Science.gov

Sample records for roof thermal performance

  1. Thermal Performance of Vegetative Roofing Systems

    SciTech Connect

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen; Ennis, Mike J

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.

  2. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    SciTech Connect

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and the inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.

  3. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE PAGESBeta

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  4. A parametric study of the thermal performance of green roofs in different climates through energy modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sananda

    In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would facilitate the adoption and appropriate utilization of green roof technologies and make it possible to account for green roof benefits in energy codes and related energy efficiency standards and rating systems such as LEED.

  5. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    PubMed

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat heterogeneity. PMID:26901799

  6. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation, fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  7. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    NASA Astrophysics Data System (ADS)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  8. Thermal Infrared Inspection of Roof Insulation Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Jung, J.; Sohn, G.; Cohen, M.

    2015-08-01

    UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the proposed method.

  9. Roof heat loss detection using airborne thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public awareness in the context of climate-neutral actions, and in a long run, contribute to significantly reduce energy consumption and GHG emissions.

  10. Evaluation on Thermal Behavior of a Green Roof Retrofit System Installed on Experimental Building in Composite Climate of Roorkee, India

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Deoliya, Rajesh; Chani, P. S.

    2015-12-01

    Green roofs not only provide cooling by shading, but also by transpiration of water through the stomata. However, the evidence for green roofs providing significant air cooling remains limited. No literature investigates the thermal performance of prefab brick panel roofing technology with green roof. Hence, the aim of this research is to investigate the thermal behavior of an experimental room, built at CSIR-Central Building Research Institute (CBRI) campus, Roorkee, India using such roofing technology during May 2013. The study also explores the feasibility of green roof with grass carpets that require minimum irrigation, to assess the expected indoor thermal comfort improvements by doing real-time experimental studies. The results show that the proposed green roof system is suitable for reducing the energy demand for space cooling during hot summer, without worsening the winter energy performance. The cost of proposed retrofit system is about Rs. 1075 per m2. Therefore, green roofs can be used efficiently in retrofitting existing buildings in India to improve the micro-climate on building roofs and roof insulation, where the additional load carrying capacity of buildings is about 100-130 kg/m2.

  11. Hygrothermal Performance of West Coast Wood Deck Roofing System

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred; Desjarlais, Andre Omer

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  12. System for monitoring of green roof performance: use of weighing roof segment and non-invasive visualization

    NASA Astrophysics Data System (ADS)

    Jelinkova, Vladmira; Dohnal, Michal; Picek, Tomas; Sacha, Jan

    2015-04-01

    Understanding the performance of technogenic substrates for green roofs is a significant task in the framework of sustainable urban planning and water/energy management. The potential retention and detention of the anthropogenic, light weight soil systems and their temporal soil structure changes are of major importance. A green roof test segment was built to investigate the benefits of such anthropogenic systems. Adaptable low-cost system allows long-term monitoring of preferred characteristics. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the substrates provide basis for detailed analysis of thermal and hydrological regime in green roof systems. The first results confirmed the benefits of green roof systems. The reduction of temperature fluctuations as well as rainfall runoff was significant. Depending on numerous factors such substrate material or vegetation cover the test green roof suppressed the roof temperature amplitude for the period analyzed. The ability to completely prevent (light rainfall events) or reduce and delay (medium and heavy rainfall events) the peak runoff was also analyzed. Special attention is being paid to the assessment of soil structural properties related to possible aggregation/disaggregation, root growth, weather conditions and associated structural changes using non-invasive imaging method. X-ray computed microtomography of undisturbed soil samples (taken from experimental segments) is used for description of pore space geometry, evaluation of surface to volume ratio, additionally for description of cracks and macropores as a product of soil flora and fauna activity. The information from computed tomography imaging will be used for numerical modeling of water flow in variable saturated porous media. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  13. Performance of dryland and wetland plant species on extensive green roofs

    PubMed Central

    MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.

    2011-01-01

    Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions. PMID:21292676

  14. Green roof hydrologic performance and modeling: a review.

    PubMed

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology. PMID:24569270

  15. Modelling of green roofs' hydrologic performance using EPA's SWMM.

    PubMed

    Burszta-Adamiak, E; Mrowiec, M

    2013-01-01

    Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods. PMID:23823537

  16. [A review of green roof performance towards management of roof runoff].

    PubMed

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff. PMID:26685624

  17. Modelling of green roof hydrological performance for urban drainage applications

    NASA Astrophysics Data System (ADS)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Bergen Jensen, Marina; Binning, Philip John

    2014-11-01

    Green roofs are being widely implemented for stormwater management and their impact on the urban hydrological cycle can be evaluated by incorporating them into urban drainage models. This paper presents a model of green roof long term and single event hydrological performance. The model includes surface and subsurface storage components representing the overall retention capacity of the green roof which is continuously re-established by evapotranspiration. The runoff from the model is described through a non-linear reservoir approach. The model was calibrated and validated using measurement data from 3 different extensive sedum roofs in Denmark. These data consist of high-resolution measurements of runoff, precipitation and atmospheric variables in the period 2010-2012. The hydrological response of green roofs was quantified based on statistical analysis of the results of a 22-year (1989-2010) continuous simulation with Danish climate data. The results show that during single events, the 10 min runoff intensities were reduced by 10-36% for 5-10 years return period and 40-78% for 0.1-1 year return period; the runoff volumes were reduced by 2-5% for 5-10 years return period and 18-28% for 0.1-1 year return period. Annual runoff volumes were estimated to be 43-68% of the total precipitation. The peak time delay was found to greatly vary from 0 to more than 40 min depending on the type of event, and a general decrease in the time delay was observed for increasing rainfall intensities. Furthermore, the model was used to evaluate the variation of the average annual runoff from green roofs as a function of the total available storage and vegetation type. The results show that even a few millimeters of storage can reduce the mean annual runoff by up to 20% when compared to a traditional roof and that the mean annual runoff is not linearly related to the storage. Green roofs have therefore the potential to be important parts of future urban stormwater management plans.

  18. Seismic performance of pendulum and translational roof-garden TMDs

    NASA Astrophysics Data System (ADS)

    Matta, Emiliano; De Stefano, Alessandro

    2009-04-01

    In a previous paper, the authors already introduced the concept of the roof-garden TMD, an innovative passive vibration absorber for building structures, meant to combine the dynamic response mitigation capabilities of traditional tuned mass dampers (TMDs) with the environmental advantages of traditional roof gardens. In order to limit the mistuning effect and control loss due to the intrinsic variability of its mass, a roof-garden TMD of the rolling-pendulum type, advantageously characterized by a mass-independent natural period although unfortunately inherently non-linear, was then proposed and its performance assessed for increasing values of mass uncertainty and excitation levels. In the present study, the rolling-pendulum type is compared with the well-known translational configuration, the latter expectedly more prone to mistuning and yet insensitive to seismic intensity because of its linear behaviour. The trade-off between the two schemes is first explored for the case of a single-degree-of-freedom (SDOF) structure under a variety of design scenarios and then demonstrated through simulations on a building structure recently completed in a seismic site in Central Italy and designed to host a roof-garden atop for architectural purposes.

  19. The design, effectiveness and construction of passive-thermal-control roofing shingles

    NASA Astrophysics Data System (ADS)

    Wolf, L., Jr.

    1982-09-01

    The concept of a passive thermal control roofing shingle, which is a shingle that reflects the summer sun and absorbs the winter sun, is discussed. It is indicated that it is possible to design shingles for particular latitudes and styles of roof which absorb nearly all of the winter solar energy and reflect nearly all of the summer solar energy. Calculations of the energy savings and cost effectiveness of the passive thermal control roofing shingle indicate that it is most cost effective on all south facing pitched roofs regardless of heating fuel type, and on flat or east or west facing roofs that are heated with costly fuels such as electricity or heating oil. The shingle is most effective on poorly insulated structures. The feasibility of using the passive thermal control roofing shingle in conjunction with a heat pump to pump heat absorbed by the shingle into a well insulated structure is demonstrated. Construction of a variety of models of the passive thermal control roofing shingle illustrate numerous alternate methods of manufacture. A profile extruded, plastic, glazed shingle appears to be the most promising approach. Use of a glazed shingle can increase the effectiveness of the passive thermal control roofing shingle by reducing convective heat losses.

  20. The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Lemonsu, A.; Bouzouidja, R.; Masson, V.; Claverie, R.

    2013-11-01

    The need to prepare cities for climate change adaptation requests the urban modeller community to implement sustainable adaptation strategies within their models to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, the GREENROOF module for TEB (town energy balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module, which combines the ISBA model (Interaction between Soil Biosphere and Atmosphere) and TEB, allows for one to describe an extensive green roof composed of four functional layers (vegetation - grasses or sedums; substrate; retention/drainage layers; and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological fluxes throughout the substrate and the drainage layers, and the thermal fluxes throughout the natural and artificial layers of the green roof. TEB-GREENROOF (SURFEX v7.3) should therefore be able to represent the impact of climate forcings on the functioning of green roof vegetation and, conversely, the influence of the green roof on the local climate. An evaluation of GREENROOF is performed for a case study located in Nancy (France) which consists of an instrumented extensive green roof with sedums and substrate and drainage layers that are typical of this kind of construction. After calibration of the drainage layer hydrological characteristics, model results show good dynamics for the substrate water content and the drainage at the green roof base, with nevertheless a tendency to underestimate the water content and overestimate the drainage. This does not impact too much the green roof temperatures, which present a good agreement with observations. Nonetheless GREENROOF tends to overestimate the soil temperatures and their amplitudes, but this effect is less important in the drainage layer. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB - TEB-BEM. Moreover, with the green roof studied for GREENROOF evaluation being a type of extensive green roof widespread in cities, the type of hydrological characteristics highlighted for the case study will be used as the standard configuration to model extensive green roof impacts at the scale of cities.

  1. A modelling study of long term green roof retention performance.

    PubMed

    Stovin, Virginia; Poë, Simon; Berretta, Christian

    2013-12-15

    This paper outlines the development of a conceptual hydrological flux model for the long term continuous simulation of runoff and drought risk for green roof systems. A green roof's retention capacity depends upon its physical configuration, but it is also strongly influenced by local climatic controls, including the rainfall characteristics and the restoration of retention capacity associated with evapotranspiration during dry weather periods. The model includes a function that links evapotranspiration rates to substrate moisture content, and is validated against observed runoff data. The model's application to typical extensive green roof configurations is demonstrated with reference to four UK locations characterised by contrasting climatic regimes, using 30-year rainfall time-series inputs at hourly simulation time steps. It is shown that retention performance is dependent upon local climatic conditions. Volumetric retention ranges from 0.19 (cool, wet climate) to 0.59 (warm, dry climate). Per event retention is also considered, and it is demonstrated that retention performance decreases significantly when high return period events are considered in isolation. For example, in Sheffield the median per-event retention is 1.00 (many small events), but the median retention for events exceeding a 1 in 1 yr return period threshold is only 0.10. The simulation tool also provides useful information about the likelihood of drought periods, for which irrigation may be required. A sensitivity study suggests that green roofs with reduced moisture-holding capacity and/or low evapotranspiration rates will tend to offer reduced levels of retention, whilst high moisture-holding capacity and low evapotranspiration rates offer the strongest drought resistance. PMID:24178313

  2. Energy Performance Impacts from Competing Low-slope Roofing Choices and Photovoltaic Technologies

    NASA Astrophysics Data System (ADS)

    Nagengast, Amy L.

    With such a vast quantity of space, commercial low-slope roofs offer significant potential for sustainable roofing technology deployment. Specifically, building energy performance can be improved by installing rooftop energy technologies such as photovoltaic (PV) panels, and/or including designs such as white or green roofs instead of traditional black. This research aims to inform and support roof decisions through quantified energy performance impacts across roof choices and photovoltaic technologies. The primary dataset for this research was measured over a 16 month period (May 24, 2011 to October 13, 2012) from a large field experiment in Pittsburgh, Pennsylvania on top of a commercial warehouse with white, black and green roof sections, each with portions covered by polycrystalline photovoltaic panels. Results from the Pittsburgh experiment were extended to three different cities (San Diego, CA; Huntsville, AL; and Phoenix, AZ) chosen to represent a wide range of irradiance and temperature values. First, this research evaluated the difference in electricity production from a green-moss roof and black roof underneath photovoltaic panels to determine if the green roof's cooler air increases the panel efficiency. Second, separate studies examine 1) average hourly heat flux by month for unobstructed and shaded roof membranes 2) heat flux peak time delay, and 3) air temperature across roof types. Results of this research show green roofs slightly increased (0.8-1.5%) PV panel efficiency in temperatures approximately at or above 25° C (77°F) compared to black roofs. However in cool climates, like Pittsburgh, the roof type under the PV panels had little overall impact on PV performance when considering year round temperatures. Instead, roof decisions should place a stronger emphasis on heat flux impacts. The green roof outperformed both black and white roofs at minimizing total conductive heat flux. These heat flow values were used to develop a new, straight-forward methodology to roughly estimate heat flux impacts of different roof types in other climates using ambient temperature and solar irradiance. While managing heat flow is important for building energy performance, roof choices need to include a systems level analysis encompassing a year for the specific region to best quantify the overall energy impacts.

  3. Validation of the thermal effect of roof with the Spraying and green plants in an insulated building

    SciTech Connect

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Ojima, Toshio

    2004-08-08

    In recent years, roof-spraying and rooftop lawns have proven effective on roofs with poor thermal insulation. However, the roofs of most buildings have insulating material to provide thermal insulation during the winter. The effects of insulation has not previously been quantified. In this study, the authors collected measurements of an insulated building to quantify the thermal effects of roof-spraying and rooftop lawns. Roof-spraying did not significantly reduce cooling loads and required significant amounts of water. The conclusion is that roof spraying is not suitable for buildings with well-insulated roofs. Rooftop lawns, however, significantly stabilized the indoor temperature while additionally helping to mitigate the heat island phenomenon.

  4. Validation on the thermal effect of roof with the spraying and green plants in an insulated building

    SciTech Connect

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Ojima, Toshio

    2004-03-20

    In recent years, roof-spraying and rooftop lawns has proved effective on roofs with poor thermal insulation. However, roofs of most buildings have insulating material to provide thermal insulation during the winter. The effects of such a practice have not previously been quantified. In this study, the authors conducted measurements of an insulated building to quantify the thermal effects of roof-spraying and rooftop lawns. Roof-spraying did not significantly reduce cooling loads, and required significant amounts of water. The conclusion is that roof spraying is not suitable for buildings with well-insulated roofs. Rooftop lawns, however, significantly stabilized the indoor temperature while additionally helping to mitigate the heat island phenomenon.

  5. Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof

    SciTech Connect

    Mei, L.; Gottschalg, R.; Loveday, D.L.; Infield, D.G.; Davies, D.; Berry, M.

    2009-10-15

    Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

  6. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating that higher evapotranspiration rates compensated for the higher net radiation at the green roof. PMID:25613772

  7. Minimal watering regime impacts on desert adapted green roof plant performance

    NASA Astrophysics Data System (ADS)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and soil moisture readings on each green roof to analyze the spatial and temporal covariance of water and temperature. We link these patterns in soil moisture to measures of plant performance with weekly hyperspectral images (NDVI - Normalized Difference Vegetation Index) of each green roof. The data will allow us to determine the minimal amount of water use required for successful green roofs and healthy green roof plants. Preliminary data from a five week pilot study in the 2011 summer monsoon has shown a variation in NDVI by species. H. parviflora displayed the highest NDVI values, while D. pentachaeta and C. eriophylla shared similar, lower NDVI values. In general, the comparison of soil moisture and NDVI values expressed a very weak positive relationship but stronger species specific responses. D. pentachaeta demonstrated the strongest response to soil water and H. parviflora displayed the weakest response.

  8. Roof-top solar energy potential under performance-based building energy codes: The case of Spain

    SciTech Connect

    Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto

    2011-01-15

    The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

  9. Field performance of single-ply, chlorinated polyethylene (CPE) roof membranes

    SciTech Connect

    French, W.R.

    1999-07-01

    This paper will present the results of a field study of 29 different recover roofing systems installed on a variety of buildings. All of the buildings were located in Southeast Texas and were exposed to a variety of conditions related to use, coastal environment and drainage characteristics. Installation methods included mechanically fastened and fully-adhered (fleece-backed) membranes. Substrates included a number of different deck types and original membrane types, as well as various recover insulation materials, including glass fiber, perlite, wood fiber and expanded polystyrene (EPS). A number of these roofs exhibited areas of chronic and long-term ponded water. An intensive visual study was made regarding the effect of ponding on the CPE roof systems and the deterioration occurring in those locations. Laboratory testing on a number of the roofs revealed aging effects on some membrane physical properties. A number of other performance characteristics are assessed and general observations presented, including detailing practices and conformance with industry standards.

  10. Thermal and optical characterization of natural and artificial marble for roof and external floor installations

    NASA Astrophysics Data System (ADS)

    Asdrubali, F.; Baldinelli, G.; Bianchi, F.; Presciutti, A.; Rossi, F.; Schiavoni, S.

    2015-11-01

    Some types of buildings need to use certain materials for aesthetic reasons, like churches or mosques. Marble is one of the most common materials usually installed on roofs and floors. The measurement of the thermal and optical characteristics can be useful to understand its behaviour when it is subjected to thermal loads such as solar radiation or high temperature winds. The paper shows a comparison study between natural and artificial types of marble, to investigate the thermal characteristics both in steady-state and transient conditions. Optical properties and surface emissivity were evaluated, in order to calculate the Solar Reflectance Index (SRI); the specific heat, the thermal conductivity and the density were measured to define the thermophysical properties useful for the dynamic analysis. Finally, a test bench was created to check the marble behaviour under known artificial irradiation.

  11. Green Roofs

    SciTech Connect

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  12. Experimental data showing the thermal behavior of a flat roof with phase change material

    PubMed Central

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S. Cengiz

    2015-01-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104. PMID:26629490

  13. Experimental data showing the thermal behavior of a flat roof with phase change material.

    PubMed

    Tokuç, Ayça; Başaran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Başaran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104. PMID:26629490

  14. Assessment of a fiber-optic distributed-temperature-sensing system to monitor the thermal dynamics of vegetated roof

    NASA Astrophysics Data System (ADS)

    Cousiño, J. A.; Hausner, M. B.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.; Suarez, F. I.

    2014-12-01

    Vegetated (green) roofs include a growing media and vegetation layer, and offer a range of benefits such as the reduction of: the heat island effect, rooftop runoff peak flows, roof surface temperatures, energy used for cooling or heating buildings, and noise levels inside infrastructures. Vegetated roofs also offer aesthetic benefits and increase the biodiversity of the urban environment, and are increasingly used in sustainable urban development. Understanding the thermal dynamics of vegetated roofs will make it possible to improve their design and to better assess their impacts on energy efficiency. Here, we evaluate the first vertical high-resolution distributed-temperature-sensing (DTS) system installed in a vegetated roof. This system allows a continuous measurement of the thermal profile within a vegetated roof - going from the interior, upward through the drainage layers and soil substrate of the vegetated roof and ending in the air above the vegetation. Temperatures can be observed as frequently as every 30 s at a spatial resolution on the order of centimeters. This DTS system was installed in the "Laboratory of Vegetal Infrastructure of Buildings" (LIVE - its acronym in Spanish), located in the San Joaquín Campus of the Pontifical Catholic University, Santiago, Chile. The laboratory features 18 experimental modules to investigate different configurations of the vegetated roof layers. The LIVE was designed with the installation of the optical fibers in mind, and the DTS system allows simultaneous monitoring of three or four modules of the LIVE. In this work, we describe the design of this DTS deployment, the calibration metrics obtained using the software provided by the manufacturers, and other calibration algorithms previously developed. We compare the results obtained using single- and double-ended measurements, highlighting strengths and weaknesses of DTS methods. Finally, we present the observations obtained from this biophysical environment highlighting the features that are harder to observe using more traditional methods to measure temperature.

  15. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  16. Roof Savings Calculator Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance,more » roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.« less

  17. Roof Savings Calculator Suite

    SciTech Connect

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  18. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  19. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  20. Evaluation of Green Roof Water Quantity and Quality Performance in an Urban Climate

    EPA Science Inventory

    In this report we present an analysis of water benefits from an array of observed green roof and control (non-vegetated) roof project sites throughout NYC. The projects are located on a variety of building sites and represent a diverse set of available extensive green roof instal...

  1. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations

    PubMed Central

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A.; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-01

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. PMID:25603968

  2. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-01

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. PMID:25603968

  3. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Childs, Phillip W; Kosny, Jan; Kriner, Scott

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.

  4. Cycle graph analysis for 3D roof structure modelling: Concepts and performance

    NASA Astrophysics Data System (ADS)

    Perera, Gamage Sanka Nirodha; Maas, Hans-Gerd

    2014-07-01

    The paper presents a cycle graph analysis approach to the automatic reconstruction of 3D roof models from airborne laser scanner data. The nature of convergences of topological relations of plane adjacencies, allowing for the reconstruction of roof corner geometries with preserved topology, can be derived from cycles in roof topology graphs. The topology between roof adjacencies is defined in terms of ridge-lines and step-edges. In the proposed method, the input point cloud is first segmented and roof topology is derived while extracting roof planes from identified non-terrain segments. Orientation and placement regularities are applied on weakly defined edges using a piecewise regularization approach prior to the reconstruction, which assists in preserving symmetries in building geometry. Roof corners are geometrically modelled using the shortest closed cycles and the outermost cycle derived from roof topology graph in which external target graphs are no longer required. Based on test results, we show that the proposed approach can handle complexities with nearly 90% of the detected roof faces reconstructed correctly. The approach allows complex height jumps and various types of building roofs to be firmly reconstructed without prior knowledge of primitive building types.

  5. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  6. Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator

    SciTech Connect

    Petrie, T.W.; Kosny, J.; Childs, P.W.

    1996-03-01

    A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

  7. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target markets. Southern markets, from Florida to Texas account for 50 percent of the total new construction angled-roof volume. California contributes an additional 13 percent share of market volume. These states account for 28 to 30 million squares (2.8 to 3 billion square feet) of new construction angled roof opportunity. The major risk to implementation is the uncertainty of incorporating new design and construction elements into the construction process. By coordinating efforts to enhance the drivers for adoption and minimize the barriers, the panelized roof system stands to capitalize on a growing market demand for energy efficient building alternatives and create a compelling case for market adoption.

  8. Thermal Performance Data Services (TPDS)

    NASA Technical Reports Server (NTRS)

    French, Richard T.; Wright, Michael J.

    2013-01-01

    Initiated as a NASA Engineering and Safety Center (NESC) assessment in 2009, the Thermal Performance Database (TPDB) was a response to the need for a centralized thermal performance data archive. The assessment was renamed Thermal Performance Data Services (TPDS) in 2012; the undertaking has had two fronts of activity: the development of a repository software application and the collection of historical thermal performance data sets from dispersed sources within the thermal performance community. This assessment has delivered a foundational tool on which additional features should be built to increase efficiency, expand the protection of critical Agency investments, and provide new discipline-advancing work opportunities. This report contains the information from the assessment.

  9. Thermal Performance Benchmarking (Presentation)

    SciTech Connect

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  10. Roofing: Workbook and Tests. Built-up Roofing.

    ERIC Educational Resources Information Center

    Klingensmith, Robert, Ed.

    Designed for use in roofing apprenticeship classes, this workbook contains eight units on skills used in built-up roofing, a listing of instructional materials, a glossary, and the text of Labor Code Article 30, Construction Safety Orders, "Roofing Operations and Equipment." Each instructional unit includes a listing of performance statements and…

  11. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  12. Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint

    SciTech Connect

    Ridouane, E. H.; Bianchi, M.

    2011-08-01

    Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

  13. Roof control strategies for underground coal mines

    SciTech Connect

    Smith, W.C. )

    1993-01-01

    Roof support, an important aspect of ground control, involves maintaining roof competency to ensure a safe and efficient mining environment. Wide variability in rock quality and stress distributions requires a systematic approach to roof support design that satisfies specific goals. The success of past roof support in reducing the incidence of roof falls has been primarily attributed to safer roof bolting practices. However, roof falls continue to be the number one occupational hazard in underground coal mines. This US Bureau of Mines report presents a general overview of roof bolting and other roof support methods used in the United States. Characteristics of bad roof and associated roof failure theories are briefly presented as background to roof support. Methods of detecting and monitoring roof behavior and/or bolt performance provide essential feedback on roof support requirements. A discussion follows on roof bolt design that assimilates roof and support parameters into useful equations or nomographs to help decide what bolt types to use and how they should be installed under different roof conditions. 35 refs., 8 figs.

  14. Roof control strategies for underground coal mines. Information circular/1993

    SciTech Connect

    Smith, W.C.

    1993-01-01

    The U.S. Bureau of Mines report presents a general overview of roof bolting and other roof support methods used in the United States. Characteristics of bad roof and associated roof failure theories are briefly presented as background to roof support. Methods of detecting and monitoring roof behavior and/or bolt performance provide essential feedback on roof support requirements. A discussion follows on roof bolt design that assimilates roof and support parameters into useful equations or nomographs to help decide what bolt types to use and how they should be installed under different roof conditions.

  15. Improved roof stabilization technologies

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Decontamination and decommissioning (D and D) activities require that personnel have access to all areas of structures, some of which are more than 40 years old. In many cases, these structures have remained in a standby condition for up to 10 years; few preventative maintenance activities have been performed on them because of lack of funding or a defined future plan of action. This situation has led to deteriorated building conditions, resulting in potential personnel safety hazards. In addition, leaky roofs allow water to enter the buildings, which can cause the spread of contamination and increase building deterioration, worsening the already unsafe working conditions. To ensure worker safety and facilitate building dismantlement, the assessment of roof stabilization techniques applicable to US Department of Energy (DOE) structures has become an important issue. During Fiscal year 1997 (FY97), a comprehensive reliability-based model for the structural stabilization analysis of roof system in complex structures was developed. The model consists of three major components: a material testing method, a deterministic structural computer model, and a reliability-based optimization, and probabilistic analyses of roof structures can be implemented. Given site-specific needs, this model recommends the most appropriate roof stabilization system. This model will give not only an accurate evaluation of the existing roof system in complex structures, but it will also be a reliable method to aid the decision-making process. This final report includes in its appendix a Users` Manual for the Program of Deterministic and Reliability Analysis of Roof Structures.

  16. Performance of 3-sun mirror modules on sun tracking carousels on flat roof buildings

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis; Avery, James; Minkin, Leonid; Maxey, Curt; Gehl, Tony; Hurt, Rick; Boehm, Robert

    2008-08-01

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  17. Sustainable roofs with real energy savings

    SciTech Connect

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  18. Quantification of Total Particulate Matter and Benzene-Soluble Fraction Inhalation Exposures in Roofing Workers Performing Tear-off Activities.

    PubMed

    Hill, Ronald H; Ferraro, John R; Dodson, James L; Hockman, Edwin L; McGovern, Amy E; Fayerweather, William E

    2015-01-01

    Asphalt shingle removal (tear-off) from roofs is a major job task for an estimated 174,000 roofers in the United States. However, a literature search showed that there are no published studies that characterize worker inhalation exposures to asphalt particulates during shingle tear-off. To begin to fill this gap, the present study of inhalation exposures of roofers performing asphalt shingle tear-off was undertaken. The airborne agents of interest were total particulate matter (TP) and organic particulates measured as the benzene-soluble fraction (BSF) of total particulate. The study's objectives were to measure the personal breathing zone (PBZ) exposures of roofing tear-off workers to BSF and TP; and to assess whether these PBZ exposures are different from ambient levels. Task-based PBZ samples (typical duration 1-5 hours) were collected during asphalt shingle tear-off from roofs near Houston, Texas and Denver, Colorado. Samples were analyzed for TP and BSF using National Institute of Occupational Safety and Health (NIOSH) Method 5042. As controls, area samples (typical duration 3-6 hours) were collected on the ground near the perimeter of the tear-off project Because of the presence of significant sources of inorganic particulates in the work environment, emphasis was placed on the BSF data. No BSF exposure higher than 0.25 mg/m3 was observed, and 69% of the PBZ samples were below the limit of detection (LOD). Due to unforeseen confounding, however, statistical comparisons of on-the-roof PBZ samples with on-the-ground area samples posed some special challenges. This confounding grew out of the interaction of three factors: statistical censoring from the left; the strong inverse correlation between LOD concentration and sampling duration; and variation in sampling durations between on-the-ground area samples and on-the-roof PBZ samples. A general linear model analysis of variance (GLM-ANOVA) was applied to help address the confounding. The results of this analysis indicate that personal sample BSF results were not statistically significantly different from the background/area samples. PMID:26083058

  19. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.

  20. Bright is the new black—multi-year performance of high-albedo roofs in an urban climate

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-03-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross section of the dominant white membrane options for US flat roofs: (1) an ethylene-propylene-diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane; and (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City’s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane shows evidence of low emissivity; however this had the interesting effect of avoiding any ‘winter heat penalty’ for this building. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years of installation. Given that the acrylic approach is such an important ‘do-it-yourself’, low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  1. Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate

    NASA Technical Reports Server (NTRS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-01-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  2. Thermal Performance of Tropical Atrium

    NASA Astrophysics Data System (ADS)

    Baharvand, Mohammad; Bin Ahmad, Mohd Hamdan; Safikhan, Tabassom; Mirmomtaz, Sayyed Mohammad Mahdi

    2013-12-01

    Atrium is a popular architectural feature utilized widely by building designers and owners to bring various benefits such as adequate daylight, circulation spaces and surfaces for landscape applications. But atrium problems in tropical climates such as excessive daylight, glare and high temperature, which lead to increase building energy demand, have been reported. To avoid and reduce these unpleasant features, a side-lit atrium has been suggested. Although researchers proposed side-lit atrium to prevent common problems of atria, the lack of precedent research on this issue compels these authors to study atrium performance in hot and humid climate. So the research aims to examine two different atrium roof form types in terms of temperature and ventilation impacts in hot and humid climate of Malaysia using DesignBuilder as a simulation program. The results indicate lower temperature of side-lit model with better airflow pattern in comparison with top-lit model while the top-lit model provides higher air velocity at the air inlet and outlet.

  3. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed in this quarter. The development of the data interpretation methodology and other related tasks are still continuing.

  4. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Additional field tests have been performed. It is found that the drilling power can be used as a supplementary method for detecting voids/fractures and rock interfaces.

  5. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More field tests have been performed. A trendline analysis method has been developed. This method would improve the accuracy in detecting the locations of fractures and in determining the rock strength.

  6. Structural stability vs. thermal performance: old dilemma, new solutions

    SciTech Connect

    Kosny, J.; Christian, J.E.

    1996-10-01

    In many building envelopes, actual thermal performance falls quite a bit short of nominal design parameters given in standards. Very often only windows, doors, and a small part of the wall area meet standards requirements. In the other parts of the building envelope, unaccounted thermal bridges reduce the effective thermal resistance of the insulation material. Such unaccounted heat losses compromise the thermal performance of the whole building envelope. For the proper analysis of the thermal performance of most wall and roof details, measurements and three-dimensional thermal modeling are necessary. For wall thermal analysis the whole-wall R-value calculation method can be very useful. In ties method thermal properties of all wall details are incorporated as an area weighted average. For most wall systems, the part of the wall that is traditionally analyzed, is the clear wall, that is, the flat part of the wall that is uninterrupted by details. It comprises only 50 to 80% of the total area of the opaque wall. The remaining 20 to 50% of the wall area is not analyzed nor are its effects incorporated in the thermal performance calculations. For most of the wall technologies, traditionally estimated R-values are 20 to 30% higher than whole-wall R-values. Such considerable overestimation of wall thermal resistance leads to significant errors in building heating and cooling load estimations. In this paper several examples are presented of the use of the whole-wall R-value procedure for building envelope components. The advantages of the use of the whole wall R-value calculation procedure are also discussed. For several building envelope components, traditional clear-wall R-values are compared with the results of whole-wall thermal analysis to highlight significant limits on the use of the traditional methods and the advantages of advanced computer modeling.

  7. Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  8. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 1

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2014-05-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S.A. between 2009 and 2013, and describes their potential for reducing the attic-generated space conditioning loads. These roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a 3 year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year 3 of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic temperature fluctuations.

  9. Combating the Urban Heat Island Effect: Results from a Long-Term Monitoring Study on Urban Green, White, and Black Roofs in New York City

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Kong, A. Y.; Hartung, E.; Hsu, B.; Roditi, A.; Rosenzweig, C.

    2011-12-01

    Urban heat island mitigation strategies include increasing urban vegetation and increasing the albedo of impervious surfaces. Vegetated "green" roofs can provide benefits to stormwater management, water quality, energy cost efficiency, and biodiversity in cities, but the body of research on green roofs in the US is not large and cities in the US have been slow to adopt green roofs. On the other hand, "high-albedo" white roofs have been applied more widely through projects such as New York City Cool Roofs. There are several major issues (e.g., albedo decline, product differences, and long-term temperature controls) about green and white roof performance versus typical black roofs with respect to urban heat island mitigation that have yet to be fully addressed. Here, we present data from an on-going, long-term study in New York City in which pilot, urban albedo enhancement and vegetation effects have been monitored at the building-scale since 2007. Although the urban heat island effect can be detected throughout the year, our objective for this paper was to compare green roof vegetation with those of the high-albedo roofs for their ability to reduce the electricity demand for cooling in the summer. Using energy balance methodology across our sites (three), we found that green and white roof membrane temperature peaks are on average 60°F (33°C) and 30° F (17°C), respectively, cooler than black roof temperature peaks, and that these alternative surfaces significantly reduce thermal stress to roof membranes. Interestingly, we found that industrial white membranes [thermoplastic polyolefin (TPO) and ethylene propylene diene monomer (EPDM)] stay cleaner longer, thereby, maintaining the high-albedo benefits longer than the painted roofs, which tend to lose their albedo properties rapidly. Results thus far suggest that more long-term research comparing the albedo and cooling benefits of green and white roofs to black roofs is necessary to understand temporal changes to roof performance.

