Sample records for rondonia western amazon

  1. The epidemiology of malaria in Rondonia (Western Amazon region, Brazil): study of a riverine population.

    PubMed

    Camargo, L M; Noronha, E; Salcedo, J M; Dutra, A P; Krieger, H; Pereira da Silva, L H; Camargo, E P

    1999-01-15

    We report on a longitudinal study concerning the incidence of malaria in a riverine population (Portuchuelo) settled on the riverbanks of Rio Madeira, in the State of Rondonia, Brazil. We found the incidence of malaria to be seasonal, prevailing in the dry months of June and July. The Annual Parasite Index (API) was 292/1000 inhabitants, almost three times that of the state of Rondonia for the same period. In contrast with other studied Rondonian populations, malaria in Portuchuelo was more prevalent in youngsters < 16 years old, particularly in the 0-1 year age group. Adults were relatively spared, particularly those over 50 years. Besides being indicative of indoor transmission, these facts may suggest the existence of a certain degree of acquired resistance to infection and/or of lessened symptoms in older people. Riverine populations are spread over the entire Amazon region where most of its members were born. Due to the permanent presence of malaria among riverine populations, we are proposing that they may act as perennial reserves of malaria and, therefore, as sources of infection for migrants or eventual settlers at their vicinity. To date, the opposite view has been generally held. Anopheles darlingi, the main vector species in the area, is essentially sylvatic, which contributes to make the control of malaria highly problematic. The only hopes for control rest on permanent surveillance and the prompt treatment of patients, which are also problematic considering the vastness of the Amazon region and the remoteness of some of its riverine settlements.

  2. Deforestation, Rondonia, Brazil

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.

  3. Deforestation, Rondonia, Brazil

    NASA Image and Video Library

    1992-08-08

    This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedlowski, M.A.; Dale, V.H.

    Road development and colonization projects have brought about wide-scale deforestation in the Brazilian Amazon. The state of Rondonia, located in the western Amazon Basin, best exemplifies the problems related to land-use changes because it has the highest rates of deforestation in the Amazon Basin. In order to identify the main land-use practices in Rondonia, interviews with local farmers were carried out in the central part of Rondonia, in the PIC (Integrated Colonization Project) Ouro Preto do Oeste. This is the oldest colonization project in the state. The governmental colonization programs attracted migrants to the area through the construction of roadsmore » and infrastructure necessary for the colonists to occupy the land for agricultural practices. The interviews were done on lots of the PIC Ouro Preto and in PAD Urupa to define the background of the colonists, their land-use practices, their economic situation, and their relationships with governmental institutions.« less

  5. Forecasting Malaria in the Western Amazon

    NASA Astrophysics Data System (ADS)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  6. Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples.

    PubMed

    Finer, Matt; Jenkins, Clinton N; Pimm, Stuart L; Keane, Brian; Ross, Carl

    2008-08-13

    The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.

  7. Oil and Gas Projects in the Western Amazon: Threats to Wilderness, Biodiversity, and Indigenous Peoples

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Pimm, Stuart L.; Keane, Brian; Ross, Carl

    2008-01-01

    Background The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. Methodology/Principal Findings We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or “blocks” that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover ∼688,000 km2 of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Conclusions/Significance Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories. PMID:18716679

  8. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia; Giannini, Alessandra; Verchot, Louis; Baethgen, Walter; Pinedo-Vasquez, Miguel

    2015-08-01

    The unusual severity and return time of the 2005 and 2010 dry-season droughts in western Amazon is attributed partly to decadal climate fluctuations and a modest drying trend. Decadal variability of western Amazon hydroclimate is highly correlated to the Atlantic sea surface temperature (SST) north-south gradient (NSG). Shifts of dry and wet events frequencies are also related to the NSG phase, with a 66% chance of 3+ years of dry events per decade when NSG > 0 and 19% when NSG < 0. The western Amazon and NSG decadal covariability is well reproduced in general circulation models (GCMs) historical (HIST) and preindustrial control (PIC) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The HIST and PIC also reproduce the shifts in dry and wet events probabilities, indicating potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase favors above normal frequency of western Amazon dry events in coming decades.

  9. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    PubMed

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There

  10. New records of tick-associated spotted fever group Rickettsia in an Amazon-Savannah ecotone, Brazil.

    PubMed

    Aguirre, A A R; Garcia, Marcos Valério; Costa, Ivaneide Nunes da; Csordas, Bárbara Guimarães; Rodrigues, Vinícius da Silva; Medeiros, Jansen Fernandes; Andreotti, Renato

    2018-05-01

    Human rickettsiosis has been recorded in the Amazon Biome. However, the epidemiological cycle of causative rickettsiae has not been fully accounted for in the Amazon region. This study investigates the presence of spotted fever group (SFG) Rickettsia spp. in free-living unfed ticks of the Amblyomma genus. The study was conducted in seven municipalities in Rondonia State, Brazil, where the main biomes are Amazon forest, Brazilian Savannah and their ecotones (areas of ecological tension between open ombrophilous forest and savannah). The following tick species were collected: Amblyomma cajennense (sensu lato) s.l., A. cajennense (sensu stricto) s.s., A. coelebs, A. naponense, A. oblongoguttatum, A. romitii, A. scalpturatum and A. sculptum. A total of 167 adults, 248 nymphs and 1004 larvae were subjected to DNA extraction and polymerase chain reaction (PCR) to determine the presence of SFG Rickettsia spp. PCR-positive samples included: one A. cajennense s.s. female and one A. cajennense s.l. male from a rural area in Vilhena Municipality; 10 nymphs and a sample of larvae of A. cajennense s.l. from a peri-urban area in Cacoal Municipality; and an A. oblongoguttatum adult male from a rural area of Pimenta Bueno Municipality. All sequences obtained exhibited 100% identity with Rickettsia amblyommatis sequences. This is the first confirmation of SFG Rickettsia in an A. oblongoguttatum tick. Furthermore, this is the first record of SFG Rickettsia in the municipalities targeted by this study. These results warn that SFG Rickettsia circulation poses a threat in Rondonia State (among Amazon-Savannah ecotones), and that this threat is increased by the fact that SFG Rickettsia infect a human-biting tick species hitherto unconfirmed as a vector. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  12. Characterization and analysis of pasture degradation in Rondonia using remote sensing

    NASA Astrophysics Data System (ADS)

    Numata, Izaya

    2006-04-01

    more in the central part of the state, and were located in areas with milder climate conditions and relatively more fertile soils. As a general trend of regional pasture change in Rondonia, the proportions of productive pastures decreased and degraded pastures increased as pastures aged. The results obtained in this dissertation will contribute to understanding pasture sustainability needs for the future of Rondonia and provide the first step in monitoring pasture degradation in the Amazon using remote sensing.

  13. The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient

    NASA Astrophysics Data System (ADS)

    Carlo Espinoza, Jhan; Marengo, José Antonio; Ronchail, Josyane; Molina Carpio, Jorge; Noriega Flores, Luís; Loup Guyot, Jean

    2014-12-01

    Unprecedented wet conditions are reported in the 2014 summer (December-March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m3 s-1) at Porto Velho and 380% (25 000 m3 s-1) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western Amazon, and this became exceptionally intense during summer of 2014.

  14. Projected increases in the annual flood pulse of the Western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-01-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.

  15. Orientatractis moraveci n. sp. and Rondonia rondoni Travassos, 1920 (Nematoda: Atractidae), parasites of Pimelodus blochii (Osteichthyes, Pimelodidae) from the Acre and Xapuri Rivers, Western Amazon, Brazil.

    PubMed

    Cavalcante, Pedro H O; Silva, Maralina T; Santos, Everton G N; Chagas-Moutinho, Vanessa A; Santos, Claudia P

    2017-02-01

    The fish fauna in the State of Acre represents 10·7% of all fish species recorded from Brazil, but, despite this, there are few fish parasite studies in this area. The recent expansion of fish farming in Acre prompted a need for helminthological studies of the most commonly consumed fish species in the area, Pimelodus blochii (Pimelodidae). The aim of this study was to analyse the helminth fauna of P. blochii from the Acre and Xapuri Rivers in Northwestern Brazil. Numerous nematodes were collected from the intestine and two species of the family Atractidae were identified: Rondonia rondoni Travassos, 1920 and Orientatractis moraveci n. sp. The new species is distinguished from its congeners mainly by having: 10 pairs of caudal papillae (3 pairs pre-cloacal, 2 pairs ad-cloacal and 5 pairs post-cloacal); unequal spicules of 161-198 and 69-100 µ m long; and a gubernaculum 38-58 µ m long with an antero-lateral process. Morphological and ultrastructural data on O. moraveci n. sp. and R. rondoni are presented, in addition to new genetic data based on partial 18S rDNA and 28S rDNA. The taxonomic status of Labeonema synodontisi (Vassiliadès, 1973) is discussed, suggesting that it should be returned to the genus Raillietnema.

  16. Two Preliminary SRTM DEMs Within the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Hess, L.; Melack, J.; Dunne, T.; Mertes, L.; Ballantine, A.; Biggs, T.; Holmes, K.; Sheng, Y.; Hendricks, G.

    2002-12-01

    Digital topography provides important measures, such as hillslope lengths and flow path networks, for understanding hydrologic and geomorphic processes (e.g., runoff response to land use change and floodplain inundation volume). Two preliminary Shuttle Radar Topography Mission digital elevation models of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from NASA JPL in August 2002. The "PI Processor" produced these initial DEM segments and we are using them to assess the initial accuracy of the interferometrically derived heights and for hydrologic research. The preliminary SRTM derived absolute elevations across the Amazon floodplain in the Cabaliana region generally range from 5 to 15 m with reported errors of 1 to 3 m. This region also includes some preliminary elevations that are erroneously negative. However, topographic contours on 1:100,000 scale quadrangles of 1978 to 1980 vintage indicate elevations of 20 to 30 m. Because double-bounce travel paths are possible over the sparsely vegetated and very-flat 2400 sq-km water surface of the Balbina reservoir near Manaus, it serves to identify the relative accuracy of the SRTM heights. Here, cell-to-cell height changes are generally 0 to 1 m and changes across a ~100 km transect rarely exceed 3 m. Reported errors throughout the transect range from 1 to 2 m with some errors up to 5 m. Deforestation in Rondonia is remarkably clear in the C-band DEM where elevations are recorded from the canopy rather than bare earth. Here, elevation changes are ~30 m (with reported 1 to 2 m errors) across clear-cut areas. Field derived canopy heights are in agreement with this change. Presently, we are deriving stream networks in the Amazon floodplain for comparison with our previous network extraction from JERS-1 SAR mosaics and for hydrologic modeling.

  17. Projected increases in the annual flood pulse of the western Amazon

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-04-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.

  18. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  19. Brazilian mosquito (Diptera: Culicidae) fauna: I. Anopheles species from Porto Velho, Rondônia state, western Amazon, Brazil.

    PubMed

    Morais, Sirlei Antunes; Urbinatti, Paulo Roberto; Sallum, Maria Anice Mureb; Kuniy, Adriana Akemi; Moresco, Gilberto Gilmar; Fernandes, Aristides; Nagaki, Sandra Sayuri; Natal, Delsio

    2012-12-01

    This study contributes to knowledge of Anopheles species, including vectors of Plasmodium from the western Brazilian Amazon in Porto Velho, Rondônia State. The sampling area has undergone substantial environmental changes as a consequence of agricultural and hydroelectric projects, which have caused intensive deforestation and favored habitats for some mosquito species. The purpose of this study was to diagnose the occurrence of anopheline species from collections in three locations along an electric-power transmission line. Each locality was sampled three times from 2010 to 2011. The principal adult mosquitoes captured in Shannon trap were Anopheles darlingi, An. triannulatus, An. nuneztovari l.s., An.gilesi and An. costai. In addition, larvae were collected in ground breeding sites for Anopheles braziliensis, An. triannulatus, An. darlingi, An. deaneorum, An. marajoara, An. peryassui, An. nuneztovari l.s. and An. oswaldoi-konderi. Anopheles darlingi was the most common mosquito in the region. We discuss Culicidae systematics, fauna distribution, and aspects of malaria in altered habitats of the western Amazon.

  20. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia.

    PubMed

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.

  1. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia

    PubMed Central

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F.; Morton, Lindsay C.; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Barnwell, John W.

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region. PMID:28301474

  2. New species of Orientatractis (Nematoda: Atractidae), new species of Rondonia (Nematoda: Atractidae) and other helminths in Austrochaperina basipalmata (Anura: Microhylidae) from Papua New Guinea.

    PubMed

    Bursey, Charles R; Goldberg, Stephen R; Kraus, Fred

    2014-03-01

    Two new nematode species, Orientatractis hamabatrachos sp. nov. and Rondonia batrachogena sp. nov. (Nematoda: Atractidae), from the gastrointestinal tract of Austrochaperina basipalmata (Anura: Microhylidae) collected in Papua New Guinea are described. Orientatractis hamabatrachos sp. nov. is characterized by the presence of the cephalic end armed with 4 wellsclerotized structures, consisting of 2 "horns" extending outward and downward and immediately below a single well-sclerotized spine. It differs from 5 congeners in spicule lengths and caudal papillae arrangements. Rondonia batrachogena sp. nov. is characterized by the presence of a female cloaca. It differs from 2 congeners primarily in body size. Orientatractis hamabatrachos sp. nov. and Rondonia batrachogena sp. nov. represent the first species assigned to either genus found to infect anurans or to occur in the Australo-Papuan region.

  3. Severity of Scorpion Stings in the Western Brazilian Amazon: A Case-Control Study

    PubMed Central

    Queiroz, Amanda M.; Sampaio, Vanderson S.; Mendonça, Iran; Fé, Nelson F.; Sachett, Jacqueline; Ferreira, Luiz Carlos L.; Feitosa, Esaú; Wen, Fan Hui; Lacerda, Marcus; Monteiro, Wuelton

    2015-01-01

    Background Scorpion stings are a major public health problem in Brazil, with an increasing number of registered cases every year. Affecting mostly vulnerable populations, the phenomenon is not well described and is considered a neglected disease. In Brazil, the use of anti-venom formulations is provided free of charge. The associate scorpion sting case is subject to compulsory reporting. This paper describes the epidemiology and identifies factors associated with severity of scorpions stings in the state of Amazonas, in the Western Brazilian Amazon. Methodology/Principal Findings This study included all cases of scorpion stings in the state of Amazonas reported to the Brazilian Diseases Surveillance System from January 1, 2007 to December 31, 2014. A case-control study was conducted to identify factors associated with scorpions sting severity. A total of 2,120 cases were reported during this period. The mean incidence rate in the Amazonas was 7.6 per 100,000 inhabitants/year. Scorpion stings showed a large spatial distribution in the state and represent a potential occupational health problem for rural populations. There was a positive correlation between the absolute number of cases and the altimetric river levels in the Central (p<0.001; Rs = 0.479 linear) and Southwest (p = 0.032; linear Rs = 0.261) regions of the state. Cases were mostly classified as mild (68.6%), followed by moderate (26.8%), and severe (4.6%). The overall lethality rate was 0.3%. Lethality rate among children ≤10 years was 1.3%. Age <10 years [OR = 2.58 (95%CI = 1.47–4.55; p = 0.001)], stings occurring in the rural area [OR = 1.97 (95%CI = 1.18–3.29; p = 0.033) and in the South region of the state [OR = 1.85 (95%CI = 1.17–2.93; p = 0.008)] were independently associated with the risk of developing severity. Conclusions/Significance Scorpion stings show an extensive distribution in the Western Brazilian Amazon threatening especially rural populations, children ≤10 in particular. Thus

  4. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles.

    PubMed

    Barthem, Ronaldo B; Goulding, Michael; Leite, Rosseval G; Cañas, Carlos; Forsberg, Bruce; Venticinque, Eduardo; Petry, Paulo; Ribeiro, Mauro L de B; Chuctaya, Junior; Mercado, Armando

    2017-02-06

    We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species-B. rousseauxii, B. platynemum, and B. juruense-spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born.

  5. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles

    PubMed Central

    Barthem, Ronaldo B.; Goulding, Michael; Leite, Rosseval G.; Cañas, Carlos; Forsberg, Bruce; Venticinque, Eduardo; Petry, Paulo; Ribeiro, Mauro L. de B.; Chuctaya, Junior; Mercado, Armando

    2017-01-01

    We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species—B. rousseauxii, B. platynemum, and B. juruense—spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born. PMID:28165499

  6. Deforestation effects on Amazon forest resilience

    NASA Astrophysics Data System (ADS)

    Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.

    2017-06-01

    Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.

  7. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  8. Trends in formaldehyde columns over the Amazon rainforest, as observed from space with SCIAMACHY, OMI and GOME-2 spectrometers.

    NASA Astrophysics Data System (ADS)

    De Smedt, Isabelle; Stavrakou, Trissevgeni; Lerot, Christophe; Yu, Huan; François, Hendrick; Gielen, Clio; Pinardi, Gaia; Muller, Jean-François; Van Roozendael, Michel

    2015-04-01

    Atmospheric formaldehyde (H2CO) is a central carbonyl compound of tropospheric chemistry. It is produced by the oxidation of a large variety of volatile organic compounds (VOCs), from biogenic, pyrogenic or anthropogenic emission sources. Tropical vegetation, in particular the Amazon forest that represents over half of the planet's remaining rainforests, emit a wide range of highly reactive biogenic volatile organic compounds (BVOCs). Those play a critical role in atmospheric chemistry and climate, by changing the oxidation capacity of the atmosphere and thus the lifetimes of other key trace gases such as CO and CH4, and by producing organic aerosols. Satellite observations of H2CO, bringing information at the global scale and over decades, are essential to trace and understand the nature and the spatio-temporal evolution of VOC emissions. We have been developing algorithms to retrieve formaldehyde columns from satellite nadir UV spectral measurements, and we have processed the full level-1 datasets of GOME/ERS-2, SCIAMACHY/ENVISAT, GOME-2/METOPA&B and OMI/AURA (De Smedt et al., 2008; 2012; 2015). Resulting H2CO products are openly distributed via the TEMIS website (http://h2co.aeronomie.be). In this work, we use the morning and afternoon H2CO columns between 2004 and 2014, respectively composed by the SCIAMACHY and GOME2 A&B datasets, and from the OMI observations, to study the diurnal, seasonal and long-term variations of H2CO over the Amazon rainforest. The highest H2CO columns worldwide are observed, with morning columns markedly higher than early afternoon. Very large variations between the dry and the wet seasons occur each year. Importantly, in some areas of the forest, mainly in the Rondonia Brazilian State, we observe a net decrease of the H2CO columns. We find very high correlation coefficients between the satellite H2CO columns and the reported deforestation fires that have significantly decreased in Rondonia since 2004 [INPE].

  9. Depopulation of rural landscapes exacerbates fire activity in the western Amazon.

    PubMed

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E; Padoch, Christine

    2012-12-26

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes.

  10. Depopulation of rural landscapes exacerbates fire activity in the western Amazon

    PubMed Central

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S.; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E.; Padoch, Christine

    2012-01-01

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144

  11. Stability in a changing world - palm community dynamics in the hyperdiverse western Amazon over 17 years.

    PubMed

    Olivares, Ingrid; Svenning, Jens-Christian; van Bodegom, Peter M; Valencia, Renato; Balslev, Henrik

    2017-03-01

    Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts. © 2016 John Wiley & Sons Ltd.

  12. Molecular epidemiology of hepatitis B and hepatitis delta viruses circulating in the Western Amazon region, North Brazil

    PubMed Central

    2014-01-01

    Background Hepatitis B virus (HBV) and hepatitis D virus (HDV) represent important public health problems in the Western Amazon region with reported cases of fulminant hepatitis. This cross sectional study describes HBV and HDV genotypes circulating in the Brazilian Amazon region. Methods HBsAg positive individuals (n = 224) were recruited in Manaus/Amazonas State (130 blood donors from the Hematology and Hemotherapy Foundation from Amazonas/HEMOAM; 60 subjects from outpatient clinic) and in Eirunepe city (n = 34) from 2003–2009. Most participants (n = 153) lived in Manaus, 63 were from 20 remote isolated municipalities, 8 lived outside Amazonas State. Genotyping was based on PCR products: HBV genotype A-F specific primers, restricted length polymorphism for HDV. HDV isolates were directly sequenced (delta antigen 405 nucleotide fragment) and phylogenetic analysis performed (MEGA; neighbor-joining, Kimura’s two parameter). Results Most participants were young adult males and HBV mono-infection predominated (70.5%, 158/224). Among blood donors, outpatient subjects and individuals from Eirunepe, HBV/A prevailed followed by HBV/D and F (p > 0.05). HBV/A was more frequent in blood donors (p < 0.05). HBV-HDV coinfection rate was 8.5% in blood donors (11/130), 65.0% (39/60) in outpatient subjects and 47.0% (16/34) in individuals from Eirunepe. Compared to blood donors, coinfection was higher in outpatient subjects (65.0% versus 8.5%; RR = 5.0; CI 3.4-7.9; p < 0.0001) and in subjects from Eirunepe (47.0% versus 8.5%; RR = 5.5; CI 3.0-9.9; p < 0.0001). HBV-HDV coinfection rates were higher in patients from highly endemic remote cities. Only HDV genotype 3 was detected, HBV/F-HDV/3 predominated (20/38; 52.7%), followed by HBV/A-HDV/3 (31.6%; 12/38) and HBV/D-HDV/3 (15.8%; 6/38). Conclusions The description of HBV and HDV genotypes circulating in the western Amazon can contribute to a better understanding of their relevance on the

  13. Freshwater shrimps (Macrobrachium depressimanum and Macrobrachium jelskii) as biomonitors of Hg availability in the Madeira River Basin, Western Amazon.

    PubMed

    Galvão, R C F; Holanda, I B B; De Carvalho, D P; Almeida, R; Souza, C M M; Lacerda, L D; Bastos, W R

    2018-01-10

    Total mercury (THg) concentrations measured in two freshwater shrimp species (Macrobrachium depressimanum and Macrobrachium jelskii) showed a relationship with the location of artisanal and small-scale gold mining (ASGM) from the Madeira River Basin, Western Amazon. Between August 2009 and May 2010, 212 shrimp samples were collected in the confluence of the Madeira River with three of its tributaries (Western Amazon). THg concentration was quantified in the exoskeleton, hepatopancreas and muscle tissue of the shrimps by cold vapor atomic absorption spectrophotometry. There were no significant differences between the two shrimp species when samples came from the Madeira River, but Hg concentrations were significantly lower in a tributary outside the influence of the gold mining area. Average THg concentrations were higher in the hepatopancreas (up to 160.0 ng g -1 ) and lower in the exoskeleton and muscle tissue (10.0-35.0 ng g -1 and < 0.9-42.0 ng g -1 , respectively). Freshwater shrimps from the Madeira River respond to local environmental levels of Hg and can be considered as biomonitors for environmental Hg at this spatial scale. These organisms are important for moving Hg up food webs including those that harbor economic significant fish species and thus enhancing human exposure.

  14. Variability of western Amazon dry-season precipitation extremes: importance of decadal fluctuations and implications for predictability

    NASA Astrophysics Data System (ADS)

    Fernandes, K.; Baethgen, W.; Verchot, L. V.; Giannini, A.; Pinedo-Vasquez, M.

    2014-12-01

    A complete assessment of climate change projections requires understanding the combined effects of decadal variability and long-term trends and evaluating the ability of models to simulate them. The western Amazon severe droughts of the 2000s were the result of a modest drying trend enhanced by reduced moisture transport from the tropical Atlantic. Most of the WA dry-season precipitation decadal variability is attributable to decadal fluctuations of the north-south gradient (NSG) in Atlantic sea surface temperature (SST). The observed WA and NSG decadal co-variability is well reproduced in Global Climate Models (GCMs) pre-industrial control (PIC) and historical (HIST) experiments that were part of the Intergovernmental Panel on Climate Change fifth assessment report (IPCC-AR5). This suggests that unforced or natural climate variability, characteristic of the PIC simulations, determines the nature of this coupling, as the results from HIST simulations (forced with greenhouse gases (GHG) and natural and anthropogenic aerosols) are comparable in magnitude and spatial distribution. Decadal fluctuation in the NSG also determines shifts in the probability of repeated droughts and pluvials in WA, as there is a 65% chance of 3 or more years of droughts per decade when NSG>0 compared to 18% when NSG<0. The HIST and PIC model simulations also reproduce the observed shifts in probability distribution of droughts and pluvials as a function of the NSG decadal phase, suggesting there is great potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase may lead to continuing above normal frequencies of western Amazon dry-season droughts.

  15. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon.

    PubMed

    Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M

    2005-07-01

    Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.

  16. Space-Time Controls on Carbon Sequestration Over Large-Scale Amazon Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Cooper, Harry J.; Gu, Jiujing; Grose, Andrew; Norman, John; daRocha, Humberto R.; Starr, David O. (Technical Monitor)

    2002-01-01

    A major research focus of the LBA Ecology Program is an assessment of the carbon budget and the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amazonia landscape, and its time-space heterogeneity manifest in carbon fluxes across the large scale Amazon basin ecosystem. Quantification of these processes requires a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle modes of photosynthesis and respiration. Here we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation fluxes and precipitation retrieval retrieved from a combination of GOES, SSM/I, TOMS, and TRMM satellite measurements. Brief discussion concerning validation of (a) retrieved surface radiation fluxes and precipitation based on 30-min averaged surface measurements taken at Ji-Parana in Rondonia and Manaus in Amazonas, and (b) modeled carbon fluxes based on tower CO2 flux measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological, thermodynamical, hydrological, and biophysical

  17. Forest-rainfall cascades buffer against drought across the Amazon

    NASA Astrophysics Data System (ADS)

    Staal, Arie; Tuinenburg, Obbe A.; Bosmans, Joyce H. C.; Holmgren, Milena; van Nes, Egbert H.; Scheffer, Marten; Zemp, Delphine Clara; Dekker, Stefan C.

    2018-06-01

    Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.

  18. Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon.

    PubMed

    Moreira, Fatima Maria de Souza; Nóbrega, Rafaela Simão Abrahão; Jesus, Ederson da Conceição; Ferreira, Daniel Furtado; Pérez, Daniel Vidal

    2009-12-20

    The Upper Solimões river region, western Amazon, is the homeland of indigenous populations and contains small-scale agricultural systems that are important for biodiversity conservation. Although traditional slash-and-burn agriculture is being practiced over many years, deforestation there is relatively small compared to other Amazon regions. Pastures are restricted to the vicinity of cities and do not spread to the small communities along the river. Inceptisols are the main soil order (>90%) in the area and have unique attributes including high Al content and high cation exchange capacity (CEC) due to the enrichment of the clay fraction with 2:1 secondary aluminosilicates. Despite its importance, few studies have focussed on this soil order when considering land use effects on the fertility of Amazon soils. Thus, the objective of this study was to evaluate changes in soil fertility of representative land use systems (LUSs) in the Upper Solimões region, namely: primary rainforest, old secondary forest, young secondary forest, agroforestry, pasture and agriculture. LUSs were significantly differentiated by the chemical attributes of their topsoil (0-20 cm). Secondary forests presented soil chemical attributes more similar to primary rainforest areas, while pastures exhibited the highest dissimilarity from all the other LUSs. As a whole, soil chemical changes among Inceptisols dominated LUSs showed patterns that were distinct from those reported from other Amazon soils like Oxisols and Ultisols. This is probably related to the presence of high-activity clays enriched in exchangeable aluminum that heavily influenced the soil chemical reactions over the expected importance of organic matter found in most studies conducted over Oxisol and Ultisol.

  19. Seroprevalence of Toxoplasma gondii antibodies in cats and pigs from rural Western Amazon, Brazil.

    PubMed

    Cavalcante, G T; Aguiar, D M; Chiebao, D; Dubey, J P; Ruiz, V L A; Dias, R A; Camargo, L M A; Labruna, M B; Gennari, S M

    2006-08-01

    Antibodies to Toxoplasma gondii were assayed in sera of 63 cats and 80 pigs from 71 farms located at Rondônia State, Western Amazon, Brazil, by the modified agglutination test (MAT) and the indirect immunofluorescent antibody test (IFAT). Antibodies (MAT > or = 1: 25) were found in 55 of 63 cats (87.3%) with titers of 1:25 in 2, 1:50 in 2, 1:100 in 7, 1:200 in 1, 1:400 in 2, 1:800 in 9, 1:1,600 in 6, and 1:3,200 or higher in 26 cats. By IFAT, antibodies were found in 55 cats (87.3%) with titers of 1:25 in 2, 1:50 in 1, 1:100 in 4, 1:200 in 4, 1: 400 in 1, 1:800 in 13, 1:1,600 in 12, and 1:3,200 or higher in 18 cats. In pig sera, by MAT, antibodies were found in 30 of 80 pigs (37.5%) with titers of 1:25 in 2, 1:50 in 3, 1:100 in 2, 1:200 in 8, 1:400 in 3, 1:800 in 5, 1:1,600 in 3, and 1:3,200 or higher in 4 pigs. By using the IFAT (titers > or = 1:64), antibodies were found in 35 (43.7%) pigs. The ingestion of undercooked tissues of infected pigs can be a source of T. gondii infection for humans and cats. However, the high seroprevalence of T. gondii in cats from the Amazon seems most likely to be indicative of high contamination of the environment by oocysts.

  20. Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph

    PubMed Central

    Riciluca, K.C.T.; Sayegh, R.S.R.; Melo, R.L.; Silva, P.I.

    2012-01-01

    Antimicrobial activities were detected in the haemolymph of the spider Acanthoscurrria rondoniae. A novel antifungal peptide, rondonin, was purified by reverse phase high performance liquid chromatography (RP-HPLC). Rondonin has an amino acid sequence of IIIQYEGHKH and a molecular mass of 1236.776 Da. This peptide has identity to a C-terminal fragment of the “d” subunit of haemocyanin from the spiders Eurypelma californicum and Acanthoscurria gomesiana. A synthetic peptide mimicking rondonin had identical characteristics to those of the isolated material, confirming its sequence. The synthetic peptide was active only against fungus. These data led us to conclude that the antifungal activity detected in the plasma of these spiders is the result of enzymatic processing of a protein that delivers oxygen in the haemolymph of many chelicerate. Several studies have suggested that haemocyanins are involved in the arthropod immune system, and the activity of this haemocyanin fragment reinforces this idea. PMID:24371568

  1. First report of Panstrongylus megistus (Hemiptera, Reduviidae, Triatominae) in the State of Acre and Rondônia, Amazon, Brazil.

    PubMed

    Ribeiro Castro, Mariane Albuquerque Lima; de Souza Castro, Gabriela Vieira; de Souza, Janis Lunier; de Souza, Cláudio Rodrigues; Ramos, Leandro José; de Oliveira, Jader; da Rosa, João Aristeu; Aranha Camargo, Luis Marcelo; Meneguetti, Dionatas Ulises de Oliveira

    2018-06-01

    This article reports, for the first time, the occurrence of Panstrongylus megistus in the Brazilian Western Amazon. Specimens of P. megistus were collected in the cities of Rio Branco, Acre and Extrema, Rondônia. The number of triatomine species in the State of Acre increased from eight to nine and in Rondônia from seven to eight. This was also the first report of P. megistus in the Brazilian Western Amazon. The occurrence of P. megistus in the Western Amazon evidences an epidemiological alert, since it is an important vector of T. cruzi. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A century of Amazon burning driven by Atlantic climate

    NASA Astrophysics Data System (ADS)

    Makou, M.; Thompson, L. G.; Davis, M. E.; Eglinton, T. I.

    2011-12-01

    Very little is known about annual burning trends in the Amazon Basin prior to remote sensing of fires beginning in the late 1970's. Fires reduce Amazon forest biomass and species richness, release pollutant aerosols, and impact the carbon cycle, compelling further investigation of fire-climate dynamics. We measured organic compounds derived from vegetation burning in ice core samples from the Quelccaya Ice Cap in Peru at better than annual resolution to reconstruct wet and dry season burning throughout the Twentieth Century. Variations in the abundance of methyl hexadecanoate, which is produced by thermal alteration of vascular plant alkanoic acids, were used as a proxy for past fire activity. Concentrations of this compound in Quelccaya ice varied strongly on seasonal, interannual, and decadal time scales over the last 100 years, with high-amplitude dry season variability and muted, decadal-scale changes in wet season fire activity. Decade-long periods of repeatedly enhanced burning occurred during the 1930's and 1960's when dry season precipitation was perpetually reduced, as evidenced by low stages of the Rio Negro. These decadal trends suggest that changes in dry season precipitation drive fire activity in the western Amazon and highlight the potential of Amazon forests to undergo repeated strong burning. Fires occurred during years when sea surface temperatures (SSTs) in the north tropical Atlantic were elevated and the north-south tropical Atlantic SST gradient was enhanced; this SST pattern likely displaced the intertropical convergence zone northward, driving subsidence and drought in the western and southern Amazon basin. Thus, our novel ice core record suggests that Amazon forest fire activity during the Twentieth Century was driven primarily by Atlantic climate processes, and future forest health will depend heavily on the evolution of tropical climate.

  3. Drinking water and rural schools in the Western Amazon: an environmental intervention study.

    PubMed

    Ribeiro, Maura Regina; de Abreu, Luiz Carlos; Laporta, Gabriel Zorello

    2018-01-01

    Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli . A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Before the intervention, 20% ( n = 4), 100% ( n = 20) and 70% ( n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli , respectively. However, after intervention, 70% ( p = 0.68), 75% ( p < 0.001) and 100% ( p < 0.001) of schools complied with potability standards. This intervention considerably improved schools' water quality, thus decreasing children's health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability.

  4. Hydrology, secondary growth, and elevation accuracy in two preliminary Amazon Basin SRTM DEMs

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Hess, L.; Sheng, Y.; Souza, C.; Pavelsky, T.; Melack, J.; Dunne, T.; Hendricks, G.; Ballantine, A.; Holmes, K.

    2003-04-01

    Two preliminary Shuttle Radar Topography Mission digital elevation models (SRTM DEMs) of Manaus (1S to 5S and 59W to 63W) and Rondonia (9S to 12S and 61W to 64W) were received from the "PI Processor" at NASA JPL. We compared the Manaus DEM (C-band) with a previously constructed Cabaliana floodplain classification based on Global RainForest Mapping (GRFM) JERS-1 SAR data (L-band) and determined that habitats of open water, bare ground, and flooded shrub contained the lowest elevations; macrophyte and non-flooded shrub habitats are marked by intermediate elevations; and the highest elevations are found within flooded and non-flooded forest. Although the water surface typically produces specular reflections, double-bounce travel paths result from dead, leafless trees found across the Balbina reservoir near Manaus. There (i.e., in Balbina) the water surface is marked by pixel-to-pixel height changes of generally 0 to 1 m and changes across a ˜100 km transect rarely exceed 3 m. Reported SRTM errors throughout the transect range from 1 to 2 m with some errors up to 5 m. The smooth Balbina surface contrasts with the wind-roughened Amazon River surface where SRTM height variations easily range from 1 to 10 m (reported errors often exceed 5 m). Deforestation and subsequent regrowth in the Rondonia DEM is remarkably clear. Our colleagues used a 20 year sequence of Landsat TM/MSS classified imagery to delineate areas in various stages of secondary growth and we find a general trend of increasing vegetation height with increasing age. Flow path networks derived from the Cabaliana floodplain DEM are in general agreement with networks previously extracted from the GRFM mosaics; however, watershed boundaries differ. We have also developed an algorithm for extracting channel widths, which is presently being applied to the DEM and classified imagery to determine morphological variations between reaches.

  5. Drinking water and rural schools in the Western Amazon: an environmental intervention study

    PubMed Central

    Ribeiro, Maura Regina; de Abreu, Luiz Carlos

    2018-01-01

    Background Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli. Methods A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Results Before the intervention, 20% (n = 4), 100% (n = 20) and 70% (n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli, respectively. However, after intervention, 70% (p = 0.68), 75% (p < 0.001) and 100% (p < 0.001) of schools complied with potability standards. Discussion This intervention considerably improved schools’ water quality, thus decreasing children’s health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability. PMID:29922512

  6. Surface Soil Preparetion for Leguminous Plants Growing in Degraded Areas by Mining Located in Amazon Forest-Brazil

    NASA Astrophysics Data System (ADS)

    Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley

    2015-04-01

    The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.

  7. Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno

    2016-11-01

    Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the δD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The δ13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our δ13C results show depleted δ13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane δD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane δD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane δD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield δD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long

  8. Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon

    PubMed Central

    Navarrete, Acacio A.; Venturini, Andressa M.; Meyer, Kyle M.; Klein, Ann M.; Tiedje, James M.; Bohannan, Brendan J. M.; Nüsslein, Klaus; Tsai, Siu M.; Rodrigues, Jorge L. M.

    2015-01-01

    Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion—particularly an increase in properties linked to soil acidity and nutrient availability—we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6) was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils. PMID:26733981

  9. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing Archival/Methodology, and Results

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Bailey, J. C.; Pinto, O.; Athayde, A.; Renno, N.; Weidman, C. D.

    2003-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was established in the state of Rondonia in western Brazil in 1999 through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of- arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the Internet. The network, which is still operational, was deployed to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite that was launched in November 1997. The measurements are also being used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-time series observations produced by this network will help establish a regional lightning climatological database, supplementing other databases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at the NASA/Marshall Space Flight Center have been applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The data will also be corrected for the network detection efficiency. The processing methodology and the results from the analysis of four years of network operations will be presented.

  10. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon

    NASA Astrophysics Data System (ADS)

    Cirino, G. G.; Souza, R. A. F.; Adams, D. K.; Artaxo, P.

    2014-07-01

    Carbon cycling in the Amazon is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the net ecosystem exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity, were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance, f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the Terra and Aqua satellites, and was validated with ground-based AOD measurements from AERONET (Aerosol Robotic Network) sun photometers. Carbon fluxes were measured using eddy covariance technique at the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) flux towers. Two sites were studied: the Jaru Biological Reserve (RBJ), located in Rondonia, and the Cuieiras Biological Reserve at the K34 LBA tower (located in a preserved region in the central Amazon). Analysis was performed continuously from 1999 to 2009 at K34 and from 1999 to 2002 at RBJ, and includes wet, dry and transition seasons. In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5 at 550 nm. In the Cuieiras Biological Reserve, the aerosol effect on NEE was smaller, accounting for an approximate 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or high cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches zero. The observed increase in NEE is attributed to an enhancement (~50%) in

  11. Mesoproterozoic rapakivi granites of the Rondonia Tin Province, southwestern border of the Amazonian craton, Brazil-I. Reconnaissance U-Pb geochronology and regional implications

    USGS Publications Warehouse

    Bettencourt, Jorge S.; Tosdal, R.M.; Leite, W.B.; Payolla, B.L.

    1999-01-01

    Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite (U-Pb age 1406 Ma); Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga

  12. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results

    NASA Technical Reports Server (NTRS)

    Blakelee, Richard

    1999-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measurement Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/MSFC are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.

  13. The Rondonia Lightning Detection Network: Network Description, Science Objectives, Data Processing/Archival Methodology, and First Results

    NASA Technical Reports Server (NTRS)

    Blakeslee, Rich; Bailey, Jeff; Koshak, Bill

    1999-01-01

    A four station Advanced Lightning Direction Finder (ALDF) network was recently established in the state of Rondonia in western Brazil through a collaboration of U.S. and Brazilian participants from NASA, INPE, INMET, and various universities. The network utilizes ALDF IMPACT (Improved Accuracy from Combined Technology) sensors to provide cloud-to-ground lightning observations (i.e., stroke/flash locations, signal amplitude, and polarity) using both time-of-arrival and magnetic direction finding techniques. The observations are collected, processed and archived at a central site in Brasilia and at the NASA/ Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Initial, non-quality assured quick-look results are made available in near real-time over the internet. The network will remain deployed for several years to provide ground truth data for the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite which was launched in November 1997. The measurements will also be used to investigate the relationship between the electrical, microphysical and kinematic properties of tropical convection. In addition, the long-term observations from this network will contribute in establishing a regional lightning climatological data base, supplementing other data bases in Brazil that already exist or may soon be implemented. Analytic inversion algorithms developed at NASA/Marshall Space Flight Center (MSFC) are now being applied to the Rondonian ALDF lightning observations to obtain site error corrections and improved location retrievals. The processing methodology and the initial results from an analysis of the first 6 months of network operations will be presented.

  14. High frequency of diabetes and impaired fasting glucose in patients with glucose-6-phosphate dehydrogenase deficiency in the Western brazilian Amazon.

    PubMed

    Santana, Marli S; Monteiro, Wuelton M; Costa, Mônica R F; Sampaio, Vanderson S; Brito, Marcelo A M; Lacerda, Marcus V G; Alecrim, Maria G C

    2014-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, and it has a significant prevalence in the male population (X chromosome linked). The purpose of this study was to estimate the frequency of impaired fasting glucose and diabetes among G6PD-deficient persons in Manaus, Brazil, an area in the Western Brazilian Amazon to which malaria is endemic. Glucose-6-phosphate dehydrogenase-deficient males had more impaired fasting glucose and diabetes. This feature could be used as a screening tool for G6PD-deficient persons who are unable to use primaquine for the radical cure of Plasmodium vivax malaria. © The American Society of Tropical Medicine and Hygiene.

  15. Seroprevalence of Toxoplasma gondii antibodies in humans from rural Western Amazon, Brazil.

    PubMed

    Cavalcante, G T; Aguilar, D M; Camargo, L M A; Labruna, M B; de Andrade, H F; Meireles, L R; Dubey, J P; Thulliez, P; Dias, R A; Gennari, S M

    2006-06-01

    Antibodies to Toxoplasma gondii were assayed in sera of 266 humans from 71 farms located at Rondônia State, Western Amazon, Brazil, by the modified agglutination test (MAT) and the indirect immunofluorescent antibody test (IFAT). Antibodies were found in 195 humans (73.3%), with MAT titers of 1:25 in 11, 1:50 in 11, 1:100 in 16, 1:200 in 27, 1:400 in 38, 1:800 in 37, 1:1,600 in 22, and 1:3,200 or higher in 33. From the 71 farms visited, 69 had seropositive humans. Prevalence of anti-T. gondii antibodies increased with age of the people (P < 0.05), and no difference was observed in the occurrence by gender (P > 0.05). A sanitary questionnaire was applied in each farm, and statistical association between the serologic status and several variables were analyzed. Home-grown vegetable consumption and origin of drinking water (well or river) were the independent variables that displayed significant association (P = 0.002 and 0.02, respectively). Higher values of occurrence were found in people with consumption of home-grown vegetables (76.1%) and people that drink well water (75.4%) compared with people that did not consume this type of food (61.9%) and drink river water (55.2%). By IFAT (> or = 1:16), 194 of 266 (73%) humans were seropositive and there was a good correlation between MAT and IFAT.

  16. Relationships Between Fire and Land Use Change in the Brazilian Amazon Based on Satellite Data

    NASA Astrophysics Data System (ADS)

    Fanin, T.; van der Werf, G.

    2014-12-01

    Fires are used as a tool in the process of deforestation. The relationship between fire and deforestation varies temporally and spatially according to the type of deforestation and climatic conditions. This study evaluates spatiotemporal variability between fire and deforestation over the 2002-2012 period in the Brazilian Legal Amazon (BLA). We based our study on four datasets: deforestation estimates from PRODES (Amazon Deforestation Monitoring Project) and forest cover loss from the Global Forest Change (GFC) project based on Landsat data, and burned area and land cover based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. While GFC and PRODES supported similar findings on spatial and temporal dynamics, the Landsat-scale comparison also highlighted a number of differences. Both datasets show a decrease after 2004 in forest loss or deforestation extent mainly from decreasing clearing rates in evergreen broadleaf forest, mostly in the states of Mato Grosso and Rondonia. However, the drop is larger and more gradual in PRODES than in GFC, with the former having less than half the forest loss of the latter. GFC indicates anomalous high forest loss in the years 2007 and 2010 not seen in PRODES. Rescaling these forest dynamics datasets to 500-meter resolution, allowed for a comparison against the MODIS datasets. The burned area data indicates that the mismatch between PRODES and GFC is largely related to increased fire occurrence during these dry years, mainly in Para. In addition it indicates that the time interval between deforestation and fire differs according to land cover, which is important when estimating the atmospheric impact of forest loss. We found that evergreen broadleaf forests are burned shortly after deforestation due to slash and burn techniques, while croplands have longer intervals depending on the crop variety. As a final step, we used these insights to better quantify carbon emissions from this region.

  17. Contrasting Patterns of Damage and Recovery in Logged Amazon Forests From Small Footprint LiDAR Data

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Keller, M.; Cook, B. D.; Hunter, Maria; Sales, Marcio; Spinelli, L.; Victoria, D.; Andersen, H.-E.; Saleska, S.

    2012-01-01

    Tropical forests ecosystems respond dynamically to climate variability and disturbances on time scales of minutes to millennia. To date, our knowledge of disturbance and recovery processes in tropical forests is derived almost exclusively from networks of forest inventory plots. These plots typically sample small areas (less than or equal to 1 ha) in conservation units that are protected from logging and fire. Amazon forests with frequent disturbances from human activity remain under-studied. Ongoing negotiations on REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus enhancing forest carbon stocks) have placed additional emphasis on identifying degraded forests and quantifying changing carbon stocks in both degraded and intact tropical forests. We evaluated patterns of forest disturbance and recovery at four -1000 ha sites in the Brazilian Amazon using small footprint LiDAR data and coincident field measurements. Large area coverage with airborne LiDAR data in 2011-2012 included logged and unmanaged areas in Cotriguacu (Mato Grosso), Fiona do Jamari (Rondonia), and Floresta Estadual do Antimary (Acre), and unmanaged forest within Reserva Ducke (Amazonas). Logging infrastructure (skid trails, log decks, and roads) was identified using LiDAR returns from understory vegetation and validated based on field data. At each logged site, canopy gaps from logging activity and LiDAR metrics of canopy heights were used to quantify differences in forest structure between logged and unlogged areas. Contrasting patterns of harvesting operations and canopy damages at the three logged sites reflect different levels of pre-harvest planning (i.e., informal logging compared to state or national logging concessions), harvest intensity, and site conditions. Finally, we used multi-temporal LiDAR data from two sites, Reserva Ducke (2009, 2012) and Antimary (2010, 2011), to evaluate gap phase dynamics in unmanaged forest areas. The rates and patterns of canopy gap

  18. Reconstructing Rodinia: the view from Amazonia

    NASA Astrophysics Data System (ADS)

    Tohver, E.; van der Pluijm, B.; Van der Voo, R.; Scandolara, J.; Rizzotto, G.

    2001-05-01

    Many Rodinia reconstructions propose that the North American Grenville orogeny at c.1.1 Ga was due to collision between Laurentia and the western Amazon craton, the position of which is presently unrestricted by paleomagnetic data. New paleomagnetic data was collected from the flat-lying basalts and gabbros of the Nova Floresta Formation (K-Ar whole rock, 982 +/-10 Ma, 1038 +/-14 Ma) of Rondonia, western Brazil to constrain the paleogeography of the proposed Laurentia-Amazonia link. Measurement of the anisotropy of magnetic susceptibility (AMS) on the gabbroic samples reveals a flat-lying foliation with a radiating pattern of lineations, demonstrating that the gabbros are part of a large, undeformed sill. Thermal and alternating field (AF) demagnetization of the basalt samples reveals a single component that is oriented WNW and steeply upward. For the gabbro samples, AF demagnetization is more successful than thermal demagnetization at resolving individual components. A characteristic remanence isolated in fields commonly above 40 mT is identical to the single component recorded in the basalts, suggesting that this magnetization was acquired at the same time. A paleomagnetic N-pole calculated from the Nova Floresta Formation (n = 16 sites, Plat. = 26.1N, PLon. = 163.4E, A95 = 5.9) can be matched to the Laurentia APWP for the 1150-750 Ma interval and permits geographic proximity of the two cratons during Grenvillian times. However, the orientation of the Aguapee-Sunsas belt based on this pole suggests a N-S oriented belt, in contrast with the E-W orientation of the Grenville belt on the Laurentian margin. It is proposed that the Amazon craton was rotated 90 degrees counterclockwise from the orientation required by the Laurentia-Amazonia connection. This N-S orientation of the Sunsas-Aguapei belt suggests that the western margin of the Amazon craton was juxtaposed with the Namaqua belt of the western Kalahari craton. This configuration is supported by a common

  19. Utilization of digital LANDSAT imagery for the study of granitoid bodies in Rondonia: Case example of the Pedra Branca massif

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Almeidafilho, R.; Payolla, B. L.; Depinho, O. G.; Bettencourt, J. S.

    1984-01-01

    Analysis of digital multispectral MSS-LANDSAT images enhanced through computer techniques and enlarged to a video scale of 1:100.000, show the main geological and structura features of the Pedra Branca granitic massif in Rondonia. These are not observed in aerial photographs or adar images. Field work shows that LANDSAT photogeological units correspond to different facies of granitic rocks in the Pedra Branca massif. Even under the particular characteristics of Amazonia (Tropical Forest, deep weathering, and Quaternary sedimentary covers), an adequate utilization of orbital remote sensing images can be important tools for the orientation of field works.

