Science.gov

Sample records for roof thermal performance

  1. Thermal Performance of Vegetative Roofing Systems

    SciTech Connect

    Desjarlais, Andre Omer; Zaltash, Abdolreza; Atchley, Jerald Allen; Ennis, Mike J

    2010-01-01

    Vegetative roofing, otherwise known as green or garden roofing, has seen tremendous growth in the last decade in the United States. The numerous benefits that green roofs provide have helped to fuel their resurgence in industrial and urban settings. There are many environmental and economical benefits that can be realized by incorporating a vegetative roof into the design of a building. These include storm-water retention, energy conservation, reduction in the urban heat island effect, increased longevity of the roofing membrane, the ability of plants to create biodiversity and filter air contaminants, and beautification of the surroundings by incorporating green space. The vegetative roof research project at Oak Ridge National Laboratory (ORNL) was initiated to quantify the thermal performance of various vegetative roofing systems relative to black and white roofs. Single Ply Roofing Institute (SPRI) continued its long-term commitment to cooperative research with ORNL in this project. Low-slope roof systems for this study were constructed and instrumented for continuous monitoring in the mixed climate of East Tennessee. This report summarizes the results of the annual cooling and heating loads per unit area of three vegetative roofing systems with side-by-side comparison to black and white roofing systems as well as a test section with just the growing media without plants. Results showed vegetative roofs reduced heat gain (reduced cooling loads) compared to the white control system due to the thermal mass, extra insulation, and evapo-transpiration associated with the vegetative roofing systems. The 4-inch and tray systems reduced the heat gain by approximately 61%, while the reduction with the 8-inch vegetative roof was found to be approximately 67%. The vegetative roofing systems were more effective in reducing heat gain than in reducing heat losses (heating loads). The reduction in heat losses for the 4-inch and tray systems were found to be approximately 40% in the mixed climate of East Tennessee. It should be noted that these values are climate dependent. Vegetative roofs also reduced the temperature (heat exposure) and temperature fluctuations (thermal stress) experienced by the membrane. In the cooling season of East Tennessee, the average peak temperature of the 4-inch and tray systems was found to be approximately 94 F cooler than the control black roofing system. The average temperature fluctuations at the membrane for the 4-inch and tray systems were found to be approximately 10 F compared to 125 F for black and 64 F for white systems. As expected, the 8-inch vegetative roof had the lowest fluctuations at approximately 2 F. Future work will include modeling of the energy performance of vegetative roof panels in the test climate of East Tennessee. The validated model then will be used to predict energy use in roofs with different insulation levels and in climates different from the test climate.

  2. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE PAGESBeta

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore »inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  3. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    SciTech Connect

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and the inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.

  4. Numerical evaluation of the thermal performances of roof-mounted radiant barriers

    E-print Network

    Miranville, Frédéric; Lucas, Franck; Johan, Seriacaroupin

    2014-01-01

    This paper deals with the thermal performances of roof-mounted radiant barriers. Using dynamic simulations of a mathematical model of a whole test cell including a radiant barrier installed between the roof top and the ceiling, the thermal performance of the roof is calculated. The mean method is more particularly used to assess the thermal resistance of the building component and lead to a value which is compared to the one obtained for a mass insulation product such as polyurethane foam. On a further stage, the thermal mathematical model is replaced by a thermo-aeraulic model which is used to evaluate the thermal resistance of the roof as a function of the airflow rate. The results shows a better performance of the roof in this new configuration, which is widely used in practice. Finally, the mathematical relation between the thermal resistance and the airflow rate is proposed.

  5. Comparative Summer Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles 

    E-print Network

    Parker, D. S.; Sherwin, J.; Sonne, J.

    2004-01-01

    Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles Danny Parker John Sherwin Jeff Sonne Florida Solar Energy Center 1679 Clearlake Rd, Cocoa, FL 32922..., 1995). Testing has also compared reflective roofing, radiant barriers and sealed attic construction (Parker and Sherwin, 1998). Our tests in 2002 addressed the following questions: ? What is the performance (ceiling flux and attic air...

  6. A parametric study of the thermal performance of green roofs in different climates through energy modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sananda

    In recent years, there has been great interest in the potential of green roofs as an alternative roofing option to reduce the energy consumed by individual buildings as well as mitigate large scale urban environmental problems such as the heat island effect. There is a widespread recognition and a growing literature of measured data that suggest green roofs can reduce building energy consumption. This thesis investigates the potential of green roofs in reducing the building energy loads and focuses on how the different parameters of a green roof assembly affect the thermal performance of a building. A green roof assembly is modeled in Design Builder- a 3D graphical design modeling and energy use simulation program (interface) that uses the EnergyPlus simulation engine, and the simulated data set thus obtained is compared to field experiment data to validate the roof assembly model on the basis of how accurately it simulates the behavior of a green roof. Then the software is used to evaluate the thermal performance of several green roof assemblies under three different climate types, looking at the whole building energy consumption. For the purpose of this parametric simulation study, a prototypical single story small office building is considered and one parameter of the green roof is altered for each simulation run in order to understand its effect on building's energy loads. These parameters include different insulation thicknesses, leaf area indices (LAI) and growing medium or soil depth, each of which are tested under the three different climate types. The energy use intensities (EUIs), the peak and annual heating and cooling loads resulting from the use of these green roof assemblies are compared with each other and to a cool roof base case to determine the energy load reductions, if any. The heat flux through the roof is also evaluated and compared. The simulation results are then organized and finally presented as a decision support tool that would facilitate the adoption and appropriate utilization of green roof technologies and make it possible to account for green roof benefits in energy codes and related energy efficiency standards and rating systems such as LEED.

  7. Effect of Surface Mass on Roof Thermal Performance 

    E-print Network

    Wilkes, K. E.; Shipp, P. H.; Sanders, J. P.

    1988-01-01

    net heat flow through the roof. This paper presents some results of a combined experimental and analytical study to quantify the effects of surface mass. Measurements were made on roof test panels that were exposed to the weather of eastern Tennessee...

  8. Performance-based development of a thermally insulated pitched roof system

    SciTech Connect

    Hens, H.

    1998-12-31

    Tiled and slated roofs in Western Europe are constructed using rafters, an underlay, counter-battens, and battens. Once the tiles or slates are fixed, thermal insulation, in most cases mineral fiber, is inserted between the rafters, a vapor and air barrier added, and the pitch finished with an internal lining. Although simple, construction nevertheless requires extra skill. Also, the hygrothermal performance is quite sensitive to poor workmanship. This paper describes development of a new pitched roof, with the vapor retarder, thermal insulation, air retarder, and weatherproofing layer combined into one composite. This composite is fixed directly on the rafters. Performance requirements are adequate mechanical strength, high thermal resistance, good airtightness, correct moisture response, minimum thermal bridging, acceptable acoustical insulation, and acceptable fire resistance. The paper discusses the design process, with emphasis on the heat-, moisture-, and air-related aspects.

  9. Thermal Performance of Exposed Composed Roofs in Very Hot Dry Desert Region in Egypt (Toshky) 

    E-print Network

    Khalil, M. H.; Sheble, S.; Morsey, M. S.; Fakhry, S.

    2010-01-01

    is considered the major part of the building envelop which exposed to high thermal load due to the high solar intensity and high outdoor air temperature through summer season which reach to 6 months. In Egypt the thermal effect of roof is increased as one go...

  10. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-10-01

    Asphalt is used extensively in roofing applications. Traditionally, it is used in a built-up roof system, where four or five plies are applied in conjunction with asphalt. This is labour intensive and requires good quality assurance on the roof top. Alternatively, asphalt can be used in a polymer-modified sheet where styrene-butadiene-styrene (SBS) or atactic polypropylene (APP) are added to the asphalt shipped in a roll where reinforcement (e.g., glass fibre mat) has been added. Regardless of the system used, the roof must be able to withstand the environmental loads such UV, heat, etc. Thermoanalytical techniques such as DSC, DMA, TMA and TG/DTA are ideally suited to monitor the weathering of asphalt. This paper presents data obtained using these techniques and shows how the performance of asphalt-based roof systems can be followed by thermal analysis.

  11. The impact of roofing material on building energy performance

    NASA Astrophysics Data System (ADS)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation, fenestration, etc. and their thermal insulation energy performance value will not be included this study. Five different UAB campus buildings with the same reinforced concrete structure (RC Structure), each having a different roofing material were selected, surveyed, analyzed, and evaluated in this study. Two primary factors are considered in this evaluation: the energy consumption and utility bills. The data has been provided by the UAB Facilities Management Department and has been monitored from 2007 to 2013 using analysis of variance (ANOVA) and t-test methods. The energy utilities examined in this study involved electricity, domestic water, and natural gas. They were measured separately in four different seasons over a seven-year time period. The building roofing materials consisted of a green roof, a white (reflective) roof, a river rock roof, a concrete paver roof, and a traditional black roof. Results of the tested roofs from this study indicate that the white roof is the most energy efficient roofing material.

  12. Energy Performance Aspects of a Florida Green Roof 

    E-print Network

    Sonne, J.

    2006-01-01

    OF A FLORIDA GREEN ROOF Jeffrey K. Sonne Senior Research Engineer Florida Solar Energy Center Cocoa, FL ABSTRACT Previous green roof studies have found that planted roofs significantly reduce roof temperatures and roof heat flux..., and simulations indicate cooling load reductions of up to 25%. This monitored study evaluates summer and winter energy performance aspects of a green roof on a central Florida university building addition that was completed in 2005. Analysis of 2005...

  13. PERFORMANCE OF AN EARTHQUAKE EXCITED ROOF DIAPHRAGM.

    USGS Publications Warehouse

    Celebi, M.; Brady, G.; Safak, E.; Converse, A.

    1986-01-01

    The objective of this paper is to study the earthquake performance of the roof diaphragm of the West Valley College gymnasium in Saratoga, California through a complete set of acceleration records obtained during the 24 April 1984 Morgan Hill Earthquake (M equals 6. 1). The roof diaphragm of the 112 ft. multiplied by 144 ft. rectangular, symmetric gymnasium consists of 3/8 in. plywood over tongue-and-groove sheathing attached to steel trusses supported by reinforced concrete columns and walls. Three sensors placed in the direction of each of the axes of the diaphragm facilitate the evaluation of in-plane deformation of the diaphragm. Other sensors placed at ground level measure vertical and horizontal motion of the building floor, and consequently allow the calculation of the relative motion of the diaphragm with respect to the ground level.

  14. UAB's four campus buildings featuring green vegetative roofs have performed

    E-print Network

    Bedwell, David M.

    UAB's four campus buildings featuring green vegetative roofs have performed well through the years vegetative roof on the second floor of the Hill University Center. The roof is the first pilot-scale green and evergreens, and they're all butterfly attractors. We expect to see birds and insects around. It's going

  15. Metal roofing Shingle roofing

    E-print Network

    Hutcheon, James M.

    Metal roofing panel Shingle roofing Water & ice barrier Thermal Barrier Plywood Student: Arpit a cost benefit analysis and choose the most efficient and cost effective modification. Metal or shingle roof with only a water barrier between the plywood and the roofing panels. Metal roofing panel Shingle

  16. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    NASA Astrophysics Data System (ADS)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  17. Evaluation on Thermal Behavior of a Green Roof Retrofit System Installed on Experimental Building in Composite Climate of Roorkee, India

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Deoliya, Rajesh; Chani, P. S.

    2015-10-01

    Green roofs not only provide cooling by shading, but also by transpiration of water through the stomata. However, the evidence for green roofs providing significant air cooling remains limited. No literature investigates the thermal performance of prefab brick panel roofing technology with green roof. Hence, the aim of this research is to investigate the thermal behavior of an experimental room, built at CSIR-Central Building Research Institute (CBRI) campus, Roorkee, India using such roofing technology during May 2013. The study also explores the feasibility of green roof with grass carpets that require minimum irrigation, to assess the expected indoor thermal comfort improvements by doing real-time experimental studies. The results show that the proposed green roof system is suitable for reducing the energy demand for space cooling during hot summer, without worsening the winter energy performance. The cost of proposed retrofit system is about Rs. 1075 per m2. Therefore, green roofs can be used efficiently in retrofitting existing buildings in India to improve the micro-climate on building roofs and roof insulation, where the additional load carrying capacity of buildings is about 100-130 kg/m2.

  18. Analysis of asphalt-based roof systems using thermal analysis

    SciTech Connect

    Paroli, R.M.; Delgado, A.H.

    1996-12-31

    Asphalt has been used in the construction of roads and houses for thousands of years. The properties of asphalt has rendered it quite useful in roofing and waterproofing applications. The most popular use of asphalt in industrial roofing is in the form of a built-up roof or modified-bituminous sheet. This type of roof consists of asphalt, reinforcement and aggregate which is used to protect the asphalt from ultraviolet rays. All materials have their weaknesses and asphalt is no exception. A good asphalt (e.g., low asphaltene content) must be used to ensure the quality and low-temperature performance of roofing asphalts. Polymer additives can be added. The objective of this work was to demonstrate the utility of termogravimetry and dynamic mechanical analysis in establishing the durability of modified bituminous membranes.

  19. Thermal Infrared Inspection of Roof Insulation Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Jung, J.; Sohn, G.; Cohen, M.

    2015-08-01

    UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the proposed method.

  20. Roof heat loss detection using airborne thermal infrared imagery

    NASA Astrophysics Data System (ADS)

    Kern, K.; Bauer, C.; Sulzer, W.

    2012-12-01

    As part of the Austrian and European attempt to reduce energy consumption and greenhouse gas emissions, thermal rehabilitation and the improvement of the energy efficiency of buildings became an important topic in research as well as in building construction and refurbishment. Today, in-situ thermal infrared measurements are routinely used to determine energy loss through the building envelope. However, in-situ thermal surveys are expensive and time consuming, and in many cases the detection of the amount and location of waste heat leaving building through roofs is not possible with ground-based observations. For some years now, a new generation of high-resolution thermal infrared sensors makes it possible to survey heat-loss through roofs at a high level of detail and accuracy. However, to date, comparable studies have mainly been conducted on buildings with uniform roof covering and provided two-dimensional, qualitative information. This pilot study aims to survey the heat-loss through roofs of the buildings of the University of Graz (Austria) campus by using high-resolution airborne thermal infrared imagery (TABI 1800 - Thermal Airborne Broadband imager). TABI-1800 acquires data in a spectral range from 3.7 - 4.8 micron, a thermal resolution of 0.05 °C and a spatial resolution of 0.6 m. The remote sensing data is calibrated to different roof coverings (e.g. clay shingle, asphalt shingle, tin roof, glass) and combined with a roof surface model to determine the amount of waste heat leaving the building and to identify hot spots. The additional integration of information about the conditions underneath the roofs into the study allows a more detailed analysis of the upward heat flux and is a significant improvement of existing methods. The resulting data set provides useful information to the university facility service for infrastructure maintenance, especially in terms of attic and roof insulation improvements. Beyond that, the project is supposed to raise public awareness in the context of climate-neutral actions, and in a long run, contribute to significantly reduce energy consumption and GHG emissions.

  1. Performance of dryland and wetland plant species on extensive green roofs

    PubMed Central

    MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.

    2011-01-01

    Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions. PMID:21292676

  2. Hygrothermal Performance of West Coast Wood Deck Roofing System

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred; Desjarlais, Andre Omer

    2014-02-01

    Simulations of roofing assemblies are necessary in order to understand and adequately predict actual the hygrothermal performance. At the request of GAF, simulations have been setup to verify the difference in performance between white and black roofing membrane colors in relation to critical moisture accumulation for traditional low slope wood deck roofing systems typically deployed in various western U.S. Climate Zones. The performance of these roof assemblies has been simulated in the hygrothermal calculation tool of WUFI, from which the result was evaluated based on a defined criterion for moisture safety. The criterion was defined as the maximum accepted water content for wood materials and the highest acceptable moisture accumulation rate in relation to the risk of rot. Based on the criterion, the roof assemblies were certified as being either safe, risky or assumed to fail. The roof assemblies were simulated in different western climates, with varying insulation thicknesses, two different types of wooden decking, applied with varying interior moisture load and with either a high or low solar absorptivity at the roof surface (black or white surface color). The results show that the performance of the studied roof assemblies differs with regard to all of the varying parameters, especially the climate and the indoor moisture load.

  3. System for monitoring of green roof performance: use of weighing roof segment and non-invasive visualization

    NASA Astrophysics Data System (ADS)

    Jelinkova, Vladmira; Dohnal, Michal; Picek, Tomas; Sacha, Jan

    2015-04-01

    Understanding the performance of technogenic substrates for green roofs is a significant task in the framework of sustainable urban planning and water/energy management. The potential retention and detention of the anthropogenic, light weight soil systems and their temporal soil structure changes are of major importance. A green roof test segment was built to investigate the benefits of such anthropogenic systems. Adaptable low-cost system allows long-term monitoring of preferred characteristics. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the substrates provide basis for detailed analysis of thermal and hydrological regime in green roof systems. The first results confirmed the benefits of green roof systems. The reduction of temperature fluctuations as well as rainfall runoff was significant. Depending on numerous factors such substrate material or vegetation cover the test green roof suppressed the roof temperature amplitude for the period analyzed. The ability to completely prevent (light rainfall events) or reduce and delay (medium and heavy rainfall events) the peak runoff was also analyzed. Special attention is being paid to the assessment of soil structural properties related to possible aggregation/disaggregation, root growth, weather conditions and associated structural changes using non-invasive imaging method. X-ray computed microtomography of undisturbed soil samples (taken from experimental segments) is used for description of pore space geometry, evaluation of surface to volume ratio, additionally for description of cracks and macropores as a product of soil flora and fauna activity. The information from computed tomography imaging will be used for numerical modeling of water flow in variable saturated porous media. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  4. The Impact of Above-Sheathing Ventilation on the Thermal and Moisture Performance of Steep-Slope Residential Roofs and Attics 

    E-print Network

    Miller, W.; Karagiozis, A.; Wilson, J.

    2006-01-01

    , California Achilles Karagiozis Research Scientist Oak Ridge National Laboratory Oak Ridge, Tennessee ABSTRACT Field studies were conducted on several attic assemblies having stone-coated metal shake roofs with and without infrared blocking color... the energy savings and durability of stone-coated metal roofs with shake and S-mission profiles. Stone-coated metal is made from pre-primed 26-gauge galvanized steel that is coated with a layer of stone chips (Figure 1). An acrylic base coat...

  5. UGA DESIGN & CONSTRUCTION SUPPLEMENTAL GENERAL REQUIREMENTS & STANDARDS GENERAL THERMAL & MOISTURE PROTECTION REQUIREMENTS ROOF DRAINS & ROOFS

    E-print Network

    Arnold, Jonathan

    iii. 07 41 10 ­ Cooper & Zinc Sheet Metal Roofing iv. 07 41 20 ­ Steel Standing Seam Metal Roofing v vi. 07 54 23 ­ Thermoplastic Polyolefin Roofing vii. 07 62 00 ­ Sheet Metal Flashing viii. 07 71 23 for most new construction is slate or synthetic slate (non-rusticated thin profile). Due to budget

  6. The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems

    SciTech Connect

    Miller, William A

    2013-01-01

    Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations of surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.