  10. Moisture studies of a self-drying roof: Tests in the large scale climate simulator and results from thermal and hygric models

    SciTech Connect

    Desjarlais, A.O.; Petrie, T.W.; Childs, P.W.; Atchley, J.A.

    1998-08-01

    Simultaneous experiments on the moisture behavior of six low-slope roof systems were performed in a climate simulator. The systems comprised a self-drying design over a conventional metal deck, a self-drying design over a significantly more permeable slotted metal deck and four others over conventional metal decks: a system typical of US construction with a liquid water permeable vapor retarder, a system typical of European construction with a liquid water permeable vapor retarder, a top-ventilated system with a polyethylene vapor retarder, and an impermeable control system with a polyethylene vapor retarder. Total weight of each test panel was measured and recorded continuously, along with temperatures and heat fluxes, to compare the behavior of the various systems. The authors imposed steady-state temperatures from hot summer to cold winter conditions to obtain the R-values of the construction dry insulations in each panel. Temperature cycles typical of hot summer days and mild winter days were then imposed above the construction dry assemblies to obtain baseline diurnal performance. The authors applied a one-dimensional thermal and hygric model. The solid and slotted deck were assumed to differ only in water vapor permeance. A model was not attempted for the top-ventilated system. The 1-D model predicted very well the slow rates of wetting in the winter cycles and both the slow then fast rates of drying in the summer cycles before and after water addition, except it overpredicted the drying rate for the US construction with a liquid water permeable vapor retarder.

  11. Guidelines for Inspecting Your Roof Systems.

    ERIC Educational Resources Information Center

    Watkins, Daniel L.

    2003-01-01

    Provides guidelines for inspecting the roof of a facility. Suggests that periodic roof inspections should be performed on a quarterly or semi-annual basis and after severe storms. Proactively identifying potential problem areas is the best defense against roof leaks. (SLD)

  12. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting designs. Numerical simulations were performed to investigate the mechanisms of modern roof bolting systems including both the tension and fully grouted bolts. Parameters to be studied are: bolt length, bolt spacing, bolt size/strength, grout annulus, in-situ stress condition, overburden depth, and roof geology (massive strata, fractured, and laminated or thinly-bedded). Based on the analysis of the mechanisms of both bolting systems and failure modes of the bolted strata, roof bolting design criteria and programs for modern roof bolting systems were developed. These criterion and/or programs were combined with the MRGIS for use in conjunction with roof bolt installation.

  13. Hydrological performance of extensive green roofs in New York City: observations and multi-year modeling of three full-scale systems

    NASA Astrophysics Data System (ADS)

    Carson, T. B.; Marasco, D. E.; Culligan, P. J.; McGillis, W. R.

    2013-06-01

    Green roofs can be an attractive strategy for adding perviousness in dense urban environments where rooftops are a high fraction of the impervious land area. As a result, green roofs are being increasingly implemented as part of urban stormwater management plans in cities around the world. In this study, three full-scale green roofs in New York City (NYC) were monitored, representing the three extensive green roof types most commonly constructed: (1) a vegetated mat system installed on a Columbia University residential building, referred to as W118; (2) a built-in-place system installed on the United States Postal Service (USPS) Morgan general mail facility; and (3) a modular tray system installed on the ConEdison (ConEd) Learning Center. Continuous rainfall and runoff data were collected from each green roof between June 2011 and June 2012, resulting in 243 storm events suitable for analysis ranging from 0.25 to 180 mm in depth. Over the monitoring period the W118, USPS, and ConEd roofs retained 36%, 47%, and 61% of the total rainfall respectively. Rainfall attenuation of individual storm events ranged from 3 to 100% for W118, 9 to 100% for USPS, and 20 to 100% for ConEd, where, generally, as total rainfall increased the per cent of rainfall attenuation decreased. Seasonal retention behavior also displayed event size dependence. For events of 10-40 mm rainfall depth, median retention was highest in the summer and lowest in the winter, whereas median retention for events of 0-10 mm and 40 +mm rainfall depth did not conform to this expectation. Given the significant influence of event size on attenuation, the total per cent retention during a given monitoring period might not be indicative of annual rooftop retention if the distribution of observed event sizes varies from characteristic annual rainfall. To account for this, the 12 months of monitoring data were used to develop a characteristic runoff equation (CRE), relating runoff depth and event size, for each green roof. When applied to Central Park, NYC precipitation records from 1971 to 2010, the CRE models estimated total rainfall retention over the 40 year period to be 45%, 53%, and 58% for the W118, USPS, and ConEd green roofs respectively. Differences between the observed and modeled rainfall retention for W118 and USPS were primarily due to an abnormally high frequency of large events, 50 mm of rainfall or more, during the monitoring period compared to historic precipitation patterns. The multi-year retention rates are a more reliable estimate of annual rainfall capture and highlight the importance of long-term evaluations when reporting green roof performance.

  14. Roof bolting without injury. [Glossary included

    SciTech Connect

    Larry, J.J.

    1992-01-01

    The art of roof bolting is an important segment of the mining cycle in underground coal mining. Too many accidents occur that can be attributed to the roof bolting process. Too often the Roof Bolter Operator is not cognizant of the art, or drilling techniques, nor the safety procedures to perform the duties effectively and safely. This manual offers those safety pointers and drilling techniques for the Roof Bolter Operator and the Roof Bolter Helper. The manual will instruct the Operators on the operational functions and the lubrication of the Bolter, the concept of roof bolting and emphasize the safety-oriented steps for roof-bolting safely. Conversely the manual will point out the hazards of poor safety habits that lead to accidents and injuries. If the Roof Bolter crew heed the recommendations described herein, they will provide a safe working environment for all of the employees at the mine. Chapters have been process separately for inclusion on the data base.

  15. Green roofs: potential at LANL

    SciTech Connect

    Pacheco, Elena M

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.

  16. Understanding Roofing Systems.

    ERIC Educational Resources Information Center

    Michelsen, Ted

    2001-01-01

    Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)

  17. Use of roof temperature modeling to predict necessary conditions for locating wet insulation with infrared thermography

    SciTech Connect

    Childs, K.W.

    1985-11-01

    In low-sloped roofing systems using porous insulation, the presence of water can significantly degrade thermal performance. For this reason, it is desirable to develop a reliable method for detecting the presence of water in a roofing system. Because of the different thermal characteristics of wet and dry insulation, there is often a surface temperature differential between areas containing wet insulation and areas containing dry insulation. Under the right circumstances, the areas of wet insulation can be detected by means of infrared sensing techniques. These techniques have already gained widespread acceptance, but there is still some uncertainty as to what are appropriate environmental conditions for viewing. To better define the conditions under which infrared techniques can distinguish between areas of wet and dry insulation, a one-dimensional, transient heat transfer model of a roofing system was developed. The model considers conduction through the roof, insolation on the surface, radiant exchange between the roof and sky, convective heat transfer between the roof and air, and the influence of trapped moisture on the thermal properties of the insulation. A study was undertaken using this model to develop an easily-applied technique for prediction of necessary conditions for locating wet roof insulation using infrared thermography.

  18. Rules To Roof By.

    ERIC Educational Resources Information Center

    Hale, Olivia

    2002-01-01

    Advises schools on keeping roofs healthy, thereby saving costly repairs to both the roof and the entire building. Discusses inspections, preventive-maintenance programs, weather, and when to re-roof. (EV)

  19. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  20. Relative performance of antisymmetric angle-ply laminated stiffened hypar shell roofs with cutout in terms of static behavior

    NASA Astrophysics Data System (ADS)

    Chowdhury, Puja B.; Mitra, Anirban; Sahoo, Sarmila

    2016-01-01

    A review of literature reveals that bending analysis of laminated composite stiffened hypar shells with cutout have not received due attention. Being a doubly ruled surface, a skewed hypar shell fulfils aesthetic as well as ease of casting requirements. Further, this shell allows entry of north light making it suitable as civil engineering roofing units. Hypar shell with cutout subjected to uniformly distributed load exhibits improved performances with stiffeners. Hence relative performances of antisymmetric angle-ply laminated composite stiffened hypar shells in terms of displacements and stress resultants are studied in this paper under static loading. A curved quadratic isoparametric eight noded element and three noded beam elements are used to model the shell surface and the stiffeners respectively. Results obtained from the present study are compared with established ones to check the correctness of the present approach. A number of additional problems of antisymmetric angle-ply laminated composite stiffened hypar shells are solved for various fibre orientations, number of layers and boundary conditions. Results are interpreted from practical application standpoints and findings important for a designer to decide on the shell combination among a number of possible options are highlighted.

  1. Radiation control coatings installed on rough-surfaced built-up roofs -- Initial results

    SciTech Connect

    Petrie, T.W.; Childs, P.W.; Christian, J.E.

    1998-01-01

    The authors have tracked the solar reflectance and thermal performance of small samples of various radiation control coatings on smooth surfaces for several years on a roof test facility in East Tennessee. The focus is on white coatings because of their potential to weather, causing the solar reflectance to decrease as the coatings age. Support of the federal New Technology Demonstration Program allowed them to extend the study to more samples on smooth surfaces and entire rough-surfaced roofs at a federal facility in the Panhandle of Florida. Two rough-surfaced, moderately well-insulated, low solar reflectance built-up roofs (BURs) were spray-coated with a latex-based product with ceramic beads added to improve solar reflectance. In the first three months after installation, the fresh BUR coatings showed a significant decrease in both the outside-surface temperature and the heat flux through the roof insulation. Average sunlit values were generated to exclude nighttime data, data on cloudy days, and data when the uncoated patch on one roof was more strongly shaded in mid-afternoon on sunny days. The average power demand during occupied periods for the first month with the coating for the building with the thermally massive roof deck was 13% less than during the previous month without the coating. For the other buildings with a lightweight roof deck but high internal loads, there were no clear average power savings due to the coating. The authors are continuing to monitor electricity use in these all-electric buildings to calibrate a model for the peak power and annual energy use of the buildings. Modeling results to be given at the end of the two year project will address the effect of roof R-value, geographic location, and solar reflectance, including the effect of weathering, on the performance of coated roofs. The calibrated models should allow one to segregate site-specific effects such as shading and large thermal mass.

  2. Hydrological Response of Sedum-Moss Roof

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.

    2004-12-01

    Eco-roofs are becoming popular for aesthetic reasons and also as units of stormwater systems. It is thought that such roofs with soil cover and vegetation reduces the total runoff, the peak flows and improves the quality of the roof water. Here are reported investigations of runoff from thin, 3-4 cm soil, extensive green roofs with sedum-moss in southern Sweden. The two-year study was performed on new roofs in the eco-city Augustenborg and also on nearby old vegetative roofs. The rain intensity and the roof runoff were measured with 5 min, or in some experiments with 1 min, resolution. The annual runoff from the eco-roofs was about half that from hard roofs and was close to that of small natural rivers. However, although most rainy days there was no or little runoff from the roofs, the highest observed daily runoff values were close to the daily rainfall. Runoff is initiated, when the soil is at field capacity. Thereafter the hourly runoff corresponds closely to the hourly rainfall. For short-term high intensity storms, the runoff peak is attenuated relative the rain intensity. The time of concentration for runoff was experimentally determined applying artificial rains on existing roofs and on experimental roof plots with varying slopes and using different drainage layers. The peak runoff from the roofs was found to correspond to the rain intensity over 20-30 minutes. The probability of high rain intensity is much higher than the probability of high runoff. When intensity-duration-frequency curves were constructed, runoff with 0.4 year return period corresponded to rain with 1.5 year return period. The influence of the slope of the roofs on the runoff peak was minor as was the effect of drainage layer. The vertical flow in the soil dominates the runoff process. The influence of extensive sedum-moss vegetated roofs on runoff quality was also studied to ascertain whether vegetated roofs behave as sink or source of pollutants and whether the runoff quality changes with roof age. The results show that in general vegetated roofs behave as a source of contaminants. With the exception of a 15-year old roof, the studied vegetated roofs contributed phosphate-phosphorus to the runoff. Some metals appeared in concentrations that corresponds to moderately polluted water. However, nitrate-nitrogen is retained by the vegetation and the soil.

  3. Plant functional traits predict green roof ecosystem services.

    PubMed

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services. PMID:25599106

  4. Thermal performance of three solar air heaters

    SciTech Connect

    Parker, B.F.; Lindley, M.R.; Colliver, D.G.; Murphy, W.E. )

    1993-12-01

    This paper reports the thermal analysis and the results of thermal performance tests of solar air heaters with V-corrugated absorber plates. Six collector units were used to test three collector types: (a) flow over the absorber, (b) flow on both sides of the absorber, and (c) flow under the absorber. Paired simultaneous testing was used for collectors of the same type to check thermal performance differences which might occur due to construction differences or testing variables. Predictions of collector thermal performance, when using temperatures and environmental data from the test, were in good agreement with the corresponding measured thermal performance. The predicted performance, particularly with solar glass, indicated very good thermal efficiency for vee corrugated absorber plates.

  5. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  6. The Effect of Core Configuration on Thermal Barrier Thermal Performance

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Bott, Robert H.; Druesedow, Anne S.

    2015-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize heat transfer through interfaces and gaps and protect underlying temperature-sensitive components. The core insulation has a significant impact on both the thermal and mechanical properties of compliant thermal barriers. Proper selection of an appropriate core configuration to mitigate conductive, convective and radiative heat transfer through the thermal barrier is challenging. Additionally, optimization of the thermal barrier for thermal performance may have counteracting effects on mechanical performance. Experimental evaluations have been conducted to better understand the effect of insulation density on permeability and leakage performance, which can significantly impact the resistance to convective heat transfer. The effect of core density on mechanical performance was also previously investigated and will be reviewed. Simple thermal models were also developed to determine the impact of various core parameters on downstream temperatures. An extended understanding of these factors can improve the ability to design and implement these critical TPS components.

  7. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1979-01-01

    The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.

  8. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-04-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. More laboratory tests have been performed in this quarter. The analysis performed on the testing data showed: (1) abnormal rotational accelerations can be used as the indicator of the rock interfaces, and (2) the sharp drops of drilling thrust and torque agree well with the locations of fractures.

  9. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

  10. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    NASA Astrophysics Data System (ADS)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by the winter-time penalty, and the net benefit from adopting white roof technology in Portland is small. That said, there are other potential benefits of white roofing such as impact on urban heat islands and roof life that must also be considered.

  11. Increasing roof bolter operator awareness to risks of falling roof material during the bolting cycle

    SciTech Connect

    Klishis, M.J.; Althouse, R.C.; Lies, G.M. ); Layne, L.A. )

    1993-01-01

    The reduction of injuries due to falls of roof material is a longtime concern of the mining industry. Bolter operators are continually exposed to rib and roof falls as they perform their normal work tasks. Massive roof falls rather than the typical small falls have been the traditional focus of mine safety practitioners. However, falls of smaller amounts of roof material are a common source of injuries to roof bolter operators and other miners who perform roof-bolting work. This paper presents the findings of a study on roof bolter operators' exposure to falls of roof material. The results are important to the development of safer work practices for all underground miners who are assigned to roof-bolting tasks and related roof support activities. A detailed microanalysis of accident data was combined with worksite observations of bolting activities. Specific tasks associated with injuries as well as the causes of roof fall injuries were identified and organized according to four work routines: (1) preparing the work place, (2) tramming and positioning equipment, (3) drilling, and (4) bolting. The lack of detail on injury reports hindered the analysis of hazards that may lead to injuries among all bolters. A roof bolter observation checklist was developed to be used by safety personnel, trainers, and supervisors. In addition, the results of lost-time injuries found in the accident reports were combined with time studies of roof bolter operators to develop a set of risk and severity-weighted indices. An analysis of the four roof-bolting work routines revealed several safety problems and led to a series of recommendations for improving operator safety.

  12. High-performance optics for thermal microscopy

    NASA Astrophysics Data System (ADS)

    Arata, Ikuo; Isobe, Yoshio; Ishizuka, Toshimichi

    2009-03-01

    We have developed a thermal microscope which has an InSb detector and optics optimized for the camera. Using this system, we evaluated maximum resolution of a 30×/numerical aperture 0.71 lens made of silicon and germanium, and achieved the cutoff frequency of around 300 line pairs/mm, which is almost a diffraction-limited performance. The thermal microscope is installed on the THEMOS-1000, a product of Hamamatsu Photonics, for thermal emission analysis.

  13. Toward safer roof bolting

    SciTech Connect

    Not Available

    1983-10-01

    An automatic microprocessor-controlled roof bolter being developed may dramatically improve operator safety in high coal seams. The operator sits in protected cab where the controls roof bolter module out front. Hydraulic jacks anchor roof bolter module to coal mine floor and roof. Another bolter is described for metal and nonmetal mines which uses a percussive hammer for drilling. The unit operates electrohydraulically during bolting, electric power being obtained via a trailing cable. A diesel engine trams it in the mine.

  14. Optimizing the position of insulating materials in flat roofs exposed to sunshine to gain minimum heat into buildings under periodic heat transfer conditions.

    PubMed

    Shaik, Saboor; Talanki, Ashok Babu Puttranga Setty

    2016-05-01

    Building roofs are responsible for the huge heat gain in buildings. In the present work, an analysis of the influence of insulation location inside a flat roof exposed directly to the sun's radiation was performed to reduce heat gain in buildings. The unsteady thermal response parameters of the building roof such as admittance, transmittance, decrement factor, and time lags have been investigated by solving a one-dimensional diffusion equation under convective periodic boundary conditions. Theoretical results of four types of walls were compared with the experimental results available in literature. The results reveal that the roof with insulation placed at the outer side and at the center plane of the roof is the most energy efficient from the lower decrement factor point of view and the roof with insulation placed at the center plane and the inner side of the roof is the best from the highest time lag point of view among the seven studied configurations. The composite roof with expanded polystyrene insulation located at the outer side and at the center plane of the roof is found to be the best roof from the lowest decrement factor (0.130) point of view, and the composite roof with resin-bonded mineral wool insulation located at the center plane and at the inner side of the roof is found to be energy efficient from the highest time lag point (9.33 h) of view among the seven configurations with five different insulation materials studied. The optimum fabric energy storage thicknesses of reinforced cement concrete, expanded polystyrene, foam glass, rock wool, rice husk, resin-bonded mineral wool, and cement plaster were computed. From the results, it is concluded that rock wool has the least optimum fabric energy storage thickness (0.114 m) among the seven studied building roof materials. PMID:26341337

  15. Structural-Thermal-Optical-Performance (STOP) Analysis

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeffrey; Irish, Sandra

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  16. EPA's Green Roof Research

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  17. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  18. Summer Roof Maintenance.

    ERIC Educational Resources Information Center

    Liscum, Curtis L.

    1999-01-01

    Presents the items to review in roofing maintenance to prepare for the impact of summer, including checking drainage, roof-field surface and membrane, flashings, sheet metal, and rooftop equipment, such as skylights and penthouses. A list of roofing facts facility managers should know are highlighted. (GR)

  19. Raising the Roof.

    ERIC Educational Resources Information Center

    Savage, John

    2000-01-01

    Discusses how the use of metal standing-seam roofs can help conserve energy, and with proper maintenance, be long-lasting. An example is given of one high school's replacement of their leaking roof with a metal standing-seam roof. (GR)

  20. Natural selection on thermal performance in a novel thermal environment

    PubMed Central

    Logan, Michael L.; Cox, Robert M.; Calsbeek, Ryan

    2014-01-01

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming. PMID:25225361

  1. Evolution of thermal sensitivity of ectotherm performance.

    PubMed

    Huey, R B; Kingsolver, J G

    1989-05-01

    Most ectothermal animals have variable body temperatures. Because physiological rates are temperature sensitive, an ectotherm's behavioural and ecological performance - even its fitness - can be influenced by body temperature. As a result, the thermal sensitivity of ectotherm performance is relevant to diverse issues in physiology, ecology and evolution. This review formalizes an emerging framework for investigating the evolution of thermal sensitivity, outlines some functional and genetical constraints on that evolution, and summarizes comparative and experimental advances in this field. PMID:21227334

  2. Transmutation Fuel Performance Code Thermal Model Verification

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  3. Photovoltaic/thermal system performance index based on the second law

    NASA Astrophysics Data System (ADS)

    Bazques, E. O.; Anand, D. K.

    1984-12-01

    The second law of thermodynamics is used to optimize the performance of residential hybrid photovoltaic/thermal energy system and the associated control system methodology. The system functioned with photovoltaics embedded in flat plate collectors for roof mounting. The thermal energy was captured by a heat pump. The PV/T system component irreversibilities were calculated and a minimum system performance index model was defined, based on the irreversibilities. The model was applied, with meteorological data, to simulate the system performance at three widely space U.S. locations. The control strategy was heavily latitude dependent. Finally, the second law model identified the irreversibilities of the collector and the room enclosures as the areas where improvements would yield the highest efficiency gains.

  4. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    SciTech Connect

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof assemblies against moisture. The key variables investigated were the leakage area from the attic to the outside, leakage area from the attic to the interior, leakage area from the interior to the outside, supply duct leakage in the attic, and interior moisture generation. These investigations are described in this report.

  5. Green roof systems: a study of public attitudes and preferences in southern Spain.

    PubMed

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. PMID:23722180

  6. Evolution of cool-roof standards in the United States

    SciTech Connect

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  7. Thermal performance of double-skin facade with thermal mass

    NASA Astrophysics Data System (ADS)

    Fallahi, Ali

    In order to mitigate the overheating problem in the warmer seasons, and thereby to improve thermal performance and energy efficiency of the Double-Skin Facade (DSF) system, this study introduced an innovative design approach involving the integration of thermal mass with the air channel of the conventional DSF. Then it proposed a numerical procedure to assess the thermal performance of DSF, and finally investigated the effect of thermal mass on the energy efficiency of such system. The initial step in the assessment procedure proposed the development of base-case models, which were able to predict temperature distribution in the DSF with a venetian blind. So too were the base-case models able to determine heating/cooling loads of the perimeter room for both the mechanically and naturally ventilated DSFs. In this procedure, building energy simulation software was used for base-case development; two distinct models were generated: an airflow model and a thermal model. The nodal, unidirectional airflow network method was applied in the case of the naturally ventilated DSF. The thermal model was a transient control volume method which found temperature distribution in discretized air-channel. The base-cases were verified at two levels: inter-model verification and verification relying on measurements from mechanically and naturally ventilated outdoor test-cells. At both levels, a generally fair agreement was obtained. After this, parametric studies pertaining to the energy performance of the system were conducted on the effect of thermal mass in unison with different air-channel configurations. Considerable energy load reductions were found when thermal mass was used in the air-channel, replacing venetian blind slats for mechanically ventilated DSFs; this held true during both summer and winter. In this configuration depending on the airflow path direction, energy savings from 21% to 26% in summer and from 41% to 59% in winter are achievable in compared with conventional DSF with aluminum venetian blind. The savings were found higher in sunny days than cloudy days. On the other hand, naturally ventilated DSFs combined with thermal mass were not found to be energy efficient in winter due to stack effect and airflow rate increase within the air channel.

  8. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  9. Solid state optical thermal imaging: performance update

    NASA Astrophysics Data System (ADS)

    Wagner, Matthias

    2008-04-01

    We describe initial results from a module built using the Thermal Light Valve TM (TLV) - a diffractive thin film spatial light modulator that provides high response to long-wavelength infrared radiation. In this paper we briefly describe a differential-mode TLV device, its solid state structure, readout system configuration, and performance parameters. We describe the architecture of an 80x60 OpTIC TM thermal imaging module based on the TLV, and give some early imaging results. We review the manufacturability of the component and module and the implication for low-cost thermal imaging.

  10. Predicting moisture problems in low-slope roofing

    SciTech Connect

    Desjarlais, A.O.; Byars, N.A.

    1998-11-01

    Moisture intrusion is the major reason why low-slope roofing systems fail prematurely. With approximately 75% of all roofing activity being reroofing, the roofing professional is faced with deciding what to do with an existing wet roof on almost a daily basis. This paper describes finite-difference computer modeling that has been performed to address moisture control in low-slope roof systems. Based on a large database of finite difference modeling results, algorithms have been developed that allow the roofing practitioners to simply determine if a roofing system design requires a vapor retarder or if the system can be modified to enhance its tolerance for small leaks. This paper illustrates how modeling results were obtained, describes the process employed to develop the algorithms, and demonstrates how these algorithms can be used to design a moisture tolerant low-slope roof. The range of applicability and limitations of these algorithms is also detailed.

  11. What's Up with Your Roof?

    ERIC Educational Resources Information Center

    Kalinger, Peter

    1998-01-01

    Explains the importance of knowing what condition the school's roof(s) is in and how to design a preventive maintenance program that is cost effective and will help extend the roof's lifecycle. Cost calculation techniques to value a roof maintenance program, maintenance documentation requirements, and roof surveying are discussed. (GR)

  12. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1992-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flown. The objective of the TCSE on the LDEF was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in the lab. The performance of the TCSE flight system on the LDEF was excellent.

  13. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  14. Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones

    SciTech Connect

    Pallin, Simon B

    2013-01-01

    A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof systems with thermoplastic membranes are prone to be more effected by interior air intrusion into the roof construction; both due to the wind induced pressure differences and due to the flexibility and elasticity of the membrane (Molleti, Baskaran, Kalinger, & Beaulieu, 2011). Depending on the air permeability of the material underneath the membrane, wind forces increase the risk of fluttering (also referred as billowing) of the thermoplastic membrane. Expectably, the wind induced pressure differences creates a convective air flow into the construction i.e. Page 2 air intrusion. If the conditions are right, moisture from the exchanging air may condensate on surfaces with a temperature below dew-point. The definite path of convective airflows through the building envelope is usually very difficult to determine and therefore simplified models (K nzel, Zirkelbach, & Scfafaczek, 2011) help to estimate an additional moisture loads as a result of the air intrusion. The wind uplifting pressure in combination with wind gusts are important factors for a fluttering roof. Unfortunately, the effect from a fluctuating wind is difficult to estimate as this is a highly dynamic phenomenon and existing standards (ASTM, 2011a) only take into account a steady state approach i.e. there is no guidance or regulations on how to estimate the air intrusion rate. Obviously, a more detailed knowledge on the hygrothermal performance of mechanically attached cool roof system is requested; in consideration to varying surface colors, roof air tightness, climate zones and indoor moisture supply.

  15. Solar electric and thermal conversion system in close proximity to the consumer. [solar panels on house roofs

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1975-01-01

    Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.

  16. LIGHTWEIGHT GREEN ROOF SYSTEMS

    EPA Science Inventory

    Applying a Lightweight Green Roof System to a building can achieve in managing storm water runoff, decreasing heat gain, yielding energy savings, and mitigating the heat island effect. Currently, Most green roof systems are considerably heavy and require structural reinforceme...

  17. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2013-05-29

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  18. Roofing Source File.

    ERIC Educational Resources Information Center

    American School & University, 1998

    1998-01-01

    Provides guidelines for school administrators to aid in the selection of school-roofing systems, and information required to make specification and purchasing decisions. Low-slope roofing systems are examined, as are multiply systems such as modified bitumen, EPDM, thermoplastic, metal, and foam. (GR)

  19. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  20. Million Solar Roofs

    SciTech Connect

    2003-11-01

    Since its announcement in June 1997, the Million Solar Roofs Initiative has generated a major buzz in communities, states, and throughout the nation. With more than 300,000 installations, the buzz is getting louder. This brochure describes Million Solar Roofs activities and partnerships.

  1. Guide to Cool Roofs

    SciTech Connect

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  2. ROOFING, PART 2. WORKBOOK.

    ERIC Educational Resources Information Center

    WOLTJES, WILLIAM; AND OTHERS

    THE TECHNICAL INFORMATION IN THIS STUDY GUIDE WAS PLANNED UNDER THE DIRECTION OF THE STATE EDUCATIONAL ADVISORY COMMITTEE FOR THE ROOFING TRADE AND WRITTEN BY AN APPRENTICE TRAINING SPECIALIST AND OTHERS TO BE USED AS RELATED CLASSROOM INSTRUCTION IN THE APPRENTICE TRAINING PROGRAM FOR ROOFERS. THE UNITS INCLUDE (1) BUILT-UP ROOFING, DAMPPROOFING,…

  3. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    ERIC Educational Resources Information Center

    Hobson, Joseph W.

    2000-01-01

    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  4. Combined cycle thermal performance diagnostic testing

    SciTech Connect

    Schmitt, T.P.

    1999-11-01

    The trend toward higher combined cycle power plant capacity and efficiency have resulted in increasingly complex thermodynamic designs. The testing methods, instrumentation, and analytical techniques employed on these complex combined cycle systems have advanced commensurate with the needs to not only validate the design, but also to diagnose thermal performance problems. More accurate techniques have been developed to accurately determine critical thermal performance operating parameters of the gas turbines, heat recovery steam generators (HRSG`s), and steam turbine. These diagnostic methods borrow heavily from ASME power Test Code acceptance test techniques, but go much deeper into sub-system and sub-component performance. The knowledge and expertise developed through years of new development testing at GE has been channeled into the aftermarket service diagnostic business. This is to address the operation and maintenance needs of the owners and operators of these complex combined cycle plants. Owners of these plants now have the opportunity to have their plant performance diagnosed accurately and cost-effectively. This paper will present the testing methods and analytical techniques associated with diagnosing thermal performance problems on combined cycle plants.

  5. Thermal interface pastes nanostructured for high performance

    NASA Astrophysics Data System (ADS)

    Lin, Chuangang

    Thermal interface materials in the form of pastes are needed to improve thermal contacts, such as that between a microprocessor and a heat sink of a computer. High-performance and low-cost thermal pastes have been developed in this dissertation by using polyol esters as the vehicle and various nanoscale solid components. The proportion of a solid component needs to be optimized, as an excessive amount degrades the performance, due to the increase in the bond line thickness. The optimum solid volume fraction tends to be lower when the mating surfaces are smoother, and higher when the thermal conductivity is higher. Both a low bond line thickness and a high thermal conductivity help the performance. When the surfaces are smooth, a low bond line thickness can be even more important than a high thermal conductivity, as shown by the outstanding performance of the nanoclay paste of low thermal conductivity in the smooth case (0.009 mum), with the bond line thickness less than 1 mum, as enabled by low storage modulus G', low loss modulus G" and high tan delta. However, for rough surfaces, the thermal conductivity is important. The rheology affects the bond line thickness, but it does not correlate well with the performance. This study found that the structure of carbon black is an important parameter that governs the effectiveness of a carbon black for use in a thermal paste. By using a carbon black with a lower structure (i.e., a lower DBP value), a thermal paste that is more effective than the previously reported carbon black paste was obtained. Graphite nanoplatelet (GNP) was found to be comparable in effectiveness to carbon black (CB) pastes for rough surfaces, but it is less effective for smooth surfaces. At the same filler volume fraction, GNP gives higher thermal conductivity than carbon black paste. At the same pressure, GNP gives higher bond line thickness than CB (Tokai or Cabot). The effectiveness of GNP is limited, due to the high bond line thickness. A thermal paste that is particularly effective for smooth surfaces was obtained by using nanoclay platelets (obtained by organic modification and subsequent chemical exfoliation) as the solid component. The superiority of the nanoclay paste for smooth surfaces is attributed to the submicrometer bond line thickness. Electrically nonconductive high-performance thermal paste was obtained by using either fumed alumina or fumed zinc oxide. The nonconductivity serves to avoid short circuiting in the electronic application environment. The fumed oxides are as effective as carbon black, but are advantageous in their electrical nonconductivity. Without fuming, the oxides are less effective. The silane coating on fumed metal oxides helps. Electrically nonconductive thermal pastes have also been attained using carbon as the thermally conductive solid component. Either fumed alumina or nanoclay is used to break the electrical connectivity of the carbon in the paste to obtain electrical nonconductivity. Among the nanostrucutred pastes developed in this dissertation research, the nanoclay (0.6 vol.%) paste is recommended for smooth surfaces. With the overall performance for smooth and rough surfaces considered, the carbon black (Tokai, 15 vol.%) paste is recommended. Carbon black (Tokai) is more effective than carbon black (Cabot), due to its small aggregate size. All the pastes developed are much more effective than carbon nanotube arrays investigated by others. The rheological behavior of the thermal pastes was studied under strain sweep, frequency sweep, steady state flow and temperature ramping. In the absence of a solid component, the vehicle is Newtonian and fluid-like. In the presence of a solid component, the paste is a Bingham plastic that exhibits shear thinning and mainly solid-like behavior. The addition of antioxidants enhances the solid-like character, increases the yield stress, the plastic viscosity and the bond line thickness, and decreases the thermal contact conductance. Double yielding behavior was observed in the CB(Cabot) and CB(Tokai) pastes, but not in the nanoclay and fumed alumina pastes. The plastic viscosity after complete yielding is higher when the solid volume fraction is higher. Upon heating from 25 to 120°C in the absence of antioxidants, G' and the viscosity increase, while G" decreases, due to slight phase separation. The antioxidants reduce the phase separation tendency, so that G', G" and the viscosity do not change upon heating from 50 to 120°C. Upon heating from 25 to 50°C, all of G', G" and the viscosity decrease in the presence of antioxidants, due to increasing fluidity.

  6. Roofing Workbook and Tests: Rigid Roofing.

    ERIC Educational Resources Information Center

    Klingensmith, Robert, Ed.