  20. G6PD deficiency alleles in a malaria-endemic region in the Western Brazilian Amazon.

    PubMed

    Dombrowski, Jamille G; Souza, Rodrigo M; Curry, Jonathan; Hinton, Laura; Silva, Natercia R M; Grignard, Lynn; Gonçalves, Ligia A; Gomes, Ana Rita; Epiphanio, Sabrina; Drakeley, Chris; Huggett, Jim; Clark, Taane G; Campino, Susana; Marinho, Claudio R F

    2017-06-15

    Plasmodium vivax parasites are the predominant cause of malaria infections in the Brazilian Amazon. Infected individuals are treated with primaquine, which can induce haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals and may lead to severe and fatal complications. This X-linked disorder is distributed globally and is caused by allelic variants with a geographical distribution that closely reflects populations exposed historically to endemic malaria. In Brazil, few studies have reported the frequency of G6PD deficiency (G6PDd) present in malaria-endemic areas. This is particularly important, as G6PDd screening is not currently performed before primaquine treatment. The aim of this study was to determine the prevalence of G6PDd in the region of Alto do Juruá, in the Western Brazilian Amazon, an area characterized by a high prevalence of P. vivax infection. Five-hundred and sixteen male volunteers were screened for G6PDd using the fluorescence spot test (Beutler test) and CareStart™ G6PD Biosensor system. Demographic and clinical-epidemiological data were acquired through an individual interview. To assess the genetic basis of G6PDd, 24 SNPs were genotyped using the Kompetitive Allele Specific PCR assay. Twenty-three (4.5%) individuals were G6PDd. No association was found between G6PDd and the number of malaria cases. An increased risk of reported haemolysis symptoms and blood transfusions was evident among the G6PDd individuals. Twenty-two individuals had the G6PDd A(-) variant and one the G6PD A(+) variant. The Mediterranean variant was not present. Apart from one polymorphism, almost all SNPs were monomorphic or with low frequencies (0-0.04%). No differences were detected among ethnic groups. The data indicates that ~1/23 males from the Alto do Juruá could be G6PD deficient and at risk of haemolytic anaemia if treated with primaquine. G6PD A(-) is the most frequent deficiency allele in this population. These results concur

  1. Rainfall trends in the Brazilian Amazon Basin in the past eight decades

    NASA Astrophysics Data System (ADS)

    Satyamurty, Prakki; de Castro, Aline Anderson; Tota, Julio; da Silva Gularte, Lucia Eliane; Manzi, Antonio Ocimar

    2010-01-01

    Rainfall series at 18 stations along the major rivers of the Brazilian Amazon Basin, having data since 1920s or 1930s, are analyzed to verify if there are appreciable long-term trends. Annual, rainy-season, and dry-season rainfalls are individually analyzed for each station and for the region as a whole. Some stations showed positive trends and some negative trends. The trends in the annual rainfall are significant at only six stations, five of which reporting increasing trends (Barcelos, Belem, Manaus, Rio Branco, and Soure stations) and just one (Itaituba station) reporting decreasing trend. The climatological values of rainfall before and after 1970 show significant differences at six stations (Barcelos, Belem, Benjamin Constant, Iaurete, Itaituba, and Soure). The region as a whole shows an insignificant and weak downward trend; therefore, we cannot affirm that the rainfall in the Brazilian Amazon basin is experiencing a significant change, except at a few individual stations. Subregions with upward and downward trends are interspersed in space from the far eastern Amazon to western Amazon. Most of the seasonal trends follow the annual trends, thus, indicating a certain consistency in the datasets and analysis.

  2. Forecasting Total Water Storage Changes in the Amazon basin using Atlantic and Pacific Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    De Linage, C.; Famiglietti, J. S.; Randerson, J. T.

    2013-12-01

    Floods and droughts frequently affect the Amazon River basin, impacting the transportation, river navigation, agriculture, economy and the carbon balance and biodiversity of several South American countries. The present study aims to find the main variables controlling the natural interannual variability of terrestrial water storage in the Amazon region and to propose a modeling framework for flood and drought forecasting. We propose three simple empirical models using a linear combination of lagged spatial averages of central Pacific (Niño 4 index) and tropical North Atlantic (TNAI index) sea surface temperatures (SST) to predict a decade-long record of 3°, monthly terrestrial water storage anomalies (TWSA) observed by the Gravity Recovery And Climate Experiment (GRACE) mission. In addition to a SST forcing term, the models included a relaxation term to simulate the memory of water storage anomalies in response to external variability in forcing. Model parameters were spatially-variable and individually optimized for each 3° grid cell. We also investigated the evolution of the predictive capability of our models with increasing minimum lead times for TWSA forecasts. TNAI was the primary external forcing for the central and western regions of the southern Amazon (35% of variance explained with a 3-month forecast), whereas Niño 4 was dominant in the northeastern part of the basin (61% of variance explained with a 3-month forecast). Forcing the model with a combination of the two indices improved the fit significantly (p<0.05) for at least 64% of the grid cells, compared to models forced solely with Niño 4 or TNAI. The combined model was able to explain 43% of the variance in the Amazon basin as a whole with a 3-month lead time. While 66% of the observed variance was explained in the northeastern Amazon, only 39% of the variance was captured by the combined model in the central and western regions, suggesting that other, more local, forcing sources were

  3. Deep mycoses in Amazon region.

    PubMed

    Talhari, S; Cunha, M G; Schettini, A P; Talhari, A C

    1988-09-01

    Patients with deep mycoses diagnosed in dermatologic clinics of Manaus (state of Amazonas, Brazil) were studied from November 1973 to December 1983. They came from the Brazilian states of Amazonas, Pará, Acre, and Rondônia and the Federal Territory of Roraima. All of these regions, with the exception of Pará, are situated in the western part of the Amazon Basin. The climatic conditions in this region are almost the same: tropical forest, high rainfall, and mean annual temperature of 26C. The deep mycoses diagnosed, in order of frequency, were Jorge Lobo's disease, paracoccidioidomycosis, chromomycosis, sporotrichosis, mycetoma, cryptococcosis, zygomycosis, and histoplasmosis.

  4. Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.

    2017-12-01

    The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western

  5. Basin-Wide Amazon Forest Tree Mortality From a Large 2005 Storm

    NASA Astrophysics Data System (ADS)

    Negron Juarez, R. I.; Chambers, J. Q.; Guimaraes, G.; Zeng, H.; Raupp, C.; Marra, D. M.; Ribeiro, G.; Saatchi, S. S.; Higuchi, N.

    2010-12-01

    Blowdowns are a recurrent characteristic of Amazon forests and are produced, among others, by squall lines. Squall lines are aligned clusters (typical length of 1000 km, width of 200 km) of deep convective cells that produce heavy rainfall during the dry season and significant rainfall during the wet season. These squall lines (accompanied by intense downbursts from convective cells) have been associated with large blowdowns characterized by uprooted, snapped trees, and trees being dragged down by other falling trees. Most squall lines in Amazonia form along the northeastern coast of South America as sea breeze-induced instability lines and propagate inside the continent. They occur frequently (~4 times per month), and can reach the central and even extreme western parts of Amazonia. Squall lines can also be generated inside the Amazon and propagate toward the equator. In January 2005 a squall line propagated from south to north across the entire Amazon basin producing widespread forest tree mortality and contributed to the elevated mortality observed that year. Over the Manaus region (3.4 x104 km2), disturbed forest patches generated by the squall produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. The elevated mortality observed in the Central Amazon in 2005 is unlikely to be related to the 2005 Amazon drought since drought did not affect Central or Eastern Amazonia. Assuming a similar rate of forest mortality across the basin, the squall line could have potentially produced tree mortality estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. This vulnerability is likely to increase in a warming climate with models projecting an increase in storm intensity.

  6. Ichnologic evidence of a Cambrian age in the southern Amazon Craton: Implications for the onset of the Western Gondwana history

    NASA Astrophysics Data System (ADS)

    Santos, Hudson P.; Mángano, M. Gabriela; Soares, Joelson L.; Nogueira, Afonso C. R.; Bandeira, José; Rudnitzki, Isaac D.

    2017-07-01

    Colonization of the infaunal ecospace by burrowing bilaterians is one of the most important behavioral innovations during the Ediacaran-Cambrian transition. The establishment of vertical burrows by suspension feeders in high-energy nearshore settings during Cambrian Age 2 is reflected by the appearance of the Skolithos Ichnofacies. For the first time, unquestionable vertical burrows typical of the Skolithos Ichnofacies, such as Skolithos linearis, Diplocraterion parallelum and Arenicolites isp., are recorded from nearshore siliciclastic deposits of the Raizama Formation, southeastern Amazon Craton, Brazil. Integration of ichnologic and sedimentologic datasets suggests that these trace fossils record colonization of high-energy and well-oxygenated nearshore sandy environments. Chronostratigraphically, the presence of these vertical burrows indicates an age not older than early Cambrian for the Raizama Formation, which traditionally has been regarded as Ediacaran. Therefore, the Raizama ichnofauna illustrates the advent of modern Phanerozoic ecology marked by the Agronomic Revolution. The discovery of the Skolithos Ichnofacies in these shallow-marine strata suggests possible connections between some central Western Gondwana basins.

  7. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    NASA Astrophysics Data System (ADS)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    essential for the resilience of the south-western and northern parts of the Amazon forest. Without the forest-rainfall feedbacks, these forest wouldn't exist.

  8. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  9. Modelling basin-wide variations in Amazon forest photosynthesis

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  10. Refining Rodinia: New Paleomagnetic Results From Amazonia and Paleogeographic Implications For The Grenville Orogeny.

    NASA Astrophysics Data System (ADS)

    Tohver, E.; van der Pluijm, B. A.; van der Voo, R.

    The Grenville province of eastern Laurentia is commonly considered to be the product of continental collision between ancestral North America and an as yet unidentified continent. New paleogeographic information for the Amazon craton in early Grenvil- lian times was determined from a new paleomagnetic pole based on the hypabyssal gabbros and flat-lying basalts of the Nova Floresta Fm. found in the western Brazil- ian state of Rondonia. Measurement of the anisotropy of magnetic susceptibility of the gabbros reveals a flat-lying fabric, suggesting an undeformed, igneous body. A paleomagnetic pole (n = 16 sites, Plat = 24.6N, Plon. = 164.6E, A95 = 5.5, Q = 5) is calculated from a steep, characteristic remanence (ChRM) that is inferred to be primary. This ChRM is isolated at applied field >30 mT and is probably carried by magnetite present in large, oxyexsolved titanomagnetites or igneous reaction rims. Emplacement of the body and acquisition of magnetization is dated by 40Ar/39Ar analysis of igneous biotite and plagioclase, both phases yielding ages of ca.1.2 Ga. Comparison of the position of Amazonia with that of ancestral North America deter- mined from the Laurentian APWP from 1.3 - 1.15 Ga suggests that Amazonia may have collided with the southernmost portion of Laurentia at ca.1.2 Ga. The timing of this collision is in agreement with geochronological constraints on the timing of de- formation in the Llano segment of Laurentia as well as observed deformation of the western Amazon craton.

  11. [Successes and failures of the Polonoroeste Integrated Development Program in Brazil].

    PubMed

    Frelastre, G

    1985-01-01

    Despite the fact that by 1980 Brazil's external debt approached US$100 billion and the effects of economic crisis were strongly felt, the government attempted to continue with previously launched integrated regional development projects including the "Polonoroeste" program. 3 phases were foreseen for the project, in Rondonia, Mato Grosso, and in new colonization zones. The goals of the Rondonia and Mato Grosso phases were to establish agriculture in the Amazon basin zone covered by the Polonoroeste, where the soils were reported to be of good or average quality although extremely heterogeneous over small areas. To avoid danger of rapid and complete deforestation, each colonist was to receive 100 hectares, 5 of which would be cleared and planted each year, allowing the forest to regenerate over 20 years. Colonists were expected to preserve 50 hectares of forest in their 100 hectare lots, but with increasing numbers of colonists the tendency has been to cut back the forest. Colonists were to receive credits and low interest loans repayable beginning 5 years after settlement over a period of 15 years. Since loans were not indexed, the amounts due would be a very small proportion of their initial worth in Brazil's inflationary economy. Boundary disputes sometimes resulting in armed conflict or murder have occurred in both Rondonia and especially in Mato Grosso between legal settlers and squatters, and between different categories of settlers. More serious has been the settlers' resentment and contesting of the large reserves set aside for the indigenous population, which has declined precipitously in recent years, probably as the result of massacres. In Mato Grosso, inequality in land holdings is demonstrated by the control over 55% of the land exercised by 1% of landholders. The demographic response to the colonization schemes was overwhelming. The populations of Rondonia and Mato Grosso respectively were estimated at 36,935 and 522,044 in 1950, 69,792 and 889,539 in

  12. Detection and Molecular Characterization of Zoonotic Poxviruses Circulating in the Amazon Region of Colombia, 2014

    PubMed Central

    Usme-Ciro, Jose A.; Paredes, Andrea; Walteros, Diana M.; Tolosa-Pérez, Erica Natalia; Laiton-Donato, Katherine; Pinzón, Maria del Carmen; Petersen, Brett W.; Gallardo-Romero, Nadia F.; Li, Yu; Wilkins, Kimberly; Davidson, Whitni; Gao, Jinxin; Patel, Nishi; Nakazawa, Yoshinori; Reynolds, Mary G.; Satheshkumar, P. S.; Emerson, Ginny L.

    2017-01-01

    During 2014, cutaneous lesions were reported in dairy cattle and farmworkers in the Amazon Region of western Colombia. Samples from 6 patients were analyzed by serologic and PCR testing, and results demonstrated the presence of vaccinia virus and pseudocowpox virus. These findings highlight the need for increased poxvirus surveillance in Colombia. PMID:28322708

  13. How Do Tropical Sea Surface Temperatures Influence the Seasonal Distribution of Precipitation in the Equatorial Amazon?.

    NASA Astrophysics Data System (ADS)

    Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui

    2001-10-01

    Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through

  14. The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile

    USGS Publications Warehouse

    Tosdal, R.M.

    1996-01-01

    Middle Proterozoic rocks underlying the Andes in western Bolivia, western Argentina, and northern Chile and Early Proterozoic rocks of the Arequipa massif in southern Peru?? from the Arequipa-Antofalla craton. These rocks are discontinuously exposed beneath Mesozoic and Cenozoic rocks, but abundant crystalline clasts in Tertiary sedimentary rocks in the western altiplano allow indirect samples of the craton. Near Berenguela, western Bolivia, the Oligocene and Miocene Mauri Formation contains boulders of granodiorite augen gneiss (1171??20 Ma and 1158??12 Ma; U-Pb zircon), quartzose gneiss and granofels that are inferred to have arkosic protoliths (1100 Ma source region; U-Pb zircon), quartzofeldspathic and mafic orthogneisses that have amphibolite- and granulite-facies metamorphic mineral assemblages (???1080 Ma metamorphism; U-Pb zircon), and undeformed granitic rocks of Phanerozoic(?) age. The Middle Proterozoic crystalline rocks from Berenguela and elsewhere in western Bolivia and from the Middle Proterozoic Bele??n Schist in northern Chile generally have present-day low 206Pb/204Pb ( 15.57), and elevated 208Pb/204Pb (37.2 to 50.7) indicative of high time-averaged Th/U values. The Middle Proterozoic rocks in general have higher presentday 206Pb/204Pb values than those of the Early Proterozoic rocks of the Arequipa massif (206Pb/204Pb between 16.1 and 17.1) but lower than rocks of the southern Arequipa-Antofalla craton (206Pb/204Pb> 18.5), a difference inferred to reflect Grenvillian granulite metamorphism. The Pb isotopic compositions for the various Proterozoic rocks lie on common Pb isotopic growth curves, implying that Pb incorporated in rocks composing the Arequipa-Antofalla craton was extracted from a similar evolving Pb isotopic reservoir. Evidently, the craton has been a coherent terrane since the Middle Proterozoic. Moreover, the Pb isotopic compositions for the Arequipa-Antofalla craton overlap those of the Amazon craton, thereby supporting a link

  15. Food insecurity and dental caries in schoolchildren: a cross-sectional survey in the western Brazilian Amazon.

    PubMed

    Frazão, Paulo; Benicio, Maria H D; Narvai, Paulo C; Cardoso, Marly A

    2014-06-01

    We analyzed the association between food insecurity and dental caries in 7- to 9-yr-old schoolchildren. We performed a cross-sectional survey nested in a population-based cohort study of 203 schoolchildren. The participants lived in the urban area of a small town within the western Brazilian Amazon. Dental examinations were performed according to criteria recommended by the World Health Organization. The number of decayed deciduous and permanent teeth as a count variable was the outcome measure. Socio-economic status, food security, behavioral variables, and child nutritional status, measured by Z-score for body mass index (BMI), were investigated, and robust Poisson regression models were used. The results showed a mean (SD) of 3.63 (3.26) teeth affected by untreated caries. Approximately 80% of schoolchildren had at least one untreated decayed tooth, and nearly 60% lived in food-insecure households. Sex, household wealth index, mother's education level, and food-insecurity scores were associated with dental caries in the crude analysis. Dental caries was 1.5 times more likely to be associated with high food-insecurity scores after adjusting for socio-economic status and sex. A significant dose-response relationship was observed. In conclusion, food insecurity is highly associated with dental caries in 7- to 9-yr-old children and may be seen as a risk factor. These findings suggest that food-security policies could reduce dental caries. © 2014 Eur J Oral Sci.

  16. An extensive reef system at the Amazon River mouth

    PubMed Central

    Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Moraes, Fernando C.; Brasileiro, Poliana S.; Salomon, Paulo S.; Mahiques, Michel M.; Bastos, Alex C.; Almeida, Marcelo G.; Silva, Jomar M.; Araujo, Beatriz F.; Brito, Frederico P.; Rangel, Thiago P.; Oliveira, Braulio C. V.; Bahia, Ricardo G.; Paranhos, Rodolfo P.; Dias, Rodolfo J. S.; Siegle, Eduardo; Figueiredo, Alberto G.; Pereira, Renato C.; Leal, Camille V.; Hajdu, Eduardo; Asp, Nils E.; Gregoracci, Gustavo B.; Neumann-Leitão, Sigrid; Yager, Patricia L.; Francini-Filho, Ronaldo B.; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S.; Moreira, Ana P. B.; Oliveira, Louisi; Soares, Ana C.; Araujo, Lais; Oliveira, Nara L.; Teixeira, João B.; Valle, Rogerio A. B.; Thompson, Cristiane C.; Rezende, Carlos E.; Thompson, Fabiano L.

    2016-01-01

    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 106–km2 plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume’s eastward retroflection, conditions the existence of this extensive (~9500 km2) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth–ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes. PMID:27152336

  17. An extensive reef system at the Amazon River mouth.

    PubMed

    Moura, Rodrigo L; Amado-Filho, Gilberto M; Moraes, Fernando C; Brasileiro, Poliana S; Salomon, Paulo S; Mahiques, Michel M; Bastos, Alex C; Almeida, Marcelo G; Silva, Jomar M; Araujo, Beatriz F; Brito, Frederico P; Rangel, Thiago P; Oliveira, Braulio C V; Bahia, Ricardo G; Paranhos, Rodolfo P; Dias, Rodolfo J S; Siegle, Eduardo; Figueiredo, Alberto G; Pereira, Renato C; Leal, Camille V; Hajdu, Eduardo; Asp, Nils E; Gregoracci, Gustavo B; Neumann-Leitão, Sigrid; Yager, Patricia L; Francini-Filho, Ronaldo B; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S; Moreira, Ana P B; Oliveira, Louisi; Soares, Ana C; Araujo, Lais; Oliveira, Nara L; Teixeira, João B; Valle, Rogerio A B; Thompson, Cristiane C; Rezende, Carlos E; Thompson, Fabiano L

    2016-04-01

    Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.

  18. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Pöschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2015-11-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin during two years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the Introduction to the GoAmazon2014/5 Special Issue, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the two-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean

  19. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

    NASA Astrophysics Data System (ADS)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Pöschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2016-04-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean and

  20. Hydrological Retrospective of floods and droughts: Case study in the Amazon

    NASA Astrophysics Data System (ADS)

    Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter

    2017-04-01

    Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were

  1. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from themore » Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. In addition, the G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs

  2. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)

    DOE PAGES

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; ...

    2016-04-19

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment was carried out in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. The objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from themore » Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. The present paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. In addition, the G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs

  3. Antibody reactivity to Borrelia burgdorferi sensu stricto antigens in patients from the Brazilian Amazon region with skin diseases not related to Lyme disease.

    PubMed

    Santos, Mônica; Ribeiro-Rodrigues, Rodrigo; Lobo, Rogério; Talhari, Sinésio

    2010-05-01

    In the present study, we report the occurrence of borreliosis in patients from the Brazilian Amazonic region. Nineteen (7.2%) out of 270 dermatological patients with different skin diseases (no one with clinical Lyme disease), tested positive by ELISA for Borrelia burgdorferi. Serum samples from 15 out of the 19 ELISA-positive patients were further evaluated by Western blot. Presence of Borrelia burgdorferi specific IgG was confirmed in eight (53.3%) out of the 15 patients. All eight patients with ELISA and Western blot positive reactions were treated with doxycycline, according to the Centers for Disease Control and Prevention guidelines. One of them had clinical manifestations of colagenosis and was sent to the Department of Internal Medicine for further investigation. Data presented here suggested that borreliosis "lato sensu" is in the Brazilian Amazon region.

  4. Hydroclimate changes across the Amazon lowlands over the past 45,000 years.

    PubMed

    Wang, Xianfeng; Edwards, R Lawrence; Auler, Augusto S; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W; Dorale, Jeffrey A; Chiang, Hong-Wei

    2017-01-11

    Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin-one of Earth's major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.

  5. Amazon water lenses and the influence of the North Brazil Current on the continental shelf

    NASA Astrophysics Data System (ADS)

    Prestes, Yuri O.; Silva, Alex Costa da; Jeandel, Catherine

    2018-05-01

    The exchange processes on the Amazon continental shelf in northern Brazil are subject to complex interactions that involve forcings derived from distinct sources. The Amazon shelf is a unique and highly dynamic environment in which considerable discharge of freshwater enters the Atlantic Ocean, producing extensive Amazon Water Lenses (AWL). In addition to the presence of the AWL, the shelf is influenced by the semidiurnal oscillations of the tides and the strong North Brazil Current (NBC), a boundary current of the western Atlantic. The present study was based primarily on the influence of the freshwater input and the NBC on the shelf and the Amazon Shelf Break (ASB) off the mouth of the Pará River. For this purpose, hydrographic and hydrodynamic data were obtained by moorings of the AMANDES Project (April-July 2008), located on the Amazon shelf and the ASB. Spectral analysis and the continuous wavelet transform were applied to define tidal (high frequency/short period) and subtidal (low frequency/long period) signals. The results indicated that on both the shelf and the break, the semidiurnal tides are responsible for the residual landward transport and are predominantly across-shelf. Low-frequency motions in the synoptic bands and the AWL are related to spatial changes in the velocity field, mainly on the ASB in the along-shelf direction. The flow of the NBC can be interpreted as an along-shelf low-frequency oscillation capable of altering the spatial configuration of the velocity field, although its influence is perceived only in the absence of the AWL.

  6. Contrasting andean geodynamics drive evolution of lowland taxa in western Amazonia

    USDA-ARS?s Scientific Manuscript database

    Using a palm lineage of 15 species (Astrocaryum sect. Huicungo), we tested an hypothesis that past geologic events in western Amazonia influenced the modern configuration of the upper Amazon drainage and thus diversification and distribution of these palsm, which found only in this region. The chang...

  7. Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin.

    PubMed

    Farias, Izeni Pires; Hrbek, Tomas

    2008-10-01

    We carried out a phylogeograhic and population genetic analysis of fishes of the taxonomically contentious genus Symphysodon from the Amazon basin in order to test hypotheses of relationships among taxonomic units, and potential processes driving diversification within this genus. We sampled 334 individuals of the genus Symphysodon from 24 localities that span the complete geographic distribution of this genus. The sampling scheme included all known phenotypic groups, species and subspecies. Analyses were based on 474 bp of the mitochondrial control region and 1443 bp of the exon 3 of RAG1 gene. We observed 102 mtDNA haplotypes defined by 89 segregating sites, and 5 nuDNA alleles defined by three segregating sites. Maximum-likelihood, Bayesian-inference and statistical parsimony analyses revealed three well defined monophyletic groups. These clades corresponded to the 'green' and 'blue' groups of Symphysodon aequifasciatus, and to a previously morphologically unrecognized clade from the Xingu River drainage. These three clades were nested within a paraphyletic assemblage consisting of the 'brown' group of S. aequifasciatus and of both described subspecies of S. discus, the 'Heckel' and the 'abacaxi' discus. Nuclear allele sharing was observed among groups, but there were significant differences in frequencies. We inferred several processes including past fragmentation among groups, and restricted gene flow with isolation by distance within the paraphyletic 'brown+Heckel+abacaxi' groups, and suggest that differences among the 'blue', 'Heckel' and 'brown' groups are potentially maintained by differences in water chemistry preferences. We further inferred colonization of the western Amazon basin by an ancestor of the 'green' clade. The 'green' group was the only group with a pattern of haplotype distribution consistent of a demographic expansion, and the divergence of this clade from other groups of discus was consistent with recent geologic evidence on the breach of

  8. Urban malaria in the Brazilian Western Amazon Region I: high prevalence of asymptomatic carriers in an urban riverside district is associated with a high level of clinical malaria.

    PubMed

    Tada, Mauro Shugiro; Marques, Russimeire Paula; Mesquita, Elieth; Dalla Martha, Rosimeire Cristina; Rodrigues, Juan Abel; Costa, Joana D'Arc Neves; Pepelascov, Rosario Rocha; Katsuragawa, Tony Hiroshi; Pereira-da-Silva, Luiz Hildebrando

    2007-06-01

    Cross sectional studies on malaria prevalence was performed in 2001, 2002, and 2004 in Vila Candelária, an urban riverside area of Porto Velho, Rondônia, in the Brazilian Western Amazon, followed by longitudinal surveys on malaria incidence. Vila Candelária is a working class district, provided with electricity, water supply, and basic sanitation. Previous preliminary surveys indicated high malaria incidence in this community. At the end of year 2000 regular diagnostic and treatment measures for malaria were introduced, with active search of febrile cases among residents. Despite of both rapid treatment of cases and relative good sanitary and housing conditions, the malaria incidence persisted at high levels during the following years with an annual parasite index of 150 to 300/1000 inhabitants. Parasite surveys in 2001, 2002, and 2004 achieved through microscopy and polymerase chain reaction to diagnose malaria showed a constant high prevalence of asymptomatic carriers for both Plasmodium falciparum and P. vivax parasites. It was concluded that asymptomatic carriers represent an important reservoirs of parasites and that the carriers might contribute to maintaining the high level of transmission. Comparing our findings to similar geo-demographic situations found in other important urban communities of the Brazilian Amazon, we propose that asymptomatic carriers could explain malaria's outbreaks like the one recently observed in Manaus.

  9. Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.

    2016-12-01

    The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  10. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  11. Selenium Levels in the Whole Blood of Children and Teenagers from Two Riparian Communities at the Madeira River Basin in the Western Brazilian Amazon.

    PubMed

    Vega, Claudia M; Godoy, José M; Barrocas, Paulo R G; Gonçalves, Rodrigo A; De Oliveira, Beatriz F A; Jacobson, Ludmilla V; Mourão, Dennys S; Hacon, Sandra S

    2017-01-01

    Selenium (Se) is an essential micronutrient that exerts multiple functions in the organism, and both its deficiency and excess can cause health impairments. Thus, it is important to monitor its levels in the population, especially in vulnerable groups, such as children from the Brazilian Amazon region, where there is a lack of information in this regard. The aim of this research was to study Se levels in the whole blood of children and teenagers (5-16 years old) from two riparian communities at the Madeira River (Cuniã RESEX and Belmont). Se level variations related to the communities' location, seasonality, diet, and body mass index (BMI) were assessed. Blood samples were collected in both communities for Se determinations, using ICP-MS and hemogram analyses, during May and September of 2011. Food frequency questionnaires were applied to assess consumption rates of specific food items. Non-parametric tests and linear multiple regressions were applied in the data analyses. Median Se levels were significantly higher during May (Cuniã RESEX 149 μg L -1 ; Belmont 85 μg L -1 ) compared to September (Cuniã RESEX 79 μg L -1 ; Belmont 53 μg L -1 ). No significant differences were found between the communities regarding BMI measurements and anemia prevalence. However, Se blood levels were significantly higher at the Cuniã RESEX compared to Belmont. In addition, the former showed higher fish and Brazil nut intakes, which may be the main Se sources for this community. These results contribute to a better understanding of Se reference levels for children and teenagers of Western Amazon riparian communities.

  12. Trypanosoma cruzi IV causing outbreaks of acute Chagas disease and infections by different haplotypes in the Western Brazilian Amazonia.

    PubMed

    Monteiro, Wuelton Marcelo; Magalhães, Laylah Kelre Costa; de Sá, Amanda Regina Nichi; Gomes, Mônica Lúcia; Toledo, Max Jean de Ornelas; Borges, Lara; Pires, Isa; Guerra, Jorge Augusto de Oliveira; Silveira, Henrique; Barbosa, Maria das Graças Vale

    2012-01-01

    Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII) gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes.

  13. Trypanosoma cruzi IV Causing Outbreaks of Acute Chagas Disease and Infections by Different Haplotypes in the Western Brazilian Amazonia

    PubMed Central

    Monteiro, Wuelton Marcelo; Magalhães, Laylah Kelre Costa; de Sá, Amanda Regina Nichi; Gomes, Mônica Lúcia; Toledo, Max Jean de Ornelas; Borges, Lara; Pires, Isa; de Oliveira Guerra, Jorge Augusto; Silveira, Henrique; Barbosa, Maria das Graças Vale

    2012-01-01

    Background Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. Methodology/Principal Findings We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII) gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. Conclusion/Significance DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes. PMID:22848457

  14. Recovery of Methane Consumption by Secondary Forests in the Amazon River Basin

    NASA Astrophysics Data System (ADS)

    Webster, K. D.; Meredith, L. K.; Piccini, W.; Pedrinho, A.; Nüsslein, K.; Van Haren, J. L. M.; Camargo, P. B. D.; Mui, T. S.; Saleska, S. R.

    2017-12-01

    Methane (CH4) is a major greenhouse gas in Earth's atmosphere and its atmospheric global mole fraction has roughly doubled since the start of the industrial revolution. The tropics are thought to be a major CH4 emitter, with the Amazon River Basin estimated to contribute 7 % of the annual flux to the atmosphere. The Amazon has experienced extensive land use change during the past 30 years, but we lack an understanding of the qualitative and quantitative effects of land use change on CH4 flux from the Amazon and the associated reasons. To illuminate the factors controlling CH4 flux across land use gradients in the Amazon we measured the CH4 fluxes and will measure the associated stable isotopic composition from pastures, primary forests, and secondary forests, at Ariquemes (Western Amazon, more deforested), and Santarem (Eastern Amazon, less deforested), Brazil. The sites near Santarem were sampled in June of 2016 and the sites near Ariquemes were sampled in March and April of 2017, both at the end of the wet season. Little difference was observed between land use types in Santarem with each land use type slightly consuming atmospheric CH4. However, pasture fluxes at Ariquemes were higher (+520 μg-C m-2 hr-1) than in primary (0 μg-C m-2 hr-1) and secondary forests (-20 μg-C m-2 hr-1; p = 6*10-4). CH4 flux from individual Santarem sites was not correlated with environmental variables. CH4 flux from Airquemes was correlated with several parameters across all samples including soil temperature (p = 7*10-4), and soil humidity (p = 0.02). Despite the fact that pastures experienced higher soil temperatures than forest soils this appears to be a low predictor of CH4 flux from these environments as it was seen at both Santarem and Ariquemes. The analysis of the stable isotopic composition of CH4 from these chambers will aid in understanding the competing processes of microbial CH4 consumption and production in these soils and why pastures may become CH4 sources and

  15. Hydrologic resilience and Amazon productivity.

    PubMed

    Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B

    2017-08-30

    The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.

  16. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    PubMed

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  17. Rivers in the sea - Can we quantify pigments in the Amazon and the Orinoco River plumes from space?

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank E.; Walsh, John J.; Carder, Kendall L.; Zika, Rod G.

    1989-01-01

    Coastal Zone Color Scanner (CZCS) images of the western tropical Atlantic (1979-1982) were combined into monthly mean surface pigment fields. These suggest that Amazon River water flows along northeastern South America directly toward the Caribbean sea early in the year. After June, however, the North Brazil Current is shunted eastward, carrying a large fraction of Amazon water into the North Equatorial Countercurrent (NECC). This eastward flow causes diminished flow through the Caribbean, which permits northwestward dispersal of Orinoco River water due to local Ekman forcing. The Orinoco plume crosses the Caribbean, leading to seasonal variation in surface salinity near Puerto Rico. At least 50 percent of the pigment concentration estimated in these plumes seems due to viable phytoplankton.

  18. Grazing by Zooplankton on Diazotrophs in the Amazon River Plume and Western Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Conroy, B.; Steinberg, D. K.; Song, B.; Foster, R.

    2016-02-01

    Organisms capable of fixing di-nitrogen (N2), known as diazotrophs, are important primary producers and a potentially significant source for new nitrogen entering the planktonic food web. However, limited evidence exists for zooplankton grazing on diazotrophs compared to other primary producers. In the western tropical North Atlantic Ocean (WTNA), the Amazon River plume creates a niche for symbiotic diatom-diazotroph associations (DDAs) which can form large blooms. In adjacent non-plume-influenced waters, the colonial cyanobacterium Trichodesmium is abundant. In order to reveal zooplankton-diazotroph grazing interactions and determine the fate of newly fixed nitrogen, gut contents of zooplankton captured in these two regions were compared based on quantitative PCR (qPCR) assay of nitrogenase genes (nifH), and their microbiomes compared using next generation sequencing (NGS) analysis of 16S rRNA genes. We sampled individual copepods from discrete depth intervals (0-25m and 25-50m) and in two size classes (0.5-1mm and 1-2mm) for analysis. A modified DNA extraction protocol was developed and 54 extracts were used as templates in nifH qPCR assays for the larger size fraction diazotrophs (>10µm): Trichodesmium, and Hemiaulus or Rhizosolenia (diatoms)-Richelia (diazotroph) associations. Copepod gut content nifH copies ranged from 1.6 to 13.6 copies individual-1 for the assay targeting the Hemiaulus-Richelia DDA and from 1.1 to 3.0 copies individual-1 for Trichodesmium. 16S NGS conducted on 35 extracts with an Ion Torrent PGM and mothur revealed that cyanobacteria sequences accounted for up to 20% of sequences per extract. Our results show that both DDAs and Trichodesmium are prey for zooplankton, and that new nitrogen moves through the food web via these grazing interactions. These interactions should be considered in future explorations of the global ocean nitrogen cycle.

  19. Hydroclimate changes across the Amazon lowlands over the past 45,000 years

    NASA Astrophysics Data System (ADS)

    Wang, Xianfeng; Edwards, R. Lawrence; Auler, Augusto S.; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W.; Dorale, Jeffrey A.; Chiang, Hong-Wei

    2017-01-01

    Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin—one of Earth’s major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.

  20. The Bi-Modal Pattern of the Summer Circulation Over South America

    NASA Technical Reports Server (NTRS)

    Herdies, Dirceu Luis; daSilva, Arlindo; SilvaDias, Maria A. F.; Atlas, Robert (Technical Monitor)

    2001-01-01

    Submonthly variations in warm-season (January-February) precipitation over South America, in special over the Amazon basin, central southwest Brazil, north Argentina, and Paraguay are shown to be strongly linked to variations in the moisture entering the continent from the Atlantic ocean. Two distinct regimes of lower tropospheric winds (westerlies and easterlies) were observed in Rondonia during the Wet Season Atmospheric Mesoscale Campaign (WETAMC) component of the Large Scale Atmosphere-Biosphere Experiment in Amazonia (LBA) and the Tropical Rainfall Measuring Mission (TRMM) field campaign. The westerly (easterly) winds were associated with the strong (weak) convective activity over the South Atlantic Convergence Zone (SACZ). The whole period of this study (January-February) was divided into SACZ and NSACZ (No SACZ) events. The vertically integrated moisture fluxes over the Amazon and Prata basin from the National Aeronautics and Space Administration/Goddard Data Assimilation Office (NASA/DAO) assimilation show that during SACZ (NSACZ) event strong (weak) convergence occurred over the Amazon basin with divergence (convergence) over the Prata basin. Submonthly variations in the SACZ also can be linked to extreme climate anomalies such as droughts or flooding conditions over the Amazon and Prata basin.

  1. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon.

    PubMed

    Soriano, Marlene; Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households' local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well.

  2. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon

    PubMed Central

    Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households’ local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well. PMID:28235090

  3. Monitoring selective logging in western Amazonia with repeat lidar flights

    Treesearch

    H.E. Andersen; S.E. Reutebuch; R.J. McGaughey; M.V.N. d' Oliveira; M. Keller

    2014-01-01

    The objective of this study was to test the use of repeat flight, airborne laser scanning data (lidar) for estimating changes associated with low-impact selective logging (approx. 10-15 m3 ha−1 = 5-7% of total standing volume harvested) in natural tropical forests in the Western Brazilian Amazon. Specifically, we investigated change in area...

  4. Security of the Brazilian Amazon Area

    DTIC Science & Technology

    1992-04-01

    effect in Amazonia". Brazil’s Institute for Space Research. Sio Paulo, April 1991: 5-6. Thompson, Dick. "A Global Agenda for the Amazon." Time, 18...to be overcome as Brazil pursues settlement and development of the Amazon. The natural ecologic systems of the Amazon must be defended with...agricultural techniques appropriate to the region and developed within the context of a comprehensive, responsible program that meets Brazil’s needs for

  5. Infection of Anopheles aquasalis from symptomatic and asymptomatic Plasmodium vivax infections in Manaus, western Brazilian Amazon.

    PubMed

    Martins-Campos, Keillen M; Kuehn, Andrea; Almeida, Anne; Duarte, Ana Paula M; Sampaio, Vanderson S; Rodriguez, Íria C; da Silva, Sara G M; Ríos-Velásquez, Claudia María; Lima, José Bento Pereira; Pimenta, Paulo Filemon Paolucci; Bassat, Quique; Müller, Ivo; Lacerda, Marcus; Monteiro, Wuelton M; Barbosa Guerra, Maria das Graças V

    2018-05-04

    Asymptomatic individuals are one of the major challenges for malaria elimination programs in endemic areas. In the absence of clinical symptoms and with a lower parasite density they constitute silent reservoirs considered important for maintaining transmission of human malaria. Studies from Brazil have shown that infected individuals may carry these parasites for long periods. Patients were selected from three periurban endemic areas of the city of Manaus, in the western Brazilian Amazon. Symptomatic and asymptomatic patients with positive thick blood smear and quantitative real-time PCR (qPCR) positive for Plasmodium vivax were invited to participate in the study. A standardised pvs25 gene amplification by qPCR was used for P. vivax gametocytes detection. Anopheles aquasalis were fed using membrane feeding assays (MFA) containing blood from malaria patients. Parasitemia of 42 symptomatic and 25 asymptomatic individuals was determined by microscopic examination of blood smears and qPCR. Parasitemia density and gametocyte density were assessed as determinants of infection rates and oocysts densities. A strong correlation between gametocyte densities (microscopy and molecular techniques) and mosquito infectivity (P < 0.001) and oocysts median numbers (P < 0.05) was found in both groups. The ability to infect mosquitoes was higher in the symptomatic group (41%), but infectivity in the asymptomatic group was also seen (1.42%). Although their infectivity to mosquitoes is relatively low, given the high prevalence of P. vivax asymptomatic carriers they are likely to play and important role in malaria transmission in the city of Manaus. The role of asymptomatic infections therefore needs to be considered in future malaria elimination programs in Brazil.

  6. Amazon Forest Responses to Drought and Fire

    NASA Astrophysics Data System (ADS)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  7. Boverhof's App Earns Honorable Mention in Amazon's Web Services

    Science.gov Websites

    » Boverhof's App Earns Honorable Mention in Amazon's Web Services Competition News & Publications News Publications Facebook Google+ Twitter Boverhof's App Earns Honorable Mention in Amazon's Web Services by Amazon Web Services (AWS). Amazon officially announced the winners of its EC2 Spotathon on Monday

  8. The Amazon Region; A Vision of Sovereignty

    DTIC Science & Technology

    1998-04-06

    and SPOT remote sensing satellites images, about 90% of the Amazon jungle remains almost untouched9. This 280 million hectares of vegetation hold...increasing energy needs, remain unanswered. Indian rights Has the Indian population been jeopardized by the development of the Amazon Region...or government agency. STRATEGY RESEARCH PROJECT THE AMAZON REGION; A VISION OF SOVEREIGNTY BY LIEUTENANT COLONEL EDUARDO JOSE BARBOSA

  9. Geochemistry of the Amazon Estuary

    USGS Publications Warehouse

    Smoak, Joseph M.; Krest, James M.; Swarzenski, Peter W

    2006-01-01

    The Amazon River supplies more freshwater to the ocean than any other river in the world. This enormous volume of freshwater forces the estuarine mixing out of the river channel and onto the continental shelf. On the continental shelf, the estuarine mixing occurs in a very dynamic environment unlike that of a typical estuary. The tides, the wind, and the boundary current that sweeps the continental shelf have a pronounced influence on the chemical and biological processes occurring within the estuary. The dynamic environment, along with the enormous supply of water, solutes and particles makes the Amazon estuary unique. This chapter describes the unique features of the Amazon estuary and how these features influence the processes occurring within the estuary. Examined are the supply and cycling of major and minor elements, and the use of naturally occurring radionuclides to trace processes including water movement, scavenging, sediment-water interaction, and sediment accumulation rates. The biogeochemical cycling of carbon, nitrogen, and phosphorus, and the significances of the Amazon estuary in the global mass balance of these elements are examined.

  10. The Amazon hydrometeorology: Climatology, variability and links to changes in weather patterns

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia De Avila

    -Southern Oscillation. During El Nino (La Nina) a strong (weak) subtropical jet stream over South America tends to prevent transient systems from moving to southern Amazon, resulting in decreased (increased) CAI days during SON. The second mode of co-variability shows an anomalously warm western Indian Ocean also related to strong subtropical jet stream, except the jet is positioned farther north in South America, which along with the absence of a well defined subpolar jet stream, favors the northward displacement of transient waves into central South America, but show little response in southern Amazon. The CAI days reconstructed from the first and second modes do not present any significant trend in southern Amazon. CAI days reconstructed from the third mode of co-variability on the other hand, reproduces the SON observed trend in almost its entirety. The third mode of co-variability describes negative (positive) anomalies in CAI days associated with cold (warm) SST anomalies in the eastern tropical Pacific, anomalous wavetrain in the Southern Hemisphere and Walker Cell displacement that are unfavorable (favorable) to the incursion of CAI into southern Amazon. The temporal evolution of this mode correlates negatively with the Pacific Decadal Oscillation, suggesting that the recent gradual shift in PDO polarity reflected on the interannual response of Southern Pacific atmospheric patterns, hence on the behavior of transients propagation. The negative PDO index and its related atmospheric patterns are in agreement with the reduced observed CAI days, which also related to a delayed wet season onset in the southern Amazon.

  11. Distribution of Aboveground Live Biomass in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  12. Measuring Water Storage in the Amazon

    NASA Image and Video Library

    2010-07-07

    This image is from data taken by NASA Gravity Recovery and Climate Experiment showing the Amazon basin in South America. The amount of water stored in the Amazon basin varies from month to month. Animations are available at the Photojournal.

  13. Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia

    NASA Astrophysics Data System (ADS)

    Tohver, Eric; van der Pluijm, B. A.; Van der Voo, R.; Rizzotto, G.; Scandolara, J. E.

    2002-05-01

    A paleomagnetic, geochronologic and petrographic study was undertaken on the flat-lying gabbros and basalts of the Nova Floresta Formation of Rondônia state, western Brazil in order to constrain the Mesoproterozoic paleogeography of the Amazon craton. Measurement of the anisotropy of magnetic susceptibility on the gabbroic samples reveals a flat-lying foliation with a radiating pattern of lineations, supporting the field evidence that the gabbros are part of a large, undeformed sill. Petrographic observations of oxides in the gabbros reveals two populations of magnetite grains produced during the original cooling of the sill: large, oxyexsolved titanomagnetite grains and fine-grained magnetite in igneous reaction rims. New 40Ar/39Ar age dating of biotite and plagioclase yield ages of ∼1.2 Ga, which represent the rapid cooling following emplacement of the mafic magma. Whole rock dating of basalt samples yields total gas ages of 1062±3 Ma, similar to the ∼1.0 Ga K/Ar ages reported by previous workers. However, the strong compositional dependence of the age spectrum renders this younger whole rock age unreliable except as a minimum constraint. A single magnetic component is found in the basalts, indistinguishable from the characteristic remanence found in the gabbros that is oriented WNW and steeply upward. This magnetization is considered to be primary and was acquired during the cooling of the sill and associated lavas. A paleomagnetic pole calculated from the Nova Floresta Formation (n=16 sites, Plat.=24.6°N, Plong.=164.6°E, A95=5.5°, Q=5), the first reported pole for the Amazon craton for the 1200-600 Ma Rodinia time period, constrains the paleogeographic position of Amazonia at ∼1.2 Ga. Juxtaposition of the western Amazon craton with the Llano segment of the Laurentia's Grenville margin causes the NF pole to lie on the 1.2 Ga portion of the combined APWP for Laurentia and Greenland, which indicates that a collision with the Amazon craton could have

  14. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts

    NASA Astrophysics Data System (ADS)

    Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter

    2017-06-01

    Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets

  15. Modelling conservation in the Amazon basin.

    PubMed

    Soares-Filho, Britaldo Silveira; Nepstad, Daniel Curtis; Curran, Lisa M; Cerqueira, Gustavo Coutinho; Garcia, Ricardo Alexandrino; Ramos, Claudia Azevedo; Voll, Eliane; McDonald, Alice; Lefebvre, Paul; Schlesinger, Peter

    2006-03-23

    Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin--the central feature of prevailing conservation approaches--are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation. By 2050, current trends in agricultural expansion will eliminate a total of 40% of Amazon forests, including at least two-thirds of the forest cover of six major watersheds and 12 ecoregions, releasing 32 +/- 8 Pg of carbon to the atmosphere. One-quarter of the 382 mammalian species examined will lose more than 40% of the forest within their Amazon ranges. Although an expanded and enforced network of protected areas could avoid as much as one-third of this projected forest loss, conservation on private lands is also essential. Expanding market pressures for sound land management and prevention of forest clearing on lands unsuitable for agriculture are critical ingredients of a strategy for comprehensive conservation.

  16. Vulnerability of Amazon forests to storm-driven tree mortality

    NASA Astrophysics Data System (ADS)

    Negrón-Juárez, Robinson I.; Holm, Jennifer A.; Magnabosco Marra, Daniel; Rifai, Sami W.; Riley, William J.; Chambers, Jeffrey Q.; Koven, Charles D.; Knox, Ryan G.; McGroddy, Megan E.; Di Vittorio, Alan V.; Urquiza-Muñoz, Jose; Tello-Espinoza, Rodil; Alegria Muñoz, Waldemar; Ribeiro, Gabriel H. P. M.; Higuchi, Niro

    2018-05-01

    Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds associated with severe convective storms are dominant natural drivers of tree mortality in the Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted increase in storm events might affect forest ecosystems within the Amazon are not well understood. We found that windthrows are common in the Amazon region extending from northwest (Peru, Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in the northwest Amazon. More frequent winds, produced by more frequent severe convective systems, in combination with well-known processes that limit the anchoring of trees in the soil, help to explain the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the frequency and intensity of convective storms in the Amazon have the potential to increase wind-related tree mortality. A forest demographic model calibrated for the northwestern and the central Amazon showed that northwestern forests are more resilient to increased wind-related tree mortality than forests in the central Amazon. Our study emphasizes the importance of including wind-related tree mortality in model simulations for reliable predictions of the future of tropical forests and their effects on the Earth’ system.

  17. Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleyson, Casey D.; Feng, Zhe; Hagos, Samson M.

    The Amazon rainforest is one of a few regions of the world where continental tropical deep convection occurs. The Amazon’s isolation makes it challenging to observe, but also creates a unique natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Extensive measurements were made upwind and downwind of the large city of Manaus, Brazil during the Observations and Modeling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) field campaign. In this study, 15 years of high-resolution satellite data are analyzed to examine the spatial and diurnal variability of convection occurring around the GoAmazon2014/5 sites. Interpretationmore » of anthropogenic differences between the upwind (T0) and downwind (T1-T3) sites is complicated by naturally-occurring spatial variability between the sites. During the rainy season, the inland propagation of the previous day’s sea-breeze front happens to be in phase with the background diurnal cycle near Manaus, but is out of phase elsewhere. Enhanced convergence between the river-breezes and the easterly trade winds generates up to 10% more frequent deep convection at the GoAmazon2014/5 sites east of the river (T0a, T0t/k, and T1) compared to the T3 site which was located near the western bank. In general, the annual and diurnal cycles during 2014 were representative of the 2000-2013 distributions. The only exceptions were in March when the monthly mean rainrate was above the 95th percentile and September when both rain frequency and intensity were suppressed. The natural spatial variability must be accounted for before interpreting anthropogenically-induced differences among the GoAmazon2014/5 sites.« less

  18. Confluence of the Amazon and Topajos Rivers, Brazil, South America

    NASA Image and Video Library

    1991-08-11

    This view shows the confluence of the Amazon and the Topajos Rivers at Santarem, Brazil (2.0S, 55.0W). The Am,azon flows from lower left to upper right of the photo. Below the river juncture of the Amazon and Tapajos, there is considerable deforestation activity along the Trans-Amazon Highway.

  19. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply

    PubMed Central

    Mercado, Lina M.; Patiño, Sandra; Domingues, Tomas F.; Fyllas, Nikolaos M.; Weedon, Graham P.; Sitch, Stephen; Quesada, Carlos Alberto; Phillips, Oliver L.; Aragão, Luiz E. O. C.; Malhi, Yadvinder; Dolman, A. J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Baker, Timothy R.; Almeida, Samuel; Higuchi, Niro; Lloyd, Jon

    2011-01-01

    The rate of above-ground woody biomass production, WP, in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in WP. We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in WP. Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate. PMID:22006971

  20. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    NASA Technical Reports Server (NTRS)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  1. Fragmentation of Andes-to-Amazon connectivity by hydropower dams

    PubMed Central

    Anderson, Elizabeth P.; Jenkins, Clinton N.; Heilpern, Sebastian; Maldonado-Ocampo, Javier A.; Carvajal-Vallejos, Fernando M.; Encalada, Andrea C.; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M.; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A.

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems—the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services. PMID:29399629

  2. Fragmentation of Andes-to-Amazon connectivity by hydropower dams.

    PubMed

    Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.

  3. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  4. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  5. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.

    PubMed

    Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.

  6. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon

    PubMed Central

    Ribeiro, Bruno R.; Sales, Lilian P.; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts. PMID:27829036

  7. Business as Usual: Amazon.com and the Academic Library

    ERIC Educational Resources Information Center

    Van Ullen, Mary K.; Germain, Carol Anne

    2002-01-01

    In 1999, Steve Coffman proposed that libraries form a single interlibrary loan based entity patterned after Amazon.com. This study examined the suitability of Amazon.com's Web interface and record enhancements for academic libraries. Amazon.com could not deliver circulating monographs in the University at Albany Libraries' collection quickly…

  8. Evapotranspiration seasonality across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  9. Selective logging in the Brazilian Amazon.

    Treesearch

    G. P. Asner; D. E. Knapp; E. N. Broadbent; P. J. C. Oliveira; M Keller; J. N. Silva

    2005-01-01

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square...