  7. Modelling of green roof hydrological performance for urban drainage applications

    NASA Astrophysics Data System (ADS)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Bergen Jensen, Marina; Binning, Philip John

    2014-11-01

    Green roofs are being widely implemented for stormwater management and their impact on the urban hydrological cycle can be evaluated by incorporating them into urban drainage models. This paper presents a model of green roof long term and single event hydrological performance. The model includes surface and subsurface storage components representing the overall retention capacity of the green roof which is continuously re-established by evapotranspiration. The runoff from the model is described through a non-linear reservoir approach. The model was calibrated and validated using measurement data from 3 different extensive sedum roofs in Denmark. These data consist of high-resolution measurements of runoff, precipitation and atmospheric variables in the period 2010-2012. The hydrological response of green roofs was quantified based on statistical analysis of the results of a 22-year (1989-2010) continuous simulation with Danish climate data. The results show that during single events, the 10 min runoff intensities were reduced by 10-36% for 5-10 years return period and 40-78% for 0.1-1 year return period; the runoff volumes were reduced by 2-5% for 5-10 years return period and 18-28% for 0.1-1 year return period. Annual runoff volumes were estimated to be 43-68% of the total precipitation. The peak time delay was found to greatly vary from 0 to more than 40 min depending on the type of event, and a general decrease in the time delay was observed for increasing rainfall intensities. Furthermore, the model was used to evaluate the variation of the average annual runoff from green roofs as a function of the total available storage and vegetation type. The results show that even a few millimeters of storage can reduce the mean annual runoff by up to 20% when compared to a traditional roof and that the mean annual runoff is not linearly related to the storage. Green roofs have therefore the potential to be important parts of future urban stormwater management plans.

  8. The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Lemonsu, A.; Bouzouidja, R.; Masson, V.; Claverie, R.

    2013-11-01

    The need to prepare cities for climate change adaptation requests the urban modeller community to implement sustainable adaptation strategies within their models to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, the GREENROOF module for TEB (town energy balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module, which combines the ISBA model (Interaction between Soil Biosphere and Atmosphere) and TEB, allows for one to describe an extensive green roof composed of four functional layers (vegetation - grasses or sedums; substrate; retention/drainage layers; and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological fluxes throughout the substrate and the drainage layers, and the thermal fluxes throughout the natural and artificial layers of the green roof. TEB-GREENROOF (SURFEX v7.3) should therefore be able to represent the impact of climate forcings on the functioning of green roof vegetation and, conversely, the influence of the green roof on the local climate. An evaluation of GREENROOF is performed for a case study located in Nancy (France) which consists of an instrumented extensive green roof with sedums and substrate and drainage layers that are typical of this kind of construction. After calibration of the drainage layer hydrological characteristics, model results show good dynamics for the substrate water content and the drainage at the green roof base, with nevertheless a tendency to underestimate the water content and overestimate the drainage. This does not impact too much the green roof temperatures, which present a good agreement with observations. Nonetheless GREENROOF tends to overestimate the soil temperatures and their amplitudes, but this effect is less important in the drainage layer. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB - TEB-BEM. Moreover, with the green roof studied for GREENROOF evaluation being a type of extensive green roof widespread in cities, the type of hydrological characteristics highlighted for the case study will be used as the standard configuration to model extensive green roof impacts at the scale of cities.

  9. The GREENROOF module (v7.3) for modelling green roof hydrological and energetic performances within TEB

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Lemonsu, A.; Bouzouidja, R.; Masson, V.; Claverie, R.

    2013-02-01

    The need to prepare cities for climate change adaptation requests the urban modeller community to implement within their models sustainable adaptation strategies to be tested against specific city morphologies and scenarios. Greening city roofs is part of these strategies. In this context, a GREENROOF module for TEB (Town Energy Balance) has been developed to model the interactions between buildings and green roof systems at the scale of the city. This module allows one to describe an extensive green roof composed of four functional layers (vegetation - grasses or sedums, substrate, retention/drainage layers and artificial roof layers) and to model vegetation-atmosphere fluxes of heat, water and momentum, as well as the hydrological and thermal fluxes throughout the substrate and the drainage layers, and the thermal coupling with the structural building envelope. TEB-GREENROOF (v7.3) is therefore able to represent the impact of climate forcings on the functioning of the green roof vegetation and, conversely, the influence of the green roof on the local climate. A calibration exercise to adjust the model to the peculiar hydrological characteristics of the substrates and drainage layers commonly found on green roofs is performed for a case study located in Nancy (France) which consists of an extensive green roof with sedums. Model results for the optimum hydrological calibration show a good dynamics for the substrate water content which is nevertheless under-estimated but without impacting too much the green roof temperatures since they present a good agreement with observations. These results are encouraging with regard to modelling the impact of green roofs on thermal indoor comfort and energy consumption at the scale of cities, for which GREENROOF will be running with the building energy version of TEB, TEB-BEM. Moreover, the green roof studied for GREENROOF evaluation being a city-widespread type of extensive green roof, the hydrological characteristics derived through the evaluation exercise will be used as the standard configuration to model extensive green roofs at the scale of cities.

  10. VEGETATED ROOFS FOR URBAN ECOSYSTEM REMEDIATION: PERFORMANCE AND POLICY IN THE TANYARD BRANCH WATERSHED

    E-print Network

    Radcliffe, David

    for small #12;storm events. A benefit-cost analysis (BCA) was also performed for the life cycle of the green green roof life cycle costs to below traditional roofing costs. A green roof policy was developed tool for increased sustainability in highly developed urban areas. INDEX WORDS: urban ecology

  11. Energy Performance Aspects of a Florida Green Roof Part 2 

    E-print Network

    Sonne, J.; Parker, D.

    2008-01-01

    of the Sixteenth Symposium on Improving Building Systems in Hot and Humid Climates, Plano, TX, December 15-17, 2008 3 gymnasium by over 35 o F and summertime heat flow through the roof by 70% to 90% compared with a conventional roof on the same building 5... surface thermocouples were attached to the membrane with a structural sealant and the three conventional roof sensors were painted to match the roof color as closely as possible. Meteorological measurements include ambient air temperature, total...

  12. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating that higher evapotranspiration rates compensated for the higher net radiation at the green roof. PMID:25613772

  13. Minimal watering regime impacts on desert adapted green roof plant performance

    NASA Astrophysics Data System (ADS)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and soil moisture readings on each green roof to analyze the spatial and temporal covariance of water and temperature. We link these patterns in soil moisture to measures of plant performance with weekly hyperspectral images (NDVI - Normalized Difference Vegetation Index) of each green roof. The data will allow us to determine the minimal amount of water use required for successful green roofs and healthy green roof plants. Preliminary data from a five week pilot study in the 2011 summer monsoon has shown a variation in NDVI by species. H. parviflora displayed the highest NDVI values, while D. pentachaeta and C. eriophylla shared similar, lower NDVI values. In general, the comparison of soil moisture and NDVI values expressed a very weak positive relationship but stronger species specific responses. D. pentachaeta demonstrated the strongest response to soil water and H. parviflora displayed the weakest response.

  14. Thermal and optical characterization of natural and artificial marble for roof and external floor installations

    NASA Astrophysics Data System (ADS)

    Asdrubali, F.; Baldinelli, G.; Bianchi, F.; Presciutti, A.; Rossi, F.; Schiavoni, S.

    2015-11-01

    Some types of buildings need to use certain materials for aesthetic reasons, like churches or mosques. Marble is one of the most common materials usually installed on roofs and floors. The measurement of the thermal and optical characteristics can be useful to understand its behaviour when it is subjected to thermal loads such as solar radiation or high temperature winds. The paper shows a comparison study between natural and artificial types of marble, to investigate the thermal characteristics both in steady-state and transient conditions. Optical properties and surface emissivity were evaluated, in order to calculate the Solar Reflectance Index (SRI); the specific heat, the thermal conductivity and the density were measured to define the thermophysical properties useful for the dynamic analysis. Finally, a test bench was created to check the marble behaviour under known artificial irradiation.

  15. Experimental data showing the thermal behavior of a flat roof with phase change material

    PubMed Central

    Tokuç, Ayça; Ba?aran, Tahsin; Yesügey, S. Cengiz

    2015-01-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid–liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Ba?aran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91–104. PMID:26629490

  16. Experimental data showing the thermal behavior of a flat roof with phase change material.

    PubMed

    Tokuç, Ayça; Ba?aran, Tahsin; Yesügey, S Cengiz

    2015-12-01

    The selection and configuration of building materials for optimal energy efficiency in a building require some assumptions and models for the thermal behavior of the utilized materials. Although the models for many materials can be considered acceptable for simulation and calculation purposes, the work for modeling the real time behavior of phase change materials is still under development. The data given in this article shows the thermal behavior of a flat roof element with a phase change material (PCM) layer. The temperature and energy given to and taken from the building element are reported. In addition the solid-liquid behavior of the PCM is tracked through images. The resulting thermal behavior of the phase change material is discussed and simulated in [1] A. Tokuç, T. Ba?aran, S.C. Yesügey, An experimental and numerical investigation on the use of phase change materials in building elements: the case of a flat roof in Istanbul, Build. Energy, vol. 102, 2015, pp. 91-104. PMID:26629490

  17. Green Roofs

    SciTech Connect

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  18. Environmental assessment of extensive green roofs in the UK

    NASA Astrophysics Data System (ADS)

    Ruan, Fei

    The advantages of the planted roofs are undoubtedly numerous from both the ecological and the social point of view. They act positively upon the climate of the city and its region, as well as upon the interior climate of the building beneath them. This dissertation, therefore, explores the environmental performance of the extensive green roofs in UK. The investigation was implemented in two phases: during the first phase, detailed introduction of green roofs with the emphasis on their thermal properties and behavior is provided with the support of literature review evidence. During the second phase of the study, the thermal properties of the green roof, as well as, the energy saving were examined, through two computer programs: Wufi and TAS. Two hypothetic models have been developed in these programs to evaluate thermal and energy performances of a building with a green roof, varying different parameters for the green roof or changing different internal condition for the building. The main conclusion of these analyses is that two parameters: vegetation solar absorptivity and water content of green roofs play significant role in the thermal performance of green roofs. Lower vegetation solar absorptivity and higher water content will help green roofs to further reduce the external heat flux and summer inward heat flux which consequently mitigate the urban heat island effect and summer energy consumption. On the other hand, in comparison with the traditional roofs, green roofs appear to have less heating loads but higher cooling loads when internal gain is higher. Finally, when comparing Wufi results to TAS results, both represent that featured as lower solar absorptivity and higher insulation value, green roofs do alleviate the urban heat island effect and reduce the heat flux through the roof. Nevertheless, by taking account of evaporative cooling effect of green roofs, Wufi provides a more accurate approach to simulate the performance of green roofs

  19. Assessment of a fiber-optic distributed-temperature-sensing system to monitor the thermal dynamics of vegetated roof

    NASA Astrophysics Data System (ADS)

    Cousiño, J. A.; Hausner, M. B.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.; Suarez, F. I.

    2014-12-01

    Vegetated (green) roofs include a growing media and vegetation layer, and offer a range of benefits such as the reduction of: the heat island effect, rooftop runoff peak flows, roof surface temperatures, energy used for cooling or heating buildings, and noise levels inside infrastructures. Vegetated roofs also offer aesthetic benefits and increase the biodiversity of the urban environment, and are increasingly used in sustainable urban development. Understanding the thermal dynamics of vegetated roofs will make it possible to improve their design and to better assess their impacts on energy efficiency. Here, we evaluate the first vertical high-resolution distributed-temperature-sensing (DTS) system installed in a vegetated roof. This system allows a continuous measurement of the thermal profile within a vegetated roof - going from the interior, upward through the drainage layers and soil substrate of the vegetated roof and ending in the air above the vegetation. Temperatures can be observed as frequently as every 30 s at a spatial resolution on the order of centimeters. This DTS system was installed in the "Laboratory of Vegetal Infrastructure of Buildings" (LIVE - its acronym in Spanish), located in the San Joaquín Campus of the Pontifical Catholic University, Santiago, Chile. The laboratory features 18 experimental modules to investigate different configurations of the vegetated roof layers. The LIVE was designed with the installation of the optical fibers in mind, and the DTS system allows simultaneous monitoring of three or four modules of the LIVE. In this work, we describe the design of this DTS deployment, the calibration metrics obtained using the software provided by the manufacturers, and other calibration algorithms previously developed. We compare the results obtained using single- and double-ended measurements, highlighting strengths and weaknesses of DTS methods. Finally, we present the observations obtained from this biophysical environment highlighting the features that are harder to observe using more traditional methods to measure temperature.

  20. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  1. Effect of roof slope and thickness on the performance of a saltstone vault

    SciTech Connect

    Yu, A.D.; Lam, Poh-Sang; Hsu, R.H.

    1995-09-01

    At the Savannah River Site, low-level radioactive decontaminated salt solution is mixed with slag, flyash, and cement to form a grout-like material called ``Saltstone.`` The Saltstone is poured into concrete vaults constructed at the Saltstone Disposal Facility (SDF). The SDF is designed for the release of contaminants in a slow, controlled manner over thousands of years. The impact of SDF on groundwater has been studied in a radiological performance assessment (PA). Groundwater models were used to predict the fluid flow and contaminant transport at SDF. The models predicted a spatial contaminant concentration distribution in groundwater as a function of time. This study focuses on the roof configuration of Saltstone vault, with special interests in cost-effectiveness. We conducted a study to evaluate the effect of roof slope and thickness on the performance of a Saltstone vault. Four roof configurations were simulated. The tool used for the simulation was ECLIPSE, a finite-difference petroleum reservoir engineering code with an environmental tracer option. Nitrate was used as the ``tracer`` contaminant. In this study, ECLIPSE solves the two-phase two-dimensional flow and transport problem up to 10,000 years. This paper describes a modeling study used to evaluate roof design options for the Saltstone vault.

  2. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of the study. The market potential is enhanced through construction activity levels in target marke

  3. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    SciTech Connect

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  4. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations.

    PubMed

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-01

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. PMID:25603968

  5. Plant performance on Mediterranean green roofs: interaction of species-specific hydraulic strategies and substrate water relations

    PubMed Central

    Raimondo, Fabio; Trifilò, Patrizia; Lo Gullo, Maria A.; Andri, Sergio; Savi, Tadeja; Nardini, Andrea

    2015-01-01

    Recent studies have highlighted the ecological, economic and social benefits assured by green roof technology to urban areas. However, green roofs are very hostile environments for plant growth because of shallow substrate depths, high temperatures and irradiance and wind exposure. This study provides experimental evidence for the importance of accurate selection of plant species and substrates for implementing green roofs in hot and arid regions, like the Mediterranean area. Experiments were performed on two shrub species (Arbutus unedo L. and Salvia officinalis L.) grown in green roof experimental modules with two substrates slightly differing in their water retention properties, as derived from moisture release curves. Physiological measurements were performed on both well-watered and drought-stressed plants. Gas exchange, leaf and xylem water potential and also plant hydraulic conductance were measured at different time intervals following the last irrigation. The substrate type significantly affected water status. Arbutus unedo and S. officinalis showed different hydraulic responses to drought stress, with the former species being substantially isohydric and the latter one anisohydric. Both A. unedo and S. officinalis were found to be suitable species for green roofs in the Mediterranean area. However, our data suggest that appropriate choice of substrate is key to the success of green roof installations in arid environments, especially if anisohydric species are employed. PMID:25603968

  6. Evaluation of Green Roof Water Quantity and Quality Performance in an Urban Climate

    EPA Science Inventory

    In this report we present an analysis of water benefits from an array of observed green roof and control (non-vegetated) roof project sites throughout NYC. The projects are located on a variety of building sites and represent a diverse set of available extensive green roof instal...

  7. Research on the Effect of a Planting Roof on the Thermal Load of a Business Building 

    E-print Network

    Zhang, W.; Wu, J.; Wei, Y.; Gao, X.

    2006-01-01

    ”, the discharge amount reduction of sensible heat to outdoor atmosphere in summer, and the yearly discharge amount reduction of greenhouse gases to the outdoor atmosphere from air conditioning system due to the planting roof are also predicted. A corresponding...

  8. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Childs, Phillip W; Kosny, Jan; Kriner, Scott

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize thermal stresses due to the PV laminates on sunny days. In PV laminates sunlight is converted into electricity and heat simultaneous. In case of building integrated applications, a relatively high solar absorption of amorphous silicon laminates can be utilized during the winter for solar heating purposes with PCM providing necessary heat storage capacity. However, PV laminates may also generate increased building cooling loads during the summer months. Therefore, in this project, the PCM heat sink was to minimize summer heat gains as well. The PCM-fibreglass-PV assembly and the IRR metal panels are capable of being installed directly on top of existing shingle roofs during re-roofing, precluding the need for recycling or disposal of waste materials. The PV laminates installed on the PCM attic are PVL-144 models from Uni-Solar. Each laminate contains 22 triple junction amorphous silicon solar cells connected in series. The silicon cells are of dimensions 356 mm x 239 mm (14-in. x 9.4-in.). The PVL-144 laminate is encapsulated in durable ETFE (poly-ethylene-co-tetrafluoroethylene) high light-transmissive polymer. Table 1 lists the power, voltage and current ratings of the PVL-144 panel.

  9. Thermal Performance Data Services (TPDS)

    NASA Technical Reports Server (NTRS)

    French, Richard T.; Wright, Michael J.

    2013-01-01

    Initiated as a NASA Engineering and Safety Center (NESC) assessment in 2009, the Thermal Performance Database (TPDB) was a response to the need for a centralized thermal performance data archive. The assessment was renamed Thermal Performance Data Services (TPDS) in 2012; the undertaking has had two fronts of activity: the development of a repository software application and the collection of historical thermal performance data sets from dispersed sources within the thermal performance community. This assessment has delivered a foundational tool on which additional features should be built to increase efficiency, expand the protection of critical Agency investments, and provide new discipline-advancing work opportunities. This report contains the information from the assessment.

  10. Effectiveness of Cool Roof Coatings with Ceramic Particles

    SciTech Connect

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using a portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.

  11. Performance of powder-filled evacuated panel insulation in a manufactured home roof cavity: Tests in the Large Scale Climate Simulator

    SciTech Connect

    Petrie, T.W.; Kosny, J.; Childs, P.W.