    This document is one of a series of nine individual units of instruction for use in roofing apprenticeship classes in California. The unit consists of a workbook and test. Eight topics are covered in the workbook and corresponding multiple-choice tests. For each topic, objectives and information sheets are provided. Information sheets are…

  7. Protected Membrane Roofs: A Sustainable Roofing Solution.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Examines the benefits of protected membrane roofing (PMR) for school buildings. PMR uses an upside-down approach, where the insulation is placed on top of the waterproofing membrane to improve membrane effectiveness, reduce ultraviolet degradation, and improve insulation efficiency. The article explains what makes PMR sustainable, focusing on…

  8. Cool Roof Systems; What is the Condensation Risk?

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2014-01-01

    A white roof, or cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with a mechanically attached membrane have shown a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparison with similar constructions with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in northern U.S. climate zones.

  9. Roof bolting equipment & technology

    SciTech Connect

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  10. Thermal Performance of Lightweight Solar Housing for Peri-urban Villages

    NASA Astrophysics Data System (ADS)

    Goodfield, D.; Anda, M.; Hammond, R.; Mathew, K.

    2007-10-01

    This study concerns an investigation into the thermal performance of prefabricated lightweight houses for peri-urban villages in the Perth Metropolitan region of Western Australia. Several styles of residence were selected for comparison taken from three constructed "lifestyle villages". National Lifestyle Villages Pty Ltd (NLV) is committed to quadruple bottom-line sustainability and the aim was, therefore, to provide indicators of how old and new dwellings compared under the same external conditions. The buildings themselves are prefabricated and brought to site in two halves, framed in steel clad with fibre-cement boarding, roofed in zincalume sheeting, and timber floored with applied fibre-cement sheeting. Although designed using passive solar design principles and other energy conservation measures they possess little thermal mass to improve the thermal performance. Research by the author indicated several feasible and low-budget innovative improvements for future designs, and how best to retrofit existing dwellings. NLV's aim is to provide homes for over 40,000 people in 100 villages Australia-wide by the year 2025. Any improvement in residential thermal performance can be translated not only into energy savings and greenhouse gas reduction on a significant scale, but can enhance comfort levels for residents whilst reducing their energy costs.

  11. The effect of air infiltration on the thermal performance of a small metal-framed assembly

    SciTech Connect

    Petrie, T.W.; Christian, J.E.; Childs, P.W.

    1997-03-01

    Innovative construction materials and systems have generated a need for laboratory scale tests to quantify the effect of air leakage on thermal and moisture performance of building assemblies. Some construction materials and systems are inherently more air tight than others. It is desirable to do laboratory scale measurements on alternative systems so as to rank them with respect to air tightness just as they can be ranked with respect to system R-value. Participants in summer 1995 and 1996 workshops for elementary and secondary school science teachers in the Buildings Technology Center (BTC) at the Oak Ridge National Laboratory sought a way to illustrate basic principles of building science in the classroom. They decided to build a small metal-framed assembly with internal volume of 44 ft{sup 3} (1.25 m{sup 3}) and removable wall sheathing. The assembly included a door and window. Although the door and window were made from 4-in. (10.2-cm) thick foam insulation, the requisite framing for them detracted from the thermal performance of the walls and occupied a disproportionately large fraction of the wall area. The floor and roof of the assembly were also well-insulated so that the walls dominated the conduction heat loss through the assembly. The plan was to test thermal performance of the assembly with the sheathing and without it. Thereby the teachers hoped to show the effects of thermal bridges with metal framing as well as practical yet insightful way to reduce their effects.

  12. Green Roofs for Stormwater Management

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  13. GREEN ROOFS A GROWING TREND

    EPA Science Inventory

    One of the most interesting stormwater control systems under evaluation by EPA are green roofs. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  14. Thermal Performance of Aircraft Polyurethane Seat Cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Aircraft seat materials were evaluated in terms of their thermal performance. The materials were evaluated using (a) thermogravimetric analysis, (b) differential scanning calorimetry, (c) a modified NBS smoke chamber to determine the rate of mass loss and (d) the NASA T-3 apparatus to determine the thermal efficiency. In this paper, the modified NBS smoke chamber will be described in detail since it provided the most conclusive results. The NBS smoke chamber was modified to measure the weight loss of material when exposed to a radiant heat source over the range of 2.5 to 7.5 W/sq cm. This chamber has been utilized to evaluate the thermal performance of various heat blocking layers utilized to protect the polyurethane cushioning foam used in aircraft seats. Various kinds of heat blocking layers were evaluated by monitoring the weight loss of miniature seat cushions when exposed to the radiant heat. The effectiveness of aluminized heat blocking systems was demonstrated when compared to conventional heat blocking layers such as neoprene. All heat blocking systems showed good fire protection capabilities when compared to the state-of-the-art, i.e., wool-nylon over polyurethane foam.

  15. Thermal performance of aircraft polyurethane seat cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Measurements were conducted on 7.6 x 7.6 cm samples of polyurethane seat cushion material in a modified National Bureau of Standards smoke density chamber to simulate real life conditions for an onboard aircraft fire or post-crash fire. In this study, a non-flaming heat radiation condition was simulated. Two aluminized polymeric fabrics (Norfab 11HT-26-A and Preox 1100-4) and one neoprene type material in two thicknesses (Vonar 2 and 3) were tested as heat blocking layers to protect the urethane foam from rapid heat degradation. Thermogravimetric analysis and differential scanning calorimetry were performed to characterize thermally the materials tested. It was found that Vonar 2 or 3 provided approximately equal thermal protection to F.R. urethane as the aluminized fabrics, but at a significant weight penalty. The efficiency of the foams to absorb heat per unit mass loss when protected with the heat blocking layer decreases in the heating range of 2.5-5.0 W/sq cm, but remains unchanged or slightly increases in the range of 5.0-7.5 W/sq cm. The results show that at all heat flux ranges tested the usage of a heat blocking layer in aircraft seats significantly improves their thermal performance.

  16. Thermal performance of quartz capillaries for vitrification.

    PubMed

    Risco, Ramon; Elmoazzen, Heidi; Doughty, Marshal; He, Xiaoming; Toner, Mehmet

    2007-12-01

    In this paper we report the thermal behavior of a new approach for vitrification. Thermal performance of traditional open pulled straws is compared with a new technique based on the combined use of quartz capillaries with slush nitrogen. This new method of vitrification achieved ultrafast cooling rates of 250,000 degrees C/min. As a result, a much lower concentration of cryoprotectant was needed to reach vitrification. In fact, a cryoprotectant solution typically used in oocyte slow freezing protocols was shown to remain transparent after cooling to liquid nitrogen temperatures indicating apparent "vitrification". This approach offers a new and very promising technique for vitrification of cells using low levels of cryoprotectants. PMID:17919532

  17. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  18. Computing Thermal Performances Of Shafts And Bearings

    NASA Technical Reports Server (NTRS)

    Woods, Claudia M.

    1992-01-01

    SHABERTH computer program developed to predict steady-state and transient thermal performance of multi-bearing shaft system operating with either wet or dry friction. Calculates loads, torques, temperatures, and fatigue lives for ball and/or roller bearings on single shaft. Enables study of many causes of instabilities in bearings. Also provides for analysis of reaction of system to termination of supply of lubricant to bearings and other lubricated mechanical elements. Valuable software tool in design and analysis of shaft bearing systems. Written in FORTRAN IV.

  19. Thermal performance of the MFTF magnets

    SciTech Connect

    VanSant, J.H.

    1983-08-03

    A yin-yang pair of liquid-helium (LHe) cooled, superconducting magnets were tested last year at the Lawrence Livermore National Laboratory (LLNL) as part of a series of tests with the Mirror Fusion Test Facility (MFTF). These tests were performed to determine the success of engineering design used in major systems of the MFTF and to provide a technical base for rescoping from a single-mirror facility to the large tandem-mirror configuration (MFTF-B) now under construction. The magnets were cooled, operated at their design current and magnetic field, and warmed to atmospheric temperature. In this report, we describe their thermal behavior during these tests.

  20. Thermal performance of the MFTF magnets

    NASA Astrophysics Data System (ADS)

    Vansant, J. H.

    A yin-yang pair of liquid-helium (LHe) cooled, superconducting magnets were tested as part of a series of tests with the mirror fusion test facility. These tests were performed to determine the success of engineering design used in major systems of the MFTF and to provide a technical base for rescoping from a single-mirror facility (MFTF) to the large tandem-mirror configuration (MFTF-B) now under construction. The magnets were cooled, operated at their design current and magnetic field, and warmed to atmospheric temperature. Their thermal behavior during these tests is described.

  1. Thermal performance of a solar still

    NASA Astrophysics Data System (ADS)

    Sodha, M. S.; Nayak, J. K.; Tiwari, G. N.; Singh, U.

    1981-12-01

    A simple periodic analysis of a basin-type solar still (both single as well as double), mounted on a stand, has been presented. The effect of dye injected into the water of a single-basin still has been explained. Numerical calculations have been carried out using parameters corresponding to stills with which experiments have been carried out at the Indian Institute of Technology, Delhi. It is found that the present theory quite satisfactorily explains the thermal performance of basin-type solar stills.

  2. THERMAL PERFORMANCE ANALYSIS FOR WSB DRUM

    SciTech Connect

    Lee, S

    2008-06-26

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum.

  3. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  4. Technology Solutions Case Study: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing

    SciTech Connect

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  5. Thermal Performance of the XRS Helium Insert

    NASA Technical Reports Server (NTRS)

    Breon, Susan R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J.; Warner, Brent A.; Boyle, Robert F.; Canavan, Edgar R.

    1999-01-01

    The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.

  6. Carbon sequestration potential of extensive green roofs.

    PubMed

    Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

    2009-10-01

    Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter. PMID:19848177

  7. The Influence of Ambient Temperature on Green Roof R-values

    NASA Astrophysics Data System (ADS)

    Cox, Bryce Kevin

    Green roofs can be an effective and appealing way to increase the energy efficiency of buildings by providing active insulation. As plants in the green roof transpire, there is a reduction in heat flux that is conducted through the green roof. The R-value, or thermal resistance, of a green roof is an effective measurement of thermal performance because it can be easily included in building energy calculations applicable to many different buildings and situations. The purpose of this study was to determine if an increase in ambient temperature would cause an increase in the R-value of green roofs. Test trays containing green roof materials were tested in a low speed wind tunnel equipped to determine the R-value of the trays. Three different plant species were tested in this study, ryegrass (Lolium perenne), sedum (Sedum hispanicum), and vinca (Vinca minor ). For each test in this study the relative humidity was maintained at 45% and the soil was saturated with water. The trays were tested at four different ambient temperatures, ranging from room temperature to 120ºF. The resulting R-values for sedum ranged from 1.37 to 3.28 ft2hºF/BTU, for ryegrass the R-values ranged from 2.15 to 3.62 ft2hºF/BTU, and for vinca the R-values ranged from 3.15 to 5.19 ft2hºF/BTU. The average R-value for all the tests in this study was 3.20 ft2hºF/BTU. The results showed an increase in R-value with increasing temperature. Applying an ANOVA analysis to the data, the relationship between temperature and R-value for all three plant species was found to be statistically significant.

  8. Fourier analysis of conductive heat transfer for glazed roofing materials

    NASA Astrophysics Data System (ADS)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-01

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  9. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  10. Up on the Roof: A Systematic Approach to Roof Maintenance.

    ERIC Educational Resources Information Center

    Burd, William

    1979-01-01

    A systematic roof maintenance program is characterized by carefully prepared long- and short-range plans. An essential feature of a systematic approach to roof maintenance is the stress on preventive measures rather than the patching of leaks. (Author)

  11. ROOF, A view looking north from the stair tower roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROOF, A view looking north from the stair tower roof at the external piping - Department of Energy, Mound Facility, Hydrolysis House Building (HH Building), One Mound Road, Miamisburg, Montgomery County, OH

  12. Rod shop, roof and truss detail showing older pink roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rod shop, roof and truss detail showing older pink roof truss, newer pratt truss, and longitudinal, truss for overhead traveling crane - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL

  13. Detail view, roofing material removed from firedamaged roof and placed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view, roofing material removed from fire-damaged roof and placed on lawn to the east of biddle hall. - U. S. Naval Asylum, Biddle Hall, Gray's Ferry Avenue, Philadelphia, Philadelphia County, PA

  14. The effects of high temperature and roof modification on physiological responses of swamp buffalo ( Bubalus bubalis) in the tropics

    NASA Astrophysics Data System (ADS)

    Khongdee, Titaporn; Sripoon, S.; Vajrabukka, C.

    2013-05-01

    The objective of the experiments reported here was to measure the effects of cooling techniques (Modified roof vs Normal roof) on the performance and physiology of 12 young male buffaloes with a similar live weight of 160 kg. The study was conducted at Chainat Agriculture and Technology College, Chainat Province, Thailand. The animals were divided randomly into two groups, each group comprising six buffaloes, and the two groups were studied to evaluate the effects of modified roofing (normal roof fitted with woven polypropylene shade cloth) on the subjects' physiological responses to heat stress under hot humid conditions. The modified roof resulted in lowered heat stress in buffaloes compared to those under a standard roof. The difference was shown by the buffaloes having a significantly lower mean rectal temperature (39.14 ± 0.07 vs 40.00 ± 0.10°C) and plasma cortisol (2.14 ± 0.24 vs 3.38 ± 0.37 ng/ml). The average daily water consumption was significantly lower in the MR group (MR, 29.71 ± 0.86 vs NR, 34.14 ± 1.06 L head -1 day-1), while there was a tendency for the roughage intake to be higher in the MR group compared to that of the NR group (MR, 5.88 ± 0.18 vs NR, 6.44 ± 0.19 kg head-1 -1 day-1; P = 0.0508). It was concluded that roof modification facilitated a reduction in heat load from roof re-radiation, and was an effective means of alleviating thermal stress in young buffaloes.

  15. The effects of high temperature and roof modification on physiological responses of swamp buffalo (Bubalus bubalis) in the tropics.

    PubMed

    Khongdee, Titaporn; Sripoon, S; Vajrabukka, C

    2013-05-01

    The objective of the experiments reported here was to measure the effects of cooling techniques (Modified roof vs Normal roof) on the performance and physiology of 12 young male buffaloes with a similar live weight of 160 kg. The study was conducted at Chainat Agriculture and Technology College, Chainat Province, Thailand. The animals were divided randomly into two groups, each group comprising six buffaloes, and the two groups were studied to evaluate the effects of modified roofing (normal roof fitted with woven polypropylene shade cloth) on the subjects' physiological responses to heat stress under hot humid conditions. The modified roof resulted in lowered heat stress in buffaloes compared to those under a standard roof. The difference was shown by the buffaloes having a significantly lower mean rectal temperature (39.14 ± 0.07 vs 40.00 ± 0.10°C) and plasma cortisol (2.14 ± 0.24 vs 3.38 ± 0.37 ng/ml). The average daily water consumption was significantly lower in the MR group (MR, 29.71 ± 0.86 vs NR, 34.14 ± 1.06 L head (-1) day(-1)), while there was a tendency for the roughage intake to be higher in the MR group compared to that of the NR group (MR, 5.88 ± 0.18 vs NR, 6.44 ± 0.19 kg head-1 (-1) day(-1); P = 0.0508). It was concluded that roof modification facilitated a reduction in heat load from roof re-radiation, and was an effective means of alleviating thermal stress in young buffaloes. PMID:22678302

  16. Performance Modeling of an Air-Based Photovoltaic/Thermal (PV/T) Collector

    SciTech Connect

    Casey, R. D.; Brandemuehl, M. J.; Merrigan, T.; Burch, J.

    2010-01-01

    This paper studies a collector design that utilizes unglazed photovoltaic/thermal (PV/T) collectors preheating air for glazed air heating modules. The performance modeling of these collectors is examined both individually and in series. For each collector type, a dynamic, finite difference, first-law model has been created using literature correlations for friction. The models were compared to performance data, calibrating the models by scaling of friction terms for best fit. The calibrated models generally agree well with the experimental data; even during sudden changes to ambient conditions. The root mean square error between the unglazed PV/T model and experiment results for the useful thermal energy gain and the outlet air temperature are 7.12 W/m{sup 2} and 1.07 C, respectively. The annual source energy performance of the building-integrated PV/T (BIPV/T) array is then simulated for residential applications in seven climate zones of the United States of America. The performance of the BIPV/T array is characterized by the amount of net electrical energy and useful thermal energy produced. The useful thermal energy is defined as the amount of energy offset by the BIPV/T system for water heating and space conditioning. A BIPV/T system composed 87.5% of PV modules, and 12.5% of glazed air heating modules, offsets the same amount of source energy as a roof-mounted PV system of the same area. This array composition increases the thermal energy gain by 47% over a BIPV/T array composed solely of PV modules.

  17. Thermal performance of multilayer insulation. Part 3

    SciTech Connect

    Amano, Toshiyuki; Ohara, Akinori

    1995-05-01

    The effects of various parameters on heat flux between room temperature and liquid nitrogen temperature through multilayer insulation (MLI) are examined using prediction equations and experimental results. The investigated parameters were the following: the winding method of multilayer insulation, hot boundary temperature, mesh size of the net, number of layers of net inserted between films, direction of layer installation, film thickness, and use of single- vs. double-aluminized films. To accomplish good thermal performance, laminated winding, larger mesh size, a layer of net inserted between films, thinner film (light weight), and double-aluminized film are needed. The optimum number of layers for different parameters is also discussed. It is found that the optimum number of layers is in the range of 30 to 60 layers in many cases.

  18. Photovoltaic roofing tile systems

    NASA Astrophysics Data System (ADS)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  19. 24. Roof detail from liftbed truck, showing pan roof above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Roof detail from lift-bed truck, showing pan roof above breezeway, with sawn redwood trim, tube-type drains; note missing rain gutter at roof edge, deteriorated condition of slates; view to south, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  20. WMAP Observatory Thermal Design and On-Orbit Thermal Performance

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart D.; Brown, Kimberly D.; Michalek, Theodore J.; Ancarrow, Walter C.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) observatory, launched June 30, 2001, is designed to measure the cosmic microwave background radiation with unprecedented precision and accuracy while orbiting the second Lagrange point (L2). The instrument cold stage must be cooled passively to <95K, and systematic thermal variations in selected instrument components controlled to less than 0.5 mK (rms) per spin period. This paper describes the thermal design and testing of the WMAP spacecraft and instrument. Flight thermal data for key spacecraft and instrument components are presented from launch through the first year of mission operations. Effects of solar flux variation due to the Earth's elliptical orbit about the sun, surface thermo-optical property degradations, and solar flares on instrument thermal stability are discussed.

  1. Thermal performance of the Brookhaven natural thermal storage house

    SciTech Connect

    Ghaffari, H.T.; Jones, R.F.

    1981-01-01

    In the Brookhaven natural thermal storage house, an energy-efficient envelope, passive solar collectors, and a variety of energy conservation methods are incorporated. The thermal characteristics of the house during the tested heating season are evaluated. Temperature distributions at different zones are displayed, and the effects of extending heating supply ducts only to the main floor and heating return ducts only from the second floor are discussed. The thermal retrievals from the structure and the passive collectors are assessed, and the total conservation and passive solar contributions are outlined. Several correlation factors relating these thermal behaviors are introduced, and their diurnal variations are displayed. Finally, the annual energy requirements, and the average load factors are analyzed and discussed.

  2. Green Roofs for Stormwater Runoff Control - Abstract

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  3. Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin; Patel, Deepak; Ottenstein, Laura

    2013-01-01

    The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more than 135 watts of heater power. 4) The LHP reservoir control heater power is limited to 15 watts with a 70 percent duty cycle. 5) The voltage of the power supply can vary between 26 volts direct current and 34 volts direct current during the spacecraft lifetime. A design analysis shows that a single LTCS can satisfy these requirements. However, shutdown of· the LHP is particularly challenging and the shutdown heater must be wired in series with two reservoir thermostats and two CCHP thermostats at different set points. An LTCS demonstration unit has been tested to verify these performance characteristics experimentally prior to proceeding to the final LTCS design and fabrication. Test results showed that the LHP shutdown scheme would be able to shut down the LHP as designed and the reservoir control heater can maintain the ATLAS mass simulator within the plus or minus 1 degrees Centigrade accuracy under various combinations of the heat load, sink temperature, and power supply voltage.

  4. Performance of thermal adhesives in forced convection

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1993-01-01

    Cooling is critical for the life and performance of electronic equipment. In most cases cooling may be achieved by natural convection but forced convection may be necessary for high wattage applications. Use of conventional type heat sinks may not be feasible from the viewpoint of specific applications and the costs involved. In a heat sink, fins can be attached to the well by ultrasonic welding, by soldering, or with a number of industrially available thermal adhesives. In this paper, the author investigates the heat transfer characteristics of several adhesives and compares them with ultrasonic welding and theoretically calculated values. This experiment was conducted in an air flow chamber. Heat was generated by using heaters mounted on the well. Thermstrate foil, Uniset A401, and Aremco 571 adhesives were tested along with an ultrasonically welded sample. Ultrasonic welding performed far better than the adhesives and Thermstrate foil. This type of experiment can be adapted for a laboratory exercise in an upper level heat transfer course. It gives students an exposure to industrial applications that help them appreciate the importance of the course material.

  5. Solar domestic hot water in Seattle: the relative effects of collector tilt and orientation of annual performance or Ma'am the roof is the least of your worries

    SciTech Connect

    Hogan, J.F.

    1981-01-01

    Current rules of thumb for the mounting of flat plate collectors for solar domestic hot water systems actually tend to discourage the installation of systems by specifying a narrow range of acceptable tilts and orientations. Computer simulation indicates that annual performance equivalent to 80% of the optimum achievable is possible in Seattle with wide variations in tilt and orientation due to the year-round nature of the load. For due south orientations it is almost impossible to achieve less than 80% of optimum performance is achievable with the majority of collector tilts. These simulations indicate that virtually all existing south-facing roof slopes are acceptable as is. But further, it also shows that the other half of Seattle roofs that face east and west with an average slope of 25/sup 0/ have great potential and should not be summarily dismissed as impossible candidates.

  6. High-Tech Roof Management.

    ERIC Educational Resources Information Center

    Benzie, Tim

    1997-01-01

    Describes the use of a computerized roof management system (CRMS) for school districts to foster multiple roof maintenance efficiency and cost effectiveness. Highlights CRMS software manufacturer choices, as well as the types of nondestructive testing equipment tools that can be used to evaluate roof conditions. (GR)

  7. ROOFING, PART I. WORKBOOK.

    ERIC Educational Resources Information Center

    FREDRICKS, JOHN; AND OTHERS

    THE TECHNICAL INFORMATION IN THIS STUDY GUIDE WAS DEVELOPED FOR USE IN RELATED INSTRUCTION IN APPRENTICE TRAINING PROGRAMS FOR ROOFERS. THE MATERIAL WAS PLANNED UNDER THE DIRECTION OF THE STATE EDUCATIONAL ADVISORY COMMITTEE FOR THE ROOFING TRADE AND PREPARED UNDER DIRECTION OF THE BUREAU OF INDUSTRIAL EDUCATION. THE UNITS ARE (1) THE APPRENTICE…

  8. Microinverter Thermal Performance in the Real-World: Measurements and Modeling

    PubMed Central

    Hossain, Mohammad Akram; Xu, Yifan; Peshek, Timothy J.; Ji, Liang; Abramson, Alexis R.; French, Roger H.

    2015-01-01

    Real-world performance, durability and reliability of microinverters are critical concerns for microinverter-equipped photovoltaic systems. We conducted a data-driven study of the thermal performance of 24 new microinverters (Enphase M215) connected to 8 different brands of PV modules on dual-axis trackers at the Solar Durability and Lifetime Extension (SDLE) SunFarm at Case Western Reserve University, based on minute by minute power and thermal data from the microinverters and PV modules along with insolation and environmental data from July through October 2013. The analysis shows the strengths of the associations of microinverter temperature with ambient temperature, PV module temperature, irradiance and AC power of the PV systems. The importance of the covariates are rank ordered. A multiple regression model was developed and tested based on stable solar noon-time data, which gives both an overall function that predicts the temperature of microinverters under typical local conditions, and coefficients adjustments reecting refined prediction of the microinverter temperature connected to the 8 brands of PV modules in the study. The model allows for prediction of internal temperature for the Enphase M215 given similar climatic condition and can be expanded to predict microinverter temperature in fixed-rack and roof-top PV systems. This study is foundational in that similar models built on later stage data in the life of a device could reveal potential influencing factors in performance degradation. PMID:26147339

  9. Microinverter Thermal Performance in the Real-World: Measurements and Modeling.

    PubMed

    Hossain, Mohammad Akram; Xu, Yifan; Peshek, Timothy J; Ji, Liang; Abramson, Alexis R; French, Roger H

    2015-01-01

    Real-world performance, durability and reliability of microinverters are critical concerns for microinverter-equipped photovoltaic systems. We conducted a data-driven study of the thermal performance of 24 new microinverters (Enphase M215) connected to 8 different brands of PV modules on dual-axis trackers at the Solar Durability and Lifetime Extension (SDLE) SunFarm at Case Western Reserve University, based on minute by minute power and thermal data from the microinverters and PV modules along with insolation and environmental data from July through October 2013. The analysis shows the strengths of the associations of microinverter temperature with ambient temperature, PV module temperature, irradiance and AC power of the PV systems. The importance of the covariates are rank ordered. A multiple regression model was developed and tested based on stable solar noon-time data, which gives both an overall function that predicts the temperature of microinverters under typical local conditions, and coefficients adjustments reecting refined prediction of the microinverter temperature connected to the 8 brands of PV modules in the study. The model allows for prediction of internal temperature for the Enphase M215 given similar climatic condition and can be expanded to predict microinverter temperature in fixed-rack and roof-top PV systems. This study is foundational in that similar models built on later stage data in the life of a device could reveal potential influencing factors in performance degradation. PMID:26147339

  10. Detailed thermal performance data on conventional and highly insulating window systems

    SciTech Connect

    Arasteh, D.; Selkowitz, S.; Hartmann, J.

    1986-01-01

    Data on window heat-transfer properties (U-value and shading coefficient (SC)) are usually presented only for a few window designs at specific environmental conditions. With the introduction of many new window glazing configurations (using low-emissivity coatings and gas fills) and the interest in their annual energy performance, it is important to understand the effects of window design parameters and environmental conditions on U and SC. This paper discusses the effects of outdoor temperature, wind speed, insolation, surface emittance, and gap width on the thermal performance of both conventional and highly insulating windows. Some of these data have been incorporated into the fenestration chapter of the ''ASHRAE Handbook - 1985 Fundamentals.'' The heat-transfer properties of multiglazed insulating window designs are also presented. These window systems include those having (1) one or more low-emittance coatings; (2) low-conductivity gas-fill or evacuated cavities; (3) a layer of transparent silica aerogel, a highly insulating microporous material; or (4) combinations of the above. Using the detailed building energy analysis program, DOE 2.1B, we show that these systems, which all maintain high solar transmittance, can add more useful thermal energy to a space than they lose, even in a northern climate. Thus, in terms of seasonal energy flows, these fenestration systems out-perform insulated walls or roofs.

  11. Thermal Performance Testing Of Cryogenic Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

    2003-01-01

    Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

  12. Thermal Performance of the LDX Floating Coil

    NASA Astrophysics Data System (ADS)

    Zhukovsky, A.; Garnier, D. T.; Radovinsky, A. L.

    2006-04-01

    The Levitated Dipole Experiment (LDX) is an innovative facility to study plasma confinement in a dipole magnetic field, created by a superconducting solenoid (floating coil), which is magnetically levitated in the center of a 5 m diameter by 3 m tall vacuum chamber. The floating coil (F-coil) consists of a Nb3Sn magnet installed inside a strong vessel filled with high-pressure helium gas at room temperature. It is surrounded by a fiberglass-lead composite radiation shield and by a toroidal vacuum shell. The cryostat design provides the ability to operate the magnet for several hours of wanning while suspended in the middle of the vacuum chamber without electric and cryogenic connections to the coil. For this reason the magnet is charged/discharged inductively in a lower part of the vacuum chamber. The retractable cryogenic transfer lines serve to cool down the magnet to 4.5 K before it is lifted to the operating position. The F-coil can be re-cooled multiple times while maintaining its field and current. This paper describes the thermal performance of the F-coil.

  13. DRACS thermal performance evaluation for FHR

    SciTech Connect

    Lv, Q.; Lin, H. C.; Kim, I. H.; Sun, X.; Christensen, R. N.; Blue, T. E.; Yoder, G. L.; Wilson, D. F.; Sabharwall, P.

    2015-03-01

    Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride-salt-cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS Heat Exchanger and the Natural Draft Heat Exchanger. In addition, a fluidic diode is employed to minimize the parasitic flow into the DRACS primary loop and correspondingly the heat loss to the DRACS during normal operation of the reactor, and to keep the DRACS ready for activation, if needed, during accidents. To help with the design and thermal performance evaluation of the DRACS, a computer code using MATLAB has been developed. This code is based on a one-dimensional formulation and its principle is to solve the energy balance and integral momentum equations. By discretizing the DRACS system in the axial direction, a bulk mean temperature is assumed for each mesh cell. The temperatures of all the cells, as well as the mass flow rates in the DRACS loops, are predicted by solving the governing equations that are obtained by integrating the energy conservation equation over each cell and integrating the momentum conservation equation over each of the DRACS loops. In addition, an intermediate heat transfer loop equipped with a pump has also been modeled in the code. This enables the study of flow reversal phenomenon in the DRACS primary loop, associated with the pump trip process. Experimental data from a High-Temperature DRACS Test Facility (HTDF) are not available yet to benchmark the code. A preliminary code validation is performed by using natural circulation experimental data available in the literature, which are as closely relevant as possible. The code is subsequently applied to the HTDF that is under construction at the Ohio State University.

  14. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  15. Thermal Lens Detectors for High Performance Chromatographies

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.

    1983-10-01

    Chromatographic detectors based on the thermal lens and related photothermal deflection effects are discussed. A pump/probe thermal lens detector is used to monitor HPLC effluents with 1 μA sensitivity. A photothermal deflection system is used as a densitometer in a scanned HPTLC system. Picogram sensitivity is observed. Prospects for practical devices are discussed.

  16. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    SciTech Connect

    Miller, William A; Cherry, Nigel J; Allen, Richard Lowell; Childs, Phillip W; Atchley, Jerald Allen; Ronnen, Levinson; Akbari, Hashem; Berhahl, Paul

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within the attic and the whole building. Field measures and computer predictions showed that the demonstration home without a NIR-reflective tile coating and without above-sheathing ventilation had the greatest roof deck heat flow and subsequently the highest electrical usage. The house with both NIR paint pigments on the tile and with ASV had the least deck heat flows and therefore caused the home to consume the least amount of energy. The relative performance of the reflective coating and the ventilation individually is less obvious, but it is clear that the combination of a reflective tile with ASV is the preferred solution for the best energy saving.

  17. On the relationship between the Bushveld Complex and its felsic roof rocks, part 2: the immediate roof

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.; Mathez, E. A.

    2015-12-01

    Emplacement of large volumes of mafic magma into the crust undoubtedly causes significant thermal perturbation to the overlying crust. Despite the clear importance of the country rock in modulating the thermal evolution the Bushveld Complex, little is known about the nature and extent of its roof zone. This manuscript details the lateral variability of the rocks that make up the immediate roof of the intrusion in the Eastern Limb. In the Northern Segment of the eastern Bushveld, the roof is dominated by thermally metamorphosed metapelites; in the Central Segment, the roof is dominated by highly metamorphosed meta-volcanic rocks and their partially molten equivalents; and in the Southern Segment, the roof is likely composed of modestly thermally metamorphosed felsic volcanic rocks. The variability of roof lithology is also reflected in the variability of floor rocks to the intrusion. A new model for the emplacement of the eastern Bushveld Complex is proposed in which the mafic magmas intrude at a deeper level in the north and become shallower to the south.

  18. Infiltration of a copper roof runoff through artificial barriers.

    PubMed

    Athanasiadis, K; Helmreich, B; Wilderer, P A

    2006-01-01

    On-site infiltration of a copper roof runoff may contribute to deterioration of the ground and ground water. To avoid such a negative effect the performance of two different technical systems, equipped with four different barrier materials, regarding copper elimination was examined in a field study. During the period March 2004 to January 2005, 16 rain events were examined. Copper concentrations between 200 and 11,000 microg/L in the roof runoff during a rain event were observed. The cover material of the roof and the drainage system were responsible for the high concentrations of copper in the roof runoff. It was evident that roof aspects facing towards the wind direction were receiving higher rainfall, thus were establishing higher copper runoff rates. The retention facilities have reached a performance of up to 97% regarding copper elimination. PMID:17120660

  19. Producing superhydrophobic roof tiles.

    PubMed

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating. PMID:26854839

  20. Producing superhydrophobic roof tiles

    NASA Astrophysics Data System (ADS)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  1. Potential benefits of plant diversity on vegetated roofs: a literature review.