  10. Modeling seasonal and interannual variability in ecosystem carbon cycling for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Klooster, Steven; de Carvalho, Claudio Reis; Genovese, Vanessa Brooks; Torregrosa, Alicia; Dungan, Jennifer; Bobo, Matthew; Coughlan, Joseph

    2001-05-01

    Previous field measurements have implied that undisturbed Amazon forests may represent a substantial terrestrial sink for atmospheric carbon dioxide. We investigated this hypothesis using a regional ecosystem model for net primary production (NPP) and soil biogeochemical cycling. Seasonal and interannual controls on net ecosystem production (NEP) were studied with integration of high-resolution (8-km) multiyear satellite data to characterize Amazon land surface properties over time. Background analysis of temporal and spatial relationships between regional rainfall patterns and satellite observations (for vegetation land cover, fire counts, and smoke aerosol effects) reveals several notable patterns in the model driver data. Autocorrelation analysis for monthly vegetation "greenness" index (normalized difference vegetation index, NDVI) from the advanced very high resolution radiometer (AVHRR) and monthly rainfall indicates a significant lag time correlation of up to 12 months. At lag times approaching 36 months, autocorrelation function (ACF) values did not exceed the 95% confidence interval at locations west of about 47°W, which is near the transition zone of seasonal tropical forest and other (nonforest) vegetation types. Even at lag times of 12 months or less, the location near Manaus (approximately 60°W) represents the farthest western point in the Amazon region where seasonality of rainfall accounts significantly for monthly variations in forest phenology, as observed using NDVI. Comparisons of NDVI seasonal profiles in areas of the eastern Amazon widely affected by fires (as observed from satellite) suggest that our adjusted AVHRR-NDVI captures year-to-year variation in land cover greenness with minimal interference from small fires and smoke aerosols. Ecosystem model results using this newly generated combination of regional forcing data from satellite suggest that undisturbed Amazon forests can be strong net sinks for atmospheric carbon dioxide

  11. Echocardiography in sickle cell anaemia patients under 20 years of age: a descriptive study in the Brazilian Western Amazon.

    PubMed

    Ribera, Melissa C V; Ribera, Ricardo B; Koifman, Rosalina J; Koifman, Sérgio

    2015-01-01

    Cardiac abnormalities in sickle cell anaemia are frequent and early, despite being more evident in adulthood. The study on cardiac abnormalities is essential in the current context, as, owing to improved health, children are increasingly able to reach adulthood and suffering the consequences of chronic cardiac injury. The aim of this study was to determine the prevalence of echocardiographic changes in patients under 20, suffering from sickle cell disease in Rio Branco, Brazilian Western Amazon. The descriptive epidemiological study compare two sets of children and adolescents, one including sickle cell anaemia patients (n=45), and other one (n=109) without sickle cell anaemia or heart disease. The echocardiographic measurements were indexed according to body surface using z-scores, and the prevalence of echocardiographic changes in both groups, with their respective 95% confidence intervals, ascertained and compared. Compared with the non-sickle cell anaemia series, the sickle cell anaemia group showed z-scores 13.1-fold higher for the diastolic diameter of the left ventricle, 5.2 times higher for the thickness of the posterior wall, 4.9 higher for the left atrium, 2.5 times higher for the right ventricle and 2.0 times higher for the septum thickness. Also the rate of left ventricular mass, systolic pressure of the right ventricle and the relative wall thickness were significantly higher in sickle cell anaemia set. Cardiac abnormalities were observed in 93.5% of patients. Early detection of cardiac abnormalities and quantifying them using the indexation of echocardiographic measurements according to body surface will allow proper identification and attendance of these children.

  12. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides

    2002-11-01

    Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well

  13. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    NASA Astrophysics Data System (ADS)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  14. On the offshore dispersal of the Amazon's Plume in the North Atlantic: Comments on the paper by A. Longhurst, ``Seasonal cooling and blooming in tropical oceans''

    NASA Astrophysics Data System (ADS)

    Muller-Karger, F. E.; Richardson, P. L.; Mcgillicuddy, D.

    1995-11-01

    Coastal Zone Color Scanner (CZCS) satellite images show extensive plumes of discolored water extending from South America into the western tropical Atlantic. The most conspicuous plumes originate at the mouths of the Amazon and Orinoco Rivers, and plumes originating at smaller rivers can also be seen from space. In a recent paper by Longhurst (1993), the plume associated with the Amazon River was attributed to phytoplankton blooms stimulated by nutrients supplied via eddy upwelling. We revisit the argument that this plume is of riverine origin, and offer evidence that material present near continental margins can be advected offshore and trace circulation patterns in the adjacent ocean.

  15. Mouths of the Amazon River, Brazil, South America

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the Amazon River Mouth (0.0, 51.0W), a large sediment plume can be seen expanding outward into the Atlantic Ocean. The sediment plume can be seen hugging the coast north of the delta as a result of the northwest flowing coastal Guyana Current. In recent years, the flow of the Amazon has become heavily laden with sediment as soil runoff from the denuded landscape of the interior enters the Amazon River (and other rivers) drainage system.

  16. The dispersal of the Amazon's water

    NASA Technical Reports Server (NTRS)

    Muller-Karger, Frank E.; Mcclain, Charles R.; Richardson, Philip L.

    1988-01-01

    New information obtained with NASA's Coastal Zone Color Scanner and with drifting buoys reveals that the discharge of the Amazon is carried offshore around a retroflection of the North Brazil Current and into the North Equatorial Countercurrent towards Africa between June and January each year. From about February to May, the countercurrent and the retroflection weaken or vanish, and Amazon water flows northwestward toward the Caribbean Sea.

  17. The Amazon and climate

    NASA Technical Reports Server (NTRS)

    Nobre, C. A.

    1984-01-01

    The climatologies of cloudiness and precipitation for the Amazon, are reviewed and the physical causes of some of the observed features and those which are not well known are explained. The atmospheric circulation over the Amazon is discussed on the large scale tropical circulations forced by deep diabatic heating sources. Weather deforestation which leads to a reduction in evapotranspiration into the atmosphere, and a reduction in precipitation and its implicated for the gobal climate is discussed. It is indicated that a large scale clearing of tropical rainforests there would be a reduction in rainfall which would have global effects on climate and weather both in the tropical and extratropical regions.

  18. Damming the rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Arima, Eugenio Y.; Dunne, Thomas; Park, Edward; Baker, Victor R.; D'Horta, Fernando M.; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A.; Ribas, Camila C.; Norgaard, Richard B.; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C.

    2017-06-01

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  19. Damming the rivers of the Amazon basin.

    PubMed

    Latrubesse, Edgardo M; Arima, Eugenio Y; Dunne, Thomas; Park, Edward; Baker, Victor R; d'Horta, Fernando M; Wight, Charles; Wittmann, Florian; Zuanon, Jansen; Baker, Paul A; Ribas, Camila C; Norgaard, Richard B; Filizola, Naziano; Ansar, Atif; Flyvbjerg, Bent; Stevaux, Jose C

    2017-06-14

    More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

  20. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall

    DOE PAGES

    Yoon, Jin -Ho

    2015-12-07

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  1. Exploring the Geomorphology of the Amazon's Planalto with Imaging Radar: Understanding the Origins of the Modern Amazon Basin

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Azarderakhsh, M.; Cracraft, J.

    2013-12-01

    Amazonia is Earth's most iconic center of biological diversity and endemism and, owing to its contributions to global systems ecology, is arguably Earth's most important terrestrial biome . Amazonia includes a vast landscape of mostly lowland rainforest found in Brazil, Peru, Colombia, Ecuador, Bolivia, and Venezuela. It harbors the world's highest species diversity, the largest fresh-water ecosystem in the world, and contributes substantially to shaping the Earth's atmospheric gasses and oceans and consequently its climate. Despite this global importance, we still have an incomplete understanding of how this biodiversity-rich biome developed over time. Knowing its history is crucially important for understanding how the short and long-term effects of biodiversity loss and climate change will impact the region, and the globe, in the future. Hence, we seek to understand the evolutionary and environmental-ecological history of Amazonia over the past 10 million years through a comparative approach that integrates across the disciplines of systematic biology, population biology, ecosystem structure and function, geology, Earth systems modeling and remote sensing, and paleoenvironmental history. During springtime 2013, the NASA/JPL airborne imaging radar, UAVSAR, conducted airborne studies over many regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired over the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology of the Amazon's planalto, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. In the late Neogene, the Amazonian lowlands comprised either a series of independent basins or a single sedimentary basin. The Amazonian planalto is variously described as either an erosional surface or a surface of deposition. We employ UAVSAR data collections to assess (1) the utility of these high quality imaging radar

  2. Amazon River investigations, reconnaissance measurements of July 1963

    USGS Publications Warehouse

    Oltman, Roy Edwin; Sternberg, H. O'R.; Ames, F.C.; Davis, L.C.

    1964-01-01

    The first measurements of the flow of the Amazon River were made in July 1963 as a joint project of the University of Brazil, the Brazilian Navy, and the U.S. Geological Survey. The discharge of the Amazon River at Obidos was 7,640,000 cfs at an annual flood stage somewhat lower than the average. For comparison the maximum known discharge of the Mississippi River at Vicksburg is about 2,300,000 cfs. Dissolved-solids concentrations and sediment loads of the Amazon River and of several major tributaries were found to be low.

  3. Surveillance, health promotion and control of Chagas disease in the Amazon Region - Medical attention in the Brazilian Amazon Region: a proposal

    PubMed Central

    Coura, José Rodrigues; Junqueira, Angela CV

    2015-01-01

    We refer to Oswaldo Cruz's reports dating from 1913 about the necessities of a healthcare system for the Brazilian Amazon Region and about the journey of Carlos Chagas to 27 locations in this region and the measures that would need to be adopted. We discuss the risks of endemicity of Chagas disease in the Amazon Region. We recommend that epidemiological surveillance of Chagas disease in the Brazilian Amazon Region and Pan-Amazon region should be implemented through continuous monitoring of the human population that lives in the area, their housing, the environment and the presence of triatomines. The monitoring should be performed with periodic seroepidemiological surveys, semi-annual visits to homes by health agents and the training of malaria microscopists and healthcare technicians to identify Trypanosoma cruzi from patients' samples and T. cruzi infection rates among the triatomines caught. We recommend health promotion and control of Chagas disease through public health policies, especially through sanitary education regarding the risk factors for Chagas disease. Finally, we propose a healthcare system through base hospitals, intermediate-level units in the areas of the Brazilian Amazon Region and air transportation, considering the distances to be covered for medical care. PMID:26560976

  4. Physical stature of adult Tsimane' Amerindians, Bolivian Amazon in the 20th century.

    PubMed

    Godoy, Ricardo A; Leonard, William R; Reyes-García, Victoria; Goodman, Elizabeth; McDade, Thomas; Huanca, Tomás; Tanner, Susan; Vadez, Vincent

    2006-06-01

    We examine the association between exposure to the market and Western society on the height of adult Tsimane', a foraging-farming society in the Bolivian Amazon. As with other contemporary native peoples, we find little evidence of a significant secular change in height during 1920-1980. Female height bore a positive association with own schooling and fluency in spoken Spanish and with maternal modern human capital (schooling, writing ability, and fluency in spoken Spanish), but male heights bore no association with parental height or with modern human capital. The absence of a secular change likely reflects the persistence of traditional forms of social organization and production that protect health.

  5. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks.

    PubMed

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-13

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  6. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  7. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    PubMed Central

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation–atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10–13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest. PMID:28287104

  8. Flooding dynamics on the lower Amazon floodplain

    NASA Astrophysics Data System (ADS)

    Rudorff, C.; Melack, J. M.; Bates, P. D.

    2013-05-01

    We analyzed flooding dynamics of a large floodplain lake in the lower reach of the Amazon River for the period between 1995 through 2010. Floodplain inundation was simulated using the LISFLOOD-FP model, which combines one-dimensional river routing with two-dimensional overland flow, and a local hydrological model. Accurate representation of floodplain flows and inundation extent depends on the quality of the digital elevation model (DEM). We combined digital topography (derived from the Shuttle Radar Topography Mission) with extensive floodplain echo-sounding data to generate a hydraulically sound DEM. Analysis of daily water balances revealed that the dominant source of inflow alternated seasonally among direct rain and local runoff (October through January), Amazon River (March through August), and seepage (September). As inflows from the Amazon River increase during the rising limb of the hydrograph, regional floodwaters encounter the floodplain partially inundated from local hydrological inputs. At peak flow the floodplain routes, on average, 2.5% of the total discharge for this reach. The falling limb of the hydrograph coincides with the locally dry period, allowing seepage of water stored in sediments to become a dominant source. The average annual inflow from the Amazon River was 58.8 km3 (SD = 33.5), representing more than three thirds (80%) of inputs from all sources, with substantial inter-annual variability. The average annual net export of water from the floodplain to the Amazon River was 7.9 km3 (SD = 2.7).

  9. What We Can Learn from Amazon for Clinical Decision Support Systems.

    PubMed

    Abid, Sidra; Keshavjee, Karim; Karim, Arsalan; Guergachi, Aziz

    2017-01-01

    Health care continue to lag behind other industries, such as retail and financial services, in the use of decision-support-like tools. Amazon is particularly prolific in the use of advanced predictive and prescriptive analytics to assist its customers to purchase more, while increasing satisfaction, retention, repeat-purchases and loyalty. How can we do the same in health care? In this paper, we explore various elements of the Amazon website and Amazon's data science and big data practices to gather inspiration for re-designing clinical decision support in the health care sector. For each Amazon element we identified, we present one or more clinical applications to help us better understand where Amazon's.

  10. Potential Impact of Planned Andean Dams on the Amazon Fluvial Ecosystem

    NASA Astrophysics Data System (ADS)

    Forsberg, B.; Melack, J. M.; Dunne, T.; Barthem, R. B.; Paiva, R. C. D.; Sorribas, M.; Silva, U. L., Jr.

    2016-12-01

    Increased energy demand has led to plans for building 151 new dams in the western Amazon, mostly in the Andes Region. Historical data and simulation scenarios were used to explore potential impacts above and below six of the largest storage dams planned for the region. These impacts included: 1) reduction in the downstream sediment supply 2) reduction in the downstream nutrient supply, 3) attenuation of the downstream flood pulse and 4) increased greenhouse gas emissions. Together, the six dams are expected to reduce the total downstream supply of sediments, total phosphorus (TP) and total nitrogen (TN) from the Andes by 66, 65 and 49%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These impacts are expected to be greatest close to the dams but could also extend to the central Amazon floodplain and delta regions. The attenuation of the downstream flood pulse following impoundment is expected to alter the survival, phenology and growth patterns of floodplain vegetation and result in lower fish yields in the downstream regions closest to the dams. Greenhouse gas emissions above and below the dams are expected to increase, contributing to significantly higher regional and global emissions for dams. Gas fired power plants are suggested as a cleaner, less impactful alternative to meeting regional energy demands.

  11. Radionuclide tracers of sediment-water interactions on the Amazon shelf

    NASA Astrophysics Data System (ADS)

    Moore, Willard S.; DeMaster, David J.; Smoak, Joseph M.; McKee, Brent A.; Swarzenski, Peter W.

    1996-04-01

    adsorbed 234Th into the seabed. Once scavenged, 234Th remains part of the suspended-sediment and fluid-mud inventory for periods of at least 4-8 weeks. Another particle-reactive tracer, 210Pb, was used to evaluate the potential supply of reactive metals from offshore waters to the shelf. As open-ocean waters move into the Amazon mixing zone, in response to the estuarine-like circulation, they lose 210Ph through scavenging processes associated with delta formation. This oceanic input of 210Pb dominates other inputs to the Amazon shelf system. Based on 210Pb analyses from more than 40 ☐ and kasten cores, the flux of water moving shoreward and depositing 210Pb in the sediments was calculated to be on the order of 6 × 10 161y -1 ˜10 times the riverine flux from the Amazon. The distribution of 210Pb in the sediments suggests that if particle-reactive species (such as certain trace metals) are released in dissolved form on the shelf, they will be scavenged quickly in this turbid environment, with the largest inventories occurring in the foreset beds (although the highest concentrations occur in the bottomset beds). The large landward flow of water indicates that if particle-reactive species are released in the western equatorial Atlantic via aerosol transport or other mechanisms, there is a good chance that a sizeable portion will be buried in the Amazon delta. Fluxes of radium isotopes, 226Ra, 228Ra and 224Ra, from the bottom sediments were used to evaluate sediment resuspension across the shelf. The average flux of 226Ra from the Amazon shelf balanced the annual desorption of 226Ra from river-derived sediments; however, departures between the 226Ra flux and sediment necessary to support the flux occurred for different sampling periods. During falling and low discharge, less sediment entered the system than was required to support the sedimentary desorption 226Ra flux. During rising and high discharge, more sediment entered than was necessary to sustain the 226Ra flux

  12. Ozone measurements in the Amazon

    NASA Astrophysics Data System (ADS)

    Kirchhoff, V. W. J. H.

    Several scientists of the Brazilian Institute for Space Research (Instituto de Pesquisas Espacias, or INPE; headquarters at Sāo Jose dos Campos, Sao Paulo) went to Manaus (3°S, 60°W), in the central region of the Amazon forest during July-August 1985 to study the atmosphere of the equatorial rainforest. The expedition to the Amazon was part of a large binational atmospheric chemistry field campaign that was organized to measure several atmospheric gases of the forest environment. This was definitely the largest scientific field expedition in this field ever performed on Brazilian territory.

  13. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less

  14. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    DOE PAGES

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; ...

    2017-12-06

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunitiesmore » to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.« less

  15. Constancy in the vegetation of the Amazon Basin during the late Pleistocene: Evidence from the organic matter composition of Amazon deep sea fan sediments

    NASA Astrophysics Data System (ADS)

    Kastner, Thomas P.; Goñi, Miguel A.

    2003-04-01

    Analyses of more than 60 sediment samples from the Amazon deep sea fan show remarkably constant terrigenous biomarkers (lignin phenols and cutin acids) and stable carbon isotopic compositions of organic matter (δ13COM) deposited from 10 to 70 ka. Sediments from the nine Amazon deep sea fan channel-levee systems investigated in this study yielded relatively narrow ranges for diagnostic parameters such as organic carbon (OC) normalized total lignin yields (Λ = 3.1 ± 1.1 mg/100 mg OC), syringyl:vanillyl phenol ratios (S/V = 0.84 ± 0.06), cinnamyl:vanillyl phenol ratios (C/V = 0.08 ± 0.02), isomeric abundances of cutin-derived dihydroxyhexadecanoic acid (f10,16-OH = 0.65 ± 0.02), and δ13COM (-27.6% ± 0.6 ‰). Our measurements support the hypothesis that the vegetation of the Amazon Basin did not change significantly during the late Pleistocene, even during the Last Glacial Maximum. Moreover, the compositions obtained from the Amazon deep sea fan are similar to those of modern Amazon River suspended sediments. Such results strongly indicate that the current tropical rainforest vegetation has been a permanent and dominant feature of the Amazon River watershed over the past 70 k.y. Specifically, we found no evidence for the development of large savannas that had been previously postulated as indicators of increased glacial aridity in Amazonia. Climate models need to be modified to account for the uninterrupted input of moisture to the tropical Amazon region over the late Pleistocene Holocene period.

  16. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  17. Extratropical Respones to Amazon Deforestation

    NASA Astrophysics Data System (ADS)

    Badger, A.; Dirmeyer, P.

    2014-12-01

    Land-use change (LUC) is known to impact local climate conditions through modifications of land-atmosphere interactions. Large-scale LUC, such as Amazon deforestation, could have a significant effect on the local and regional climates. The question remains as to what the global impact of large-scale LUC could be, as previous modeling studies have shown non-local responses due to Amazon deforestation. A common shortcoming in many previous modeling studies is the use of prescribed ocean conditions, which can act as a boundary condition to dampen the global response with respect to changes in the mean and variability. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. Through the modifications of local land-atmosphere interactions, a significant change in the region, both at the surface and throughout the atmosphere, can be quantified. Accompanying these local changes are significant changes to the atmospheric circulation across all scales, thus modifying regional climates in other locales. Notable impacts include significant changes in precipitation, surface fluxes, basin-wide sea surface temperatures and ENSO behavior.

  18. The Amazon, measuring a mighty river

    USGS Publications Warehouse

    ,

    1967-01-01

    The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.

  19. Phenotypic characterization of Leishmania spp. causing cutaneous leishmaniasis in the lower Amazon region, western Pará state, Brazil, reveals a putative hybrid parasite, Leishmania (Viannia) guyanensis × Leishmania (Viannia) shawi shawi

    PubMed Central

    Jennings, Yara Lins; de Souza, Adelson Alcimar Almeida; Ishikawa, Edna Aoba; Shaw, Jeffrey; Lainson, Ralph; Silveira, Fernando

    2014-01-01

    We phenotypically characterized 43 leishmanial parasites from cutaneous leishmaniasis by isoenzyme electrophoresis and the indirect immunofluorescence antibody test (23 McAbs). Identifications revealed 11 (25.6%) strains of Leishmania (V.) braziliensis, 4 (9.3%) of L. (V.) shawi shawi, 7 (16.3%) of L. (V.) shawi santarensis, 6 (13.9%) of L. (V.) guyanensis and L. (V.) lainsoni, 2 (4.7%) of L. (L.) amazonensis, and 7 (16.3%) of a putative hybrid parasite, L. (V.) guyanensis/L. (V.) shawi shawi. McAbs detected three different serodemes of L. (V.) braziliensis: I-7, II-1, and III-3 strains. Among the strains of L. (V.) shawi we identified two populations: one (7 strains) expressing the B19 epitope that was previously considered to be species-specific for L. (V.) guyanensis. We have given this population sub-specific rank, naming it L. (V.) s. santarensis. The other one (4 strains) did not express the B19 epitope like the L. (V.) shawi reference strain, which we now designate as L. (V.) s. shawi. For the first time in the eastern Brazilian Amazon we register a putative hybrid parasite (7 strains), L. (V.) guyanensis/L. (V.) s. shawi, characterized by a new 6PGDH three-band profile at the level of L. (V.) guyanensis. Its PGM profile, however, was very similar to that of L. (V.) s. shawi. These results suggest that the lower Amazon region – western Pará state, Brazil, represents a biome where L. (V.) guyanensis and L. (V.) s. shawi exchange genetic information. PMID:25083790

  20. Future drying of the southern Amazon and central Brazil

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Zeng, N.; Cook, B.

    2008-12-01

    Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.

  1. Impacts of Land use and Cover Change on Soil Hydraulic Properties, Rondonia, Brazil

    NASA Astrophysics Data System (ADS)

    Schultz, K. J.; McGlynn, B. L.; Elsenbeer, H.

    2004-05-01

    There is a great deal of concern in the scientific community and the popular media about the global impacts of tropical rainforest deforestation. Soil quality does not receive that same media coverage but is greatly affected by deforestation and is a major concern in the tropics, especially in areas undergoing rapid land use and land cover change. Deforestation can lead to changes in the hydrologic regime, loss of topsoil, increased sediment and nutrient loads in waterways, and decreased soil fertility. These impacts are often related to a soil's infiltration capacity and hydraulic conductivity (Ksat). Our research site, Rancho Grande, Rondonia, Brazil, lies in the heart of the most rapid tropical rainforest deforestation in the world. Two watersheds of similar size, comparable topographic relief, and same soil type, were tested for differences in hydraulic conductivity. The two watersheds are differentiated by land use and land cover; one in a primary forest and the other in an actively grazed pasture. We measured infiltration capacity at 13 locations in the primary forest watershed and at 24 locations in the actively grazed pasture. Approximately 150 measurements of Ksat were made at regular depth intervals in both watersheds. Our research focuses on assessing the impact of land use and land cover change (primary rainforest to pasture/grazing) on soil infiltration capacity and subsurface saturated hydraulic conductivity. Statistically significant differences in infiltration capacity and hydraulic conductivity were detected between the pasture and forest sites at depths of 0, 12.5, and 20 cm. Differences between the two sites at depths of 50 and 90cm were not significant. These results demonstrate that the affect of land cover and land use change on soil hydraulic conductivity was confined to shallower depths in the soil profile. Coupled with ongoing watershed runoff studies at Rancho Grande, this research will help clarify how land cover change affects soil

  2. A forensic entomology case from the Amazon rain forest of Brazil.

    PubMed

    Pujol-Luz, José R; Marques, Helder; Ururahy-Rodrigues, Alexandre; Rafael, José Albertino; Santana, Fernando H A; Arantes, Luciano C; Constantino, Reginaldo

    2006-09-01

    The first case of application of forensic entomology in the Brazilian Amazonia is described. The corpses of 26 men were found in the rainforest in Rondonia State, Brazil. Fly larvae collected on the bodies during autopsy were identified as Paralucilia fulvinota (Diptera, Calliphoridae). No data or specimens were collected at the crime scene. At the laboratory, the larvae developed into pupae in 58 h and into adults in 110.5 h. The total development time for P. fulvinota was measured in field experiments inside the forest. The age of the larvae when collected from the bodies was estimated as the difference between the time required for them to become adults and the total development time for this species. The estimated age of the maggots and the minimum postmortem interval was 5.7 days.

  3. Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru).

    PubMed

    de Meyer, Caroline M C; Rodríguez, Juan M; Carpio, Edward A; García, Pilar A; Stengel, Caroline; Berg, Michael

    2017-12-31

    This paper presents a first integrated survey on the occurrence and distribution of geogenic contaminants in groundwater resources of Western Amazonia in Peru. An increasing number of groundwater wells have been constructed for drinking water purposes in the last decades; however, the chemical quality of the groundwater resources in the Amazon region is poorly studied. We collected groundwater from the regions of Iquitos and Pucallpa to analyze the hydrochemical characteristics, including trace elements. The source aquifer of each well was determined by interpretation of the available geological information, which identified four different aquifer types with distinct hydrochemical properties. The majority of the wells in two of the aquifer types tap groundwater enriched in aluminum, arsenic, or manganese at levels harmful to human health. Holocene alluvial aquifers along the main Amazon tributaries with anoxic, near pH-neutral groundwater contained high concentrations of arsenic (up to 700μg/L) and manganese (up to 4mg/L). Around Iquitos, the acidic groundwater (4.2≤pH≤5.5) from unconfined aquifers composed of pure sand had dissolved aluminum concentrations of up to 3.3mg/L. Groundwater from older or deeper aquifers generally was of good chemical quality. The high concentrations of toxic elements highlight the urgent need to assess the groundwater quality throughout Western Amazonia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mouth of the Amazon

    NASA Image and Video Library

    2001-02-07

    Flowing over 6450 kilometers eastward across Brazil, the Amazon River originates in the Peruvian Andes as tiny mountain streams that eventually combine to form one of the world mightiest rivers as shown in this image from NASA Terra satellite.

  5. Lipid Panel Reference Intervals for Amazon Parrots (Amazona species).

    PubMed

    Ravich, Michelle; Cray, Carolyn; Hess, Laurie; Arheart, Kristopher L

    2014-09-01

    The lipoprotein panel is a useful diagnostic tool that allows clinicians to evaluate blood lipoprotein fractions. It is a standard diagnostic test in human medicine but is poorly understood in avian medicine. Amazon parrots (Amazona species) are popular pets that frequently lead a sedentary lifestyle and are customarily fed high-fat diets. Similar to people with comparable diets and lifestyles, Amazon parrots are prone to obesity and atherosclerosis. In human medicine, these conditions are typically correlated with abnormalities in the lipoprotein panel. To establish reference intervals for the lipoprotein panel in Amazon parrots, plasma samples from 31 captive Amazon parrots were analyzed for concentrations of cholesterol, triglycerides, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). The data were also grouped according to sex, diet, body condition score, and age. Aside from HDL levels, which were significantly different between male and female parrots, no intergroup differences were found for any of the lipoprotein fractions.

  6. Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990

    USGS Publications Warehouse

    Rinella, F.A.

    1993-01-01

    Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.

  7. Spectrometry of Pasture Condition and Biogeochemistry in the Central Amazon

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Bustamante, Mercedes M. C.

    1999-01-01

    Regional analyses of Amazon cattle pasture biogeochemistry are difficult due to the complexity of human, edaphic, biotic and climatic factors and persistent cloud cover in satellite observations. We developed a method to estimate key biophysical properties of Amazon pastures using hyperspectral reflectance data and photon transport inverse modeling. Remote estimates of live and senescent biomass were strongly correlated with plant-available forms of soil phosphorus and calcium. These results provide a basis for monitoring pasture condition and biogeochemistry in the Amazon Basin using spaceborne hyperspectral sensors.

  8. Mouths of the Amazon River, Brazil, South America

    NASA Image and Video Library

    1992-08-08

    STS046-80-009 (31 July-8 Aug. 1992) --- A view of the mouth of the Amazon River and the Amazon Delta shows a large sediment plume expanding outward into the Atlantic Ocean. The sediment plume can be seen hugging the coast north of the Delta. This is caused by the west-northwest flowing Guyana Current. The large island of Marajo is partially visible through the clouds.

  9. Black carbon over the Amazon during SAMBBA: it gets everywhere

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Liu, D.; Szpek, K.; Langridge, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass burning represents a major source of Black Carbon (BC) aerosol to the atmosphere, which can result in major perturbations to weather, climate and ecosystem development. Large uncertainties in these impacts prevail, particularly on regional scales. One such region is the Amazon Basin, where large, intense and frequent burning occurs on an annual basis during the dry season. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to BC aerosol properties. Results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by a DMT Single Particle Soot Photometer (SP2) and an Aerodyne Aerosol Mass Spectrometer (AMS). The physical, chemical and optical properties of BC-containing particles across the region will be characterised, with particular emphasis on the vertical distribution. BC was ubiquitous across the region, with measurements extending from heavily deforested regions in the Western Amazon Basin, through to agricultural fires in the Cerrado (Savannah-like) region and more pristine areas over the Amazon Rainforest. Measurements in the vicinity of Manaus (a city located deep into the jungle) were also conducted. BC concentrations peaked within the boundary layer at a height of around 1.5km. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. Biomass burning layers within the free troposphere were routinely observed. BC-containing particles within such layers were typically associated with less coating than those within the boundary layer, suggestive of wet removal of more coated BC particles. The importance of such properties in relation to the

  10. East of the Andes: The genetic profile of the Peruvian Amazon populations.

    PubMed

    Di Corcia, T; Sanchez Mellado, C; Davila Francia, T J; Ferri, G; Sarno, S; Luiselli, D; Rickards, O

    2017-06-01

    Assuming that the differences between the Andes and the Amazon rainforest at environmental and historical levels have influenced the distribution patterns of genes, languages, and cultures, the maternal and paternal genetic reconstruction of the Peruvian Amazon populations was used to test the relationships within and between these two extreme environments. We analyzed four Peruvian Amazon communities (Ashaninka, Huambisa, Cashibo, and Shipibo) for both Y chromosome (17 STRs and 8 SNPs) and mtDNA data (control region sequences, two diagnostic sites of the coding region, and one INDEL), and we studied their variability against the rest of South America. We detected a high degree of genetic diversity in the Peruvian Amazon people, both for mtDNA than for Y chromosome, excepting for Cashibo people, who seem to have had no exchanges with their neighbors, in contrast with the others communities. The genetic structure follows the divide between the Andes and the Amazon, but we found a certain degree of gene flow between these two environments, as particularly emerged with the Y chromosome descent cluster's (DCs) analysis. The Peruvian Amazon is home to an array of populations with differential rates of genetic exchanges with their neighbors and with the Andean people, depending on their peculiar demographic histories. We highlighted some successful Y chromosome lineages expansions originated in Peru during the pre-Columbian history which involved both Andeans and Amazon Arawak people, showing that at least a part of the Amazon rainforest did not remain isolated from those exchanges. © 2017 Wiley Periodicals, Inc.

  11. The changing hydrology of a dammed Amazon

    PubMed Central

    Timpe, Kelsie; Kaplan, David

    2017-01-01

    Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972

  12. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  13. Following Saharan Dust Outbreak Toward The Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Koren, I.; Rudich, Y.; Flores, M.

    2008-12-01

    The role of the Amazon rainforest on earth climatic system is well recognized. To keep forest wellbeing and the fragile balance between the rainforest and the atmosphere, the Amazon must contain a satisfactory amount of nutrients to support the plants. The extensive rain and floods wash most of the soluble nutrients from the rainforest soil, leaving behind acidic kaolinite clay or sandy soil, with limited minerals for plant growth. It was suggested that lack of mineral in the soil may be replenished by deposition of Saharan mineral dust. Using remote sensing data (from the A-train satellites constellation) following with in-situ measurements (as part of the AMazonian Aerosol CharacteriZation Experiment (AMZE) campaign), ground-based data (from AErosol RObotic NETwork (AERONET)) and back trajectory calculations, we analyzed Saharan dust transport toward the Amazon basin during the AMZE period (Feb 7 to Mar 14, 2008). Dust mass, sink, vertical distribution and surface wind speeds were analyzed over the Bodele depression (located in Chad), where most of the dust is emitted, along the Atlantic Ocean and near the Brazilian coastline. Using an integrated data analysis approach we followed dust packages from their emission in the Sahara to their sink in the Amazon forest.

  14. Tree rings and rainfall in the equatorial Amazon

    NASA Astrophysics Data System (ADS)

    Granato-Souza, Daniela; Stahle, David W.; Barbosa, Ana Carolina; Feng, Song; Torbenson, Max C. A.; de Assis Pereira, Gabriel; Schöngart, Jochen; Barbosa, Joao Paulo; Griffin, Daniel

    2018-05-01

    The Amazon basin is a global center of hydroclimatic variability and biodiversity, but there are only eight instrumental rainfall stations with continuous records longer than 80 years in the entire basin, an area nearly the size of the coterminous US. The first long moisture-sensitive tree-ring chronology has been developed in the eastern equatorial Amazon of Brazil based on dendrochronological analysis of Cedrela cross sections cut during sustainable logging operations near the Rio Paru. The Rio Paru chronology dates from 1786 to 2016 and is significantly correlated with instrumental precipitation observations from 1939 to 2016. The strength and spatial scale of the precipitation signal vary during the instrumental period, but the Rio Paru chronology has been used to develop a preliminary reconstruction of February to November rainfall totals from 1786 to 2016. The reconstruction is related to SSTs in the Atlantic and especially the tropical Pacific, similar to the stronger pattern of association computed for the instrumental rainfall data from the eastern Amazon. The tree-ring data estimate extended drought and wet episodes in the mid- to late-nineteenth century, providing a valuable, long-term perspective on the moisture changes expected to emerge over the Amazon in the coming century due to deforestation and anthropogenic climate change.

  15. Long-term decline of the Amazon carbon sink.

    PubMed

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  16. Living Rivers: Importance of Andes-Amazon Connectivity and Consequences of Hydropower Development

    NASA Astrophysics Data System (ADS)

    Anderson, E.

    2016-12-01

    The inherent dynamism of rivers along elevational and longitudinal gradients underpins freshwater biodiversity, ecosystem function, and ecosystem services in the Andean-Amazon. While this region covers only a small part of the entire Amazon Basin, its influences on downstream ecology, biogeochemistry, and human wellbeing are disproportionate with its relative small size. Seasonal flow pulses from Andean rivers maintain habitat, signal migratory fishes, and export sediment, nutrients, and organic matter to distant ecosystems—like lowland Amazonia and the Atlantic coast of Brazil. Rivers are key transportation routes, and freshwater fisheries are a primary protein source for the >30 million people that inhabit the Amazon Basin. Numerous cultural traditions depend on free-flowing Andean rivers; examples include Kukama beliefs in the underwater cities of the Marañon River, where people who have drowned in rivers whose bodies are not recovered go to live, or the pre-dawn bathing rituals of the Peruvian Shawi, who gain energy and connect with ancestors in cold, fast-flowing Andean waters. Transformations in the Andean-Amazon landscape—in particular from dams—threaten to compromise flows critical for human and ecosystem wellbeing. Presently, at least 250 hydropower dams are in operation, under construction, or proposed for Andean-Amazon rivers. This presentation will discuss regional trends in hydropower development, quantify effects of existing and proposed dams on Andean-Amazon connectivity, and examine the social and cultural importance of free-flowing Andean-Amazon rivers.

  17. The Impacts of Amazon Deforestation on Pacific Climate

    NASA Astrophysics Data System (ADS)

    Lindsey, Leah

    Variability in eastern Pacific sea surface temperatures (SSTs) associated with the El Nino Southern Oscillation are known to affect Amazonian precipitation, but to what extent do changing Amazonian vegetation and rainfall impact eastern Pacific SST? The Amazon rainforest is threatened by many factors including climate change and clearing for agricultural reasons. Forest fires and dieback are more likely due to increased frequency and intensity of droughts in the region. It is possible that extensive Amazon deforestation can enhance El Nino conditions by weakening the Walker circulation. Correlations between annual rainfall rates over the Amazon and other atmospheric parameters (global precipitation, surface air temperature, low cloud amount, 500 hPa vertical velocity, surface winds, and 200 hPa winds) over the eastern Pacific indicate strong relationships among these fields. Maps of these correlations (teleconnection maps) reveal that when the Amazon is rainy SSTs in the central and eastern Pacific are cold, rainfall is suppressed over the central and eastern Pacific, low clouds are prominent over the eastern and southeastern Pacific, and subsidence over the central and eastern Pacific is enhanced. Precipitation in the Amazon is also consistent with a strong Walker circulation (La Nina conditions), manifest as strong correlations with the easterly surface and westerly 200 hPa zonal winds. Coupling between Amazon rainfall and these fields are seen in observations and model data. Correlations were calculated using data from observations, reanalysis data, two models under the Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP), and an AMIP run with the model used in this study, the Community Earth System Model (CESM1.1.1). Although the correlations between Amazon precipitation and the aforementioned fields are strong, they do not show causality. In order to investigate the impact of tropical South American deforestation on the

  18. Amazon Surveillance System (SIVAM): U.S. and Brazilian Cooperation

    DTIC Science & Technology

    1999-12-01

    Controle de Träfe go Aereo) Clutter Effects Model Parliamentary Investigation Commission (Comissäo Parlamentär de Inqutrito) Weather Forecasting...de Pesquisas Espaciais) INPA National Institute of Amazon Research (Instituto Nacional de Pesquisas da Amazonia ) IR Infrared KW Kilowatt (a...VSAT System for Surveillance of the Amazon (Sistema de Vigiläncia da Amazonia ) Brazilian Intelligence Agency (Subsecretaria de Inteligencia

  19. Metagenome sequencing of the microbial community of two Brazilian anthropogenic Amazon dark earth sites, Brazil.

    PubMed

    Lemos, Leandro Nascimento; de Souza, Rosineide Cardoso; de Souza Cannavan, Fabiana; Patricio, André; Pylro, Victor Satler; Hanada, Rogério Eiji; Mui, Tsai Siu

    2016-12-01

    The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.

  20. Petrobras eyes LNG project in Amazon region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-07

    The Brazilian state oil company has proved gas reserves in the Rio Urucu area of the Amazon jungle totaling 1.84 tcf. That compares with 3.08 tcf contained in the offshore Campos basin, source of most of Brazil`s oil and gas production. The environmentally sensitive Urucu region is one of the most dense, remote jungles in the world. Because of environmental concerns about pipelines in the rain forest and a government emphasis on boosting the natural gas share of Brazil`s energy mix, a small liquefied natural gas project is shaping up as the best option for developing and marketing Urucu gas.more » The amazon campaign underscores a government initiative to boost Brazilian consumption of natural gas. In Brazil natural gas accounts for only 4% of primary energy consumption. Some years ago, the government set an official goal of boosting the gas share of the primary energy mix to 10% by 2000. The paper discusses current drilling activities, gas production and processing, the logistics of the upper Amazon, and gas markets.« less

  1. High risk of respiratory diseases in children in the fire period in Western Amazon.

    PubMed

    Silva, Pãmela Rodrigues de Souza; Ignotti, Eliane; Oliveira, Beatriz Fátima Alves de; Junger, Washington Leite; Morais, Fernando; Artaxo, Paulo; Hacon, Sandra

    2016-06-10

    To analyze the toxicological risk of exposure to ozone (O3) and fine particulate matter (PM2.5) among schoolchildren.. Toxicological risk assessment was used to evaluate the risk of exposure to O3 and PM2.5 from biomass burning among schoolchildren aged six to 14 years, residents of Rio Branco, Acre, Southern Amazon, Brazil. We used Monte Carlo simulation to estimate the potential intake dose of both pollutants. During the slash-and-burn periods, O3 and PM2.5 concentrations reached 119.4 µg/m3 and 51.1 µg/m3, respectively. The schoolchildren incorporated medium potential doses regarding exposure to O3 (2.83 μg/kg.day, 95%CI 2.72-2.94). For exposure to PM2.5, we did not find toxicological risk (0.93 μg/kg.day, 95%CI 0.86-0.99). The toxicological risk for exposure to O3 was greater than 1 for all children (QR = 2.75; 95%CI 2.64-2.86). Schoolchildren were exposed to high doses of O3 during the dry season of the region. This posed a toxicological risk, especially to those who had previous diseases.

  2. Potential of Best Practice to Reduce Impacts from Oil and Gas Projects in the Amazon

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.; Powers, Bill

    2013-01-01

    The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation. PMID:23650541

  3. Potential of best practice to reduce impacts from oil and gas projects in the Amazon.

    PubMed

    Finer, Matt; Jenkins, Clinton N; Powers, Bill

    2013-01-01

    The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation.

  4. Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years.

    PubMed

    Maslin, M A; Burns, S J

    2000-12-22

    Quantifying the moisture history of the Amazon Basin is essential for understanding the cause of rain forest diversity and its potential as a methane source. We reconstructed the Amazon River outflow history for the past 14,000 years to provide a moisture budget for the river drainage basin. The oxygen isotopic composition of planktonic foraminifera recovered from a marine sediment core in a region of Amazon River discharge shows that the Amazon Basin was extremely dry during the Younger Dryas, with the discharge reduced by at least 40% as compared with that of today. After the Younger Dryas, a meltwater-driven discharge event was followed by a steady increase in the Amazon Basin effective moisture throughout the Holocene.

  5. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  6. Influence of the Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic

    NASA Astrophysics Data System (ADS)

    Goes, Joaquim I.; Gomes, Helga do Rosario; Chekalyuk, Alexander M.; Carpenter, Edward J.; Montoya, Joseph P.; Coles, Victoria J.; Yager, Patricia L.; Berelson, William M.; Capone, Douglas G.; Foster, Rachel A.; Steinberg, Deborah K.; Subramaniam, Ajit; Hafez, Mark A.

    2014-01-01

    An Advanced Laser Fluorometer (ALF) capable of discriminating several phytoplankton pigment types was utilized in conjunction with microscopic data to map the distribution of phytoplankton communities in the Amazon River plume in May-June-2010, when discharge from the river was at its peak. Cluster analysis and Non-metric Multi-Dimensional Scaling (NMDS) helped distinguish three distinct biological communities that separated largely on the basis of salinity gradients across the plume. These three communities included an "estuarine type" comprised of a high biomass mixed population of diatoms, cryptophytes and green-water Synechococcus spp. located upstream of the plume, a "mesohaline type" made up largely of communities of Diatom-Diazotroph Associations (DDAs) and located in the northwestern region of the plume and an "oceanic type" in the oligotrophic waters outside of the plume made up of Trichodesmium and Synechococcus spp. Although salinity appeared to have a substantial influence on the distribution of different phytoplankton groups, ALF and microscopic measurements examined in the context of the hydro-chemical environment of the river plume, helped establish that the phytoplankton community structure and distribution were strongly controlled by inorganic nitrate plus nitrite (NO3 + NO2) availability whose concentrations were low throughout the plume. Towards the southern, low-salinity region of the plume, NO3 + NO2 supplied by the onshore flow of subsurface (∼80 m depth) water, ensured the continuous sustenance of the mixed phytoplankton bloom. The large drawdown of SiO3 and PO4 associated with this "estuarine type" mixed bloom at a magnitude comparable to that observed for DDAs in the mesohaline waters, leads us to contend that, diatoms, cryptophytes and Synechococcus spp., fueled by the offshore influx of nutrients also play an important role in the cycling of nutrients in the Amazon River plume.

  7. From where does the Amazon forest gets its water?

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, G.; Fan, Y.

    2016-12-01

    The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we ask: what is the water source that sustains the dry-season ET? Where over the Amazon it is largely local and recent rain (hence ET shutting down in dry season), or past rain that is stored in the deep soils and the groundwater (deep roots tapping deep reservoirs sustaining ET), or is it rain that fell on higher grounds (through topography-driven lateral convergence)? Using synthesis of isotope and other tracer observations and basin-wide inverse modeling (shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth), we attempt to tease out these components. The results shed light on likely ET sources and how future global change may preferentially impact Amazon ecosystem functioning.

  8. Mining drives extensive deforestation in the Brazilian Amazon.

    PubMed

    Sonter, Laura J; Herrera, Diego; Barrett, Damian J; Galford, Gillian L; Moran, Chris J; Soares-Filho, Britaldo S

    2017-10-18

    Mining poses significant and potentially underestimated risks to tropical forests worldwide. In Brazil's Amazon, mining drives deforestation far beyond operational lease boundaries, yet the full extent of these impacts is unknown and thus neglected in environmental licensing. Here we quantify mining-induced deforestation and investigate the aspects of mining operations, which most likely contribute. We find mining significantly increased Amazon forest loss up to 70 km beyond mining lease boundaries, causing 11,670 km 2 of deforestation between 2005 and 2015. This extent represents 9% of all Amazon forest loss during this time and 12 times more deforestation than occurred within mining leases alone. Pathways leading to such impacts include mining infrastructure establishment, urban expansion to support a growing workforce, and development of mineral commodity supply chains. Mining-induced deforestation is not unique to Brazil; to mitigate adverse impacts of mining and conserve tropical forests globally, environmental assessments and licensing must considered both on- and off-lease sources of deforestation.

  9. Boundary layer ozone - An airborne survey above the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  10. Projections of future meteorological drought and wet periods in the Amazon

    PubMed Central

    Duffy, Philip B.; Brando, Paulo; Asner, Gregory P.; Field, Christopher B.

    2015-01-01

    Future intensification of Amazon drought resulting from climate change may cause increased fire activity, tree mortality, and emissions of carbon to the atmosphere across large areas of Amazonia. To provide a basis for addressing these issues, we examine properties of recent and future meteorological droughts in the Amazon in 35 climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that the CMIP5 climate models, as a group, simulate important properties of historical meteorological droughts in the Amazon. In addition, this group of models reproduces observed relationships between Amazon precipitation and regional sea surface temperature anomalies in the tropical Pacific and the North Atlantic oceans. Assuming the Representative Concentration Pathway 8.5 scenario for future drivers of climate change, the models project increases in the frequency and geographic extent of meteorological drought in the eastern Amazon, and the opposite in the West. For the region as a whole, the CMIP5 models suggest that the area affected by mild and severe meteorological drought will nearly double and triple, respectively, by 2100. Extremes of wetness are also projected to increase after 2040. Specifically, the frequency of periods of unusual wetness and the area affected by unusual wetness are projected to increase after 2040 in the Amazon as a whole, including in locations where annual mean precipitation is projected to decrease. Our analyses suggest that continued emissions of greenhouse gases will increase the likelihood of extreme events that have been shown to alter and degrade Amazonian forests. PMID:26460046

  11. Selective logging in the Brazilian Amazon.

    PubMed

    Asner, Gregory P; Knapp, David E; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Silva, Jose N

    2005-10-21

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square kilometers per year (+/-14%) between 1999 and 2002, equivalent to 60 to 123% of previously reported deforestation area. Up to 1200 square kilometers per year of logging were observed on conservation lands. Each year, 27 million to 50 million cubic meters of wood were extracted, and a gross flux of approximately 0.1 billion metric tons of carbon was destined for release to the atmosphere by logging.

  12. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    The vulnerability of the Amazon region to climate and anthropogenic driven disturbances has been the subject of extensive research efforts, given its importance in the global and regional climate and ecologic systems. The evaluation of such vulnerabilities requires the proper understanding of physical mechanisms controlling water and energy balances and how the disturbances change them. Among those mechanisms, the effects of atmospheric albedo on evapotranspiration have not been fully explored yet and are explored in this study. Evapotranspiration in the Amazon is sustained at high levels across all seasons and represents a large fraction of water and energy surface budgets. In this study, statistical analysis of data from four flux towers installed at Amazon primary forest sites was employed to quantify the impact of atmospheric albedo, mostly resulted from cloudiness, on evapotranspiration and to compare it to the effect of water limitation. Firstly, the difference in eddy-flux derived evapotranspiration at the flux towers under rainy and non-rainy antecedent conditions was tested for significance. Secondly, the same statistical comparison was performed under cloudy and clear sky conditions at hourly and daily time scales, using the reduction in incoming solar radiation as an indicator of cloudiness. Finally, the sensitivity of seasonal evapotranspiration totals to atmospheric albedo resulted from rainfall patterns is evaluated. That was done by sampling daily evapotranspiration estimates from empirical probability distribution functions conditioned to rainfall occurrence and then varying the number of dry days in each season. It was found that light limitation is much more important than water limitation in the Amazon, resulting in up to 43% reduction in daily evapotranspiration. Also, this effect varies by location and by season, the largest impact being in wet season, from December do January. Moreover, seasonal evapotranspiration totals were found to be

  13. Comparative cytogenetics of some marsupial species (Didelphimorphia, Didelphidae) from the Amazon basin

    PubMed Central

    Silva, Carlos Eduardo Faresin e; de Andrade, Rodrigo Amaral; de Souza, Érica Martinha Silva; Eler, Eduardo Schmidt; da Silva, Maria Nazareth Ferreira; Feldberg, Eliana

    2017-01-01

    Abstract We investigated the karyotype of 18 didelphid species captured at 13 localities in the Brazilian Amazon, after conventional staining, C-banding, Ag-NOR and fluorescent in situ hybridization (FISH) using the 18S rDNA probe. Variations were found in the X chromosome, heterochromatin distribution and the 18S rDNA sequence. The main variation observed was in the position of the centromere in the X chromosome of Caluromys philander Linnaeus, 1758 and Marmosa murina Linnaeus, 1758. For both species, the X chromosome showed a geographical segregation in the pattern of variation between eastern and western Brazil, with a possible contact area in the central Amazon. C-banding on the X chromosome revealed two patterns for the species of Marmosops Matschie, 1916, apparently without geographic or specific relationships. The nucleolus organizer region (NOR) of all species was confirmed with the 18S rDNA probe, except on the Y chromosome of Monodelphis touan Shaw, 1800. The distribution of this marker varied only in the genus Marmosa Gray, 1821 [M. murina Thomas, 1905 and M. demerarae Thomas, 1905]. Considering that simple NORs are seen as a plesiomorphic character, we conclude that the species Marmosa spp. and Didelphis marsupialis Linnaeus, 1758 evolved independently to the multiple condition. By increasing the sample, using chromosomal banding, and FISH, we verified that marsupials present intra- and interspecific chromosomal variations, which suggests the occurrence of frequent chromosomal rearrangements in the evolution of this group. This observation contrasts with the chromosomal conservatism expected for didelphids. PMID:29114362

  14. Chagas disease and globalization of the Amazon.

    PubMed

    Briceño-León, Roberto

    2007-01-01

    The increasing number of autochthonous cases of Chagas disease in the Amazon since the 1970s has led to fear that the disease may become a new public health problem in the region. This transformation in the disease's epidemiological pattern in the Amazon can be explained by environmental and social changes in the last 30 years. The current article draws on the sociological theory of perverse effects to explain these changes as the unwanted result of the shift from the "inward" development model prevailing until the 1970s to the "outward" model that we know as globalization, oriented by industrial forces and international trade. The current article highlights the implementation of five new patterns in agriculture, cattle-raising, mining, lumbering, and urban occupation that have generated changes in the environment and the traditional indigenous habitat and have led to migratory flows, deforestation, sedentary living, the presence of domestic animals, and changes in the habitat that facilitate colonization of human dwellings by vectors and the domestic and work-related transmission of the disease. The expansion of Chagas disease is thus a perverse effect of the globalization process in the Amazon.