    1996-03-01

    A full-scale section of half the top of a single-wide manufactured home has been studied in the Large Scale Climate Simulator (LSCS) at the Oak Ridge National Laboratory. A small roof cavity with little room for insulation at the eaves is often the case with single-wide units and limits practical ways to improve thermal performance. The purpose of the current tests was to obtain steady-state performance data for the roof cavity of the manufactured home test section when the roof cavity was insulated with fiberglass batts, blown-in rock wool insulation or combinations of these insulations and powder-filled evacuated panel (PEP) insulation. Four insulation configurations were tested: (A) a configuration with two layers of nominal R{sub US}-7 h {center_dot} ft{sup 2} {center_dot} F/BTU (R{sub SI}-1.2 m{sup 2} {center_dot} K/W) fiberglass batts; (B) a layer of PEPs and one layer of the fiberglass batts; (C) four layers of the fiberglass batts; and (D) an average 4.1 in. (10.4 cm) thick layer of blown-in rock wool at an average density of 2.4 lb/ft{sup 3} (38 kg/m{sup 3}). Effects of additional sheathing were determined for Configurations B and C. With Configuration D over the ceiling, two layers of expanded polystyrene (EPS) boards, each about the same thickness as the PEPs, were installed over the trusses instead of the roof. Aluminum foils facing the attic and over the top layer of EPS were added. The top layer of EPS was then replaced by PEPs.

  12. Thermal Performance Benchmarking (Presentation)

    SciTech Connect

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  13. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  14. Evaluation of Vegetative Roofs' Performance on Energy Consumption in Hot and Humid Climates 

    E-print Network

    Anderson, J.; Azarbayjani, M.

    2008-01-01

    produces enough oxygen for one human for one year. Liesecke and Borgwardt (1997) reported that vegetative roof filtered diesel and gasoline exhaust. Researchers have found that a 1 square meter of grass on the roof can remove about 0.20 kg...

  15. Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements

    E-print Network

    Frédéric Miranville; Ali Hamada Fakra; Stéphane Guichard; Harry Boyer; Jean Philippe Praene; Dimitri Bigot

    2012-12-19

    This paper deals with the experimental evaluation of a roof-mounted multi-reflective radiant barrier (MRRB), installed according to the state of the art, on a dedicated test cell. An existing experimental device was completed with a specific system for the regulation of the airflow rate in the upper air layer included in a typical roof from Reunion Island. Several experimental sequences were conducted to determine the thermal resistance of the roof according to several parameters and following a specific method. The mean method, well known in international standards (ISO 9869 - 1994) for the determination of the thermal resistance using dynamic data, was used. The method was implemented in a building simulation code in order to allow the determination of the thermal indicator automatically. Experimental results are proposed according to different seasonal periods and for different values of the airflow rate in the upper air layer.

  16. Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint

    SciTech Connect

    Ridouane, E. H.; Bianchi, M.

    2011-08-01

    Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

  17. Verification of the Thermal Performance

    E-print Network

    and ratio of divertor to coolant thermal conductivities Perform experiments on steel and brass HEMJ Similarity not achieved matching only Re Account for changes in conduction vs. convection Thermal conductivity ratio, Previous Experiments Jordan Rader - rader@gatech.edu Air Argon Helium [Mills et al. (2012

  18. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  19. Thermal Performance of Tropical Atrium

    NASA Astrophysics Data System (ADS)

    Baharvand, Mohammad; Bin Ahmad, Mohd Hamdan; Safikhan, Tabassom; Mirmomtaz, Sayyed Mohammad Mahdi

    2013-12-01

    Atrium is a popular architectural feature utilized widely by building designers and owners to bring various benefits such as adequate daylight, circulation spaces and surfaces for landscape applications. But atrium problems in tropical climates such as excessive daylight, glare and high temperature, which lead to increase building energy demand, have been reported. To avoid and reduce these unpleasant features, a side-lit atrium has been suggested. Although researchers proposed side-lit atrium to prevent common problems of atria, the lack of precedent research on this issue compels these authors to study atrium performance in hot and humid climate. So the research aims to examine two different atrium roof form types in terms of temperature and ventilation impacts in hot and humid climate of Malaysia using DesignBuilder as a simulation program. The results indicate lower temperature of side-lit model with better airflow pattern in comparison with top-lit model while the top-lit model provides higher air velocity at the air inlet and outlet.

  20. A 40KW ROOF MOUNTED PV THERMAL CONCENTRATOR SYSTEM J.F.H. Smeltink1

    E-print Network

    and hydronic in-slab floor heating. Equipment associated with the solar collection system was installed during equipment. Currently the thermal component of the system is operational for commissioning to take place

  1. Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate

    NASA Technical Reports Server (NTRS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-01-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  2. Bright is the new black—multi-year performance of high-albedo roofs in an urban climate

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-03-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross section of the dominant white membrane options for US flat roofs: (1) an ethylene-propylene-diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane; and (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City’s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane shows evidence of low emissivity; however this had the interesting effect of avoiding any ‘winter heat penalty’ for this building. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years of installation. Given that the acrylic approach is such an important ‘do-it-yourself’, low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  3. Sustainable roofs with real energy savings

    SciTech Connect

    Christian, J.E.; Petrie, T.W.

    1996-12-31

    This paper addresses the general concept of sustainability and relates it to the building owner`s selection of a low-slope roof. It offers a list of performance features of sustainable roofs. Experiences and data relevant to these features for four unique roofs are then presented which include: self-drying systems, low total equivalent warming foam insulation, roof coatings and green roofs. The paper concludes with a list of sustainable roofing features worth considering for a low-slope roof investment. Building owners and community developers are showing more interest in investing in sustainability. The potential exists to design, construct, and maintain roofs that last twice as long and reduce the building space heating and cooling energy loads resulting from the roof by 50% (based on the current predominant design of a 10-year life and a single layer of 1 to 2 in. (2.5 to 5.1 cm) of insulation). The opportunity to provide better low-slope roofs and sell more roof maintenance service is escalating. The general trend of outsourcing services could lead to roofing companies` owning the roofs they install while the traditional building owner owns the rest of the building. Such a situation would have a very desirable potential to internalize the costs of poor roof maintenance practices and high roof waste disposal costs, and to offer a profit for installing roofs that are more sustainable. 14 refs., 12 figs.

  4. Quantification of Total Particulate Matter and Benzene-Soluble Fraction Inhalation Exposures in Roofing Workers Performing Tear-off Activities.

    PubMed

    Hill, Ronald H; Ferraro, John R; Dodson, James L; Hockman, Edwin L; McGovern, Amy E; Fayerweather, William E

    2015-01-01

    Asphalt shingle removal (tear-off) from roofs is a major job task for an estimated 174,000 roofers in the United States. However, a literature search showed that there are no published studies that characterize worker inhalation exposures to asphalt particulates during shingle tear-off. To begin to fill this gap, the present study of inhalation exposures of roofers performing asphalt shingle tear-off was undertaken. The airborne agents of interest were total particulate matter (TP) and organic particulates measured as the benzene-soluble fraction (BSF) of total particulate. The study's objectives were to measure the personal breathing zone (PBZ) exposures of roofing tear-off workers to BSF and TP; and to assess whether these PBZ exposures are different from ambient levels. Task-based PBZ samples (typical duration 1-5 hours) were collected during asphalt shingle tear-off from roofs near Houston, Texas and Denver, Colorado. Samples were analyzed for TP and BSF using National Institute of Occupational Safety and Health (NIOSH) Method 5042. As controls, area samples (typical duration 3-6 hours) were collected on the ground near the perimeter of the tear-off project Because of the presence of significant sources of inorganic particulates in the work environment, emphasis was placed on the BSF data. No BSF exposure higher than 0.25 mg/m3 was observed, and 69% of the PBZ samples were below the limit of detection (LOD). Due to unforeseen confounding, however, statistical comparisons of on-the-roof PBZ samples with on-the-ground area samples posed some special challenges. This confounding grew out of the interaction of three factors: statistical censoring from the left; the strong inverse correlation between LOD concentration and sampling duration; and variation in sampling durations between on-the-ground area samples and on-the-roof PBZ samples. A general linear model analysis of variance (GLM-ANOVA) was applied to help address the confounding. The results of this analysis indicate that personal sample BSF results were not statistically significantly different from the background/area samples. PMID:26083058

  5. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.

  6. Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  7. Moisture studies of a self-drying roof: Tests in the large scale climate simulator and results from thermal and hygric models

    SciTech Connect

    Desjarlais, A.O.; Petrie, T.W.; Childs, P.W.; Atchley, J.A.

    1998-08-01

    Simultaneous experiments on the moisture behavior of six low-slope roof systems were performed in a climate simulator. The systems comprised a self-drying design over a conventional metal deck, a self-drying design over a significantly more permeable slotted metal deck and four others over conventional metal decks: a system typical of US construction with a liquid water permeable vapor retarder, a system typical of European construction with a liquid water permeable vapor retarder, a top-ventilated system with a polyethylene vapor retarder, and an impermeable control system with a polyethylene vapor retarder. Total weight of each test panel was measured and recorded continuously, along with temperatures and heat fluxes, to compare the behavior of the various systems. The authors imposed steady-state temperatures from hot summer to cold winter conditions to obtain the R-values of the construction dry insulations in each panel. Temperature cycles typical of hot summer days and mild winter days were then imposed above the construction dry assemblies to obtain baseline diurnal performance. The authors applied a one-dimensional thermal and hygric model. The solid and slotted deck were assumed to differ only in water vapor permeance. A model was not attempted for the top-ventilated system. The 1-D model predicted very well the slow rates of wetting in the winter cycles and both the slow then fast rates of drying in the summer cycles before and after water addition, except it overpredicted the drying rate for the US construction with a liquid water permeable vapor retarder.

  8. Development of a Roof Savings Calculator

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Huang, Joe; Erdem, Ender

    2011-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.

  9. Bio-Climatic Analysis and Thermal Performance of Upper Egypt A Case Study Kharga Region 

    E-print Network

    Khalil, M. H.

    2012-01-01

    building with environment. Using insulating materials in exposed walls and roof save energy by about 60%. The Thermal insulation thicknesses between 0.03-0.05m for exposed walls and 0.05m for exposed roofs are suitable to valid the required thermal...

  10. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    SciTech Connect

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting designs. Numerical simulations were performed to investigate the mechanisms of modern roof bolting systems including both the tension and fully grouted bolts. Parameters to be studied are: bolt length, bolt spacing, bolt size/strength, grout annulus, in-situ stress condition, overburden depth, and roof geology (massive strata, fractured, and laminated or thinly-bedded). Based on the analysis of the mechanisms of both bolting systems and failure modes of the bolted strata, roof bolting design criteria and programs for modern roof bolting systems were developed. These criterion and/or programs were combined with the MRGIS for use in conjunction with roof bolt installation.

  11. Green roofs: potential at LANL

    SciTech Connect

    Pacheco, Elena M

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.

  12. Rain on the Roof-Evaporative Spray Roof Cooling 

    E-print Network

    Bachman, L. R.

    1985-01-01

    This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol-air...

  13. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2001-10-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. The retrofitting works for a dedicated roof bolter for this research has been completed. The laboratory tests performed using this machine on simulated roof blocks have been conducted. The analysis performed on the testing data showed promising signs to detect the rock interface, fractures, as well as the rock types. The other tasks were progressing as planned.

  14. MHTGR thermal performance envelopes: Reliability by design

    SciTech Connect

    Etzel, K.T.; Howard, W.W.; Zgliczynski, J.B.

    1992-05-01

    This document discusses thermal performance envelopes which are used to specify steady-state design requirements for the systems of the Modular High Temperature Gas-Cooled Reactor to maximize plant performance reliability with optimized design. The thermal performance envelopes are constructed around the expected operating point accounting for uncertainties in actual plant as-built parameters and plant operation. The components are then designed to perform successfully at all points within the envelope. As a result, plant reliability is maximized by accounting for component thermal performance variation in the design. The design is optimized by providing a means to determine required margins in a disciplined and visible fashion.

  15. The Effect of Core Configuration on Thermal Barrier Thermal Performance

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Bott, Robert H.; Druesedow, Anne S.

    2015-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize heat transfer through interfaces and gaps and protect underlying temperature-sensitive components. The core insulation has a significant impact on both the thermal and mechanical properties of compliant thermal barriers. Proper selection of an appropriate core configuration to mitigate conductive, convective and radiative heat transfer through the thermal barrier is challenging. Additionally, optimization of the thermal barrier for thermal performance may have counteracting effects on mechanical performance. Experimental evaluations have been conducted to better understand the effect of insulation density on permeability and leakage performance, which can significantly impact the resistance to convective heat transfer. The effect of core density on mechanical performance was also previously investigated and will be reviewed. Simple thermal models were also developed to determine the impact of various core parameters on downstream temperatures. An extended understanding of these factors can improve the ability to design and implement these critical TPS components.

  16. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1979-01-01

    The nominal operating cell temperature (NOCT), an effective way to characterize the thermal performance of a photovoltaic module in natural sunlight, is developed. NOCT measurements for more than twenty different modules are presented. Changes in NOCT reflect changes in module design, residential roof mounting, and dirt accumulation. Other test results show that electrical performance is improved by cooling modules with water and by use of a phase change wax. Electrical degradation resulting from the marriage of photovoltaic and solar water heating modules is demonstrated. Cost-effectiveness of each of these techniques is evaluated.

  17. Thermal performance testing of the Explorer Platform

    NASA Technical Reports Server (NTRS)

    Wasson, David; Ducas, William; Ousley, Wes

    1993-01-01

    The Explorer Platform (EP) has been designed to accommodate on-orbit payload and bus module changeout via Space Transportation System (STS) servicing. Such a versatile spacecraft platform designed to experience widely different environmental exposures and operational conditions, coupled with program constraints on schedule and budget, presented a challenge to implementing a technically sound thermal vacuum/thermal balance test program. This paper discusses thermal performance tests implemented at the subsystem and system levels, and the risks accepted resulting from test sequence, configuration. and tests omitted from the program. No thermal cycling or thermal balance tests were performed on the integrated spacecraft level, although both the Payload (EUVE) and Platform (EP) received independent testing. The decision to take this approach is discussed with respect to the thermal design and the associated risks taken to maintain budget and schedule.

  18. Occupant dynamics in rollover crashes: influence of roof deformation and seat belt performance on probable spinal column injury.

    PubMed

    Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S

    2007-11-01

    Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975

  19. Natural selection on thermal performance in a novel thermal environment

    PubMed Central

    Logan, Michael L.; Cox, Robert M.; Calsbeek, Ryan

    2014-01-01

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming. PMID:25225361

  20. Analysis thermal performance of capillary heat pipe

    NASA Astrophysics Data System (ADS)

    Kosa, Ľuboš; Nemec, Patrik; Malcho, Milan; Jobb, Marián

    2014-08-01

    This work is concentrated on the amount of working fluid for optimization thermal performance of capillary heat pipes. The main objective was to find ideal working fluid for horizontal working position for capillary heat pipes. Working position and amount of working fluid is an important part for function of the heat pipe. Change ideal amount working fluid should be change thermal performance capillary heat pipe.

  1. Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2002-12-15

    Roofs that have high solar reflectance (high ability to reflect sunlight) and high thermal emittance (high ability to radiate heat) tend to stay cool in the sun. The same is true of low-emittance roofs with exceptionally high solar reflectance. Substituting a cool roof for a noncool roof tends to decrease cooling electricity use, cooling power demand, and cooling-equipment capacity requirements, while slightly increasing heating energy consumption. Cool roofs can also lower the ambient air temperature in summer, slowing ozone formation and increasing human comfort. DOE-2.1E building energy simulations indicate that use of a cool roofing material on a prototypical California nonresidential building with a low-sloped roof yields average annual cooling energy savings of approximately 300 kWh/1000 ft2 [3.2 kWh/m2], average annual natural gas deficits of 4.9 therm/1000 ft2 [5.6 MJ/m2], average source energy savings of 2.6 MBTU/1000 ft2 [30 MJ/m2], and average peak power demand savings of 0. 19 kW/1000 ft2 [2.1 W/m2]. The 15-year net present value (NPV) of energy savings averages $450/1000 ft2 [$4.90/m2] with time dependent valuation (TDV), and $370/1000 ft2 [$4.00/m2] without TDV. When cost savings from downsizing cooling equipment are included, the average total savings (15-year NPV + equipment savings) rises to $550/1000 ft2 [$5.90/m2] with TDV, and to $470/1000 ft2 [$5.00/m2] without TDV. Total savings range from 0.18 to 0.77 $/ft2 [1.90 to 8.30 $/m2] with TDV, and from 0.16 to 0.66 $/ft2 [1.70 to 7.10 $/m2] without TDV, across California's 16 climate zones. The typical cost premium for a cool roof is 0.00 to 0.20 $/ft2 [0.00 to 2.20 $/m2]. Cool roofs with premiums up to $0.20/ft2 [$2.20/m2] are expected to be cost effective in climate zones 2 through 16; those with premiums not exceeding $0.18/ft2 [$1.90/m2] are expected to be also cost effective in climate zone 1. Hence, this study recommends that the year-2005 California building energy efficiency code (Title 24, Pa rt 6 of the California Code of Regulations) for nonresidential buildings with low-sloped roofs include a cool-roof prescriptive requirement in all California climate zones. Buildings with roofs that do not meet prescriptive requirements may comply with the code via an ''overall-envelope'' approach (non-metal roofs only), or via a performance approach (all roof types).

  2. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  3. Thermal performance of double-skin facade with thermal mass

    NASA Astrophysics Data System (ADS)

    Fallahi, Ali

    In order to mitigate the overheating problem in the warmer seasons, and thereby to improve thermal performance and energy efficiency of the Double-Skin Facade (DSF) system, this study introduced an innovative design approach involving the integration of thermal mass with the air channel of the conventional DSF. Then it proposed a numerical procedure to assess the thermal performance of DSF, and finally investigated the effect of thermal mass on the energy efficiency of such system. The initial step in the assessment procedure proposed the development of base-case models, which were able to predict temperature distribution in the DSF with a venetian blind. So too were the base-case models able to determine heating/cooling loads of the perimeter room for both the mechanically and naturally ventilated DSFs. In this procedure, building energy simulation software was used for base-case development; two distinct models were generated: an airflow model and a thermal model. The nodal, unidirectional airflow network method was applied in the case of the naturally ventilated DSF. The thermal model was a transient control volume method which found temperature distribution in discretized air-channel. The base-cases were verified at two levels: inter-model verification and verification relying on measurements from mechanically and naturally ventilated outdoor test-cells. At both levels, a generally fair agreement was obtained. After this, parametric studies pertaining to the energy performance of the system were conducted on the effect of thermal mass in unison with different air-channel configurations. Considerable energy load reductions were found when thermal mass was used in the air-channel, replacing venetian blind slats for mechanically ventilated DSFs; this held true during both summer and winter. In this configuration depending on the airflow path direction, energy savings from 21% to 26% in summer and from 41% to 59% in winter are achievable in compared with conventional DSF with aluminum venetian blind. The savings were found higher in sunny days than cloudy days. On the other hand, naturally ventilated DSFs combined with thermal mass were not found to be energy efficient in winter due to stack effect and airflow rate increase within the air channel.