    PubMed

    Cook-Patton, Susan C; Bauerle, Taryn L

    2012-09-15

    Although vegetated green roofs can be difficult to establish and maintain, they are an increasingly popular method for mitigating the negative environmental impacts of urbanization. Most green roof development has focused on maximizing green roof performance by planting one or a few drought-tolerant species. We present an alternative approach, which recognizes green roofs as dynamic ecosystems and employs a diversity of species. We draw links between the ecological and green roof literature to generate testable predictions about how increasing plant diversity could improve short- and long-term green roof functioning. Although we found few papers that experimentally manipulated diversity on green roofs, those that did revealed ecological dynamics similar to those in more natural systems. However, there are many unresolved issues. To improve overall green roof performance, we should (1) elucidate the links among plant diversity, structural complexity, and green roof performance, (2) describe feedback mechanisms between plant and animal diversity on green roofs, (3) identify species with complementary traits, and (4) determine whether diverse green roof communities are more resilient to disturbance and environmental change than less diverse green roofs. PMID:22575204

  2. Experimental investigation on thermal-barrier performance of ceramic coatings

    NASA Astrophysics Data System (ADS)

    Deng, Huayu; Luo, Mingjun; Liu, Cunlu

    1989-10-01

    Thermal-barrier performance of composite air-cooled vanes with ceramic coatings in a highly-loaded transonic turbine has been experimentally investigated. Experimental results show that the average net thermal-barrier effectiveness on the middle section of the coated vane is 167K, but the net thermal-barrier effectiveness at some points are measured at 145-206K. The effects of gas temperature on thermal-barrier performance of ceramic coatings are also investigated. It is found that the performance is even better at a higher temperature or higher heat flux condition.

  3. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  4. Energy Star{reg{underscore}sign} label for roof products

    SciTech Connect

    Schmeltz, R.S.; Bretz, S.E.

    1998-07-01

    Home and buildings owners can save up to 40% of cooling energy costs by installing reflective roofs, especially in hot and sunny climates. The increase in exterior albedo and subsequent decrease in heat flow across the building envelope reduces the energy requirements to maintain air-conditioned space. Indirectly, the increase in overall albedo of a community as these roofs are installed in a large fraction of the buildings results in lower ambient air temperature and less need for air conditioning. Another indirect effect is a decrease in smog formation due to lower ambient air temperatures and less air pollution from power plants because of minimized electrical demand and use. The US Environmental Protection Agency and the US Department of Energy are currently developing the Energy Star Roof Products Program to create a vibrant market for energy-efficient, cost-effective roof materials through the widespread availability of products, clear recognition of the benefits by consumers, and active promotion of products by manufacturers. Several activities, including pilot procurements of room materials, and the development of outreach and training materials, will be performed to assist the transformation of the roofing market toward more energy-efficient products. Using the experiences gained in establishing the Energy Star Roof Products Program as an example, this paper will discuss the barriers to the development of energy-efficient roofing practices, program implementation, and program successes. This paper will further describe the specifics of the Energy Star Roof Products Program, its goals, benefits, activities, and timeframe.

  5. Investigation of the Mechanical Performance of Compliant Thermal Barriers

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Bott, Robert J.; Dunlap, Patrick H.

    2011-01-01

    Compliant thermal barriers play a pivotal role in the thermal protection systems of advanced aerospace vehicles. Both the thermal properties and mechanical performance of these barriers are critical in determining their successful implementation. Due to the custom nature of many thermal barriers, designers of advanced spacecraft have little guidance as to the design, selection, and implementation of these elements. As part of an effort to develop a more fundamental understanding of the interrelationship between thermal barrier design and performance, mechanical testing of thermal barriers was conducted. Two different types of thermal barriers with several core insulation density levels ranging from 62 to 141 kg/cu m were investigated. Room-temperature compression tests were conducted on samples to determine load performance and assess thermal barrier resiliency. Results showed that the loading behavior of these thermal barriers was similar to other porous, low-density, compliant materials, such as elastomeric foams. Additionally, the insulation density level had a significant non-linear impact on the stiffness and peak loads of the thermal barriers. In contrast, neither the thermal barrier type nor the level of insulation density significantly influenced the room-temperature resiliency of the samples.

  6. Composite materials for thermal energy storage: enhancing performance through microstructures.

    PubMed

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-05-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  7. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    PubMed Central

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  8. Investigation of Fundamental Modeling and Thermal Performance Issues for a Metallic Thermal Protection System Design

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2002-01-01

    A study was performed to develop an understanding of the key factors that govern the performance of metallic thermal protection systems for reusable launch vehicles. A current advanced metallic thermal protection system (TPS) concept was systematically analyzed to discover the most important factors governing the thermal performance of metallic TPS. A large number of relevant factors that influence the thermal analysis and thermal performance of metallic TPS were identified and quantified. Detailed finite element models were developed for predicting the thermal performance of design variations of the advanced metallic TPS concept mounted on a simple, unstiffened structure. The computational models were also used, in an automated iterative procedure, for sizing the metallic TPS to maintain the structure below a specified temperature limit. A statistical sensitivity analysis method, based on orthogonal matrix techniques used in robust design, was used to quantify and rank the relative importance of the various modeling and design factors considered in this study. Results of the study indicate that radiation, even in small gaps between panels, can reduce significantly the thermal performance of metallic TPS, so that gaps should be eliminated by design if possible. Thermal performance was also shown to be sensitive to several analytical assumptions that should be chosen carefully. One of the factors that was found to have the greatest effect on thermal performance is the heat capacity of the underlying structure. Therefore the structure and TPS should be designed concurrently.

  9. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  10. Extending Our Understanding of Compliant Thermal Barrier Performance

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Finkbeiner, Joshua R.; Dunlap, Patrick H.

    2014-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize the flow of hot gases through interfaces and protect underlying temperature-sensitive components and systems. Although thermal barriers have been used extensively on many aerospace vehicles, the factors affecting their thermal and mechanical performance are not well-understood. Because of this, vehicle TPS designers are often left with little guidance on how to properly design and optimize these barriers. An ongoing effort to better understand thermal barrier performance and develop models and design tools is in progress at the NASA Glenn Research Center. Testing has been conducted to understand the degree to which insulation density influences structural performance and permeability. In addition, the development of both thermal and mechanical models is ongoing with the goal of providing an improved ability to design and implement these critical TPS components.

  11. Project Overcoat - An Exploration of Exterior Insulation Strategies for 1-1/2-Story Roof Applications in Cold Climates

    SciTech Connect

    Ojczyk, Cindy; Mosiman, Garrett; Huelman, Pat; Schirber, Tom; Yost, Peter; Murry, Tessa

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied 'band-aids' such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an 'overcoat' of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  12. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2015-12-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index for a white roof, two green roofs (grass (Poa pratensis) and sedum (Sedum sarmentosum)), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 °C and 1.3 °C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  13. Predicted thermal performance of triple vacuum glazing

    SciTech Connect

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  14. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  15. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  16. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  17. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  18. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  19. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2005-01-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (4) about 98% of the development work for the roof geology mapping program, MRGIS, has completed, (5) A real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, has already been verified to perform very well in underground production condition.

  20. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses is investigated. Actual rooftop heat losses were obtained both from in-situ instrumentation of test roofs with known thermal resistances and aerial thermography obtained from overflights at an altitude of 305 m. It is found that the roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from ground measurements. However it is noted that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. In addition, the sensitivity of the heat loss determination to environmental conditions is also evaluated. Finally, the analysis shows that the most reliable determinations can probably be obtained under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  1. Entering the Roofing and Waterproofing Industry. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This book is one of a series of 10 units of instruction for roofing apprenticeship classes in California. It covers the following 14 topics and provides tests for them: the nature of the roofing and waterproofing industry; the apprenticeship program; apprenticeship and the public schools; collective bargaining, wages, and benefits; safety in the…

  2. 13. ONE OF TWO LATERAL ROOF TRUSSES AND ROOF SUPPORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ONE OF TWO LATERAL ROOF TRUSSES AND ROOF SUPPORT BEAMS OF SARATOGA GAS LIGHT COMPANY GASHOLDER NO. 2 HOUSE LOOKING WEST. THE WIRES AND BEAM AT RIGHT CENTER OF PHOTOGRAPH HAVE BEEN ADDED TO STABILIZE TRUSS SYSTEM - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  3. 12. CENTRAL ROOF TRUSS AND ROOF SUPPORT BEAMS OF SARATOGA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CENTRAL ROOF TRUSS AND ROOF SUPPORT BEAMS OF SARATOGA GAS LIGHT COMPANY GASHOLDER NO. 2 HOUSE, LOOKING WEST. THE WIRES AND BEAM AT RIGHT OF PHOTOGRAPH HAVE BEEN ADDED TO STABILIZE TRUSS SYSTEM. - Saratoga Gas Light Company, Gasholder No. 2, Niagara Mohawk Power Corporation Substation Facility, intersection of Excelsior & East Avenues, Saratoga Springs, NY

  4. Field study on the thermal environment of passive cooling system in RC building

    SciTech Connect

    Zhou, Nan; Gao, Weijun; Nishida, Masaru; Kitayama, Hiroki; Ojima, Toshio

    2004-10-30

    In recent years, various passive methods have come to be adopted in architecture design. The rooftop lawn is seen to have merit in the reduction in the air conditioning load of the building, as well as contributing to the mitigation of the heat island phenomenon. The roofs praying system is seen to be an effective method for the roof of low heat insulation performance, and can greatly reduce the heat load in the summer season. However, at present most of the buildings with an RC construction have the insulating material in the roof for providing thermal insulation in the winter season. There has been a trend to adopt the roof spraying system actively in even such a general RC building, but it is not clear how much actual effect it has. In this study, the authors conducted a measurement in an RC building with a rooftop spraying system and roof lawn in order to clarify the effects and problems on the thermal environment.

  5. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  6. Preventive Maintenance the Key to Preserving Roofing.

    ERIC Educational Resources Information Center

    Napier, Robert Jon; Ephron, Hazel

    1990-01-01

    Roof maintenance and repair should be part of an ongoing preservation program. Describes New York's Capital Assets Preservation (CAP) program and includes a CAP checklist and criteria for evaluating a roofing system. Describes roof testing methods. (MLF)

  7. Thermal performance of concrete masonry unit wall systems

    SciTech Connect

    Kosny, J.

    1995-12-31

    New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

  8. Thermal deformation impacts on SOG Fresnel lens performance

    NASA Astrophysics Data System (ADS)

    Büyükcoşkun, Murat; Annen, Hans Philipp; González Muñoz, Luis Felipe

    2012-10-01

    Silicone-on-Glass (SOG) Fresnel lenses are flat optical elements used in concentrator photovoltaics (CPV). SOG lens production process broadly involves forming optical silicone prisms attached to glass. Silicone is first compressed onto glass while heat is applied in order to shorten its curing time. During the cooling process, however, difference between thermal expansion coefficient for silicon and glass causes thermal deformation of prisms which results in compromised optical efficiency. In this study, thermal-induced deformation of SOG Fresnel lens prisms is analyzed by Surface Profile Measurement (SPM) and Finite Element Analysis (FEA) methods. In order to better observe patterns of thermal deformation and overall lens performance, lens samples were subjected to an optical efficiency test. Focus quality (FQ) images were also taken and observed in order to further analyze thermally affected lens performance. The study is expected to contribute to knowledge on temperature induced performance determinants of SOG Fresnel lenses.

  9. Photovoltaic Roof Heat Flux

    NASA Astrophysics Data System (ADS)

    Samady, Mezhgan Frishta

    Solar panels were mounted with different designs onto 1:800 scale building models while temperature and radiation were measured. While there have been other studies aimed at finding the optimal angles for solar panels [9], in this study both the angle and the mounting method were tested. The three PV mounting designs that were considered to provide the most insulation to a building's rooftop were flush, offset (control), and angled. The solar panel offset height became a key component for rooftop insulation as well as the performance of the actual solar panel. Experimental results were given to verify the thermal behavior of the heat loads from the different designs of the photovoltaic panel. From the results, the angled PV design needed 16Z more heat extraction than the offset and flush PV design needed 60% more heat extracted than the offset. In addition to the heat transfer analysis, thermal models were performed to incorporate main atmospheric conditions which were based on the effects of PV mounting structure.

  10. How Cool Is Your Roof?

    ERIC Educational Resources Information Center

    Fickes, Michael

    2001-01-01

    Explains a concept called cool roof that is used to reduce electricity costs for air conditioning, and also reduce the price of air conditioning units. Discusses the light reflecting capabilities of metal roofing as well as coatings that can stop leaks. (GR)

  11. The Successful Transfer of Space Derived Convergent Spray: An Application for Industrial Roof Coatings and Interstate Bridge Repair

    NASA Technical Reports Server (NTRS)

    McMillan, Vernotto C.

    1998-01-01

    A partnership was formed between the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and United Technologies USBI Company to develop, demonstrate, and evaluate a technology that uses a solventless spray process for depositing a lightweight, highly filled roof coating on low-sloped commercial roofs. Although the levels of volatile organic compound (VOC) emissions from industrial roof coating's and paint operations have been reduced in recent years, this partnership,was an effort to further reduce VOC emission levels and to also demonstrate the use of reclaimed automobile tire rubber as a filler material in roof coating systems. Different materials and coatings were evaluated and tested before the final selection used to coat the roofs of two small buildings at NASA's Marshall Space Flight Center during fiscal year 1997. The project successfully leveraged the investment of EPA, NASA and private sector resources to demonstrate a pre-commercial roofing coating process. This process utilizes the Convergent Spray Technologies process, which was initially developed by USBI to apply highly-filled, thermal protection coatings to the Space Shuttle Solid Rocket Boosters. A second partnership between the NASA, Federal Highway Administration, Alabama Department of Transportation and USBI Company was formed to develop and demonstrate the Convergent Spray Technology as a method of applying a skid resistant coating to interstate roads and concrete bridge decking's. Again, different materials and coatings were evaluated and tested before the final selection of ground flint and resin. Two field demonstrations were performed during fiscal year 1997 for the purpose of evaluating the coating system under actual highway conditions. These coatings were applied on Interstate 65 near Huntsville Alabama, and in the Mobile Bankhead tunnel. The system performed this task without the use of harmful solvents, and accomplished the process in a single application. This project successfully leveraged the investment of NASA, Federal Highway Administration, the Alabama Department of Transportation, and private sector funding.

  12. Finding Parameters by Tabu Search Algorithm to Construct a Coupled Heat and Mass Transfer Model for Green Roof

    NASA Astrophysics Data System (ADS)

    Chen, P.; Tung, C.

    2012-12-01

    Green roof has the advantage to lower building temperature; therefore it has been applied a lot nowadays to indoor temperature adjustment. This study builds a coupled heat and mass transfer model, in which the water vapor in the substrate is taken into consideration, based on the concept of energy balance. With the parameters optimized by Tabu search algorithm, data from the experiment is used to validate the model. In the study, both the model and the experimental green roof of this study consist of four layers: canopy, substrate, drainage and concrete rooftop. Heat flux of each layer is calculated in the model, using energy balance equations as well as some numerical methods to simulate water-related thermal effect in soil, to see the heat transfer process. The experiment site locates on the rooftop of Hydrotech Research Institute, National Taiwan University, Taiwan. Since the material of the substrate layer has high porosity, the results show a contradiction of energy conservation when neglecting the influence of water. It is found that the parameters identified by Tabu search seem reasonable for the experiment. The main contribution of the study is to construct a thermal model for green roof with parameter optimization procedure, which can be used as an effective assessment method to quantify the heat-reduced performance of green roof on the underlying building.

  13. Thermal Components Boost Performance of HVAC Systems

    NASA Technical Reports Server (NTRS)

    2012-01-01

    As the International Space Station (ISS) travels 17,500 miles per hour, normal is having a constant sensation of free-falling. Normal is no rain, but an extreme amount of shine.with temperatures reaching 250 F when facing the Sun. Thanks to a number of advanced control systems onboard the ISS, however, the interior of the station remains a cool, comfortable, normal environment where astronauts can live and work for extended periods of time. There are two main control systems on the ISS that make it possible for humans to survive in space: the Thermal Control System (TCS) and the Environmental Control and Life Support system. These intricate assemblies work together to supply water and oxygen, regulate temperature and pressure, maintain air quality, and manage waste. Through artificial means, these systems create a habitable environment for the space station s crew. The TCS constantly works to regulate the temperature not only for astronauts, but for the critical instruments and machines inside the spacecraft as well. To do its job, the TCS encompasses several components and systems both inside and outside of the ISS. Inside the spacecraft, a liquid heat-exchange process mechanically pumps fluids in closed-loop circuits to collect, transport, and reject heat. Outside the ISS, an external system circulates anhydrous ammonia to transport heat and cool equipment, and radiators release the heat into space. Over the years, NASA has worked with a variety of partners.public and private, national and international. to develop and refine the most complex thermal control systems ever built for spacecraft, including the one on the ISS.

  14. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J.

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  15. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.

  16. Characteristics of high thermal performance insulation, HTP-6-22

    SciTech Connect

    Mccormick, M.J.

    1988-08-01

    High thermal performance (HTP) is a third-generation reusable surface insulation that comprises a mixture of silica fibers, alumina fibers, and a binder. HTP has been successfully manufactured as cast production billets with densities ranging from 192 to 961 kg/cu m. A program characterizing pertinent physical, mechanical, and thermal properties of HTP-6 insulation has been conducted. HTP-6 material is 96 kg/cu m in density. The material was characterized for density, compressive strength, tensile strength, thermal expansion, and thermal conductivity.

  17. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  18. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  19. Can wet roof insulation be dried out

    SciTech Connect

    Tobiasson, W.; Korhonen, C.; Coutermarsh, B.; Greatorex, A.

    1983-01-01

    Nondestructive techniques are being widely used to locate wet insulation in compact roofing systems. Now that wet insulation can be found, breather vents and so-called breathable membranes are being promoted to dry out wet insulation, thereby recovering its thermal effectiveness. Exposure tests in New Hampshire indicate that the above venting methods are all rather ineffective in drying sealed specimens of perlite and fibrous glass roof insulation. It would take many decades to dry our specimens at the rates measured over the past two years. Cross-ventilation within the insulation increased the rate of drying. For perlite insulation, the faster rate would still result in a drying time measured in decades. For fibrous glass insulation, the drying time was reduced to 13 years. Fibrous glass insulation in a roof was dried by removing the water with a vacuum cleaner. In a series of tests with a total duration of 134 h, about 0.4 2 m/sup 3/ (110 gal) of water was removed from a 17-m/sup 2/ (180-ft/sup 2/) area of 38-mm (1.5-in.)-thick insulation. Before the water was removed the insulation had only 21% of its dry insulating ability; afterward it had 83%.

  20. Can wet roof insulation be dried out

    SciTech Connect

    Tobiasson, W.; Coutermarsh, B.; Greatorex, A.; Korhonen, C.

    1981-12-01

    Nondestructive techniques are being widely used to locate wet insulation in compact roofing systems. Now that wet insulation can be found, breather vents and so called ''breathable'' membranes are being promoted to dry out wet insulation, thereby recovering its thermal effectiveness. Exposure tests in New Hampshire indicate that the above venting methods are all rather ineffective in drying sealed specimens of perlite and fibrous glass roof insulation. It would take many decades to dry specimens at the rates measured over the past two years. Cross-ventilation within the insulation increased the rate of drying. For perlite insulation, the faster rate would still result in a drying time measured in decades. For fibrous glass insulation, the drying time was reduced to 13 years. The authors have succeeded in drying fibrous glass insulation in a roof by removing the water with a vacuum cleaner. In a series of tests with a total duration of 134 h, about 0.42 m/sup 3/ (110 gal) of water was removed from a 17-m/sup 2/ (180-ft/sup 2/) area of 38-mm (1.5-in.)-thick insulation. Before the water was removed the insulation had only 21 percent of its dry insulating ability; afterward it had 83 percent.

  1. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  2. Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Our Savior's School.

    ERIC Educational Resources Information Center

    Parker, Danny S.; Sherwin, John R.; Sonne, Jeffrey K.; Barkaszi, Stephen F., Jr.

    A 2-year Florida study attempted to quantify air conditioning cost savings when buildings have a white reflective roof. A 10,000 square foot elementary school with a gray modified bitumen roof over plywood decking that had a solar reflectance of 23 percent was monitored for an entire year. After one year of building thermal conditions and…

  3. Paradoxical acclimation responses in the thermal performance of insect immunity.

    PubMed

    Ferguson, Laura V; Heinrichs, David E; Sinclair, Brent J

    2016-05-01

    Winter is accompanied by multiple stressors, and the interactions between cold and pathogen stress potentially determine the overwintering success of insects. Thus, it is necessary to explore the thermal performance of the insect immune system. We cold-acclimated spring field crickets, Gryllus veletis, to 6 °C for 7 days and measured the thermal performance of potential (lysozyme and phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25 to -2.1 ± 0.18 °C, and chill coma recovery time after 72 h at -2 °C from 16.8 ± 4.9 to 5.2 ± 2.0 min. Measures of both potential and realised immunity followed a typical thermal performance curve, decreasing with decreasing temperature. However, cold acclimation further decreased realised immunity at low, but not high, temperatures; effectively, immune activity became paradoxically specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal responses between locomotor and immune systems, as well as within the immune system itself. We conclude that cold acclimation in insects appears to preferentially improve cold tolerance over whole-animal immune performance at low temperatures, and that the differential thermal performance of physiological responses to multiple pressures must be considered when predicting ectotherms' response to climate change. PMID:26846428

  4. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    PubMed

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. PMID:25106048

  5. Thermal Performance Testing of EMU and CSAFE Liquid Cooling Gannents

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Meginnis, Ian; Hakam, Mary; Radford, Tamara

    2013-01-01

    Future exploration missions require the development of a new liquid cooling garment (LCG) to support the next generation extravehicular activity (EVA) suit system. The new LCG must offer greater system reliability, optimal thermal performance as required by mission directive, and meet other design requirements including improved tactile comfort. To advance the development of a future LCG, a thermal performance test was conducted to evaluate: (1) the comparable thermal performance of the EMU LCG and the CSAFE developed engineering evaluation unit (EEU) LCG, (2) the effect of the thermal comfort undergarment (TCU) on the EMU LCG tactile and thermal comfort, and (3) the performance of a torso or upper body only LCG shirt to evaluate a proposed auxiliary loop. To evaluate the thermal performance of each configuration, a metabolic test was conducted using the Demonstrator Spacesuit to create a relevant test environment. Three (3) male test subjects of similar height and weight walked on a treadmill at various speeds to produce three different metabolic loads - resting (300-600 BTU/hr), walking at a slow pace (1200 BTU/hr), and walking at a brisk pace (2200 BTU/hr). Each subject participated in five tests - two wearing the CSAFE full LCG, one wearing the EMU LCG without TCUs, one wearing the EMU LCG with TCUs, and one with the CSAFE shirt-only. During the test, performance data for the breathing air and cooling water systems and subject specific data was collected to define the thermal performance of the configurations. The test results show that the CSAFE EEU LCG and EMU LCG with TCU had comparable performance. The testing also showed that an auxiliary loop LCG, sized similarly to the shirt-only configuration, should provide adequate cooling for contingency scenarios. Finally, the testing showed that the TCU did not significantly hinder LCG heat transfer, and may prove to be acceptable for future suit use with additional analysis and testing.

  6. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. Field tests have been performed in two underground coal mines in this quarter. It also found from the tests that the non-drilling thrust and torque should be deducted from the acquired drilling data. The non-drilling torque is actually higher than that is used to overcome the shear strength is proportional to the rotation rate.

  7. Load test of the 3701U Building roof deck and support structure

    SciTech Connect

    McCoy, R.M.

    1994-09-14

    The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (<10 deg); and Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ``No Roof Access`` signs can be changed to ``Roof Access Restricted`` signs.

  8. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P

    2016-04-01

    We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences. PMID:27220219

  9. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  10. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  11. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  12. Green Roofs for Stormwater Runoff Control

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  13. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of roof support using mining machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof...

  14. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    NASA Astrophysics Data System (ADS)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on a rooftop? 2) How does this design compare with the performance of the extant Green Grid green roof system on the roof in regard to storm water runoff mitigation and nutrient leaching? and 3) Using GIS, can this information be scaled to a larger region (i.e. UNH campus, the NH Seacoast, NH cities, etc.) to determine areas of particular interest for pollinator conservation? Runoff mitigation, as a percentage of precipitation, is expected to be greater than that on the roof with proprietary substrate, though nutrient leaching may be greater as well due to the higher organic matter content. Paired with GIS data on NH ecoregions, these results will help to identify areas in the state that would benefit from the construction of pollinator habitat corridors, including urban areas that may not have been previously considered.

  15. Measured energy savings of light colored roofs: Results from three California demonstration sites

    SciTech Connect

    Akbari, H.; Gartland, L.; Konopacki, S.

    1998-06-01

    Measured data and computer simulations have demonstrated the impact of roof albedo in reducing cooling energy use in buildings. Savings are a function of both climate and the amount of roof insulation. The cooling energy savings for reflective roofs are highest in hot climates. A reflective roof may also lead to higher heating energy use. Reflective coatings are also used in commercial buildings to protect the roofing membrane, and hence, maintain and prolong the useful life of the roof. Reflectivity of coatings changes with weathering and aging which in turn could have an effect on building cooling-energy savings. For that reason, reflective roof coatings are not primarily marketed for their energy savings potential. To monitor the field performance of reflective coatings, the authors initiated a demonstration project where three commercial buildings in California were painted with light-colored roof coatings. The buildings are two medical care centers and one drug store. At all sites, the roof reflectance, both fresh and aged, and cooling energy use were monitored. In addition, they measured temperature throughout the roof systems and inside the conditioned space. In the monitored buildings, increasing the roof reflectance from an initial value of about 20% to 60%, dropped the roof temperature on hot summer afternoons by about 45 F. Summertime standard-weekday average daily air-conditioning savings were 18% (198 kWh) in the first medical office building, 13% (86 kWh) in the second medical office building, and 2% (13 kWh) in the drug store. The overall u-value of the roofs had dictated the impact of roof reflectance.

  16. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  17. Performance analysis of thermal energy system with linear system method

    NASA Astrophysics Data System (ADS)

    Li, Liping; Zhang, Chunfa

    2007-08-01

    The paper addresses the system performance of coal-fired power unit with changed auxiliary system or other local heat disturbance. The idea of state space model is imported and the universal formula for the calculation of system performance output is deduced on the system state equation. Two important vector of system are worked out under linear system assumption and transform. The transfer matrix is the characteristics of system itself and is constant for a similar condition, which greatly facilitates the analysis. The concept of thermal disturbance vector is proposed to construct the thermal disturbance input easily. The method can be helpful for analyzing any thermal disturbance input satisfying the assumption and also for supplementing the correction means of performance test. An example of 600MW power unit is presented to demonstrate its availability.

  18. Thermal Performance Benchmarking; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Moreno, Gilbert

    2015-06-09

    This project proposes to seek out the SOA power electronics and motor technologies to thermally benchmark their performance. The benchmarking will focus on the thermal aspects of the system. System metrics including the junction-to-coolant thermal resistance and the parasitic power consumption (i.e., coolant flow rates and pressure drop performance) of the heat exchanger will be measured. The type of heat exchanger (i.e., channel flow, brazed, folded-fin) and any enhancement features (i.e., enhanced surfaces) will be identified and evaluated to understand their effect on performance. Additionally, the thermal resistance/conductivity of the power module’s passive stack and motor’s laminations and copper winding bundles will also be measured. The research conducted will allow insight into the various cooling strategies to understand which heat exchangers are most effective in terms of thermal performance and efficiency. Modeling analysis and fluid-flow visualization may also be carried out to better understand the heat transfer and fluid dynamics of the systems.

  19. Thermal Performance Testing of EMU and OSS Liquid Cooling Garments

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Hakam, Mary

    2012-01-01

    A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.

  20. Duct thermal performance models for large commercial buildings

    SciTech Connect

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

  1. Dynamic Thermal Management for High-Performance Storage Systems

    SciTech Connect

    Kim, Youngjae; Gurumurthi, Dr Sudhanva; Sivasubramaniam, Anand

    2012-01-01

    Thermal-aware design of disk drives is important because high temperatures can cause reliability problems. Dynamic Thermal Management (DTM) techniques have been proposed to operate the disk at the average case temperature, rather than at the worse case by modulating the activities to avoid thermal emergencies. The thermal emergencies can be caused by unexpected events, such as fan-breaks, increased inlet air temperature, etc. One of the DTM techniques is a delay-based approach that adjusts the disk seek activities, cooling down the disk drives. Even if such a DTM approach could overcome thermal emergencies without stopping disk activity, it suffers from long delays when servicing the requests. Thus, in this chapter, we investigate the possibility of using a multispeed disk-drive (called dynamic rotations per minute (DRPM)) that dynamically modulates the rotational speed of the platter for implementing the DTM technique. Using a detailed performance and thermal simulator of a storage system, we evaluate two possible DTM policies (- time-based and watermark-based) with a DRPM disk-drive and observe that dynamic RPM modulation is effective in avoiding thermal emergencies. However, we find that the time taken to transition between different rotational speeds of the disk is critical for the effectiveness of the DRPM based DTM techniques.

  2. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  3. High Performance Lightweight Compact Thermal Radiator For Space Vehicles

    NASA Astrophysics Data System (ADS)

    Tsai, Ching-fen; Prabhu, Julian; Shen, Frank

    2007-01-01

    A unique and novel feature invention titled as "High performance lightweight compact thermal radiator" was filed on March 31, 2005. This new invention utilizes the superb isotropic higher thermal conductivity of industrial Chemical Vapor Deposition (CVD) diamond or diamond composite as face sheet material. In addition, carbon foam panel or carbon graphite composite panel is also used as the radiator structural panel in order to achieve the lightweight thermal radiator system design. This paper presents the new system design concept and results of preliminary thermal analysis. The combination of this unique design feature significantly increases heat rejection rate per unit area for the radiator's panel surface. It is believed that this novel design will have significant technical impacts to future space vehicles such as Crew Exploration Vehicle (CEV), and next generation satellites.

  4. Thermal performance modeling of NASA s scientific balloons

    NASA Astrophysics Data System (ADS)

    Franco, H.; Cathey, H.

    The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.

  5. Review of End-of-Life Thermal Control Coating Performance

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Kline, Sara E.

    2008-01-01

    White thermal control coatings capable of long term performance are needed for Fission Surface Power (FSP) where heat from a nuclear reactor placed on the surface of the Moon must be rejected to the environment. The threats to thermal control coating durability on the lunar surface are electrons, protons, and ultraviolet radiation. The anticipated damage to the coating is a gradual darkening over time. The increase in solar absorptance would, in essence, add a cyclic heat load to the radiator. The greater the darkening, the greater the added heat load. The cyclic heat load could ultimately impart a cyclic influence on FSP system performance. No significant change in emittance is anticipated. Optical properties degradation data were found in the open literature for the Z-93 series of thermal control paints. Additional optical properties degradation data were found from the Lunar Orbiter V mission, the Optical Properties Monitor, and the Materials International Space Station Experiment. Anticipated end-of-life thermal control coating performance for a FSP installation is postulated. With the FSP installation located away from landing and launching areas, and out of line-of-sight, lunar dust from human activity may not be a threat. The benefits of investing in next generation thermal control paint chemistry are explored.

  6. Statistical Building Roof Reconstruction from WORLDVIEW-2 Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Partovi, T.; Huang, H.; Krauß, T.; Mayer, H.; Reinartz, P.

    2015-03-01

    3D building reconstruction from point clouds is an active research topic in remote sensing, photogrammetry and computer vision. Most of the prior research has been done on 3D building reconstruction from LiDAR data which means high resolution and dense data. The interest of this work is 3D building reconstruction from Digital Surface Models (DSM) of stereo image matching of space borne satellite data which cover larger areas than LiDAR datasets in one data acquisition step and can be used also for remote regions. The challenging problem is the noise of this data because of low resolution and matching errors. In this paper, a top-down and bottom-up method is developed to find building roof models which exhibit the optimum fit to the point clouds of the DSM. In the bottom up step of this hybrid method, the building mask and roof components such as ridge lines are extracted. In addition, in order to reduce the computational complexity and search space, roofs are classified to pitched and flat roofs as well. Ridge lines are utilized to estimate the roof primitives from a building library such as width, length, positions and orientation. Thereafter, a topdown approach based on Markov Chain Monte Carlo and simulated annealing is applied to optimize roof parameters in an iterative manner by stochastic sampling and minimizing the average of Euclidean distance between point cloud and model surface as fitness function. Experiments are performed on two areas of Munich city which include three roof types (hipped, gable and flat roofs). The results show the efficiency of this method in even for this type of noisy datasets.

  7. Advances in Plexcore active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Laird, Darin W.; Vaidya, Swanand; Li, Sergey; Mathai, Mathew; Woodworth, Brian; Sheina, Elena; Williams, Shawn; Hammond, Troy

    2007-09-01

    We report NREL-certified efficiencies and initial lifetime data for organic photovoltaic (OPV) cells based on Plexcore PV photoactive layer and Plexcore HTL-OPV hole transport layer technology. Plexcore PV-F3, a photoactive layer OPV ink, was certified in a single-layer OPV cell at the National Renewable Energy Laboratory (NREL) at 5.4%, which represents the highest official mark for a single-layer organic solar cell. We have fabricated and measured P3HT:PCBM solar cells with a peak efficiency of 4.4% and typical efficiencies of 3 - 4% (internal, NREL-calibrated measurement) with P3HT manufactured at Plextronics by the Grignard Metathesis (GRIM) method. Outdoor and accelerated lifetime testing of these devices is reported. Both Plexcore PV-F3 and P3HT:PCBM-based OPV cells exhibit >750 hours of outdoor roof-top, non-accelerated lifetime with less than 8% loss in initial efficiency for both active layer systems when exposed continuously to the climate of Western Pennsylvania. These devices are continuously being tested to date. Accelerated testing using a high-intensity (1000W) metal-halide lamp affords shorter lifetimes; however, the true acceleration factor is still to be determined.

  8. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  9. Eco-Environmental Factors in Green Roof Application in Indian Cities

    NASA Astrophysics Data System (ADS)

    Mukherjee, M.