  15. Potential groundwater contribution to Amazon evapotranspiration

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Miguez-Macho, G.

    2010-07-01

    Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations show enhanced growth in response to higher radiation under less cloudy skies, indicating an adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution). Here we assess the importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of water table depth from observations and groundwater modeling, and a map of potential capillary flux these water table depths can sustain. The maps show that the water table beneath the Amazon can be quite shallow in lowlands and river valleys (<5 m in 36% and <10 m in 60% of Amazonia). The water table can potentially sustain a capillary flux of >2.1 mm day-1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day-1 across nine study sites. Current models simulate a large-scale reduction in dry-season photosynthesis under today's climate and a possible dieback under projected future climate with a longer dry season, converting the Amazon from a net carbon sink to a source and accelerating warming. The inclusion of groundwater and capillary flux may modify the model results.

  16. Sustainable settlement in the Brazilian Amazon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, A.L.O.; Campari, J.S.

    1996-02-01

    Presents and analyzes the largest and most complete data set ever produced on the economic variables that influence deforestation by small farmers in the Amazon. This landmark study presents the largest and most analytically complete data set ever produced on the economic variables that influence deforestation by small farmers in the Amazon. The authors examine the changing character of the Amazon frontier based on field surveys conducted during twenty years of settlement experience. By observing the economic behavior of small farmers from colonization during the 1970s until the chaotic aftermath of the early 1990s, the authors are able to pinpointmore » a central paradox: unsuccessful farmers tend to be unstable, moving on to new frontiers where they will again destroy forests. Successful farmers tend to increase deforestation in the places where they remain. The findings reveal that much of the Amazonian frontier land cleared by pioneers in the 1970s is becoming agriculturally unproductive. Small farmers should be rewarded for staying where they are and for pursuing sustainable farming. Good farming methods must be promoted, and deforestation must be penalized. The authors recommend the implementation of innovative economic policies and new forms of cooperation between environmental and economic agencies, including the World Bank, at both local and international levels. The aim of these policies should be to raise agricultural incomes and reduce environmental aggression.« less

  17. High risk of respiratory diseases in children in the fire period in Western Amazon

    PubMed Central

    Silva, Pãmela Rodrigues de Souza; Ignotti, Eliane; de Oliveira, Beatriz Fátima Alves; Junger, Washington Leite; Morais, Fernando; Artaxo, Paulo; Hacon, Sandra

    2016-01-01

    ABSTRACT OBJECTIVE To analyze the toxicological risk of exposure to ozone (O3) and fine particulate matter (PM2.5) among schoolchildren.. METHODS Toxicological risk assessment was used to evaluate the risk of exposure to O3 and PM2.5 from biomass burning among schoolchildren aged six to 14 years, residents of Rio Branco, Acre, Southern Amazon, Brazil. We used Monte Carlo simulation to estimate the potential intake dose of both pollutants. RESULTS During the slash-and-burn periods, O3 and PM2.5 concentrations reached 119.4 µg/m3 and 51.1 µg/m3, respectively. The schoolchildren incorporated medium potential doses regarding exposure to O3 (2.83 μg/kg.day, 95%CI 2.72–2.94). For exposure to PM2.5, we did not find toxicological risk (0.93 μg/kg.day, 95%CI 0.86–0.99). The toxicological risk for exposure to O3 was greater than 1 for all children (QR = 2.75; 95%CI 2.64–2.86). CONCLUSIONS Schoolchildren were exposed to high doses of O3 during the dry season of the region. This posed a toxicological risk, especially to those who had previous diseases. PMID:27305405

  18. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  19. The potential impact of new Andean dams on Amazon fluvial ecosystems

    PubMed Central

    Melack, John M.; Dunne, Thomas; Barthem, Ronaldo B.; Goulding, Michael; Paiva, Rodrigo C. D.; Sorribas, Mino V.; Silva, Urbano L.; Weisser, Sabine

    2017-01-01

    Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106–6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits. PMID:28832638

  20. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos

    2010-05-01

    On the basis of paleontological content (vertebrates and palynology) and facies analysis from river banks, road cuts, and three wells, we have assigned the uppermost levels of the Solimões Formation in western Amazonia, Brazil, to the Late Miocene. The vertebrate fossil record from outcropping sediments is assigned to the Huayquerian-Mesopotamian mammalian biozones, spanning 9-6.5 Ma. Additionally, we present results that demonstrate that deposits in Peruvian Amazonia attributed to Miocene tidal environments are actually fluvial sediments that have been misinterpreted (both environmentally and chronologically) by several authors. The entire Late Miocene sequence was deposited in a continental environment within a subsiding basin. The facies analysis, fossil fauna content, and palynological record indicate that the environment of deposition was dominated by avulsive rivers associated with megafan systems, and avulsive rivers in flood basins (swamps, lakes, internal deltas, and splays). Soils developed on the flatter, drier areas, which were dominated by grasslands and gallery forest in a tropical to subtropical climate. These Late Miocene sediments were deposited from westward of the Purus arch up to the border of Brazil with Peru (Divisor Ranges) and Bolivia (Pando block). Eastward of the Iquitos structural high, however, more detailed studies, including vertebrate paleontology, need to be performed to calibrate with more precision the ages of the uppermost levels of the Solimões Formation. The evolution of the basin during the late Miocene is mainly related to the tectonic behavior of the Central Andes (˜ 3°-15°S). At approximately 5 Ma, a segment of low angle of subduction was well developed in the Nazca Plate, and the deformation in the Subandean foreland produced the inland reactivation of the Divisor/Contamana Ranges and tectonic arrangements in the Eastern Andes. During the Pliocene southwestern Brazilian Amazonia ceased to be an effective sedimentary

  1. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE PAGES

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane; ...

    2018-02-07

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  2. The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane

    This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less

  3. Highways and outposts: economic development and health threats in the central Brazilian Amazon region

    PubMed Central

    2010-01-01

    Background Economic development is often evoked as a driving force that has the capacity to improve the social and health conditions of remote areas. However, development projects produce uneven impacts on local communities, according to their different positions within society. This study examines the spatial distribution of three major health threats in the Brazilian Amazon region that may undergo changes through highway construction. Homicide mortality, AIDS incidence and malaria prevalence rates were calculated for 70 municipalities located within the areas of influence of the Cuiabá-Santarém highway (BR-163), i.e. in the western part of the state of Pará state and the northern part of Mato Grosso. Results The municipalities were characterized using social and economic indicators such as gross domestic product (GDP), urban and indigenous populations, and recent migration. The municipalities' connections to the region's main transportation routes (BR-163 and Trans-Amazonian highways, along with the Amazon and Tapajós rivers) were identified by tagging the municipalities that have boundaries crossing these routes, using GIS overlay operations. Multiple regression was used to identify the major driving forces and constraints relating to the distribution of health threats. The main explanatory variables for higher malaria prevalence were: proximity to the Trans-Amazonian highway, high proportion of indigenous population and low proportion of migrants. High homicide rates were associated with high proportions of migrants, while connection to the Amazon River played a protective role. AIDS incidence was higher in municipalities with recent increases in GDP and high proportions of urban population. Conclusions Highways induce social and environmental changes and play different roles in spreading and maintaining diseases and health threats. The most remote areas are still protected against violence but are vulnerable to malaria. Rapid economic and demographic

  4. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    NASA Astrophysics Data System (ADS)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  5. Spatial Pattern of Standing Timber Value across the Brazilian Amazon

    PubMed Central

    Ahmed, Sadia E.; Ewers, Robert M.

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520

  6. An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon

    NASA Astrophysics Data System (ADS)

    Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael

    2016-11-01

    Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.

  7. Vaccine Adverse Events Reported during the First Ten Years (1998–2008) after Introduction in the State of Rondonia, Brazil

    PubMed Central

    Cunha, Mônica P. L.; Dórea, José G.; Marques, Rejane C.; Leão, Renata S.

    2013-01-01

    Despite good safety records, vaccines given to young children can cause adverse events. We investigated the reported adverse events following immunization (AEFI) of vaccines given to children of less than seven years of age during the first ten years (1998 to 2008) in the state of Rondonia, Brazil. We worked with the events related to BCG (Bacillus Calmett-Guérin), HB (hepatitis B), DTwP/Hib (diphtheria-tetanus-pertussis+Hemophillus influenza b), DTP (diphtheria-tetanus-pertussis), MMR (mumps, measles, rubella), and YF (yellow fever) vaccines because they were part of the recommended scheme. The number of doses of vaccines given was 3,231,567 with an average of AEFI of 57.2/year during the studied period. DTwP/Hib was responsible for 298 (57.8%), DTP 114 (22.9%), HB 31 (6%), MMR 28 (5.4%), BCG 24 (4.7%), and YF 20 (3.9%) of the reported AEFI. The combination of the AEFI for DTwP/Hib vaccines showed the highest number of systemic (61.4%) and local events (33.8%). Young children (≤1-year old) were more susceptible to AEFI occurring in the 6 hours (54.2%) following vaccine uptake. This study suggests significant differences in reactogenicity of vaccines and that despite limitations of the AEFI Brazilian registry system we cannot ignore underreporting and should use the system to expand our understanding of adverse events and effects. PMID:23509790

  8. The Climate Effects of Deforestation the Amazon Rainforest under Global Warming Conditions

    NASA Astrophysics Data System (ADS)

    Werth, D.; Avissar, R.

    2006-12-01

    Replacement of tropical rainforests has been observed to have a strong drying effect in Amazon simulations, with effects reaching high into the atmospheric column and into the midlatitudes. The drying effects of deforestation, however, can be moderated by the effects of global warming, which should accelerate the hydrologic cycle of the Amazon. The effects of a prescribed, time-varying Amazon deforestation done in conjunction with a steady, moderate increase in CO2 concentrations are determined using a climate model. The model agrees with previous studies when each forcing is applied individually - compared to a control run, Amazon deforestation decreases the local precipitation and global warming increases it. When both are applied, however, the precipitation and other hydrologic variables decrease, but to a lesser extent than when deforestation alone was applied. In effect, the two effects act opposite to one another and bring the simulated climate closer to that of the control.

  9. Metagenomics Analysis of Microorganisms in Freshwater Lakes of the Amazon Basin.

    PubMed

    Toyama, Danyelle; Kishi, Luciano Takeshi; Santos-Júnior, Célio Dias; Soares-Costa, Andrea; de Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon; Henrique-Silva, Flávio

    2016-12-22

    The Amazon Basin is the largest hydrographic basin on the planet, and the dynamics of its aquatic microorganisms strongly impact global biogeochemical cycles. However, it remains poorly studied. This metagenome project was performed to obtain a snapshot of prokaryotic microbiota from four important lakes in the Amazon Basin. Copyright © 2016 Toyama et al.

  10. Seroprevalence of Toxoplasma gondii in free-living Amazon river dolphins (Inia geoffrensis) from central Amazon, Brazil

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...

  11. Seroprevalence of Toxoplasma gondii in free-living amazon river dolphins (Inia geoffrensis) from central Amazon, Brazil

    USDA-ARS?s Scientific Manuscript database

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...

  12. Sedative Effects of Intranasal Midazolam Administration in Wild Caught Blue-fronted Amazon (Amazona aestiva) and Orange-winged Amazon (Amazona amazonica) Parrots.

    PubMed

    Schaffer, Débora P H; de Araújo, Nayone L L C; Raposo, Ana Cláudia S; Filho, Emanoel F Martins; Vieira, João Victor R; Oriá, Arianne P

    2017-09-01

    Safe and effective sedation protocols are important for chemical restraint of birds in clinical and diagnostic procedures, such as clinical evaluations, radiographic positioning, and blood collection. These protocols may reduce stress and ease the management of wild-caught birds, which are susceptible to injury or death when exposed to stressful situations. We compare the sedative effect of intranasal midazolam in wild-caught blue-fronted (Amazona aestiva) and orange-winged (Amazona amazonica) Amazon parrots. Ten adult parrots of each species (n = 20), of unknown sex, weighing 0.337 ± 0.04 (blue-fronted) and 0.390 ± 0.03 kg (orange-winged), kg were used. Midazolam (2 mg/kg) was administered intranasally and the total volume of the drug was divided equally between the 2 nostrils. Onset time and total sedation time were assessed. Satisfactory sedation for clinical evaluation was induced in all birds. Onset time and total sedation times were similar in both species: 5.36 ± 1.16 and 25.40 ± 5.72 minutes, respectively, for blue-fronted Amazons and 5.09 ± 0.89 and 27.10 ± 3.73 minutes, respectively, for orange-winged Amazons. A total of 15 animals showed absence of vocalization, with moderate muscle relaxation and wing movement upon handling, and 2 animals presented with lateral recumbence, with intense muscle relaxation and no wing movement, requiring no restraint. Three blue-fronted Amazons had no effective sedation. Intranasally administered midazolam at a dose of 2 mg/kg effectively promoted sedative effects with a short latency time and fast recovery in wild-caught parrots.

  13. The Amazon Basin in transition

    Treesearch

    Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy

    2012-01-01

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...

  14. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness.

    PubMed

    Albert, James S; Carvalho, Tiago P; Petry, Paulo; Holder, Meghan A; Maxime, Emmanuel L; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E

    2011-04-29

    The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200-500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin.

  15. AmazonFACE: Assessing the Effects of Increasing Atmospheric CO2 on the Resilience of the Amazon Forest through Integrative Model-Experiment Research

    NASA Astrophysics Data System (ADS)

    Lapola, D. M.

    2015-12-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community

  16. The AmazonFACE research program: assessing the effects of increasing atmospheric CO2 on the ecology and resilience of the Amazon forest

    NASA Astrophysics Data System (ADS)

    Lapola, David; Quesada, Carlos; Norby, Richard; Araújo, Alessandro; Domingues, Tomas; Hartley, Iain; Kruijt, Bart; Lewin, Keith; Meir, Patrick; Ometto, Jean; Rammig, Anja

    2016-04-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community

  17. Amazon Deforestation Fires Increase Plant Productivity through Changes in Diffuse Radiation

    NASA Astrophysics Data System (ADS)

    Rap, A.; Reddington, C.; Spracklen, D. V.; Mercado, L.; Haywood, J. M.; Bonal, D.; Butt, N.; Phillips, O.

    2013-12-01

    Over the past few decades a large increase in carbon storage has been observed in undisturbed forests across Amazonia. The reason for such a sink is unclear, although many possible mechanisms have been suggested, including changes in temperature, carbon dioxide, precipitation, clouds, and solar radiation. In this work we focus on one such mechanism, namely the increase in plant photosynthesis due to changes in diffuse radiation caused by atmospheric aerosols from large-scale deforestation fires that now occur throughout the Amazon region. We estimate that this mechanism has increased dry season (August-September) net primary productivity (NPP) by up to 30% across wide regions of the Amazon. We conclude that aerosol from deforestation fires may be responsible for a substantial fraction of the Amazon carbon sink that has been observed. Our approach is based on the combined use of three models: (i) the Global Model of Aerosol Processes (GLOMAP), (ii) the Edwards-Slingo radiation model, and (iii) the UK Met Office JULES land-surface scheme, constrained against in-situ aerosol and radiation observation datasets from several Amazonian sites. A 10 year (1999-2008) GLOMAP simulation using GFED3 biomass burning emissions is first evaluated against aerosol observations, indicating that the model is able to capture the Amazon aerosol seasonality, with enhanced concentrations during the dry season driven by biomass burning. The radiation scheme is then shown to be in good agreement with total and diffuse radiation in-situ observations, the model being able to capture the high total and low diffuse radiation flux in the dry season, as well as the low total and high diffuse radiation flux in the wet season. We then use our modelling framework to quantify the contribution of deforestation fires to diffuse/direct radiation fraction and forest productivity. We calculate that deforestation fires increase dry season diffuse radiation by up to 60% or 30 Wm-2. Finally, we use the JULES

  18. Condition and fate of logged forests in the Brazilian Amazon.

    PubMed

    Asner, Gregory P; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Knapp, David E; Silva, José N M

    2006-08-22

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16+/-1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained.

  19. Social and health dimensions of climate change in the Amazon.

    PubMed

    Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina

    2016-07-01

    The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.

  20. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river

  1. Epidemiology and Control of Child Toxocariasis in the Western Brazilian Amazon – A Population-Based Study

    PubMed Central

    Oliart-Guzmán, Humberto; Delfino, Breno M.; Martins, Antonio C.; Mantovani, Saulo A. S.; Braña, Athos M.; Pereira, Thasciany M.; Branco, Fernando L. C. C.; Ramalho, Alanderson A.; Campos, Rhanderson G.; Fontoura, Pablo S.; de Araujo, Thiago S.; de Oliveira, Cristieli S. M.; Muniz, Pascoal T.; Rubinsky-Elefant, Guita; Codeço, Cláudia T.; da Silva-Nunes, Mônica

    2014-01-01

    Toxocara spp. infection and the seroconversion rate in the Amazon have been poorly investigated. This study analyzed individual and household-level risk factors for the presence of IgG antibodies to Toxocara spp. in urban Amazonian children over a period of 7 years and evaluated the seroconversion rates over a 1-year follow-up. In children < 59 months of age, the overall prevalence rate was 28.08% in 2003 and 23.35% in 2010. The 2010–2011 seroconversion rates were 13.90% for children 6–59 months of age and 12.30% for children 84–143 months of age. Multilevel logistic regression analysis identified child age, previous wheezing, and current infection with hookworm as significant associated factors for Toxocara spp. seropositivity in 2003. In 2010, age, previous helminthiasis, and having a dog were associated with seropositivity, whereas having piped water inside the household was a protective factor. Control programs mainly need to target at-risk children, water quality control, and animal deworming strategies. PMID:24515946

  2. Repeat-Pass Multi-Temporal Interferometric SAR Coherence Variations with Amazon Floodplain and Lake Habitats

    NASA Astrophysics Data System (ADS)

    Jung, H.; Alsdorf, D.

    2006-12-01

    Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values

  3. Demographic and health attributes of the Nahua, initial contact population of the Peruvian Amazon.

    PubMed

    Culqui, Dante R; Ayuso-Alvarez, Ana; Munayco, Cesar V; Quispe-Huaman, Carlos; Mayta-Tristán, Percy; Campos, Juan de Mata Donado

    2016-01-01

    We present the case of the Nahua population of Santa Rosa de Serjali, Peruvian Amazon's population, considered of initial contact. This population consists of human groups that for a long time decided to live in isolation, but lately have begun living a more sedentary lifestyle and in contact with Western populations. There are two fully identified initial contact groups in Peru: the Nahua and the Nanti. The health statistics of the Nahua are scarce. This study offers an interpretation of demographic and epidemiological indicators of the Nahua people, trying to identify if a certain degree of health vulnerability exists. We performed a cross sectional study, and after analyzing their health indicators, as well as the supplemental qualitative analysis of the population, brought us to conclude that in 2006, the Nahua, remained in a state of health vulnerability.

  4. Extreme Drought Events Revealed in Amazon Tree Ring Records

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  5. Model uncertainties do not affect observed patterns of species richness in the Amazon.

    PubMed

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael

    2017-01-01

    Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics

  6. Model uncertainties do not affect observed patterns of species richness in the Amazon

    PubMed Central

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo

    2017-01-01

    Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of

  7. Phlebitis associated with peripheral intravenous catheters in adults admitted to hospital in the Western Brazilian Amazon.

    PubMed

    Enes, Sandra Maria Sampaio; Opitz, Simone Perufo; Faro, André Ricardo Maia da Costa de; Pedreira, Mavilde de Luz Gonçalves

    2016-04-01

    To identify the presence of phlebitis and the factors that influence the development of this complication in adult patients admitted to hospital in the western Brazilian Amazon. Exploratory study with a sample of 122 peripheral intravenous catheters inserted in 122 patients in a medical unit. Variables related to the patient and intravenous therapy were analyzed. For the analysis, we used chi-square tests of Pearson and Fisher exact test, with 5% significance level. Complication was the main reason for catheter removal (67.2%), phlebitis was the most frequent complication (31.1%). The mean duration of intravenous therapy use was 8.81 days in continuous and intermittent infusion (61.5%), in 20G catheter (39.3%), inserted in the dorsal hand vein arc (36.9 %), with mean time of usage of 68.4 hours. The type of infusion (p=0.044) and the presence of chronic disease (p=0.005) and infection (p=0.007) affected the development of phlebitis. There was a high frequency of phlebitis in the sample, being influenced by concomitant use of continuous and intermittent infusion of drugs and solutions, and more frequent in patients with chronic diseases and infection. Identificar a presença de flebite e os fatores que influenciam o desenvolvimento desta complicação em pacientes adultos internados em hospital da Amazônia Ocidental Brasileira. Estudo exploratório, com amostra de 122 cateteres intravenosos periféricos instalados em 122 pacientes de uma unidade de clínica médica. Foram analisadas variáveis relacionadas ao paciente e à terapia intravenosa. Para a análise utilizaram-se os testes de Qui-quadrado de Pearson e Exato de Fisher, com nível de significância de 5%. A complicação foi o principal motivo da retirada do cateter (67,2%), e a flebite a complicação mais frequente (31,1%). O tempo médio de uso de terapia intravenosa foi de 8,81 dias, em infusão contínua e intermitente (61,5%), em cateter calibre 20G (39,3%), inseridos nas veias do arco dorsal da m

  8. Osteoma in a blue-fronted Amazon parrot (Amazona aestiva).

    PubMed

    Cardoso, João Felipe Rito; Levy, Marcelo Guilherme Bezerra; Liparisi, Flavia; Romão, Mario Antonio Pinto

    2013-09-01

    Osteoma is an uncommon bone formation documented in avian species and other animals. A blue-fronted Amazon parrot (Amazona aestiva) with clinical respiratory symptoms was examined because of a hard mass present on the left nostril. Radiographs suggested a bone tumor, and the mass was surgically excised. Histopathologic examination revealed features of an osteoma. To our knowledge, this is the first description of an osteoma in a blue-fronted Amazon parrot. Osteoma should be considered as a differential diagnosis in birds with respiratory distress and swelling of the nostril.

  9. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE PAGES

    Martin, S. T.; Artaxo, P.; Machado, L.; ...

    2017-05-15

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  10. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon 2014–2015 (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across 2 years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied temperate regions of Earth. GoAmazon2014/5, a cooperative project of Brazil, Germany, and the United States, employed an unparalleled suite of measurements at nine ground sites and on board two aircraftmore » to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Here in this paper, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  11. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts.

    PubMed

    Longo, Marcos; Knox, Ryan G; Levine, Naomi M; Alves, Luciana F; Bonal, Damien; Camargo, Plinio B; Fitzjarrald, David R; Hayek, Matthew N; Restrepo-Coupe, Natalia; Saleska, Scott R; da Silva, Rodrigo; Stark, Scott C; Tapajós, Raphael P; Wiedemann, Kenia T; Zhang, Ke; Wofsy, Steven C; Moorcroft, Paul R

    2018-05-22

    The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km 2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  12. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    DOE PAGES

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; ...

    2016-10-24

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- andmore » ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. Lastly, this rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.« less

  13. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E.; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L.; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A. F.; Springston, Stephen R.; Tomlinson, Jason M.; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N.; Kulmala, Markku; Machado, Luiz A. T.; Artaxo, Paulo; Andreae, Meinrat O.; Petäjä, Tuukka; Martin, Scot T.

    2016-11-01

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  14. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    PubMed

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  15. Large emissions from floodplain trees close the Amazon methane budget.

    PubMed

    Pangala, Sunitha R; Enrich-Prast, Alex; Basso, Luana S; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R C; Gatti, Luciana V; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-14

    Wetlands are the largest global source of atmospheric methane (CH 4 ), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH 4 in the tropics, consistently underestimate the atmospheric burden of CH 4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH 4 emissions. Here we report CH 4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH 4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ 13 C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH 4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH 4 emissions of 42.7 ± 5.6 teragrams of CH 4 a year for the Amazon basin, based on regular vertical lower-troposphere CH 4 profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH 4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH 4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH 4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH 4 source when trees are combined with other emission sources.

  16. Large emissions from floodplain trees close the Amazon methane budget

    NASA Astrophysics Data System (ADS)

    Pangala, Sunitha R.; Enrich-Prast, Alex; Basso, Luana S.; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R. C.; Gatti, Luciana V.; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-01

    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010-2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.

  17. Sparse pre-Columbian human habitation in western Amazonia.

    PubMed

    McMichael, C H; Piperno, D R; Bush, M B; Silman, M R; Zimmerman, A R; Raczka, M F; Lobato, L C

    2012-06-15

    Locally extensive pre-Columbian human occupation and modification occurred in the forests of the central and eastern Amazon Basin, but whether comparable impacts extend westward and into the vast terra firme (interfluvial) zones, remains unclear. We analyzed soils from 55 sites across central and western Amazonia to assess the history of human occupation. Sparse occurrences of charcoal and the lack of phytoliths from agricultural and disturbance species in the soils during pre-Columbian times indicated that human impacts on interfluvial forests were small, infrequent, and highly localized. No human artifacts or modified soils were found at any site surveyed. Riverine bluff areas also appeared less heavily occupied and disturbed than similar settings elsewhere. Our data indicate that human impacts on Amazonian forests were heterogeneous across this vast landscape.

  18. Biomarkers of Mercury Exposure in the Amazon

    PubMed Central

    de Castro, Nathália Santos Serrão; Lima, Marcelo de Oliveira

    2014-01-01

    Mercury exposure in the Amazon has been studied since the 1980s decade and the assessment of human mercury exposure in the Amazon is difficult given that the natural occurrence of this metal is high and the concentration of mercury in biological samples of this population exceeds the standardized value of normality established by WHO. Few studies have focused on the discovery of mercury biomarkers in the region's population. In this way, some studies have used genetics as well as immunological and cytogenetic tools in order to find a molecular biomarker for assessing the toxicological effect of mercury in the Amazonian population. Most of those studies focused attention on the relation between mercury exposure and autoimmunity and, because of that, they will be discussed in more detail. Here we introduce the general aspects involved with each biomarker that was studied in the region in order to contextualize the reader and add information about the Amazonian life style and health that may be considered for future studies. We hope that, in the future, the toxicological studies in this field use high technological tools, such as the next generation sequencing and proteomics skills, in order to comprehend basic questions regarding the metabolic route of mercury in populations that are under constant exposure, such as in the Amazon. PMID:24895619

  19. Isoprene photochemistry over the Amazon rainforest

    PubMed Central

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.

    2016-01-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest. PMID:27185928

  20. Isoprene photochemistry over the Amazon rainforest.

    PubMed

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R; Rivera-Rios, Jean C; Seco, Roger; Bates, Kelvin H; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N; Kim, Saewung; Goldstein, Allen H; Guenther, Alex B; Manzi, Antonio O; Souza, Rodrigo A F; Springston, Stephen R; Watson, Thomas B; McKinney, Karena A; Martin, Scot T

    2016-05-31

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.

  1. Isoprene photochemistry over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.; Martin, Scot T.

    2016-05-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.

  2. The economic value of the climate regulation ecosystem service provided by the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Heil Costa, Marcos; Pires, Gabrielle; Fontes, Vitor; Brumatti, Livia

    2017-04-01

    The rainy Amazon climate allowed important activities to develop in the region as large rainfed agricultural lands and hydropower plants. The Amazon rainforest is an important source of moisture to the regional atmosphere and helps regulate the local climate. The replacement of forest by agricultural lands decreases the flux of water vapor into the atmosphere and changes the precipitation patterns, which may severely affect such economic activities. Assign an economic value to this ecosystem service may emphasize the significance to preserve the Amazon rainforest. In this work, we provide a first approximation of the quantification of the climate regulation ecosystem service provided by the Amazon rainforest using the marginal production method. We use climate scenarios derived from Amazon deforestation scenarios as input to crop and runoff models to assess how land use change would affect agriculture and hydropower generation. The effects of forest removal on soybean production and on cattle beef production can both be as high as US 16 per year per ha deforested, and the effects on hydropower generation can be as high as US 8 per year per ha deforested. We consider this as a conservative estimate of a permanent service provided by the rainforest. Policy makers and other Amazon agriculture and energy businesses must be aware of these numbers, and consider them while planning their activities.

  3. Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene-Miocene transition

    NASA Astrophysics Data System (ADS)

    Stewart, Joseph A.; Gutjahr, Marcus; James, Rachael H.; Anand, Pallavi; Wilson, Paul A.

    2016-11-01

    Dissolved and particulate neodymium (Nd) are mainly supplied to the oceans via rivers, dust, and release from marine sediments along continental margins. This process, together with the short oceanic residence time of Nd, gives rise to pronounced spatial gradients in oceanic 143Nd/144Nd ratios (εNd). However, we do not yet have a good understanding of the extent to which the influence of riverine point-source Nd supply can be distinguished from changes in mixing between different water masses in the marine geological record. This gap in knowledge is important to fill because there is growing awareness that major global climate transitions may be associated not only with changes in large-scale ocean water mass mixing, but also with important changes in continental hydroclimate and weathering. Here we present εNd data for fossilised fish teeth, planktonic foraminifera, and the Fe-Mn oxyhydroxide and detrital fractions of sediments recovered from Ocean Drilling Project (ODP) Site 926 on Ceara Rise, situated approximately 800 km from the mouth of the River Amazon. Our records span the Mi-1 glaciation event during the Oligocene-Miocene transition (OMT; ∼23 Ma). We compare our εNd records with data for ambient deep Atlantic northern and southern component waters to assess the influence of particulate input from the Amazon River on Nd in ancient deep waters at this site. εNd values for all of our fish teeth, foraminifera, and Fe-Mn oxyhydroxide samples are extremely unradiogenic (εNd ≈ - 15); much lower than the εNd for deep waters of modern or Oligocene-Miocene age from the North Atlantic (εNd ≈ - 10) and South Atlantic (εNd ≈ - 8). This finding suggests that partial dissolution of detrital particulate material from the Amazon (εNd ≈ - 18) strongly influences the εNd values of deep waters at Ceara Rise across the OMT. We conclude that terrestrially derived inputs of Nd can affect εNd values of deep water many hundreds of kilometres from source. Our

  4. [Ground-clearing fires in the amazon and respiratory disease].

    PubMed

    Gonçalves, Karen dos Santos; de Castro, Hermano Albuquerque; Hacon, Sandra de Souza

    2012-06-01

    The intentional burning of forest biomass commonly known as "ground-clearing fires" is an age-old and widespread practice in the country and is seen as a major contributor to global emissions of greenhouse gases. However, global awareness of their potential impact is relatively recent. The occurrence of large ground-clearing fires in the Brazilian and international scenarios drew attention to the problem, but the measures taken to prevent and/or control the fires are still insufficient. In the Amazon region, with distinct geographical and environmental features from the rest of the country, with its historic process of land occupation, every year the ground-clearing fires expose larger portions of the population making them vulnerable to its effects. In this context, this non-systematic review presents the papers written over the past five years about the fires in the Brazilian Amazon and respiratory illness. The main objective is to provide information for managers and leaders on environmental issues about the problems related to biomass burning in the Amazon region.

  5. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  6. Neogene origins and implied warmth tolerance of Amazon tree species

    PubMed Central

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2013-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6–5 Ma) and late-Miocene (8–10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely. PMID:23404439

  7. Condition and fate of logged forests in the Brazilian Amazon

    PubMed Central

    Asner, Gregory P.; Broadbent, Eben N.; Oliveira, Paulo J. C.; Keller, Michael; Knapp, David E.; Silva, José N. M.

    2006-01-01

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16 ± 1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained. PMID:16901980

  8. Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from Peruvian Amazon using microsatllite DNA markers

    USDA-ARS?s Scientific Manuscript database

    Cacao (Theobroma cacao L.) is indigenous to the Amazon region of South America. The Peruvian Amazon harbors a large number of diverse cacao populations. Since the 1930s, several numbers of populations have been collected from the Peruvian Amazon and maintained as ex situ germplasm repositories in ...

  9. Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity

    NASA Technical Reports Server (NTRS)

    Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.

    2000-01-01

    Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.

  10. Revisiting the hierarchy of urban areas in the Brazilian Amazon: a multilevel approach

    PubMed Central

    Costa, Sandra; Brondízio, Eduardo

    2012-01-01

    The Legal Brazilian Amazon, while the largest rainforest in the world, is also a region where most residents are urban. Despite close linkages between rural and urban processes in the region, rural areas have been the predominant focus of Amazon-based population-environment scholarship. Offering a focus on urban areas within the Brazilian Amazon, this paper examines the emergence of urban hierarchies within the region. Using a combination of nationally representative data and community based surveys, applied to a multivariate cluster methodology (Grade of Membership), we observe the emergence of sub-regional urban networks characterized by economic and political inter-dependency, population movement, and provision of services. These networks link rural areas, small towns, and medium and large cities. We also identify the emergence of medium-size cities as important nodes at a sub-regional level. In all, the work provides insight on the proposed model of ‘disarticulated urbanization’ within the Amazon by calling attention to the increasing role of regional and sub-regional urban networks in shaping the future expansion of land use and population distribution in the Amazon. We conclude with a discussion of implications for increasing intra-regional connectivity and fragmentation of conservation areas and ecosystems in the region. PMID:23129877

  11. Reserves Protect against Deforestation Fires in the Amazon

    PubMed Central

    Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.

    2009-01-01

    Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423

  12. Protecting the Amazon with protected areas

    PubMed Central

    Walker, Robert; Moore, Nathan J.; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio

    2009-01-01

    This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively. PMID:19549819

  13. Drought sensitivity of the Amazon rainforest.

    PubMed

    Phillips, Oliver L; Aragão, Luiz E O C; Lewis, Simon L; Fisher, Joshua B; Lloyd, Jon; López-González, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A; van der Heijden, Geertje; Almeida, Samuel; Amaral, Iêda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R; Bánki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jerome; de Oliveira, Atila Cristina Alves; Cardozo, Nallaret Dávila; Czimczik, Claudia I; Feldpausch, Ted R; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jiménez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A; Nepstad, Daniel; Patiño, Sandra; Peñuela, Maria Cristina; Prieto, Adriana; Ramírez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; Steege, Hans Ter; Stropp, Juliana; Vásquez, Rodolfo; Zelazowski, Przemyslaw; Alvarez Dávila, Esteban; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio C, Eurídice; Keeling, Helen; Killeen, Tim J; Laurance, William F; Peña Cruz, Antonio; Pitman, Nigel C A; Núñez Vargas, Percy; Ramírez-Angulo, Hirma; Rudas, Agustín; Salamão, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando

    2009-03-06

    Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.

  14. Protecting the Amazon with protected areas.

    PubMed

    Walker, Robert; Moore, Nathan J; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio

    2009-06-30

    This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively.

  15. Climatic and ecological future of the Amazon: likelihood and causes of change

    NASA Astrophysics Data System (ADS)

    Cook, B.; Zeng, N.; Yoon, J.-H.

    2010-05-01

    Some recent climate modeling results suggested a possible dieback of the Amazon rainforest under future climate change, a prediction that raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable as rainfall is projected to increase in nearly all models. However, the periphery, notably the southern edge of the Amazon and further south in central Brazil, are in danger of drying out, driven by two main processes. Firstly, a decline in precipitation of 22% in the southern Amazon's dry season (May-September) reduces soil moisture, despite an increase in precipitation during the wet season, due to nonlinear responses in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season rainfall: (1) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure; (2) a stronger north-south tropical Atlantic sea surface temperature gradient, and to lesser degree a warmer eastern equatorial Pacific. Secondly, evaporation demand will increase due to the general warming, further reducing soil moisture. In terms of ecosystem response, higher maintenance cost and reduced productivity under warming may also have additional adverse impact. The drying corresponds to a lengthening of the dry season by 11 days. As a consequence, the median of the models projects a reduction of 20% in vegetation carbon stock in the southern Amazon, central Brazil, and parts of the Andean Mountains. Further, VEGAS predicts enhancement of fire risk by 10-15%. The increase in fire is primarily due to the reduction in soil moisture, and the decrease in dry season rainfall, which

  16. Deforestation, floodplain dynamics, and carbon biogeochemistry in the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.; Dunne, T.; Richey, J.; Melack, J.; Simonett, D. S.; Woodwell, G.

    1984-01-01

    Three aspects of the physical geographic environment of the Amazon Basin are considered: (1) deforestation and reforestation, (2) floodplain dynamics, and (3) fluvial geomorphology. Three independent projects are coupled in this experiment to improve the in-place research and to ensure that the Shuttle Imaging Radar-B (SIR-B) experiment stands on a secure base of ongoing work. Major benefits to be obtained center on: (1) areal and locational information, (2) data from various depression angles, and (3) digital radar signatures. Analysis will be conducted for selected sites to define how well SIR-B data can be used for: (1) definition of extent and location of deforestation in a tropical moist forest, (2) definition and quantification of the nature of the vegetation and edaphic conditions on the (floodplain) of the Amazon River, and (3) quantification of the accuracy with which the geometry and channel shifting of the Amazon River may be mapped using SIR-B imagery in conjunction with other remote sensing data.

  17. Amazon rain-forest fires.

    PubMed

    Sanford, R L; Saldarriaga, J; Clark, K E; Uhl, C; Herrera, R

    1985-01-04

    Charcoal is common in the soils of mature rain forests within 75 kilometers of San Carlos de Rio Negro in the north central Amazon Basin. Carbon-14 dates of soil charcoal from this region indicate that numerous fires have occurred since the mid-Holocene epoch. Charcoal is most common in tierra firme forest Oxisols and Ultisols and less common in caatinga and igapo forest soils. Climatic changes or human activities, or both, have caused rain-forest fires.

  18. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  19. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.

    PubMed

    Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-11-12

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.

  20. Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring

    PubMed Central

    Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez

    2013-01-01

    Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281

  1. Isoprene photochemistry over the Amazon rainforest

    DOE PAGES

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; ...

    2016-05-31

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO 2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK +more » MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. Also, a value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). In conclusion, this abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest.« less

  2. Atmospheric correction analysis on LANDSAT data over the Amazon region. [Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dias, L. A. V.; Dossantos, J. R.; Formaggio, A. R.

    1983-01-01

    The Amazon Region natural resources were studied in two ways and compared. A LANDSAT scene and its attributes were selected, and a maximum likelihood classification was made. The scene was atmospherically corrected, taking into account Amazonic peculiarities revealed by (ground truth) of the same area, and the subsequent classification. Comparison shows that the classification improves with the atmospherically corrected images.

  3. Multispecies Fisheries in the Lower Amazon River and Its Relationship with the Regional and Global Climate Variability

    PubMed Central

    Buss de Souza, Ronald; Freire, Juan; Isaac, Victoria Judith

    2016-01-01

    This paper aims to describe the spatial-temporal variability in catch of the main fishery resources of the Amazon River and floodplain lakes of the Lower Amazon, as well as relating the Catch per Unit of Effort with anomalies of some of the Amazon River, atmosphere and Atlantic Ocean system variables, determining the influence of the environment on the Amazonian fishery resources. Finfish landings data from the towns and villages of the Lower Amazon for the fisheries of three sites (Óbidos, Santarém and Monte Alegre), were obtained for the period between January 1993 and December 2004. Analysis of variance, detrended correspondence analysis, redundancy analysis and multiple regression techniques were used for the statistical analysis of the distinct time series. Fisheries production in the Lower Amazon presents differences between the Amazon River and the floodplain lakes. Production in the Amazon River is approximately half of the one of the floodplain lakes. This variability occurs both along the Lower Amazon River region (longitudinal gradient) and laterally (latitudinal gradient) for every fishing ground studied here. The distinct environmental variables alone or in association act differently on the fishery stocks and the success of catches in each fishery group studied here. Important variables are the flooding events; the soil the sea surface temperatures; the humidity; the wind and the occurence of El Niño-Southern Oscillation events. Fishery productivity presents a large difference in quantity and distribution patterns between the river and floodplain lakes. This variability occurs in the region of the Lower Amazon as well as laterally for each fishery group studied, being dependent on the ecological characteristics and life strategies of each fish group considered here. PMID:27314951

  4. Foraminifera and Thecamoebians as hydrodynamic indicators for Amazon estuarine system

    NASA Astrophysics Data System (ADS)

    Laut, L. L.; Figueiredo, A. G.; Santos, V. F.; Souza-Vieira, S.

    2007-05-01

    The Amazon mangrove forest in Brazilian territory is one of the most extended in the world. It goes from Ponta do Tubarao (4S e 43W) to Cape Orange (5N e 51W) along 2,250 km of coast line. Because the Amazon River System influence, it can be divided into two regions; one with river influence toward north and the other without river influence. In order to characterize the mangrove environment hydrodynamic on both sides of the Amazon River System, foraminifera and thecamoebians assemblages were investigated in the sediment of two estuaries; Araguari to the North (1 15S - 50 30W) and Caete to the South (0 50S - 46 30W). For both estuaries forams and thecamoebians species distribution are atypical relative to other world regions. In both, there are only few calcareous forams and almost all are small and possible of being transported in suspension. Typical estuarine species were not identified. The typical mangrove forams which are agglutinated species were dominant in both estuaries. However, the Caete estuary has a large number of forams species (29), indicating better efficiency in mixing fresh and salt water in comparison to the Araguari. On the other hand, the Araguari has big richness of thecamoebians species (15) indicating fresh water prevalence. The fresh water predominance is due to the Amazon water plume being diverted to the Amapa coast where the Araguari estuary is located. The foraminifera species was also used to determine the salt water penetration in the estuary. In the Caete estuary, salt water penetrates to about 40 km while in the Araguari it does coincide with the limit of the bore tide wave "pororoca" penetration, 45 km. Based on the species succession (forams to thecamoebians species) the Araguary estuary can be divided into three regions controlled by turbidity: the outer, middle and inner estuary. The Caete species succession is not that clear and only could be divided based on salinity into outer and inner estuary. In both estuaries forams and

  5. The first isolations of eastern encephalitis, group C, and Guama group arboviruses from the Peruvian Amazon region of western South America.

    PubMed

    Scherer, W F; Madalengoitia, J; Flores, W; Acosta, M

    1975-01-01

    Two strains of eastern encephalitis (EE) virus were isolated in the Amazon region of Peru near Pucallpa, Loreto Department, using sentinel hamsters. EE virus antibodies were found in healthy horses at both Pucallpa and Iquitos in the same Department. Fourteen group C and four Guama group arboviruses were recovered from sentenel hamsters and mosquitoes near Iquitos. The group C agents were Caraparu-Ossa, Marituba, and Oriboca-Itaqui viruses, and the Guama group agents were Bimiti virus. Besides providing a detailed account of these investigations, this article includes a current list of known arboviruses of the American tropics that can be detected with sentinel hamsters.

  6. Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Astrophysics Data System (ADS)

    Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.

    2016-12-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  7. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    NASA Technical Reports Server (NTRS)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  8. Amazon forests maintain consistent canopy structure and greenness during the dry season.

    PubMed

    Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J

    2014-02-13

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  9. [Globalization and environmentalism: polyphonic ethnicities in the Amazon].

    PubMed

    Garnelo, Luiza; Sampaio, Sully

    2005-01-01

    The article examines the issue of globalization, along with its contradictions and the ways in which it guides and shapes specific situations within the Amazon's present-day reality, while simultaneously engendering the uniformization of economic production and the valorization of cultural differences. The discussion explores the nuances of implementing a massified, standardized productive base that paradoxically fosters the valorization of cultural differences and favors alliances between, on the one hand, ethno-political leaders from indigenous Amazon groups and, on the other, environmentalists and other transworld actors who wield strong decision-making power. The article analyzes the indigenous movement's network of alliances and highlights the polyphony of the different political agents that come to clash with each other within this post-modern geopolitical setting.

  10. Assessing the Amazon Cloud Suitability for CLARREO's Computational Needs

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel; Vakhnin, Andrei A.; Currey, Jon C.

    2015-01-01

    In this document we compare the performance of the Amazon Web Services (AWS), also known as Amazon Cloud, with the CLARREO (Climate Absolute Radiance and Refractivity Observatory) cluster and assess its suitability for computational needs of the CLARREO mission. A benchmark executable to process one month and one year of PARASOL (Polarization and Anistropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) data was used. With the optimal AWS configuration, adequate data-processing times, comparable to the CLARREO cluster, were found. The assessment of alternatives to the CLARREO cluster continues and several options, such as a NASA-based cluster, are being considered.

  11. Amazon Flooded Forest. Teacher Resource Guide.

    ERIC Educational Resources Information Center

    Duvall, Todd

    This teacher's resource guide was created to accompany the Amazon Flooded Forest exhibit at the Oregon Zoo. The enclosed lessons and activities are designed to extend into several aspects of daily curriculum including science, math, reading, writing, speaking, and geography. The materials are intended for use in grades 3-6 although most activities…

  12. The Amazon Boundary Layer Experiment (ABLE 2A) - Dry season 1985

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Hoell, J. M., Jr.; Bendura, R. J.; Beck, S. M.; Wofsy, S. C.; Mcneal, R. J.; Navarro, R. L.; Riley, J. T.; Snell, R. L.

    1988-01-01

    The Amazon Boundary Layer Experiment (ABLE 2A) used data from aircraft, ground-based, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over the Amazon Basin during the early-to-middle dry season, July and August 1985. This paper reports the conceptual framework and experimental approach used in ABLE 2A and serves as an introduction to the detailed papers which follow in this issue. The results of ABLE 2A demonstrate that isoprene, methane, carbon dioxide, nitric oxide, dimethylsulfide, and organic aerosol emissions from soils and vegetation play a major role in determining the chemical composition of the atmospheric mixed layer over undisturbed forest and wetland environments. As the dry season progresses, emissions from both local and distant biomass burning become an important source of carbon monoxide, nitric oxide and ozone in the atmosphere over the central Amazon Basin.

  13. El Niño Could Drive Intense Season for Amazon Fires

    NASA Image and Video Library

    2017-12-08

    El Niño conditions in 2015 and early 2016 altered rainfall patterns around the world. In the Amazon, El Niño reduced rainfall during the wet season, leaving the region drier at the start of the 2016 dry season than any year since 2002, according to NASA satellite data. Wildfire risk for the dry season months of July to October this year now exceeds fire risk in 2005 and 2010, drought years when wildfires burned large areas of Amazon rainforest, said Doug Morton, an Earth scientist at NASA’s Goddard Space Flight Center who helped create the fire forecast. "Severe drought conditions at the start of the dry season set the stage for extreme fire risk in 2016 across the southern Amazon," Morton said. The Amazon fire forecast uses the relationship between climate and active fire detections from NASA satellites to predict fire season severity during the region’s dry season. Developed in 2011 by scientists at University of California, Irvine and NASA’s Goddard Space Flight Center, the forecast model is focused particularly on the link between sea surface temperatures and fire activity. Warmer sea surface temperatures in the tropical Pacific (El Niño) and Atlantic oceans shift rainfall away from the Amazon region, increasing the risk of fires during dry season months. Read more: go.nasa.gov/2937ADt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Granular cell tumor in an endangered Puerto Rican Amazon parrot (Amazon vittata)

    USGS Publications Warehouse

    Quist, C.F.; Latimer, K.S.; Goldade, S.L.; Rivera, A.; Dein, F.J.

    1999-01-01

    A 3 cm diameter mass from the metacarpus of a Puerto Rican Amazon parrot was diagnosed as a granular cell tumour based on light microscopy. The cytoplasmic granules were periodic-acid Schiff positive and diastase resistant. Ultrastructural characteristics of the cells included convoluted nuclei and the presence of numerous cytoplasmic tertiary lysosomes. This is only the second granular cell tumour reported in a bird. We speculate that most granular cell tumours are derived from cells that are engaged in some type of cellular degradative process, creating a similar morphologic appearance, but lacking a uniform histogenesis.

  15. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    PubMed

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  16. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010

    PubMed Central

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts

  17. Cancer mortality and oil production in the Amazon Region of Ecuador, 1990-2005.

    PubMed

    Kelsh, Michael A; Morimoto, Libby; Lau, Edmund

    2009-02-01

    To compare cancer mortality rates in Amazon cantons (counties) with and without long-term oil exploration and extraction activities. Mortality (1990 through 2005) and population census (1990 and 2001) data for cantons in the provinces of the northern Amazon Region (Napo, Orellana, Sucumbios, and Pastaza), as well as the province with the capital city of Quito (Pichincha province) were obtained from the National Statistical Office of Ecuador, Instituto Nacional del Estadistica y Censos (INEC). Age- and sex-adjusted mortality rate ratios (RR) and 95% confidence intervals (CI) were estimated to evaluate total and cause-specific mortality in the study regions. Among Amazon cantons with long-term oil extraction, activities there was no evidence of increased rates of death from all causes (RR = 0.98; 95% CI = 0.95-1.01) or from overall cancer (RR = 0.82; 95% CI = 0.73-0.92), and relative risk estimates were also lower for most individual site-specific cancer deaths. Mortality rates in the Amazon provinces overall were significantly lower than those observed in Pichincha for all causes (RR = 0.82; 95% CI = 0.81-0.83), overall cancer (RR = 0.46; 95% CI = 0.43-0.49), and for all site-specific cancers. In regions with incomplete cancer registration, mortality data are one of the few sources of information for epidemiologic assessments. However, epidemiologic assessments in this region of Ecuador are limited by underreporting, exposure and disease misclassification, and study design limitations. Recognizing these limitations, our analyses of national mortality data of the Amazon Region in Ecuador does not provide evidence for an excess cancer risk in regions of the Amazon with long-term oil production. These findings were not consistent or supportive of earlier studies in this region that suggested increased cancer risks.

  18. Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures.

    PubMed

    Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G

    2013-12-01

    The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.