  4. Thermal variation, thermal extremes and the physiological performance of individuals.

    PubMed

    Dowd, W Wesley; King, Felicia A; Denny, Mark W

    2015-06-01

    In this review we consider how small-scale temporal and spatial variation in body temperature, and biochemical/physiological variation among individuals, affect the prediction of organisms' performance in nature. For 'normal' body temperatures - benign temperatures near the species' mean - thermal biology traditionally uses performance curves to describe how physiological capabilities vary with temperature. However, these curves, which are typically measured under static laboratory conditions, can yield incomplete or inaccurate predictions of how organisms respond to natural patterns of temperature variation. For example, scale transition theory predicts that, in a variable environment, peak average performance is lower and occurs at a lower mean temperature than the peak of statically measured performance. We also demonstrate that temporal variation in performance is minimized near this new 'optimal' temperature. These factors add complexity to predictions of the consequences of climate change. We then move beyond the performance curve approach to consider the effects of rare, extreme temperatures. A statistical procedure (the environmental bootstrap) allows for long-term simulations that capture the temporal pattern of extremes (a Poisson interval distribution), which is characterized by clusters of events interspersed with long intervals of benign conditions. The bootstrap can be combined with biophysical models to incorporate temporal, spatial and physiological variation into evolutionary models of thermal tolerance. We conclude with several challenges that must be overcome to more fully develop our understanding of thermal performance in the context of a changing climate by explicitly considering different forms of small-scale variation. These challenges highlight the need to empirically and rigorously test existing theories. PMID:26085672

  5. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1992-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flown. The objective of the TCSE on the LDEF was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in the lab. The performance of the TCSE flight system on the LDEF was excellent.

  6. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  7. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  8. EPA's Green Roof Research

    EPA Science Inventory

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  9. Green roof systems: a study of public attitudes and preferences in southern Spain.

    PubMed

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. PMID:23722180

  10. Evolution of cool-roof standards in the United States

    SciTech Connect

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  11. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    SciTech Connect

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof assemblies against moisture. The key variables investigated were the leakage area from the attic to the outside, leakage area from the attic to the interior, leakage area from the interior to the outside, supply duct leakage in the attic, and interior moisture generation. These investigations are described in this report.

  12. Condensation Risk of Mechanically Attached Roof Systems in Cold Climate Zones

    SciTech Connect

    Pallin, Simon B

    2013-01-01

    A white roof, cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with mechanically attached membrane, have shown to have a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparisons with similar construction with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in Northern U.S. climate zones. A white roof surface reflects more of the incident solar radiation in comparisons with a dark surface, which makes a distinguished difference on the surface temperature of the roof. However, flat roofs with either a light or dark surface and if facing a clear sky, are constantly losing energy to the sky due to the exchange of infrared radiation. This phenomenon exists both during the night and the day. During the day, if the sun shines on the roof surface, the exchange of infrared radiation typically becomes insignificant. During nights and in cold climates, the temperature difference between the roof surface and the sky can deviate up to 20 C (Hagentoft, 2001) which could result in a very cold surface temperature compared to the ambient temperature. Further, a colder surface temperature of the roof increases the energy loss and the risk of condensation in the building materials below the membrane. In conclusion, both light and dark coated roof membranes are cooled by the infrared radiation exchange during the night, though a darker membrane is more heated by the solar radiation during the day, thus decreasing the risk of condensation. The phenomenon of night time cooling from the sky and the lack of solar gains during the day is not likely the exclusive problem concerning the risk of condensation in cool roofs with mechanically attached membranes. Roof systems with thermoplastic membranes are prone to be more effected by interior air intrusion into the roof construction; both due to the wind induced pressure differences and due to the flexibility and elasticity of the membrane (Molleti, Baskaran, Kalinger, & Beaulieu, 2011). Depending on the air permeability of the material underneath the membrane, wind forces increase the risk of fluttering (also referred as billowing) of the thermoplastic membrane. Expectably, the wind induced pressure differences creates a convective air flow into the construction i.e. Page 2 air intrusion. If the conditions are right, moisture from the exchanging air may condensate on surfaces with a temperature below dew-point. The definite path of convective airflows through the building envelope is usually very difficult to determine and therefore simplified models (K nzel, Zirkelbach, & Scfafaczek, 2011) help to estimate an additional moisture loads as a result of the air intrusion. The wind uplifting pressure in combination with wind gusts are important factors for a fluttering roof. Unfortunately, the effect from a fluctuating wind is difficult to estimate as this is a highly dynamic phenomenon and existing standards (ASTM, 2011a) only take into account a steady state approach i.e. there is no guidance or regulations on how to estimate the air intrusion rate. Obviously, a more detailed knowledge on the hygrothermal performance of mechanically attached cool roof system is requested; in consideration to varying surface colors, roof air tightness, climate zones and indoor moisture supply.

  13. Specifying, Installing and Maintaining Built-Up and Modified Bitumen Roofing Systems.

    ERIC Educational Resources Information Center

    Hobson, Joseph W.

    2000-01-01

    Examines built-up, modified bitumen, and hybrid combinations of the two roofing systems and offers advise on how to assure high- quality performance and durability when using them. Included is a glossary of commercial roofing terms and asphalt roofing resources to aid in making decisions on roofing and systems product selection. (GR)

  14. Solar electric and thermal conversion system in close proximity to the consumer. [solar panels on house roofs

    NASA Technical Reports Server (NTRS)

    Boeer, K. W.

    1975-01-01

    Solar cells may be used to convert sunlight directly into electrical energy and into lowgrade heat to be used for large-scale terrestrial solar-energy conversion. Both forms of energy can be utilized if such cells are deployed in close proximity to the consumer (rooftop). Cadmium-sulfide/copper-sulfide (CdS/Cu2S) solar cells are an example of cells which may be produced inexpensively enough to become economically attractive. Cell parameters relevant for combined solar conversion are presented. Critical issues, such as production yield, life expectancy, and stability of performance, are discussed. Systems-design parameters related to operating temperatures are analyzed. First results obtained on Solar One, the experimental house of the University of Delaware, are given. Economic aspects are discussed. Different modes of operation are discussed in respect to the power utility and consumer incentives.

  15. THERMAL PERFORMANCE ANALYSIS FOR WSB DRUM

    SciTech Connect

    Lee, S

    2008-06-26

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum.

  16. Thermal Performance of the XRS Helium Insert

    NASA Technical Reports Server (NTRS)

    Breon, Susan R.; DiPirro, Michael J.; Tuttle, James G.; Shirron, Peter J.; Warner, Brent A.; Boyle, Robert F.; Canavan, Edgar R.

    1999-01-01

    The X-Ray Spectrometer (XRS) is an instrument on the Japanese Astro-E satellite, scheduled for launch early in the year 2000. The XRS Helium Insert comprises a superfluid helium cryostat, an Adiabatic Demagnetization Refrigerator (ADR), and the XRS calorimeters with their cold electronics. The calorimeters are capable of detecting X-rays over the energy range 0.1 to 10 keV with a resolution of 12 eV. The Helium Insert completed its performance and verification testing at Goddard in January 1999. It was shipped to Japan, where it has been integrated with the neon dewar built by Sumitomo Heavy Industries. The Helium Insert was given a challenging lifetime requirement of 2.0 years with a goal of 2.5 years. Based on the results of the thermal performance tests, the predicted on-orbit lifetime is 2.6 years with a margin of 30%. This is the result of both higher efficiency in the ADR cycle and the low temperature top-off, more than compensating for an increase in the parasitic heat load. This paper presents a summary of the key design features and the results of the thermal testing of the XRS Helium Insert.

  17. Guide to Cool Roofs

    SciTech Connect

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  18. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2013-05-29

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  19. ROOFING, PART 2. WORKBOOK.

    ERIC Educational Resources Information Center

    WOLTJES, WILLIAM; AND OTHERS

    THE TECHNICAL INFORMATION IN THIS STUDY GUIDE WAS PLANNED UNDER THE DIRECTION OF THE STATE EDUCATIONAL ADVISORY COMMITTEE FOR THE ROOFING TRADE AND WRITTEN BY AN APPRENTICE TRAINING SPECIALIST AND OTHERS TO BE USED AS RELATED CLASSROOM INSTRUCTION IN THE APPRENTICE TRAINING PROGRAM FOR ROOFERS. THE UNITS INCLUDE (1) BUILT-UP ROOFING, DAMPPROOFING,…

  20. LIGHTWEIGHT GREEN ROOF SYSTEMS

    EPA Science Inventory

    Applying a Lightweight Green Roof System to a building can achieve in managing storm water runoff, decreasing heat gain, yielding energy savings, and mitigating the heat island effect. Currently, Most green roof systems are considerably heavy and require structural reinforceme...

  1. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  2. Cool Roof Systems; What is the Condensation Risk?

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2014-01-01

    A white roof, or cool roof, is constructed to decrease thermal loads from solar radiation, therefore saving energy by decreasing the cooling demands. Unfortunately, cool roofs with a mechanically attached membrane have shown a higher risk of intermediate condensation in the materials below the membrane in certain climates (Ennis & Kehrer, 2011) and in comparison with similar constructions with a darker exterior surface (Bludau, Zirkelbach, & Kuenzel, 2009). As a consequence, questions have been raised regarding the sustainability and reliability of using cool roof membranes in northern U.S. climate zones.

  3. High Performance Thermal Interface Technology Overview

    E-print Network

    R. Linderman; T. Brunschwiler; B. Smith; B. Michel

    2008-01-07

    An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

  4. Protected Membrane Roofs: A Sustainable Roofing Solution.

    ERIC Educational Resources Information Center

    Roodvoets, David L.

    2003-01-01

    Examines the benefits of protected membrane roofing (PMR) for school buildings. PMR uses an upside-down approach, where the insulation is placed on top of the waterproofing membrane to improve membrane effectiveness, reduce ultraviolet degradation, and improve insulation efficiency. The article explains what makes PMR sustainable, focusing on…

  5. Roofing Workbook and Tests: Rigid Roofing.

    ERIC Educational Resources Information Center

    Klingensmith, Robert, Ed.

    This document is one of a series of nine individual units of instruction for use in roofing apprenticeship classes in California. The unit consists of a workbook and test. Eight topics are covered in the workbook and corresponding multiple-choice tests. For each topic, objectives and information sheets are provided. Information sheets are…

  6. Technology Solutions Case Study: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing

    SciTech Connect

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  7. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  8. Roof bolting equipment & technology

    SciTech Connect

    Fiscor, S.

    2009-04-15

    Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

  9. GREEN ROOFS — A GROWING TREND

    EPA Science Inventory

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  10. Green Roofs for Stormwater Management

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  11. Project Overcoat — An Exploration of Exterior Insulation Strategies for 1-½ Story Roof Applications in Cold Climates

    SciTech Connect

    Ojczyk, Cindy; Mosiman, Garrett; Huelman, Pat; Schirber, Tom; Yost, Peter; Murry, Tessa

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied “band-aids” such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an “overcoat” of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  12. WMAP Observatory Thermal Design and On-Orbit Thermal Performance

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart D.; Brown, Kimberly D.; Michalek, Theodore J.; Ancarrow, Walter C.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) observatory, launched June 30, 2001, is designed to measure the cosmic microwave background radiation with unprecedented precision and accuracy while orbiting the second Lagrange point (L2). The instrument cold stage must be cooled passively to <95K, and systematic thermal variations in selected instrument components controlled to less than 0.5 mK (rms) per spin period. This paper describes the thermal design and testing of the WMAP spacecraft and instrument. Flight thermal data for key spacecraft and instrument components are presented from launch through the first year of mission operations. Effects of solar flux variation due to the Earth's elliptical orbit about the sun, surface thermo-optical property degradations, and solar flares on instrument thermal stability are discussed.

  13. Thermal performance of the Brookhaven natural thermal storage house

    SciTech Connect

    Ghaffari, H.T.; Jones, R.F.

    1981-01-01

    In the Brookhaven natural thermal storage house, an energy-efficient envelope, passive solar collectors, and a variety of energy conservation methods are incorporated. The thermal characteristics of the house during the tested heating season are evaluated. Temperature distributions at different zones are displayed, and the effects of extending heating supply ducts only to the main floor and heating return ducts only from the second floor are discussed. The thermal retrievals from the structure and the passive collectors are assessed, and the total conservation and passive solar contributions are outlined. Several correlation factors relating these thermal behaviors are introduced, and their diurnal variations are displayed. Finally, the annual energy requirements, and the average load factors are analyzed and discussed.

  14. Microinverter Thermal Performance in the Real-World: Measurements and Modeling.

    PubMed

    Hossain, Mohammad Akram; Xu, Yifan; Peshek, Timothy J; Ji, Liang; Abramson, Alexis R; French, Roger H

    2015-01-01

    Real-world performance, durability and reliability of microinverters are critical concerns for microinverter-equipped photovoltaic systems. We conducted a data-driven study of the thermal performance of 24 new microinverters (Enphase M215) connected to 8 different brands of PV modules on dual-axis trackers at the Solar Durability and Lifetime Extension (SDLE) SunFarm at Case Western Reserve University, based on minute by minute power and thermal data from the microinverters and PV modules along with insolation and environmental data from July through October 2013. The analysis shows the strengths of the associations of microinverter temperature with ambient temperature, PV module temperature, irradiance and AC power of the PV systems. The importance of the covariates are rank ordered. A multiple regression model was developed and tested based on stable solar noon-time data, which gives both an overall function that predicts the temperature of microinverters under typical local conditions, and coefficients adjustments reecting refined prediction of the microinverter temperature connected to the 8 brands of PV modules in the study. The model allows for prediction of internal temperature for the Enphase M215 given similar climatic condition and can be expanded to predict microinverter temperature in fixed-rack and roof-top PV systems. This study is foundational in that similar models built on later stage data in the life of a device could reveal potential influencing factors in performance degradation. PMID:26147339

  15. Microinverter Thermal Performance in the Real-World: Measurements and Modeling

    PubMed Central

    Hossain, Mohammad Akram; Xu, Yifan; Peshek, Timothy J.; Ji, Liang; Abramson, Alexis R.; French, Roger H.

    2015-01-01

    Real-world performance, durability and reliability of microinverters are critical concerns for microinverter-equipped photovoltaic systems. We conducted a data-driven study of the thermal performance of 24 new microinverters (Enphase M215) connected to 8 different brands of PV modules on dual-axis trackers at the Solar Durability and Lifetime Extension (SDLE) SunFarm at Case Western Reserve University, based on minute by minute power and thermal data from the microinverters and PV modules along with insolation and environmental data from July through October 2013. The analysis shows the strengths of the associations of microinverter temperature with ambient temperature, PV module temperature, irradiance and AC power of the PV systems. The importance of the covariates are rank ordered. A multiple regression model was developed and tested based on stable solar noon-time data, which gives both an overall function that predicts the temperature of microinverters under typical local conditions, and coefficients adjustments reecting refined prediction of the microinverter temperature connected to the 8 brands of PV modules in the study. The model allows for prediction of internal temperature for the Enphase M215 given similar climatic condition and can be expanded to predict microinverter temperature in fixed-rack and roof-top PV systems. This study is foundational in that similar models built on later stage data in the life of a device could reveal potential influencing factors in performance degradation. PMID:26147339

  16. The Influence of Ambient Temperature on Green Roof R-values

    NASA Astrophysics Data System (ADS)

    Cox, Bryce Kevin

    Green roofs can be an effective and appealing way to increase the energy efficiency of buildings by providing active insulation. As plants in the green roof transpire, there is a reduction in heat flux that is conducted through the green roof. The R-value, or thermal resistance, of a green roof is an effective measurement of thermal performance because it can be easily included in building energy calculations applicable to many different buildings and situations. The purpose of this study was to determine if an increase in ambient temperature would cause an increase in the R-value of green roofs. Test trays containing green roof materials were tested in a low speed wind tunnel equipped to determine the R-value of the trays. Three different plant species were tested in this study, ryegrass (Lolium perenne), sedum (Sedum hispanicum), and vinca (Vinca minor ). For each test in this study the relative humidity was maintained at 45% and the soil was saturated with water. The trays were tested at four different ambient temperatures, ranging from room temperature to 120ºF. The resulting R-values for sedum ranged from 1.37 to 3.28 ft2hºF/BTU, for ryegrass the R-values ranged from 2.15 to 3.62 ft2hºF/BTU, and for vinca the R-values ranged from 3.15 to 5.19 ft2hºF/BTU. The average R-value for all the tests in this study was 3.20 ft2hºF/BTU. The results showed an increase in R-value with increasing temperature. Applying an ANOVA analysis to the data, the relationship between temperature and R-value for all three plant species was found to be statistically significant.

  17. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  18. The effects of high temperature and roof modification on physiological responses of swamp buffalo ( Bubalus bubalis) in the tropics

    NASA Astrophysics Data System (ADS)

    Khongdee, Titaporn; Sripoon, S.; Vajrabukka, C.

    2013-05-01

    The objective of the experiments reported here was to measure the effects of cooling techniques (Modified roof vs Normal roof) on the performance and physiology of 12 young male buffaloes with a similar live weight of 160 kg. The study was conducted at Chainat Agriculture and Technology College, Chainat Province, Thailand. The animals were divided randomly into two groups, each group comprising six buffaloes, and the two groups were studied to evaluate the effects of modified roofing (normal roof fitted with woven polypropylene shade cloth) on the subjects' physiological responses to heat stress under hot humid conditions. The modified roof resulted in lowered heat stress in buffaloes compared to those under a standard roof. The difference was shown by the buffaloes having a significantly lower mean rectal temperature (39.14 ± 0.07 vs 40.00 ± 0.10°C) and plasma cortisol (2.14 ± 0.24 vs 3.38 ± 0.37 ng/ml). The average daily water consumption was significantly lower in the MR group (MR, 29.71 ± 0.86 vs NR, 34.14 ± 1.06 L head -1 day-1), while there was a tendency for the roughage intake to be higher in the MR group compared to that of the NR group (MR, 5.88 ± 0.18 vs NR, 6.44 ± 0.19 kg head-1 -1 day-1; P = 0.0508). It was concluded that roof modification facilitated a reduction in heat load from roof re-radiation, and was an effective means of alleviating thermal stress in young buffaloes.

  19. Selection and use of seals and sealants at building roofs

    SciTech Connect

    Johnson, P.G.

    1998-12-31

    In general, the roofing industry has performed reasonably well in providing seals and sealants which are adequate for various roof membranes or other roofing systems. However, the seal and sealant conditions created by exposures, and the interfaces of various systems, components, and materials, is not generally well understood. This may result in a design, and its subsequent construction, which is subject to leakage, damage, premature deterioration, and disruption to building occupancy. To date, the roofing industry has not addressed this issue of seals and sealants at a detail level. This paper addresses the primary considerations for selecting and installing building seals and sealants at low slope roofs, and provides a methodology and a checklist to be used in the selection, detailing and application of these roofing seals and sealants. The three basic types of seal conditions normally found at building roofs, and the basic causes of construction problems and criteria for evaluating roof seals and sealants are identified. The drawing examples, methodology, and checklists provide information to assist designers and others in avoiding problematic conditions associated with seals and sealants, in both new and remedial roof design and construction. This paper addresses technical as well as non-technical issues such as compatibilities, movement capabilities, ultra violet resistance, quality assurance, and workmanship and maintenance. Steep roof systems such as asphaltic shingles, clay tile, slate, and sheet metal are excluded from consideration in this paper.