    2014-09-01

    Green-roof is the cost-effective environmental mitigation strategy for urban areas [1]. Its application is limited in India primarily due to inadequate understanding about its cost-benefit analysis and technicalities of its maintenance. Increasing awareness about green roof can alter conservative attitude towards its application. So, this work presents a quantified study on green-roof types, cost and environmental benefits while considering different geo-urban climate scenarios for cities of Kolkata, Mumbai, Chennai and New Delhi. Cost estimation for extensive and intensive green-roof with reference to commonly used roof in urban India is also worked out. Attributes considered for environmental discussion are energy savings related to thermal heat gain through roof, roof-top storm-water drainage and sound attenuation. The comparative study confirms that further focused study on individual cities would identify city-specific objectives for green-roof application; strategies like awareness, capacity building programmes, incentives, demonstration projects etc. can be worked out accordingly for wider application of green-roof in Indian cities.

  10. Integrated heat pipe-thermal storage system performance evaluation

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary

    1987-01-01

    An integrated thermal energy storage (TES) system, developed as a part of an organic Rankine cycle solar dynamic power system is described, and the results of the performance verification tests of this TES system are presented. The integrated system consists of potassium heat-pipe elements that incorporate TES canisters within the vapor space, along with an organic fluid heater tube used as the condenser region of the heat pipe. The heat pipe assembly was operated through the range of design conditions from the nominal design input of 4.8 kW to a maximum of 5.7 kW. The performance verification tests show that the system meets the functional requirements of absorbing the solar energy reflected by the concentrator, transporting the energy to the organic Rankine heater, providing thermal storage for the eclipse phase, and allowing uniform discharge from the thermal storage to the heater.

  11. Thermal modeling and performance analysis of a thermoacoustic refrigerator.

    PubMed

    Holmberg, David G; Chen, G S; Lin, H T; Wo, Andrew M

    2003-08-01

    A heat-driven thermoacoustic refrigerator has been designed and tested. A detailed thermal model of the device is presented. Energy balances within the system are discussed using external, heat exchanger, and stack control volumes in order to clarify the relationships of work and heat fluxes below and above onset. Thermal modeling is discussed as a tool for performance analysis as well as for determining system heat losses and finding input heat flows required by a thermoacoustic code. A method of using the control volume balance equations to find stack work and device efficiencies is presented. Experimental measurements are compared to DELTAE thermoacoustic modeling predictions. Modeling results show that viscous losses within the system have a significant impact on the device performance as well as on the ability of DELTAE to accurately predict performance. Modeling has led to an understanding of system performance and highlighted loss sources that are areas for improvement in a redesign. PMID:12942961

  12. Performance of the LDCM Thermal Infrared Sensor for Evapotranspiration Measurement

    NASA Astrophysics Data System (ADS)

    Irons, J. R.; Reuter, D. C.; Thome, K. J.; Smith, R. L.; Montanaro, M.

    2012-12-01

    Evapotranspiration (ET) rate measurements are being made at the scale of individual farm fields with data from the Landsat satellites. A new instrument, the Thermal Infrared Sensor (TIRS), has been built and tested for launch aboard the next Landsat satellite, the Landsat Data Continuity Mission (LDCM), scheduled for launch on February 11, 2013. TIRS performance requirements were specified to ensure that the LDCM will provide the thermal infrared data necessary to continue measuring field scale ET rates. The presentation will compare the prelaunch performance of TIRS to specifications and to requirements for ET rate measurements. The comparisons will be made in terms of noise equivalent change in radiance and temperature, cross-track uniformity of spectral and radiometric response, spatial resolution and sharpness, and other specified characteristics. Performance was measured while TIRS was operated in a thermal vacuum chamber to simulate the space environment and while illuminated by a calibrated source of thermal infrared radiation. Results indicate that TIRS will perform better than earlier Landsat sensors with respect to radiometric requirements for accurately measuring ET rates.

  13. Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes

    SciTech Connect

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2015-12-01

    A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.

  14. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  15. Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2015-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 500 to 750 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  16. [Analysis of the distribution of VOCs concentration field with oil static breathing loss in internal floating roof tank].

    PubMed

    Wu, Hong-Zhang; Huang, Wei-Qiu; Yang, Guang; Zhao, Chen-Lu; Wang, Ying-Xia; Cai, Dao-Fei

    2013-12-01

    Internal floating roof tank has the advantages of external floating roof tank and fixed roof tank and has its own evaporation loss properties. The influences of volatile organic compounds (VOCs) distribution gradient, molecular diffusion, thermal diffusion and forced convection on the evaporation loss of oil were studied in the space of the homemade platform of an internal floating roof tank. The results showed that thermal diffusion with temperature change was the main cause for the static loss in the internal floating roof tank. On this basis, there were some measures for reduction of the evaporation loss and formulas to calculate the evaporation loss of the internal floating roof tank in this research. PMID:24640913

  17. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    SciTech Connect

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

  18. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect

    Kosny, Jan; Miller, William A; Childs, Phillip W; Biswas, Kaushik

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  19. Density dependence of reactor performance with thermal confinement scalings

    SciTech Connect

    Stotler, D.P.

    1992-03-01

    Energy confinement scalings for the thermal component of the plasma published thus far have a different dependence on plasma density and input power than do scalings for the total plasma energy. With such thermal scalings, reactor performance (measured by Q, the ratio of the fusion power to the sum of the ohmic and auxiliary input powers) worsens with increasing density. This dependence is the opposite of that found using scalings based on the total plasma energy, indicating that reactor operation concepts may need to be altered if this density dependence is confirmed in future research.

  20. Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate

    SciTech Connect

    K. Ueno and J. Lstiburek

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise.

  1. Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser

    NASA Astrophysics Data System (ADS)

    Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.

    2012-09-01

    Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).

  2. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2005-04-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) the relationship among feed pressure, penetration rate and rotation rate seems to be a good indicator for estimating rock strength when both penetration rate and rotation rate are controlled or kept constant, (4) the empirical equations for eliminating the machine effect on drilling parameters were developed and verified, and (5) a real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, performs very well in underground production condition.

  3. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    SciTech Connect

    Petrosky, L.J.; Disney, R.K.; Mangus, J.D. ); Gunn, S.A.; Zweig, H.R. )

    1993-01-10

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements.

  4. Parametric study of solar thermal rocket nozzle performance

    SciTech Connect

    Pearson, J.B.; Landrum, D.B.; Hawk, C.W.

    1996-08-01

    Continued exploration and exploitation of space will require the development of more efficient and economical systems for access to and transportation through space. Solar thermal propulsion has emerged as a potential candidate to fill this role. A solar thermal rocket using hydrogen (H{sub 2}) propellant has a theoretical I{sub sp} of 700--1,100 seconds based on typical temperatures in the absorber/heat exchanger of 3,500--6,500 {degree}R (1,944--3,611 K). This note describes the significant results of a fundamental study of the potential causes of I{sub sp} reduction in low thrust, solar thermal rocket nozzles. The main emphasis is an analytical/numerical study of how nozzle geometry impacts the viscous and thermochemical losses. The results are applicable to optimizing nozzle geometry for maximum performance.

  5. Development of a Green Roof Environmental Monitoring and Meteorological Network in New York City

    PubMed Central

    Gaffin, Stuart R.; Khanbilvardi, Reza; Rosenzweig, Cynthia

    2009-01-01

    Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations. PMID:22574037

  6. Study on Thermal Performances of a Small Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Nagano, Hosei; Nagai, Hiroki; Fukuyoshi, Fuyuko; Ogawa, Hiroyuki

    This paper describes thermal performance of a small loop heat pipe device in an atmospheric condition. A comprehensive test program including start-up, power step up, power cycle and low power tests was performed. The effects of gravity on start-up and heat transport capability were also evaluated. An analytical model for the loop was developed to predict and evaluate the steady state operating performance. The test results demonstrated the robustness of the LHP. The analytical results showed good agreement with the test results except at the low power region. The feasibility of loop temperature control through compensation chamber temperature control was also experimentally demonstrated.

  7. Thermal performance of phase change wallboard for residential cooling application

    SciTech Connect

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two important advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.

  8. Thermal Performance Testing of Glass Microspheres under Cryogenic Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    A key element of space launch vehicles and systems is thermal insulation for cryogenic tanks and piping. Glass microspheres, or glass bubbles, represent an alternative insulation material for a number of applications. Composite materials and engineered thermal insulation systems are also being developed based on the use of glass bubbles as the main constituent material. Commonly used materials, such as spray-on foam insulation, or SOFI, for vehicle tanks and perlite powder for ground storage tanks, are targeted for replacement with the new-technology systems that use glass bubbles. Complete thermal characterization of the glass bubbles is the first step toward producing the engineering solutions required for the energy-efficient, low-maintenance cryogenic systems of the future. Thermal performance testing of the glass microsphere material was successfully completed at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The test measurements were made at the full temperature difference (typical boundary temperatures of 78 kelvin [K] and 293 K) and included the full cold-vacuum pressure range. The results are reported in apparent thermal conductivity (k-value) and mean heat flux.

  9. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m{sup 2} at an insulating vacuum of 10{sup {minus}6}torr.

  10. Thermal performance of various multilayer insulation systems below 80K

    SciTech Connect

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1992-04-01

    The SSC collider dipole cryostat consists of a vacuum shell operating at room temperature, two thermal shields operating near 80K and 20K respectively, and the superconducting magnet assembly operating near 4K. The cryostat design incorporates multilayer insulation (MLI) blankets to limit radiant heat transfer into the 80K and 20K thermal shields. Also, an MLI blanket is used to impede heat transfer through residual gas conduction into the 4K superconducting magnet assembly. A measurement facility at Fermilab has been used to experimentally optimize the thermal insulation system for the dipole cryostat. Previous thermal measurements have been used to define the 80K MLI system configuration and verify system performance. With the 80K MLI system defined, the current effort has focused on experimentally defining the optimum insulation scheme for the 20K thermal shield. The SSC design specification requires that radiant heat transfer be limited to 0.093 W/m[sup 2] at an insulating vacuum of 10[sup [minus]6]torr.

  11. Roofing Workbook and Tests: Entering the Roofing and Waterproofing Industry.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Vocational Education Services.

    This document is one of a series of nine individual units of instruction for use in roofing apprenticeship classes in California. The unit consists of a workbook and test, perforated for student use. Fourteen topics are covered in the workbook and corresponding multiple-choice tests. For each topic, objectives, information sheets, and study…

  12. Linking evapotranspiration to stormwater reduction and attenuation in green roofs in Calgary, Alberta

    NASA Astrophysics Data System (ADS)

    Breach, P. A.; Robinson, C. E.; Voogt, J. A.; Smart, C. C.; O'Carroll, D. M.

    2013-12-01

    Green roofs have been used for centuries to insulate buildings and beautify urban environments. European countries, especially Germany, have adopted green roofs use in modern buildings, helping raise awareness of their many potential benefits. Green roofs have been shown to: effectively reduce and filter stormwater thereby decreasing the burden on urban sewer systems; provide insulation and lower roof surface temperature leading to a decrease in building energy load and reduced sensible heat flux to the urban atmosphere; and to extend the life of a roof by decreasing the temperature fluctuations which cause roof damage. Given that green buildings can mitigate against the negative impacts of storm water runoff and reduce the heating and cooling demands, use of green roofs in Canada might prove extremely beneficial due to our intense climate. However, the implementation of green roofs in North American urban environments remains underused, in part due to a lack of climate appropriate green roof design guidelines that are supported by scientific understanding of their performance in North American climates. The capacity of a green roof installation to moderate runoff depends on the storage capacity of the rooting medium at the start of the rainfall event which in turn is constrained by roof loading. The influence of medium depth is investigated through comparison to 15 cm and 10cm deep planting modules. Storage capacity has a finite limit, making rapid drainage and evapotranspiration loss essential to restore the retardation of a subsequent storm. Sustaining live plant cover requires avoidance of saturated conditions and retention of minimum soil moisture levels. These limits constrain the design options with distinctive climatic stresses. Here the performance of experimental green roof modules is investigated under particularly high climatic stressing at Calgary Alberta Canada. 10 cm modules show rapid drying to unacceptably low residual moisture content, whereas 15cm depth appears to dry to higher moisture contents that support plant survival and growth.

  13. Learning-based roof style classification in 2D satellite images

    NASA Astrophysics Data System (ADS)

    Zang, Andi; Zhang, Xi; Chen, Xin; Agam, Gady

    2015-05-01

    Accurately recognizing building roof style leads to a much more realistic 3D building modeling and rendering. In this paper, we propose a novel system for image based roof style classification using machine learning technique. Our system is capable of accurately recognizing four individual roof styles and a complex roof which is composed of multiple parts. We make several novel contributions in this paper. First, we propose an algorithm that segments a complex roof to parts which enable our system to recognize the entire roof based on recognition of each part. Second, to better characterize a roof image, we design a new feature extracted from a roof edge image. We demonstrate that this feature has much better performance compared to recognition results generated by Histogram of Oriented Gradient (HOG), Scale-invariant Feature Transform (SIFT) and Local Binary Patterns (LBP). Finally, to generate a classifier, we propose a learning scheme that trains the classifier using both synthetic and real roof images. Experiment results show that our classifier performs well on several test collections.

  14. The performance check between whole building thermal performance criteria and exterior wall measured clear wall R-value, thermal bridging, thermal mass, and airtightness

    SciTech Connect

    Kosny, J.; Christian, J.E.; Desjarlais, A.O.; Kossecka, E.; Berrenberg, L.

    1998-06-01

    At the last IEA Annex 32 meeting it was proposed that the annex develop the links between level 1 (the whole building performance) and level 2 (the envelope system). This paper provides a case study of just that type of connection. An exterior wall mockup is hot box tested and modeled in the laboratory. Measurements of the steady state and dynamic behavior of this mockup are used as the basis to define the thermal bridging, thermal mass benefit and air tightness of the whole wall system. These level two performance characteristics are related to the whole building performance. They can be analyzed by a finite difference modeling of the wall assembly. An equivalent wall theory is used to convert three dimensional heat flow to one dimensional terms that capture thermal mass effects, which in turn are used in a common whole building simulation model. This paper illustrates a performance check between the thermal performance of a Massive ICF (Insulating Concrete Form) wall system mocked up (level 2) and Whole Building Performance criteria (level 1) such as total space heating and cooling loads (thermal comfort).

  15. IDENTIFYING ROOF FALL PREDICTORS USING FUZZY CLASSIFICATION

    SciTech Connect

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-22

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  16. Identifying Roof Fall Predictors Using Fuzzy Classification

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  17. Thermal and aerothermal performance of a titanium multiwall thermal protection system

    NASA Technical Reports Server (NTRS)

    Avery, D. E.; Shideler, J. L.; Stuckey, R. N.

    1981-01-01

    A metallic thermal protection system (TPS) concept the multiwall designed for temperature and pressure at Shuttle body point 3140 where the maximum surface temperature is approximately 811 K was tested to evaluate thermal performance and structural integrity. A two tile model of titanium multiwall and a model consisting of a low temperature reusable surface insulation (LRSI) tiles were exposed to 25 simulated thermal and pressure Shuttle entry missions. The two systems performed the same, and neither system deteriorated during the tests. It is indicated that redesign of the multiwall tiles reduces tile thickness and/or weight. A nine tile model of titanium multiwal was tested for radiant heating and aerothermodynamics. Minor design changes that improve structural integrity without having a significant impact on the thermal protection ability of the titanium multiwall TPS are identified. The capability of a titanium multiwall thermal protection system to protect an aluminum surface during a Shuttle type entry trajectory at locations on the vehicle where the maximum surface temperature is below 811 K is demonstrated.

  18. MAPTIP experiment, marine aerosol properties and thermal imager performance

    NASA Astrophysics Data System (ADS)

    van Eijk, Alexander M. J.; Jensen, Douglas R.; de Leeuw, Gerrit

    1994-06-01

    During the fall of 1993, a field experimental study on marine aerosol properties and thermal imager performance was conducted in the Dutch coastal waters. Aerosol and meteorological instruments, as well as thermal imagers and calibrated targets, were used at several platforms and locations: the Dutch Meetpost Noordwijk (a tower 9 km from the Dutch coast), a beach station in Katwijk, the oceanographic research vessel Hr. Ms. Tydeman, a Lynx helicopter, a P3 Orion, the NCCOSC RDT&E Div airborne platform, and buoy systems. This network of instrumentation was used for obtaining a comprehensive data base of aerosol size distribution profiles and relevant meteorological variables throughout the marine atmospheric boundary layer. Thermal imagery has been included to provide ground truth for assessing the low- level propagation effects near the ocean surface. Measurements have been made of atmospheric turbulence and refractivity effects at wavelengths in the IR and visible, to assess the marine boundary layer effects on the degradation of thermal images. Calibrated targets at different altitudes were observed to the maximum observable range under a wide variety of conditions in both the 3 to 5 and 8 to 12 micrometers bands. These data will be used for the development and validation of IRST models and IR ship signature models with the view of determining the effects of marine-generated aerosols, turbulence and meteorological profiles on their performance.

  19. Thermal performance of a customized multilayer insulation (MLI)

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1976-01-01

    The thermal performance of a LH2 tank on a shroudless vehicle was investigated. The 1.52 m (60 in) tank was insulated with 2 MLI blankets consisting of 18 double aluminized Mylar radiation shields and 19 silk net spacers. The temperature of outer space was simulated by using a cryoshroud which was maintained at near liquid hydrogen temperature. The heating effects of a payload were simulated by utilizing a thermal payload simulator (TPS) viewing the tank. The test program consisted of three major test categories: (1) null testing, (2) thermal performance testing of the tank installed MLI system, and (3) thermal testing of a customized MLI configuration. TPS surface temperatures during the null test were maintained at near hydrogen temperature and during test categories 2 and 3 at 289 K (520R). The heat flow rate through the tank installed MLI at a tank/TPS spacing of 0.457 m was 1.204 watts with no MLI on the TPS and 0.059 watts through the customized MLI with three blankets on the TPS. Reducing the tank/TPS spacing from 0.457 m to 0.152 m the heat flow through the customized MLI increased by 10 percent.

  20. Effects of white roofs on urban temperature in a global climate model

    NASA Astrophysics Data System (ADS)

    Oleson, K. W.; Bonan, G. B.; Feddema, J.

    2010-02-01

    Increasing the albedo of urban surfaces has received attention as a strategy to mitigate urban heat islands. Here, the effects of globally installing white roofs are assessed using an urban canyon model coupled to a global climate model. Averaged over all urban areas, the annual mean heat island decreased by 33%. Urban daily maximum temperature decreased by 0.6C and daily minimum temperature by 0.3C. Spatial variability in the heat island response is caused by changes in absorbed solar radiation and specification of roof thermal admittance. At high latitudes in winter, the increase in roof albedo is less effective at reducing the heat island due to low incoming solar radiation, the high albedo of snow intercepted by roofs, and an increase in space heating that compensates for reduced solar heating. Global space heating increased more than air conditioning decreased, suggesting that end-use energy costs must be considered in evaluating the benefits of white roofs.

  1. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.43 Fixed roof with an... storage vessel regulated material emissions by using a fixed roof and an internal floating roof shall... floating roof shall be equipped with a closure device between the wall of the storage vessel and...

  2. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.43 Fixed roof with an... storage vessel regulated material emissions by using a fixed roof and an internal floating roof shall... floating roof shall be equipped with a closure device between the wall of the storage vessel and...

  3. Roofing: Workbook and Tests. Common Roofing and Waterproofing Materials and Equipment.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook on materials and equipment is one of a series of nine individual units of instruction for roofing apprenticeship classes in California. The workbook covers eight topics: production of bitumens and asphaltic roofing materials; built-up roofing materials and adhesives; asphaltic products and rigid roofing materials; elastomeric and…

  4. Common Roofing and Waterproofing Materials and Equipment. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This publication on common roofing and waterproofing materials and equipment is one of a series of units of instruction for roofing apprenticeship classes. The workbook portion is divided into eight topics: production of bitumens and asphalt roofing materials, built-up materials and adhesives, asphalt products and rigid roofing materials,…

  5. Cold-Applied Roofing Systems and Waterproofing and Dampproofing. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    Brown, Arthur

    This workbook for students in California roofing apprenticeship programs provides information for classroom work in the area of cold-applied roofing systems and waterproofing and dampproofing. Eight topics are covered: introduction to cold-applied roofing systems and waterproofing and dampproofing, tools and equipment used in cold-applied roofing,…

  6. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof bolting. 75.204 Section 75.204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.204 Roof bolting. (a) For roof bolts and accessories addressed in ASTM F432-95,...

  7. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Roof bolting. 75.204 Section 75.204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.204 Roof bolting. (a) For roof bolts and accessories addressed in ASTM F432-95,...

  8. Fluid and thermal performance analysis of PMSM used for driving

    NASA Astrophysics Data System (ADS)

    Ding, Shuye; Cui, Guanghui; Li, Zhongyu; Guan, Tianyu

    2016-03-01

    The permanent magnet synchronous motor (PMSM) is widely used in ships under frequency conversion control system. The fluid flow performance and temperature distribution of the PMSM are difficult to clarify due to its complex structure and variable frequency control condition. Therefore, in order to investigate the fluid and thermal characteristics of the PMSM, a 50 kW PMSM was taken as an example in this study, and a 3-D coupling analysis model of fluid and thermal was established. The fluid and temperature fields were calculated by using finite volume method. The cooling medium's properties, such a velocity, streamlines, and temperature, were then analyzed. The correctness of the proposed model, and the rationality of the solution method, were verified by a temperature test of the PMSM. In this study, the changing rheology on the performance of the cooling medium and the working temperature of the PMSM were revealed, which could be helpful for designing the PMSM.

  9. Thermal performance evaluation of the infrared telescope dewar subsystem

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1986-01-01

    Thermal performance evaluations (TPE) were conducted with the superfluid helium dewar of the Infrared Telescope (IRT) experiment from November 1981 to August 1982. Test included measuring key operating parameters, simulating operations with an attached instrument cryostat and validating servicing, operating and safety procedures. Test activities and results are summarized. All objectives are satisfied except for those involving transfer of low pressure liquid helium (LHe) from a supply dewar into the dewar subsystem.

  10. 7 CFR 2902.11 - Roof coatings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CFR 247.12. ... 7 Agriculture 15 2010-01-01 2010-01-01 false Roof coatings. 2902.11 Section 2902.11 Agriculture... Roof coatings. (a) Definition. Coatings formulated for use in commercial roof deck systems to provide...

  11. GREEN ROOFS — A GROWING TREND

    EPA Science Inventory

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  12. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Guideline, 40 CFR 247.12. ... 7 Agriculture 15 2012-01-01 2012-01-01 false Roof coatings. 3201.11 Section 3201.11 Agriculture... Items § 3201.11 Roof coatings. (a) Definition. Coatings formulated for use in commercial roof...

  13. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Guideline, 40 CFR 247.12. ... 7 Agriculture 15 2014-01-01 2014-01-01 false Roof coatings. 3201.11 Section 3201.11 Agriculture... Items § 3201.11 Roof coatings. (a) Definition. Coatings formulated for use in commercial roof...

  14. 7 CFR 3201.11 - Roof coatings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Guideline, 40 CFR 247.12. ... 7 Agriculture 15 2013-01-01 2013-01-01 false Roof coatings. 3201.11 Section 3201.11 Agriculture... Items § 3201.11 Roof coatings. (a) Definition. Coatings formulated for use in commercial roof...

  15. 7 CFR 2902.11 - Roof coatings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CFR 247.12. ... 7 Agriculture 15 2011-01-01 2011-01-01 false Roof coatings. 2902.11 Section 2902.11 Agriculture... Roof coatings. (a) Definition. Coatings formulated for use in commercial roof deck systems to provide...

  16. Effects of building roof greening on air quality in street canyons

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  17. An Integrative Analysis of an Extensive Green Roof System: A Case Study of the Schleman Green Roof

    NASA Astrophysics Data System (ADS)

    Hoover, F.; Bowling, L. C.

    2013-12-01

    In urban environments where populations continue to rise, the need for affective stormwater management and runoff control methods is ever prevalent. Increased population growth and city expansion means greater impervious surfaces and higher rates of stormwater runoff. In well-established cities, this proves particularly difficult due to a constraining built environment and limited pervious spaces, even in cities as small as 40,000 residents. Work to reduce runoff in combined sewer systems (CSS) and municipal separated storm sewer systems (MS4) by use of best-management practices is one route currently under investigation. The Purdue University campus is making efforts to reduce their impact on the West Lafayette CSS and MS4. Green roofs are one management practice being used for runoff mitigation. Specifically, Schleman Hall, an administrative student affairs building, has a small green roof located on the second floor installed in 2008. In cooperation with Purdue Physical Facilities, monitoring and analysis for the Schleman extensive green roof at Purdue University was performed from June 2012 to December 2012. The objective was to determine the stormwater retention, output water quality and net present value for the 165 m2 roof. The results from the water balance analysis revealed retention rates on average of 58% of precipitation per rain event, where retention included soil moisture, evaporation and detention/depression storage. The water quality metrics tested were Nitrate-Nitrite (NO2-NO3), Orthophosphate (PO4), Ammonia-Ammonium ion (NH3-NH4), Sulfate (SO4), total suspended solids (TSS) and pH. The pollutant concentration and load results varied, but the pH levels from precipitation increased in all samples after passing through the substrate. SO4 and PO4 results yielded higher concentrations and loads in the green roof output than the control output and precipitation, while NO2-NO3 and NH3-NH4 yielded concentrations and loads that were reduced by the green roof when compared to the control output and precipitation. The green roof caused a decrease in the energy load (KJ/hr) needed to maintain a near constant temperature in the conference room situated below the green roof. These results combined with potential carbon pricing, stormwater fees and an installment grant resulted in a net present value of $32,350 for the Schleman Hall roof. The analysis demonstrates potential benefits, but highlights the need for further research that involves a more detailed simulation and the valuing of ecosystem services offered by the green roof.

  18. Developing resilient green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance. PMID:24880547

  19. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Huang, Yu; Levinson, Ronnen

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  20. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    PubMed

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously. PMID:26961477

  1. Overview of Roof Pond Systems

    NASA Astrophysics Data System (ADS)

    Marlatt, W. P.; Murray, K. A.; Squier, S. E.

    1983-11-01

    An overview of a technical report on roof pond systems is presented. The document discusses how the information for the report was gathered, the contents of the report, and the current status of completion. A summary of the impact of the report on the solar community and a general conclusions are included as well as information on the availability of the report.

  2. Life sciences passive GN2 freezer thermal performance test

    NASA Technical Reports Server (NTRS)

    Belshaw, G. W.

    1981-01-01

    Thermal performance tests that were conducted on the life sciences passive GN2 freezer project are summarized as well as the improvements to the freezers to improve the thermal performance of the containers. Procedures were developed, based upon these tests, to initially charge the freezers with LN2 and verify that the freezer performance is adequate for the mission duration. Improvements were made to the corvac sample tube to limit the amount of breakage due to thermal expansion of the liquid during freezing. A method of verifying the freezer vacuum insulative integrity was defined as well as a procedure for refurbishment of the internal vacuum level. Freezer modifications were made to ease the reevacuation of the containers. The orientation of the freezer in a 1-G environment, after being charged, had to remain in a vertical position. The LN2 boiloff rate increased significantly in a horizontal position. This resulted in a stowage definition in the spacecraft prior to launch. Functional testing, using the SL-1 mission timeline showed that the freezer will maintain samples in the frozen state for the duration of the mission.

  3. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  4. Building America Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate, Boilingbrook, Illinois

    SciTech Connect

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a 'control' vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a 'diffusion vent' detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  5. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    A parametric study has been conducted by the NASA-Lewis Rocket Engine Design Expert System for the convergent-divergent nozzle of the Nuclear Thermal Rocket system, which uses a nuclear reactor to heat hydrogen to high temperature and then expands it through the nozzle. It is established by the study that finite-rate chemical reactions lower performance levels from theoretical levels. Major parametric roles are played by chamber temperature and chamber pressure. A maximum performance of 930 sec is projected at 2700 K, and of 1030 at 3100 K.

  6. Military applications for high-performance thermal imaging

    NASA Astrophysics Data System (ADS)

    McEwan, Ken

    2015-01-01

    The recent developments in high-performance infrared sensor technology are opening up new opportunities for exploitation in the defence and security domains. In this paper, the focal plane array developments in the UK on low noise techniques, avalanche photodiodes, high operating temperature devices and large format cameras are reviewed and impact upon military capability is discussed. These technological developments are focused towards enduring challenges including the stand-off identification of hazardous materials and long range target recognition and are enabling exploitation of high performance thermal imaging onto a wide range of smaller platforms.

  7. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  8. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are the transporter shelters and the vehicle maintenance facilities as well as the ALMA gate house. The construction started in August 2006 and will be completed in December 2007. ESO PR Photo 13b/07 ESO PR Photo 13b/07 The Ceremony The ceremony took place in the presence of representatives of the regional authorities, members of the Chilean Parliament, and representatives of the local community, including the mayor of San Pedro, Ms. Sandra Berna, who joined more than 40 representatives of ESO, NRAO and NAOJ - the organisations that are, together, building ALMA. "This is certainly a big step in the realisation of the ALMA Project. The completion of this facility will be essential for assembly, testing and adjustment as well as operation and maintenance of all ALMA antennas from Europe, North America and from Japan," said Ryusuke Ogasawara, the representative of NAOJ in Chile. "This is a tremendous achievement and represents a major milestone for the ALMA project," said Adrian Russell, North American Project Manager for ALMA. ESO PR Photo 13c/07 ESO PR Photo 13c/07 The OSF (Artist's View) The first ALMA antennas, the prototypes of which successfully achieved their first combined astronomical observation last week, are expected to arrive at the ALMA site in a few months. These huge antennas will travel in pieces from Europe, USA and Japan and will be assembled next to the OSF building. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership among Europe, Japan and North America, in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organisation for Astronomical Research in the Southern Hemisphere, in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO, on behalf of Japan by the National Astronomical Observatory of Japan (NAOJ) and on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI)

  9. The effect of thermal loading on laboratory fume hood performance.

    PubMed

    Johnston, J D; Chessin, S J; Chesnovar, B W; Lillquist, D R

    2000-11-01

    A modified version of the ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to evaluate the relationship between thermal loading in a laboratory fume hood and subsequent tracer gas leakage. Three types of laboratory burners were used, alone and in combination, to thermally challenge the hood. Heat output from burners was measured in BTU/hr, which was based on the fuel heat capacity and flow rate. Hood leakage was measured between 2824 and 69,342 BTU/hr. Sulfur hexafluoride (SF6) was released at 23.5 LPM for each level of thermal loading. Duct temperature was also measured during the heating process. Results indicate a linear relationship for both BTU/hr vs. hood leakage and duct temperature vs. hood leakage. Under these test conditions, each increase of 10,000 BTU/hr resulted in an additional 4 ppm SF6 in the manikin's breathing zone (r2 = 0.68). An additional 3.1 ppm SF6 was measured for every 25 degrees F increase in duct temperature (r2 = 0.60). Both BTU/hr and duct temperature models showed p < 0.001. For these tests, BTU/hr was a better predictor of hood leakage than duct temperature. The results of this study indicate that heat output may compromise fume hood performance. This finding is consistent with those of previous studies. PMID:11062932

  10. Performance of a parallel thermal-hydraulics code TEMPEST

    SciTech Connect

    Fann, G.I.; Trent, D.S.

    1996-11-01

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scaling performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.

  11. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1978-01-01

    The bulk of the testing was the characterization of twenty-nine modules according to their nominal operating cell temperature (NOCT) and the effect on NOCT of changes in module design, various residential roof mounting configurations, and dirt accumulation. Other tests, often performed parallel with the NOCT measurements, evaluated the improvement in electrical performance by cooling the modules with water and by channeling the waste heat into a phase change material (wax). Electrical degradation resulting from the natural marriage of photovoltaic and solar water heating modules was also demonstrated. Cost effectiveness of each of these techniques are evaluated in light of the LSA cost goal of $0.50 per watt.

  12. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  13. Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.

    2009-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.

  14. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  15. Beyond Thermal Performance Curves: Modeling Time-Dependent Effects of Thermal Stress on Ectotherm Growth Rates.

    PubMed

    Kingsolver, Joel G; Woods, H Arthur

    2016-03-01

    Thermal performance curves have been widely used to model the ecological responses of ectotherms to variable thermal environments and climate change. Such models ignore the effects of time dependence-the temporal pattern and duration of temperature exposure-on performance. We developed and solved a simple mathematical model for growth rate of ectotherms, combining thermal performance curves for ingestion rate with the temporal dynamics of gene expression and protein production in response to high temperatures to predict temporal patterns of growth rate in constant and diurnally fluctuating temperatures. We used the model to explore the effects of heat shock proteins on larval growth rates of Manduca sexta. The model correctly captures two empirical patterns for larval growth rate: first, maximal growth rate and optimal temperature decline with increasing duration of temperature exposure; second, mean growth rates decline with time in diurnally fluctuating temperatures at higher mean temperatures. These qualitative results apply broadly to cases where proteins or other molecules produced in response to high temperatures reduce growth rates. We discuss some of the critical assumptions and predictions of the model and suggest potential extensions and alternatives. Incorporating time-dependent effects will be essential for making more realistic predictions about the physiological and ecological consequences of temperature fluctuations and climate change. PMID:26913942

  16. Life-cycle cost-benefit analysis of extensive vegetated roof systems.

    PubMed

    Carter, Timothy; Keeler, Andrew

    2008-05-01

    The built environment has been a significant cause of environmental degradation in the previously undeveloped landscape. As public and private interest in restoring the environmental integrity of urban areas continues to increase, new construction practices are being developed that explicitly value beneficial environmental characteristics. The use of vegetation on a rooftop--commonly called a green roof--as an alternative to traditional roofing materials is an increasingly utilized example of such practices. The vegetation and growing media perform a number of functions that improve environmental performance, including: absorption of rainfall, reduction of roof temperatures, improvement in ambient air quality, and provision of urban habitat. A better accounting of the green roof's total costs and benefits to society and to the private sector will aid in the design of policy instruments and educational materials that affect individual decisions about green roof construction. This study uses data collected from an experimental green roof plot to develop a benefit cost analysis (BCA) for the life cycle of extensive (thin layer) green roof systems in an urban watershed. The results from this analysis are compared with a traditional roofing scenario. The net present value (NPV) of this type of green roof currently ranges from 10% to 14% more expensive than its conventional counterpart. A reduction of 20% in green roof construction cost would make the social NPV of the practice less than traditional roof NPV. Considering the positive social benefits and relatively novel nature of the practice, incentives encouraging the use of this practice in highly urbanized watersheds are strongly recommended. PMID:17368704

  17. Predictive Service Life Tests for Roofing Membranes

    NASA Astrophysics Data System (ADS)

    Bailey, David M.; Cash, Carl G.; Davies, Arthur G.