  19. Amazon plant diversity revealed by a taxonomically verified species list.

    PubMed

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M; Bittrich, Volker; Celis, Marcela; Daly, Douglas C; Fiaschi, Pedro; Funk, Vicki A; Giacomin, Leandro L; Goldenberg, Renato; Heiden, Gustavo; Iganci, João; Kelloff, Carol L; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F P; Dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A; Nunes, Teonildes Sacramento; Pennington, Terry D; Pirani, José Rubens; Prance, Ghillean T; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Riina, Ricarda; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D; Taylor, Charlotte M; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E; Forzza, Rafaela Campostrini

    2017-10-03

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests.

  20. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    NASA Astrophysics Data System (ADS)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  1. Exposure to mixed asymptomatic infections with Trypanosoma cruzi, Leishmania braziliensis and Leishmania chagasi in the human population of the greater Amazon.

    PubMed

    Mendes, Daniella G; Lauria-Pires, Liana; Nitz, Nadjar; Lozzi, Silene P; Nascimento, Rubens J; Monteiro, Pedro S; Rebelo, Manuel M; Rosa, Ana de Cássia; Santana, Jaime M; Teixeira, Antonio R L

    2007-05-01

    Lack of conservation of the Amazon tropical rainforest has imposed severe threats to its human population living in newly settled villages, resulting in outbreaks of some infectious diseases. We conducted a seroepidemiological survey of 1100 inhabitants of 15 villages of Paço do Lumiar County, Brazil. Thirty-five (3%) individuals had been exposed to Trypanosoma cruzi (Tc), 41 (4%) to Leishmania braziliensis (Lb) and 50 (4.5%) to Leishmania chagasi (Lc) infections. Also, 35 cases had antibodies that were cross-reactive against the heterologous kinetoplastid antigens. Amongst these, the Western blot assays revealed that 11 (1%) had Tc and Lb, that seven (0.6%) had Lc and Tc, and that 17 (1.6%) had Lb and Lc infections. All of these cases of exposures to mixed infections with Leishmania sp, and eight of 11 cases of Tc and Lb were confirmed by specific PCR assays and Southern hybridizations. Two cases had triple infections. We consider these asymptomatic cases showing phenotype and genotype markers consistent with mixed infections by two or more kinetoplastid flagellates a high risk factor for association with Psychodidae and Triatominae vectors blood feeding and transmitting these protozoa infections. This is the first publication showing human exposure to mixed asymptomatic kinetoplastid infections in the Amazon.

  2. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon.

    PubMed

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the

  3. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon

    PubMed Central

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the

  4. Hallux amputation after a freshwater stingray injury in the Brazilian Amazon.

    PubMed

    Monteiro, Wuelton Marcelo; Oliveira, Sâmella Silva de; Sachett, Jacqueline de Almeida Gonçalves; Silva, Iran Mendonça da; Ferreira, Luiz Carlos de Lima; Lacerda, Marcus Vinícius Guimarães

    2016-01-01

    Freshwater stingray injuries are a common problem in the Brazilian Amazon, affecting mostly riverine and indigenous populations. These injuries cause severe local and regional pain, swelling and erythema, as well as complications, such as local necrosis and bacterial infection. Herein, we report a case of bacterial infection and hallux necrosis, after a freshwater stingray injury in the Brazilian Amazon, which eventually required amputation. Different antimicrobial regimens were administered at different stages of the disease; however, avoiding amputation through effective treatment was not achieved.

  5. The Amazons and an analysis of breast mutilation from a plastic surgeon's perspective.

    PubMed

    Karacalar, Ahmet

    2007-03-01

    The Amazon philosophy has been increasing in popularity because of the evolving status of women in society. Many references point to Themiscrya on the southern coast of the Black Sea in Anatolia as the Amazon homeland. The primary objective of this article is to discuss the different femininity of the Amazons and their breast mutilation from the perspective of a plastic surgeon who has been living in this region that the Amazons inhabited. Findings from archaeology, linguistics, anthropology, medicine, history, psychology, and the fine arts were integrated. The hypotheses that have been proposed to explain the method of breast mutilation include amputation, cauterization, breast searing, and breast pinching. It is generally believed that the primary purpose was to facilitate the efficient use of a bow. Another explanation would be that breast mutilation was performed for medical reasons, including the prevention of breast pain, the development of a tender lump, or cancer. There is another school of thought on this involving religious and sociological reasons that breast mutilation was a badge of honor for warrior women and a sign that a woman had become a real warrior and a sacrifice to Artemis as a sign of service. Much indirect proof and archaeological evidence point to their historical existence. The Amazons, who lived in an autonomous and original social model, changed their image and function to suit the needs of the society and the times.

  6. Epidemiology of Spotted Fever Group and Typhus Group Rickettsial Infection in the Amazon Basin of Peru

    DTIC Science & Technology

    2010-01-01

    MediCine and Hyg1cne Epidemiology of Spotted Fever Group and Typhus Group Rickettsial Infection in the Amazon Basin of Peru Brett M. Forshey, Allison...approximately 4% of acute febrile episodes detected in Iquitos, a city located in the Amazon region of northeast- ern Peru , could be attributed to SFGR...2010 to 00-00-2010 4. TITLE AND SUBTITLE Epidemiology Of Spotted Fever Group And Typhus Group Rickettsial Infection In The Amazon Basin Of Peru 5a

  7. Holocene provenance shift of suspended particulate matter in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Höppner, Natalie; Lucassen, Friedrich; Chiessi, Cristiano M.; Sawakuchi, André O.; Kasemann, Simone A.

    2018-06-01

    The strontium (Sr), neodymium (Nd) and lead (Pb) isotope signatures of suspended particulate matter (SPM) in rivers reflect the radiogenic isotope signatures of the rivers' drainage basin. These signatures are not significantly affected by weathering, transport or depositional cycles, but document the sedimentary contributions of the respective sources. We report new Sr, Nd and Pb isotope ratios and element concentrations of modern SPM from the Brazilian Amazon River basin and document the past evolution of the basin by analyzing radiogenic isotopes of a marine sediment core from the slope off French Guiana archiving the last 40 kyr of Amazon River SPM, and the Holocene section of sediment cores raised between the Amazon River mouth and the slope off French Guiana. The composition of modern SPM confirms two main source areas, the Andes and the cratonic Shield. In the marine sediment core notable changes occurred during the second phase of Heinrich Stadial 1 (i.e. increased proportion of Shield rivers SPM) and during the last deglaciation (i.e. increased proportion of Madeira River SPM) together with elsewhere constant source contributions. Furthermore, we report a prominent offset in Sr and Nd isotopic composition between the average core value (εNd: -11.7 ± 0.9 (2SD), 87Sr/86Sr: 0.7229 ± 0.0016 (2SD)) and the average modern Amazon River SPM signal (εNd: -10.5 ± 0.5 (2SD), 87Sr/86Sr: 0.7213 ± 0.0036 (2SD)). We suggest that a permanent change in the Amazon River basin sediment supply during the late Holocene to a more Andean dominated SPM was responsible for the offset.

  8. Cross-Sectional Serological Survey of Human Fascioliasis in Canutama Municipality in Western Amazon, Brazil

    PubMed Central

    Lima, Walter dos Santos; de Almeida, Francisco Lazaro Moreira; Coelho, Leila Inês Aguiar Raposo Câmara; Araújo, Guilherme Alfredo Novelino; Lima, Mariana Gomes; Maciel, Luiz Henrique Gonçalves; Pereira, Cíntia Aparecida de Jesus; Maciel, Thaís Costa da Silva; Guerra, Jorge Augusto de Oliveira; Santana, Rosa Amélia Gonçalves; Guerra, Maria das Graças Vale Barbosa

    2018-01-01

    Background Fascioliasis is an important parasitic disease. In the northern region of Brazil, a human parasite infection has been reported through a coprological survey. Eggs of Fasciola hepatica were found in fecal samples of 11 individuals. Knowledge of the infection in animals or the presence of snails is necessary to address the possibility of the parasite cycle occurrence in that region. The aim of this study was to describe the transmission of human fascioliasis in Canutama, Amazonas, in Western Amazonia, Brazil. Methods Serological (ELISA and Western Blot, WB) and parasitological analyses were carried out in humans. In addition, the presence of the intermediate snail host within the community was examined. Results A total of 434 human samples were included in the study, of which 36 (8.3%) were reactive by ELISA and 8 (1.8%) were reactive by WB. Fasciola hepatica eggs were found in one human sample. The occurrence of the intermediated host was recorded and 31/43 specimens were identified as Lymnaea columella. Conclusion. Canutama constitutes a focus of transmission of human fascioliasis. This study describes the first serological survey for human fascioliasis, as well as its simultaneous occurrence in human hosts and possible intermediates performed in northern Brazil. PMID:29593895

  9. TOLLIP gene variant is associated with Plasmodium vivax malaria in the Brazilian Amazon.

    PubMed

    Brasil, Larissa W; Barbosa, Laila R A; de Araujo, Felipe J; da Costa, Allyson G; da Silva, Luan D O; Pinheiro, Suzana K; de Almeida, Anne C G; Kuhn, Andrea; Vitor-Silva, Sheila; de Melo, Gisely C; Monteiro, Wuelton M; de Lacerda, Marcus V G; Ramasawmy, Rajendranath

    2017-03-13

    Toll-interacting protein is a negative regulator in the TLR signaling cascade, particularly by impeding the TLR2 and, TLR4 pathway. Recently, TOLLIP was shown to regulate human TLR signaling pathways. Two common TOLLIP polymorphisms (rs5743899 and rs3750920) were reported to be influencing IL-6, TNF and IL-10 expression. In this study, TOLLIP variants were investigated to their relation to Plasmodium vivax malaria in the Brazilian Amazon. This cohort study was performed in the municipalities of Careiro and, Manaus, in Western Brazilian Amazon. A total of 319 patients with P. vivax malaria and, 263 healthy controls with no previous history of malaria were included in the study. Genomic DNA was extracted from blood collected on filter paper, using the QIAamp ® DNA Mini Kit, according to the manufacturer's suggested protocol. The rs5743899 and rs3750920 polymorphisms of the TOLLIP gene were typed by PCR-RFLP. Homozygous individuals for the rs3750920 T allele gene had twice the risk of developing malaria when compared to individuals homozygous for the C allele (OR 2.0 [95% CI 1.23-3.07]; p = 0.004). In the dominant model, carriers the C allele indicates protection to malaria, carriers of the C allele were compared to individuals with the T allele, and the difference is highly significant (OR 0.52 [95% CI 0.37-0.76]; p = 0.0006). The linkage disequilibrium between the two polymorphisms was weak (r 2  = 0.037; D' = 0.27). These findings suggest that genes involved in the TLRs-pathway may be involved in malaria susceptibility. The association of the TOLLIP rs3750920 T allele with susceptibility to malaria further provides evidence that genetic variations in immune response genes may predispose individuals to malaria.

  10. Gender-specific out-migration, deforestation and urbanization in the Ecuadorian Amazon

    NASA Astrophysics Data System (ADS)

    Barbieri, Alisson F.; Carr, David L.

    2005-07-01

    The Ecuadorian Amazon, one of the richest reserves of biodiversity in the world, has faced one of the highest rates of deforestation of any Amazonian nation. Most of this forest elimination has been caused by agricultural colonization that followed the discovery of oil fields in 1967. Since the 1990s, an increasing process of urbanization has also engendered new patterns of population mobility within the Amazon, along with traditional ways by which rural settlers make their living. However, while very significant in its effects on deforestation, urbanization and regional development, population mobility within the Amazon has hardly been studied at all, as well as the distinct migration patterns between men and women. This paper uses a longitudinal dataset of 250 farm households in the Northern Ecuadorian Amazon to understand differentials between men and women migrants to urban and rural destinations and between men and women non-migrants. First, we use hazard analysis based on the Kaplan-Meier (KM) estimator to obtain the cumulative probability that an individual living in the study area in 1990 or at time t, will out-migrated at some time, t+ n, before 1999. Results indicate that out-migration to other rural areas in the Amazon, especially pristine areas is considerably greater than out-migration to the growing, but still incipient, Amazonian urban areas. Furthermore, men are more likely to out-migrate to rural areas than women, while the reverse occurs for urban areas. Difference-of-means tests were employed to examine potential factors accounting for differentials between male and female out-migration to urban and rural areas. Among the key results, relative to men younger women are more likely to out-migrate to urban areas; more difficult access from farms to towns and roads constrains women's migration; and access to new lands in the Amazon-an important cause of further deforestation-is more associated with male out-migration. Economic factors such as

  11. Mid-Holocene to Present Climate Transition in Tropical South America

    NASA Astrophysics Data System (ADS)

    Turcq, B.; Cordeiro, R.; Sifeddine, A.; Braconnot, P.; Dias, P. S.; Costa, R.; Jorgetti, T.

    2008-12-01

    The classical illustration of Holocene climate changes in tropical South America is the huge rising of Titicaca lake level from 4400 to 4000 cal BP. Because the Amazon basin is the source of Andean rainfalls we have explored Amazonian data of climate changes during the Holocene to better understand the cause of this abrupt transition. Amazonian data confirm the existence of mid-Holocene dryness: (1) lacustrine level studies show a lower precipitation/evaporation budget than present, with the lowest lake levels between 8500 and 6800 cal BP; (2) although the dominant Holocene vegetation has always been the rainforest in the heart of Amazonia, this forest expanded towards the northwestern and southwestern regions from 6800 to 1550 cal BP, moreover, pioneer elements of the rainforest developed during the mid-Holocene and the best example is those of Cecropia, between 9000 and 5000 cal BP. (3) soil d13C indicates a forest expansion over savannas areas in Roraima (north), Mato Grosso and Rondonia (southwest), during the Holocene. (4) the mid-Holocene (8000- 4000 cal BP) is characterized by repeated occurrences of forest fires, marked by the presence of charcoals in soils and lacustrine sediments. However these different records are not characterized by abrupt transitions at the end of the Middle Holocene in Amazonia. In the Andean records there is a clear north-south shift in the timing of the transition. Analysis of coupled Ocean Atmosphere Model simulations suggest that convection in Amazon basin is directly controlled by insolation leading to an almost linear response of local climate to the global forcing. Differently, in the eastern and south-western regions where the rain is brought by the South American Monsoon, the climate transition appears more abrupt. It may be because the involved climate mechanisms are more complex and depend on Ocean/Atmosphere/Vegetation coupled process (ITCZ position, ZCAS formation, etc.). Tectonic movements or threshold links to

  12. Investigating smoke's influence on primary production throughout the Amazon

    NASA Astrophysics Data System (ADS)

    Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.

    2007-12-01

    Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).

  13. Size distribution of Amazon River bed sediment

    USGS Publications Warehouse

    Nordin, C.F.; Meade, R.H.; Curtis, W.F.; Bosio, N.J.; Landim, P.M.B.

    1980-01-01

    The first recorded observations of bed material of the Amazon River were made in 1843 by Lt William Lewis Herndon of the US Navy, when he travelled the river from its headwaters to its mouth, sounding its depths, and noting the nature of particles caught in a heavy grease smeared to the bottom of his sounding weight1. He reported the bed material of the river to be mostly sand and fine gravel. Oltman and Ames took samples at a few locations in 1963 and 1964, and reported the bed material at O??bidos, Brazil, to be fine sands, with median diameters ranging from 0.15 to 0.25 mm (ref. 2). We present here a summary of particle-size analyses of samples of streambed material collected from the Amazon River and its major tributaries along a reach of the river from Iquitos in Peru, ???3,500 km above Macapa?? Brazil, to a point 220 km above Macapa??3. ?? 1980 Nature Publishing Group.

  14. Methylmercury Modulation in Amazon Rivers Linked to Basin Characteristics and Seasonal Flood-Pulse.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2017-12-19

    We investigated the impact of the seasonal inundation of wetlands on methylmercury (MeHg) concentration dynamics in the Amazon river system. We sampled 38 sites along the Solimões/Amazon and Negro rivers and their tributaries during distinct phases of the annual flood-pulse. MeHg dynamics in both basins was contrasted to provide insight into the factors controlling export of MeHg to the Amazon system. The export of MeHg by rivers was substantially higher during high-water in both basins since elevated MeHg concentrations and discharge occurred during this time. MeHg concentration was positively correlated to %flooded area upstream of the sampling site in the Solimões/Amazon Basin with the best correlation obtained using 100 km buffers instead of whole basin areas. The lower correlations obtained with the whole basin apparently reflected variable losses of MeHg exported from upstream wetlands due to demethylation, absorption, deposition, and degradation before reaching the sampling site. A similar correlation between %flooded area and MeHg concentrations was not observed in the Negro Basin probably due to the variable export of MeHg from poorly drained soils that are abundant in this basin but not consistently flooded.

  15. Jotï ecogony, Venezuelan Amazon

    NASA Astrophysics Data System (ADS)

    Zent, Egleé L.

    2013-03-01

    The current environmental crisis permeates the discourse and concerns of people all over the world. Consideration of diverse environmental ethics showing the alternative ways in which people conceptualize and relate to nature and natural resources are critical for bringing about more sustainable human behaviors. After a brief review of Western historical notions of nature, this work explores the ecogony, or causal reasons, that trigger the behavior of the Jotï, an Amerindian people of the Venezuelan Amazon, with other entities and the forest that they inhabit. The analysis presented synthesizes 15 years of transdisciplinary ethno-ecological research comprising quantitative and qualitative methods (collection of herbarium voucher specimens, floristic inventories in forest plots, structured interviews focused on plot vegetation, semi-structured interviews of life-histories, participant observation, time allocation studies, food resource accounting, focal person following observations, garden crop inventories and censuses, mapping of wild resource harvest locations, among others). Jotï pragmatic and ideological tenets generate a distinctive environmental ethics based on ecogonic nodes. Notions of interdependence, humanity and person are articulated on a daily basis through several dynamics: (1) hyper-awareness of all living things’ dependence on each other and other elements of the biophysical environment at macroscales and microscales, (2) the construction of human spiritual, conscious, physical and agentive constituents from a variety of diverse botanical and zoological species and mineral components of their homeland, and (3) an understanding of the aggregate surroundings, including a significant portion of the biotic and abiotic components, as potential subjects with awareness, creativity and moral stances. This condition of interdependence confers rights and duties on all the parts. Jotï horizontal communications with and among life-forms sustain their

  16. African Dust Fertilizing the Amazon Rainforest: An Assessment with Seven-year Record of CALIOP Measurements

    NASA Astrophysics Data System (ADS)

    Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Prospero, J. M.; Omar, A. H.; Remer, L. A.; Winker, D. M.; Yang, Y.; Zhang, Y.; Zhang, Z.

    2014-12-01

    The productivity of Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of transported African dust in boreal winter and spring is considered an important nutrient input for the Amazon Basin, though its magnitude is not well qunatified. This study provides a remote sensing observation-based estimate of dust deposition in the Amazon Basin using a 7-year (2007-2013) record of three dimensional (3D) distributions of aerosol in both cloud-free and above-cloud conditions from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). It is estimated that the 7-year average of dust deposition into the Amazon Basin amounts to 15.1 ~ 32.1 Tg a-1 (Tg = 1012 g). This imported dust could provide 0.012 ~ 0.025 Tg P a-1 or equivalent to 12 ~ 26 g P ha-1 a-1 to fertilize the Amazon rainforest, which largely compensates the hydrological loss of P. The CLAIOP-based estimate agrees better with estimates from in-situ measurements and model simulations than what has been reported in literature. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The trans-Atlantic transport and deposition of dust shows strong interannual variations that are found to correlate with the North Atlantic Oscillation index in the winter season and anticorrelate with the prior-year Sahel Precipitation Index on an annual basis. Uncertainties associated with the estimate will also be discussed.

  17. Oil pollution in soils and sediments from the Northern Peruvian Amazon.

    PubMed

    Rosell-Melé, Antoni; Moraleda-Cibrián, Núria; Cartró-Sabaté, Mar; Colomer-Ventura, Ferran; Mayor, Pedro; Orta-Martínez, Martí

    2018-01-01

    Oil has been extracted from the Northern Peruvian Amazon for over four decades. However, few scientific studies have assessed the impacts of such activities in the environment and health of indigenous communities in the region. We have investigated the occurrence of petrogenic hydrocarbon pollution in soils and sediments from areas favoured as hunting or fishing grounds by local indigenous inhabitants. The study was conducted in one of the most productive oil blocks in Peru, located in the headwaters of the Amazon river. Soils and river sediments, in the vicinity of oil extraction and processing infrastructure, contained an oil pollution signature as attested by the occurrence of hopanes and steranes. Given the lack of any other significant source of oil pollution in the region, the sources of hydrocarbons are likely to be the activities of the oil industry in the oil block, from voluntary discharges or accidental spills. Spillage of produced water was commonplace until 2009. Moreover, petrogenic compounds were absent in control samples in sites far removed from any oil infrastructure in the oil block. Our findings suggest that wildlife and indigenous populations in this region of the Amazon are exposed to the ingestion of oil polluted soils and sediments. The data obtained supports previous claims that the local spillage of oil and produced waters in the water courses in the Corrientes and Pastaza basins could have eventually reached the main water course of the Amazon. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  19. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    PubMed Central

    de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics. PMID:29375895

  20. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin.

    PubMed

    de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r 2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  1. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    NASA Astrophysics Data System (ADS)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected

  2. The ambiguity of drought events, a bottleneck for Amazon forest drought response modelling

    NASA Astrophysics Data System (ADS)

    De Deurwaerder, Hannes; Verbeeck, Hans; Baker, Timothy; Christoffersen, Bradley; Ciais, Philippe; Galbraith, David; Guimberteau, Matthieu; Kruijt, Bart; Langerwisch, Fanny; Meir, Patrick; Rammig, Anja; Thonicke, Kirsten; Von Randow, Celso; Zhang, Ke

    2016-04-01

    Considering the important role of the Amazon forest in the global water and carbon cycle, the prognosis of altered hydrological patterns resulting from climate change provides strong incentive for apprehending the direct implications of drought on the vegetation of this ecosystem. Dynamic global vegetation models have the potential of providing a useful tool to study drought impacts on various spatial and temporal scales. This however assumes the models being able to properly represent drought impact mechanisms. But how well do the models succeed in meeting this assumption? Within this study meteorological driver data and model output data of 4 different DGVMs, i.e. ORCHIDEE, JULES, INLAND and LPGmL, are studied. Using the palmer drought severity index (PDSI) and the mean cumulative water deficit (MWD), temporal and spatial representation of drought events are studied in the driver data and are referenced to historical extreme drought events in the Amazon. Subsequently, within the resulting temporal and spatial frame, we studied the drought impact on the above ground biomass (AGB) and gross primary production (GPP) fluxes. Flux tower data, field inventory data and the JUNG data-driven GPP product for the Amazon region are used for validation. Our findings not only suggest that the current state of the studied DGVMs is inadequate in representing Amazon droughts in general, but also highlights strong inter-model differences in drought responses. Using scatterplot-studies and input-output correlations, we provide insight in the origin of these encountered inter-model differences. In addition, we present directives of model development and improvement in scope of Amazon forest drought response modelling.

  3. Amazon Basin climate under global warming: the role of the sea surface temperature.

    PubMed

    Harris, Phil P; Huntingford, Chris; Cox, Peter M

    2008-05-27

    The Hadley Centre coupled climate-carbon cycle model (HadCM3LC) predicts loss of the Amazon rainforest in response to future anthropogenic greenhouse gas emissions. In this study, the atmospheric component of HadCM3LC is used to assess the role of simulated changes in mid-twenty-first century sea surface temperature (SST) in Amazon Basin climate change. When the full HadCM3LC SST anomalies (SSTAs) are used, the atmosphere model reproduces the Amazon Basin climate change exhibited by HadCM3LC, including much of the reduction in Amazon Basin rainfall. This rainfall change is shown to be the combined effect of SSTAs in both the tropical Atlantic and the Pacific, with roughly equal contributions from each basin. The greatest rainfall reduction occurs from May to October, outside of the mature South American monsoon (SAM) season. This dry season response is the combined effect of a more rapid warming of the tropical North Atlantic relative to the south, and warm SSTAs in the tropical east Pacific. Conversely, a weak enhancement of mature SAM season rainfall in response to Atlantic SST change is suppressed by the atmospheric response to Pacific SST. This net wet season response is sufficient to prevent dry season soil moisture deficits from being recharged through the SAM season, leading to a perennial soil moisture reduction and an associated 30% reduction in annual Amazon Basin net primary productivity (NPP). A further 23% NPP reduction occurs in response to a 3.5 degrees C warmer air temperature associated with a global mean SST warming.

  4. Phylogeography of the dark fruit-eating bat Artibeus obscurus in the Brazilian Amazon.

    PubMed

    Ferreira, Wallax Augusto Silva; Borges, Bárbara do Nascimento; Rodrigues-Antunes, Symara; de Andrade, Fernanda Atanaena Gonçalves; Aguiar, Gilberto Ferreira de Souza; de Sousa e Silva-Junior, José; Marques-Aguiar, Suely Aparecida; Harada, Maria Lúcia

    2014-01-01

    Artibeus obscurus (Mammalia: Chiroptera) is endemic to South America, being found in at least 18 Brazilian states. Recent studies revealed that different populations of this genus present distinct phylogeographic patterns; however, very little is known on the population genetics structure of A. obscurus in the Amazon rainforest. Here, using a fragment (1010bp) of the mitochondrial gene cytochrome b from 87 samples, we investigated patterns of genetic divergence among populations of A. obscurus from different locations in the Brazilian Amazon rainforest and compared them with other Brazilian and South American regions. Analysis of molecular variance (AMOVA), fixation index (Fst) analysis, and phylogeographic patterns showed divergence between two major monophyletic groups, each one corresponding to a geographic region associated with the Atlantic and Amazon forest biomes. The Atlantic forest clusters formed a monophyletic group with a high bootstrap support and a fragmented distribution that follows the pattern predicted by the Refuge Theory. On the other hand, a different scenario was observed for the Amazon forest, where no fragmentation was identified. The AMOVA results revealed a significant geographic heterogeneity in the distribution of genetic variation, with 70% found within populations across the studied populations (Fst values ranging from 0.05864 to 0.09673; φST = 0.55). The intrapopulational analysis revealed that one population (Bragança) showed significant evidence of population expansion, with the formation of 2 distinct phylogroups, suggesting the occurrence of a subspecies or at least a different population in this region. These results also suggest considerable heterogeneity for A. obscurus in the Amazon region.

  5. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhl, C.; Kauffman, J.B.

    1990-04-01

    In the state of Para, Brazil, in the eastern Amazon, the authors studied the potential for sustained fire events within four dominant vegetation cover types (undisturbed rain forest, selectively logged forest, second-growth forest, and open pasture), by measuring fuel availability, microclimate, and rates of fuel moisture loss. They also estimated the potential tree mortality that might result from a wide-scale Amazon forest fire by measuring the thermal properties of bark for all trees in a 5-ha stand of mature forest, followed by measurements of heat flux through bark during simulated fires. In pastures the average midday temperature was almost 10{degree}Cmore » greater and the average midday relative humidity was 30% lower than in primary forest. The most five-prone ecosystem was the open pasture followed by selectively logged forest, second growth forest, and undisturbed rain forest in which sustained combustion was not possible even after prolonged rainless periods. Even though the autogenic factors in primary forest of the eastern Amazon create a microclimate that virtually eliminates the probability of fire, they are currently a common event in disturbed areas of Amazonia. As many as 8 {times} 10{sup 6} ha burned in the Amazon Basin of Brazil in 1987 alone. In terms of current land-use patterns, altered microclimates, and fuel mass, there are also striking similarities between the eastern Amazon and East Kalimantan, Indonesia (the site of recent rain forest wildfires that burned 3.5 {times} 10{sup 6} ha).« less

  6. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    NASA Astrophysics Data System (ADS)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  7. The spatial extent of change in tropical forest ecosystem services in the Amazon delta

    NASA Astrophysics Data System (ADS)

    de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.

    2014-12-01

    Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest

  8. Role of Brazilian Amazon protected areas in climate change mitigation

    PubMed Central

    Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio

    2010-01-01

    Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation. PMID:20505122

  9. Response of the Amazon rainforest to late Pleistocene climate variability

    NASA Astrophysics Data System (ADS)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  10. Amazon forests did not green up during the 2005 drought

    NASA Astrophysics Data System (ADS)

    Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E. F.; Knyazikhin, Y.; Nemani, R. R.; Myneni, R. B.

    2009-12-01

    The sensitivity of Amazon rainforests to dry-season droughts remains unresolved with reports of enhanced tree mortality and forest fires, on one hand, and, excessive forest green-up, on the other. Here using the latest and improved version of satellite-derived vegetation greenness data - Collection 5 (C5) Enhanced Vegetation Index (EVI) - we report that the there is no evidence of large-scale greening of the Amazon during the 2005 drought - approximately 11%-12% of these forests display greening, while, 28%-29% show browning or no-change, and for the rest the data are not of sufficient quality to characterize any changes. In addition, independent satellite-derived data on precipitation, surface radiation and aerosols do not substantiate underlying assumptions of the hypothesis of enhanced photosynthetic capacity of intact Amazon forests stimulated by increased light availability during a drought. First, interannual changes in dry-season greenness are unrelated to concurrent changes in light availability. Second, the 2005 drought cannot be used as a surrogate for light availability to these rainforests owing to persistently high aerosol loads in the atmosphere. Third, the spatial extent and magnitude of greening do not change systematically with drought severity. Finally, the changes in vegetation activity of these forests during the drought-stricken dry season of 2005 are not unique in comparison to that observed during dry seasons of non-drought years. Our analysis also demonstrates the critical role of biomass burning aerosols in limiting light availability to water stressed Amazon forests during the dry season of 2005. This will have important implications for the sensitivity of these forests to similar droughts in future.

  11. Role of Brazilian Amazon protected areas in climate change mitigation.

    PubMed

    Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio

    2010-06-15

    Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 +/- 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 +/- 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.

  12. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    NASA Technical Reports Server (NTRS)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  13. Amazon plant diversity revealed by a taxonomically verified species list

    PubMed Central

    Cardoso, Domingos; Särkinen, Tiina; Alexander, Sara; Amorim, André M.; Bittrich, Volker; Celis, Marcela; Daly, Douglas C.; Fiaschi, Pedro; Funk, Vicki A.; Giacomin, Leandro L.; Heiden, Gustavo; Iganci, João; Kelloff, Carol L.; Knapp, Sandra; Cavalcante de Lima, Haroldo; Machado, Anderson F. P.; dos Santos, Rubens Manoel; Mello-Silva, Renato; Michelangeli, Fabián A.; Mitchell, John; Moonlight, Peter; de Moraes, Pedro Luís Rodrigues; Mori, Scott A.; Nunes, Teonildes Sacramento; Pennington, Terry D.; Pirani, José Rubens; Prance, Ghillean T.; de Queiroz, Luciano Paganucci; Rapini, Alessandro; Rincon, Carlos Alberto Vargas; Roque, Nádia; Shimizu, Gustavo; Sobral, Marcos; Stehmann, João Renato; Stevens, Warren D.; Taylor, Charlotte M.; Trovó, Marcelo; van den Berg, Cássio; van der Werff, Henk; Viana, Pedro Lage; Zartman, Charles E.; Forzza, Rafaela Campostrini

    2017-01-01

    Recent debates on the number of plant species in the vast lowland rain forests of the Amazon have been based largely on model estimates, neglecting published checklists based on verified voucher data. Here we collate taxonomically verified checklists to present a list of seed plant species from lowland Amazon rain forests. Our list comprises 14,003 species, of which 6,727 are trees. These figures are similar to estimates derived from nonparametric ecological models, but they contrast strongly with predictions of much higher tree diversity derived from parametric models. Based on the known proportion of tree species in neotropical lowland rain forest communities as measured in complete plot censuses, and on overall estimates of seed plant diversity in Brazil and in the neotropics in general, it is more likely that tree diversity in the Amazon is closer to the lower estimates derived from nonparametric models. Much remains unknown about Amazonian plant diversity, but this taxonomically verified dataset provides a valid starting point for macroecological and evolutionary studies aimed at understanding the origin, evolution, and ecology of the exceptional biodiversity of Amazonian forests. PMID:28923966

  14. Remote sensing in forestry: Application to the Amazon region

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A.; Filho, P. H.; Shimabukuro, Y. E.

    1981-01-01

    The utilization of satellite remote sensing in forestry is reviewed with emphasis on studies performed for the Brazilian Amazon Region. Timber identification, deforestation, and pasture degradation after deforestation are discussed.

  15. Measurement of deforestation in the Brazilian Amazon using satellite remote sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skole, D.L.

    1992-01-01

    Understanding of the role of the biota in the global carbon cycle is limited by an absence of accurate measurements of deforestation rates in the tropics. This study measures the rate and extent of deforestation in the Brazilian Amazon, the largest extant tropical forest biome in the world. The study uses remote sensing measurements of deforestation rates, the area of secondary vegetation, and tabular data to document deforestation. The analysis concludes: (1) AVHRR will greatly overestimate deforestation and be highly variable; the use of a brightness temperature threshold is highly sensitive and unreliable. The upward bias of AVHRR is amore » function of the density of deforestation. (2) Accurate measurement of deforestation requires Landsat TM data, and can be accomplished using low cost visual interpretation of photographic products at 1:250,000 scales. (3) Secondary growth in the Brazilian Amazon represents a large fraction of the total deforested area, and the abandonment of agricultural land is an important land cover transition. Abandonment rates were 70--83% of clearing rates from primary forests. At any one point in time, approximately 30% of the deforested area is in some stage of abandonment, and quite likely nearly all deforested land becomes abandoned after approximately 5 years. (4) Previous estimates of the total area deforested in the Amazon, as well as deforestation rates, have been too high by as much as 4-fold. A complete assessment of the entire Legal Amazon using over 200 Landsat images measures 251 [times] 10[sup 3] km[sup 2] deforestation as of 1988, or approximately 6% of the closed forests of the region. The average annual rate of deforestation between 1978 and 1988 was 18 [times] 10[sup 3] km[sup 2] yr[sup [minus]1]. These findings suggest the estimates of carbon emissions from the Amazon for the late 1980s have been too high, since the area of regrowth is large and rates of deforestation are lower than previously believed.« less

  16. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, S. T.; Artaxo, P.; Machado, L.

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over themore » city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.« less

  17. Dimethyl sulfide in the Amazon rain forest: DMS in the Amazon

    DOE PAGES

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; ...

    2015-01-08

    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate 44 through the formation of gaseous sulfuric acid, which can yield secondary sulfate 45 aerosols and contribute to new particle formation. While oceans are generally 46 considered the dominant source of DMS, a shortage of ecosystem observations prevents 47 an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified 48 ambient DMS mixing ratios within and above a primary rainforest ecosystem in the 49 central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-50 2014). Elevated but highly variable DMS mixing ratios were observed within themore » 51 canopy, showing clear evidence of a net ecosystem source to the atmosphere during 52 both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios 53 lasting up to 8 hours (up to 160 ppt) often occurred within the canopy and near the 54 surface during many evenings and nights. Daytime gradients showed mixing ratios (up 55 to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain 56 event. The spatial and temporal distribution of DMS suggests that ambient levels and 57 their potential climatic impacts are dominated by local soil and plant emissions. A soil 58 source was confirmed by measurements of DMS emission fluxes from Amazon soils as 59 a function of temperature and soil moisture. Furthermore, light and temperature 60 dependent DMS emissions were measured from seven tropical tree species. Our study 61 has important implications for understanding terrestrial DMS sources and their role in 62 coupled land-atmosphere climate feedbacks. 63« less

  18. Mechanisms for the formation and growth of nanometer-sized particles in the Amazon: New insights from GoAmazon2014 and the Tapajos Upwind Forest Flux Study (TUFFS).

    NASA Astrophysics Data System (ADS)

    Smith, J. N.; Park, J. H.; Kuang, C.; Bustillos, J. O. V.; Souza, R. A. F. D.; Wiedemann, K. T.; Munger, J. W.; Wofsy, S. C.; Rizzo, L. V.; Artaxo, P.; Martin, S. T.; Seco, R.; Kim, S.; Guenther, A. B.; Batalha, S. S. A.; Alves, E. G.; Tota, J.

    2014-12-01

    The Amazon rainforest is a unique and important place for studying aerosol formation and its impacts on atmospheric chemistry and climate. In remote areas, the atmosphere is characterized by low particle number concentrations and high humidity; perturbations in the particle number concentrations and climate-relevant physical and chemical properties could therefore have a great impact on cloud formation and thus on regional climate and precipitation. While it was previously believed that new particle formation occurs rarely in the Amazon, observations in the Amazon of a sustained steady-state particle number concentration, along with an abundance of dry and wet surfaces upon which particles may deposit, imply that sources of new particles must exist in this region. We present observations from two studies, GOAmazon2014 and Tapajos Upwind Forest Flux Study (TUFFS), which seek to identify and quantify the sources of aerosol particles in the Amazon. Measurements of the chemical composition of 20 - 100 nm diameter aerosol particles at the T3 measurement site during the wet and dry season campaigns of GOAmazon2014 show the presence of inorganic ions such as potassium ion and sulfate, as well as organic ion such as oxalate, in ambient nanoparticles. These observations, combined with 1.5 - 300 nm diameter particle number size distributions and trace gas measurements of organic compounds and sulfuric acid, are used to determine the relative importance of sulfuric acid, organic compounds, and primary biological particle emissions to nanoparticle formation and growth. Observations of 3 - 100 nm diameter particle number size distributions at the KM67 tower site during TUFFS show frequent new particle formation events during the wet season in April, transitioning to a scenario of less frequent events in July at the onset of the dry season. These observations highlight the regional nature of new particle formation in the Amazon, and suggest that additional observations at a

  19. Crop damage of Eriotheca gracilipes (Bombacaceae) by the Blue-Fronted Amazon (Amazona aestiva, Psittacidae), in the Brazilian Cerrado.

    PubMed

    Ragusa-Netto, J

    2014-11-01

    Seed predation has major effects on the reproductive success of individuals, spatial patterns of populations, genetic variability, interspecific interactions and ultimately in the diversity of tree communities. At a Brazilian savanna, I evaluated the proportional crop loss of Eriotheca gracilipes due the Blue-Fronted Amazon (Amazona aestiva) during a fruiting period. Also, I analyzed the relationship between proportional crop loss to Amazons and both fruit crop size and the distance from the nearest damaged conspecific. Trees produced from 1 to 109 fruits, so that Amazons foraged more often on trees bearing larger fruit crop size, while seldom visited less productive trees. Moreover, the relationship between fruit crop sizes and the number of depredated fruits was significant. However, when only damaged trees were assessed, I found a negative and significant relation between fruit crop size and proportional crop loss to Blue-Fronted Amazons. Taking into account this as a measure more directly related to the probability of seed survival, a negative density dependent effect emerged. Also, Amazons similarly damaged the fruit crops of either close or distant neighboring damaged trees. Hence, in spite of Blue-Fronted Amazons searched for E. gracilipes bearing large fruit crops, they were swamped due to the presence of more fruits than they could eat. Moderate seed predation by Blue-Fronted Amazons either at trees with large fruit crops or in areas where fruiting trees were aggregated implies in an enhanced probability of E. gracilipes seed survival and consequent regeneration success.

  20. Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon Craton: evidence from baddeleyite and zircon U Pb SHRIMP geochronology

    NASA Astrophysics Data System (ADS)

    Santos, João Orestes Schneider; Hartmann, Léo Afraneo; McNaughton, Neal Jesse; Fletcher, Ian Robert

    2002-09-01

    The precise timing and possible sources of the mafic rocks in the Amazon craton are critical for reconstruction of the Atlantica supercontinent and correlation of mafic magmatism worldwide. New SHRIMP U-Pb baddeleyite and zircon ages and the reinterpretation of 207 existing dates indicate one orogenic (Ingarana) and four postorogenic (Crepori, Cachoeira Seca, Piranhas, and Periquito) basaltic events in the Tapajós Province, south central Amazon craton. Orogenic gabbro dikes that host gold mineralization are 1893 Ma and interpreted as associated with the Ingarana gabbro intrusions of the bimodal calk-alkalic Parauari intrusive suite. The age of 1893 Ma can be used as a guide to discriminate older and mineralized orogenic dikes from younger and nonmineralized Crepori- and Cachoeira Seca-related mafic dikes. The baddeleyite U-Pb age of the postorogenic Crepori dolerite (gabbro-dolerite sills and dikes) is 1780±9 Ma, ˜150 my older than the ages provided by K-Ar. This value correlates well with the Avanavero tholeiitic intrusions in the Roraima group, in the northern part of the craton in Guyana, Venezuela, and Roraima in Brazil. Early Statherian tholeiitic magmatism was widespread not only in the Amazon craton, but also in the La Plata craton of southern South America, where it is known as the giant Piedra Alta swarm of Uruguay and the post-Trans-Amazonian dikes of Tandil in Argentina. The Cachoeira Seca troctolite represents laccoliths, Feixes, and São Domingos, whose baddeleyite U-Pb age is 1186±12 Ma, 120-150 my older than the known K-Ar ages. This age is comparable to other Stenian gabbroic rocks with alkalic affinity in the craton, such as the Seringa Formation in NE Amazonas and the basaltic flows of the Nova Floresta formation in Rondônia. Dolerite from the giant Piranhas dike swarm in the western Tapajós Province has a Middle Cambrian age (507±4 Ma, baddeleyite) and inherited zircons in the 2238-1229 Ma range. The Piranhas dikes fill extensional NNE and

  1. Act No. 24994 of 19 January 1989. Basic Law on the Rural Development of the Peruvian Amazon Region.

    PubMed

    1989-01-01

    This Act sets forth the government's policy on rural development of the Peruvian Amazon region. Major objectives of the Act include the promotion of new rural settlements in the Amazon region, the promotion of migration from the Andes to the Amazon region, and the stimulation of agriculture, livestock, and forestry activities in the Amazon region. The following are the means that the government will use, among others, to attain these goals: 1) the development of Population Displacement Programmes, which will give individual persons and families economic and logistic support in moving; 2) the establishment of Civic Colonizing Services, temporary mobile units, which will offer settlers health services, education services, technical assistance with respect to agriculture and livestock, and promotional credits; 3) the creation of the Council for Amazon River Transport to coordinate and recommend activities to improve river transport; 4) the granting to settlers of land, free education for their children, medical care, technical training and assistance with respect to agriculture, and a supply of seeds; 5) the exemption of certain investors from payment of income taxes; and 6) the granting of a wide range of incentives for agricultural production. The Act also creates a Council for Planning and Development in the Amazon Region to draw up and approve a Plan for the Development of the Amazon Region. It calls for the rational use of the natural resources of the Amazon Region in the framework of preserving the ecosystem and preventing its ruin and delegates to the regional governments the authority to enter into contracts on the use of forest materials and to undertake reforestation programs. Finally, the Act provides various guarantees for the native population, including guarantees with respect to land and preservation of ethnic and social identity.

  2. Polycystic echinococcosis in Pacas, Amazon region, Peru.

    PubMed

    Mayor, Pedro; Baquedano, Laura E; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A; Mamani, Victor J; Gavidia, Cesar M

    2015-03-01

    In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli-contaminated areas.

  3. Potential contribution of groundwater to dry-season ET in the Amazon

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Fan, Ying

    2010-05-01

    Climate and land ecosystem models simulate vegetation stress in the Amazon forest in the dry season, but observations show enhanced growth in response to higher radiation under less cloudy skies indicating an adequate water supply. The question is: how does the vegetation obtain sufficient water, and what is missing in the models? Shallow model soil and rooting depth is a factor; the ability of roots to move water up and down (hydraulic redistribution) may be another, but another cause may lie in the buffering effect of the groundwater found in nature but absent in models. We present observational and modeling evidence that the vast groundwater store, consequence of high annual rainfall combined with poor drainage in the Amazon, may provide a stable source for dry-season photosynthesis. The water table beneath the Amazon is sufficiently shallow (38% area <5m and 63% area <10m deep) as to contribute >2mm/day to dry-season evapotranspiration, a non-negligible portion of tower-observed flux of 3-4mm/day, the latter including canopy-interception loss and open-water evaporation. This may have important implications to our understanding of Amazonia ecosystem response and feedback to climate change. Current models, lacking groundwater, predict a significant reduction in dry-season photosynthesis under current climate and large-scale dieback under projected future climate converting the Amazon from a net carbon sink to a net source and accelerating warming. If groundwater is considered in the models, the magnitude of the responses and feedbacks may be reduced.

  4. Insight on the Peruvian Amazon River: A Planform Metric Characterization of its Morphodynamics

    NASA Astrophysics Data System (ADS)

    Garcia, A. M. P.; Ortals, C.; Frias, C. E.; Abad, J. D.; Vizcarra, J.

    2014-12-01

    Starting in Peru, the Amazon River flows through Colombia and Brazil; additionally, tributaries from Bolivia, Venezuela, and Ecuador contribute to the massive river and its unique geomorphic features. Accordingly, the Amazon Basin has become an important aspect of South America; it is an area of extraordinary biodiversity, rich resources, and unique cultures. However, due to the sheer magnitude and exceptionality of the Amazon River, research regarding the morphodynamic processes that shape and define the river has been difficult. Consequently, current research has not completely understood the planform dynamics of some portions of this river that present a main channel and secondary channels known as "anabranching structures". The purpose of this research was to gain an understanding of the geomorphology of the upper Amazon, the Peruvian section, by obtaining migration rates and planform metrics, including channel count, length, width, and sinuosity, as well as island count, area, and shape. With this data, the morphodynamics of the Peruvian Amazon, especially the relationship between the main channel and its secondary channels in each "anabranching structure" along the river, could be analyzed according to correlations found between various metrics. This analysis was carried out for 5-year time spans over a period of 25 years. Preliminary results showed that the average migration rate versus channel bend radius envelope peak is lower for the secondary channels than for the main channel. However, the maximum migration rate was not always found in the main channel; for several structures, the most dynamic channels were the secondary ones. This implies a certain periodicity to the river's migratory patterns that could be related to the valley boundaries, the local channel sinuosity or geological formations in the study area.

  5. Lidar observed seasonal variation of vertical canopy structure in the Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Tang, H.; Dubayah, R.

    2017-12-01

    Both light and water are important environmental factors governing tree growth. Responses of tropical forests to their changes are complicated and can vary substantially across different spatial and temporal scales. Of particular interest is the dry-season greening-up of Amazon forests, a phenomenon undergoing considerable debates whether it is real or a "light illusion" caused by artifacts of passive optical remote sensing techniques. Here we analyze seasonal dynamic patterns of vertical canopy structure in the Amazon forests using lidar observations from NASA's Ice, Cloud, and and land Elevation Satellite (ICESat). We found that the net greening of canopy layer coincides with the wet-to-dry transition period, and its net browning occurs mostly at the late dry season. The understory also shows a seasonal cycle, but with an opposite variation to canopy and minimal correlation to seasonal variations in rainfall or radiation. Our results further suggest a potential interaction between canopy layers in the light regime that can optimize the growth of Amazon forests during the dry season. This light regime variability that exists in both spatial and temporal domains can better reveal the dry-season greening-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  6. Amazon Rain Forest Classification Using J-ERS-1 SAR Data

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Kramer, C.; Alves, M.; Chapman, B.

    1994-01-01

    The Amazon rain forest is a region of the earth that is undergoing rapid change. Man-made disturbance, such as clear cutting for agriculture or mining, is altering the rain forest ecosystem. For many parts of the rain forest, seasonal changes from the wet to the dry season are also significant. Changes in the seasonal cycle of flooding and draining can cause significant alterations in the forest ecosystem.Because much of the Amazon basin is regularly covered by thick clouds, optical and infrared coverage from the LANDSAT and SPOT satellites is sporadic. Imaging radar offers a much better potential for regular monitoring of changes in this region. In particular, the J-ERS-1 satellite carries an L-band HH SAR system, which via an on-board tape recorder, can collect data from almost anywhere on the globe at any time of year.In this paper, we show how J-ERS-1 radar images can be used to accurately classify different forest types (i.e., forest, hill forest, flooded forest), disturbed areas such as clear cuts and urban areas, and river courses in the Amazon basin. J-ERS-1 data has also shown significant differences between the dry and wet season, indicating a strong potential for monitoring seasonal change. The algorithm used to classify J-ERS-1 data is a standard maximum-likelihood classifier, using the radar image local mean and standard deviation of texture as input. Rivers and clear cuts are detected using edge detection and region-growing algorithms. Since this classifier is intended to operate successfully on data taken over the entire Amazon, several options are available to enable the user to modify the algorithm to suit a particular image.

  7. Ongoing River Capture in the Amazon via Secondary Channel Flow

    NASA Astrophysics Data System (ADS)

    Goldberg, S. L.; Stokes, M.; Perron, J. T.

    2017-12-01

    The Rio Casiquiare in South America is a secondary channel that originates as a distributary of the Rio Orinoco and flows into the Rio Negro as a tributary to form a perennial connection between the Amazon and Orinoco basins, the largest and fourth-largest rivers on Earth by discharge. This unusual configuration is the result of an incomplete and ongoing river capture in which the Rio Negro is actively capturing the upper Rio Orinoco. This rarely observed intermediate stage of capture illuminates important mechanisms that drive river capture in lowland settings, both in the Amazon basin and elsewhere. In particular, we show that the capture of the Rio Orinoco by the Rio Casiquiare is driven by a combination of headward incision of a rapidly eroding tributary of the Rio Negro, sedimentation in the Rio Orinoco downstream of the bifurcation, and seasonal inundation of a low-relief divide. The initiation of the bifurcation by headward erosion caused an increase in discharge to the Rio Casiquiare while the corresponding loss of discharge to the downstream Rio Orinoco has led to observable sedimentation within the main channel. Unlike most ephemeral secondary channels, the Rio Casiquiare appears to be growing, suggesting that the present bifurcation is an unstable feature that will eventually lead to the complete capture of the upper Rio Orinoco by the Rio Casiquiare. This capture is the latest major event in the late Cenozoic drainage evolution of South America in response to Andean tectonism, and is an example of the lateral expansion of the Amazon basin through river capture following integration and entrenchment of the transcontinental Amazon River. The Rio Casiquiare provides a snapshot of an intermediate, transient state of bifurcation and inter-basin flow via a secondary channel during lowland river capture.

  8. Physiochemical characterisation of biomass burning plumes in Brazil during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2013-04-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Results are presented here from the South American Biomass Burning Analysis (SAMBBA), which took place during September and October 2012 over Brazil. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft. Measurements from the Aerodyne Aerosol Mass Spectrometer (AMS) and Single Particle Soot Photometer (SP2) form the major part of the analysis presented here. The aircraft sampled several fires in close proximity (approximately 150m above the most intense fires) in different areas of Brazil. This included two extensive areas of burning, which occurred in the states of Rondonia and Tocantins. The Rondonia fire was largely dominated by smouldering combustion of a huge single area of rainforest with a visible plume of smoke extending approximately 80km downwind. The Tocantins example contrasted with this as it was a collection of a large number of smaller fires, with flaming combustion being more prevalent. Furthermore, the burned area was largely made up of agricultural land in a cerrado (savannah-like) region of Brazil. Initial results suggest that the chemical nature of these fires differed

  9. Principal Connection / Amazon and the Whole Teacher

    ERIC Educational Resources Information Center

    Hoerr, Thomas R.

