceptor type also begins to degenerate. The cause underlying these phenomena is currently unknown. The oxygen toxicity hypothesis proposes that secondary photoreceptor loss is due to hyperoxia (toxically high oxygen levels), which results from the decrease in oxygen uptake following the initial loss of photoreceptors. In this paper, we construct mathematical models, formulated as 1D systems of partial differential equations, to investigate this hypothesis. Using a combination of numerical simulations, asymptotic analysis and travelling wave analysis, we find that degeneration may spread due to hyperoxia, and generate spatio-temporal patterns of degeneration similar to those seen in vivo. We determine the conditions under which a degenerate patch will spread and show that the wave speed of degeneration is a monotone decreasing function of the local photoreceptor density. Lastly, the effects of treatment with antioxidants and trophic factors, and of capillary loss, upon the dynamics of photoreceptor loss and recovery are considered. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Visual cycle modulation in neurovascular retinopathy.

    PubMed

    Akula, James D; Hansen, Ronald M; Tzekov, Radouil; Favazza, Tara L; Vyhovsky, Tanya C; Benador, Ilan Y; Mocko, Julie A; McGee, David; Kubota, Ryo; Fulton, Anne B

    2010-08-01

    Rats with oxygen-induced retinopathy (OIR) model the pediatric retinal disease retinopathy of prematurity (ROP). Recent findings in OIR rats imply a causal role for the rods in the ROP disease process, although only experimental manipulation of rod function can establish this role conclusively. Accordingly, a visual cycle modulator (VCM) - with no known direct effect on retinal vasculature - was administered to "50/10 model" OIR Sprague-Dawley rats to test the hypotheses that it would 1) alter rod function and 2) consequently alter vascular outcome. Four litters of pups (N=46) were studied. For two weeks, beginning on postnatal day (P) 7, the first and fourth litters were administered 6 mg kg(-1) N-retinylacetamide (the VCM) intraperitoneally; the second and third litters received vehicle (DMSO) alone. Following a longitudinal design, retinal function was assessed by electroretinography (ERG) and the status of the retinal vessels was monitored using computerized fundus photograph analysis. Rod photoreceptor and post-receptor response amplitudes were significantly higher in VCM-treated than in vehicle-treated rats; deactivation of phototransduction was also significantly more rapid. Notably, the arterioles of VCM-treated rats showed significantly greater recovery from OIR. Presuming that the VCM did not directly affect the retinal vessels, a causal role for the neural retina - particularly the rod photoreceptors - in OIR was confirmed. There was no evidence of negative alteration of photoreceptor function consequent to VCM treatment. This finding implicates the rods as a possible therapeutic target in neurovascular diseases such as ROP. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.

    PubMed

    Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.

  20. REACTOR CONTROL ROD OPERATING SYSTEM

    DOEpatents

    Miller, G.

    1961-12-12

    A nuclear reactor control rod mechanism is designed which mechanically moves the control rods into and out of the core under normal conditions but rapidly forces the control rods into the core by catapultic action in the event of an emergency. (AEC)