    2002-09-01

    The average service life of roofing membranes used in low-slope applications on U.S. Army buildings is estimated to be considerably shorter than the industry-presumed 20-year design life, even when installers carefully adhere to the latest guide specifications. This problem is due in large part to market-driven product development cycles, which do not include time for long-term field testing. To reduce delivery costs, contractors may provide untested, interior membranes in place of ones proven satisfactory in long-term service. Federal procurement regulations require that roofing systems and components be selected according to desired properties and generic type, not brand name. The problem is that a material certified to have satisfactory properties at installation time will not necessarily retain those properties in service. The overall objective of this research is to develop a testing program that can be executed in a matter of weeks to adequately predict a membrane's long-term performance in service. This report details accelerated aging tests of 12 popular membrane materials in the laboratory, and describes outdoor experiment stations set up for long-term exposure tests of those same membranes. The laboratory results will later be correlated with the outdoor test results to develop performance models and predictive service life tests.

  18. Estimation of Solar Radiation on Building Roofs in Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Remondino, F.; Stevanato, G.; De Filippi, R.; Furlanello, C.

    2011-04-01

    The aim of this study is estimating solar radiation on building roofs in complex mountain landscape areas. A multi-scale solar radiation estimation methodology is proposed that combines 3D data ranging from regional scale to the architectural one. Both the terrain and the nearby building shadowing effects are considered. The approach is modular and several alternative roof models, obtained by surveying and modelling techniques at varying level of detail, can be embedded in a DTM, e.g. that of an Alpine valley surrounded by mountains. The solar radiation maps obtained from raster models at different resolutions are compared and evaluated in order to obtain information regarding the benefits and disadvantages tied to each roof modelling approach. The solar radiation estimation is performed within the open-source GRASS GIS environment using r.sun and its ancillary modules.

  19. Moisture design to improve durability of low-slope roofing systems

    SciTech Connect

    Desjarlais, A.; Byars, N.

    1996-12-31

    The roofing industry has traditionally held that moisture control in low-slope roofing comprises two independent elements: (1) provide a waterproof exterior covering (or membrane) to protect the low-slope roof from external sources of moisture and (2) perform a condensation calculation to determine if a vapor retarder is required to protect a roof system from internal moisture sources. The first criterion is assumed to be satisfied if a membrane system is specified; in reality, all membrane systems eventually fail, and existing moisture control strategies offer no mechanism for analyzing the inevitable failure. The means of assessing the second criterion, the need for a vapor retarder, has evolved in recent years. The criteria have become more liberal with time because it has been observed that roofing systems installed in a geographic area in which the old criteria required a vapor retarder, have performed well without one.

  20. Storm water infiltration in a monitored green roof for hydrologic restoration.

    PubMed

    Palla, A; Sansalone, J J; Gnecco, I; Lanza, L G

    2011-01-01

    The objectives of this study are to provide detailed information about green roof performance in the Mediterranean climate (retained volume, peak flow reduction, runoff delay) and to identify a suitable modelling approach for describing the associated hydrologic response. Data collected during a 13-month monitoring campaign and a seasonal monitoring campaign (September-December 2008) at the green roof experimental site of the University of Genova (Italy) are presented together with results obtained in quantifying the green roof hydrologic performance. In order to examine the green roof hydrologic response, the SWMS_2D model, that solves the Richards' equation for two-dimensional saturated-unsaturated water flow, has been implemented. Modelling results confirm the suitability of the SWMS_2D model to properly describe the hydrologic response of the green roofs. The model adequately reproduces the hydrographs; furthermore, the predicted soil water content profile generally matches the observed values along a vertical profile where measurements are available. PMID:22097059

  1. Performance of silvered Teflon thermal control blankets on spacecraft

    NASA Astrophysics Data System (ADS)

    Pippin, G.; Stuckey, W. K.; Hemminger, C. S.

    1993-03-01

    Silver-backed fluorinated ethylene propylene Teflon (Ag/FEP) thin film material was used for thermal control in many locations on the Long Duration Exposure Facility (LDEF). The Ag/FEP registered the effects of atomic oxygen, solar ultraviolet radiation, meteoroid and debris impacts, thermal cycling, and contamination. This report summarizes the post-flight condition of the Ag/FEP, compares the results with performance on other spacecraft, and presents lifetime estimates for use under a variety of environmental exposures. Measurements of optical property and mechanical property and surface chemistry changes with exposure conditions, and their significance for design considerations and expected performance lifetimes, are reported for material flown on LDEF. The LDEF based data provides detailed information performance of Ag/FEP under relatively long term exposure in low Earth orbit. Comparison of this data with results from short term shuttle flights, Solar Max, SCATHA, other satellites, and ground based measurements is made to present a comprehensive summary of the use of this material for spacecraft applications.

  2. Condensing economizers: Thermal performance and particulate removal efficiencies

    SciTech Connect

    Butcher, T.A.; Litzke, Wai Lin; Park, N.

    1992-02-01

    Condensing economizers can be used to increase the thermal efficiency of boilers and furnaces. This project has involved a study of these specifically for application to coal-water mixture fuels although the results can be extended to other fuels. experimental studies to evaluate thermal performance and removal of particulates across indirect contract economizers have been performed. The test arrangement incorporates oil firing with the injection of flyash into the flue gas to simulate coal combustion products. Water sprays into the combustion products are used to achieve variable flue gas moisture content and a variable amount of condensation in the economizers. The economizers are tubular with flue gas on the outside of the tubes. Tube surfaces are plastic coated to prevent corrosion. The gas temperature and condensation profiles through the economizers have been predicted and overall predicted performance has been compared with test results. Mechanisms for particle removal are discussed and predicted removal efficiencies as a functions of particle diameter are presented. It is is shown that inertial impaction is the dominant mechanism and particle removal efficiencies up to 89% have been realized.

  3. Optical and thermal performance of a remote phosphor plate

    NASA Astrophysics Data System (ADS)

    Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Perera, Indika U.

    2014-09-01

    The objective of this study was to understand how optical and thermal performances are impacted in a remote phosphor LED (light-emitting diode) system when the phosphor plate thickness and phosphor concentration change with a fixed amount of a commonly used YAG:Ce phosphor. In the first part of this two-part study, an optical raytracing analysis was carried out to quantify the optical power and the color properties as a function of remote phosphor plate thickness, and a laboratory experiment was conducted to verify the results obtained from the raytracing analysis and also to examine the phosphor temperature variation due to thickness change.

  4. Thermal performance and design of a solid particle cavity receiver

    SciTech Connect

    LaJeunesse, C.A.

    1985-04-01

    A model for energy transport in a solid particle cavity receiver is developed and applied to the design and analysis of a receiver for the Central Receiver Test Facility (CRTF), Albuquerque, New Mexico. The model gives thermal performance results - including particle temperatures, cavity efficiencies, and wall temperatures - which directly affect the economic and technical feasibility of a solid particle receiver. In addition, design criteria relevant to the configuration of a solid particle cavity receiver are developed. Results for CRTF indicate that at design conditions particle temperatures will exceed 1200/sup 0/K with cavity efficiencies on the order of 75%.

  5. Thermal performance of advanced heat exchangers for ammonia refrigeration systems

    SciTech Connect

    Panchal, C.B.; Rabas, T.J.

    1993-10-01

    Current practice in the ammonia industry is to use plain tubes. This article demonstrates that the coefficient of performance (COP) can be increased by about 11% using tubes with ammonia-side enhancement and by about 26% using tubes with ammonia-side and water-side enhancement. Further improvements with respect to energy and cost are possible with the compact heat exchanger types -- plate-frame and plate-fin -- because they can be optimized for the system conditions for each application. These findings are based on experimentally determined overall heat transfer coefficients that were obtained for candidate heat exchangers for the Ocean Thermal Energy Conversion (OTEC) program.

  6. Thermal performance evaluation of the Semco (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.

  7. Thermal performance of honeywell double covered liquid solar collector

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test procedures and results obtained during an evaluation test program to determine the outdoor performance characteristics of the Honeywell liquid solar collector are presented. The program was based on the thermal evaluation of a Honeywell double covered liquid solar collection. Initial plans included the simultaneous testing of a single covered Honeywell collector. During the initial testing, the single covered collector failed due to leakage; thus, testing continued on the double covered collector only. To better define the operating characteristics of the collector, several additional data points were obtained beyond those requested.

  8. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  9. Integrated heat pipe-thermal storage system performance evaluation

    SciTech Connect

    Keddy, E.; Sena, J.T.; Merrigan, M.

    1987-01-01

    Performance verification tests of an integrated heat pipe-thermal energy storage system have been conducted. This system is being developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System (ORC-SDPS) receiver for future space stations. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage (TES) canisters within the vapor space along with an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the surface of the heat pipe elements of the ORC-SDPS receiver and is internally transferred by the potassium vapor for use and storage. Part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was fabricated that employs axial arteries and a distribution wick connecting the wicked TES units and the heater to the solar insolation surface of the heat pipe. Tests were conducted to verify the heat pipe operation and to evaluate the heat pipe/TES units/heater tube operation by interfacing the heater unit to a heat exchanger.

  10. Evaluating convex roof entanglement measures.

    PubMed

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples. PMID:25955038

  11. A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches.

    PubMed

    Cho, J H; Richards, C D; Richards, R F

    2008-03-01

    A facility to characterize microelectromechanical system (MEMS) thermal switches by measuring two pertinent figures of merit is described. The two figures of merit measured are the ratio of thermal resistance of the switch in the off and on states, Roff/Ron, and the time required to switch from the off to the on state, tauswitch. The facility consists of two pieces of equipment. A guard-heated calorimeter is used to measure heat transfer across the thermal switch under steady-state conditions. Measuring heat transfer across a thermal switch in both the off and on states then gives the thermal resistance ratio Roff/Ron. A thin-film radial heat-flux sensor is used to measure heat transfer across the thermal switch under dynamic conditions. Measuring heat transfer across a thermal switch as the switch changes from the off to the on state gives the thermal switching time tauswitch. The test facilities enable the control of the applied force on the thermal switch when the thermal switch is on, the thickness of the gas gap when the thermal switch is off, and the gas species and pressure in the thermal switch gas gap. The thermal performance of two MEMS thermal switches employing two different thermal contact materials, a polished silicon surface and an array of liquid-metal microdroplets, is characterized and compared. PMID:18377038

  12. A facility for characterizing the steady-state and dynamic thermal performance of microelectromechanical system thermal switches

    NASA Astrophysics Data System (ADS)

    Cho, J. H.; Richards, C. D.; Richards, R. F.

    2008-03-01

    A facility to characterize microelectromechanical system (MEMS) thermal switches by measuring two pertinent figures of merit is described. The two figures of merit measured are the ratio of thermal resistance of the switch in the off and on states, Roff/Ron, and the time required to switch from the off to the on state, τswitch. The facility consists of two pieces of equipment. A guard-heated calorimeter is used to measure heat transfer across the thermal switch under steady-state conditions. Measuring heat transfer across a thermal switch in both the off and on states then gives the thermal resistance ratio Roff/Ron. A thin-film radial heat-flux sensor is used to measure heat transfer across the thermal switch under dynamic conditions. Measuring heat transfer across a thermal switch as the switch changes from the off to the on state gives the thermal switching time τswitch. The test facilities enable the control of the applied force on the thermal switch when the thermal switch is on, the thickness of the gas gap when the thermal switch is off, and the gas species and pressure in the thermal switch gas gap. The thermal performance of two MEMS thermal switches employing two different thermal contact materials, a polished silicon surface and an array of liquid-metal microdroplets, is characterized and compared.

  13. Million Solar Roofs Flyer (Revision)

    SciTech Connect

    Not Available

    2000-11-01

    The Million Solar Roofs Initiative, announced in June 1997, assists businesses and communities in installing solar energy systems on one million buildings across the United States by 2010. The US Department of Energy leads this trailblazing initiative by partnering with the building industry, local governments, state agencies, the solar industry, electric service providers, and non-governmental organizations to remove barriers and strengthen the demand for solar technologies.

  14. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  15. Green Roof Research through EPA's Regional Applied Research Effort - slides

    EPA Science Inventory

    The U.S. Environmental Protection Agencys (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPAs Office of Research and Development (ORD). Over the last decade, several green roof projects...

  16. Green Roof Research through EPA's Regional Applied Research Effort - slides

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roof projects...

  17. EVALUATION OF VOC EMISSIONS FROM HEATED ROOFING ASPHALT

    EPA Science Inventory

    The report gives results of a short-term in-house project to characterize emissions from a simulated asphalt roofing kettle, performed at EPA/AEERL. ot asphalt surfacing and resurfacing has been identified as a possible significant source of volatile organic compound (VOC) emissi...

  18. Miniaturized high-performance starring thermal imaging system

    NASA Astrophysics Data System (ADS)

    Cabanski, Wolfgang A.; Breiter, Rainer; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Ennenga, L.; Lipinski, Ulrich M.; Wehrhahn, T.

    2000-07-01

    A high resolution thermal imaging system was developed based on a 384 X 288 mercury cadmium telluride (MCT) mid wave (MWIR) infrared (IR) detection module with a 2 X 2 microscan for improved geometrical resolution. Primary design goal was a long identification range of 3 km and high system performance for adverse weather conditions achieved by a system with small entrance pupil and minimized dimensions to fit for integration in existing apertures of armored vehicles, reconnaissance systems and stabilized platforms. A staring FPA module with its potential for long integration times together with a microscan for improved geometrical resolution provides the answers best fit to these requirements. A robust microscanner was developed to fit for military requirements and integrated with AIM's 384 X 288 MCT MWIR module and data processing. The modules allow for up to 2 ms integration time with 25 Hz frame rate and output a 768 X 576 high resolution CCIR standard image. The video image processing (VIP) provides the calculation power for scene based self learning nonuniformity correction (NUC) algorithms to save calibration sources. This NUC algorithm allows take into account non linear effects for unsurpassed performance in highly dynamic scenes. The detection module and VIP are designed to interface with STN's mature system electronics, used e.g. in hundreds of OPHELIOS thermal camera sets fielded. The system electronics provides a lot of different interface features like double serial control bus (CANBUS) interface, analog and digital outputs as well as different video outputs. The integrated graphic generation part allows to put advanced graphic overlays to the thermal image and also to external video signals via the video input feature. This electronics provides the power supply for the whole thermal imaging system as well as different processor controlled algorithms for field of view or zoom drives, focus drives, athermalization and temperature control of the FLIR. A new zoom lens F/2.0 allows to select field of views from 2 degree to 15 degrees horizontal. This covers a wide area of military and paramilitary applications. The whole camera is miniaturized to fit into existing gunner and commander sights for main battle tanks as well as for infantry fighting vehicles. The overall design is compatible in optical, electrical and mechanical direction with the fielded OPHELIOS cameras and so an easy upgrade for existing fire control, reconnaissance and platform systems. The overall design is made under consideration of mil standard environments and is able to withstand vehicle, airborne and shipborne stress. The presentation gives an overview of the different components of the new camera system. Theoretical range performance data are discussed together with measured NETD, MTF and MRTD data of the unit.

  19. Demonstration of energy savings of cool roofs

    SciTech Connect

    Konopacki, S.; Gartland, L.; Akbari, H.; Rainer, L.

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  20. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  1. A performance and reliability model for thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.

    1985-01-01

    A modeling technique for predicting the performance and reliability of TBC's is being developed at Solar Turbines Incorporated. The concept combines experimental coating property data with finite element analyses to predict the thermal and mechanical behavior of coating systems in service. A key feature of Solar's approach is the use of a four point flexure test to estimate coating strength distributions and to predict coating failure probability. This model was used to evaluate the effect of physical variations on coating performance in high heat flux rocket engine applications for NASA. Current work, promoted by Caterpillar Tractor Company for diesel engine applications, is being conducted to measure coating strength as a function of temperature, and future work will document strength degradation with time at temperature. Solar's interest lies in the application of TBCs to gas turbine engine components.

  2. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    SciTech Connect

    Madron, F.; Papuga, J.; Pliska, J.

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation are: - the calculation of performance indicators and output capacity for a desirable state of the plant equipment and mode of operation. Boundary conditions for the calculation are taken from the preceding data reconciliation procedure. Control room operators (in near-real time) and performance engineers then can compare an actual and ideal state of the performance indicators. - 'what-if' analysis and efficiency optimization based on varying user selected parameters of the plant components and flow-sheet structure changes. The system is integrated into an overall nuclear power plant process information system and data warehouse. The solution is based on the Industrial SQL server database and the InTouch human machine interface by Invensys' Wonderware. The system nowadays works with hourly averages of process data and monitors secondary side of the Dukovany units No. 1 and 3 from steam generators to alternators. A detailed description of the system and some obtained results are presented. (authors)

  3. Performance contracting for parabolic trough solar thermal systems

    SciTech Connect

    Brown, H.; Hewett, R.; Walker, A.; Gee, R.; May, K.

    1997-12-31

    Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

  4. Thermal Performance of a Cryogenic Fluid Management Cubesat Mission

    NASA Technical Reports Server (NTRS)

    Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.

    2013-01-01

    Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.

  5. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  6. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers

    SciTech Connect

    McClean, M.D.; Rinehart, R.D.; Sapkota, A.; Cavallari, J.M.; Herrick, R.F.

    2007-07-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs, putting down new roofs, and operating the kettle at ground level. During multiple consecutive work shifts, dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urine samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task and by the presence of an old coal tar pitch roof. For each of the three analytes, the adjusted mean dermal exposures associated with tear-off were approximately four times higher than exposures associated with operating the kettle. Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure, an 8-fold increase in pyrene exposure and a 35-fold increase in BAP exposure. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures.

  7. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, retrofitting work to build a dedicated roof bolter for this research has been started. A number of numerical methods have been developed to improve the quality of and to analyze the collected drilling parameters. Finite element modeling of roof bolting mechanism is continuing.

  8. High Performance Thermal Imaging Using Quantum Well Infrared Photodetector Arrays

    NASA Astrophysics Data System (ADS)

    Schneider, Harald

    2007-03-01

    Quantum well infrared photodetector (QWIP) technology has opened up new opportunities to realize focal plane arrays (FPA) for high-performance thermal imaging [1]. High thermal and spatial resolution, low 1/f noise, low fixed-pattern noise, and high pixel operability makes QWIP FPAs appropriate for many applications. Due to their narrow absorption bands with relative spectral widths δλ/λ of the order of 10%, QWIPs are particularly suitable for thermal imaging applications involving several atmospheric transmission bands or several colors within the same band. For dual-band/dual-color FPAs, QWIP technology has the unique property that the active region for the long-wavelength band is transparent for the short-wavelength band. In this talk, I will report on typical QWIP structures optimized for thermal imaging applications and on the performance of some state-of-the-art QWIP cameras which were jointly realized by the Fraunhofer-Institute for Applied Solid State Physics (Freiburg, Germany) and AIM Infrarot-Module GmbH (Heilbronn, Germany). Besides imagers for the 8 -- 12 μm long-wavelength infrared (LWIR) and 3 -- 5 μm mid-wavelength infrared (MWIR) regimes, these include a LWIR/MWIR dual-band QWIP FPA with 384x288 pixels which, at 6.8 ms integration time, exhibits a noise-equivalent temperature difference as low as 20.6 mK in the LWIR and 26.7 mK in the MWIR spectral bands. A specially designed diffraction grating is used for optical coupling of both spectral regimes. The array, which is based on a photoconductive QWIP for the MWIR and a photovoltaic ``low-noise'' QWIP for the LWIR, allows for synchronous and pixel-registered image acquisition in both bands. This functionality yields several advantages, including better distinction between target and background clutter, operation in a much wider range of ambient conditions, and the ability of remote absolute temperature measurement. [1] H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications, ISBN 3540363238, Springer Series in Optical Sciences Vol. 126, 2006.

  9. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley Louis

    2010-01-01

    Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project

  10. 24 CFR 3280.402 - Test procedures for roof trusses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Test procedures for roof trusses... procedures for roof trusses. (a) Roof load tests. This section provides the roof truss test procedure for vertical loading conditions. Where roof trusses act as support for other members, have eave or...

  11. Thermal performance of fiberglass and cellulose attic insulations

    SciTech Connect

    Wilkes, K.E.; Childs, P.W.

    1992-10-01

    A series of experiments has been completed on the thermal performance of fiberglass and cellulose attic insulations under winter conditions using an attic test module in a guarded hot box facility. Experiments with one type of loose-fill fiberglass insulation showed that the thermal resistance at large temperature differences (70 to 76{degrees}F) was about 35 to 50% less than at small temperature differences. The additional heat flow, attributed to natural convection, was effectively eliminated by applying a covering of fiberglass batts or a combination of a polyethylene film and fiberglass blankets. No significant convection was found either with fiberglass batts or with one type of loose-fill cellulose. Using the experimental data along with an attic model, the additional energy costs due to convection in the coldest climate investigated were estimated to be $0.025/ft{sup 2}yr to $0.028/ft{sup 2}yr at the R-19 level and $0.014/ft{sup 2}yr at the R-38 level. For the same conditions, annual energy savings due to upgrading insulation from the R-19 to the R-38 level were estimated to be $0.046/ft{sup 2}yr to $0.070/ft{sup 2}yr.

  12. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    SciTech Connect

    Robert Rimmer; Jay Benesch; Joseph Preble; Charles Reece

    2005-05-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maintenance shutdown. We report on the overall SRF performance of the machine after these major disturbances and on efforts to characterize and optimize the new behavior for high-energy running.

  13. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  14. Thermal performance of solar air heaters: Experimental correlation

    SciTech Connect

    Ong, K.S.

    1995-12-31

    A mathematical model and a solution procedure for predicting the thermal performance of four types of single-pass flat-plate solar air collectors were presented in an earlier paper by Ong (1995). Instead of resorting to complicated algebraic manipulations to solve the energy equations a matrix-inversion technique was employed. In this paper, theoretical predictions of surface and air temperatures were obtained for the Types II, III and IV collector designs. In addition, the Type II collector was considered with and without bottom insulation. Experimental data from previous studies were obtained and compared with the present theoretical predictions. Satisfactory qualitative and quantitative agreement was obtained between theoretical predictions and experimental data. 9 refs., 14 figs., 2 tabs.

  15. Thermal performance evaluation of the Calmac (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  16. LARGO hot water system thermal performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  17. A comprehensive numerical model examining the thermal performance of airships

    NASA Astrophysics Data System (ADS)

    Wang, Y. W.; Yang, C. X.

    2011-11-01

    A novel computational model for analyzing the airship's transient thermal performance under different environmental conditions was developed. Radiative heat transfer and natural convection inside the airship were modeled using the control volume method. The Semi-Implicit Method aiming at the Pressure-Linked Equations algorithm was adopted to solve the control equations. Such approach was able to take into account the solar irradiative heat flux, the infrared radiation at different locations, and the convection both inside and outside the airship. The simulation results, showing the detailed distributions of temperature and velocity on the envelope and inside the airship, were in good agreement with the experimental measurements. The influences of solar position and material radiative properties on temperature distribution, as well as natural convective flow inside airship, were further simulated and discussed.

  18. Thermal Performance of Capillary Pumped Loops Onboard Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Butler, Charles D.; Swanson, Theodore; Thies, Diane

    2004-01-01

    The Terra spacecraft is the flagship of NASA's Earth Science Enterprise. It provides global data on the state of atmosphere, land and oceans, as well as their interactions with solar radiation and one another. Three Terra instruments utilize Capillary Pumped Heat Transport System (CPHTS) for temperature control: Each CPHTS, consisting of two capillary pumped loops (CPLs) and several heat pipes and electrical heaters, is designed for instrument heat loads ranging from 25W to 264W. The working fluid is ammonia. Since the launch of the Terra spacecraft, each CPHTS has been providing a stable interface temperature specified by the instrument under all modes of spacecraft and instrument operations. The ability to change the CPHTS operating temperature upon demand while in service has also extended the useful life of one instrument. This paper describes the design and on-orbit performance of the CPHTS thermal systems.

  19. Performance of beryllium, carbon, and tungsten under intense thermal fluxes

    NASA Astrophysics Data System (ADS)

    Linke, J.; Akiba, M.; Bolt, H.; Breitbach, G.; Duwe, R.; Makhankov, A.; Ovchinnikov, I.; Rödig, M.; Wallura, E.

    1997-02-01

    Transient heat loads on a millisecond timescale with deposited energy densities beyond 1 MJ m -2 have been simulated in a plasma accelerator facility (VIKA) and in two high power electron beam teststands (JUDITH, JEBIS). Main objective of these experiments was to study and to compare the behaviour of different plasma facing materials (Be, CFC, W) under heat loads which occur during disruptions in future thermonuclear fusion reactors such as ITER. In these tests special attention was paid to the thermal shock resistance, the processes during melt layer formation, and the resulting material erosion. To perform these tests specific loading techniques and diagnostics have been developed and applied. Among these are high heat flux loading experiments at elevated temperatures ( T > DBTT) of the test coupons, fast surface pyrometry, and reliable techniques for the quantification of the absorbed energy.

  20. THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION

    SciTech Connect

    Gupta, N.

    2010-03-04

    Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

  1. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-10-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) laboratory tests have been conducted, (2) with the added trendline analysis method, the accuracy of the data interpretation methodology will be improved, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (3) about one half of the development work for the roof geology mapping program, MRGIS, has completed.

  2. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2003-01-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) laboratory tests have been conducted, (2) with the added trendline analysis method, the accuracy of the data interpretation methodology will be improved and the interfaces and voids can be more reliably detected, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (4) about 80% of the development work for the roof geology mapping program, MRGIS, has completed.

  3. The Trade-off between Solar Reflectance and Above-Sheathing Ventilation for Metal Roofs on Residential and Commercial Buildings

    SciTech Connect

    Desjarlais, Andre Omer; Kriner, Scott; Miller, William A

    2013-01-01

    An alternative to white and cool-color roofs that meets prescriptive requirements for steep-slope (residential and non-residential) and low-slope (non-residential) roofing has been documented. Roofs fitted with an inclined air space above the sheathing (herein termed above-sheathing ventilation, or ASV), performed as well as if not better than high-reflectance, high-emittance roofs fastened directly to the deck. Field measurements demonstrated the benefit of roofs designed with ASV. A computer tool was benchmarked against the field data. Testing and benchmarks were conducted at roofs inclined at 18.34 ; the roof span from soffit to ridge was 18.7 ft (5.7 m). The tool was then exercised to compute the solar reflectance needed by a roof equipped with ASV to exhibit the same annual cooling load as that for a direct-to-deck cool-color roof. A painted metal roof with an air space height of 0.75 in. (0.019 m) and spanning 18.7 ft (5.7 m) up the roof incline of 18.34 needed only a 0.10 solar reflectance to exhibit the same annual cooling load as a direct-to-deck cool-color metal roof (solar reflectance of 0.25). This held for all eight ASHRAE climate zones complying with ASHRAE 90.1 (2007a). A dark heat-absorbing roof fitted with 1.5 in. (0.038 m) air space spanning 18.7 ft (5.7 m) and inclined at 18.34 was shown to have a seasonal cooling load equivalent to that of a conventional direct-to-deck cool-color metal roof. Computations for retrofit application based on ASHRAE 90.1 (1980) showed that ASV air spaces of either 0.75 or 1.5 in. (0.019 and 0.038 m) would permit black roofs to have annual cooling loads equivalent to the direct-to-deck cool roof. Results are encouraging, and a parametric study of roof slope and ASV aspect ratio is needed for developing guidelines applicable to all steep- and low-slope roof applications.

  4. Improving the thermal performance of vinyl-framed windows

    SciTech Connect

    Beck, F.A.; Arasteh, D.

    1992-10-01

    Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [2.86 W/m{sup 2}{center_dot}K] and 0.30 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [1.70 W/m{sup 2}{center_dot}K]). Turning such windows into ``superwindows,`` windows with a U-value of 0.20 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (1.14 W/m{sup 2}{center_dot}K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (0.57 W/m{sup 2}{center_dot}K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

  5. Improving the thermal performance of vinyl-framed windows

    SciTech Connect

    Beck, F.A.; Arasteh, D.

    1992-10-01

    Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h[center dot]ft[sup 2][center dot][degree]F [2.86 W/m[sup 2][center dot]K] and 0.30 Btu/h[center dot]ft[sup 2][center dot][degree]F [1.70 W/m[sup 2][center dot]K]). Turning such windows into superwindows,'' windows with a U-value of 0.20 Btu/h[center dot]ft[sup 2][center dot][degree]F (1.14 W/m[sup 2][center dot]K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h[center dot]ft[sup 2][center dot][degree]F (0.57 W/m[sup 2][center dot]K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

  6. Positive effects of vegetation: urban heat island and green roofs.

    PubMed

    Susca, T; Gaffin, S R; Dell'osso, G R

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 °C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO(2) equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. PMID:21481997

  7. The effectiveness of cool and green roofs as urban heat island mitigation strategies

    NASA Astrophysics Data System (ADS)

    Li, Dan; Bou-Zeid, Elie; Oppenheimer, Michael

    2014-05-01

    Mitigation of the urban heat island (UHI) effect at the city-scale is investigated using the Weather Research and Forecasting (WRF) model in conjunction with the Princeton Urban Canopy Model (PUCM). Specifically, the cooling impacts of green roof and cool (white/high-albedo) roof strategies over the Baltimore-Washington metropolitan area during a heat wave period (7 June-10 June 2008) are assessed using the optimal set-up of WRF-PUCM described in the companion paper by Li and Bou-Zeid (2014). Results indicate that the surface UHI effect (defined based on the urban-rural surface temperature difference) is reduced significantly more than the near-surface UHI effect (defined based on urban-rural 2 m air temperature difference) when these mitigation strategies are adopted. In addition, as the green and cool roof fractions increase, the surface and near-surface UHIs are reduced almost linearly. Green roofs with relatively abundant soil moisture have comparable effect in reducing the surface and near-surface UHIs to cool roofs with an albedo value of 0.7. Significant indirect effects are also observed for both green and cool roof strategies; mainly, the low-level advection of atmospheric moisture from rural areas into urban terrain is enhanced when the fraction of these roofs increases, thus increasing the humidity in urban areas. The additional benefits or penalties associated with modifications of the main physical determinants of green or cool roof performance are also investigated. For green roofs, when the soil moisture is increased by irrigation, additional cooling effect is obtained, especially when the ‘unmanaged’ soil moisture is low. The effects of changing the albedo of cool roofs are also substantial. These results also underline the capabilities of the WRF-PUCM framework to support detailed analysis and diagnosis of the UHI phenomenon, and of its different mitigation strategies.

  8. 29 CFR Appendix A to Subpart M of... - Determining Roof Widths

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing...

  9. 29 CFR Appendix A to Subpart M of... - Determining Roof Widths

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing...

  10. 29 CFR Appendix A to Subpart M of... - Determining Roof Widths

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing...

  11. 29 CFR Appendix A to Subpart M of... - Determining Roof Widths

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926... monitoring system alone as a means of providing fall protection during the performance of roofing...

  12. Sloshing impact in roofed tanks

    SciTech Connect

    Uras, R.A.

    1995-12-31

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roofed tanks. It is incorporated into Argonne`s in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements.

  13. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  14. OPTIMIZING GREEN ROOF TECHNOLOGIES IN THE MIDWEST

    EPA Science Inventory

    Green roofs, while extensively used in Europe, are an emerging technology in the U.S. They have an array of potential benefits (including improved storm water management, increased energy conservation of buildings, reduced urban heat island effects, and extended roof life) ...

  15. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  16. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  17. Lightweight, self-ballasting photovoltaic roofing assembly

    SciTech Connect

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  18. Roofs--Their Problems and Solutions.

    ERIC Educational Resources Information Center

    Swentkofske, Carl J.

    Most roofs are meant to withstand the elements for a period of 20 years; to achieve this goal, however, school officials must believe in a dedicated maintenance program and sell it to their superiors and school boards. Establishment of a school district roof maintenance program is explained. Job qualifications and training methods for an inhouse…

  19. Metal Roofing in a "Class" by Itself.

    ERIC Educational Resources Information Center

    Nimtz, Paul D.

    1990-01-01

    The structural standing seam roof has the advantages of ease of application, low maintenance, and low life-cycle costs. Explains and illustrates how the system's concealed clip attachments are designed so that the roof panels can expand and contract independently of the insulation. (MLF)

  20. Roofing Workbook and Tests. Plans and Specifications.

    ERIC Educational Resources Information Center

    Mongerson, M. Duane, Comp.