    2015-01-01

    A recent controversy over Amazon's culture has strong implications for the whole child approach, and it offers powerful lessons for principals. A significant difference between the culture of so many businesses today and the culture at good schools is that in good schools, the welfare of the employees is very important. Student success is the…

  10. Polycystic Echinococcosis in Pacas, Amazon Region, Peru

    PubMed Central

    Mayor, Pedro; Baquedano, Laura E.; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A.; Mamani, Victor J.

    2015-01-01

    In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli–contaminated areas. PMID:25695937

  11. A Slippery Slope: Children's Perceptions of Their Role in Environmental Preservation in the Peruvian Amazon

    ERIC Educational Resources Information Center

    Galeano, Rebecca

    2013-01-01

    Despite international attention and attempts to preserve the environmental diversity of the Amazon, it is an accepted fact that those who inhabit the forest must be the ones who preserve it. This article presents an analysis of how children in small rural riverine communities along the Amazon understand the importance of environmental preservation…

  12. New species of Microcentrum Scudder, 1862 (Orthoptera: Tettigonioidea: Phaneropteridae) from Amazon rainforest.

    PubMed

    Da Silva Sovano, Rafael S; Cadena-Castañeda, Oscar J

    2015-03-26

    A regional study is performed for the Amazonian species of the genus Microcentrum Scudder, 1862, its proposed Microcentrum punctifrons Brunner von Wattenwyl, 1891 as nomen dubium n. stat. and two new species are described: Microcentrum amacayacu Cadena-Casteñada, Sovano n. sp. and Microcentrum xavieri Sovano, Cadena-Casteñada n. sp. the Colombian and Brazilian Amazon, respectively. A list and a key to the Amazonian species are also provided, along with a discussion on their distribution, according to endemism areas established to Amazon rainforest.

  13. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm.

    PubMed

    Nobre, Carlos A; Sampaio, Gilvan; Borma, Laura S; Castilla-Rubio, Juan Carlos; Silva, José S; Cardoso, Manoel

    2016-09-27

    For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.

  14. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm

    PubMed Central

    Nobre, Carlos A.; Sampaio, Gilvan; Borma, Laura S.; Castilla-Rubio, Juan Carlos; Silva, José S.; Cardoso, Manoel

    2016-01-01

    For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two “tipping points,” namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale “savannization” of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation—80% reduction in the Brazilian Amazon in the last decade—opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm—away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity—in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress. PMID:27638214

  15. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm

    NASA Astrophysics Data System (ADS)

    Nobre, Carlos A.; Sampaio, Gilvan; Borma, Laura S.; Castilla-Rubio, Juan Carlos; Silva, José S.; Cardoso, Manoel

    2016-09-01

    For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two “tipping points,” namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale “savannization” of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation—80% reduction in the Brazilian Amazon in the last decade—opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm—away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity—in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.

  16. Population genetic structure and vocal dialects in an amazon parrot.

    PubMed Central

    Wright, T F; Wilkinson, G S

    2001-01-01

    The relationship between cultural and genetic evolution was examined in the yellow-naped amazon Amazona auropalliata. This species has previously been shown to have regional dialects defined by large shifts in the acoustic structure of its learned contact call. Mitochondrial DNA sequence variation from a 680 base pair segment of the first domain of the control region was assayed in 41 samples collected from two neighbouring dialects in Costa Rica. The relationship of genetic variation to vocal variation was examined using haplotype analysis, genetic distance analysis, a maximum-likelihood estimator of migration rates and phylogenetic reconstructions. All analyses indicated a high degree of gene flow and, thus, individual dispersal across dialect boundaries. Calls sampled from sound libraries suggested that temporally stable contact call dialects occur throughout the range of the yellow-naped amazon, while the presence of similar dialects in the sister species Amazona ochrocephala suggests that the propensity to form dialects is ancestral in this clade. These results indicate that genes and culture are not closely associated in the yellow-naped amazon. Rather, they suggest that regional diversity in vocalizations is maintained by selective pressures that promote social learning and allow individual repertoires to conform to local call types. PMID:11297178

  17. Atmospheric mercury concentrations in the basin of the amazon, Brazil.

    PubMed

    Hachiya, N; Takizawa, Y; Hisamatsu, S; Abe, T; Abe, Y; Motohashi, Y

    1998-01-01

    A wide regional mercury pollution in Amazon, Brazil is closely associated with goldmining that has been carried out in the basin of tributaries of the Amazon since the eighteenth century. Possible involvement has been discussed on atmospheric circulation in distributing the volatile pollutant. We developed a portable air sampler for the collection of mercury compounds and determined atmospheric mercury concentrations at several sites in Brazil including the basin of the Amazon tributaries. The mean concentration of total mercury was between 9.1 and 14.0 ng/m(3) in the basin of the Uatumã River located in the tropical rain forest far from goldmining sites and from urbanized area. These mercury levels exceeded the background level previously reported in rural area and, furthermore, were higher than concentrations observed in Rio de Janeiro and in Manaus that were compatible with the reference values for urban area. Mercury concentrations were also determined in gold refineries in the basin of the Tapajos River, and detected at a significant but not a health deteriorating level. Although only preliminary data were available, the present observations were in favor of the hypothesis that mercury is distributed widely by long distant transport by the atmospheric circulation after released at gold mining sites.

  18. Land Use Dynamics in the Brazilian Amazon

    Treesearch

    Robert Walker

    1996-01-01

    The articles presented in this special issue of Ecological Economics address the important theme of land use dynamics as it pertains to the Brazilian Amazon. Much environmental change is an ecological artifact of human agency, and such agency is often manifested in land use impacts, particularly in tropical areas. The critical problem of tropical deforestation is but...

  19. Engaging indigenous and academic knowledge on bees in the Amazon: implications for environmental management and transdisciplinary research.

    PubMed

    Athayde, Simone; Stepp, John Richard; Ballester, Wemerson C

    2016-06-20

    This paper contributes to the development of theoretical and methodological approaches that aim to engage indigenous, technical and academic knowledge for environmental management. We present an exploratory analysis of a transdisciplinary project carried out to identify and contrast indigenous and academic perspectives on the relationship between the Africanized honey bee and stingless bee species in the Brazilian Amazon. The project was developed by practitioners and researchers of the Instituto Socioambiental (ISA, a Brazilian NGO), responding to a concern raised by a funding agency, regarding the potential impact of apiculture development by indigenous peoples, on the diversity of stingless bee species in the Xingu Park, southern Brazilian Amazon. Research and educational activities were carried out among four indigenous peoples: Kawaiwete or Kaiabi, Yudja or Juruna, Kīsêdjê or Suyá and Ikpeng or Txicão. A constructivist qualitative approach was developed, which included academic literature review, conduction of semi-structured interviews with elders and leaders, community focus groups, field walks and workshops in schools in four villages. Semi-structured interviews and on-line surveys were carried out among academic experts and practitioners. We found that in both indigenous and scientific perspectives, diversity is a key aspect in keeping exotic and native species in balance and thus avoiding heightened competition and extinction. The Africanized honey bee was compared to the non-indigenous westerners who colonized the Americas, with whom indigenous peoples had to learn to coexist. We identify challenges and opportunities for engagement of indigenous and scientific knowledge for research and management of bee species in the Amazon. A combination of small-scale apiculture and meliponiculture is viewed as an approach that might help to maintain biological and cultural diversity in Amazonian landscapes. The articulation of knowledge from non

  20. Deforestation in the Brazilian Amazon: A Classroom Project.

    ERIC Educational Resources Information Center

    Nijman, Jan; Hill, A. David

    1991-01-01

    Presents a classroom project dealing with tropical deforestation in the Brazilian Amazon. Addresses environmental consequences and economic, social, and political causes. Involves both lectures and individual research and reports by student groups on deforestation causes. Includes a note-playing activity in which students make recommendations for…

  1. Highly reactive light-dependent monoterpenes in the Amazon

    DOE PAGES

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; ...

    2015-03-06

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissionsmore » of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.« less

  2. Water stress detection in the Amazon using radar

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  3. Highly reactive light-dependent monoterpenes in the Amazon

    NASA Astrophysics Data System (ADS)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  4. Outcome of oral infection in mice inoculated with Trypanosoma cruzi IV of the Western Brazilian Amazon.

    PubMed

    Margioto Teston, Ana Paula; de Abreu, Ana Paula; Abegg, Camila Piva; Gomes, Mônica Lúcia; de Ornelas Toledo, Max Jean

    2017-02-01

    A new epidemiological view of American trypanosomiasis or Chagas disease has been formulated in recent decades. Oral transmission of the etiological agent of Chagas disease, Trypanosoma cruzi, has been the most common form of transmission. The T. cruzi discrete typing units TcI and TcIV have been involved in tens outbreaks of acute cases of Chagas disease in the Brazilian Amazon region. We investigated the intensity of infection in mice that were orally inoculated (OR group) with four strains of TcIV that were isolated from two outbreaks of acute Chagas disease that was orally acquired in the state of Amazonas, Brazil. We compared the OR group with mice that were intraperitoneally inoculated (IP group). Blood samples were analyzed by fresh blood examination, hemoculture, and conventional and qualitative real-time polymerase chain reaction (PCR). Samples of different tissues were analyzed by quantitative real-time PCR. The OR group exhibited a higher maximum peak of parasitemia, greater rates of positivity, and higher parasite loads in different tissues during acute infection compared with the IP group, indicating a greater intensity of orally acquired infection. Mice that were orally inoculated with TcIV strains that were obtained from two outbreaks of orally acquired Chagas disease in Amazonas, Brazil, exhibited a more intense course of infection compared with intraperitoneally inoculated mice, reflected by higher levels of parasitemia and parasite loads. Copyright © 2016. Published by Elsevier B.V.

  5. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    NASA Astrophysics Data System (ADS)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  6. Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon

    PubMed Central

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C.; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-01-01

    Background and Objectives In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. Methods We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Results Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. Conclusion In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats. PMID:25101786

  7. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon.

    PubMed

    Guagliardo, Sarah Anne; Barboza, José Luis; Morrison, Amy C; Astete, Helvio; Vazquez-Prokopec, Gonzalo; Kitron, Uriel

    2014-08-01

    In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.

  8. Precipitation recycling in the Amazon basin

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1994-01-01

    Precipitation recycling is the contribution of evaporation within a region to precipitation in that same region. The recycling rate is a diagnostic measure of the potential for interactions between land surface hydrology and regional climate. In this paper we present a model for describing the seasonal and spatial variability of the recycling process. The precipitation recycling ratio, rho, is the basic variable in describing the recycling process. Rho is the fraction of precipitation at a certain location and time which is contributed by evaporation within the region under study. The recycling model is applied in studyiing the hydrologic cycle in the Amazon basin. It is estimated that about 25% of all the rain that falls in the Amazon basin is contributed by evaporation within the basin. This estimate is based on analysis of a data set supplied by the European Centre for Medium-range Weather Forecasts (ECMWF). The same analysis is repeated using a different data set from the Geophysical Fluid Dynamics Laboratory (GFDL). Based on this data set, the recycling ratio is estimated to be 35%. The seasonal variability of the recycling ratio is small compared with the yearly average. The new estimates of the recycling ratio are compared with results of previous studies, and the differences are explained.

  9. Dependence between Ventilation and Climate as recorded with Biomarkers over the last 420,000 years in the Guianas Region (North-western Amazon Basin)

    NASA Astrophysics Data System (ADS)

    Rama, O.; Lopez-Otalvaro, G.; Martrat, B.; Flores, J.; Sierro, F. J.; Grimalt, J. O.

    2009-12-01

    There is growing evidence that the majority of the Amazon rainforest survived the climatic threshold of the last ice age. This information is crucial given that this region could be currently near its critical resiliency tipping point; thus, minor climate warming, widespread reductions in precipitation and lengthening of the dry season may be sufficient to gradually contribute to the forest dieback and biodiversity loss [Cowling et al., 2004; Lenton et al., 2008; Maslin, 2004]. To contribute to this knowledge, palaeoclimatic oscillations have been identified in this study by using fossil organic compounds synthesized by marine and terrestrial flora and later accumulated on sediment strata (MD03-2616, 7N, 53W, -1233 meters below sea-level) from the Guianas region, closely linked to the Amazon Basin. Different indicators have been considered to continuously reconstruct the climate over the past 420,000 years at centennial scale: average annual sea surface temperatures (SST, Uk’37), productivity of the coccolithophora flora (alken-2-ones), continental vegetation variability (long chain n-alkanes) and changes in oxygenation of the deep-sea floor (ratio between n-alkan-1-ols and n-alkanes). At present, the Guianas region is largely influenced by migration of the intertropical convergence zone (ITCZ), related temperature and wind patterns, together with changes in hydrological conditions, atmospheric and oceanic fronts. Annual SST is 27.7C; two rain seasons and two dry seasons occur. At the core location, surface waters present complex seasonal configuration, while oxygen-enriched and low-salinity Antarctic Intermediate waters (AAIW) flow northward from -700 to -1500 meters depth; the Upper North Atlantic Deep waters circulate southward at greater depths [World Meteo. Org.; Masson & Delecluse, 2001; Arz et al., 2001]. This study reveals that completely different hydrological conditions and much colder climate occurred in the past, e.g. a harsh drop in SST of up to 24C

  10. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    NASA Astrophysics Data System (ADS)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  11. The Pulse of the Amazon

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Moura, J. M. S.; Mitsuya, M.; Peucker-Ehrenbrink, B.; Holmes, R. M.; Galy, V.; Drake, T.

    2017-12-01

    Rivers integrate over a fixed and definable area (the watershed), with their discharge and chemistry at any given point a function of upstream processes. As a consequence, examination of riverine discharge and chemistry can provide powerful indictors of change within a watershed. To assess the validity of this approach long-term datasets are required from fluvial environments around the globe. The Amazon River delivers one-fifth of the total freshwater discharged to the ocean and so represents a fundamentally important site for examination of long-term major ion, trace element, nutrient, and organic matter (OM) export. Here we describe data from a multi-year, monthly sampling campaign of the Amazon River at Obidos (Para, Brazil). Clear seasonality in all analyte fluxes is apparent and is linked to hydrology, however dissolved OM composition appears dominated by allochthonous sources throughout the year as evidenced by optical parameters indicative of high molecular weight and high relative aromatic content. Annual loads of some analytes for 2011-2013 inclusive varied by up to 50%, highlighting significant variability in flux from year to year that was linked to inter-annual hydrologic shifts (i.e. higher fluxes in wetter years). Finally, encompassing both intra- and inter-annual variability, a robust correlation was observed between chromophoric dissolved OM (CDOM) absorbance and dissolved organic carbon (DOC) concentration highlighting the potential to improve DOC flux estimates at this globally significant site via CDOM measurements from in situ technologies or remote sensing techniques.

  12. A user experience evaluation of Amazon Kindle mobile application

    NASA Astrophysics Data System (ADS)

    Hussain, Azham; Mkpojiogu, Emmanuel O. C.; Musa, Ja'afaru; Mortada, Salah

    2017-10-01

    There is a dramatic increase in the development of mobile applications in recent years. This makes the usability evaluation of these mobile applications an important aspect in the advancement and application of technology. In this paper, a laboratory-based usability evaluation was carried out on the Amazon Kindle app using 15 users who performed 5 tasks on the Kindle e-book mobile app. A post-test questionnaire was administered to elicit users' perception on the usability of the application. The results demonstrate that almost all the participants were satisfied with services provided by the Amazon Kindle e-book mobile app. On all the four user experience factors examined, namely, perceived ease-of-use, perceived visibility, perceived enjoyabilty, and perceived efficiency, the evaluation outcome shows that the participants had a good and rich mobile experience with the application.

  13. Tree ring reconstructed rainfall over the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lopez, Lidio; Stahle, David; Villalba, Ricardo; Torbenson, Max; Feng, Song; Cook, Edward

    2017-07-01

    Moisture sensitive tree ring chronologies of Centrolobium microchaete have been developed from seasonally dry forests in the southern Amazon Basin and used to reconstruct wet season rainfall totals from 1799 to 2012, adding over 150 years of rainfall estimates to the short instrumental record for the region. The reconstruction is correlated with the same atmospheric variables that influence the instrumental measurements of wet season rainfall. Anticyclonic circulation over midlatitude South America promotes equatorward surges of cold and relatively dry extratropical air that converge with warm moist air to form deep convection and heavy rainfall over this sector of the southern Amazon Basin. Interesting droughts and pluvials are reconstructed during the preinstrumental nineteenth and early twentieth centuries, but the tree ring reconstruction suggests that the strong multidecadal variability in instrumental and reconstructed wet season rainfall after 1950 may have been unmatched since 1799.

  14. Rare models: Roger Casement, the Amazon, and the ethnographic picturesque.

    PubMed

    Wylie, Lesley

    2010-01-01

    In 1910 Roger Casement was sent by the British government to investigate the alleged humanitarian abuses of the Peruvian Amazon Company in the Putumayo, a disputed border zone in North West Amazonia. Casement brought more than verbal and written testimony back to London. On 26 June, some six months after he returned from the Amazon, Casement collected two Amerindian boys - Omarino and Ricudo - from Southampton docks. This paper will reconstruct the brief period that these young men spent in Britain in the summer of 1911 and assess, in particular, to what extent they were treated as 'exhibits' by Casement, who not only introduced them to leading members of the British establishment but also arranged for them to be painted and photographed following contemporary ethnographic conventions.

  15. A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands

    NASA Technical Reports Server (NTRS)

    Potter, Christopher; Melack, John; Hess, Laura; Forsberg, Bruce; Novo, Evlyn Moraes; Klooster, Steven

    2004-01-01

    An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA- CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes - flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.

  16. Diel variation of larval fish abundance in the Amazon and Rio Negro.

    PubMed

    Araujo-Lima, C A; da Silva, V V; Petry, P; Oliveira, E C; Moura, S M

    2001-08-01

    Many streams and large rivers present higher ichthyoplankton densities at night. However, in some rivers this does not occur and larvae are equally abundant during the day. Larval drift diel variation is an important information for planning sampling programs for evaluating larval distribution and production. The aim of this study was to test whether the abundance of larval fish was different at either period. We tested it by comparing day and night densities of characiform, clupeiform and siluriform larvae during five years in the Amazon and one year in Rio Negro. We found that larvae of three species of characiform and larvae of siluriform were equally abundant during day and night in the Amazon. Conversely, the catch of Pellona spp. larvae was significantly higher during the day. In Rio Negro, however, larval abundance was higher during the night. These results imply that day samplings estimate adequately the abundance of these characiform and siluriform larvae in the Amazon, but not Pellona larvae. Evaluations of larved densities of Rio Negro will have to consider night sampling.

  17. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point.

    PubMed

    Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank

    2008-05-27

    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15-26Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.

  18. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Treesearch

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  19. Idealized Simulations of the Effects of Amazon Convection and Baroclinic Waves on the South Atlantic Convergence Zone

    NASA Technical Reports Server (NTRS)

    Ferreira, Rosana Nieto; Suarez, Max J.; Nigam, Sumant; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The South Atlantic Convergence Zone (SACZ) is a NW-SE oriented, stationary region of enhanced convergence and convection that extends southeastward from the ITCZ convection anchored over the Amazon region. On daily satellite images each SACZ episode is seen as a progression of one or several midlatitude cold fronts that intrude into the subtropics and tropics, becoming stationary over southeastern Brazil for a few days. Previous studies have shown that while Amazon convection plays a fundamental role in the formation of the SACZ, Atlantic sea surface temperatures and the Andes Mountains play a relatively minor role in the strength and location of the SACZ. The role of interactions between Amazon convection and midlatitude baroclinic waves in establishing the origin, position, and maintenance of the SACZ is studied here using idealized dry, multilayer global model simulations that do not include the effects of topography. The model simulations produce SACZ-like regions of low-level convergence in the presence of Amazon convection embedded in a mean-flow that contains propagating baroclinic waves. The results of these simulations indicate that Amazon convection plays two fundamental roles in the formation and location of the SACZ. First, it produces a NW-SE oriented region of low-level convergence to the SE of Amazon convection. Second, it produces a storm-track region and accompanying stronger midlatitude baroclinic waves in the region of the SACZ. It is suggested that in the presence of moist effects, the 'seedling' SACZ regions produced in these simulations can be enhanced to produce the observed SACZ.

  20. The Expansion of the Economic Frontier and the Diffusion of Violence in the Amazon

    PubMed Central

    Souza, Patrícia Feitosa; Xavier, Diego Ricardo; Rican, Stephane; de Matos, Vanderlei Pascoal; Barcellos, Christovam

    2015-01-01

    Over the last few decades, the occupation of the Amazon and the expansion of large-scale economic activities have exerted a significant negative impact on the Amazonian environment and on the health of the Amazon’s inhabitants. These processes have altered the context of the manifestation of health problems in time and space and changed the characteristics of the spatial diffusion of health problems in the region. This study analyzed the relationships between the various economic processes of territorial occupation in the Amazon and the spatial diffusion of homicidal violence through the configuration of networks of production, as well as the movements of population and merchandise. Statistical data on violence, deforestation, the production of agricultural items, and socio-economic variables, georeferenced and available for the 771 municipalities of the Legal Amazon were used in this study. The results suggest that the diffusion of violence closely follows the economic expansion front, which is related to deforestation and livestock production but has little relation to grain production, demonstrating steps and typologies of recent occupation in the Amazon that promote violence. These spatial patterns reveal environmental and socio-economic macro-determinants that materialize in geographic space through the construction of highways and the formation of city networks. PMID:26024359

  1. The evolution of organic matter along the lower Amazon River continuum - Óbidos to the ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Cunha, A.; Sawakuchi, H. O.; Moura, J. S.; Yager, P. L.; Krusche, A. V.; Richey, J. E.

    2013-12-01

    The influence of the Amazon River on global hydrologic and biogeochemical cycling is well recognized. The Amazon River provides roughly 16% of the global freshwater supply to the ocean and is a significant source of CO2 to the atmosphere, outgassing 0.5 Pg C y-1 to the atmosphere--a flux roughly equivalent to the amount of carbon 'sequestered' by the Amazon rainforest (Field et al, 1998; Richey et al., 2002; Malhi et al., 2008). However, much of our understanding of the flux of matter from the Amazon River into the Atlantic Ocean (and atmosphere) is limited to measurements made at and upstream of Óbidos, 900 km upstream from the actual river mouth. Further, there are few to no observations documenting the transformation of organic matter in a parcel of water as it travels downstream of Óbidos into the ocean. Here we explore the hydrological and biogeochemical evolution of the lower Amazon River continuum, from Óbidos to the Atlantic Ocean. A suite of dissolved and particulate organic matter (OM) parameters were measured during a series of five river expeditions with stations at Óbidos, the Tapajós tributary, the mouth of the Lago Grande de Curuai floodplain lake, both the north and south channels of the Amazon River mouth near Macapá, and the confluence of the Amazon and Tocantins Rivers near Belém. In addition to bulk carbon isotopic signatures, a suite of biomarkers including dissolved and particulate lignin-derived phenols were measured to trace the sources and degradation history of terrestrial vascular plant derived OM throughout the continuum. Dissolved and particulate lignin phenol concentrations both correlated positively with river discharge in the Amazon River mainstem, with variable export patterns from the tributaries and floodplains. As organic matter travels along the continuum it is degraded by microbial composition, fuelling gross respiration and CO2 outgassing. The flux of organic carbon to the ocean is chemically recalcitrant as a result of

  2. Artisanal fisheries of the Xingu River basin in Brazilian Amazon.

    PubMed

    Isaac, V J; Almeida, M C; Cruz, R E A; Nunes, L G

    2015-08-01

    The present study characterises the commercial fisheries of the basin of the Xingu River, a major tributary of the Amazon River, between the towns of Gurupá (at the mouth of the Amazon) and São Félix do Xingu. Between April, 2012, and March, 2014, a total of 23,939 fishing trips were recorded, yielding a total production of 1,484 tons of fish, harvested by almost three thousand fishers. The analysis of the catches emphasizes the small-scale and artisanal nature of the region's fisheries, with emphasis on the contribution of the motorised canoes powered by "long-tail" outboard motors. Larger motorboats operate only at the mouth of the Xingu and on the Amazon. Peacock bass (Cichla spp.), croakers (Plagioscion spp.), pacu (a group containing numerous serrasalmid species), aracu (various anostomids), and curimatã (Prochilodus nigricans) together contributed more than 60% of the total catch. Mean catch per unit effort was 18 kg/fisher-1.day-1, which varied among fishing methods (type of vessel and fishing equipment used), river sections, and time of the year. In most cases, yields varied little between years (2012 and 2013). The technical database provided by this study constitutes an important resource for the regulation of the region's fisheries, as well as for the evaluation of future changes resulting from the construction of the Belo Monte dam on the Xingu River.

  3. Satellite-based Analysis of CO Variability over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Tilmes, S.; Wiedinmyer, C.

    2017-12-01

    Pyrogenic emissions from the Amazon Basin exert significant influence on both climate and air quality but are highly variable from year to year. The ability of models to simulate the impact of biomass burning emissions on downstream atmospheric concentrations depends on (1) the quality of surface flux estimates (i.e., emissions inventories), (2) model dynamics (e.g., horizontal winds, large-scale convection and mixing) and (3) the representation of atmospheric chemical processes. With an atmospheric lifetime of a few months, carbon monoxide (CO) is a commonly used diagnostic for biomass burning. CO products are available from several satellite instruments and allow analyses of CO variability over extended regions such as the Amazon Basin with useful spatial and temporal sampling characteristics. The MOPITT ('Measurements of Pollution in the Troposphere') instrument was launched on the NASA Terra platform near the end of 1999 and is still operational. MOPITT is uniquely capable of measuring tropospheric CO concentrations using both thermal-infrared and near-infrared observations, resulting in the ability to independently retrieve lower- and upper-troposphere CO concentrations. We exploit the 18-year MOPITT record and related datasets to analyze the variability of CO over the Amazon Basin and evaluate simulations performed with the CAM-chem chemical transport model. We demonstrate that observed differences between MOPITT observations and model simulations provide important clues regarding emissions inventories, convective mixing and long-range transport.

  4. Low-level nocturnal wind maximum over the Central Amazon Basin

    NASA Technical Reports Server (NTRS)

    Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel

    1992-01-01

    A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.

  5. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    NASA Astrophysics Data System (ADS)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  6. Impact of the biomass burning on methane variability during dry years in the Amazon measured from an aircraft and the AIRS sensor.

    PubMed

    Ribeiro, Igor Oliveira; Andreoli, Rita Valéria; Kayano, Mary Toshie; de Sousa, Thaiane Rodrigues; Medeiros, Adan Sady; Guimarães, Patrícia Costa; Barbosa, Cybelli G G; Godoi, Ricardo H M; Martin, Scot T; de Souza, Rodrigo Augusto Ferreira

    2018-05-15

    The present study examines the spatiotemporal variability and interrelations of the atmospheric methane (CH 4 ), carbon monoxide (CO) and biomass burning (BB) outbreaks retrieved from satellite data over the Amazon region during the 2003-2012 period. In the climatological context, we found consistent seasonal cycles of BB outbreaks and CO in the Amazon, both variables showing a peak during the dry season. The dominant CO variability mode features the largest positive loadings in the southern Amazon, and describes the interannual CO variations related to BB outbreaks along the deforestation arc during the dry season. In line with CO variability and BB outbreaks, the results show strong correspondence with the spatiotemporal variability of CH 4 in the southern Amazon during years of intense drought. Indeed, the areas with the largest positive CH 4 anomalies in southern Amazon overlap the areas with high BB outbreaks and positive CO anomalies. The analyses also showed that high (low) BB outbreaks in the southern Amazon occur during dry (wet) years. In consequence, the interannual climate variability modulates the BB outbreaks in the southern Amazon, which in turn have considerable impacts on CO and CH 4 interannual variability in the region. Therefore, the BB outbreaks might play a major role in modulating the CH 4 and CO variations, at least in the southern Amazon. This study also provides a comparison between the estimate of satellite and aircraft measurements for the CH 4 over the southern Amazon, which indicates relatively small differences from the aircraft measurements in the lower troposphere, with errors ranging from 0.18% to 1.76%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Transported African Dust to the Amazon: Physiochemical Properties and Associated Nutrients

    NASA Astrophysics Data System (ADS)

    Barkley, A.; Blackwelder, P. L.; Prospero, J. M.; Gaston, C.

    2017-12-01

    African dust plays an essential role in fertilizing both oceanic and terrestrial ecosystems by supplying vital biological nutrients such as iron and phosphorus. During Boreal winter, large quantities of African dust are transported across the Atlantic Ocean to the Amazon Basin. It is thought that the Bodélé Depression, part of Paleolake Mega Chad, serves as a major source of this dust, although its importance is debated. The soil in this topographical depression contains a distinctive blend of fluvial and diatomaceous sediments that are thought to supply the Amazon with the nutrients necessary to maintain soil fertility. However, the composition and physical properties of dust transported to the Amazon remain under-explored. Here we present measurements of the size, morphology, and chemical composition of transported dust collected in Cayenne, French Guiana and soil samples collected from the Bodélé Depression using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Inductively coupled plasma mass spectrometry and soluble phosphorus measurements were also performed to investigate the nutrient profiles of filters collected during different air mass transport conditions. In addition to mineral dust, SEM revealed the presence of whole and fragmented freshwater diatoms transported from the Bodélé Depression, or other ephemeral African paleolakes, that were mixed with dust containing iron oxides and micronutrient-rich authigenic clays. Interestingly, transported diatoms were found to the be the largest transported particles with diameters well above 10 μm (up to 70 μm). The low density and high surface-to-volume ratios of diatoms could allow a longer range transport than dust of a comparable size. Therefore, the diatoms could act as a vehicle by which higher micronutrient fluxes could be transported to the Amazon.

  8. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  9. Evaluation of last extreme drought events in Amazon basin using remotely sensing data

    NASA Astrophysics Data System (ADS)

    Panisset, Jéssica S.; Gouveia, Célia M.; Libonati, Renata; Peres, Leonardo; Machado-Silva, Fausto; França, Daniela A.; França, José R. A.

    2017-04-01

    Amazon basin has experienced several intense droughts among which were highlighted last recent ones in 2005 and 2010. Climate models suggest these events will be even more frequent due to higher concentration of greenhouse gases that are also driven forward by alteration in forest dynamics. Environmental and social impacts demand to identify these intense droughts and the behavior of climate parameters that affect vegetation. This present study also identifies a recent intense drought in Amazon basin during 2015. Meteorological parameters and vegetation indices suggest this event was the most severe already registered in the region. We have used land surface temperature (LST), vegetation indices, rainfall and shortwave radiation from 2000 to 2015 to analyze and compare droughts of 2005, 2010 and 2015. Our results show singularities among the three climate extreme events. The austral winter was the most affected season in 2005 and 2010, but not in 2015 when austral summer presented extreme conditions. Precipitation indicates epicenter of 2005 in west Amazon corroborating with previous studies. In 2010, the west region was strongly affected again together with the northwest and the southeast areas. However, 2015 epicenters were concentrated in the east of the basin. In 2015, shortwave radiation has exceeded the maximum values of 2005 and temperature the maximum value of 2010. Vegetation indices have shown positive and negative anomalies. Despite of heterogenous response of Amazon forest to drought, hybrid vegetation indices using NDVI (Normalized Difference Vegetation Index) and LST highlights the exceptionality of 2015 drought episode that exhibits higher vegetation water stress than the cases of 2010 and 2005. Finally, this work has shown how meteorological parameters influence droughts and the effects on vegetation in Amazon basin. Complexity of climate, ecosystem heterogeneity and high diversity of Amazon forest are response by idiosyncrasies of each drought. All

  10. Dynamics of Dissolved Organic Matter in Amazon Basin: Insights into Negro River Contribution

    NASA Astrophysics Data System (ADS)

    Moreira-Turcq, P.; Perez, M. P.; Benedetti, M.; Oliveira, M. A.; Lagane, C.; Seyler, P.; Oliveira, E.

    2006-12-01

    The study of global carbon cycle requires a precise knowledge of spatial and temporal distributions and exportation from continents to oceans. Organic carbon fluxes represent approximately half of the total carbon budget carried by rivers. Tropical rivers transport two third of the total organic carbon discharged into the world oceans but important gaps still exist in the knowledge of the tropical river carbon biochemistry. The Amazon River is responsible for 10% of the annual amount of organic carbon transported from rivers to oceans. The most important portion of total organic matter transported in the Amazon Basin is the dissolved fraction (between 80% and 95%). Amazonian annual flux of dissolved organic matter is directly related to hydrological variations. All rivers in the Amazon basin are characterized by monomodal hydrograms, with a low water period in october/november and a high water period in may/june. Temporal variations in Amazon dissolved organic carbon (3.0 to 9.1 mg l^{- 1}) are mainly controled by Negro River inputs. DOC and DON contributions from the Negro River can vary between 120 kgC s-1 and 520 kg C s-1, and between 5 kgN s--1 and 15 kgN s-1, during low and high water period, respectivelly. In the Negro River, during high water stages, while DOC concentrations are stable from the upstream stations to the downstream ones (about 11 mg l-1), discharge increases from 16000 to 46000 m3 s-1 and NOD can quintuple from upstream (0.071 mg l-1) to downstream (0.341 mg l-1). Then the nature of dissolved organic matter is variable (C/N ratio varied from 33 to 120 from upstream to downstream). During low water stages DOC concentrations are lower (mean DOC of 8.1 mg l-1) while DON is in the same range, discharge is about 10000 m3 s-1 at downstream stations of Negro River and the C/N ratio is lower and steadier along the River. Finaly, despite a low basin surface (12%) compared with the two other main Amazon tributaries, Solimões and Madeira Rivers, and a

  11. Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon.

    PubMed

    Heckenberger, Michael J; Russell, J Christian; Fausto, Carlos; Toney, Joshua R; Schmidt, Morgan J; Pereira, Edithe; Franchetto, Bruna; Kuikuro, Afukaka

    2008-08-29

    The archaeology of pre-Columbian polities in the Amazon River basin forces a reconsideration of early urbanism and long-term change in tropical forest landscapes. We describe settlement and land-use patterns of complex societies on the eve of European contact (after 1492) in the Upper Xingu region of the Brazilian Amazon. These societies were organized in articulated clusters, representing small independent polities, within a regional peer polity. These patterns constitute a "galactic" form of prehistoric urbanism, sharing features with small-scale urban polities in other areas. Understanding long-term change in coupled human-environment systems relating to these societies has implications for conservation and sustainable development, notably to control ecological degradation and maintain regional biodiversity.

  12. Conjoint Analysis of the Surface and Atmospheric Water Balances of the Andes-Amazon System

    NASA Astrophysics Data System (ADS)

    Builes-Jaramillo, Alejandro; Poveda, Germán

    2017-04-01

    Acknowledging the interrelation between the two branches of the hydrological cycle, we perform a comprehensive analysis of the long-term mean surface and atmospheric water balances in the Amazon-Andes River basins system. We estimate the closure of the water budgets based on the long-term approximation of the water balance equations, and estimate the imbalance between both atmospheric and surface budgets. The analysis was performed with observational and reanalysis datasets for the entire basin, for several sub-catchments inside the entire Amazon River basin and for two physical and geographical distinctive subsystems of the basin, namely upper Andean the low-lying Amazon River basin. Our results evidence that for the entire Amazon River basin the surface water balance can be considered to be in balance (P = 2225 mm.yr-1, ET= 1062 mm.yr-1, R= 965 mm.yr-1), whereas for the separated subsystems it not so clear, showing high discrepancies between observations and reanalysis datasets. In turn, the atmospheric budget does not close regardless of datasets or geographical disaggregation. Our results indicate that the amount of imbalance of the atmospheric branch of the water balance depends on the evaporation data source used. The imbalance calculated as I=(C/R)-1, where C is net moisture convergence (C= -∇Q where ∇Q is the net vertically integrated moisture divergence) and R the runoff,represents the difference between the two branches of the hydrological cycle. For the entire Amazon River basin we found a consistent negative imbalance driven by higher values of runoff, and when calculated for monthly time scales the imbalance is characterized by a high dependence on the Amazon dry season. The separated analysis performed to the Andes and Low-lying Amazonia subsystems unveils two shortcomings of the available data, namely a poor quality of the representation of surface processes in the reanalysis models (including precipitation and evapotranspiration), and the

  13. Suspected Lead Poisoning in an Amazon Parrot

    PubMed Central

    McDonald, Lawrence J.

    1986-01-01

    A double yellow headed Amazon parrot (Amazona ochrocephala tresmariae) of unknown age and sex was examined for an acute onset of anorexia, listlessness, central nervous system signs and diarrhea. A tentative diagnosis of lead toxicosis was achieved based on radiographs, clinical pathology and response to therapy. Chelation therapy (Calcium EDTA) and supportive measures resulted in an uneventful recovery. ImagesFigure 1.Figure 2.Figure 3. PMID:17422638

  14. A social-ecological database to advance research on infrastructure development impacts in the Brazilian Amazon.

    PubMed

    Tucker Lima, Joanna M; Valle, Denis; Moretto, Evandro Mateus; Pulice, Sergio Mantovani Paiva; Zuca, Nadia Lucia; Roquetti, Daniel Rondinelli; Beduschi, Liviam Elizabeth Cordeiro; Praia, Amanda Salles; Okamoto, Claudia Parucce Franco; da Silva Carvalhaes, Vinicius Leite; Branco, Evandro Albiach; Barbezani, Bruna; Labandera, Emily; Timpe, Kelsie; Kaplan, David

    2016-08-30

    Recognized as one of the world's most vital natural and cultural resources, the Amazon faces a wide variety of threats from natural resource and infrastructure development. Within this context, rigorous scientific study of the region's complex social-ecological system is critical to inform and direct decision-making toward more sustainable environmental and social outcomes. Given the Amazon's tightly linked social and ecological components and the scope of potential development impacts, effective study of this system requires an easily accessible resource that provides a broad and reliable data baseline. This paper brings together multiple datasets from diverse disciplines (including human health, socio-economics, environment, hydrology, and energy) to provide investigators with a variety of baseline data to explore the multiple long-term effects of infrastructure development in the Brazilian Amazon.

  15. The influence of intestinal parasites on Plasmodium vivax-specific antibody responses to MSP-119 and AMA-1 in rural populations of the Brazilian Amazon.

    PubMed

    Sánchez-Arcila, Juan Camilo; de França, Marcelle Marcolino; Pereira, Virginia Araujo; Vasconcelos, Mariana Pinheiro Alves; Têva, Antonio; Perce-da-Silva, Daiana de Souza; Neto, Joffre Rezende; Aprígio, Cesarino Junior Lima; Lima-Junior, Josue da Costa; Rodrigues, Mauricio Martins; Soares, Irene Silva; Banic, Dalma Maria; Oliveira-Ferreira, Joseli

    2015-11-06

    Polyparasitism is a common condition in humans but its impact on the host immune system and clinical diseases is still poorly understood. There are few studies of the prevalence and the effect of malaria-intestinal parasite co-infections in the immune response to malaria vaccine candidates. The present study determines whether the presence of malaria and intestinal parasites co-infection is associated with impaired IgG responses to Plasmodium vivax AMA-1 and MSP-119 in a rural population of the Brazilian Amazon. A cross-sectional survey was performed in a rural area of Rondonia State and 279 individuals were included in the present study. At recruitment, whole blood was collected and Plasmodium and intestinal parasites were detected by microscopy and molecular tests. Blood cell count and haemoglobin were also tested and antibody response specific to P. vivax AMA-1 and MSP-119 was measured in plasma by ELISA. The participants were grouped according to their infection status: singly infected with Plasmodium (M); co-infected with Plasmodium and intestinal parasites (CI); singly infected with intestinal parasites (IP) and negative (N) for both malaria and intestinal parasites. The prevalence of intestinal parasites was significantly higher in individuals with malaria and protozoan infections were more prevalent. IgG antibodies to PvAMA-1 and/or PvMSP-119 were detected in 74 % of the population. The prevalence of specific IgG was similar for both proteins in all four groups and among the groups the lowest prevalence was in IP group. The cytophilic sub-classes IgG1 and IgG3 were predominant in all groups for PvAMA-1 and IgG1, IgG3 and IgG4 for PvMSP-119. In the case of non-cytophilic antibodies to PvAMA-1, IgG2 was significantly higher in IP and N group when compared to M and CI while IgG4 was higher in IP group. The presence of intestinal parasites, mainly protozoans, in malaria co-infected individuals does not seem to alter the antibody immune responses to P. vivax AMA

  16. CCN numerical simulations for the GoAmazon with the OLAM model

    NASA Astrophysics Data System (ADS)

    Ramos-da-Silva, R.; Haas, R.; Barbosa, H. M.; Machado, L.

    2015-12-01

    Manaus is a large city in the center of the Amazon rainforest. The GoAmazon field project is exploring the region through various data collection and modeling to investigate in impacts of the urban polluted plume on the surrounding pristine areas. In this study a numerical model was applied to simulate the atmospheric dynamics and the Cloud Condensation Nucleai (CCN) concentrations evolution. Simulations with and without the urban plume was performed to identify its dynamics and local impacts. The results show that the land surface characteristics has important hole on the CCN distribution and rainfall over the region. At the south of Manaus the atmospheric dynamics is dominated by the cloud streets that are aligned with the trade winds and the Amazon River. At the north of Manaus, the Negro River produces the advection of a more stable atmosphere causing a higher CCN concentration on the boundary layer. Assuming a local high CCN concentration at the Manaus boundary layer region, the simulations show that the land-atmosphere interaction sets important dynamics on the plume. The model shows that the CCN plume moves along with the flow towards southwest of Manaus following the cloud streets and the river direction having the highest concentrations over the most stable water surface regions.

  17. Antibody to HTLV‐I in Indigenous Inhabitants of the Andes and Amazon Regions in Colombia

    PubMed Central

    Zamora, Tomas; Zaninovic, Vladimir; Kajiwara, Masaharu; Komoda, Haruko; Hayami, Masanori

    1990-01-01

    To explore the HTLV‐I‐carrying groups among the indigenous inhabitants in South America, a sero‐epidemiological study on HTLV‐I focusing on hinterland villages isolated from others in the Andes and Amazon regions was conducted. Five (2.9%) out of 171 subjects showed positive for HTLV‐I antibody in the gelatin particle agglutination (PA) test. Two out of 5 positives with high antibody titer (≫× 1024) in the PA test also showed a positive immunofluorescence (IF) test and anti‐HTLV‐I‐specific protein products, p19, p24, p28, gp46, and p53 in sera by the Western blotting (WB) test. One of three negatives in the IF test showed positive antibodies to p19 and p24 by the WB test. Finally, two were confirmed as HTLV‐I carriers and one was suspected of being a carrier. All three are Paez Indians from the central Andes; 53‐ and 34‐year‐old women and a 35‐year‐old man. The results show that HTLV‐1 carriers exist among isolated indigenous people in South America. PMID:1975804

  18. Impact of Amazon deforestation on climate simulations using the NCAR CCM2/BATS model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahmann, A.N.; Dickinson, R.E.

    Model validation and results are briefly presented for a simulation of deforestation of the Amazon rainforest. This initial study is made using assumptions regarding deforestation similar to those in earlier studies with several versions of the NCAR Community Climate Model (CCM) couples to the Biosphere-Atmosphere Transfer Scheme (BATS). The model used is a revised version of the NCAR CCM Version 2 coupled to BATS Version 1e. This paper discusses the portion of validation dealing with the distribution of precipitation; the simulation displays very good agreement with observed rainfall rates for the austral summer. Preliminary results from an 8-year simulation ofmore » deforestation are similar to that of previous studies. Annual precipitation and evaporation are reduced, while surface air temperatures show a slight increase. A substantial bimodal pattern appears in the results, with the Amazon decrease of precipitation and temperature increase accompanied by changes in the opposite sign to the southeast of the Amazon. Similar patterns have occurred in other studies, but not always in exactly the same locations. Evidently, how much of the region of rainfall increase occurs in the deforested area over the Amazon strongly affects the inferred statistics. It is likely that this pattern depends on the model control climatology and possibly other features. 16 refs., 2 figs., 2 tabs.« less

  19. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Martin, S. T.; Kleinman, L.

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical andmore » microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.« less

  20. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts

    PubMed Central

    Zhao, Wenqian; Zhao, Xiang; Zhou, Tao; Wu, Donghai; Tang, Bijian; Wei, Hong

    2017-01-01

    Along with global climate change, the occurrence of extreme droughts in recent years has had a serious impact on the Amazon region. Current studies on the driving factors of the 2005 and 2010 Amazon droughts has focused on the influence of precipitation, whereas the impacts of temperature and radiation have received less attention. This study aims to explore the climate-driven factors of Amazonian vegetation decline during the extreme droughts using vegetation index, precipitation, temperature and radiation datasets. First, time-lag effects of Amazonian vegetation responses to precipitation, radiation and temperature were analyzed. Then, a multiple linear regression model was established to estimate the contributions of climatic factors to vegetation greenness, from which the dominant climate-driving factors were determined. Finally, the climate-driven factors of Amazonian vegetation greenness decline during the 2005 and 2010 extreme droughts were explored. The results showed that (i) in the Amazon vegetation greenness responded to precipitation, radiation and temperature, with apparent time lags for most averaging interval periods associated with vegetation index responses of 0–4, 0–9 and 0–6 months, respectively; (ii) on average, the three climatic factors without time lags explained 27.28±21.73% (mean±1 SD) of vegetation index variation in the Amazon basin, and this value increased by 12.22% and reached 39.50±27.85% when time lags were considered; (iii) vegetation greenness in this region in non-drought years was primarily affected by precipitation and shortwave radiation, and these two factors altogether accounted for 93.47% of the total explanation; and (iv) in the common epicenter of the two droughts, pixels with a significant variation in precipitation, radiation and temperature accounted for 36.68%, 40.07% and 10.40%, respectively, of all pixels showing a significant decrease in vegetation index in 2005, and 15.69%, 2.01% and 45.25% in 2010

  1. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts.

    PubMed

    Zhao, Wenqian; Zhao, Xiang; Zhou, Tao; Wu, Donghai; Tang, Bijian; Wei, Hong

    2017-01-01

    Along with global climate change, the occurrence of extreme droughts in recent years has had a serious impact on the Amazon region. Current studies on the driving factors of the 2005 and 2010 Amazon droughts has focused on the influence of precipitation, whereas the impacts of temperature and radiation have received less attention. This study aims to explore the climate-driven factors of Amazonian vegetation decline during the extreme droughts using vegetation index, precipitation, temperature and radiation datasets. First, time-lag effects of Amazonian vegetation responses to precipitation, radiation and temperature were analyzed. Then, a multiple linear regression model was established to estimate the contributions of climatic factors to vegetation greenness, from which the dominant climate-driving factors were determined. Finally, the climate-driven factors of Amazonian vegetation greenness decline during the 2005 and 2010 extreme droughts were explored. The results showed that (i) in the Amazon vegetation greenness responded to precipitation, radiation and temperature, with apparent time lags for most averaging interval periods associated with vegetation index responses of 0-4, 0-9 and 0-6 months, respectively; (ii) on average, the three climatic factors without time lags explained 27.28±21.73% (mean±1 SD) of vegetation index variation in the Amazon basin, and this value increased by 12.22% and reached 39.50±27.85% when time lags were considered; (iii) vegetation greenness in this region in non-drought years was primarily affected by precipitation and shortwave radiation, and these two factors altogether accounted for 93.47% of the total explanation; and (iv) in the common epicenter of the two droughts, pixels with a significant variation in precipitation, radiation and temperature accounted for 36.68%, 40.07% and 10.40%, respectively, of all pixels showing a significant decrease in vegetation index in 2005, and 15.69%, 2.01% and 45.25% in 2010, respectively

  2. Methane emissions to the troposphere from the Amazon floodplain

    NASA Technical Reports Server (NTRS)

    Devol, Allen H.; Richey, Jeffrey E.; Clark, Wayne A.; King, Stagg L.; Martinelli, Luiz A.

    1988-01-01

    The magnitudes of CH4 emissions to the troposphere from the Amazon River floodplain and the mechanism of these emissions were investigated using the data of 94 individual flux measurements made along a 1700-km stretch of the river during July/August 1985. The overall average rate of CH4 emission from wetlands was found to be 390 mg CH4/sq m per day, with the highest emissions (590 mg CH4/sq m per day) attributed to the water surfaces covered by aquatic macrophytes. Ebullition was the dominant mechanism of emission, accounting for 85 percent of the total. Surface-water CH4 concentrations were highly supersaturated, averaging 6.4 micromolar. The annual emission of CH4 from the Amazon Basin to the troposphere, estimated from the area and the known emission rate, is about 10 CH4 Tg/yr, indicating the importance of the area in the global atmospheric CH4 cycle.

  3. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    PubMed Central

    Espírito-Santo, Fernando D.B.; Gloor, Manuel; Keller, Michael; Malhi, Yadvinder; Saatchi, Sassan; Nelson, Bruce; Junior, Raimundo C. Oliveira; Pereira, Cleuton; Lloyd, Jon; Frolking, Steve; Palace, Michael; Shimabukuro, Yosio E.; Duarte, Valdete; Mendoza, Abel Monteagudo; López-González, Gabriela; Baker, Tim R.; Feldpausch, Ted R.; Brienen, Roel J.W.; Asner, Gregory P.; Boyd, Doreen S.; Phillips, Oliver L.

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y−1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y−1, and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y−1. Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink. PMID:24643258

  4. Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

    NASA Astrophysics Data System (ADS)

    Jones, Matthew O.; Kimball, John S.; Nemani, Ramakrishna R.

    2014-12-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought.

  5. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere

    NASA Technical Reports Server (NTRS)

    Devol, Allan H.; Richey, Jeffrey E.; Forsberg, Bruce R.; Martinelli, Luiz A.

    1990-01-01

    Methane fluxes to the troposphere from the three principal habitats of the floodplain of the Amazon River main stem (open waters, emergent macrophyte beds, and flooded forests) were determined along a 1700-km reach of the river during the low-water period of the annual flood cycle (November-December 1988). Overall, emissions averaged 68 mg CH4/sq m per day and were significantly lower than similar emissions determined previously for the high-water period, 184 mg CH4/sq m per day (July-August 1986). This difference was due to significantly lower emissions from floating macrophyte environments. Low-water emissions from open waters and flooded forest areas were not significantly different than at high water. A monthly time series of methane emission from eight lakes located in the central Amazon basis showed similar results. The data were used to calculate a seasonally weighted annual emission to the troposphere from the Amazon River main stem floodplain of 5.1 Tg/yr, which indicates the importance of the area in global atmospheric chemistry.