  20. Thermal Performance Testing Of Cryogenic Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

    2003-01-01

    Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

  1. Fourier analysis of conductive heat transfer for glazed roofing materials

    NASA Astrophysics Data System (ADS)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-01

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  2. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  3. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Installation of roof support using mining machines with integral roof bolters. 75.205...Installation of roof support using mining machines with integral roof bolters. When...bolts are installed by a continuous mining machine with intregal roof bolting...

  4. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Installation of roof support using mining machines with integral roof bolters. 75.205...Installation of roof support using mining machines with integral roof bolters. When...bolts are installed by a continuous mining machine with intregal roof bolting...

  5. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Installation of roof support using mining machines with integral roof bolters. 75.205...Installation of roof support using mining machines with integral roof bolters. When...bolts are installed by a continuous mining machine with intregal roof bolting...

  6. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Installation of roof support using mining machines with integral roof bolters. 75.205...Installation of roof support using mining machines with integral roof bolters. When...bolts are installed by a continuous mining machine with intregal roof bolting...

  7. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Installation of roof support using mining machines with integral roof bolters. 75.205...Installation of roof support using mining machines with integral roof bolters. When...bolts are installed by a continuous mining machine with intregal roof bolting...

  8. ROOF, A view looking north from the stair tower roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROOF, A view looking north from the stair tower roof at the external piping - Department of Energy, Mound Facility, Hydrolysis House Building (HH Building), One Mound Road, Miamisburg, Montgomery County, OH

  9. Performance evaluation of floor thermal storage system

    SciTech Connect

    Shinkai, Koichiro; Kasuya, Atsushi; Kato, Masahiro

    2000-07-01

    Environmental issues were seriously addressed when a new building was designed with district heating and cooling for the Osaka gas company. As a result, the building was officially recognized as Environmentally Conscious Building No. 1 by the Construction Ministry. In order to reduce cost by peak shaving, adoption of a floor thermal storage system was planned. This paper describes results regarding the peak shaving by floor thermal storage system in designing the air-conditioning system.

  10. Investigation of Fundamental Modeling and Thermal Performance Issues for a Metallic Thermal Protection System Design

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2002-01-01

    A study was performed to develop an understanding of the key factors that govern the performance of metallic thermal protection systems for reusable launch vehicles. A current advanced metallic thermal protection system (TPS) concept was systematically analyzed to discover the most important factors governing the thermal performance of metallic TPS. A large number of relevant factors that influence the thermal analysis and thermal performance of metallic TPS were identified and quantified. Detailed finite element models were developed for predicting the thermal performance of design variations of the advanced metallic TPS concept mounted on a simple, unstiffened structure. The computational models were also used, in an automated iterative procedure, for sizing the metallic TPS to maintain the structure below a specified temperature limit. A statistical sensitivity analysis method, based on orthogonal matrix techniques used in robust design, was used to quantify and rank the relative importance of the various modeling and design factors considered in this study. Results of the study indicate that radiation, even in small gaps between panels, can reduce significantly the thermal performance of metallic TPS, so that gaps should be eliminated by design if possible. Thermal performance was also shown to be sensitive to several analytical assumptions that should be chosen carefully. One of the factors that was found to have the greatest effect on thermal performance is the heat capacity of the underlying structure. Therefore the structure and TPS should be designed concurrently.

  11. Investigation of the Mechanical Performance of Compliant Thermal Barriers

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Bott, Robert J.; Dunlap, Patrick H.

    2011-01-01

    Compliant thermal barriers play a pivotal role in the thermal protection systems of advanced aerospace vehicles. Both the thermal properties and mechanical performance of these barriers are critical in determining their successful implementation. Due to the custom nature of many thermal barriers, designers of advanced spacecraft have little guidance as to the design, selection, and implementation of these elements. As part of an effort to develop a more fundamental understanding of the interrelationship between thermal barrier design and performance, mechanical testing of thermal barriers was conducted. Two different types of thermal barriers with several core insulation density levels ranging from 62 to 141 kg/cu m were investigated. Room-temperature compression tests were conducted on samples to determine load performance and assess thermal barrier resiliency. Results showed that the loading behavior of these thermal barriers was similar to other porous, low-density, compliant materials, such as elastomeric foams. Additionally, the insulation density level had a significant non-linear impact on the stiffness and peak loads of the thermal barriers. In contrast, neither the thermal barrier type nor the level of insulation density significantly influenced the room-temperature resiliency of the samples.

  12. VEGETATED ROOF STANDARDS The University of Virginia

    E-print Network

    Nagy, Eric Sándor

    , certified, experienced vegetated roof installers. Waterproofing membrane to be water-tested, witnessed system components. Before installing waterproofing membrane, the vegetated roof system contractor the vegetated roof to avoid damage to waterproofing membrane. Vegetated roofs (accepting pre-grown trays

  13. Green Roofs for Stormwater Runoff Control - Abstract

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  14. Green Roofs for Stormwater Runoff Control

    EPA Science Inventory

    ?This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  15. Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures

    PubMed Central

    Ge, Zhiwei; Ye, Feng; Ding, Yulong

    2014-01-01

    Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286

  16. Extending Our Understanding of Compliant Thermal Barrier Performance

    NASA Technical Reports Server (NTRS)

    Demange, Jeffrey J.; Finkbeiner, Joshua R.; Dunlap, Patrick H.

    2014-01-01

    Thermal barriers and seals are integral components in the thermal protection systems (TPS) of nearly all aerospace vehicles. They are used to minimize the flow of hot gases through interfaces and protect underlying temperature-sensitive components and systems. Although thermal barriers have been used extensively on many aerospace vehicles, the factors affecting their thermal and mechanical performance are not well-understood. Because of this, vehicle TPS designers are often left with little guidance on how to properly design and optimize these barriers. An ongoing effort to better understand thermal barrier performance and develop models and design tools is in progress at the NASA Glenn Research Center. Testing has been conducted to understand the degree to which insulation density influences structural performance and permeability. In addition, the development of both thermal and mechanical models is ongoing with the goal of providing an improved ability to design and implement these critical TPS components.

  17. 24. Roof detail from liftbed truck, showing pan roof above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Roof detail from lift-bed truck, showing pan roof above breezeway, with sawn redwood trim, tube-type drains; note missing rain gutter at roof edge, deteriorated condition of slates; view to south, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  18. A Monolithic Microconcentrator Receiver For A Hybrid PV-Thermal System: Preliminary Performance

    NASA Astrophysics Data System (ADS)

    Walter, D.; Everett, V.; Vivar, M.; Harvey, J.; Van Scheppingen, R.; Surve, S.; Muric-Nesic, J.; Blakers, A.

    2010-10-01

    An innovative hybrid PV-thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc., San Jose, California, and at the Centre for Sustainable Energy Systems, Australian National University. The MCT aims to develop the small-scale, roof-top market for grid-integrated linear CPV systems. A low profile, small footprint enclosure isolates system components from the environment, relaxing the demands on supporting structures, tracking, and maintenance. Net costs to the consumer are reduced via an active cooling arrangement that provides thermal energy suitable for water and space heating, ventilation, and air conditioning (HVAC) applications. As part of a simplified, low-cost design, an integrated substrate technology provides electrical interconnection, heat sinking, and mechanical support for the concentrator cells. An existing, high-efficiency, one-sun solar cell technology has been modified for this system. This paper presents an overview of the key design features, and preliminary electrical performance of the MCT. Module efficiencies of up to 19.6% at 20x concentration have been demonstrated.

  19. Space Shuttle Orbiter - Reusable surface insulation subsystem thermal performance

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Battley, H. H.; Hughes, J. T.; Neuenschwander, W. E.

    1982-01-01

    The thermal performance of the reusable surface insulation (RSI) subsystem consisting of silica tiles, silicone coated nylon felt insulation, and ceramic cloth gap fillers and thermal barriers is discussed. Thermal response predictions for the components are compared with measured flight data, which indicates that the RSI thermal performance can meet or exceed design requirements for the majority of the RSI. Visual inspections and the maximum temperature conditions observed in structural components after data acquisition suggest that the flight environment was not as severe as the worst case preflight prediction.

  20. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  1. High-Tech Roof Management.

    ERIC Educational Resources Information Center

    Benzie, Tim

    1997-01-01

    Describes the use of a computerized roof management system (CRMS) for school districts to foster multiple roof maintenance efficiency and cost effectiveness. Highlights CRMS software manufacturer choices, as well as the types of nondestructive testing equipment tools that can be used to evaluate roof conditions. (GR)

  2. Solar Roof Cooling by Evaporation 

    E-print Network

    Patterson, G. V.

    1982-01-01

    Evaporation is nature's way of cooling. By the application of a thin film of water, in the form of a mist, on the roof of the building, roof temperatures can be reduced from as high as 165o to a cool 86oF. Thus, under-roof temperatures are reduced...

  3. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  4. Predicted thermal performance of triple vacuum glazing

    SciTech Connect

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil

    2010-12-15

    The simulated triple vacuum glazing (TVG) consists of three 4 mm thick glass panes with two vacuum gaps, with each internal glass surface coated with a low-emittance coating with an emittance of 0.03. The two vacuum gaps are sealed by an indium based sealant and separated by a stainless steel pillar array with a height of 0.12 mm and a pillar diameter of 0.3 mm spaced at 25 mm. The thermal transmission at the centre-of-glazing area of the TVG was predicted to be 0.26 W m{sup -2} K{sup -1}. The simulation results show that although the thermal conductivity of solder glass (1 W m{sup -1} K{sup -1}) and indium (83.7 W m{sup -1} K{sup -1}) are very different, the difference in thermal transmission of TVGs resulting from the use of an indium and a solder glass edge seal was 0.01 W m{sup -2} K{sup -1}. This is because the edge seal is so thin (0.12 mm), consequently there is a negligible temperature drop across it irrespective of the material that the seal is made from relative to the total temperature difference across the glazing. The results also show that there is a relatively large increase in the overall thermal conductance of glazings without a frame when the width of the indium edge seal is increased. Increasing the rebate depth in a solid wood frame decreased the heat transmission of the TVG. The overall heat transmission of the simulated 0.5 m by 0.5 m TVG was 32.6% greater than that of the 1 m by 1 m TVG, since heat conduction through the edge seal of the small glazing has a larger contribution to the total glazing heat transfer than that of the larger glazing system. (author)

  5. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  6. Project Overcoat - An Exploration of Exterior Insulation Strategies for 1-1/2-Story Roof Applications in Cold Climates

    SciTech Connect

    Ojczyk, C.; Mosiman, G.; Huelman, P.; Schirber, T.; Yost, P.; Murry, T.

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied 'band-aids' such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an 'overcoat' of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  7. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  8. ATST enclosure: seeing performance, thermal modeling, and error budgets

    NASA Astrophysics Data System (ADS)

    Dalrymple, Nathan E.; Oschmann, Jacobus M., Jr.; Hubbard, Robert P.

    2004-09-01

    The enclosure for the Advanced Technology Solar Telescope (ATST) is both a wind shield and a source of seeing. Its design must minimize self-induced seeing while remaining within cost constraints and balancing with other error budget items. We report the methods used to quantify seeing performance, including thermal modeling, seeing estimation, and systems engineering error budgets. Thermal modeling is performed using a commercial software package that applies measured site weather data to a CAD-generated enclosure model. Seeing estimation is performed using a simple aerodynamic treatment. The results, along with measured site wind and temperature distributions, are combined into a "bottom-up" performance prediction using Monte Carlo techniques.

  9. Thermal Components Boost Performance of HVAC Systems

    NASA Technical Reports Server (NTRS)

    2012-01-01

    As the International Space Station (ISS) travels 17,500 miles per hour, normal is having a constant sensation of free-falling. Normal is no rain, but an extreme amount of shine.with temperatures reaching 250 F when facing the Sun. Thanks to a number of advanced control systems onboard the ISS, however, the interior of the station remains a cool, comfortable, normal environment where astronauts can live and work for extended periods of time. There are two main control systems on the ISS that make it possible for humans to survive in space: the Thermal Control System (TCS) and the Environmental Control and Life Support system. These intricate assemblies work together to supply water and oxygen, regulate temperature and pressure, maintain air quality, and manage waste. Through artificial means, these systems create a habitable environment for the space station s crew. The TCS constantly works to regulate the temperature not only for astronauts, but for the critical instruments and machines inside the spacecraft as well. To do its job, the TCS encompasses several components and systems both inside and outside of the ISS. Inside the spacecraft, a liquid heat-exchange process mechanically pumps fluids in closed-loop circuits to collect, transport, and reject heat. Outside the ISS, an external system circulates anhydrous ammonia to transport heat and cool equipment, and radiators release the heat into space. Over the years, NASA has worked with a variety of partners.public and private, national and international. to develop and refine the most complex thermal control systems ever built for spacecraft, including the one on the ISS.

  10. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    SciTech Connect

    Miller, William A; Cherry, Nigel J; Allen, Richard Lowell; Childs, Phillip W; Atchley, Jerald Allen; Ronnen, Levinson; Akbari, Hashem; Berhahl, Paul

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the counter battens, providing a nailing surface for the concrete tile. This double batten construction forms an inclined air channel running from the soffit to the ridge. The bottom surface of the channel is formed by the roof decking and is relatively flat and smooth. The top surface is created by the underside of the roofing tiles, and is designed to be an air permeable covering to alleviate the underside air pressure and minimize wind uplift on the tiles. The resulting air flows also have a cooling influence which further complicates prediction of the heat penetrating through the deck because an accurate measure of the airflow is required to predict the heat transfer. Measured temperatures and heat flows at the roof surface, within the attic and at the ceiling of the houses are discussed as well as the power usage to help gauge the benefit of cool-pigmented reflective roof products fitted with and without ventilation above the roof deck. Ventilation occurring above the deck is an inherent feature for tile roof assemblies, and is formed by an air space between the exterior face of the roof sheathing and the underside of the tile. The greater the tile s profile the greater is the effect of the ventilation which herein is termed above-sheathing ventilation (ASV). However, because of the complexity of the thermally induced flow, little credit is allowed by state and federal building codes. ASHRAE (2005) provides empirical data for the effective thermal resistance of plane air spaces. A -in. (0.0191-m) plane air space inclined at 45 with the horizontal has an RUS-0.85 (RSI-0.15) . Our intent is to help further deploy cool color pigments in roofs by conducting field experiments to evaluate the new cool-colored roofing materials in the hot climate of Southern California. The collected data will be used to showcase and market the performance of new cool-roof products and also to help formulate and validate computer codes capable of calculating the heat transfer occurring within the attic and the whole building. Field measures and computer predictions showed that the d

  11. Energy Star{reg{underscore}sign} label for roof products

    SciTech Connect

    Schmeltz, R.S.; Bretz, S.E.

    1998-07-01

    Home and buildings owners can save up to 40% of cooling energy costs by installing reflective roofs, especially in hot and sunny climates. The increase in exterior albedo and subsequent decrease in heat flow across the building envelope reduces the energy requirements to maintain air-conditioned space. Indirectly, the increase in overall albedo of a community as these roofs are installed in a large fraction of the buildings results in lower ambient air temperature and less need for air conditioning. Another indirect effect is a decrease in smog formation due to lower ambient air temperatures and less air pollution from power plants because of minimized electrical demand and use. The US Environmental Protection Agency and the US Department of Energy are currently developing the Energy Star Roof Products Program to create a vibrant market for energy-efficient, cost-effective roof materials through the widespread availability of products, clear recognition of the benefits by consumers, and active promotion of products by manufacturers. Several activities, including pilot procurements of room materials, and the development of outreach and training materials, will be performed to assist the transformation of the roofing market toward more energy-efficient products. Using the experiences gained in establishing the Energy Star Roof Products Program as an example, this paper will discuss the barriers to the development of energy-efficient roofing practices, program implementation, and program successes. This paper will further describe the specifics of the Energy Star Roof Products Program, its goals, benefits, activities, and timeframe.

  12. Thermal Performance Testing of EMU and CSAFE Liquid Cooling Gannents

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Meginnis, Ian; Hakam, Mary; Radford, Tamara

    2013-01-01

    Future exploration missions require the development of a new liquid cooling garment (LCG) to support the next generation extravehicular activity (EVA) suit system. The new LCG must offer greater system reliability, optimal thermal performance as required by mission directive, and meet other design requirements including improved tactile comfort. To advance the development of a future LCG, a thermal performance test was conducted to evaluate: (1) the comparable thermal performance of the EMU LCG and the CSAFE developed engineering evaluation unit (EEU) LCG, (2) the effect of the thermal comfort undergarment (TCU) on the EMU LCG tactile and thermal comfort, and (3) the performance of a torso or upper body only LCG shirt to evaluate a proposed auxiliary loop. To evaluate the thermal performance of each configuration, a metabolic test was conducted using the Demonstrator Spacesuit to create a relevant test environment. Three (3) male test subjects of similar height and weight walked on a treadmill at various speeds to produce three different metabolic loads - resting (300-600 BTU/hr), walking at a slow pace (1200 BTU/hr), and walking at a brisk pace (2200 BTU/hr). Each subject participated in five tests - two wearing the CSAFE full LCG, one wearing the EMU LCG without TCUs, one wearing the EMU LCG with TCUs, and one with the CSAFE shirt-only. During the test, performance data for the breathing air and cooling water systems and subject specific data was collected to define the thermal performance of the configurations. The test results show that the CSAFE EEU LCG and EMU LCG with TCU had comparable performance. The testing also showed that an auxiliary loop LCG, sized similarly to the shirt-only configuration, should provide adequate cooling for contingency scenarios. Finally, the testing showed that the TCU did not significantly hinder LCG heat transfer, and may prove to be acceptable for future suit use with additional analysis and testing.

  13. THERMAL BUILDING PERFORMANCE OPTIMIZATION USING SPATIAL ARCHETYPES

    E-print Network

    Papalambros, Panos

    . As Heating, Ventilating, and Air Conditioning (HVAC) systems account for the primary energy use and the associated operational costs of HVAC systems. Over the past years, building performance simulation has been. In the US, during the year 2000, about 30% more residential energy was consumed than in the year 1970 and 80

  14. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2005-01-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (4) about 98% of the development work for the roof geology mapping program, MRGIS, has completed, (5) A real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, has already been verified to perform very well in underground production condition.

  15. The Successful Transfer of Space Derived Convergent Spray: An Application for Industrial Roof Coatings and Interstate Bridge Repair

    NASA Technical Reports Server (NTRS)

    McMillan, Vernotto C.