    This combination workbook and set of tests on plans and specifications is one in a series of nine individually bound units of instruction for roofing apprenticeship classes. The five topics covered are (1) regulations governing the roofing and waterproofing industry, (2) an overview of blueprints, (3) an overview of specifications, (4)…

  1. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2002-01-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. A new mechanical approach to estimate rock strengths using the acquired drilling parameters has been proposed. This approach takes a number of important factors, that have never been studied in the previous researches, into the considerations. Good results have been shown using the new approach on the testing data.

  2. Thermal performance of a multi-evaporator loop heat pipe with thermal masses and thermal electrical coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermal electric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of condenser is fully utilized. Ammonia was used ad the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 1OW even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/-0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing the orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.

  3. Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)

    SciTech Connect

    Shrestha, Som S; Miller, William A; Desjarlais, Andre Omer

    2013-01-01

    Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

  4. FEM (finite element method) thermal modeling and thermal hydraulic performance of an enhanced thermal conductivity UO2/BeO composite fuel

    SciTech Connect

    Zhou, Wenzhong

    2011-03-24

    An enhanced thermal conductivity UO2-BeO composite nuclear fuel was studied. A methodology to generate ANSYS (an engineering simulation software) FEM (Finite Element Method) thermal models of enhanced thermal conductivity oxide nuclear fuels was developed. The results showed significant increase in the fuel thermal conductivities and have good agreement with the measured ones. The reactor performance analysis showed that the decrease in centerline temperature was 250-350K for the UO2-BeO composite fuel, and thus we can improve nuclear reactors' performance and safety, and high-level radioactive waste generation.

  5. Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance

    SciTech Connect

    Delmas, A.A.; Wilkes, K.E.

    1992-04-01

    A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

  6. Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes

    SciTech Connect

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2015-12-03

    "9A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.

  7. High thermal performance of μ-stripes quantum cascade laser

    NASA Astrophysics Data System (ADS)

    de Naurois, G. M.; Simozrag, B.; Maisons, G.; Trinité, V.; Alexandre, F.; Carras, M.

    2012-07-01

    We demonstrate high thermal dissipation of quantum cascade lasers (QCLs) using multi-stripes array technology. Buried QCL arrays offer both lateral dissipation enhancements while keeping beam quality control for large active region lasers. Experimental thermal resistances down to 2 K/W are reported. InP:Fe regrowth morphology has been optimized to limit current leakage. Thermal resistance decreasing with both number and width of emitters is demonstrated. Comparison with simulation shows excellent agreement, with a reduction factor of 3 when comparing to standard ridges QCL. These low thermal resistances project up to 40 W in continuous wave operation using state-of-the-art QCL design.

  8. Green roof impact on the hydrological cycle components

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.

  9. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harrold P., Jr.; Doughty, Glen E.

    1993-01-01

    An increase in Isp for nuclear thermal propulsion systems is desirable for reducing the propellant requirements and cost of future applications, such as the Mars Transfer Vehicle. Several previous design studies have suggested that the Isp could be increased substantially with hydrogen dissociation/recombination. Hydrogen molecules (H2), at high temperatures and low pressures, will dissociate to monatomic hydrogen (H). The reverse process (i.e., formation of H2 from H) is exothermic. The exothermic energy in a nozzle increases the kinetic energy and therefore, increases the Isp. The low pressure nuclear thermal propulsion system (LPNTP) system is expected to maximize the hydrogen dissociation/recombination and Isp by operating at high chamber temperatures and low chamber pressures. The process involves hydrogen flow through a high temperature, low pressure fission reactor, and out a nozzle. The high temperature (approximately 3000 K) of the hydrogen in the reactor is limited by the temperature limits of the reactor material. The minimum chamber pressure is about 1 atm because lower pressures decrease the engines thrust to weight ratio below acceptable limits. This study assumes that hydrogen leaves the reactor and enters the nozzle at the 3000 K equilibrium dissociation level. Hydrogen dissociation in the reactor does not affect LPNTP performance like dissociation in traditional chemical propulsion systems, because energy from the reactor resupplies energy lost due to hydrogen dissociation. Recombination takes place in the nozzle due primarily to a drop in temperature as the Mach number increases. However, as the Mach number increases beyond the nozzle throat, the static pressure and density of the flow decreases and minimizes the recombination. The ideal LPNTP Isp at 3000 K and 10 psia is 1160 seconds due to the added energy from fast recombination rates. The actual Isp depends on the finite kinetic reaction rates which affect the amount of monatomic hydrogen recombination before the flow exits the nozzle. A LPNTP system has other technical issues (e.g. flow instability and two-phase flow) besides hydrogen dissociation/recombination which affect the systems practicality. In this study, only the effects of hydrogen dissociation/recombination are examined.

  10. Performance study of a thermal-envelope house: Phase II. Cooling performance. Final report

    SciTech Connect

    Akridge, J. M.; Benton, C. C.

    1981-01-01

    The thermal envelope house is shown to perform much better than conventional houses without mechanical refrigeration and better than one would expect from most passively cooled houses in the hot-humid climate of Georgia. Peak temperatures inside the house were 8 to 15/sup 0/F below peak ambient temperatures. Peak inside temperature measured during the test period was 80/sup 0/F with an outside ambient peak of 93/sup 0/F. Air flow rates within the envelope were less than 1 ft/sec even when the attic fan was operating. The earth cooling tubes provided noticeable sensible cooling to the house. Exit temperatures from the cooling tubes were between 72 to 76/sup 0/F, depending upon the air velocity through the tubes. The thermal chimney performed poorly as an air mover, especially when used to induce flow through the earth cooling tubes. The performance of the earth cooling tube could be improved by using the attic fan to increase the air flow through the cooling tubes and to insure it flowed in the cooling tube, through the envelope and out the thermal chimney. Being an exhaust fan, the attic fan created a negative pressure in the house. While this increased air flow through the cooling tubes, it also increased air infiltration through the building shell, thus increasing load. The humidity level within the living space remains relatively high year-round due to low rates of air infiltration and water vapor transmission through the building skin. The problem is aggravated during the summer by the introduction of cool moist air from the cooling tubes to the envelope and frequently to the inner space. While the cooling tubes are able to reduce the sensible load, and they are incapable of significantly reducing humidity or latent loads. This results in relatively comfortable air temperatures but uncomfortable humidities within the living space.

  11. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  12. Use of treated woods in roof assembly.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Long, William B; Gubler, K Dean; Britt, L D

    2005-01-01

    On February 12, 2002, the US Environmental Protection Agency (EPA) announced a voluntary decision by industry to move consumer use of treated lumber products away from a variety of pressure-treated wood that contains Arsenate (As) by December 31, 2003, in favor of new alternative wood preservatives. It is the purpose of this report to outline legislative efforts to ban the use of chromated copper arsenate (CCA)-treated wood for residential roofing in the State of Oregon. At the time that the legislation was introduced, it was coincidental that the National Roofing Contractors Association (NRCA) recommended that CCA-treated wood should not be used in residential roofing. A summary of the report is included in this review. Finally, we discuss some of the potentially harmful environmental hazards of wood preservatives on the environment. In addition to the toxicity of pressure-treated wood on our environment, we point out that wood as well as pressure-treated wood assemblies are highly flammable. Consequently, we recommend the use of residential roofing systems that have Class A fire protection for the homeowner. Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire-rated roof system. PMID:16022647

  13. Decision Guide for Roof Slope Selection

    SciTech Connect

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  14. Thermal Performance of a Multi-Evaporator Loop Heat Pipe with Thermal Masses and Thermoelectric Coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5 ) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.

  15. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  16. Performance of Thermal Insulation Containing Microencapsulated Phase Change Material

    SciTech Connect

    Kosny, Jan; Yarbrough, David; Syed, Azam M

    2007-01-01

    The objective of this study is dynamic thermal performance microencapsulated phase change material (PCM) blended with loose-fill cellulose insulation. Dynamic hot-box testing and heat-flux measurements have been made for loose-fill cellulose insulation with and without uniformly distributed microencapsulated PCM. The heat flux measurements were made with a heat-flow-meter (HFM) apparatus built in accordance with ASTM C 518. Data were obtained for 1.6 lb{sub m}/ft{sup 3} cellulose insulation containing 0 to 40 wt% PCM. Heat-flux data resulting from a rapid increase in the temperature on one side of a test specimen initially at uniform temperature were analyzed to access the effect of PCM on total heat flow. The heat flux was affected by the PCM for about 100 minutes after the temperature increase. The total heat flow during this initial period decreased linearly with PCM content from 6.5 Btu/ft{sup 2} at 0% PCM to 0.89 Btu/ft{sup 2} for 40 wt% PCM. The cellulose insulation with PCM discharged heat faster than the untreated cellulose when the hot-side temperature of the test specimen was reduced. In addition, hot-box apparatus built in accordance with ASTM C 1363 was utilized for dynamic hot-box testing of a wood stud wall assembly containing PCM-enhanced cellulose insulation. Experimental data obtained for wood-frame wall cavities containing cellulose insulation with PCM was compared with results obtained from cavities containing only cellulose insulation.

  17. Thermal fatigue performance of integrally cast automotive turbine wheels

    NASA Technical Reports Server (NTRS)

    Humphreys, V. E.; Hofer, K. E.

    1980-01-01

    Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.

  18. Thermal design and performance of the IRAS spacecraft system

    NASA Astrophysics Data System (ADS)

    van Leeuwen, P. L.

    1983-12-01

    Thermal design and testing of the spacecraft part of the Infrared Astronomy Satellite are summarized. The interface of the housekeeping spacecraft and the cryogenically cooled telescope is described. Thermal control is based on passive techniques, except for the battery and gyro sensor which have heaters. Flight temperature measurements show excellent agreement with predictions, but also reveal a steady increase in spacecraft temperatures. This is attributed to degradation of the silver teflon control surface.

  19. Evaluation of the thermal bridging effects on the thermal performance of slab-on-grade floor foundation

    SciTech Connect

    Al-Anzi, A.A.; Krarti, M.

    1997-12-31

    A steady-state solution is developed to determine the thermal interaction between a slab-on-grade floor and above-grade walls. In particular, the thermal bridging effects at the slab/wall joints are evaluated for various insulation configurations. Using a finite-difference numerical technique (FDM), the temperature field within the building envelope and the soil, the heat flux profiles along the foundation surfaces, and the total slab and wall heat losses are determined and analyzed for both interior and exterior insulation configurations. It was found that a significant thermal interaction exists between the slab-on-grade floor and the above-grade walls. In particular, it was found that adding thermal insulation to the slab or to the walls affects the thermal performance of both the slab and the walls.

  20. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  1. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  2. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  3. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  4. 30 CFR 75.206 - Conventional roof support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conventional roof support. 75.206 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof...

  5. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Test procedure for roof trusses... procedure for roof trusses. (a) Roof load tests. The following is an acceptable test procedure, consistent with the provisions of § 3280.401, for roof trusses that are supported at the ends and support...

  6. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Test procedure for roof trusses... procedure for roof trusses. (a) Roof load tests. The following is an acceptable test procedure, consistent with the provisions of § 3280.401, for roof trusses that are supported at the ends and support...

  7. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Test procedure for roof trusses... procedure for roof trusses. Link to an amendment published at 78 FR 4065, Jan. 18, 2013. (a) Roof load tests... trusses that are supported at the ends and support design loads. Where roof trusses act as support...

  8. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Test procedure for roof trusses... procedure for roof trusses. (a) Roof load tests. The following is an acceptable test procedure, consistent with the provisions of § 3280.401, for roof trusses that are supported at the ends and support...

  9. Laboratory measurements of the drying rates of low-slope roofing systems

    SciTech Connect

    Desjarlais, A.O.; Kyle, D.M.; Childs, P.W.; Christian, J.E.

    1994-05-01

    The service life of a roofing system typically ends when excessive amounts of water have entered the system. Roofing professionals determine whether the existing failed roofing system can be repaired or salvaged by recovering. A key element in this decision is whether the accumulated water will be able to leave the roofing system in a time frame that will prevent irreparable structural damage. There are several combined heat and mass transfer models that can be used to predict drying times for low-slope roofing systems. Very little experimental data exists that can be used to validate the performance of these models. To satisfy these needs, a series of laboratory experiments has been performed. Five test panels, comprised of a plywood deck, four types of roofing insulation, and a single ply membrane were installed in a climate simulator. The test panels were outfitted with temperature sensors and heat flux transducers, and were mounted on load cells. Water was added to the test panels and they were subjected to external diurnal cycles representative of summer and winter conditions for a southern US continental climate. The load cells supplied continuous records of the weights of the test panels; these data were used to compute the drying rates of the test panels. When these experiments were completed, the test panels were ``recovered`` with different thicknesses of insulation and the environmental conditions were reapplied to the test panels. This paper reports on the design and performance of these experiments. The data compiled during these tests supply insight into the effects of meteorological conditions, insulation R-value, insulation water vapor permeance, and roof recover on the rate that water will be removed from low-slope roofing systems.

  10. Metal and nutrient dynamics on an aged intensive green roof.

    PubMed

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. PMID:24017999

  11. Cool Roofs Through Time and Space

    SciTech Connect

    Levinson, Ronnen

    2014-10-17

    Ronnen Levinson, from the Lab's Heat Island Group, presents his research on cool roofs and introduces the California Cities Albedo Map at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California

  12. THE THERMAL 15 RELIEF WELL AND PRODUCTION PERFORMANCE OF THE THERMAL SHALLOW RESERVOIR

    SciTech Connect

    Mogen, P.; Maney, J.

    1985-01-22

    Thermal 15 was drilled in November, 1983, to a TD of 700 feet. A steam entry encountered at 490 feet was found to communicate with the high-permeability upflow zone of the Thermal Shallow Reservoir. A low-flow-rate, higher-pressure steam entry at 600 feet was not detected while drilling but was indicated during a subsequent spinner survey. The pressure, flowrate, and enthalpy of the five wells completed in the upflow zone, including the Thermal 4 blowout, were monitored and recorded over a four month period before, during and after Thermal 15 was drilled. It was found that the Thermal 4 blowout communicates with the upflow zone of the Thermal Shallow Reservoir, the Thermal 4 flowrate is controlled by the shallow reservoir pressure, and the high permeability of the upflow zone allows such strong interference effects that three of the four commercial production wells will maximize production from this reservoir. A simple model was developed which describes the pressure-production characteristics of the reservoir over the normal range of operating conditions.

  13. CTS TEP thermal anomalies: Heat pipe system performance

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1977-01-01

    A part of the investigation is summarized of the thermal anomalies of the transmitter experiment package (TEP) on the Communications Technology Satellite (CTS) which were observed on four occasions in 1977. Specifically, the possible failure modes of the variable conductance heat pipe system (VCHPS) used for principal thermal control of the high-power traveling wave tube in the TEP are considered. Further, the investigation examines how those malfunctions may have given rise to the TEP thermal anomalies. Using CTS flight data information, ground test results, analysis conclusions, and other relevant information, the investigation concentrated on artery depriming as the most likely VCHPS failure mode. Included in the study as possible depriming mechanisms were freezing of the working fluid, Marangoni flow, and gas evolution within the arteries. The report concludes that while depriming of the heat pipe arteries is consistent with the bulk of the observed data, the factors which cause the arteries to deprime have yet to be identified.

  14. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Technical Reports Server (NTRS)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  15. Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment.

    PubMed

    Jiang, Junfeng; Song, Luyao; Liu, Tiegen; Zhang, Jingchuan; Liu, Kun; Wang, Shuang; Yin, Jinde; Zhao, Peng; Xie, Jihui; Wu, Fan; Zhang, Xuezhi

    2013-12-01

    We investigated the fiber Bragg grating (FBG) thermal response in space vacuum thermal environment. The FBGs were packaged with 6061-T6 aluminum. The liquid nitrogen immersion experiment results show that its wavelength shift standard deviation is 0.76 pm for 217 h. The combination effect of vacuum and cryogenic temperature was studied by thermal cycling process in space environment simulator. The FBG sensors show accuracy better than 2% full scale, and the hysteresis errors are below 1%. It proves that these metal packaged FBG sensors can survive and meet the requirement of space measurement. PMID:24387420

  16. Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment

    NASA Astrophysics Data System (ADS)

    Jiang, Junfeng; Song, Luyao; Liu, Tiegen; Zhang, Jingchuan; Liu, Kun; Wang, Shuang; Yin, Jinde; Zhao, Peng; Xie, Jihui; Wu, Fan; Zhang, Xuezhi

    2013-12-01

    We investigated the fiber Bragg grating (FBG) thermal response in space vacuum thermal environment. The FBGs were packaged with 6061-T6 aluminum. The liquid nitrogen immersion experiment results show that its wavelength shift standard deviation is 0.76 pm for 217 h. The combination effect of vacuum and cryogenic temperature was studied by thermal cycling process in space environment simulator. The FBG sensors show accuracy better than 2% full scale, and the hysteresis errors are below 1%. It proves that these metal packaged FBG sensors can survive and meet the requirement of space measurement.

  17. Thermal performance of windows having high solar transmittance

    SciTech Connect

    Rubin, M.; Selkowitz, S.

    1981-07-01

    Antireflected polyester films and low-iron glass sheets have values of solar transmittance that are substantially higher than those of their untreated counterparts. The plastic films utilize coatings to reduce loses due to surface reflectance and the glass is made with low levels of impurities to reduce adsorption within the material itself. The optical and thermal properties of these materials are discussed and the solar and thermal characteristics of windows incorporating high-transmittance glazing layers are derived. Comparisons among these and other types of windows are made on the basis of net energy use for residential buildings in winter.

  18. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  19. Lunar eclipse observations reveal anomalous thermal performance of Apollo reflectors

    NASA Astrophysics Data System (ADS)

    Murphy, T. W.; McMillan, R. J.; Johnson, N. H.; Goodrow, S. D.

    2014-03-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ∼50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  20. Sloshing impact in roofed tanks

    SciTech Connect

    Uras, R.A.

    1995-07-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roared tanks. It is incorporated into Argonne`s in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements.

  1. Liquid storage tank with floating roof structure

    SciTech Connect

    Vaughn, L.G.

    1993-07-27

    In a cylindrical wall storage tank for containing a liquid, said tank is described having a floor, a floatable roof supportable by said contained liquid, said roof including a peripheral seal for engaging the cylindrical wall to maintain a fluid-tight sliding seal therewith, and support means associated with said roof including, the improvement in said tank of, at least one cylindrical guide sleeve extending downwardly from said floatable roof; a shoe depending laterally from said at least one cylindrical guide sleeve's lower end for engaging the tank floor when the level of contained liquid is insufficient to support said floatable roof, said shoe having means forming a passage there through to register a support column and, an elongated support column removably positioned in said at least one cylindrical guide sleeve, of being sufficient length to extend downward beyond the shoe to engage the tank floor, whereby to sustain the floatable roof a predetermined distance above said floor after the contained liquid has drained from the tank.

  2. ATS-6 engineering performance report. Volume:Program and systems summaries: Mechanical and thermal details

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (Editor)

    1981-01-01

    The overall mission and spacecraft systems, testing, and operations are summarized. The mechanical subsystems are reviewed, encompassing mechanical design requirements; separation and deployment mechanisms; design and performance evaluation; and the television camera reflector monitor. Thermal control and contamination are discussed in terms of thermal control subsystems, design validation, subsystems performance, the advanced flight experiment, and the quartz-crystal microbalance contamination monitor.

  3. Thermal Performance of Idealized Double Windows, Unvented. Research Paper No. 223.

    ERIC Educational Resources Information Center

    Christensen, G.; And Others

    The testing plans, procedures, and results of an experiment are revealed concerning the thermal performance and variable factors of unvented double windows, their heat transmission and inner surface temperature. Data are given to help improve the design and development of standards for the thermal performance of windows. Building humidity, window…

  4. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, S. D.; Kittredge, K. B.

    2003-01-01

    A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

  5. Multi-Objective Optimization of Residential Building Roof Layer Thickness for Minimization of Heat Entering the Room Using FEM and Grey Relational Analysis

    NASA Astrophysics Data System (ADS)

    Prakash, D.; Ravikumar, P.

    2014-01-01

    In this work, a multi objective optimization on roof layer thickness has been carried out through Taguchi based grey relational analysis technique. Conventional type of residential building roof was changed by a modified pattern of roof having layers namely concrete, phase change material, wood wool and weathering tile and its performance on heat insulation have been studied. In this study, the optimum thickness of roof layers was determined for minimum heat gain through roof by grey relational analysis technique. The thickness of various roof layers were considered as control parameters and varied through five levels of values. For this objective, Taghuchi's L25 orthogonal array has been employed and the performance on heat insulation was studied through finite element analysis (FEA) technique. The FEA simulation on heat transfer across the roof has also been validated with the experimental results and found that it is having a good agreement. The optimized roof reduces the heat gain and temperature by 30 % and 3 °C respectively in comparison with the conventional type of roof. Also from this study, it was identified that the wood wool is the most predominant roof layer that controls the heat gain into the room.

  6. Analytic model for assessing thermal performance of SCUBA divers

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.

    1975-01-01

    To assist design of adequate protective clothing, mathematical model of man's thermoregulatory system has been developed so that body thermal responses under immersed conditions can be predicted accurately. Experimental data encompassed wide range of water temperatures, protective clothing, breathing-gas mixtures, and durations of immersion.

  7. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  8. Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters

    NASA Astrophysics Data System (ADS)

    Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel

    2013-08-01

    Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.

  9. The Submillimeter-Wave Astronomy Satellite: On-Orbit Thermal Performance and Design Retrospective

    NASA Technical Reports Server (NTRS)

    Boyd, David A.; Ousley, Wes; Fantano, Louis; Powers, Edward I. (Technical Monitor)

    1999-01-01

    A large telescope aperture, stringent thermal stability and temperature range requirements, and a passively-cooled 150 K module presented major challenges in thermal design and hardware fabrication of this Small Explorer satellite. This paper reviews briefly the thermal design of the SWAS science instrument, and examines the first three months of on-orbit thermal history. Measured temperatures for both the science payload and the spacecraft module and solar arrays are compared with those predicted by the correlated analytical model. Similarities and differences are interpreted in terms of the major uncertainties remaining after thermal-balance testing, especially those of MLI performance and telescope aperture properties. Review of the thermal model adequacy and thermal design verification are included to suggest improvements in the thermal design process for future missions.

  10. The Submillimeter-Wave Astronomy Satellite: On-Orbit Thermal Performance and Design Retrospective

    NASA Technical Reports Server (NTRS)

    Boyd, David A.; Ousley, Wes; Fantano, Louis

    1999-01-01

    A large telescope aperture, stringent thermal stability and temperature range requirements, and a passively-cooled 1500K module presented major challenges in thermal design and hardware fabrication of this Small Explorer satellite. This paper reviews briefly the thermal design of the SWAS science instrument, and examines the first three months of on-orbit thermal history. Measured temperatures for both the science payload and the spacecraft module and solar arrays are compared with those predicted by the correlated analytical model. Similarities and differences are interpreted in terms of the major uncertainties remaining after thermal-balance testing, especially those of MLI performance and telescope aperture properties. Review of the thermal model adequacy and thermal design verification are included to suggest improvements in the thermal design process for future missions.

  11. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems. PMID:20300196

  12. The decremented average ground-temperature method for predicting the thermal performance of underground walls

    SciTech Connect

    Ackridge, J.M.; Poulos, J.F.J.

    1983-06-01

    At present, the only accurate method for predicting the thermal performance of underground structures is through the use of large computer models and finite difference equations. Due to the prohibitively high cost of setting up and running these computer models, thermal analysis of subsurface buildings is inaccessible to many prospective users. The existing manual methods for calculating loads on underground buildings provide only rough estimates of thermal performance. All of the existing manual methods ignore the effect of the building on the adjacent ground temperature during an annual cycle, resulting in conservative estimates of the building's heating performance and optimistic estimates of the cooling performance. This paper presents a manual calculation method for accurately predicting the thermal performance of underground walls and gives a table of DECREMENT FACTORS which account for the decreasing thermal loss from underground walls over time.

  13. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2004-04-15

    A one-year non-cost extension has been granted for this project. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) laboratory tests have been conducted, (2) with the added trendline analysis method, the accuracy of the data interpretation methodology will be improved and the interfaces and voids can be more reliably detected, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (3) about 80% of the development work for the roof geology mapping program, MRGIS, has completed and a special version of the program is in the field testing stage.

  14. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2004-09-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) two more sets of field tests have been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (3) about 97% of the development work for the roof geology mapping program, MRGIS, has completed, (4) A special version of the geology mapping program for a limestone mine has been developed. The field test for the software and hardware has been successfully finished.

  15. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels §...

  16. 40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... floating roof is resting on the leg supports, the process of filling or refilling shall be continuous and... in § 65.47(e). (3) Automatic bleeder vents are to be set to be closed at all times when the roof is... maintained in a closed position at all times (i.e., no visible gaps) except when the device is in actual...

  17. A generic hydrological model for a green roof drainage layer.

    PubMed

    Vesuviano, Gianni; Stovin, Virginia

    2013-01-01

    A rainfall simulator of length 5 m and width 1 m was used to supply constant intensity and largely spatially uniform water inflow events to 100 different configurations of commercially available green roof drainage layer and protection mat. The runoff from each inflow event was collected and sampled at one-second intervals. Time-series runoff responses were subsequently produced for each of the tested configurations, using the average response of three repeat tests. Runoff models, based on storage routing (dS/dt = I-Q) and a power-law relationship between storage and runoff (Q = kS(n)), and incorporating a delay parameter, were created. The parameters k, n and delay were optimized to best fit each of the runoff responses individually. The range and pattern of optimized parameter values was analysed with respect to roof and event configuration. An analysis was performed to determine the sensitivity of the shape of the runoff profile to changes in parameter values. There appears to be potential to consolidate values of n by roof slope and drainage component material. PMID:23985505

  18. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Bohl, W. E.; Christiansen, Eric C.; Davis, B. A.; Foreman, C. D.

    2011-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/cu ft alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.

  19. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  20. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems

    NASA Astrophysics Data System (ADS)

    Miller, Joshua; Bohl, William; Christiansen, Eric; Davis, B. Alan; Foreman, Cory

    2011-06-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are also highly exposed to space environment hazards like solid particle impacts. This paper discusses impact testing up to 9.65 km/s on one of these systems. The materials considered are 8 lb/ft3 alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. A model extension to look at the implications of greater than 10 GPa equation of state measurements is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.

  1. Ballistic performance of porous-ceramic, thermal protection systems

    NASA Astrophysics Data System (ADS)

    Miller, Joshua E.; Bohl, William E.; Christiansen, Eric C.; Davis, Bruce A.; Foreman, Cory D.

    2012-03-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/ft3 alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrousinsulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principles impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.

  2. An empirical analysis of thermal protective performance of fabrics used in protective clothing.

    PubMed

    Mandal, Sumit; Song, Guowen

    2014-10-01

    Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric. PMID:25135076

  3. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  4. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    PubMed

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends. PMID:24867709

  5. The hydrological behaviour of extensive and intensive green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S

    2014-11-15

    This paper presents the results of a hydrological investigation of four medium scale green roofs that were set up at the University of South Australia. In this study, the potential of green roofs as a source control device was investigated over a 2 year period using four medium size green roof beds comprised of two growth media types and two media depths. During the term of this study, 226 rainfall events were recorded and these were representative of the Adelaide climate. In general, there were no statistically significant differences between the rainfall and runoff parameters for the intensive and extensive beds except for peak attenuation and peak runoff delay, for which higher values were recorded in the intensive beds. Longer dry periods generally resulted in higher retention coefficients and higher retention was also recorded in warmer seasons. The average retention coefficient for intensive systems (89%) was higher than for extensive systems (74%). It was shown that rainfall depth, intensity, duration and also average dry weather period between events can change the retention performance and runoff volume of the green roofs. Comparison of green and simulated conventional roofs indicated that the former were able to mitigate the peak of runoff and could delay the start of runoff. These characteristics are important for most source control measures. The recorded rainfall and runoff data displayed a non-linear relationship. Also, the results indicated that continuous time series modelling would be a more appropriate technique than using peak rainfall intensity methods for green roof design and simulation. PMID:25194906

  6. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    NASA Astrophysics Data System (ADS)

    Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.

    2013-06-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  7. Analysis of DOE s Roof Savings Calculator with Comparison to other Simulation Engines

    SciTech Connect

    New, Joshua Ryan; Huang, Yu; Levinson, Ronnen; Mellot, Joe; Sanyal, Jibonananda; Childs, Kenneth W

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on national averages and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance surfaces, HVAC duct location, duct leakage rates, multiple layers of building materials, ceiling and deck insulation levels, and other parameters. A base case and energy-efficient alternative can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA. However, RSC gives different energy savings estimates than previous cool roof simulation tools so more thorough software and empirical validation proved necessary. This report consolidates much of the preliminary analysis for comparison of RSC s projected energy savings to that from other simulation engines.

  8. Surface slope effects on shingling frequency and postural balance in a simulated roofing task.

    PubMed

    Choi, S D; Fredericks, T K

    2008-03-01

    The purpose of this study was to investigate the influence of surface slopes (18 degrees , 26 degrees , 34 degrees ) on the maximum acceptable roof shingling frequency for males performing a simulated roof-shingling task. The psychophysical roof shingling frequency was also compared to the postural sway and trunk motion values. The maximum acceptable roof shingling frequency and selected trunk motion decreased significantly with an increase in slope. Postural sway however increased significantly with an increase in slope. The study also revealed that workers were experiencing a greater postural sway at the earlier phase of task on the steeper surface. This suggests that there might be an adaptation period associated with working on a slope and the body's ability to compensate for a loss of balance. Therefore, more emphasis should be given to the workers in this adaptation period, with additional monitoring and cautionary measures. Collectively, the findings of the study could be utilized for improving work practices on roofs, while reducing the potential risks of falls in roofing construction. PMID:18311610

  9. Dynamic mathematical model for predicting the thermal performance of a greenhouse with thermal storage

    SciTech Connect

    Arinze, E.A.; Besant, R.W.; Schoenau, G.J.

    1981-01-01

    A mathematical model for predicting temperatures and moisture level in a quonset type energy conserving tomato growing greenhouse is presented. The greenhouse has added thermal mass in the form of water located under the plant benches. Passive and active forms of water storage are investigated. Comparisons of the measured variables with model predictions show a high degree of correlation.

  10. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  11. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  12. A Portable Oxygen Subsystem - Description and preliminary thermal performance prediction

    NASA Technical Reports Server (NTRS)

    Sribnik, F.

    1980-01-01

    This paper describes the use, operation, and preliminary thermal modeling of a Portable Oxygen Subsystem (POS). The POS is a partial rebreather which is being developed for Shuttle Orbiter support. Normally used as a pre-breather for denitrogenization prior to EVA, this semi-closed, breath powered breathing system can also be used for emergencies in the event of a contaminated or oxygen-deficient cabin atmosphere, to support an emergency transfer between vehicles, or as a clean oxygen supply in the event of a contaminated ambient atmosphere in the vicinity of the Orbiter after landing.

  13. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, T.M.

    1992-06-23

    A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

  14. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, Tuncer M.

    1992-01-01

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  15. Millikelvin thermal and electrical performance of lossy transmission line filters

    SciTech Connect

    Slichter, Daniel; Naaman, Ofer; Siddiqi, Irfan

    2009-03-11

    We report on the scattering parameters and Johnson noise emission of low-pass stripline filters employing a magnetically loaded silicone dielectric down to 25 mK. The transmission characteristic of a device with f-3dB=1.3 GHz remains essentially unchanged upon cooling. Another device with f-edB=0.4 GHz, measured in its stopband, exhibits a steady state noise power emission consistent with a temperature difference of a few mK relative to a well-anchored cryogenic microwave attenuator at temperatures down to 25 mK, thus presenting a matched thermal load.

  16. Process of making cryogenically cooled high thermal performance crystal optics

    SciTech Connect

    Kuzay, T.M.

    1990-06-29

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N{sub 2} is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  17. Analytical predictions of liquid and air photovoltaic/thermal flat-plate collector performance

    SciTech Connect

    Raghuraman, P.; Hendrie, S.D.

    1980-01-01

    Two separate one-dimensional analyses have been developed for the prediction of the thermal and electrical performance of both liquid and air flat-plate photovoltaic/thermal (PV/T) collectors. The analyses account for the temperature difference between the primary insolation absorber (the photovoltaic cells) and the secondary absorber (a thermal absorber flat plate). The results of the analyses are compared with test measurements, and therefrom, design recommendations are made to maximize the total energy extracted from the collectors.

  18. Chemical kinetic performance losses for a hydrogen laser thermal thruster

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Dexter, C. E.

    1985-01-01

    Projected requirements for efficient, economical, orbit-raising propulsion systems have generated investigations into several potentially high specific impulse, moderate thrust, advanced systems. One of these systems, laser thermal propulsion, utilizes a high temperature plasma as the enthalpy source. The plasma is sustained by a focused laser beam which maintains the plasma temperature at levels near 20,000 K. Since such temperature levels lead to total dissociation and high ionization, the plasma thruster system potentially has a high specific impulse decrement due to recombination losses. The nozzle flow is expected to be sufficiently nonequilibrium to warrant concern over the achievable specific impluse. This investigation was an attempt at evaluation of those losses. The One-Dimensional Kinetics (ODK) option of the Two-Dimensional Kinetics (TDK) Computer Program was used with a chemical kinetics rate set obtained from available literature to determine the chemical kinetic energy losses for typical plasma thruster conditions. The rates were varied about the nominal accepted values to band the possible losses. Kinetic losses were shown to be highly significant for a laser thermal thruster using hydrogen. A 30 percent reduction in specific impulse is possible simply due to the inability to completely extract the molecular recombination energy.