  6. Size and frequency of natural forest disturbances and the Amazon forest carbon balance.

    PubMed

    Espírito-Santo, Fernando D B; Gloor, Manuel; Keller, Michael; Malhi, Yadvinder; Saatchi, Sassan; Nelson, Bruce; Junior, Raimundo C Oliveira; Pereira, Cleuton; Lloyd, Jon; Frolking, Steve; Palace, Michael; Shimabukuro, Yosio E; Duarte, Valdete; Mendoza, Abel Monteagudo; López-González, Gabriela; Baker, Tim R; Feldpausch, Ted R; Brienen, Roel J W; Asner, Gregory P; Boyd, Doreen S; Phillips, Oliver L

    2014-03-18

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y(-1) over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y(-1), and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y(-1). Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink.

  7. Mycotoxins and cyanogenic glycosides in staple foods of three indigenous people of the Colombian Amazon.

    PubMed

    Diaz, Gonzalo J; Krska, Rudolf; Sulyok, Michael

    2015-01-01

    A study was conducted to determine the incidence and levels of mycotoxins in the main staple foods of three indigenous people of the Colombian Amazon. A total of 20 corn, 24 rice and 59 cassava samples were analysed by a multi-analyte liquid chromatography-tandem mass spectrometry method covering the major classes of mycotoxins. In addition, cassava samples were also analysed for cyanogenic glycosides. The indigenous Amazon communities tested are exposed to potentially carcinogenic mycotoxins (particularly aflatoxins), as well as other mycotoxins, mainly through the intake of locally grown corn. Citrinin content in this corn was unusually high and has not been reported elsewhere. Two cassava samples contained high levels of cyanogenic glycosides. It is strongly recommended not to grow corn in the Amazon but instead purchase it from vendors capable of guaranteeing mycotoxin levels below the maximum allowable concentration in Colombia.

  8. Public policies and communication affecting forest cover in the Amazon

    NASA Astrophysics Data System (ADS)

    Kawakami Savaget, E.; Batistella, M.; Aguiar, A. P. D.

    2014-12-01

    The research program Amazalert was based on information delivered by the IPCC through its 2007 report, which indicates forest degradation processes in the Amazonian region as a consequence of anthropogenic actions. Such processes affecting the structural and functional characteristics of ecosystems would harm environmental services that guarantee, for example, the regulation of climate and the provision of fresh water. A survey was organized, through a multidisciplinary perspective, on the main policies and programs that can affect forest cover in the Amazon. These rules and norms seek to regulate societal actions by defining a developmental model for the region. Although deforestation rates in the Brazilian Amazon have decreased significantly since 2004, some locations maintain high levels of deforestation. In 2013, for example, the municipalities of Monte Alegre, Óbidos, Alenquer, Oriximiná, Curuá and Almeirin, in the northern region of the state of Para, showed the highest rates of deforestation in the Amazon. Managers and stakeholders within these areas are being interviewed to provide insights on how policies are interpreted and applied locally. There is an understanding delay between discourses normalized by federal governmental institutions and claims of local societies. The possible lack of clarity in official discourses added to the absence of a local communicative dynamics cause the phenomenon of incomplete information. Conflicts often occur in local institutional arenas resulting in violence and complex social and historical dissonances, enhanced by other public policies idealized in different temporal and spatial conditions.

  9. Chronic chagasic cardiopathy in Amazon region: an etiology to remember.

    PubMed

    Ferreira, João Marcos Bemfica Barbosa; Guerra, Jorge Augusto de Oliveira; Magalhães, Belisa Maria Lopes; Coelho, Leíla I A R C; Maciel, Marcel Gonçalves; Barbosa, Maria das Graças Vale

    2009-12-01

    This study assessed the frequency of chronic chagasic cardiopathy (CCC) in 37 autochthonus patients from Amazon region with left ventricular systolic dysfunction of undefined etiology. Three cases were diagnosed in the studied sample, with an 8.1% frequency.

  10. Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data

    NASA Astrophysics Data System (ADS)

    Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo

    2011-02-01

    Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.

  11. [Globalization, inequality, and transmission of tropical diseases in the Venezuelan Amazon].

    PubMed

    Botto-Abella, Carlos; Graterol-Mendoza, Beatriz

    2007-01-01

    Economic globalization appears to be causing greater inequalities and increased vulnerability to tropical diseases around the world. The Venezuelan Amazon population, especially the rural indigenous population, displays among the worst health indicators in the Americas. High infant mortality rates in remote indigenous populations indicate that such communities have been affected by the globalization of disease, rather than favored by globalization of health. Globalization has also influenced public policies in the country, affecting the efficiency of control programs targeting tropical diseases. A new global pact for the sustainable development of the planet is needed, supported by the globalization of human values and rights. In Venezuela, new policies for the indigenous health sector, more resources, and greater autonomy could help reduce the inequities described here in the Venezuelan Amazon.

  12. Attenuated CagA oncoprotein in Helicobacter pylori from Amerindians in Peruvian Amazon.

    PubMed

    Suzuki, Masato; Kiga, Kotaro; Kersulyte, Dangeruta; Cok, Jaime; Hooper, Catherine C; Mimuro, Hitomi; Sanada, Takahito; Suzuki, Shiho; Oyama, Masaaki; Kozuka-Hata, Hiroko; Kamiya, Shigeru; Zou, Quan-Ming; Gilman, Robert H; Berg, Douglas E; Sasakawa, Chihiro

    2011-08-26

    Population genetic analyses of bacterial genes whose products interact with host tissues can give new understanding of infection and disease processes. Here we show that strains of the genetically diverse gastric pathogen Helicobacter pylori from Amerindians from the remote Peruvian Amazon contain novel alleles of cagA, a major virulence gene, and reveal distinctive properties of their encoded CagA proteins. CagA is injected into the gastric epithelium where it hijacks pleiotropic signaling pathways, helps Hp exploit its special gastric mucosal niche, and affects the risk that infection will result in overt gastroduodenal diseases including gastric cancer. The Amerindian CagA proteins contain unusual but functional tyrosine phosphorylation motifs and attenuated CRPIA motifs, which affect gastric epithelial proliferation, inflammation, and bacterial pathogenesis. Amerindian CagA proteins induced less production of IL-8 and cancer-associated Mucin 2 than did those of prototype Western or East Asian strains and behaved as dominant negative inhibitors of action of prototype CagA during mixed infection of Mongolian gerbils. We suggest that Amerindian cagA is of relatively low virulence, that this may have been selected in ancestral strains during infection of the people who migrated from Asia into the Americas many thousands of years ago, and that such attenuated CagA proteins could be useful therapeutically.

  13. Plasma Drug Concentrations of Orally Administered Rosuvastatin in Hispaniolan Amazon Parrots (Amazona ventralis).

    PubMed

    Beaufrère, Hugues; Papich, Mark G; Brandão, João; Nevarez, Javier; Tully, Thomas N

    2015-03-01

    Atherosclerotic diseases are common in pet psittacine birds, in particular Amazon parrots. While hypercholesterolemia and dyslipidemia have not definitely been associated with increased susceptibility to atherosclerosis in parrots, these are important and well-known risk factors in humans. Therefore statin drugs such as rosuvastatin constitute the mainstay of human treatment of dyslipidemia and the prevention of atherosclerosis. No pharmacologic studies have been performed in psittacine birds despite the high prevalence of atherosclerosis in captivity. Thirteen Hispaniolan Amazon parrots were used to test a single oral dose of 10 mg/kg of rosuvastatin with blood sampling performed according to a balanced incomplete block design over 36 hours. Because low plasma concentrations were produced in the first study, a subsequent pilot study using a dose of 25 mg/kg in 2 Amazon parrots was performed. Most plasma samples for the 10 mg/kg dose and all samples for the 25 mg/kg dose had rosuvastatin concentration below the limits of quantitation. For the 10 mg/kg study, the median peak plasma concentration and time to peak plasma concentration were 0.032 μg/mL and 2 hours, respectively. Our results indicate that rosuvastatin does not appear suitable in Amazon parrots as compounded and used at the dose in this study. Pharmacodynamic studies investigating lipid-lowering effects of statins rather than pharmacokinetic studies may be more practical and cost effective in future studies to screen for a statin with more ideal properties for potential use in psittacine dyslipidemia and atherosclerotic diseases.

  14. Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*

    PubMed Central

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.

    2015-01-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363

  15. Detection of Green up Phenomenon in Amazon Forests Using Spaceborne Solar-induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Chen, S.; Chen, X.; Chen, J.; Cao, X.

    2016-12-01

    The role of Amazon forests in the global carbon budget still remains uncertain. The critical issue is whether tropical forest productivity is more limited by sunlight or rainfall. Recent studies using satellite data have challenged the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions because of the adding effects of variations in sun-sensor geometry. To reducing uncertainties in knowing the sensitivity of Amazon rainforests to dry season droughts, we evaluated a newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll for the seasonal green-up phenomenon, providing for the first time a direct measurement related to vegetation photosynthetic activity as well as unaffected by sun-sensor geometry. Moreover, NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) products (the enhanced vegetation index (EVI) and leaf area index (LAI)) and Landsat Operational Land Imager (OLI) data are also compared to evaluate this phenomenon. Here we show that the green up of Amazon forests in the study area around manas site did show in SIF of chlorophyll data in 2015 drought resulted from seasonal changes. The EVI has more apparent green up phenomenon than the NDVI data both in MODIS and OLI data, suggesting that the EVI can better reflect near-infrared (NIR) and LAI information of vegetation. The OLI data is less influenced by variations caused by bidirectional reflectance effect. In addition, SIF of chlorophyll data shows well correlation relationship with the EVI, LAI and NDVI, suggesting that the SIF of chlorophyll data present well quality to capture the characteristics of the phenology of vegetation.

  16. Late Quaternary paleohydrology deduced from new marine sediment cores taken on the proximal Amazon continental margin

    NASA Astrophysics Data System (ADS)

    Nace, T.; Baker, P. A.; Dwyer, G. S.; Hollander, D. J.; Silva, C. G.

    2010-12-01

    Throughout the late Quaternary the Amazon Basin has been influenced by abrupt North-South climate forcing and has undergone several large climate variations as recorded in previously reported speleothem records. Despite its importance in the global carbon cycle there are few continuous, high-resolution records of the Amazon Basin that date back to and beyond the last glacial period. In this study, we report the first results of a marine geological expedition to the Amazon continental shelf and fan region. During this expedition we collected eight ~30 meter piston cores along with gravity, box and multicores. At both sites we undertook complementary multibeam and high resolution seismic reflection profiling. Analyses will be presented from two sets of box/gravity/piston cores. One core (32m) is from a high sedimentation site on the northern flank of the main submarine canyon within the Amazon Fan complex at 1700m water depth. The other core (30m) is located on a seamount to the south of the Amazon Fan complex at 3100m water depth. A mixed assemblage of foraminifera is used for 14C dating to obtain an age model and bulk organic geochemistry is analyzed to determine percent organic carbon, C/N ratios, δ13C and δ15N. The cores were continuously measured shipboard for magnetic susceptibility and gamma density using a GEOTEK logger. These findings uncover the contribution of pelagic and terrestrial organic matter, whether the terrigenous carbon is derived from C3 versus C4 vegetation, and whether the marine organic matter is composed of phytoplankton or marine algae.

  17. Anthropogenic Effects on the Mixing State of Aerosols over Manaus during the Green Ocean Amazon (GoAmazon) Campaign

    NASA Astrophysics Data System (ADS)

    Fraund, M. W.; Pham, D.; Harder, T.; O'Brien, R.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2015-12-01

    The role that anthropogenic aerosols play in cloud formation is uncertain and contributes largely to the uncertainty in predicting future climate. One region of particular importance is the Amazon rainforest, which accounts for over half of the world's rainforest. During GoAmazon2014/15 IOP2, aerosol samples were collected at multiple sites in and around the rapidly growing industrial city of Manaus in the Amazon basin. Manaus is of scientific interest due to the pristine nature of the surrounding rainforest and the high levels of pollution coming from the city in the form of SO2, NOx, and soot. Some sites, such as the Terrestrial Ecosystem Science center (TES, also designated ZF2) located to the north of Manaus, represent air masses which have not interacted with emissions from the city. The comparison of pristine atmosphere with heavy pollution allows both for the determination of a natural baseline level of pollutants, as well as the study of pollutant's impact on the conversion of biogenic volatile organic compounds to secondary organic aerosols. Towards this goal, samples from ZF2 and other unpolluted sites will be compared to samples from the Atmospheric Radiation Measurement (ARM) climate research facility in Manacapuru (T3), which is southwest (downwind) of Manaus. Spatially resolved spectra were recorded at the sub-particle level using scanning transmission X-ray microscopy (STXM) at the carbon, nitrogen, and oxygen K-absorption edges. Scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (SEM/EDX) was also performed on to characterize higher Z elements. These two techniques together will allow for the mass fraction of atmospherically relevant elements to be determined on a per-particle basis. We will apply established procedures to determine the mixing state index for samples collected at ZF2 and T3 using elemental mass fractions. Preliminary results will be presented which focus on investigating the difference between mixing

  18. Neisseria meningitidis: a neglected cause of infectious haemorrhagic fever in the amazon rainforest.

    PubMed

    Barroso, David E; Silva, Luciete A

    2007-12-01

    Neisseria meningitidis has not been seen as a significant cause of infectious haemorrhagic fever in the Amazon inlands; most reported cases are from the city of Manaus, the capital of the State of Amazonas. This picture is sustained by the lack of reliable microbiology laboratories, the perception of the health care workers, and the difficult to reach medical assistance; thus the number of confirmed cases is even lower with no reference of the strains phenotype. We report here the investigation of a case of suspected meningococcemia and his close contacts in a rural community in the Coari Lake, up the Amazon River.

  19. Snakebites as cause of deaths in the Western Brazilian Amazon: Why and who dies? Deaths from snakebites in the Amazon.

    PubMed

    da Silva Souza, Anderson; de Almeida Gonçalves Sachett, Jacqueline; Alcântara, João Arthur; Freire, Monique; Alecrim, Maria das Graças Costa; Lacerda, Marcus; de Lima Ferreira, Luiz Carlos; Fan, Hui Wen; de Souza Sampaio, Vanderson; Monteiro, Wuelton Marcelo

    2018-04-01

    Snake envenoming represents a major burden for public health worldwide. In the Amazon, the official number of cases and deaths detected is probably underestimated because of the difficulty riverine and indigenous populations have reaching health centers in order to receive medical assistance. Thus, integrated analysis of health information systems must be used in order to improve adequate health policies. The aim of this work is to describe a series of deaths and identify risk factors for lethality from snakebites in the state of Amazonas, Brazil. All deaths from snakebites reported to the Brazilian Notifiable Diseases Surveillance System (SINAN) and to the Mortality Information System (SIM; ICD10-10th revision, X.29), from 2007 to 2015, were included. Variables were assessed by blocks with distal (ecological variables), intermediate (demographics) and proximal (clinical variables) components to identify predictors of case fatality. A total of 127 deaths from snakebites were recorded, with 58 pairs found through linkage of the SINAN and SIM databases (45.7%), 37 (29.1%) deaths found only in SINAN and 32 (25.2%) found only in the SIM. Deaths occurred mostly in males (95 cases; 74.8%) living in rural areas (78.6%). The most affected age group was the ≥61 years old (36 cases; 28.4%). Snakebites were presumably due to Bothrops snakes in 68.5% of the cases and Lachesis in 29.5% based on clinico-epidemiological diagnosis. A proportion of 26.2% of the cases received treatment over 24 h after the bite ocurred. On admission, cases were mostly classified as severe (65.6%). Overall, 28 patients (22.0%). Deceased without any medical assistance Antivenom was given to 53.5%. In the multivariate analysis, a distance from Manaus >300 km [OR = 3.40 (95%CI = 1.99-5.79); (p < 0.001)]; age ≥61 years [OR = 4.31 (95%CI = 1.22-15.21); (p = 0.023)] and Indigenous status [OR = 5.47 (95%CI = 2.37-12.66); (p < 0.001)] were independently associated

  20. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes.

    PubMed

    Nóbrega, Rodolfo L B; Guzha, Alphonce C; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo G; Hughes, Harold J; Jungkunst, Hermann F; Gerold, Gerhard

    2018-09-01

    Studies on the impacts of land-use and land-cover change on stream hydrochemistry in active deforestation zones of the Amazon agricultural frontier are limited and have often used low-temporal-resolution datasets. Moreover, these impacts are not concurrently assessed in well-established agricultural areas and new deforestations hotspots. We aimed to identify these impacts using an experimental setup to collect high-temporal-resolution hydrological and hydrochemical data in two pairs of low-order streams in catchments under contrasting land use and land cover (native vegetation vs. pasture) in the Amazon and Cerrado biomes. Our results indicate that the conversion of natural landscapes to pastures increases carbon and nutrient fluxes via streamflow in both biomes. These changes were the greatest in total inorganic carbon in the Amazon and in potassium in the Cerrado, representing a 5.0- and 5.5-fold increase in the fluxes of each biome, respectively. We found that stormflow, which is often neglected in studies on stream hydrochemistry in the tropics, plays a substantial role in the carbon and nutrient fluxes, especially in the Amazon biome, as its contributions to hydrochemical fluxes are mostly greater than the volumetric contribution to the total streamflow. These findings demonstrate that assessments of the impacts of deforestation in the Amazon and Cerrado biomes should also take into account rapid hydrological pathways; however, this can only be achieved through collection of high-temporal-resolution data. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Evapotranspiration estimation using a parameter-parsimonious energy partition model over Amazon basin

    NASA Astrophysics Data System (ADS)

    Xu, D.; Agee, E.; Wang, J.; Ivanov, V. Y.

    2017-12-01

    The increased frequency and severity of droughts in the Amazon region have emphasized the potential vulnerability of the rainforests to heat and drought-induced stresses, highlighting the need to reduce the uncertainty in estimates of regional evapotranspiration (ET) and quantify resilience of the forest. Ground-based observations for estimating ET are resource intensive, making methods based on remotely sensed observations an attractive alternative. Several methodologies have been developed to estimate ET from satellite data, but challenges remained in model parameterization and satellite limited coverage reducing their utility for monitoring biodiverse regions. In this work, we apply a novel surface energy partition method (Maximum Entropy Production; MEP) based on Bayesian probability theory and nonequilibrium thermodynamics to derive ET time series using satellite data for Amazon basin. For a large, sparsely monitored region such as the Amazon, this approach has the advantage methods of only using single level measurements of net radiation, temperature, and specific humidity data. Furthermore, it is not sensitive to the uncertainty of the input data and model parameters. In this first application of MEP theory for a tropical forest biome, we assess its performance at various spatiotemporal scales against a diverse field data sets. Specifically, the objective of this work is to test this method using eddy flux data for several locations across the Amazonia at sub-daily, monthly, and annual scales and compare the new estimates with those using traditional methods. Analyses of the derived ET time series will contribute to reducing the current knowledge gap surrounding the much debated response of the Amazon Basin region to droughts and offer a template for monitoring the long-term changes in global hydrologic cycle due to anthropogenic and natural causes.

  2. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  3. The Impact of Rise of the Andes and Amazon Landscape Evolution on Diversification of Lowland terra-firme Forest Birds

    NASA Technical Reports Server (NTRS)

    Aleixo, Alexandre; Wilkinson, M. Justin

    2011-01-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction. (The easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). For the suboscine passerines, maximum-likelihood estimates of rates of diversification point to an overall constant rate over the past 5 my (up to a significant downturn at 300,000 y ago). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting approximately 10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, that may have extended progressively and in series eastward from Andean sources. This process plausibly explains the progressive extinction of original Pebas wetland of western-central Amazonia by the present fluvial landsurfaces of a more terra-firme type

  4. Surveying the area of deforestation of the Amazon by LANDSAT satellite imagery. [Mato grosso, Goias and Para, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A. P.; Lee, D. C. L.; Soaresmaia, F. C.; Mendonca, F. J.; Assuncao, G. V.; Rodrigues, J. E.; Demouraabdon, M.; Novaes, R. A.

    1979-01-01

    LANDSAT imagery was used to determine the amount of deforestation in a study area comprising 55 million hectares of the Amazon region. Results show that more than 4 million hectares were deforested. Maps and pictures of the deforested area in relation to the total area of the Amazon are included.

  5. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    PubMed

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon

  6. Meanings of 'Tuberculosis' in Rural Indigenous Communities from a Municipality in the Colombian Amazon.

    PubMed

    Muñoz Sánchez, Alba Idaly; Rubiano Mesa, Yurian Lida

    2017-05-01

    The purpose herein was to describe the meanings on tuberculosis (TB) in rural indigenous communities from a municipality in the Colombian Amazon. This was an ethnographic study with theoretical reference of dialectical hermeneutics, which created focus groups, one for each rural community of Puerto Nariño, for a total of 15 focus groups. The participants were community leaders and health referents. Seventy-nine subjects participated, mostly midwives, kurakas, traditional physicians, and shamans. The analysis yielded four categories: knowledge of TB, attitudes regarding TB, community practices of TB, and the intervention proposal on TB by the participants. It was found that community leaders recognize TB as a disease that can cause death, but which can be cured if timely care is secured. The study also identified the need to conjugate western medicine with traditional medicine. It is recognized that meanings may impact upon knowledge, attitudes, and practices that affect early detection and treatment of the disease. In addition, this work corroborates the need to strengthen and develop educational programs on tuberculosis supported by the real needs of the communities to enhance their knowledge, attitudes, and practices on the disease. Copyright© by the Universidad de Antioquia.

  7. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    NASA Astrophysics Data System (ADS)

    Arn Teh, Yit; Murphy, Wayne A.; Berrio, Juan-Carlos; Boom, Arnoud; Page, Susan E.

    2017-08-01

    The Amazon plays a critical role in global atmospheric budgets of methane (CH4) and nitrous oxide (N2O). However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs), one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza-Marañón foreland basin (PMFB) in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole) vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4-C m-2 day-1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4-C m-2 day-1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4-C m-2 day-1), followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4-C m-2 day-1), forested (short pole) vegetation (31.6 ± 6.6 mg CH4-C m-2 day-1), and forested vegetation (29.8 ± 10.0 mg CH4-C m-2 day-1). Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher dry season (47.2 ± 5.4 mg CH4-C m-2 day-1 and 85.5 ± 26.4 mg CH4-C m-2 day-1, respectively) compared to wet season emissions

  8. Monitoring stress-related mass variations in Amazon trees using accelerometers

    NASA Astrophysics Data System (ADS)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Hut, R.; Guerin, M. F.; Leus, G.; Oliveira, R. S.; Van De Giesen, N.

    2016-12-01

    Containing half of the world's rainforests, the Amazon plays a key role in the global water and carbon budget. However, the Amazon remains poorly understood, but appears to be vulnerable to increasing moisture stress, and future droughts have the potential to considerably change the global water and carbon budget. Field measurements will allow further investigations of the effects of moisture stress and droughts on tree dynamics, and its impact on the water and carbon budget. This study focuses on studying the diurnal mass variations of seven Amazonian tree species. The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Depending on the physiological traits of an individual tree, moisture stress and drought affect processes such as photosynthesis, assimilation, transpiration, and root water uptake. In turn, these have their influence on diurnal mass variations of a tree. Our study uses measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Nineteen accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest, covering an area of 250 x 250 m. The selected species span a wide range in wood density (0.5 - 1.1), diameter (15 - 40 cm) and height (25 - 60 m). Acceleration was measured with a frequency of 10 Hz, from August 2015 to June 2016, covering both the wet and dry season. On-site additional measurements of net radiation, wind speed at three heights, temperature, and precipitation as available every 15 minutes. Dendrometers measured variation in xylem and bark thickness every 5 minutes. The MUltiple SIgnal Classification (MUSIC) algorithm was applied to the acceleration time series to estimate the frequency spectrum of each tree. A correction was necessary to account for the dominant effect of wind. The resulting spectra reveal

  9. The Amazon reveals its secrets--partly

    USGS Publications Warehouse

    Betancourt, Julio L.

    2000-01-01

    The role of the tropics in global climate change during glacial cycles is hotly debated in paleoclimate cycles today. Records from South America have not provided a clear picture of tropical climate change. In his Perspective, Betancourt highlights the study by Maslin and Burns, who have deduced the outflow of the Amazon over the past 14,000 years. This may serve as a proxy that integrates hydrology over the entire South American tropics, although the record must be interpreted cautiously because factors other than rainfall may contribute to the variability in outflow.

  10. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    PubMed Central

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  11. Campaign datasets for Observations and Modeling of the Green Ocean Amazon (GOAMAZON)

    DOE Data Explorer

    Martin,Scot; Mei,Fan; Alexander,Lizabeth; Artaxo,Paulo; Barbosa,Henrique; Bartholomew,Mary Jane; Biscaro,Thiago; Buseck,Peter; Chand,Duli; Comstock,Jennifer; Dubey,Manvendra; Godstein,Allen; Guenther,Alex; Hubbe,John; Jardine,Kolby; Jimenez,Jose-Luis; Kim,Saewung; Kuang,Chongai; Laskin,Alexander; Long,Chuck; Paralovo,Sarah; Petaja,Tuukka; Powers,Heath; Schumacher,Courtney; Sedlacek,Arthur; Senum,Gunnar; Smith,James; Shilling,John; Springston,Stephen; Thayer,Mitchell; Tomlinson,Jason; Wang,Jian; Xie,Shaocheng

    2016-05-30

    The hydrologic cycle of the Amazon Basin is one of the primary heat engines of the Southern Hemisphere. Any accurate climate model must succeed in a good description of the Basin, both in its natural state and in states perturbed by regional and global human activities. At the present time, however, tropical deep convection in a natural state is poorly understood and modeled, with insufficient observational data sets for model constraint. Furthermore, future climate scenarios resulting from human activities globally show the possible drying and the eventual possible conversion of rain forest to savanna in response to global climate change. Based on our current state of knowledge, the governing conditions of this catastrophic change are not defined. Human activities locally, including the economic development activities that are growing the population and the industry within the Basin, also have the potential to shift regional climate, most immediately by an increment in aerosol number and mass concentrations, and the shift is across the range of values to which cloud properties are most sensitive. The ARM Climate Research Facility in the Amazon Basin seeks to understand aerosol and cloud life cycles, particularly the susceptibility to cloud aerosol precipitation interactions, within the Amazon Basin.

  12. Migration Within the Frontier: The Second Generation Colonization in the Ecuadorian Amazon

    PubMed Central

    Carr, David L.; Bilsborrow, Richard E.

    2009-01-01

    Since the 1970s, migration to the Amazon has led to a growing human presence and resulting dramatic changes in the physical landscape of the Northern Ecuadorian Amazon frontier, including considerable deforestation. Over time, a second demographic phenomenon has emerged with the children of the original migrants leaving settler farms to set out on their own. The vast majority have remained in the Amazon region, some contributing to further changes in land use via rural-rural migration to establish new farms and others to incipient urbanization. This paper uses longitudinal, multi-scale data on settler colonists between 1990 and 1999 to analyze rural-rural and rural-urban migration among second-generation colonists within the region. Following a description of migrants and settlers in terms of their individual, household and community characteristics, a multinomial discrete-time hazard model is used to estimate the determinants of out-migration of the second generation settlers to both urban and rural areas. We find significant differences in the determinants of migration to the two types of destinations in personal characteristics, human capital endowments, stage of farm and household lifecycles, migration networks, and access to community resources and infrastructure. The paper concludes with a discussion of policy implications of migrants' choice of rural versus urban destinations. PMID:19657471

  13. An overview of malaria transmission from the perspective of Amazon Anopheles vectors.

    PubMed

    Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G

    2015-02-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  14. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    PubMed

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  15. On Dams in the Amazon Basin, Teleconnected Impacts, and Neighbors Unaware of the Damage to their Natural Resources and Assets.

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.; Park, E.

    2017-12-01

    In a recent study, Latrubesse et al., (2017) demonstrated that the accumulated negative environmental effects of more than one hundred existing dams and at least 288 proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. The authors introduced a Dam Environmental Vulnerability Index (DEVI) to quantify the current and potential impacts of dams in the basin. The current and potential vulnerabilities of different regions of the Amazon basin was assessed, and the results highlighted the need for a more efficient and integrative legal framework involving all nine countries of the basin in an anticipatory assessment to minimize the negative socio-environmental and biotic impacts of hydropower developments. Here we present expanded information on the potential impacts of dams in the lower Amazon and the northeast Atlantic coast of South America, and revisit our proposed integrative strategies for basin management which are based on the adaptation and functionality of the institutional and legal framework already existing in the Amazon countries. Participative strategies involving members from the Amazon Cooperation Treaty Organization (ACTO) countries, and additional members (for example, France), such as the creation of a basin committee -as defined by the Brazilian Law of Waters of Brazil-, and the creation of an Amazon Basin Panel allowing the participation of scientists that could have a policy-relevant role but should be not policy-prescriptive, are also discussed. ReferencesLatrubesse, E., Arima E. Dunne T., Park E., Baker V, Horta F.,Wight, C., Wittmann F., Zuanon, J., Baker P., Ribas C, Norgaard R., Filizola N., Ansar A., Flyvbjerg B., Stevaux, J. 2017. Damming the rivers of the Amazon basin. Nature, 546, 363-369.

  16. Comparing Amazon Basin CO2 fluxes from an atmospheric inversion with TRENDY biosphere models

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Alden, C. B.; Harper, A. B.; Ahlström, A.; Touma, D. E.; Miller, J. B.; Gatti, L. V.; Gloor, M.

    2015-12-01

    Net exchange of carbon dioxide (CO2) between the atmosphere and the terrestrial biosphere is sensitive to environmental conditions, including extreme heat and drought. Of particular importance for local and global carbon balance and climate are the expansive tracts of tropical rainforest located in the Amazon Basin. Because of the Basin's size and ecological heterogeneity, net biosphere CO2 exchange with the atmosphere remains largely un-constrained. In particular, the response of net CO2 exchange to changes in environmental conditions such as temperature and precipitation are not yet well known. However, proper representation of these relationships in biosphere models is a necessary constraint for accurately modeling future climate and climate-carbon cycle feedbacks. In an effort to compare biosphere response to climate across different biosphere models, the TRENDY model intercomparison project coordinated the simulation of CO2 fluxes between the biosphere and atmosphere, in response to historical climate forcing, by 9 different Dynamic Global Vegetation Models. We examine the TRENDY model results in the Amazon Basin, and compare this "bottom-up" method with fluxes derived from a "top-down" approach to estimating net CO2 fluxes, obtained through atmospheric inverse modeling using CO2 measurements sampled by aircraft above the basin. We compare the "bottom-up" and "top-down" fluxes in 5 sub-regions of the Amazon basin on a monthly basis for 2010-2012. Our results show important periods of agreement between some models in the TRENDY suite and atmospheric inverse model results, notably the simulation of increased biosphere CO2 loss during wet season heat in the Central Amazon. During the dry season, however, model ability to simulate observed response of net CO2 exchange to drought was varied, with few models able to reproduce the "top-down" inversion flux signals. Our results highlight the value of atmospheric trace gas observations for helping to narrow the

  17. Promoting health and happiness in the Brazilian Amazon.

    PubMed

    Scannavino, Caetano; Anastácio, Rui

    2007-01-01

    With the motto "Health, happiness of the body. Happiness, health of the soul", the Health & Happiness Project (PSA) works to promote integrated and sustainable community development in parts of the Brazilian Amazon. PSA grew out of local workers' personal experience in collaborating with communities and the need for sustainable actions for their future development. PSA was established as a not-for-profit organization in 1987 It started off by implementing strategies that would increase the health status of the population, which was identified as the biggest challenge, to then extend to other areas of development. Education, training and community participation were key elements of the project's actions, which included basic sanitation, reproductive health and child health, technical assistance in agricultural practices and youth empowerment through communications, among others. Once the health structure was established, the work moved on to new priorities related to education, economic production, protection of the environment and community management in the medium and long terms. The project's success has helped to institutionalize the practices and today it reaches a total of approximately 5,000 families distributed across 150 rural communities in the mid- and low-Amazon region.

  18. Trypanosoma cruzi I and IV Stocks from Brazilian Amazon Are Divergent in Terms of Biological and Medical Properties in Mice

    PubMed Central

    Monteiro, Wuelton Marcelo; Margioto Teston, Ana Paula; Gruendling, Ana Paula; dos Reis, Daniele; Gomes, Mônica Lúcia; Marques de Araújo, Silvana; Bahia, Maria Terezinha; Costa Magalhães, Laylah Kelre; de Oliveira Guerra, Jorge Augusto; Silveira, Henrique; de Ornelas Toledo, Max Jean; Vale Barbosa, Maria das Graças

    2013-01-01

    Background In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties. Methodology/Principal Findings Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001), a longer patent period (p<0.001), higher values of mean daily parasitemia (p = 0.009) and maximum of parasitemia (p = 0.015), earlier days of maximum parasitemia (p<0.001) and mortality (p = 0.018), higher mortality rates in the acute phase (p = 0.047), higher infectivity rates (p = 0.002), higher positivity in the fresh blood examination (p<0.001), higher positivity in the ELISA at the early chronic phase (p = 0.022), and a higher positivity in the ELISA at the late chronic phase (p = 0.003). On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014), higher frequency of mice with inflammatory process in any organ (p = 0.005), higher frequency of mice with tissue parasitism in any organ (p = 0.027) and a higher susceptibility to benznidazole (p = 0.002) than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the

  19. Recent variations in Amazon carbon balance driven by climate anomalies

    NASA Astrophysics Data System (ADS)

    Miller, J. B.

    2015-12-01

    Understanding tropical rainforest response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net ecosystem exchange of CO2 with the atmosphere (NEE), a metric that represents the total integrated signal of carbon fluxes into and out of ecosystems. Sub-annual and sub-basin NEE estimates have previously been derived from process-based biosphere models, despite often disagreeing with plot-scale observations. Our analysis of airborne CO2 and CO measurements reveals monthly, sub-Basin scale (~106 km2) NEE variations in a framework that is largely independent of bottom-up estimates. As such, our approach provides new insights about tropical forest response to climate. We find acute sensitivity of NEE to daily and monthly climate extremes. In particular, increased central-Amazon NEE was associated with wet-season heat and dry-season drought in 2010. We analyze satellite proxies for photosynthesis and find that suppression of photosynthesis may have contributed to increased carbon loss in the 2010 drought, consistent with recent analysis of plot-scale measurements. In the eastern Amazon, pulses of increased NEE (i.e. net respiration) persisted through 2011, suggesting legacy effects of the drought that occurred in 2010. Regional differences in post-drought recovery in 2011 and 2012 appear related to long-term water availability. These results provide novel evidence of the vulnerability of Amazon carbon stocks to short-term temperature and moisture extremes.

  20. Strong coupling of plant and fungal community structure across western Amazonian rainforests

    PubMed Central

    Peay, Kabir G; Baraloto, Christopher; Fine, Paul VA

    2013-01-01

    The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. PMID:23598789

  1. IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    NASA Technical Reports Server (NTRS)

    Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua

    2016-01-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  2. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    PubMed

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change

  3. A comparison of traditional healers' medicinal plant knowledge in the Bolivian Andes and Amazon.

    PubMed

    Vandebroek, Ina; Van Damme, Patrick; Van Puyvelde, Luc; Arrazola, Susana; De Kimpe, Norbert

    2004-08-01

    Medicinal plant knowledge of two groups of traditional healers was thoroughly studied during a 2-year ethnobotanical survey in the Bolivian Andes (Quechua farmers from Apillapampa) and Amazon rainforest (Yuracaré-Trinitario slash-and-burn cultivators from Isiboro-Sécure National Park), respectively. Both areas represent ecologically and culturally diverse zones, differing in floristic diversity, physical accessibility to health care and degree of modernization, the latter evidenced by presence or intensity in use of modern services such as electricity, water distribution, and materials for house construction. It is generally believed that indigenous people have an impressive knowledge of useful plant species and that this knowledge reflects the plant wealth of their living environment. However, the present study shows that healers' knowledge of collected medicinal plants (expressed as percentage of plants known by name and use by the majority of healers) is higher in the Andean area characterised by a long history of anthropogenic activity, than in the biodiversity-rich rainforest (protected since 1965). Therefore, medicinal plant knowledge does not seem to depend on the level of plant diversity, degree of modernization or absence of Western health care infrastructure. Indeed, although Andean healers live in a floristically poorer environment, have adopted more modern services and have easier access to primary health care facilities, they are more knowledgeable about medicinal plants than rainforest healers who live isolated in an environment with considerable floristic/ecological variation and lack of Western health care. It is hypothesised that social factors underlying traditional medical practices (background of extensive family in traditional medicine) play an important role in transmission--and hence survival of knowledge on medicinal plants.

  4. Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.

    PubMed

    Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L

    2015-02-01

    Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Brazil: Rondonia

    Atmospheric Science Data Center

    2016-12-30

    ... Places where clouds or other factors precluded an aerosol retrieval are shown in dark grey.   The main measurement site for the ... within World Reference System-2 path 231.   Further information about the CLAIRE campaign, and the Large-scale-Biosphere-Atmosphere ...

  6. Prevalence of myopia in an adult population of two different ethnic groups in the Ecuadorian Amazon.

    PubMed

    Jiménez, José Ramón; Bermúdez, Javier; Rubiño, Manuel; Gómez, Luis; Anera, Rosario González

    2004-01-01

    To determine the prevalence of myopia in the adult populations of two different ethnic communities in the Ecuadorian Amazon. Refraction with retinoscopy after cycloplegia was performed for 507 Naporuna (an ethnic group indigenous to the jungles of the Ecuadorian Amazon) and for 776 settlers (white-mestizos from the Andes, now living in the Amazon and working for the petroleum industry). Ages ranged from 18 to 45 years. All subjects had little or no formal education. The prevalence of myopia was 4.7% among the Naporuna and 5.5% among the settlers; the prevalence of hyperopia was higher, at 17.8% and 36.0%, respectively. The prevalence of myopia in the two communities studied agrees with the results of other studies showing a low prevalence of myopia among groups with low levels of formal education or groups living a nonurban lifestyle.

  7. Where Deforestation Leads to Urbanization: How Resource Extraction is Leading to Urban Growth in the Brazilian Amazon.

    PubMed

    Richards, Peter; VanWey, Leah

    2015-07-01

    Developing the Amazon into a major provider of internationally traded mineral and food commodities has dramatically transformed broad expanses of tropical forests to farm and pasturelands, and to mining sites. The environmental impacts of this transformation, as well as the drivers underlying the process, have already been well documented. In this article we turn our analytical lenses to another, less examined effect of Amazon land use and environmental change, namely the creation and development of new urban areas. Here we argue that urban growth in the Amazon is a direct residual of international interest in the production of traded commodities, and of the capacity of local urban residents to capture capital and value before it is extracted from the region. Specifically, we suggest that urban growth is occurring fastest where cities have access to both rural export commodities and export corridors. We also show correlations between urban growth and lower rural population density, and cities' capacities to draw migrants from beyond their immediate rural surroundings. More broadly, we argue that urbanization in the Amazon is better interpreted as a symptom rather than a driver of the region's land use and land cover change.

  8. Where Deforestation Leads to Urbanization: How Resource Extraction is Leading to Urban Growth in the Brazilian Amazon

    PubMed Central

    VanWey, Leah

    2015-01-01

    Developing the Amazon into a major provider of internationally traded mineral and food commodities has dramatically transformed broad expanses of tropical forests to farm and pasturelands, and to mining sites. The environmental impacts of this transformation, as well as the drivers underlying the process, have already been well documented. In this article we turn our analytical lenses to another, less examined effect of Amazon land use and environmental change, namely the creation and development of new urban areas. Here we argue that urban growth in the Amazon is a direct residual of international interest in the production of traded commodities, and of the capacity of local urban residents to capture capital and value before it is extracted from the region. Specifically, we suggest that urban growth is occurring fastest where cities have access to both rural export commodities and export corridors. We also show correlations between urban growth and lower rural population density, and cities’ capacities to draw migrants from beyond their immediate rural surroundings. More broadly, we argue that urbanization in the Amazon is better interpreted as a symptom rather than a driver of the region’s land use and land cover change. PMID:26985079

  9. Understanding Hydrological Regime Alterations Caused by dams: the Santiago River case in the Andean Region of the Amazon Basin.

    NASA Astrophysics Data System (ADS)

    Rosero-Lopez, D.; Flecker, A.; Walter, M. T.

    2016-12-01

    Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.

  10. Road building, land use and climate change: prospects for environmental governance in the Amazon.

    PubMed

    Perz, Stephen; Brilhante, Silvia; Brown, Foster; Caldas, Marcellus; Ikeda, Santos; Mendoza, Elsa; Overdevest, Christine; Reis, Vera; Reyes, Juan Fernando; Rojas, Daniel; Schmink, Marianne; Souza, Carlos; Walker, Robert

    2008-05-27

    Some coupled land-climate models predict a dieback of Amazon forest during the twenty-first century due to climate change, but human land use in the region has already reduced the forest cover. The causation behind land use is complex, and includes economic, institutional, political and demographic factors. Pre-eminent among these factors is road building, which facilitates human access to natural resources that beget forest fragmentation. While official government road projects have received considerable attention, unofficial road building by interest groups is expanding more rapidly, especially where official roads are being paved, yielding highly fragmented forest mosaics. Effective governance of natural resources in the Amazon requires a combination of state oversight and community participation in a 'hybrid' model of governance. The MAP Initiative in the southwestern Amazon provides an example of an innovative hybrid approach to environmental governance. It embodies a polycentric structure that includes government agencies, NGOs, universities and communities in a planning process that links scientific data to public deliberations in order to mitigate the effects of new infrastructure and climate change.

  11. Consistency of vegetation index seasonality across the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jérôme; Mõttus, Matti; Aragão, Luiz E. O. C.; Shimabukuro, Yosio

    2016-10-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  12. Consistency of Vegetation Index Seasonality Across the Amazon Rainforest

    NASA Technical Reports Server (NTRS)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jerome; Mottus, Matti; Aragao, Luiz E.O.C.; Shimabukuro, Yosio

    2016-01-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  13. Climatic impact of Amazon deforestation - a mechanistic model study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning Zeng; Dickinson, R.E.; Xubin Zeng

    1996-04-01

    Recent general circulation model (GCM) experiments suggest a drastic change in the regional climate, especially the hydrological cycle, after hypothesized Amazon basinwide deforestation. To facilitate the theoretical understanding os such a change, we develop an intermediate-level model for tropical climatology, including atmosphere-land-ocean interaction. The model consists of linearized steady-state primitive equations with simplified thermodynamics. A simple hydrological cycle is also included. Special attention has been paid to land-surface processes. It generally better simulates tropical climatology and the ENSO anomaly than do many of the previous simple models. The climatic impact of Amazon deforestation is studied in the context of thismore » model. Model results show a much weakened Atlantic Walker-Hadley circulation as a result of the existence of a strong positive feedback loop in the atmospheric circulation system and the hydrological cycle. The regional climate is highly sensitive to albedo change and sensitive to evapotranspiration change. The pure dynamical effect of surface roughness length on convergence is small, but the surface flow anomaly displays intriguing features. Analysis of the thermodynamic equation reveals that the balance between convective heating, adiabatic cooling, and radiation largely determines the deforestation response. Studies of the consequences of hypothetical continuous deforestation suggest that the replacement of forest by desert may be able to sustain a dry climate. Scaling analysis motivated by our modeling efforts also helps to interpret the common results of many GCM simulations. When a simple mixed-layer ocean model is coupled with the atmospheric model, the results suggest a 1{degrees}C decrease in SST gradient across the equatorial Atlantic Ocean in response to Amazon deforestation. The magnitude depends on the coupling strength. 66 refs., 16 figs., 4 tabs.« less

  14. Bacterial Biogeography across the Amazon River-Ocean Continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers

  15. Bacterial Biogeography across the Amazon River-Ocean Continuum.

    PubMed

    Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  16. Bacterial Biogeography across the Amazon River-Ocean Continuum

    DOE PAGES

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; ...

    2017-05-23

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers

  17. Bacterial Biogeography across the Amazon River-Ocean Continuum

    PubMed Central

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  18. Andes hantavirus variant in rodents, southern Amazon Basin, Peru.

    PubMed

    Razuri, Hugo; Tokarz, Rafal; Ghersi, Bruno M; Salmon-Mulanovich, Gabriela; Guezala, M Claudia; Albujar, Christian; Mendoza, A Patricia; Tinoco, Yeny O; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah; Nichol, Stuart T; Hirschberg, David L; Lipkin, W Ian; Bausch, Daniel G; Montgomery, Joel M

    2014-02-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted.

  19. Violence against Amazon women.

    PubMed

    Lima, Vera Lúcia de Azevedo; Souza, Maria de Lourdes de; Monticelli, Marisa; Oliveira, Marília de Fátima Vieira de; Souza, Carlos Benedito Marinho de; Costa, Carlos Alberto Leal da; Brüggemann, Odaléa Maria

    2009-01-01

    This quantitative and exploratory study analyzed violence against Amazon women presented in print media according to type and severity, and whether aggressors fell under the Maria da Penha law. A total of 181 issues of a regional newspaper were consulted. Based on content analysis, 164 items addressing violence against women were selected and 46 were included in the corpus of analysis. Results were gathered in three thematic groups: women killed with cruelty, sexual violence against women regardless of age, and violence against women and the limitations of the Maria da Penha law. Violence against these women varied in terms of form and severity, including up to homicide. Women are submitted to sexual violence from childhood through adulthood. The enforcement of this law shows the community it has a means to cope with this social phenomenon.

  20. Miocene oceanographic changes of the western equatorial Atlantic (Ceara Rise) based on calcareous dinoflagellate cysts

    NASA Astrophysics Data System (ADS)

    Heinrich, S.; Zonneveld, K. A. F.; Willems, H.

    2010-09-01

    The middle- and upper Miocene represent a time-interval of major changes in palaeoceanography that favoured the cooling of the climate and culminated in the Northern Hemisphere Glaciation (NHG). The basis for the development of the modern deepwater circulation pattern, e.g. thermohaline circulation, was hereby established. Tectonic events played a key role in the progressing Miocene oceanography, such as the narrowing of the Panama gateway (e.g. Duque-Caro 1990) and the possible linked changes in North Atlantic Deep Water formation (Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. We want to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. Within this study, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 12 Ma, when NADW production increased (e.g. Wright et al. 1992), we see a distinct increase in the absolute abundances of the calcareous dinocysts. This might be related to enhanced productivity or to better carbonate preservation. At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input occurs. This could be a signal for the initiation of the Amazon River as a transcontinental river with the development of the Amazon fan (11.8 - 11.3 Ma; Figueiredo et al. 2009) in relation to Andean tectonism. References: Duque-Caro, H. (1990): Neogene stratigraphy, paleoceanography and palebiology in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology

  1. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  2. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, JN

    2016-04-01

    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition tomore » determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.« less

  3. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  4. How Pecten Brazil drilled the Amazon basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleakley, W.B.

    1983-09-01

    Pecten Brazil overcame numerous obstacles to drill two exploratory wells in the Amazon Basin last year. These included: The threat of low water in normally navigable rivers. Dense jungle growth at both locations. Lack of suitable roads for heavy hauling. Inconvenient distances from supply points. An unusual basalt formation responsible for unique drilling problems. Hundreds of helicopter lifts to move drilling rigs, supplies, and personnel. Pecten contracted with Petrobras, the Brazilian national oil company, to evaluate three blocks in the Amazon jungle, each about 68 miles (110 km) on a side, through seismic study and ultimate drilling. Planning for themore » drilling phase got started on March 17, 1981 with December 1 targeted as spud date for the first well. Actual spud date was November 25, 5 days ahead of schedule, in spite of all obstacles. Pecten has a mid-Amazonas block now under seismic investigation for possible exploratory drilling. Logistics problems in this one provide new difficulties, as the area is extremely wet. Most work is carried on by boat. The company is also looking offshore Bahia, testing the possible extension of the Renconcavo basin. Two wells have already provided good shows of a high pour point oil, with flow rates from 400 to 1,000 b/d. Another area of interest to Pecten is offshore Rio Grande do Norte.« less

  5. Globalization of the Amazon soy and beef industries: opportunities for conservation.

    PubMed

    Nepstad, Daniel C; Stickler, Claudia M; Almeida, Oriana T

    2006-12-01

    Amazon beef and soybean industries, the primary drivers of Amazon deforestation, are increasingly responsive to economic signals emanating from around the world, such as those associated with bovine spongiform encephalopathy (BSE, "mad cow disease") outbreaks and China's economic growth. The expanding role of these economic "teleconnections" (coupled phenomena that take place in distant places on the planet) led to a 3-year period (2002-2004) of historically high deforestation rates. But it also increases the potential for large-scale conservation in the region as markets and finance institutions demand better environmental and social performance of beef and soy producers. Cattle ranchers and soy farmers who have generally opposed ambitious government regulations that require forest reserves on private property are realizing that good land stewardship-including compliance with legislation-may increase their access to expanding domestic and international markets and to credit and lower the risk of "losing" their land to agrarian reform. The realization of this potential depends on the successful negotiation of social and environmental performance criteria and an associated system of certification that are acceptable to both the industries and civil society. The foot-and-mouth eradication system, in which geographic zones win permission to export beef, may provide an important model for the design of a low-cost, peer-enforced, socioenvironmental certification system that becomes the mechanism by which beef and soy industries gain access to markets outside the Amazon.