    1998-01-01

    A partnership was formed between the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), and United Technologies USBI Company to develop, demonstrate, and evaluate a technology that uses a solventless spray process for depositing a lightweight, highly filled roof coating on low-sloped commercial roofs. Although the levels of volatile organic compound (VOC) emissions from industrial roof coating's and paint operations have been reduced in recent years, this partnership,was an effort to further reduce VOC emission levels and to also demonstrate the use of reclaimed automobile tire rubber as a filler material in roof coating systems. Different materials and coatings were evaluated and tested before the final selection used to coat the roofs of two small buildings at NASA's Marshall Space Flight Center during fiscal year 1997. The project successfully leveraged the investment of EPA, NASA and private sector resources to demonstrate a pre-commercial roofing coating process. This process utilizes the Convergent Spray Technologies process, which was initially developed by USBI to apply highly-filled, thermal protection coatings to the Space Shuttle Solid Rocket Boosters. A second partnership between the NASA, Federal Highway Administration, Alabama Department of Transportation and USBI Company was formed to develop and demonstrate the Convergent Spray Technology as a method of applying a skid resistant coating to interstate roads and concrete bridge decking's. Again, different materials and coatings were evaluated and tested before the final selection of ground flint and resin. Two field demonstrations were performed during fiscal year 1997 for the purpose of evaluating the coating system under actual highway conditions. These coatings were applied on Interstate 65 near Huntsville Alabama, and in the Mobile Bankhead tunnel. The system performed this task without the use of harmful solvents, and accomplished the process in a single application. This project successfully leveraged the investment of NASA, Federal Highway Administration, the Alabama Department of Transportation, and private sector funding.

  16. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses is investigated. Actual rooftop heat losses were obtained both from in-situ instrumentation of test roofs with known thermal resistances and aerial thermography obtained from overflights at an altitude of 305 m. It is found that the roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from ground measurements. However it is noted that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. In addition, the sensitivity of the heat loss determination to environmental conditions is also evaluated. Finally, the analysis shows that the most reliable determinations can probably be obtained under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  17. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  18. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  19. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  20. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  1. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment:...

  2. Development of a Roof Savings Calculator

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Desjarlais, Andre Omer; Erdem, Ender; Huang, Joe

    2011-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.

  3. Thermal Performance Testing of EMU and OSS Liquid Cooling Garments

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Bue, Grant; Hakam, Mary

    2012-01-01

    A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.

  4. Thermal Performance Benchmarking; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Moreno, Gilbert

    2015-06-09

    This project proposes to seek out the SOA power electronics and motor technologies to thermally benchmark their performance. The benchmarking will focus on the thermal aspects of the system. System metrics including the junction-to-coolant thermal resistance and the parasitic power consumption (i.e., coolant flow rates and pressure drop performance) of the heat exchanger will be measured. The type of heat exchanger (i.e., channel flow, brazed, folded-fin) and any enhancement features (i.e., enhanced surfaces) will be identified and evaluated to understand their effect on performance. Additionally, the thermal resistance/conductivity of the power module’s passive stack and motor’s laminations and copper winding bundles will also be measured. The research conducted will allow insight into the various cooling strategies to understand which heat exchangers are most effective in terms of thermal performance and efficiency. Modeling analysis and fluid-flow visualization may also be carried out to better understand the heat transfer and fluid dynamics of the systems.

  5. Entering the Roofing and Waterproofing Industry. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This book is one of a series of 10 units of instruction for roofing apprenticeship classes in California. It covers the following 14 topics and provides tests for them: the nature of the roofing and waterproofing industry; the apprenticeship program; apprenticeship and the public schools; collective bargaining, wages, and benefits; safety in the…

  6. EXTERIOR, ROOF, A view looking southeast from the roof toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR, ROOF, A view looking southeast from the roof toward a low wall and the west facade of a penthouse with two stacks located in the southern courtyard - Department of Energy, Mound Facility, B Building, One Mound Road, Miamisburg, Montgomery County, OH

  7. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  8. Whole House Thermal Performance of Asphalt Shingles Exploiting Special Infrared Reflective Pigments 

    E-print Network

    Hahn, L.; Miller, W.; Desjarlais, A.; Jacobs, J.; Youngquist, A.

    2006-01-01

    . Artificial Aging: Use of Diffusion Theory to Model Asphalt and Fiberglass-Reinforced Shingle Performance.” in Proceedings of the 4th International Symposium on Roofing Technolology, 66–74, Gaithersburg, MD, September. Shiao, M. L., D. A. Nester, and L... PERFORMANCE OF ASPHALT SHINGLES EXPLOITING SPECIAL INFRARED REFLECTIVE PIGMENTS Lou Hahn John McCaskill Elk Corporation Ennis, Texas William (Bill) Miller Andre Desjarlais Oak Ridge National Laboratory Oak Ridge, Tennessee Jeffry Jacobs 3M...

  9. Energy saving potential of various roof technologies

    E-print Network

    Ray, Stephen D. (Stephen Douglas)

    2010-01-01

    Unconventional roof technologies such as cool roofs and green roofs have been shown to reduce building heating and cooling load. Although previous studies suggest potential for energy savings through such technologies, ...

  10. VO? nanorods for efficient performance in thermal fluids and sensors.

    PubMed

    Dey, Kajal Kumar; Bhatnagar, Divyanshu; Srivastava, Avanish Kumar; Wan, Meher; Singh, Satyendra; Yadav, Raja Ram; Yadav, Bal Chandra; Deepa, Melepurath

    2015-04-14

    VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods. PMID:25773921

  11. Duct thermal performance models for large commercial buildings

    SciTech Connect

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

  12. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.

  13. Study of skin model and geometry effects on thermal performance of thermal protective fabrics

    NASA Astrophysics Data System (ADS)

    Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan

    2008-05-01

    Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.

  14. Portable Life Support Subsystem Thermal Hydraulic Performance Analysis

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce; Pinckney, John; Conger, Bruce

    2010-01-01

    This paper presents the current state of the thermal hydraulic modeling efforts being conducted for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS). The goal of these efforts is to provide realistic simulations of the PLSS under various modes of operation. The PLSS thermal hydraulic model simulates the thermal, pressure, flow characteristics, and human thermal comfort related to the PLSS performance. This paper presents modeling approaches and assumptions as well as component model descriptions. Results from the models are presented that show PLSS operations at steady-state and transient conditions. Finally, conclusions and recommendations are offered that summarize results, identify PLSS design weaknesses uncovered during review of the analysis results, and propose areas for improvement to increase model fidelity and accuracy.

  15. Thermal performance modeling of NASA s scientific balloons

    NASA Astrophysics Data System (ADS)

    Franco, H.; Cathey, H.

    The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.

  16. Review of End-of-Life Thermal Control Coating Performance

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Kline, Sara E.

    2008-01-01

    White thermal control coatings capable of long term performance are needed for Fission Surface Power (FSP) where heat from a nuclear reactor placed on the surface of the Moon must be rejected to the environment. The threats to thermal control coating durability on the lunar surface are electrons, protons, and ultraviolet radiation. The anticipated damage to the coating is a gradual darkening over time. The increase in solar absorptance would, in essence, add a cyclic heat load to the radiator. The greater the darkening, the greater the added heat load. The cyclic heat load could ultimately impart a cyclic influence on FSP system performance. No significant change in emittance is anticipated. Optical properties degradation data were found in the open literature for the Z-93 series of thermal control paints. Additional optical properties degradation data were found from the Lunar Orbiter V mission, the Optical Properties Monitor, and the Materials International Space Station Experiment. Anticipated end-of-life thermal control coating performance for a FSP installation is postulated. With the FSP installation located away from landing and launching areas, and out of line-of-sight, lunar dust from human activity may not be a threat. The benefits of investing in next generation thermal control paint chemistry are explored.

  17. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  18. Solar Roof Cooling by Evaporation 

    E-print Network

    Patterson, G. V.

    1981-01-01

    It is generally recognized that as much as 60% of the air conditioning load in a building is generated by solar heat from the roof. This paper on SOLAR ROOF COOLING BY EVAPORATION is presented in slide form, tracing the history of 'nature's way...

  19. Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Our Savior's School.

    ERIC Educational Resources Information Center

    Parker, Danny S.; Sherwin, John R.; Sonne, Jeffrey K.; Barkaszi, Stephen F., Jr.

    A 2-year Florida study attempted to quantify air conditioning cost savings when buildings have a white reflective roof. A 10,000 square foot elementary school with a gray modified bitumen roof over plywood decking that had a solar reflectance of 23 percent was monitored for an entire year. After one year of building thermal conditions and…

  20. Measuring mine roof bolt strains

    DOEpatents

    Steblay, Bernard J. (Lakewood, CO)

    1986-01-01

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  1. Performance issues in solar thermal energy transport systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, P. W.

    1986-07-01

    Pacific Northwest Laboratory, sponsored by the US Department of Energy through Sandia National Laboratories, is performing an assessment of three solar thermal electricity generating concepts; central receivers, dishes, and troughs. Concepts are being studied over a range of system sizes 0.5 MWe to 100 MWe with solar multiples from 1.0 to 2.8. Central receiver systems using molten salt, sodium, and water-steam working fluids are studied. The dish system selected for study uses a kinematic Stirling engine at the focal point, and the trough system is based on Accurex designed collectors heating a heat transfer oil. Of the three concepts studied, the central receiver and trough systems utilize thermal transport systems. A thermal transport system is the piping and fluid required to transfer thermal energy between receiver, and storage and between storage and steam generator. The literature contains many transport system designs, most of which are optimized with regard to cost and performance. We used the parameters specified from the optimizations to design our systems and scale the designs over the 0.5 MWe to 100 MWe size range. From these designs, thermal losses and pump sizes are derived then combined in a system model to obtain total annual averaged efficiency as a function of plant field size. We found that central receiver transport efficiency improves with field size whereas trough transport efficiency degrades with field size. We found that overnight cooldown accounts for roughly 50% of the total thermal losses for all transport systems. Trough performance is substantially degraded because the receiver tubes are not drained which allows a large overnight heat loss. Trough transport performance was found to be sensitive to fluid velocity.

  2. PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR

    E-print Network

    loosest sense to describe semi-transparent PV panels such as dye- sensitised solar panels usedPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre efficiency of 68%. The impact of non-uniform illumination on the solar cells is investigated using purpose

  3. Feasibility of determining flat roof heat losses using aerial thermography

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Jack, J. R.

    1979-01-01

    The utility of aerial thermography for determining rooftop heat losses was investigated experimentally using several completely instrumented test roofs with known thermal resistances. Actual rooftop heat losses were obtained both from in-situ instrumentation and aerial thermography obtained from overflights at an altitude of 305 m. In general, the remotely determined roof surface temperatures agreed very well with those obtained from ground measurements. The roof heat losses calculated using the remotely determined roof temperature agreed to within 17% of those calculated from 1/R delta T using ground measurements. However, this agreement may be fortuitous since the convective component of the heat loss is sensitive to small changes in roof temperature and to the average heat transfer coefficient used, whereas the radiative component is less sensitive. This, at this time, it is felt that an acceptable quantitative determination of roof heat losses using aerial thermography is only feasible when the convective term is accurately known or minimized. The sensitivity of the heat loss determination to environmental conditions was also evaluated. The analysis showed that the most reliable quantitative heat loss determinations can probably be obtained from aerial thermography taken under conditions of total cloud cover with low wind speeds and at low ambient temperatures.

  4. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    PubMed

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. PMID:25106048

  5. Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2015-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 500 to 750 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  6. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  7. Thermal Insulation Performance in the Process Industries: Facts and Fallacies 

    E-print Network

    Tye, R. P.

    1985-01-01

    stream_source_info ESL-IE-85-05-54.pdf.txt stream_content_type text/plain stream_size 24703 Content-Encoding ISO-8859-1 stream_name ESL-IE-85-05-54.pdf.txt Content-Type text/plain; charset=ISO-8859-1 THERMAL INSULATION... PERFORMANCE IN 'mE PROCESS INDUSTRIES: FACTS AND FALLACIES R.P. Tye Dynatech RID Company, Cambridge, MA, U.S.A. ABSTRACT The efficient use of thermal insulation materials and systems for design of cryogenic and elevated temperature process...

  8. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    NASA Astrophysics Data System (ADS)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on a rooftop? 2) How does this design compare with the performance of the extant Green Grid green roof system on the roof in regard to storm water runoff mitigation and nutrient leaching? and 3) Using GIS, can this information be scaled to a larger region (i.e. UNH campus, the NH Seacoast, NH cities, etc.) to determine areas of particular interest for pollinator conservation? Runoff mitigation, as a percentage of precipitation, is expected to be greater than that on the roof with proprietary substrate, though nutrient leaching may be greater as well due to the higher organic matter content. Paired with GIS data on NH ecoregions, these results will help to identify areas in the state that would benefit from the construction of pollinator habitat corridors, including urban areas that may not have been previously considered.

  9. Nanostructure model of thermal conductivity for high thermoelectric performance

    NASA Astrophysics Data System (ADS)

    Poon, S. J.; Limtragool, K.

    2011-12-01

    The effective medium theory of thermal conductivity of two-phase composites studied by Nan et al. has been extended to investigate concentrated nanocomposites. Due to the presence of inter-particle phonon scattering processes in concentrated nanocomposites, the effective lattice thermal conductivity keff varies more rapidly with the volume fraction of second-phase inclusions in the composite. Applying the new keff expressions to monolithic material systems, the results are found to capture the experimental trend of monolithic nanostructured materials. In particular, it is noted that the dimensionless figure of merit, ZT, is nearly doubled by only reducing the lattice thermal conductivity. Two-phase nanocomposites have also been evaluated, demonstrating that these latter systems are very suited for high thermoelectric performance. Present study leads to several strategies for obtaining ZT ˜ 2 or higher in nanocomposites.

  10. Parametric study of solar thermal rocket nozzle performance

    SciTech Connect

    Pearson, J.B.; Landrum, D.B.; Hawk, C.W.

    1996-08-01

    Continued exploration and exploitation of space will require the development of more efficient and economical systems for access to and transportation through space. Solar thermal propulsion has emerged as a potential candidate to fill this role. A solar thermal rocket using hydrogen (H{sub 2}) propellant has a theoretical I{sub sp} of 700--1,100 seconds based on typical temperatures in the absorber/heat exchanger of 3,500--6,500 {degree}R (1,944--3,611 K). This note describes the significant results of a fundamental study of the potential causes of I{sub sp} reduction in low thrust, solar thermal rocket nozzles. The main emphasis is an analytical/numerical study of how nozzle geometry impacts the viscous and thermochemical losses. The results are applicable to optimizing nozzle geometry for maximum performance.

  11. Thermal performance modification of composite materials. [for missiles

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Mink, M.

    1979-01-01

    This paper reports on an investigation of the concept of modifying the thermal performance of filled polymers through a minor compositional change (presently by coating the filler). The fire-safety of construction materials and the instability of solid rockets are used as examples. A theory is developed which shows that vast improvements are possible by controlling thermal conductivity. Experiments are described that show the weight loss and smoke density in the NBS smoke-density chamber of fiberglass-reinforced epoxy panels, and the instability trends of an AP-HTPB propellant fired in an L-Star rocket motor. The feasibility of tailoring thermal behavior to suit each particular need is demonstrated.

  12. Evaluation of VOC emissions from heated roofing asphalt. Final report

    SciTech Connect

    Kariher, P.; Tufts, M.; Hamel, L.

    1991-11-01

    The report gives results of a short-term in-house project to characterize emissions from a simulated asphalt roofing kettle, performed at EPA/AEERL. Hot asphalt surfacing and resurfacing has been identified as a possible significant source of volatile organic compound (VOC) emissions that may affect human health and contribute to the ozone non-attainment problem. The purpose of the study was to collect, identify, and semi-quantitate as many compounds as possible that are discharged during the open heating of roofing asphalt and relate them to the amount volatilized into the air. Types 1, 2, and 3 mopping grade asphalts were chosen for the study. They constitute more than 90% of roofing asphalt used. Samples of each type of asphalt were placed in a simulated roofing kettle, heated to predetermined temperatures, and sampled for volatile and semi-volatile organic emissions. Compounds identified during the study were alkanes, aromatics, a ketone, and an aldehyde.

  13. Measured energy savings of light colored roofs: Results from three California demonstration sites

    SciTech Connect

    Akbari, H.; Gartland, L.; Konopacki, S.

    1998-06-01

    Measured data and computer simulations have demonstrated the impact of roof albedo in reducing cooling energy use in buildings. Savings are a function of both climate and the amount of roof insulation. The cooling energy savings for reflective roofs are highest in hot climates. A reflective roof may also lead to higher heating energy use. Reflective coatings are also used in commercial buildings to protect the roofing membrane, and hence, maintain and prolong the useful life of the roof. Reflectivity of coatings changes with weathering and aging which in turn could have an effect on building cooling-energy savings. For that reason, reflective roof coatings are not primarily marketed for their energy savings potential. To monitor the field performance of reflective coatings, the authors initiated a demonstration project where three commercial buildings in California were painted with light-colored roof coatings. The buildings are two medical care centers and one drug store. At all sites, the roof reflectance, both fresh and aged, and cooling energy use were monitored. In addition, they measured temperature throughout the roof systems and inside the conditioned space. In the monitored buildings, increasing the roof reflectance from an initial value of about 20% to 60%, dropped the roof temperature on hot summer afternoons by about 45 F. Summertime standard-weekday average daily air-conditioning savings were 18% (198 kWh) in the first medical office building, 13% (86 kWh) in the second medical office building, and 2% (13 kWh) in the drug store. The overall u-value of the roofs had dictated the impact of roof reflectance.

  14. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  15. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  16. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof bolting. 75.204 Section 75.204 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.204 Roof bolting. (a) For roof bolts and accessories addressed in ASTM F432-95,...

  17. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  18. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts...

  19. Thermal performance of phase change wallboard for residential cooling application

    SciTech Connect

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two important advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.

  20. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of roof support using mining machines with integral roof bolters. 75.205 Section 75.205 Mineral Resources MINE SAFETY AND HEALTH... Roof Support § 75.205 Installation of roof support using mining machines with integral roof...

  1. Thermal performance of a customized multilayer insulation (MLI)

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1976-01-01

    The thermal performance of a LH2 tank on a shroudless vehicle was investigated. The 1.52 m (60 in) tank was insulated with 2 MLI blankets consisting of 18 double aluminized Mylar radiation shields and 19 silk net spacers. The temperature of outer space was simulated by using a cryoshroud which was maintained at near liquid hydrogen temperature. The heating effects of a payload were simulated by utilizing a thermal payload simulator (TPS) viewing the tank. The test program consisted of three major test categories: (1) null testing, (2) thermal performance testing of the tank installed MLI system, and (3) thermal testing of a customized MLI configuration. TPS surface temperatures during the null test were maintained at near hydrogen temperature and during test categories 2 and 3 at 289 K (520R). The heat flow rate through the tank installed MLI at a tank/TPS spacing of 0.457 m was 1.204 watts with no MLI on the TPS and 0.059 watts through the customized MLI with three blankets on the TPS. Reducing the tank/TPS spacing from 0.457 m to 0.152 m the heat flow through the customized MLI increased by 10 percent.

  2. MAPTIP experiment, marine aerosol properties and thermal imager performance

    SciTech Connect

    Eijk, A.M.J. van; Leeuw, G. de; Jensen, D.R.