  19. a Line-Based 3d Roof Model Reconstruction Algorithm: Tin-Merging and Reshaping (tmr)

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.

    2012-07-01

    Three-dimensional building model is one of the major components of a cyber-city and is vital for the realization of 3D GIS applications. In the last decade, the airborne laser scanning (ALS) data is widely used for 3D building model reconstruction and object extraction. Instead, based on 3D roof structural lines, this paper presents a novel algorithm for automatic roof models reconstruction. A line-based roof model reconstruction algorithm, called TIN-Merging and Reshaping (TMR), is proposed. The roof structural line, such as edges, eaves and ridges, can be measured manually from aerial stereo-pair, derived by feature line matching or inferred from ALS data. The originality of the TMR algorithm for 3D roof modelling is to perform geometric analysis and topology reconstruction among those unstructured lines and then reshapes the roof-type using elevation information from the 3D structural lines. For topology reconstruction, a line constrained Delaunay Triangulation algorithm is adopted where the input structural lines act as constraint and their vertex act as input points. Thus, the constructed TINs will not across the structural lines. Later at the stage of Merging, the shared edge between two TINs will be check if the original structural line exists. If not, those two TINs will be merged into a polygon. Iterative checking and merging of any two neighboured TINs/Polygons will result in roof polygons on the horizontal plane. Finally, at the Reshaping stage any two structural lines with fixed height will be used to adjust a planar function for the whole roof polygon. In case ALS data exist, the Reshaping stage can be simplified by adjusting the point cloud within the roof polygon. The proposed scheme reduces the complexity of 3D roof modelling and makes the modelling process easier. Five test datasets provided by ISPRS WG III/4 located at downtown Toronto, Canada and Vaihingen, Germany are used for experiment. The test sites cover high rise buildings and residential area with diverse roof type. For performance evaluation, the adopted roof structural lines are manually measured from the provided stereo-pair. Experimental results indicate a nearly 100% success rate for topology reconstruction was achieved provided that the 3D structural lines can be enclosed as polygons. On the other hand, the success rate at the Reshaping stage is dependent on the complexity of the rooftop structure. Thus, a visual inspection and semi-automatic adjustment of roof-type is suggested and implemented to complete the roof modelling. The results demonstrate that the proposed scheme is robust and reliable with a high degree of completeness, correctness, and quality, even when a group of connected buildings with multiple layers and mixed roof types is processed.

  20. Effect of Material Inhomogeneity on Thermal Performance of a Rheocast Aluminum Heatsink for Electronics Cooling

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Belov, I.; Jarfors, A. E. W.; Wessén, M.

    2016-05-01

    The relation between microstructural inhomogeneity and thermal conductivity of a rheocast component manufactured from two different aluminum alloys was investigated. The formation of two different primary α-Al particles was observed and related to multistage solidification process during slurry preparation and die cavity filling process. The microstructural inhomogeneity of the component was quantified as the fraction of α 1-Al particles in the primary Al phase. A high fraction of coarse solute-lean α 1-Al particles in the primary Al phase caused a higher thermal conductivity of the component in the near-to-gate region. A variation in thermal conductivity through the rheocast component of 10% was discovered. The effect of an inhomogeneous temperature-dependent thermal conductivity on the thermal performance of a large rheocast heatsink for electronics cooling in an operation environment was studied by means of simulation. Design guidelines were developed to account for the thermal performance of heatsinks with inhomogeneous thermal conductivity, as caused by the rheocasting process. Under the modeling assumptions, the simulation results showed over 2.5% improvement in heatsink thermal resistance when the higher conductivity near-to-gate region was located at the top of the heatsink. Assuming homogeneous thermo-physical properties in a rheocast heatsink may lead to greater than 3.5% error in the estimation of maximum thermal resistance of the heatsink. The variation in thermal conductivity within a large rheocast heatsink was found to be important for obtaining of a robust component design.

  1. Performance of finned thermal capacitors. Ph.D. Thesis - Texas Univ., Austin

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1974-01-01

    The performance of typical thermal capacitors, both in earth and orbital environments, was investigated. Techniques which were used to make predictions of thermal behavior in a one-g earth environment are outlined. Orbital performance parameters are qualitatively discussed, and those effects expected to be important under zero-g conditions are outlined. A summary of thermal capacitor applications are documentated, along with significant problem areas and current configurations. An experimental program was conducted to determine typical one-g performance, and the physical significance of these data is discussed in detail. Numerical techniques were employed to allow comparison between analytical and experimental data.

  2. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  3. Water quality and quantity investigation of green roofs in a dry climate.

    PubMed

    Beecham, S; Razzaghmanesh, M

    2015-03-01

    Low-energy pollutant removal strategies are now being sought for water sensitive urban design. This paper describes investigations into the water quality and quantity of sixteen, low-maintenance and unfertilized intensive and extensive green roof beds. The factors of Slope (1° and 25°), Depth (100 mm and 300 mm), Growing media (type A, type B and type C) and Species (P1, P2 and P3) were randomized according to a split-split plot design. This consisted of twelve vegetated green roof beds and four non-vegetated beds as controls. Stormwater runoff was collected from drainage points that were installed in each area. Samples of run-off were collected for five rainfall events and analysed for water retention capacity and the water quality parameters of NO₂, NO₃, NH₄, PO₄, pH, EC, TDS, Turbidity, Na, Ca, Mg and K. The results indicated significant differences in terms of stormwater water quality and quantity between the outflows of vegetated and non-vegetated systems. The water retention was between 51% and 96% and this range was attributed to the green roof configurations in the experiment. Comparing the quality of rainfall as inflow, and the quality of runoff from the systems showed that green roofs generally acted as a source of pollutants in this study. In the vegetated beds, the intensive green roofs performed better than the extensive beds with regard to outflow quality while in the non-vegetated beds, the extensive beds performed better than intensive systems. This highlights the importance of vegetation in improving water retention capacity as well as the role of vegetation in enhancing pollutant removal in green roof systems. In addition growing media with less organic matter had better water quality performance. Comparison of these results with national and international standards for water reuse confirmed that the green roof outflow was suitable for non-potable uses such as landscape irrigation and toilet flushing. PMID:25546359

  4. Heat Shielding Characteristics and Thermostructural Performance of a Superalloy Honeycomb Sandwich Thermal Protection System (TPS)

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2004-01-01

    Heat-transfer, thermal bending, and mechanical buckling analyses have been performed on a superalloy "honeycomb" thermal protection system (TPS) for future hypersonic flight vehicles. The studies focus on the effect of honeycomb cell geometry on the TPS heat-shielding performance, honeycomb cell wall buckling characteristics, and the effect of boundary conditions on the TPS thermal bending behavior. The results of the study show that the heat-shielding performance of a TPS panel is very sensitive to change in honeycomb core depth, but insensitive to change in honeycomb cell cross-sectional shape. The thermal deformations and thermal stresses in the TPS panel are found to be very sensitive to the edge support conditions. Slight corrugation of the honeycomb cell walls can greatly increase their buckling strength.

  5. Insulation Performance of Heat-Resistant Material for High-Speed Aircraft Under Thermal Environments

    NASA Astrophysics Data System (ADS)

    Wu, Dafang; Wang, Yuewu; Gao, Zhentong; Yang, Jialing

    2015-09-01

    Lightweight insulation materials are widely used to thermally protect high-speed aircraft, such as missiles. Thermal conductivity is an important parameter used to evaluate the efficiency of a material's thermal insulation performance. Since thermal conductivities provided from material handbooks or manufacturers are discrete data for different temperature ranges, there is a deviation between those and actual parameters in terms of continuous nonlinear variations. Therefore, this study measures the thermal conductivities of lightweight thermal insulation materials at high temperatures, and the relationship between the thermal conductivity and temperature is obtained. A finite element model of the thermal insulation materials is also established and applied to numerically calculate the thermal insulation properties for high-temperature ceramic fiber insulation materials using the experimentally obtained nonlinear relationship between thermal conductivity and temperature. Additionally, a transient aerodynamic heating experiment simulation system is used to thermally test the same materials; the calculated and experimental results for the same materials are compared, which exhibit good consistency that demonstrates that accurate results can be obtained from the numerical computation using the relationship established from the experimentally measured conductivity and temperature.

  6. The effect of roof strength on reducing occupant injury in rollovers.

    PubMed

    Herbst, Brian; Forrest, Steve; Orton, Tia; Meyer, Steven E; Sances, Anthony; Kumaresan, Srirangam

    2005-01-01

    Roof crush occurs and potentially contributes to serious or fatal occupant injury in 26% of rollovers. It is likely that glazing retention is related to the degree of roof crush experienced in rollover accidents. Occupant ejection (including partial ejection) is the leading cause of death and injury in rollover accidents. In fatal passenger car accidents involving ejection, 34% were ejected through the side windows. Side window glass retention during a rollover is likely to significantly reduce occupant ejections. The inverted drop test methodology is a test procedure to evaluate the structural integrity of roofs under loadings similar to those seen in real world rollovers. Recent testing on many different vehicle types indicates that damage consistent with field rollover accidents can be achieved through inverted drop testing at very small drop heights. Drop test comparisons were performed on 16 pairs of vehicles representing a large spectrum of vehicle types. Each vehicle pair includes a production vehicle and a vehicle with a reinforced roof structure dropped under the same test conditions. This paper offers several examples of post-production reinforcements to roof structures that significantly increase the crush resistance of the roof as measured by inverted drop tests. These modifications were implemented with minimal impact on vehicle styling, interior space and visual clearances. The results of these modifications indicate that roof crush can be mitigated by nearly an order of magnitude, as roof crush was reduced by 44-91% with only a 1-2.3% increase in vehicle weight. Additionally, this paper analyzes the glazing breakage patterns in the moveable tempered side windows on the side adjacent to the vehicle impact point in the inverted drop tests. A comparison is made between the production vehicles and the reinforced vehicles in order to determine if the amount roof crush is related to glazing integrity in the side windows. Lastly, two drop test pairs, performed with Hybrid III test dummies, indicates that the reduction of roof crush resulted in a direct reduction in neck loading and therefore an increase in occupant protection. PMID:15850089

  7. Development of non-destructive inspection method for the performance of thermal barrier coating.

    PubMed

    Morinaga, M; Takahashi, T

    2001-05-01

    This paper shows that our proprietary non-destructive inspection method can be used to effectively measure the thermal barrier performance of the thermal barrier coating used to coat gas turbine hot parts by the results of numerical analysis and laboratory experiments. PMID:11460665

  8. Weathering of Roofing Materials-An Overview

    SciTech Connect

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  9. Analysis of the thermal performance of heat pipe radiators

    NASA Technical Reports Server (NTRS)

    Boo, J. H.; Hartley, J. G.

    1990-01-01

    A comprehensive mathematical model and computational methodology are presented to obtain numerical solutions for the transient behavior of a heat pipe radiator in a space environment. The modeling is focused on a typical radiator panel having a long heat pipe at the center and two extended surfaces attached to opposing sides of the heat pipe shell in the condenser section. In the set of governing equations developed for the model, each region of the heat pipe - shell, liquid, and vapor - is thermally lumped to the extent possible, while the fin is lumped only in the direction normal to its surface. Convection is considered to be the only significant heat transfer mode in the vapor, and the evaporation and condensation velocity at the liquid-vapor interface is calculated from kinetic theory. A finite-difference numerical technique is used to predict the transient behavior of the entire radiator in response to changing loads.

  10. Thermal performance of heat pipe with suspended nano-particles

    NASA Astrophysics Data System (ADS)

    Shukla, K. N.; Solomon, A. Brusly; Pillai, B. C.; Ruba Singh, B. Jacob; Saravana Kumar, S.

    2012-11-01

    Nanofluids are employed as the working medium for a conventional cylindrical heat pipe. A cylindrical copper heat pipe of 19.5 mm outer diameter and 400 mm length was fabricated and tested with two different working fluids. The working fluids used in this study are DI-water and Nano-particles suspension (mixture of copper nano particle and DI-water). The overall heat transfer coefficient of the heat pipe was calculated based on the lumped thermal resistance network and compared with the heat transfer coefficient of base fluid filled heat pipe. There is a quantitative improvement in the heat transfer coefficient using nano-particles suspension as the working medium. A heat transfer correlation was also developed based on multiple regression least square method and the results were compared with that obtained by the experiment.

  11. High temperature performance of flexible thermal protection materials

    NASA Technical Reports Server (NTRS)

    Savage, R. T.; Love, W.; Bloetscher, F.

    1984-01-01

    Aero convective tests of several flexible thermal protection system (FTPS) concepts were conducted in the NASA Ames Research Center 20 MW arcjet aero heating wind tunnel. The concepts consisted of quilted insulation blankets with nextel AB312 felt insulation stitched between cover cloths with AB312 thread. The cover cloths were commercially available nextel AB312 and nicalon fabrics. The specimens were subjected to convective heat fluxes ranging from 7 to 35 Btu/per sq ft per sec at stagnation pressures of .005 to .02 atm. Specimens were tested both with and without transpiration cooling. Results indicated that both the nextel and nicalon fabrics offer the potential for higher temperature applications than current FTPS, and nicalon appears to be capable of withstanding temperatures well above 2500 degrees F with minimal degradation.

  12. Roofing as a source of nonpoint water pollution.

    PubMed

    Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R

    2004-12-01

    Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from new wood-shingle roofs were significantly higher than those from aged roofs of a previous study. The study demonstrated that roofs could be a serious source of nonpoint water pollution. Since Zn is the most serious water pollutant and wood shingle is the worst of the four roof types, using less compounds and materials associated with Zn along with good care and maintenance of roofs are critical in reducing Zn pollution in roof runoff. PMID:15531389

  13. Stationary DIANE equipment Description and performance of the thermal neutron source

    NASA Astrophysics Data System (ADS)

    Cluzeau, S.; Le Tourneur, P.

    1994-05-01

    A new neutron radiography facility using a GENIE 46 generator is now operating at SODERN (France). In contrast to the first mobile DIANE system working at IABG (Germany), this new version uses a stationary thermal neutron source. With this second equipment the performance has been significantly improved. Thanks to computer simulations and experimental thermal neutron cartography, progress has been made on neutron moderation/thermalization (combination of lead and HD polyethylene), extraction geometry, neutron and photon collimation. The results in terms of gamma ray and thermal neutron contents in the beam are reported.

  14. Effects of roof and rainwater characteristics on copper concentrations in roof runoff.

    PubMed

    Bielmyer, Gretchen K; Arnold, W Ray; Tomasso, Joseph R; Isely, Jeff J; Klaine, Stephen J

    2012-05-01

    Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R(2) = 0.873) accounted for slightly more variability than the equation with untransformed data (R(2) = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations. PMID:21713491

  15. The Envelope Thermal Test Unit (ETTU): Full Measurement of WallPerform ance

    SciTech Connect

    Sonderegger, R.C.; Sherman, M.H.; Adams, J.W.

    1981-10-01

    There are many ways of calculating the dynamic thermal performance of walls and many ways of measuring the performance of walls in the laboratory, relatively few field measurements have been made of the dynamic performance of wall in situ. Measuring the thermal performance of walls in situ poses two separate problems: measuring the heat fluxes and surface temperatures of the wall, and reducing this data set into usable parameters. We have solved the first problem by developing the Envelope Thermal Test Unit (ETTU). ETTU consists of two specially constructed polystyrene blankets, 1.2m square, placed on either side of the test wall that both control and measure the surface fluxes and surface temperatures of the wall. To solve the second problem we have developed a simplified dynamic model that describes the thermal performance of a wall in terms of its steady-state conductance, a time constant, and some storage terms. We have used ETTU in the field to measure the thermal performance of walls, and have applied our simplified analysis to calculate simplified thermal parameters from this data set. In this report, we present the in-situ measurements made to date using ETTU, and the resulting model predictions. The agreement between measured and predicted surface fluxes demonstrates the ability of our test unit and analytic model to describe the dynamic performance of walls in situ.

  16. The wind resistance of asphalt roofing shingles

    NASA Astrophysics Data System (ADS)

    Dixon, Craig Robert

    Asphalt shingle roofing is the leading cause of hurricane wind-related insured losses in residential buildings. Damage statistics generated from recent hurricanes indicate shingle roofs sustain damage in wind velocities below design-level with damage frequency increasing with shingle roof age. The objective of this dissertation is the identification of primary mechanisms triggering the failure of shingle roof systems in wind. The research goal is to reduce future shingle roof wind damage and improve our ability to predict asphalt shingle wind resistance. Five studies comprising this dissertation addressed the adhesive consistency and strength of aged asphalt shingles, system-level wind resistance, and the load model underpinning the ASTM D7158 wind test standard. The most significant and unexpected finding was partially unsealed shingles on field, hip, and ridge locations on Florida and Texas homes. Location on the shingle's sealant strip where unsealed and failure mode were consistent at each location. Total quantity of partially unsealed shingles in the field of the roof significantly increased with age, aligning with damage statistics. Full-scale wind tunnel tests demonstrate partially unsealed shingles are more vulnerable than fully sealed due to increased distributed force on sealant strip and concentrated force at the adhered and non-adhered interface. Uplift resistance was measured in artificially and naturally aged shingles. For artificially aged shingles, one of three products evaluated had statistically significant decreases in mean uplift resistance as exposure time increased. However, resistance was above design-level at all exposure test intervals. Naturally aged shingles also had resistance above design-level. Combined results demonstrate that reduced uplift capacity can occur, but high initial bond strength promotes long-term uplift resistance. Wind loads exerted on the shingles sealant strip load path were directly measured on fully sealed and partially unsealed three-tab and laminate shingles. Results indicate that ASTM D7158 and load model is conservative in force prediction for fully sealed shingles. ASTM D7158 is not conservative for partially unsealed shingles. Research concludes that partially unsealed shingles occur naturally and represent a large contributor to wind damage. Retrofit of existing shingle roofs and further work identifying specific cause will provide significant reduction of wind risk in shingle roofing.

  17. Thermal Impact of Fasteners in High-Performance Wood-Framed Walls

    SciTech Connect

    Dane Christensen

    2011-01-01

    This paper discusses high-performance wood-framed walls that use much less than 40% of the energy consumed by similar homes built to minimum code, and evaluates the thermal impact of fasteners used to construct these walls.

  18. Effects of aerodynamic heating and TPS thermal performance uncertainties on the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Maraia, R. J.

    1980-01-01

    A procedure for estimating uncertainties in the aerodynamic-heating and thermal protection system (TPS) thermal-performance methodologies developed for the Shuttle Orbiter is presented. This procedure is used in predicting uncertainty bands around expected or nominal TPS thermal responses for the Orbiter during entry. Individual flowfield and TPS parameters that make major contributions to these uncertainty bands are identified and, by statistical considerations, combined in a manner suitable for making engineering estimates of the TPS thermal confidence intervals and temperature margins relative to design limits. Thus, for a fixed TPS design, entry trajectories for future Orbiter missions can be shaped subject to both the thermal-margin and confidence-interval requirements. This procedure is illustrated by assessing the thermal margins offered by selected areas of the existing Orbiter TPS design for an entry trajectory typifying early flight test missions.

  19. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Klein, J.; Korotkov, A. L.; Matthews, T. G.; Moncelsi, L.; Mroczkowski, A.; Netterfield, C. B.; Novak, G.; Nutter, D.; Pascale, E.; Poidevin, F.; Savini, G.; Scott, D.; Shariff, Jamil A.; Thomas, N. E.; Truch, M. D.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2014-07-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully own in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  20. Contributions to the design of rainwater harvesting systems in buildings with green roofs in a Mediterranean climate.

    PubMed

    Monteiro, Cristina M; Calheiros, Cristina S C; Pimentel-Rodrigues, Carla; Silva-Afonso, Armando; Castro, Paula M L

    2016-01-01

    Green roofs (GRs) are becoming a trend in urban areas, favouring thermal performance of buildings, promoting removal of atmospheric pollutants, and acting as possible water collection spots. Rainwater harvesting systems in buildings can also contribute to the management of stormwater runoff reducing flood peaks. These technologies should be enhanced in Mediterranean countries where water scarcity is increasing and the occurrence of extreme events is becoming very significant, as a result of climate change. An extensive pilot GR with three aromatic plant species, Satureja montana, Thymus caespititius and Thymus pseudolanuginosus, designed to study several parameters affecting rainwater runoff, has been in operation for 12 months. Physico-chemical analyses of roof water runoff (turbidity, pH, conductivity, NH4(+), NO3(-), PO4(3-), chemical oxygen demand) have shown that water was of sufficient quality for non-potable uses in buildings, such as toilet flushing. An innovative approach allowed for the development of an expression to predict a 'monthly runoff coefficient' of the GR system. This parameter is essential when planning and designing GRs combined with rainwater harvesting systems in a Mediterranean climate. This study is a contribution to improving the basis for the design of rainwater harvesting systems in buildings with extensive GRs under a Mediterranean climate. PMID:27120638

  1. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  2. 15. DETAIL OF UNDERSIDE OF ROOF OF EAST PRIVY, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL OF UNDERSIDE OF ROOF OF EAST PRIVY, SHOWING FINIAL BASE AND RADIAL JOISTS, WITH SCALE; REVEALS ROOF SHEATHING CONFIGURATION (1987) - Poplar Forest, Privies, State Route 661, Forest, Bedford County, VA

  3. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  4. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  5. Interior view of the Sheet Metal Shop showing the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  6. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    ERIC Educational Resources Information Center

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  7. 5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ROOF OF ASSEMBLY AREA. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  8. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, H. P., Jr.; Doughty, G. E.

    1993-01-01

    A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.

  9. Thermal Plasmas: Influence of Current Modulation on Process Performance

    NASA Astrophysics Data System (ADS)

    Schein, Jochen

    2015-09-01

    Due to the widespread industrial use of thermal plasmas in the field of joining, cutting and the application of coatings new challenges arise owed to the advent of new materials or the drive to reduce cost or improve quality. These challenges may be met by using technological innovations like innovative fast power supplies. In the presence of strong gas flows and a fixed cathodic attachment the anode attachment position is determined by an unstable balance between the drag force on the plasma column exerted by the gas and the Lorentz Force due to the system's magnetic field distribution, leading to a constant arc motion and arc voltage fluctuation. Thus by supplying a sufficiently high and steep current pulse a re-positioning might be initiated by a sudden change of the Lorentz Force thus an externally controlled movement of the arc would be possible. In wire arc spraying a pulsed current is imposed upon the DC supply of the wire arc system. It is observed that steep current increases tend to produce sudden current drops, indicating a jump of the arc. For a certain pulse frequency this pulsing leads to a controlled motion of the arc along the electrode surfaces. Coatings produced with this technology exhibited a lower porosity than DC sprayed coatings and a lower oxide content. In collaboration with Alexander Atzberger and Michal Szulc, Universitaet der Bundeswehr Muenchen; Institute for plasma technology and mathematics (LPT) Neubiberg, Germany. This work was supported by AiF (Arbeitsgemeinschaft industrielle Forschung).

  10. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y203 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-20 percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  11. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y2O3 specimens survived 3000 of the 0.5 sec cycles with falling. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 1 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-2O percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  12. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8%Y2O3 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12%Y2O3 or ZrO2-20%Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  13. Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry.

    PubMed

    Gannon, Ruan; Taylor, Matthew D; Suthers, Iain M; Gray, Charles A; van der Meulen, Dylan E; Smith, James A; Payne, Nicholas L

    2014-09-01

    Theoretical and laboratory studies generally show that ectotherm performance increases with temperature to an optimum, and subsequently declines. Several physiological mechanisms probably shape thermal performance curves, but responses of free-ranging animals to temperature variation will represent a compromise between these mechanisms and ecological constraints. Thermal performance data from wild animals balancing physiology and ecology are rare, and this represents a hindrance for predicting population impacts of future temperature change. We used internally implanted accelerometers near the middle of a species' geographical distribution and gill-net catch data near the species' latitudinal extremes to quantify temperature-related activity levels of a wild predatory fish (Platycephalus fuscus). We examined our data in the context of established models of thermal performance, and the relationship between thermal performance thresholds and biogeography. Acceleration data approximated a thermal performance curve, with activity peaking at 23°C but declining rapidly at higher temperatures. Gill-net catch data displayed a similar trend, with a temperature-associated increase and decrease in catch rates in temperate and tropical regions, respectively. Extrapolated estimates of zero activity (CTmin and CTmax) from the accelerometers were similar to the minimum and maximum mean monthly water temperatures experienced at the southern and northern (respectively) limits of the species distribution, consistent with performance-limited biogeography in this species. These data highlight the fundamental influence of temperature on ectotherm performance, and how thermal performance limits may shape biogeography. Biologging approaches are rarely used to examine thermal performance curves in free-ranging animals, but these may be central to understanding the trade-offs between physiology and ecology that constrain species' biogeographies and determine the susceptibility of ectotherms to future increases in temperature. PMID:24948630

  14. Differential thermal performance curves in response to different habitats in the parasitoid Venturia canescens

    NASA Astrophysics Data System (ADS)

    Foray, Vincent; Gibert, Patricia; Desouhant, Emmanuel

    2011-08-01

    Environmental variability is expected to be important in shaping performance curves, reaction norms of phenotypic traits related to fitness. Models predict that the breadth of performance curves should increase with environmental variability at the expense of maximal performance. In this study, we compared the thermal performance curves of two sympatric populations of the parasitoid Venturia canescens that were observed under contrasting thermal regimes in their respective preferred habitats and differing in their modes of reproduction. Our results confirm the large effect of developmental temperature on phenotypic traits of insects and demonstrate that thelytokous and arrhenotokous wasps respond differently to temperature during development, in agreement with model predictions. For traits related to fecundity, thelytokous parasitoids, which usually occur in stable thermal conditions, exhibit specialist performance curves, maximising their reproductive success under a restricted range of temperature. In contrast, arrhenotokous parasitoids, which occur in variable climates, exhibit generalist performance curves, in keeping with the hypothesis "jack of all temperatures, master of none".

  15. Differential thermal performance curves in response to different habitats in the parasitoid Venturia canescens.

    PubMed

    Foray, Vincent; Gibert, Patricia; Desouhant, Emmanuel

    2011-08-01

    Environmental variability is expected to be important in shaping performance curves, reaction norms of phenotypic traits related to fitness. Models predict that the breadth of performance curves should increase with environmental variability at the expense of maximal performance. In this study, we compared the thermal performance curves of two sympatric populations of the parasitoid Venturia canescens that were observed under contrasting thermal regimes in their respective preferred habitats and differing in their modes of reproduction. Our results confirm the large effect of developmental temperature on phenotypic traits of insects and demonstrate that thelytokous and arrhenotokous wasps respond differently to temperature during development, in agreement with model predictions. For traits related to fecundity, thelytokous parasitoids, which usually occur in stable thermal conditions, exhibit specialist performance curves, maximising their reproductive success under a restricted range of temperature. In contrast, arrhenotokous parasitoids, which occur in variable climates, exhibit generalist performance curves, in keeping with the hypothesis "jack of all temperatures, master of none". PMID:21713525

  16. Thermal effects on human performance in office environment measured by integrating task speed and accuracy.

    PubMed

    Lan, Li; Wargocki, Pawel; Lian, Zhiwei

    2014-05-01

    We have proposed a method in which the speed and accuracy can be integrated into one metric of human performance. This was achieved by designing a performance task in which the subjects receive feedback on their performance by informing them whether they have committed errors, and if did, they can only proceed when the errors are corrected. Traditionally, the tasks are presented without giving this feedback and thus the speed and accuracy are treated separately. The method was examined in a subjective experiment with thermal environment as the prototypical example. During exposure in an office, 12 subjects performed tasks under two thermal conditions (neutral & warm) repeatedly. The tasks were presented with and without feedback on errors committed, as outlined above. The results indicate that there was a greater decrease in task performance due to thermal discomfort when feedback was given, compared to the performance of tasks presented without feedback. PMID:23871091

  17. Thermal Conductivity of UO2 Fuel: Predicting Fuel Performance from Simulation

    SciTech Connect

    Phillpot, Simon R.; El-Azab, Anter; Chernatynskiy, Aleksandr; Tulenko, James S.

    2011-08-19

    Recent progress in understanding the thermal-transport properties of UO₂ for fission reactors is reviewed from the perspective of computer simulations. A path to incorporating more accurate materials models into fuel performance codes is outlined. In particular, it is argued that a judiciously integrated program of atomic-level simulations and mesoscale simulations offers the possibility of both better predicting the thermal-transport properties of UO₂ in light-water reactors and enabling the assessment of the thermal performances of novel fuel systems for which extensive experimental databases are not available.

  18. Analytical and experimental investigations into the performance of a double-pass photovoltaic thermal solar collector

    NASA Astrophysics Data System (ADS)

    Sopian, Kamaruzzaman Bin

    This study presents analytical and experimental investigations of a double-pass photovoltaic thermal solar air collector. Photovoltaic thermal collector is a combination of thermal and photovoltaic systems. It generates both thermal and electrical energies simultaneously. An experimental setup of a double-pass photovoltaic thermal solar air collector was designed and fabricated to study the performance over a range of design and operating conditions. A set of steady-state energy balance equations was formulated for the two air streams, the glass cover, the photovoltaic panel, and the back-plate. These equations were reduced to a set of two differential equations, and a closed-form solution was obtained. Reasonably close agreements between the analytical and experimental results were obtained. This model was used to simulate the performance of larger double-pass photovoltaic thermal system by varying the photovoltaic length, packing factor, air mass flow rate and channel depth. The minimum area of the photovoltaic cell necessary to generate sufficient electrical energy to run the fan at a given mass flow rate was also calculated as a function of time for different configurations of the collector. Several important relationships between the design and operating conditions were obtained. These relationships affected the performance of the double-pass photovoltaic thermal solar collector. Hence, design curves for the photovoltaic thermal solar collector were developed. The designer would be able to predict the performance of the system using the design curves by selecting the required conditions. This includes the effects of changing the channel depth and air mass flow rate on the global solar radiation, thermal, photovoltaic and combined thermal photovoltaic efficiencies, and temperature rise of the collector. An economic optimization model was developed to study the effect of combinations of mass flow rates, photovoltaic panel length and channel depth on the cost-benefit ratio of the collector. The user could select the optimum design features that correspond to minimum cost-benefit ratio.

  19. Thermal and Mechanical Performance of a Carbon/Carbon Composite Spacecraft Radiator

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan; Benner, Steve; Butler, Dan; Silk, Eric

    1999-01-01

    Carbon-carbon composite materials offer greater thermal efficiency, stiffness to weight ratio, tailorability, and dimensional stability than aluminum. These lightweight thermal materials could significantly reduce the overall costs associated with satellite thermal control and weight. However, the high cost and long lead-time for carbon-carbon manufacture have limited their widespread usage. Consequently, an informal partnership between government and industrial personnel called the Carbon-Carbon Spacecraft Radiator Partnership (CSRP) was created to foster carbon-carbon composite use for thermally and structurally demanding space radiator applications. The first CSRP flight opportunity is on the New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, scheduled for launch in late 1999. For EO-1, the CSRP designed and fabricated a Carbon-Carbon Radiator (CCR) with carbon-carbon facesheets and aluminum honeycomb core, which will also serve as a structural shear panel. While carbon-carbon is an ideal thermal candidate for spacecraft radiators, in practice there are technical challenges that may compromise performance. In this work, the thermal and mechanical performance of the EO-1 CCR is assessed by analysis and testing. Both then-nal and mechanical analyses were conducted to predict the radiator response to anticipated launch and on-orbit loads. The thermal model developed was based on thermal balance test conditions. The thermal analysis was performed using SINDA version 4.0. Structural finite element modeling and analysis were performed using SDRC/1-DEAS and UAI/NASTRAN, respectively. In addition, the CCR was subjected to flight qualification thermal/vacuum and vibration tests. The panel meets or exceeds the requirements for space flight and demonstrates promise for future satellite missions.

  20. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers.

    PubMed

    McClean, M D; Rinehart, R D; Sapkota, A; Cavallari, J M; Herrick, R F

    2007-01-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs (tear-off), putting down new roofs (put-down), and operating the kettle at ground level (kettle). During multiple consecutive work shifts (90 workerdays), dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urine samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task (tear-off > put-down > kettle) and by the presence of an old coal tar pitch roof (pitch > no pitch). For each of the three analytes, the adjusted mean dermal exposures associated with tear-off (812 ng PAC/cm2, 14.9 ng pyrene/cm2, 4.5 ng BAP/cm2) were approximately four times higher than exposures associated with operating the kettle (181 ng PAC/cm2, 4.1 ng pyrene/cm2, 1.1 ng BAP/cm2). Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure (p = 0.0005), an 8-fold increase in pyrene exposure (p < 0.0001), and a 35-fold increase in BAP exposure (p < 0.0001). Similarly, urinary 1-OHP levels were found to be significantly higher on days when an old pitch roof was removed, accounting for a 3.7-fold difference at pre-shift (p = 0.01), a 5.0-fold difference at post-shift (p = 0.004), and a 7.2-fold difference at bedtime (p = 0.002). The pyrene measurements obtained during the work shift were found to be strongly correlated with urinary 1-OHP measurements obtained at the end of that shift (r = 0.8, p < 0.001) as well as at bedtime (r = 0.7, p < 0.001). Ultimately, the results of a distributed lag model indicated that dermal exposure during the preceding 40 hours had a statistically significant effect on urinary 1-OHP. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures. We found that dermal exposure was a significant determinant of total absorbed dose, suggesting that control strategies aimed at reducing occupational exposure to PACs should include an effort to minimize dermal exposure. PMID:17503278