  6. El Niño drought increased canopy turnover in Amazon forests.

    PubMed

    Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos

    2018-03-25

    Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1  yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  7. U-Pbdating on detrital zircon and Nd and Hf isotopes related to the provenance of siliciclastic rocks of the Amazon Basin: Implications for the origin of Proto-Amazonas River

    NASA Astrophysics Data System (ADS)

    Dantas, Elton Luiz; Silva Souza, Valmir; Nogueira, Afonso C. R.; Ventura Santos, Roberto; Poitrasson, Franck; Vieira Cruz, Lucieth; Mendes Conceição, Anderson

    2014-05-01

    provenance dominated by Mesoproterozoic sources (1.0, 1.2 Ga) and subordinate Neoproterozoic(550-800 Ma) and Archean derivation (2.67 Ga). On the other hand, detrital zircon and Hf and NdTDM model ages for the Cretaceous Alter do Chão Formation yielded a unique Paleoproterozoicages between 2.0 and 2.3 Ga that can be correlated to sources derived from Maroni-Itacaiúnas and Central Amazonian basement provinces. The contribution of Precambrian and Paleozoic rocks exposed during the installationof the Amazonas drainage were probably significant .Such a large contribution from Neoproterozoic and Mesoproterozoic sources are not common in the proximal Amazon Craton basement .This new proposal open new perspectives to understand better the initial history of Amazon River with indication of the probable source areas during Late Cenozoic. Campbell Jr.; Frailey,C.D.; Romero-Pittman, G. 2006. The Pan-Amazonian UcayliPeneplain, late Neogenesedimentacion in Amazonia, and the Birth on the Modern Amazon River system.Palaeogeography,Palaeoclimatology, Palaeoecology. 239 (2006) 166-219 Figueiredo, J.,Hoorn, C., Van der Vem, P., Soares, E. 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Fozdo Amazonas Basin. Geology, 37(7):619-622. Hoorn,C.; Guerrero, J.; Sarmiento, G. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene Northern South America. Geology, v.23, p-237-240. Nogueira, A.C.R.; Silveira, R.R.; Guimarães, J.T.F. 2013. Neogene-Quaternary sedimentary and paleovegetation history of the eastern Solimões Basin, central Amazon region.Journal of South American Earth Sciences , v. 46, p. 89-99, 2013. Potter, P.E. 1997. The Mesozoic and Cenozoic paleodrainage of South America: a natural history. Journal of South American Earth Science.v.10. p.331-344 Wesselingh, F. P., et al., 2002. Lake-Pebas: a palaeocological reconstruction of a Miocene long-lived lake comples in Western Amazônia. Cainozoic Research 1 (1-2), 35-81.

  8. Western Tropical Atlantic Hydrologic change during the last 130,000 years

    NASA Astrophysics Data System (ADS)

    McGrath, S. M.; Lavoie, N.; Oppo, D.

    2016-12-01

    Abrupt climate changes in the North Atlantic during the last 130,000 years are associated with hydrologic changes in the western tropical Atlantic Ocean. Previous studies on marine sediment cores from between 4°S and the equator have documented pulses of terrigenous sediment recording increased precipitation and weathering on the Brazilian Nordeste associated with Heinrich events. We worked on cores KNR197-3-11CDH (7°40'N, 53°49'W, water depth 550 m) and KNR 197-3-46CDH (7°50.1621'N, 53°39.8051'W, 947m water depth) located farther north along the South American continental slope, where sediment derives from the Amazon river basin and is transported by the North Brazilian Current. Preliminary stratigraphy based on magnetic susceptibility shows a possible correlation with the Greenland ice core δ18O stratigraphy. We use sediment elemental composition, determined by x-ray fluorescence (XRF) to evaluate variations in terrigenous sediment runoff and δ18O of the planktonic foraminifers Globierinoides ruber to evaluate variations in western tropical North Atlantic surface hydrography across North Atlantic abrupt climate events. Similarities and differences among our records and the records from the more southerly cores will help understand the mechanisms of hydrologic changes in the regions on abrupt climate time scales.

  9. Environmental Controls on Space-Time Biodiversity Patterns in the Amazon

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Bonetti, S.; Feng, X.

    2014-12-01

    The Amazon/Andes territory is characterized by the highest biodiversity on Earth and understanding how all these ecological niches and different species originated and developed is an open challenge. The niche perspective assumes that species have evolved and occupy deterministically different roles within its environment. This view differs from that of the neutral theories, which assume ecological equivalence between all species but incorporates stochastic demographic processes along with long-term migration and speciation rates. Both approaches have demonstrated tremendous power in predicting aspects species biodiversity. By combining tools from both approaches, we use modified birth and death processes to simulate plant species diversification in the Amazon/Andes and their space-time ecohydrological controls. By defining parameters related to births and deaths as functions of available resources, we incorporate the role of space-time resource variability on niche formation and community composition. We also explicitly include the role of a heterogeneous landscape and topography. The results are discussed in relation to transect datasets from neotropical forests.

  10. GoAmazon2014/15. Oxidation Flow Reactor Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, J. L.; Day, D. A.; Hu, W.

    The primary goal of the Green Ocean Amazon (GoAmazon2014/5) field campaign was to measure and mechanistically understand the formation of particle number and mass in a region affected by large tropical rainforest biogenic emissions and sometimes anthropogenic influence from a large urban center. As part of the two intensive operational periods (IOPs) and in collaboration with Pacific Northwest National Laboratory (PNNL) and Harvard, the Jimenez Group proposed to deploy a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), Thermal Denuder (TD), Scanning Mobility Particle Size (SMPS), two oxidation flow reactors (OFR; including supporting O 3, CO/CO 2/CH 4, RH analyzers), and amore » high volume filter sampler (MCV) for the measurement of gas and aerosol chemical, physicochemical, and volatility properties. The two IOPs were conducted during the wet season (February to March, 2014) and dry season (August to October, 2014). This proposal was part of a collaborative proposal involving other university and government laboratories.« less

  11. Andes Hantavirus Variant in Rodents, Southern Amazon Basin, Peru

    PubMed Central

    Tokarz, Rafal; Ghersi, Bruno M.; Salmon-Mulanovich, Gabriela; Guezala, M. Claudia; Albujar, Christian; Mendoza, A. Patricia; Tinoco, Yeny O.; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah; Nichol, Stuart T.; Hirschberg, David L.; Lipkin, W. Ian; Bausch, Daniel G.; Montgomery, Joel M.

    2014-01-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted. PMID:24447689

  12. GT-9A - EARTH SKY - BRAZIL - MOUTH OF AMAZON

    NASA Image and Video Library

    1966-06-04

    S66-38191 (4 June 1966) --- The mouth of the Amazon River on the northern coast of Brazil, looking southwest, as seen from the Gemini-9A spacecraft during its 18th revolution of Earth. The image was taken with a 70mm Hasselblad camera, using Eastman Kodak, Ektachrome MS (S.O. 217) color film. Photo credit: NASA

  13. Kindling: The Amazon e-Reader as an Educational Tool

    ERIC Educational Resources Information Center

    Brezicki, Colin

    2011-01-01

    The revolutionary electronic reading device, Amazon's Kindle, is already obsolete. Such is the breakneck speed of technology that the machine touted to spell the death of printed books is already heading for the scrap heap, replaced by e-readers like the iPad that access the Internet, make phone calls, download movies, and connect users with all…

  14. Amazon capims (floating grassmats) - A source of C-13 enriched methane to the troposphere

    NASA Technical Reports Server (NTRS)

    Chanton, Jeffrey; Crill, Patrick; Bartlett, Karen; Martens, Christopher

    1989-01-01

    The C-13 isotopic composition of methane emitted to the troposphere from Amazon capims (floating grassmats) ranged from -36.9 to -48.0, per mil averaging -44.4 + or - 4.2 per mil. All pools of methane associated with the grassmats were enriched; methane withdrawn from plant stems ranged from -39 to -49 per mil while bubbles stirred from the root mat averaged -41.4 per mil. As the CH4 flux from these habitats makes up some 40 percent of the total flux from the Amazon floodplain, methane emissions from the region as a whole must be enriched in.

  15. The Amazon at sea: Onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin

    NASA Astrophysics Data System (ADS)

    Hoorn, Carina; Bogotá-A, Giovanni R.; Romero-Baez, Millerlandy; Lammertsma, Emmy I.; Flantua, Suzette G. A.; Dantas, Elton L.; Dino, Rodolfo; do Carmo, Dermeval A.; Chemale, Farid

    2017-06-01

    The Amazon submarine fan is a large sediment apron situated offshore Pará (Brazil) and represents the most distal extent of the Amazon River. The age of onset of this transcontinental river remains debated, yet is of great importance for understanding biotic evolutionary processes on land and at sea. Here we present new geochemical and palynological data from a borehole drilled at the continental slope and dated based on nannofossil biostratigraphy. We found that sediments of mixed source (craton and adjacent) occur at least from the late Oligocene (NP25) to late Miocene (NN9), and that the earliest Andes-derived sediments occur in NN10 (late Miocene). Our geochemical record indicates an onset of the transcontinental Amazon River between 9.4 and 9 Ma, which postdates the regional unconformity by 1 to 1.5 My. The shift in sediment geochemistry is more gradually replicated in the palynological record by a change from coastal plain and tropical lowland taxa to a mixture of tropical lowland, and montane forest to open Andean taxa. In particular, the appearance of taxa such as Jamesonia and Huperzia, followed by Valeriana, Polylepis-Acaena, Lysipomia and Plantago (with a current altitudinal range from 3200 to 4000 m) suggests the development of open, treeless, vegetation between 9.5 and 5.4 Ma, and highlight the presence of a high Andes in the late Miocene hinterland. Poaceae progressively increased from 9 Ma, with a notable rise from 4 Ma onwards, and percentages well above post-glacial and modern values, particularly between 2.6 and 0.8 Ma. We hypothesize that the rise of the grasses is a basin-wide phenomenon, but that the Plio-Pleistocene expansion of open, treeless vegetation on the Andean slopes and foothills are the main contributor. This rise in grasses was likely caused by climatic fluctuations, and subsequent changes in relief and erosion rates. We conclude that the onset of the Amazon River is coupled with Neogene Andean tectonism and that subsequent

  16. Hydrological Controls on Macrophyte Productivity in the Amazon Floodplain Wetlands

    NASA Astrophysics Data System (ADS)

    Silva, T. S.; Novo, E. M.; Melack, J. M.

    2013-05-01

    The Amazon River floodplain is an important source of atmospheric CO2 and CH4, but the relative contribution of allochthonous and autochthonous sources to floodplain emissions is still uncertain. Macrophytes comprise an important carbon source, growing during both low and high water conditions, and averaging 5,000 g.m-2.yr-1 in dry weight. The controls exerted by the annual flooding on macrophyte productivity result from two opposing mechanisms: the "horizontal expansion" of plant stands during low water levels and the stem elongation ("vertical growth") promoted by rising water levels. As studies suggest more frequent and intense droughts for the Amazon, determining how these mechanisms interact to control macrophyte net primary productivity (NPP) can lead to a better understanding of the effects of extreme hydrological conditions on autochthonous carbon fixation in the Amazon floodplain. Our study combines remote sensing estimates of macrophyte cover, in situ measurements of macrophyte biomass, historical water level records, and statistical modeling and simulation to answer 1) how plant horizontal expansion and vertical growth respond to inter-annual flooding variability, 2) how these responses modulate annual NPP, and 3) how climatic changes will affect the contribution of macrophytes to the carbon budget of the Amazon floodplain. Biomass data was collected along a stretch of the Lower Amazon Floodplain, at monthly intervals in 2004, and a time series of Radarsat-1 and EOS-MODIS images was acquired for the same area for the 2003-2005 period. Daily river stage data was acquired from the Brazilian National Water Agency (ANA) for the Óbidos station, covering the 1970 - 2011 period. Macrophyte cover was estimated for each available image in the series, using a multitemporal object-based image analysis algorithm. Empirical regression models were used to model the relationship between flood levels and both plant biomass and cover area, and combined into a semi

  17. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    NASA Astrophysics Data System (ADS)

    Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.

    2015-12-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  18. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    USGS Publications Warehouse

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, Maria C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  19. Hydrological Predictability for the Peruvian Amazon

    NASA Astrophysics Data System (ADS)

    Towner, Jamie; Stephens, Elizabeth; Cloke, Hannah; Bazo, Juan; Coughlan, Erin; Zsoter, Ervin

    2017-04-01

    Population growth in the Peruvian Amazon has prompted the expansion of livelihoods further into the floodplain and thus increasing vulnerability to the annual rise and fall of the river. This growth has coincided with a period of increasing hydrological extremes with more frequent severe flood events. The anticipation and forecasting of these events is crucial for mitigating vulnerability. Forecast-based Financing (FbF) an initiative of the German Red Cross implements risk reducing actions based on threshold exceedance within hydrometeorological forecasts using the Global Flood Awareness System (GloFAS). However, the lead times required to complete certain actions can be long (e.g. several weeks to months ahead to purchase materials and reinforce houses) and are beyond the current capabilities of GloFAS. Therefore, further calibration of the model is required in addition to understanding the climatic drivers and associated hydrological response for specific flood events, such as those observed in 2009, 2012 and 2015. This review sets out to determine the current capabilities of the GloFAS model while exploring the limits of predictability for the Amazon basin. More specifically, how the temporal patterns of flow within the main coinciding tributaries correspond to the overall Amazonian flood wave under various climatic and meteorological influences. Linking the source areas of flow to predictability within the seasonal forecasting system will develop the ability to expand the limit of predictability of the flood wave. This presentation will focus on the Iquitos region of Peru, while providing an overview of the new techniques and current challenges faced within seasonal flood prediction.

  20. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness

    PubMed Central

    Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E.

    2011-01-01

    Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient

  1. [Cardiac involvement in Acute Chagas' Disease cases in the Amazon region].

    PubMed

    Barbosa-Ferreira, João Marcos; Guerra, Jorge Augusto de Oliveira; Santana Filho, Franklin Simões de; Magalhães, Belisa Maria Lopes; Coelho, Leíla I A R C; Barbosa, Maria das Graças Vale

    2010-06-01

    The cardiac involvement of five patients from the Amazon region with Acute Chagas' Disease (ACD) is described. Four of these patients presented probable oral transmission. All of them presented some degree of cardiac involvement, but there were no deaths.

  2. Overview of the South American biomass burning analysis (SAMBBA) field experiment

    NASA Astrophysics Data System (ADS)

    Morgan, W. T.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Johnson, B. T.; Haywood, J. M.; Freitas, S.; Longo, K.; Artaxo, P.; Coe, H.

    2013-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth's radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.

  3. A TRMM-Calibrated Infrared Technique for Convective and Stratiform Rainfall: Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew; Starr, David OC. (Technical Monitor)

    2001-01-01

    A satellite infrared technique with passive microwave calibration has been developed for estimating convective and stratiform rainfall. The Convective-Stratiform Technique, calibrated by coincident, physically retrieved rain rates from the TRMM Microwave Imager (TMI), has been applied to 30 min interval GOES infrared data and aggregated over seasonal and yearly periods over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. For the period Jan-April 1999, analysis revealed significant effects of local circulations (river breeze, land/sea breeze, mountain/valley) on both the total rainfall and it's diurnal cycle. Results compared well (a one-hour lag) with the diurnal cycle derived from TOGA radar-estimated rainfall in Rondonia. The satellite estimates revealed that the convective rain constituted 24% of the rain area while accounting for 67% of the rain volume. Estimates of the diurnal cycle (both total rainfall and convective/stratiform) for an area encompassing the Amazon Basin (3 x 10(exp 6) sq km) were in phase with those from the TRMM Precipitation Radar, despite the latter's limited sampling. Results will be presented comparing the yearly (2000) diurnal cycle for large regions (including the Amazon Basin), and an intercomparison of January-March estimates for three years, (1999-2001). We hope to demonstrate the utility of using the TRMM PR observations as verification for infrared estimates of the diurnal cycle, and as verification of the apportionment of rainfall into convective and stratiform components.

  4. A TRMM-Calibrated Infrared Technique for Convective and Stratiform Rainfall: Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew; Starr, David OC. (Technical Monitor)

    2001-01-01

    A satellite infrared technique with passive microwave calibration has been developed for estimating convective and stratiform. rainfall. The Convective-Stratiform Technique, calibrated by coincident, physically retrieved rain rates from the TRMM Microwave Imager (TMI), has been applied to 30 min interval GOES infrared data and aggregated over seasonal and yearly periods over northern South America. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall is presented. For the period Jan-April 1999, analysis revealed significant effects of local circulations (river breeze, land/sea breeze, mountain/valley) on both the total rainfall and it's diurnal cycle. Results compared well (a one-hour lag) with the diurnal cycle derived from TOGA radar-estimated rainfall in Rondonia. The satellite estimates revealed that the convective rain constituted 24% of the rain area while accounting for 67% of the rain volume. Estimates of the diurnal cycle (both total rainfall and convective/stratiform) for an area encompassing the Amazon Basin (3 x 10(exp 6) square km) were in phase with those from the TRMM Precipitation Radar, despite the latter's limited sampling. Results will be presented comparing the yearly (2000) diurnal cycle for large regions (including the Amazon Basin), and an intercomparison of January-March estimates for three years, 1999-2001. We hope to demonstrate the utility of using the TRMM PR observations as verification for infrared estimates of the diurnal cycle, and as verification of the apportionment of rainfall into convective and stratiform components.

  5. The Influence of Large-Scale Circulation on Fire Outbreaks in the Amazon Region

    NASA Astrophysics Data System (ADS)

    Pires, L. B. M.; Romao, M.; Freitas, A. C. V.

    2017-12-01

    The combination of alterations in land use cover and severe droughts may dramatically increase fire outbreaks. Tropical convection in the Amazon Basin is regulated mainly by large-scale atmospheric systems such as the Walker circulation. Many of the documented drought episodes in the Amazon occurred during intense El Niño events such as those recorded in 1926, 1983, 1997-1998, and 2010. However, not all El Niño events are related to drought in the Amazon. Recent studies have also pointed out the importance of the tropical Atlantic Ocean in the modulation of the Amazonian climate, as observed during the drought episodes in 2005 and 2010. This work investigates the fire outbreak tendency in the Amazon region, and the influence of large-scale circulation on these events. Data from the Fire Program of the Center for Weather Forecasting and Climate Studies (CPTEC/INPE) show a substantial increase in the number of fire outbreaks in the last few years, especially during 2016. However, in the 2017 year a sharp drop in fire outbreaks reaching levels similar to the years prior to 2016 is being noted, already showing a reduction of 54% in relation to the preceding 2016 year. The 2015-2016 period was marked by one of the strongest El Niño in history. This was reflected in the increase of the number of fire outbreaks due to the increase of the drought and temperature elevation period. On the other hand, the 2017 year is being characterized by a condition of neutrality in relation to the El Niño-Southern Oscillation (ENSO) phenomena, and have overall presented positive sea surface temperature (SST) anomalies in the tropical Atlantic. Variations of these systems and their relation to fire outbreaks is demonstrated.

  6. Illegal use of natural resources in federal protected areas of the Brazilian Amazon

    PubMed Central

    Silva, Jose M.C.; Michalski, Fernanda

    2017-01-01

    Background The Brazilian Amazon is the world’s largest rainforest regions and plays a key role in biodiversity conservation as well as climate adaptation and mitigation. The government has created a network of protected areas (PAs) to ensure long-term conservation of the region. However, despite the importance of and positive advances in the establishment of PAs, natural resource depletion in the Brazilian Amazon is pervasive. Methods We evaluated a total of 4,243 official law enforcement records generated between 2010 and 2015 to understand the geographical distribution of the illegal use of resources in federal PAs in the Brazilian Amazon. We classified illegal activities into ten categories and used generalized additive models (GAMs) to evaluate the relationship between illegal use of natural resources inside PAs with management type, age of PAs, population density, and accessibility. Results We found 27 types of illegal use of natural resources that were grouped into 10 categories of illegal activities. Most infractions were related to suppression and degradation of vegetation (37.40%), followed by illegal fishing (27.30%) and hunting activities (18.20%). The explanatory power of the GAMs was low for all categories of illegal activity, with a maximum explained variation of 41.2% for illegal activities as a whole, and a minimum of 14.6% for hunting activities. Discussion These findings demonstrate that even though PAs are fundamental for nature conservation in the Brazilian Amazon, the pressures and threats posed by human activities include a broad range of illegal uses of natural resources. Population density up to 50 km from a PA is a key variable, influencing illegal activities. These threats endanger long-term conservation and many efforts are still needed to maintain PAs that are large enough and sufficiently intact to maintain ecosystem functions and protect biodiversity. PMID:29038758

  7. Illegal use of natural resources in federal protected areas of the Brazilian Amazon.

    PubMed

    Kauano, Érico E; Silva, Jose M C; Michalski, Fernanda

    2017-01-01

    The Brazilian Amazon is the world's largest rainforest regions and plays a key role in biodiversity conservation as well as climate adaptation and mitigation. The government has created a network of protected areas (PAs) to ensure long-term conservation of the region. However, despite the importance of and positive advances in the establishment of PAs, natural resource depletion in the Brazilian Amazon is pervasive. We evaluated a total of 4,243 official law enforcement records generated between 2010 and 2015 to understand the geographical distribution of the illegal use of resources in federal PAs in the Brazilian Amazon. We classified illegal activities into ten categories and used generalized additive models (GAMs) to evaluate the relationship between illegal use of natural resources inside PAs with management type, age of PAs, population density, and accessibility. We found 27 types of illegal use of natural resources that were grouped into 10 categories of illegal activities. Most infractions were related to suppression and degradation of vegetation (37.40%), followed by illegal fishing (27.30%) and hunting activities (18.20%). The explanatory power of the GAMs was low for all categories of illegal activity, with a maximum explained variation of 41.2% for illegal activities as a whole, and a minimum of 14.6% for hunting activities. These findings demonstrate that even though PAs are fundamental for nature conservation in the Brazilian Amazon, the pressures and threats posed by human activities include a broad range of illegal uses of natural resources. Population density up to 50 km from a PA is a key variable, influencing illegal activities. These threats endanger long-term conservation and many efforts are still needed to maintain PAs that are large enough and sufficiently intact to maintain ecosystem functions and protect biodiversity.

  8. [The Amazon Sanitation Plan (1940-1942)].

    PubMed

    Andrade, Rômulo de Paula; Hochman, Gilberto

    2007-12-01

    The article addresses the Amazon Sanitation Plan and the political context in which it was formulated between 1940 and 1941. It examines the role of Getúlio Vargas, the activities of the plan's main protagonists (such as Evandro Chagas, João de Barros Barreto, and Valério Konder), its key proposals, and its demise as of 1942 upon creation of the Special Public Health Service (Sesp), which grew out of cooperation agreements between Brazil and the US following both nations' involvement in World War II. A reproduction of the Plan as published in the Arquivos de Higiene in 1941 is included.

  9. River mixing in the Amazon as a driver of concentration-discharge relationships

    NASA Astrophysics Data System (ADS)

    Moquet, Jean-Sébastien; Bouchez, Julien; Carlo Espinoza, Jhan; Martinez, Jean-Michel; Guyot, Jean-Loup; Lagane, Christelle; Filizola, Naziano; Aniceto, Keila; Noriega, Luis; Hidalgo Sanchez, Liz; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe

    2017-04-01

    Large hydrological systems such as continental-scale river basins aggregate water from compositionally different tributaries. Here we explore how such aggregation can affect solute concentration-discharge (C-Q) relationships and thus obscure the message carried by these relationships in terms of weathering properties of the Critical Zone. We compute 10 day-frequency time series of Q and major solute (Si, Ca2+, Mg2+, K+, Na+, Cl-, SO42-) C and fluxes (F) for 13 gauging stations of the SNO-HYBAM Monitoring Program (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins) located throughout the Amazon basin, the largest river basin in the world. Concentration-discharge relationships vary in a systematic manner, shifting for most solutes from a nearly "chemostatic" behavior (constant C) at the Andean mountain front to a more "dilutional" pattern (negative C-Q relationship) towards the system mouth. Associated to this shift in trend is a shift in shape: C-Q hysteresis becomes more prominent at the most downstream stations. A simple model of tributary mixing allows us to identify the important parameters controlling C-Q trends and shapes in the mixture, and we show that for the Amazon case, the model results are in qualitative agreement with the observations. Altogether, this study suggests that mixing of water and solutes between different flowpaths leads to altered C-Q relationships.

  10. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change

    PubMed Central

    Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L.; Lewis, Simon L.; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J. W.; Erwin, Terry L.; Feldpausch, Ted R.; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R.

    2016-01-01

    Amazon forests, which store ∼50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem’s resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest’s response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions. PMID:26711984

  11. [Curares and timbós, poisons used in the Amazon].

    PubMed

    Carod-Artal, Francisco Javier

    2012-12-01

    The natives that dwell along the banks of the Orinoco and Amazon rivers have used different poisons from plants for centuries. The study reviews the historical and ethnographic aspects of the use of curares and timbós in the Amazonian region. Curare is prepared by boiling the roots, bark and stalks of different plants belonging to the Loganiaceae (Strychnos) and Menispermaceae families (Chondrodendron, Curarea and Abuta). The curares of the eastern Amazon are extracted from different species of Strychnos that contain quaternary alkaloids, which act by blocking the neuromuscular junction. They are used to hunt wild animals and death comes about due to paralysis of the skeletal muscles. The first muscles to be paralysed are those of the eyes, nose and neck, and then those in the limbs; the diaphragm is the muscle that takes the longest to become paralysed. The earliest chronicles reporting their use were written by Fernandez de Oviedo, Cristoval de Acuna, Antonio de Ulloa and Jose Gumilla. La Condamine, Humbolt, Waterton and Schomburgk, among others, carried out a number of different ethnobotanical studies on curare. The ichthyotoxic poisons from plants, which are known as timbós or barbascos, are characterised by their high level of solubility, their fast diffusion and their high rate of activity. At least 70 plant species are used to poison the fish in the tributaries of the Amazon with the aim of make fishing easier. Sapindaceae, Papilionaceae, Euphorbiaceae and Theophrastaceae contain ichthyotoxic substances, such as rotenone or saponins. Ethnohistorical and ethnographic accounts show that the Amazonian cultures have a deep understanding of the toxic properties of curares and timbós.

  12. Storage and remobilization of suspended sediment in the lower amazon river of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Dunne, T.; Richey, J.E.; Santos, U.De. M.; Salati, E.

    1985-01-01

    In the lower Amazon River, suspended sediment is stored during rising stages of the river and resuspended during falling river stages. The storage and resuspension in the reach are related to the mean slope of the flood wave on the river surface; this slope is smaller during rising river stages than during falling stages. The pattern of storage and resuspension damps out the extreme values of high and low sediment discharge and tends to keep them near the mean value between 3.0 ?? 106 and 3.5 ?? 106 metric tons per day. Mean annual discharge of suspended sediment in the lower Amazon is between 1.1 ?? 109 and 1.3 ?? 109 metric tons per year.

  13. Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15

    DOE PAGES

    Fraund, Matthew; Pham, Don; Bonanno, Daniel; ...

    2017-09-15

    Two complementary techniques, Scanning Transmission X-ray Microscopy/Near Edge Fine Structure spectroscopy (STXM/NEXAFS) and Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy (SEM/EDX), have been quantitatively combined to characterize individual atmospheric particles. This pair of techniques was applied to particle samples at three sampling sites (ATTO, ZF2, and T3) in the Amazon basin as part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign during the dry season of 2014. The combined data was subjected to k-means clustering using mass fractions of the following elements: C, N, O, Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Ni, andmore » Zn. Cluster analysis identified 12 particle types, across different sampling sites and particle sizes. Samples from the remote Amazon Tall Tower Observatory (ATTO, also T0a) exhibited less cluster variety and fewer anthropogenic clusters than samples collected at the sites nearer to the Manaus metropolitan region, ZF2 (also T0t) or T3. Samples from the ZF2 site contained aged/anthropogenic clusters not readily explained by transport from ATTO or Manaus, possibly suggesting the effects of long range atmospheric transport or other local aerosol sources present during sampling. In addition, this data set allowed for recently established diversity parameters to be calculated. All sample periods had high mixing state indices (χ) that were >0.8. Two individual particle diversity (D i) populations were observed, with particles <0.5 μm having a D i of ~2.4 and >0.5 μm particles having a D i of ~3.6, which likely correspond to fresh and aged aerosols respectively. The diversity parameters determined by the quantitative method presented here will serve to aid in the accurate representation of aerosol mixing state, source apportionment, and aging in both less polluted and more industrialized environments in the Amazon Basin.« less

  14. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    PubMed

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  15. Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraund, Matthew; Pham, Don; Bonanno, Daniel

    Two complementary techniques, Scanning Transmission X-ray Microscopy/Near Edge Fine Structure spectroscopy (STXM/NEXAFS) and Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy (SEM/EDX), have been quantitatively combined to characterize individual atmospheric particles. This pair of techniques was applied to particle samples at three sampling sites (ATTO, ZF2, and T3) in the Amazon basin as part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign during the dry season of 2014. The combined data was subjected to k-means clustering using mass fractions of the following elements: C, N, O, Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Ni, andmore » Zn. Cluster analysis identified 12 particle types, across different sampling sites and particle sizes. Samples from the remote Amazon Tall Tower Observatory (ATTO, also T0a) exhibited less cluster variety and fewer anthropogenic clusters than samples collected at the sites nearer to the Manaus metropolitan region, ZF2 (also T0t) or T3. Samples from the ZF2 site contained aged/anthropogenic clusters not readily explained by transport from ATTO or Manaus, possibly suggesting the effects of long range atmospheric transport or other local aerosol sources present during sampling. In addition, this data set allowed for recently established diversity parameters to be calculated. All sample periods had high mixing state indices (χ) that were >0.8. Two individual particle diversity (D i) populations were observed, with particles <0.5 μm having a D i of ~2.4 and >0.5 μm particles having a D i of ~3.6, which likely correspond to fresh and aged aerosols respectively. The diversity parameters determined by the quantitative method presented here will serve to aid in the accurate representation of aerosol mixing state, source apportionment, and aging in both less polluted and more industrialized environments in the Amazon Basin.« less

  16. Regional Atmospheric CO2 Inversion Reveals Seasonal and Geographic Differences in Amazon Net Biome Exchange

    NASA Technical Reports Server (NTRS)

    Alden, Caroline B.; Miller, John B.; Gatti, Luciana V.; Gloor, Manuel M.; Guan, Kaiyu; Michalak, Anna M.; van der Laan-Luijkx, Ingrid; Touma, Danielle; Andrews, Arlyn; Basso, Luana G.; hide

    2016-01-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (Approx.1-8 x 10(exp -6) km2) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  17. Long-term observations of cloud condensation nuclei in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; Klimach, Thomas; Hrabe de Angelis, Isabella; Brito, Joel; Carbone, Samara; Cheng, Yafang; Martin, Scot T.; Moran-Zuloaga, Daniel; Rose, Diana; Saturno, Jorge; Su, Hang; Thalman, Ryan; Walter, David; Wang, Jian; Barbosa, Henrique; Artaxo, Paulo; Andreae, Meinrat O.; Pöschl, Ulrich

    2017-04-01

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a full seasonal cycle (Mar 2014 - Feb 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site [1,2]. The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol. The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes. For modelling purposes, we compare different approaches of predicting CCN number concentration and present a novel parameterization, which allows accurate CCN predictions based on a small set of input data. In addition, we analyzed the CCN short-term variability in relation to air mass changes as well as aerosol emission and transformation processes. The CCN short term variability is presented for selected case studies, which analyze particularly interesting and characteristic events/conditions in the Amazon

  18. Branchial cysts in two Amazon parrots (Amazona species).

    PubMed

    Beaufrère, Hugues; Castillo-Alcala, Fernanda; Holmberg, David L; Boston, Sarah; Smith, Dale A; Taylor, W Michael

    2010-03-01

    A 37-year-old yellow-crowned Amazon parrot (Amazona ochrocephala) and a 20-year-old red-lored Amazon parrot (Amazona autumnalis) each presented with a large mass localized on the lateral neck. With the first bird, there was no evidence of signs of pain or discomfort, and the bird prehended and swallowed food normally. The second bird showed signs of mild upper-gastrointestinal discomfort. Results of an ultrasound examination and aspiration of the mass on each bird revealed a cystic structure. A computed tomography performed on the second bird revealed a large polycystic mass connected to the pharynx by a lateral tract. During surgical resection, both masses were found to originate from the subpharyngeal area. Based on topography and the histopathologic and immunohistochemical results, the masses were determined to be a second branchial cleft cyst for the first case and a second branchial pouch cyst for the second case. In addition, a carcinoma was present in situ within the epithelium of case 1, and the cyst in case 2 was secondarily infected. Branchial cysts are uncommonly diagnosed in veterinary and human medicine. These 2 cases are the first documented in parrots and appear similar to second branchial cysts reported in adult humans.

  19. Comparison of osmolality and refractometric readings of Hispaniolan Amazon parrot (Amazona ventralis) urine.

    PubMed

    Brock, A Paige; Grunkemeyer, Vanessa L; Fry, Michael M; Hall, James S; Bartges, Joseph W

    2013-12-01

    To evaluate the relationship between osmolality and specific gravity of urine samples from clinically normal adult parrots and to determine a formula to convert urine specific gravity (USG) measured on a reference scale to a more accurate USG value for an avian species, urine samples were collected opportunistically from a colony of Hispaniolan Amazon parrots (Amazona ventralis). Samples were analyzed by using a veterinary refractometer, and specific gravity was measured on both canine and feline scales. Osmolality was measured by vapor pressure osmometry. Specific gravity and osmolality measurements were highly correlated (r = 0.96). The linear relationship between refractivity measurements on a reference scale and osmolality was determined. An equation was calculated to allow specific gravity results from a medical refractometer to be converted to specific gravity values of Hispaniolan Amazon parrots: USGHAp = 0.201 +0.798(USGref). Use of the reference-canine scale to approximate the osmolality of parrot urine leads to an overestimation of the true osmolality of the sample. In addition, this error increases as the concentration of urine increases. Compared with the human-canine scale, the feline scale provides a closer approximation to urine osmolality of Hispaniolan Amazon parrots but still results in overestimation of osmolality.

  20. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms.

    PubMed

    Meyer, Kyle M; Klein, Ann M; Rodrigues, Jorge L M; Nüsslein, Klaus; Tringe, Susannah G; Mirza, Babur S; Tiedje, James M; Bohannan, Brendan J M

    2017-03-01

    Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils. © 2017 John Wiley & Sons Ltd.

  1. Asynchronous Amazon Forest Canopy Phenology Indicates Adaptation to Both Water and Light Availability

    NASA Astrophysics Data System (ADS)

    Jones, M. O.; Kimball, J. S.; Nemani, R. R.

    2015-12-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically active radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season length. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought. These insights can also inform land surface models to provide a more accurate representation of seasonal forest carbon allocation strategies responsive to environmental drivers.

  2. Spatially and seasonally asymmetric responses of Amazon forests to El Niño

    NASA Astrophysics Data System (ADS)

    Mao, J.; Yan, B.; Dickinson, R. E.; Shi, X.; Ricciuto, D. M.; Norby, R. J.; Dai, Y.; Zhang, X.; McDowell, N.; Wu, J.

    2017-12-01

    El Niño Southern Oscillation (ENSO) events impose strong inter-annual signals on local climate changes and terrestrial ecosystem dynamics in many regions on the Earth especially tropical forests in the Amazon basin. However, much is still unknown regarding the vulnerability of tropical forests to ENSO effects, especially in a spatially-explicit context. Here, using satellite and ground observations with reanalysis data of climate variables, we analyzed the spatial and temporal patterns of plant growth in response to the warm phase of ENSO (i.e., El Niño), which resulted in precipitation anomaly (or drought) over a large area across the Amazon. We found that the influence of El Niño events on vegetation growth varied spatially and seasonally. During each season (dry or wet), the forests were divided into two sub-regions that were either controlled by precipitation or radiation. The boundaries between the two sub-regions were determined, which were distributed from northwest to southeast in the dry season and from northeast to southwest in the wet season. This result improves our understanding of the water and energy availability co-modulating the vegetation growth in Amazonia and the magnitude and direction of Amazon forests responding to drought.

  3. Microwave remote sensing of Saharan ergs and Amazon vegetation

    NASA Astrophysics Data System (ADS)

    Stephen, Haroon

    This dissertation focuses on relating spaceborne microwave data to the geophysical characteristics of the Sahara desert and the Amazon vegetation. Radar and radiometric responses of the Saharan ergs are related to geophysical properties of sand formations and near surface winds. The spatial and temporal variability of the Amazon vegetation is studied using multi-frequency and multi-polarization data. The Sahara desert includes large expanses of sand dunes called ergs that are constantly reshaped by prevailing winds. Radar backscatter (sigma°) measurements observed at various incidence (theta) and azimuth (φ) angles from the NASA Scatterometer (NSCAT), the ERS scatterometer (ESCAT), the SeaWinds scatterometer aboard QuikScat (QSCAT), and the Precipitation Radar (TRMM-PR) aboard the Tropical Rain Monitoring Mission (TRMM) are used to model the sigma° response from sand dunes. Backscatter theta and φ variation depends upon the slopes and orientations of the dune slopes. Sand dunes are modeled as a composite of tilted rough facets, which are characterized by a probability distribution of tilt. The small ripples are modeled as cosinusoidal surface waves that contribute to the return signal at Bragg angles. The sigma° response is high at look angles equal to the mean tilts of the rough facets and is lower elsewhere. The modeled sigma° response is similar to NSCAT and ESCAT observations. sigma° also varies spatially and reflects the spatial inhomogeneity of the sand surface. A model incorporating the sigma° φ-modulation and spatial inhomogeneity is proposed. The maxima of the φ-modulation at theta = 33° reflect the orientation of the slip-sides on the sand surface. These slip-side orientations are consistent with the European Centre for Medium-Range Weather Forecasts wind directions spatially and temporally. Radiometric emissions from the ergs have strong dependence on the surface geometry. The radiometric temperature (Tb) of ergs is modeled as the weighted sum

  4. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat

    2017-04-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of < 3 days for regional fires and 11 days for African plumes arriving at ATTO during the wet season. The model performance of long-range transport of African plumes is also evaluated with observations from AERONET, MODIS, and CALIOP. Simulated absorption aerosol optical depth (AAOD) averaged over the wet season is lower than 0.0015 over the central Amazon, including the ATTO site. We find that more than 50% of total absorption at 550 nm is from BC, except for the northeastern Amazon and the Guianas, where the influence of dust becomes significant (up to 35 %). The brown carbon contribution is generally between 20 and 30 %. The distribution of absorption Ångström exponents (AAE) suggests more influence from fossil fuel combustion in the southern part of the basin (AAE 1) but more open fire and dust influence in the northern part

  5. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon.

    PubMed

    Pöschl, U; Martin, S T; Sinha, B; Chen, Q; Gunthe, S S; Huffman, J A; Borrmann, S; Farmer, D K; Garland, R M; Helas, G; Jimenez, J L; King, S M; Manzi, A; Mikhailov, E; Pauliquevis, T; Petters, M D; Prenni, A J; Roldin, P; Rose, D; Schneider, J; Su, H; Zorn, S R; Artaxo, P; Andreae, M O

    2010-09-17

    The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.

  6. Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon

    NASA Astrophysics Data System (ADS)

    Pöschl, U.; Martin, S. T.; Sinha, B.; Chen, Q.; Gunthe, S. S.; Huffman, J. A.; Borrmann, S.; Farmer, D. K.; Garland, R. M.; Helas, G.; Jimenez, J. L.; King, S. M.; Manzi, A.; Mikhailov, E.; Pauliquevis, T.; Petters, M. D.; Prenni, A. J.; Roldin, P.; Rose, D.; Schneider, J.; Su, H.; Zorn, S. R.; Artaxo, P.; Andreae, M. O.

    2010-09-01

    The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.

  7. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services.

    PubMed

    Bao, Shunxing; Damon, Stephen M; Landman, Bennett A; Gokhale, Aniruddha

    2016-02-27

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  8. Performance management of high performance computing for medical image processing in Amazon Web Services

    NASA Astrophysics Data System (ADS)

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-03-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical- Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for- use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline.

  9. Performance Management of High Performance Computing for Medical Image Processing in Amazon Web Services

    PubMed Central

    Bao, Shunxing; Damon, Stephen M.; Landman, Bennett A.; Gokhale, Aniruddha

    2016-01-01

    Adopting high performance cloud computing for medical image processing is a popular trend given the pressing needs of large studies. Amazon Web Services (AWS) provide reliable, on-demand, and inexpensive cloud computing services. Our research objective is to implement an affordable, scalable and easy-to-use AWS framework for the Java Image Science Toolkit (JIST). JIST is a plugin for Medical-Image Processing, Analysis, and Visualization (MIPAV) that provides a graphical pipeline implementation allowing users to quickly test and develop pipelines. JIST is DRMAA-compliant allowing it to run on portable batch system grids. However, as new processing methods are implemented and developed, memory may often be a bottleneck for not only lab computers, but also possibly some local grids. Integrating JIST with the AWS cloud alleviates these possible restrictions and does not require users to have deep knowledge of programming in Java. Workflow definition/management and cloud configurations are two key challenges in this research. Using a simple unified control panel, users have the ability to set the numbers of nodes and select from a variety of pre-configured AWS EC2 nodes with different numbers of processors and memory storage. Intuitively, we configured Amazon S3 storage to be mounted by pay-for-use Amazon EC2 instances. Hence, S3 storage is recognized as a shared cloud resource. The Amazon EC2 instances provide pre-installs of all necessary packages to run JIST. This work presents an implementation that facilitates the integration of JIST with AWS. We describe the theoretical cost/benefit formulae to decide between local serial execution versus cloud computing and apply this analysis to an empirical diffusion tensor imaging pipeline. PMID:27127335

  10. Dispersal assembly of rain forest tree communities across the Amazon basin

    PubMed Central

    Lavin, Mathew; Torke, Benjamin M.; Twyford, Alex D.; Kursar, Thomas A.; Coley, Phyllis D.; Drake, Camila; Hollands, Ruth; Pennington, R. Toby

    2017-01-01

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga. We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia, Protieae, and Guatteria. Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin. PMID:28213498

  11. Methane flux from the Amazon River floodplain - Emissions during rising water

    NASA Technical Reports Server (NTRS)

    Bartlett, Karen B.; Crill, Patrick M.; Bonassi, Jose A.; Richey, Jeffrey E.; Harriss, Robert C.

    1990-01-01

    Methane flux data obtained during a period of high and falling water level in the course of the dry season of 1985 (the Amazon Boundary Layer Experiment, ABLE 2A) and a period of moderate and rising water during the wet season of 1987 (ABLE 2B) were used to characterize the influence of seasonal variations in the vegetation, water column depth, and chemistry, as well as atmospheric dynamics, on the methane flux from the Amazon River floodplain. It was found that the annual estimate of methane from wetlands is identical to the annual estimate made by Matthews and Fung (1987) (both at 111 Tg). However, it was found that peatlands between 50 and 70 N contribute 39 Tg, with the large areas of forested and nonforested bogs making up 37 Tg of this figure, while the figures of Matthews and Fung were 63 and 62 Tg, respectively.

  12. Dispersal assembly of rain forest tree communities across the Amazon basin.

    PubMed

    Dexter, Kyle G; Lavin, Mathew; Torke, Benjamin M; Twyford, Alex D; Kursar, Thomas A; Coley, Phyllis D; Drake, Camila; Hollands, Ruth; Pennington, R Toby

    2017-03-07

    We investigate patterns of historical assembly of tree communities across Amazonia using a newly developed phylogeny for the species-rich neotropical tree genus Inga We compare our results with those for three other ecologically important, diverse, and abundant Amazonian tree lineages, Swartzia , Protieae, and Guatteria Our analyses using phylogenetic diversity metrics demonstrate a clear lack of geographic phylogenetic structure, and show that local communities of Inga and regional communities of all four lineages are assembled by dispersal across Amazonia. The importance of dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests suggests that speciation is not driven by vicariance, and that allopatric isolation following dispersal may be involved in the speciation process. A clear implication of these results is that over evolutionary timescales, the metacommunity for any local or regional tree community in the Amazon is the entire Amazon basin.

  13. Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view

    NASA Astrophysics Data System (ADS)

    Sobral-Souza, Thadeu; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Lima-Ribeiro, Matheus S.

    2018-02-01

    The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.

  14. Crowd Sourcing Data Collection through Amazon Mechanical Turk

    DTIC Science & Technology

    2013-09-01

    The first recognition study consisted of a Panel Study using a simple detection protocol, in which participants were presented with vignettes and, for...variability than the crowdsourcing data set, hewing more closely to the year 1 verbs of interest and simple description grammar . The DT:PS data were...Study RT: PS Recognition Task: Panel Study RT: RT Recognition Task: Round Table S3 Amazon Simple Storage Service SVPA Single Verb Present /Absent

  15. [Universal health systems and territory: challenges for a regional policy in the Brazilian Legal Amazon].

    PubMed

    Viana, Ana Luiza d'Avila; Machado, Cristiani Vieira; Baptista, Tatiana Wargas de Faria; Lima, Luciana Dias de; Mendonça, Maria Helena Magalhães de; Heimann, Luiza S; Albuquerque, Mariana Vercesi; Iozzi, Fabíola Lana; David, Virna Carvalho; Ibañez, Pablo; Frederico, Samuel

    2007-01-01

    This article presents the results of a study on Federal health policy in the Brazilian Legal Amazon (BLA) from 2003 to 2005, aimed at backing the development of regional health policies. The region has peculiar dynamics, an extensive border area, and adverse social indicators. The methodology included documental and financial analysis, participatory observation, interviews with heads of various Federal Ministries and State and Municipal health secretaries from the BLA; characterization of geographic situations in the BLA; and field studies in 15 municipalities. Institutional consolidation of health policy proved to be low in the Amazon during the study period, due to structural, institutional, and political difficulties. The identification of six geographic situations was useful for systematizing land use differences with repercussions on health, and which should be considered when implementing public policies. There is a certain gap between Federal actions and territorial dynamics, expressed as a mismatch between the current policy and its recognition by local administrators. In addition to establishing a regional policy for the Amazon, there is an evident need for differentiated policies within the region.

  16. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.

    PubMed

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Crave, Alain; Viers, Jérôme; Filizola, Naziano; Martinez, Jean-Michel; Oliveira, Tereza Cristina; Sánchez, Liz Stefanny Hidalgo; Lagane, Christelle; Casimiro, Waldo Sven Lavado; Noriega, Luis; Pombosa, Rodrigo

    2016-06-01

    The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have

  17. Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon)

    PubMed Central

    2013-01-01

    Background Simian malaria is still an open question concerning the species of Plasmodium parasites and species of New World monkeys susceptible to the parasites. In addition, the lingering question as to whether these animals are reservoirs for human malaria might become important especially in a scenario of eradication of the disease. To aid in the answers to these questions, monkeys were surveyed for malaria parasite natural infection in the Amazonian state of Rondônia, Brazil, a state with intense environmental alterations due to human activities, which facilitated sampling of the animals. Methods Parasites were detected and identified in DNA from blood of monkeys, by PCR with primers for the 18S rRNA, CSP and MSP1 genes and sequencing of the amplified fragments. Multiplex PCR primers for the 18S rRNA genes were designed for the parasite species Plasmodium falciparum and Plasmodium vivax, Plasmodium malariae/Plasmodium brasilianum and Plasmodium simium. Results An overall infection rate of 10.9% was observed or 20 out 184 monkey specimens surveyed, mostly by P. brasilianum. However, four specimens of monkeys were found infected with P. falciparum, two of them doubly infected with P. brasilianum and P. falciparum. In addition, a species of monkey of the family Aotidae, Aotus nigriceps, is firstly reported here naturally infected with P. brasilianum. None of the monkeys surveyed was found infected with P. simium/P. vivax. Conclusion The rate of natural Plasmodium infection in monkeys in the Brazilian state of Rondônia is in line with previous surveys of simian malaria in the Amazon region. The fact that a monkey species was found that had not previously been described to harbour malaria parasites indicates that the list of monkey species susceptible to Plasmodium infection is yet to be completed. Furthermore, finding monkeys in the region infected with P. falciparum clearly indicates parasite transfer from humans to the animals. Whether this parasite can be

  18. Sources, Properties, Aging, and Anthropogenic Influences on OA and SOA over the Southeast US and the Amazon duing SOAS, DC3, SEAC4RS, and GoAmazon

    EPA Science Inventory

    The SE US and the Amazon have large sources of biogenic VOCs, varying anthropogenic pollution impacts, and often poor organic aerosol (OA) model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over ...

  19. Description of Lutzomyia (Trichophoromyia) nautaensis n. sp. (Diptera: Psychodidae) from the Peruvian Amazon Basin

    PubMed Central

    Fernandez, Roberto; Lopez, Victor; Cardenas, Roldan; Requena, Edwin

    2015-01-01

    A new species of sand fly, which we describe as Lutzomyia (Trichophoromyia) nautaensis n. sp., was collected in the northern Peruvian Amazon Basin. In this region of Peru, cutaneous leishmaniasis is transmitted primarily by anthropophilic sand flies; however, zoophilic sand flies of the subgenus Trichophoromyia may also be incriminated in disease transmission. Detection of Leishmania spp. in Lutzomyia auraensis Mangabeira captured in the southern Peruvian Amazon indicates the potential of this and other zoophilic sand flies for human disease transmission, particularly in areas undergoing urban development. Herein, we describe Lutzomyia (Trichophoromyia) nautaensis n. sp., and report new records of sand flies in Peru. PMID:26335468

  20. The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil).

    PubMed

    Viers, Jérôme; Barroux, Guénaël; Pinelli, Marcello; Seyler, Patrick; Oliva, Priscia; Dupré, Bernard; Boaventura, Geraldo Resende

    2005-03-01

    The purpose of this paper is to forecast the role of riverine wetlands in the transfer of trace elements. One of the largest riverine wetlands in the world is the floodplain (várzea) of the Amazon River and its tributaries (Junk and Piedade, 1997). The central Amazon wetlands are constituted by a complex network of lakes and floodplains, named várzeas, that extend over more than 300,000 km2 (Junk, W.J., The Amazon floodplain--a sink or source for organic carbon? In Transport of Carbon and Minerals in Major World Rivers, edited by E.T. Degens, S. Kempe, R. Herrera, SCOPE/UNEP; 267-283, 1985.) and are among the most productive ecosystems in the world due to the regular enrichment in nutrients by river waters In order to understand if the adjacent floodplain of Amazon River have a significant influence on the trace element concentrations and fluxes of the mainstem, the concentrations of selected elements (i.e., Al, Mn, Fe, Co, Cu, Mo, Rb, Sr, Ba, and U) have been measured in the Amazon River water (Manacapuru Station, Amazonas State, Brazil) and in lake waters and plants (leaves) from a várzea(Ilha de Marchantaria, Amazonas State, Brazil) during different periods of the hydrological cycle. Four plant species (two perennial species: Pseudobombax munguba and Salix humboldtiana, and two annual herbaceous plants: Echinochloa polystachya and Eichhornia crassipes) were selected to represent the ecological functioning of the site. Time series obtained for dissolved Mn and Cu (<0.20 microm) in Amazon River water could not be explained by tributary mixing or instream processes only. Therefore, the contribution of the waters transiting the floodplains should be considered. These results suggest that the chemical composition of the waters draining these floodplains is controlled by reactions occurring at sediment-water and plant-water interfaces. Trace elements concentrations in the plants (leaves) vary strongly with hydrological seasonality. Based on the concentration data