    1994-12-31

    During the fall of 1993, a field experimental study on Marine Aerosol Properties and Thermal Imager Performance (MAPTIP) was conducted in the Dutch coastal waters. The objectives of the MAPTIP trial were: (1) to improve and validate vertical marine aerosol models by providing an extensive set of aerosol and meteorological measurements, within a coastal environment, at different altitudes and for a range of meteorological conditions; (2) to make aerosol and meteorological observations in the first 10 m above the ocean surface with a view to extending existing aerosol models to incorporate near-surface effects; (3) to assess marine boundary layer effects on thermal imaging systems. Aerosol and meteorological instruments, as well as thermal imagers and calibrated targets, were used at several platforms and locations. Measurements have been made of atmospheric turbulence and refractivity effects at wavelengths in the IR and visible, to assess the marine boundary layer effects on the degradation of thermal images. Calibrated targets at different altitudes were observed to the maximum observable range under a wide variety of conditions in both the 3--5 and 8--12 gm bands, These data will be used for the development and validation of IRST models and IR ship signature models with the view of determining the effects of marine-generated aerosols, turbulence and meteorological profiles on their performance.

  3. Thermal and aerothermal performance of a titanium multiwall thermal protection system

    NASA Technical Reports Server (NTRS)

    Avery, D. E.; Shideler, J. L.; Stuckey, R. N.

    1981-01-01

    A metallic thermal protection system (TPS) concept the multiwall designed for temperature and pressure at Shuttle body point 3140 where the maximum surface temperature is approximately 811 K was tested to evaluate thermal performance and structural integrity. A two tile model of titanium multiwall and a model consisting of a low temperature reusable surface insulation (LRSI) tiles were exposed to 25 simulated thermal and pressure Shuttle entry missions. The two systems performed the same, and neither system deteriorated during the tests. It is indicated that redesign of the multiwall tiles reduces tile thickness and/or weight. A nine tile model of titanium multiwal was tested for radiant heating and aerothermodynamics. Minor design changes that improve structural integrity without having a significant impact on the thermal protection ability of the titanium multiwall TPS are identified. The capability of a titanium multiwall thermal protection system to protect an aluminum surface during a Shuttle type entry trajectory at locations on the vehicle where the maximum surface temperature is below 811 K is demonstrated.

  4. Green roof soil system affected by soil structural changes: A project initiation

    NASA Astrophysics Data System (ADS)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sn?hota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  5. Fluid and thermal performance analysis of PMSM used for driving

    NASA Astrophysics Data System (ADS)

    Ding, Shuye; Cui, Guanghui; Li, Zhongyu; Guan, Tianyu

    2015-05-01

    The permanent magnet synchronous motor (PMSM) is widely used in ships under frequency conversion control system. The fluid flow performance and temperature distribution of the PMSM are difficult to clarify due to its complex structure and variable frequency control condition. Therefore, in order to investigate the fluid and thermal characteristics of the PMSM, a 50 kW PMSM was taken as an example in this study, and a 3-D coupling analysis model of fluid and thermal was established. The fluid and temperature fields were calculated by using finite volume method. The cooling medium's properties, such a velocity, streamlines, and temperature, were then analyzed. The correctness of the proposed model, and the rationality of the solution method, were verified by a temperature test of the PMSM. In this study, the changing rheology on the performance of the cooling medium and the working temperature of the PMSM were revealed, which could be helpful for designing the PMSM.

  6. DOE's Roof Savings Calculator (RSC)

    E-print Network

    Wang, Xiaorui "Ray"

    -engineering: · Albedo engineering for solar radiation management ­ increasing Earth's reflectance Examples: cloud Steven Chu, Daily Show, July 21, 2009 #12;Cool roof context Goal to address climate change, manage Earth

  7. Thermal performance evaluation of the infrared telescope dewar subsystem

    NASA Technical Reports Server (NTRS)

    Urban, E. W.

    1986-01-01

    Thermal performance evaluations (TPE) were conducted with the superfluid helium dewar of the Infrared Telescope (IRT) experiment from November 1981 to August 1982. Test included measuring key operating parameters, simulating operations with an attached instrument cryostat and validating servicing, operating and safety procedures. Test activities and results are summarized. All objectives are satisfied except for those involving transfer of low pressure liquid helium (LHe) from a supply dewar into the dewar subsystem.

  8. Lithium-ion capacitors: Electrochemical performance and thermal behavior

    NASA Astrophysics Data System (ADS)

    Smith, Patricia H.; Tran, Thanh N.; Jiang, Thomas L.; Chung, Jaesik

    2013-12-01

    We report on the electrochemical performance of 500 F, 1100 F, and 2200 F lithium-ion capacitors containing carbonate-based electrolytes. First and second generation lithium-ion capacitors were cycled at temperatures ranging from -30 °C to 65 °C, with rates from 5 C to 200 C. Unlike acetonitrile-based electric double-layer capacitors, whose performance has been reported to be relatively insensitive to temperatures between -30 °C and 40 °C, lithium-ion capacitor performance degrades at low temperatures and displays characteristics typical of a lithium-ion battery. Three-electrode lithium-ion capacitor cycling tests revealed that reduced capacity at low temperatures is due to the polarization of the lithiated, negative electrode. The self-discharge of cells at the various temperatures was studied and compared to an electric double-layer capacitor and a lithium-ion battery cell. Lithium-ion capacitors and batteries were observed to have significantly lower self-discharge rates than electric double-layer capacitors. Accelerating rate calorimetry and differential scanning calorimetry were used to assess the thermal runaway behavior of full cells along with the thermal properties of the cell components. Our study showed that the thermal behavior of the lithium-ion capacitor is in between those of an electric double-layer capacitor and a lithium-ion battery.

  9. Life sciences passive GN2 freezer thermal performance test

    NASA Technical Reports Server (NTRS)

    Belshaw, G. W.

    1981-01-01

    Thermal performance tests that were conducted on the life sciences passive GN2 freezer project are summarized as well as the improvements to the freezers to improve the thermal performance of the containers. Procedures were developed, based upon these tests, to initially charge the freezers with LN2 and verify that the freezer performance is adequate for the mission duration. Improvements were made to the corvac sample tube to limit the amount of breakage due to thermal expansion of the liquid during freezing. A method of verifying the freezer vacuum insulative integrity was defined as well as a procedure for refurbishment of the internal vacuum level. Freezer modifications were made to ease the reevacuation of the containers. The orientation of the freezer in a 1-G environment, after being charged, had to remain in a vertical position. The LN2 boiloff rate increased significantly in a horizontal position. This resulted in a stowage definition in the spacecraft prior to launch. Functional testing, using the SL-1 mission timeline showed that the freezer will maintain samples in the frozen state for the duration of the mission.

  10. Analysis of thermal performance of penetrated multi-layer insulation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Yoo, Chai H.; Barrett, William E.

    1988-01-01

    Results of research performed for the purpose of studying the sensitivity of multi-layer insulation blanket performance caused by penetrations through the blanket are presented. The work described in this paper presents the experimental data obtained from thermal vacuum tests of various penetration geometries similar to those present on the Hubble Space Telescope. The data obtained from these tests is presented in terms of electrical power required sensitivity factors referenced to a multi-layer blanket without a penetration. The results of these experiments indicate that a significant increase in electrical power is required to overcome the radiation heat losses in the vicinity of the penetrations.

  11. Military applications for high-performance thermal imaging

    NASA Astrophysics Data System (ADS)

    McEwan, Ken

    2015-01-01

    The recent developments in high-performance infrared sensor technology are opening up new opportunities for exploitation in the defence and security domains. In this paper, the focal plane array developments in the UK on low noise techniques, avalanche photodiodes, high operating temperature devices and large format cameras are reviewed and impact upon military capability is discussed. These technological developments are focused towards enduring challenges including the stand-off identification of hazardous materials and long range target recognition and are enabling exploitation of high performance thermal imaging onto a wide range of smaller platforms.

  12. Impact of Reflective Roofing on Cooling Electrical Use and Peak Demand in a Florida Retail Mall 

    E-print Network

    Parker, D. S.; Sonne, J. K.; Sherwin, J. R.

    2002-01-01

    ROOFING ON COOLING ELECTRICAL USE AND PEAK DEMAND IN A FLORIDA RETAIL MALL Danny S. Parker Jeffrey K. Sonne John R. Sherwin Florida Solar Energy Center Florida Solar Energy Center Florida Solar Energy Center 1679... Performance of Roofs: An Experimental Study," ASHRAE Transactions, Vol. 94, Pt. 2, Atlanta, 1988. Parker, D.S., Cummings, J.B., Sherwin, J.S., Stedman, T.C. and McIlvaine, J.E.R., 1993. Measured Electricity Savings from Reflective Roof Coatings Applied...

  13. Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes

    SciTech Connect

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2015-12-01

    ?A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.

  14. Statistical Building Roof Reconstruction from WORLDVIEW-2 Stereo Imagery

    NASA Astrophysics Data System (ADS)

    Partovi, T.; Huang, H.; Krauß, T.; Mayer, H.; Reinartz, P.

    2015-03-01

    3D building reconstruction from point clouds is an active research topic in remote sensing, photogrammetry and computer vision. Most of the prior research has been done on 3D building reconstruction from LiDAR data which means high resolution and dense data. The interest of this work is 3D building reconstruction from Digital Surface Models (DSM) of stereo image matching of space borne satellite data which cover larger areas than LiDAR datasets in one data acquisition step and can be used also for remote regions. The challenging problem is the noise of this data because of low resolution and matching errors. In this paper, a top-down and bottom-up method is developed to find building roof models which exhibit the optimum fit to the point clouds of the DSM. In the bottom up step of this hybrid method, the building mask and roof components such as ridge lines are extracted. In addition, in order to reduce the computational complexity and search space, roofs are classified to pitched and flat roofs as well. Ridge lines are utilized to estimate the roof primitives from a building library such as width, length, positions and orientation. Thereafter, a topdown approach based on Markov Chain Monte Carlo and simulated annealing is applied to optimize roof parameters in an iterative manner by stochastic sampling and minimizing the average of Euclidean distance between point cloud and model surface as fitness function. Experiments are performed on two areas of Munich city which include three roof types (hipped, gable and flat roofs). The results show the efficiency of this method in even for this type of noisy datasets.

  15. Sensitivity of Low Sloped Roofs Designs to Initial Water and Air Leakage 

    E-print Network

    Karagiozis, A.; Desjarlais, A.; Salonvaara, M.

    2002-01-01

    of air leakage on the hygrothermal performance of a few selected roofs. The drying potential of a groove ventilated roof is examined. The performance concept is based on the fact that warming up of air in the groove increases it's ability to transport...

  16. Thermoacoustic power effect on the refrigeration performance of thermal separators

    NASA Astrophysics Data System (ADS)

    Liang, S. B.; Li, X. L.; Ma, H. B.

    2003-09-01

    An experimental investigation on the refrigeration processes occurring in a receiving tube of a thermal separator was conducted in order to determine the primary factors affecting the refrigeration performance of this new type of refrigerator. In the current investigation, the gas in the system is divided into the oscillating gas and driving gas. While the compression/expansion of the oscillating gas caused by the driving gas determines the refrigeration process occurring in the receiving tube of the thermal separator, the temperature gradient on the receiving tube significantly affects the acoustic power generation and refrigeration performance. Experimental results demonstrate that when the tube-wall temperature difference near the open end of the receiving tube increases, the refrigeration coefficient increases. Using the information presented in the paper, a new cryogenic refrigeration system was developed, and the experimental data shows that the temperature of the cryogenic air flow in the system could reach -130 °C within 50 min. It suggests that the thermal separator investigated in the paper can be employed in the field of cryogenic engineering.

  17. Performance of a parallel thermal-hydraulics code TEMPEST

    SciTech Connect

    Fann, G.I.; Trent, D.S.

    1996-11-01

    The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scaling performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.

  18. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    SciTech Connect

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

  19. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  20. Thermal and electrical performance of ?-Si microbolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Sun, Lianjun; Chang, Benkang; Zhang, Junju; Qian, Yunsheng; Qiu, Yafeng

    2007-07-01

    Recent advances of microelectromechanical system (MEMS) technology have opened new opportunities for amorphous silicon (?-Si) microbolometer focal plane arrays (FPAs) both for military and civil applications. ?-Si membrane is chosen for sensitive material of microbolometer FPAs due to its high temperature coefficient of resistance (TCR), high resistivity and good mechanical properties. However, ?-Si membrane also has the disadvantage of high 1/f noise, strict preparation conditions and metastable effect. So nowadays, researches are focused on properties of ?-Si membrane to gain high performance of microbolometer FPAs. Since the pulsed bias readout mode of microbolometer FPAs causes a non-steady-state of ?-Si membrane during the operation, the transient thermal-electrical response process of the sensing pixel is analyzed detailedly in this paper to predict the thermal and electrical performance of ?-Si microbolemeter FPAs such as responsivity, noise equivalent temperature difference (NETD), detectivity and power dissipation. Numerical simulations are presented to investigate the factor which affects the performance of ?-Si microbolometer FPAs. The imaging experiment results obtained from a 320×240 ?-Si microbolemeter FPA are in good agreement with the theoretical analysis. The way to improve the performance of ?-Si microbolemeter FPAs is given in the end of this paper.

  1. Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems

    NASA Technical Reports Server (NTRS)

    Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.

    2009-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.

  2. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  3. Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate

    SciTech Connect

    K. Ueno and J. Lstiburek

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise.

  4. Control and performance of a photovoltaic-thermal energy system

    NASA Astrophysics Data System (ADS)

    Bazques, E. O.

    1983-12-01

    The control of a photovoltaic/thermal energy (PV/T) system in general and optimization of performance in particular through use of modern (state space) control methods, stochastic weather inputs, and second law of thermodynamics analysis is addressed. Significant improvement in system performance is noted using optimal control when compared to conventional on/off, multilevel, or proportional controllers for deterministic weather forcing functions. Optimal system control, analyzed first through use of Pontryagin's Minimum Principle and then implemented by specification of a quadratic performance index and solution of matrix Riccati equations, is shown to be a viable and useful strategy for these hybrid systems. Stochastic weather techniques which incorporate temperature/insolation probability density matrices and least square constants are found to be a valid method for reducing simulation requirements as long as weather persistence effects are taken into account through use of information derived from Markov transition matrices.

  5. Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology

    SciTech Connect

    Kosny, Jan; Miller, William A; Childs, Phillip W; Biswas, Kaushik

    2011-01-01

    During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

  6. Thermal and other tests of photovoltaic modules performed in natural sunlight

    NASA Technical Reports Server (NTRS)

    Stultz, J. W.

    1978-01-01

    The bulk of the testing was the characterization of twenty-nine modules according to their nominal operating cell temperature (NOCT) and the effect on NOCT of changes in module design, various residential roof mounting configurations, and dirt accumulation. Other tests, often performed parallel with the NOCT measurements, evaluated the improvement in electrical performance by cooling the modules with water and by channeling the waste heat into a phase change material (wax). Electrical degradation resulting from the natural marriage of photovoltaic and solar water heating modules was also demonstrated. Cost effectiveness of each of these techniques are evaluated in light of the LSA cost goal of $0.50 per watt.

  7. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2005-04-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) the relationship among feed pressure, penetration rate and rotation rate seems to be a good indicator for estimating rock strength when both penetration rate and rotation rate are controlled or kept constant, (4) the empirical equations for eliminating the machine effect on drilling parameters were developed and verified, and (5) a real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, performs very well in underground production condition.

  8. Learning-based roof style classification in 2D satellite images

    NASA Astrophysics Data System (ADS)

    Zang, Andi; Zhang, Xi; Chen, Xin; Agam, Gady

    2015-05-01

    Accurately recognizing building roof style leads to a much more realistic 3D building modeling and rendering. In this paper, we propose a novel system for image based roof style classification using machine learning technique. Our system is capable of accurately recognizing four individual roof styles and a complex roof which is composed of multiple parts. We make several novel contributions in this paper. First, we propose an algorithm that segments a complex roof to parts which enable our system to recognize the entire roof based on recognition of each part. Second, to better characterize a roof image, we design a new feature extracted from a roof edge image. We demonstrate that this feature has much better performance compared to recognition results generated by Histogram of Oriented Gradient (HOG), Scale-invariant Feature Transform (SIFT) and Local Binary Patterns (LBP). Finally, to generate a classifier, we propose a learning scheme that trains the classifier using both synthetic and real roof images. Experiment results show that our classifier performs well on several test collections.

  9. Thermal performance evaluation of the Semco (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.

  10. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.

  11. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  12. Effects of white roofs on urban temperature in a global climate model

    NASA Astrophysics Data System (ADS)

    Oleson, K. W.; Bonan, G. B.; Feddema, J.

    2010-02-01

    Increasing the albedo of urban surfaces has received attention as a strategy to mitigate urban heat islands. Here, the effects of globally installing white roofs are assessed using an urban canyon model coupled to a global climate model. Averaged over all urban areas, the annual mean heat island decreased by 33%. Urban daily maximum temperature decreased by 0.6°C and daily minimum temperature by 0.3°C. Spatial variability in the heat island response is caused by changes in absorbed solar radiation and specification of roof thermal admittance. At high latitudes in winter, the increase in roof albedo is less effective at reducing the heat island due to low incoming solar radiation, the high albedo of snow intercepted by roofs, and an increase in space heating that compensates for reduced solar heating. Global space heating increased more than air conditioning decreased, suggesting that end-use energy costs must be considered in evaluating the benefits of white roofs.

  13. Best Practice For the Location of Air and Thermal Boundaries in Small Commercial Buildings 

    E-print Network

    Cummings, J. B.; Withers, C. R.

    2000-01-01

    "too-tight" building. Double Thermal Barrier Locating the primary air and thermal barriers at the roof does not preclude also placing insulation on top of the ceiling. While this insulation may not greatly reduce heat transfer across the ceiling... major increases in cooling energy use, indoor relative humidity, and building ventilation. The location of the ceiling insulation affects its thermal performance. Insulation located on the ceiling performs poorly for two reasons. Fist, insulation...

  14. Rehab guide: Roofs. Volume 3

    SciTech Connect

    1999-03-01

    Nine volumes will eventually make up The Rehab Guide in its entirety, and they are listed on the back cover of this volume. Each one is devoted to distinct elements of the house, and within each volume is a range of issues that are common to that element of home rehabilitation work. This volume, Roofs, for example, covers the major roofing systems including framing and sheathing; protective strategies such as underlayments and flashing; energy and air infiltration issues; roofing materials; and gutters and down-spouts. Each volume addresses a wide range techniques, materials, and tools, and recommendations based on regional differences around the country. Throughout The Rehab Guide, special attention is given to issues related to energy efficiency, sustainability, and accessibility.

  15. Miniaturized high-performance starring thermal imaging system

    NASA Astrophysics Data System (ADS)

    Cabanski, Wolfgang A.; Breiter, Rainer; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Ennenga, L.; Lipinski, Ulrich M.; Wehrhahn, T.

    2000-07-01

    A high resolution thermal imaging system was developed based on a 384 X 288 mercury cadmium telluride (MCT) mid wave (MWIR) infrared (IR) detection module with a 2 X 2 microscan for improved geometrical resolution. Primary design goal was a long identification range of 3 km and high system performance for adverse weather conditions achieved by a system with small entrance pupil and minimized dimensions to fit for integration in existing apertures of armored vehicles, reconnaissance systems and stabilized platforms. A staring FPA module with its potential for long integration times together with a microscan for improved geometrical resolution provides the answers best fit to these requirements. A robust microscanner was developed to fit for military requirements and integrated with AIM's 384 X 288 MCT MWIR module and data processing. The modules allow for up to 2 ms integration time with 25 Hz frame rate and output a 768 X 576 high resolution CCIR standard image. The video image processing (VIP) provides the calculation power for scene based self learning nonuniformity correction (NUC) algorithms to save calibration sources. This NUC algorithm allows take into account non linear effects for unsurpassed performance in highly dynamic scenes. The detection module and VIP are designed to interface with STN's mature system electronics, used e.g. in hundreds of OPHELIOS thermal camera sets fielded. The system electronics provides a lot of different interface features like double serial control bus (CANBUS) interface, analog and digital outputs as well as different video outputs. The integrated graphic generation part allows to put advanced graphic overlays to the thermal image and also to external video signals via the video input feature. This electronics provides the power supply for the whole thermal imaging system as well as different processor controlled algorithms for field of view or zoom drives, focus drives, athermalization and temperature control of the FLIR. A new zoom lens F/2.0 allows to select field of views from 2 degree to 15 degrees horizontal. This covers a wide area of military and paramilitary applications. The whole camera is miniaturized to fit into existing gunner and commander sights for main battle tanks as well as for infantry fighting vehicles. The overall design is compatible in optical, electrical and mechanical direction with the fielded OPHELIOS cameras and so an easy upgrade for existing fire control, reconnaissance and platform systems. The overall design is made under consideration of mil standard environments and is able to withstand vehicle, airborne and shipborne stress. The presentation gives an overview of the different components of the new camera system. Theoretical range performance data are discussed together with measured NETD, MTF and MRTD data of the unit.

  16. Thermal control surfaces experiment (SOO69) flight systems performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The thermal control surfaces experiment (TCSE) was the most complex hardware system aboard the Long Duration Exposure Facility (LDEF). The TCSE system consists of a scanning spectroreflectometer that measured test samples mounted on a rotatable carousel assembly. A microprocessor based data system controlled all aspects of TCSE system operation. Power was provided by four primary batteries. Flight measurement and housekeeping data were stored on a tape recorder for postflight analysis. The TCSE is a microcosm of complex electro-optical payloads being developed by NASA, DoD, and the aerospace community. The TCSE provides valuable data on the performance of these systems in space. The TCSE flight system and its excellent performance on the LDEF mission are described. A few operational anomalies were encountered and are discussed. Initial post-flight tests show that the TCSE system remains functional although some degradation in the optical measurements were observed. The results of these tests are also presented.

  17. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    SciTech Connect

    Madron, F.; Papuga, J.; Pliska, J.

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation are: - the calculation of performance indicators and output capacity for a desirable state of the plant equipment and mode of operation. Boundary conditions for the calculation are taken from the preceding data reconciliation procedure. Control room operators (in near-real time) and performance engineers then can compare an actual and ideal state of the performance indicators. - 'what-if' analysis and efficiency optimization based on varying user selected parameters of the plant components and flow-sheet structure changes. The system is integrated into an overall nuclear power plant process information system and data warehouse. The solution is based on the Industrial SQL server database and the InTouch human machine interface by Invensys' Wonderware. The system nowadays works with hourly averages of process data and monitors secondary side of the Dukovany units No. 1 and 3 from steam generators to alternators. A detailed description of the system and some obtained results are presented. (authors)

  18. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  19. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  20. Thermal Performance of a Cryogenic Fluid Management Cubesat Mission

    NASA Technical Reports Server (NTRS)

    Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.

    2013-01-01

    Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.

  1. Building America Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate, Boilingbrook, Illinois

    SciTech Connect

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a 'control' vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a 'diffusion vent' detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  2. Monitoring the Energy-Use Effects of Cool Roofs on California Commercial Buildings

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Konopaki, Steve; Rainer, Leo

    2004-07-01

    Solar-reflective roofs stay cooler in the sun than solar-absorptive roofs. Such ''cool'' roofs achieve lower surface temperatures that reduce heat conduction into the building and the building's cooling load. The California Energy Commission has funded research in which Lawrence Berkeley National Laboratory (LBNL) has measured the electricity use and peak demand in commercial buildings to document savings from implementing the Commission's Cool Roofs program. The study seeks to determine the savings achieved by cool roofs by monitoring the energy use of a carefully selected assortment of buildings participating in the Cool Roofs program. Measurements were needed because the peak savings resulting from the application of cool roofs on different types of buildings in the diverse California climate zones have not been well characterized to date. Only a few occupancy categories (e.g., office and retail buildings) have been monitored before this, and those were done under a limited number of climatic conditions. To help rectify this situation, LBNL was tasked to select the buildings to be monitored, measure roof performance before and after replacing a hot roof by a cool roof, and document both energy and peak demand savings resulting from installation of cool roofs. We monitored the effects of cool roofs on energy use and environmental parameters in six California buildings at three different sites: a retail store in Sacramento; an elementary school in San Marcos (near San Diego); and a 4-building cold storage facility in Reedley (near Fresno). The latter included a cold storage building, a conditioning and fruit-palletizing area, a conditioned packing area, and two unconditioned packing areas (counted as one building).

  3. Comparison of Software Models for Energy Savings from Cool Roofs

    SciTech Connect

    New, Joshua Ryan; Miller, William A; Huang, Yu; Levinson, Ronnen

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs modern web technologies, usability design, and national average defaults as an interface to annual simulations of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim in order to provide estimated annual energy and cost savings. In addition to cool reflective roofs, RSC simulates multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. A base case and energy-efficient alternative can be compared side-by-side to estimate monthly energy. RSC was benchmarked against field data from demonstration homes in Ft. Irwin, California; while cooling savings were similar, heating penalty varied significantly across different simulation engines. RSC results reduce cool roofing cost-effectiveness thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC s projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus, and presents preliminary analyses. RSC s algorithms for capturing radiant heat transfer and duct interaction in the attic assembly are considered major contributing factors to increased cooling savings and heating penalties. Comparison to previous simulation-based studies, analysis on the force multiplier of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model are included.

  4. Developing resilient green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance. PMID:24880547

  5. An Integrative Analysis of an Extensive Green Roof System: A Case Study of the Schleman Green Roof

    NASA Astrophysics Data System (ADS)

    Hoover, F.; Bowling, L. C.

    2013-12-01

    In urban environments where populations continue to rise, the need for affective stormwater management and runoff control methods is ever prevalent. Increased population growth and city expansion means greater impervious surfaces and higher rates of stormwater runoff. In well-established cities, this proves particularly difficult due to a constraining built environment and limited pervious spaces, even in cities as small as 40,000 residents. Work to reduce runoff in combined sewer systems (CSS) and municipal separated storm sewer systems (MS4) by use of best-management practices is one route currently under investigation. The Purdue University campus is making efforts to reduce their impact on the West Lafayette CSS and MS4. Green roofs are one management practice being used for runoff mitigation. Specifically, Schleman Hall, an administrative student affairs building, has a small green roof located on the second floor installed in 2008. In cooperation with Purdue Physical Facilities, monitoring and analysis for the Schleman extensive green roof at Purdue University was performed from June 2012 to December 2012. The objective was to determine the stormwater retention, output water quality and net present value for the 165 m2 roof. The results from the water balance analysis revealed retention rates on average of 58% of precipitation per rain event, where retention included soil moisture, evaporation and detention/depression storage. The water quality metrics tested were Nitrate-Nitrite (NO2-NO3), Orthophosphate (PO4), Ammonia-Ammonium ion (NH3-NH4), Sulfate (SO4), total suspended solids (TSS) and pH. The pollutant concentration and load results varied, but the pH levels from precipitation increased in all samples after passing through the substrate. SO4 and PO4 results yielded higher concentrations and loads in the green roof output than the control output and precipitation, while NO2-NO3 and NH3-NH4 yielded concentrations and loads that were reduced by the green roof when compared to the control output and precipitation. The green roof caused a decrease in the energy load (KJ/hr) needed to maintain a near constant temperature in the conference room situated below the green roof. These results combined with potential carbon pricing, stormwater fees and an installment grant resulted in a net present value of $32,350 for the Schleman Hall roof. The analysis demonstrates potential benefits, but highlights the need for further research that involves a more detailed simulation and the valuing of ecosystem services offered by the green roof.

  6. Roofing Workbook and Tests: Entering the Roofing and Waterproofing Industry.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Vocational Education Services.

    This document is one of a series of nine individual units of instruction for use in roofing apprenticeship classes in California. The unit consists of a workbook and test, perforated for student use. Fourteen topics are covered in the workbook and corresponding multiple-choice tests. For each topic, objectives, information sheets, and study…

  7. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  8. Roofing: Workbook and Tests. Common Roofing and Waterproofing Materials and Equipment.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook on materials and equipment is one of a series of nine individual units of instruction for roofing apprenticeship classes in California. The workbook covers eight topics: production of bitumens and asphaltic roofing materials; built-up roofing materials and adhesives; asphaltic products and rigid roofing materials; elastomeric and…

  9. Cold-Applied Roofing Systems and Waterproofing and Dampproofing. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    Brown, Arthur

    This workbook for students in California roofing apprenticeship programs provides information for classroom work in the area of cold-applied roofing systems and waterproofing and dampproofing. Eight topics are covered: introduction to cold-applied roofing systems and waterproofing and dampproofing, tools and equipment used in cold-applied roofing,…

  10. Common Roofing and Waterproofing Materials and Equipment. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This publication on common roofing and waterproofing materials and equipment is one of a series of units of instruction for roofing apprenticeship classes. The workbook portion is divided into eight topics: production of bitumens and asphalt roofing materials, built-up materials and adhesives, asphalt products and rigid roofing materials,…

  11. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley Louis

    2010-01-01

    Multilayer insulation (MLI) has been shown to be the best performing cryogenic insulation system at high vacuum (less that 10 (exp 3) torr), and is widely used on spaceflight vehicles. Over the past 50 years, many investigations into MLI have yielded a general understanding of the many variables that are associated with MLI. MLI has been shown to be a function of variables such as warm boundary temperature, the number of reflector layers, and the spacer material in between reflectors, the interstitial gas pressure and the interstitial gas. Since the conduction between reflectors increases with the thickness of the spacer material, yet the radiation heat transfer is inversely proportional to the number of layers, it stands to reason that the thermal performance of MLI is a function of the number of layers per thickness, or layer density. Empirical equations that were derived based on some of the early tests showed that the conduction term was proportional to the layer density to a power. This power depended on the material combination and was determined by empirical test data. Many authors have graphically shown such optimal layer density, but none have provided any data at such low densities, or any method of determining this density. Keller, Cunnington, and Glassford showed MLI thermal performance as a function of layer density of high layer densities, but they didn't show a minimal layer density or any data below the supposed optimal layer density. However, it was recently discovered that by manipulating the derived empirical equations and taking a derivative with respect to layer density yields a solution for on optimal layer density. Various manufacturers have begun manufacturing MLI at densities below the optimal density. They began this based on the theory that increasing the distance between layers lowered the conductive heat transfer and they had no limitations on volume. By modifying the circumference of these blankets, the layer density can easily be varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project

  12. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Standard Specification for Roof and Rock Bolts and Accessories,” the mine operator...the strata. (4) In each roof bolting cycle, the actual torque or tension of the...bolt installed during each roof bolting cycle shall be tested during or...

  13. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Standard Specification for Roof and Rock Bolts and Accessories,” the mine operator...the strata. (4) In each roof bolting cycle, the actual torque or tension of the...bolt installed during each roof bolting cycle shall be tested during or...

  14. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Standard Specification for Roof and Rock Bolts and Accessories,” the mine operator...the strata. (4) In each roof bolting cycle, the actual torque or tension of the...bolt installed during each roof bolting cycle shall be tested during or...

  15. SOLAR ROOF POWERS THE NJIT CAMPUS CENTER

    E-print Network

    Haimovich, Alexander

    SOLAR ROOF POWERS THE NJIT CAMPUS CENTER THE SKY'S THE LIMIT: BERNADETTE MOKE SITS ON THE ROOF'S THE LIMIT: SOLAR ROOF POWERS THE NJIT CAMPUS CENTER "The solar panels even move a little at night," says throughout the state. The solar-powered system, Baptiste adds, is also environmentally benign. By reducing

  16. Solar Roof Cooling by Evaporation 

    E-print Network

    Patterson, G. V.

    1980-01-01

    as much water on the roof in fif-j teen minutes as a properly engineered eva-I I porating cool system will use in a day. I I In the past, attempts were made to us~ I 269 ESL-IE-80-04-49 Proceedings from the Second Industrial Energy Technology...

  17. Thermal performance of fiberglass and cellulose attic insulations

    SciTech Connect

    Wilkes, K.E.; Childs, P.W.

    1992-01-01

    A series of experiments has been completed on the thermal performance of fiberglass and cellulose attic insulations under winter conditions using an attic test module in a guarded hot box facility. Experiments with one type of loose-fill fiberglass insulation showed that the thermal resistance at large temperature differences (70 to 76{degrees}F) was about 35 to 50% less than at small temperature differences. The additional heat flow, attributed to natural convection, was effectively eliminated by applying a covering of fiberglass batts or a combination of a polyethylene film and fiberglass blankets. No significant convection was found either with fiberglass batts or with one type of loose-fill cellulose. Using the experimental data along with an attic model, the additional energy costs due to convection in the coldest climate investigated were estimated to be $0.025/ft{sup 2}yr to $0.028/ft{sup 2}yr at the R-19 level and $0.014/ft{sup 2}yr at the R-38 level. For the same conditions, annual energy savings due to upgrading insulation from the R-19 to the R-38 level were estimated to be $0.046/ft{sup 2}yr to $0.070/ft{sup 2}yr.

  18. Thermal performance of fiberglass and cellulose attic insulations

    SciTech Connect

    Wilkes, K.E.; Childs, P.W.

    1992-10-01

    A series of experiments has been completed on the thermal performance of fiberglass and cellulose attic insulations under winter conditions using an attic test module in a guarded hot box facility. Experiments with one type of loose-fill fiberglass insulation showed that the thermal resistance at large temperature differences (70 to 76{degrees}F) was about 35 to 50% less than at small temperature differences. The additional heat flow, attributed to natural convection, was effectively eliminated by applying a covering of fiberglass batts or a combination of a polyethylene film and fiberglass blankets. No significant convection was found either with fiberglass batts or with one type of loose-fill cellulose. Using the experimental data along with an attic model, the additional energy costs due to convection in the coldest climate investigated were estimated to be $0.025/ft{sup 2}yr to $0.028/ft{sup 2}yr at the R-19 level and $0.014/ft{sup 2}yr at the R-38 level. For the same conditions, annual energy savings due to upgrading insulation from the R-19 to the R-38 level were estimated to be $0.046/ft{sup 2}yr to $0.070/ft{sup 2}yr.

  19. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    SciTech Connect

    Robert Rimmer; Jay Benesch; Joseph Preble; Charles Reece

    2005-05-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maintenance shutdown. We report on the overall SRF performance of the machine after these major disturbances and on efforts to characterize and optimize the new behavior for high-energy running.

  20. Thermal performance evaluation of the Calmac (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  1. THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION

    SciTech Connect

    Gupta, N.

    2010-03-04

    Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

  2. LARGO hot water system thermal performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  3. Thermal Performance of Capillary Pumped Loops Onboard Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Butler, Charles D.; Swanson, Theodore; Thies, Diane

    2004-01-01

    The Terra spacecraft is the flagship of NASA's Earth Science Enterprise. It provides global data on the state of atmosphere, land and oceans, as well as their interactions with solar radiation and one another. Three Terra instruments utilize Capillary Pumped Heat Transport System (CPHTS) for temperature control: Each CPHTS, consisting of two capillary pumped loops (CPLs) and several heat pipes and electrical heaters, is designed for instrument heat loads ranging from 25W to 264W. The working fluid is ammonia. Since the launch of the Terra spacecraft, each CPHTS has been providing a stable interface temperature specified by the instrument under all modes of spacecraft and instrument operations. The ability to change the CPHTS operating temperature upon demand while in service has also extended the useful life of one instrument. This paper describes the design and on-orbit performance of the CPHTS thermal systems.

  4. Storm water infiltration in a monitored green roof for hydrologic restoration.

    PubMed

    Palla, A; Sansalone, J J; Gnecco, I; Lanza, L G

    2011-01-01

    The objectives of this study are to provide detailed information about green roof performance in the Mediterranean climate (retained volume, peak flow reduction, runoff delay) and to identify a suitable modelling approach for describing the associated hydrologic response. Data collected during a 13-month monitoring campaign and a seasonal monitoring campaign (September-December 2008) at the green roof experimental site of the University of Genova (Italy) are presented together with results obtained in quantifying the green roof hydrologic performance. In order to examine the green roof hydrologic response, the SWMS_2D model, that solves the Richards' equation for two-dimensional saturated-unsaturated water flow, has been implemented. Modelling results confirm the suitability of the SWMS_2D model to properly describe the hydrologic response of the green roofs. The model adequately reproduces the hydrographs; furthermore, the predicted soil water content profile generally matches the observed values along a vertical profile where measurements are available. PMID:22097059

  5. Asphalt roofing industry Fourier transform infrared spectroscopy modified bitumen

    SciTech Connect

    1999-07-01

    A Request for Emissions Testing at Four Asphalt Roofing and Processing Facilities was submitted by the US EPA Emission Standards Division (ESD), Minerals and Inorganic Chemicals Group (MICG) to the Emission Measurement Center (EMC). The Emission Measurement Center directed Midwest Research Institute (MRI) to conduct emissions testing at asphalt roofing plants. This report presents results of MRI`s FTIR and Method 25A testing conducted at US Intec in Port Arthur, Texas. The field measurements were performed in September 1997 under several test conditions for both controlled and uncontrolled emissions.

  6. Improving the thermal performance of vinyl-framed windows

    SciTech Connect

    Beck, F.A.; Arasteh, D.

    1992-10-01

    Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h[center dot]ft[sup 2][center dot][degree]F [2.86 W/m[sup 2][center dot]K] and 0.30 Btu/h[center dot]ft[sup 2][center dot][degree]F [1.70 W/m[sup 2][center dot]K]). Turning such windows into superwindows,'' windows with a U-value of 0.20 Btu/h[center dot]ft[sup 2][center dot][degree]F (1.14 W/m[sup 2][center dot]K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h[center dot]ft[sup 2][center dot][degree]F (0.57 W/m[sup 2][center dot]K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

  7. Improving the thermal performance of vinyl-framed windows

    SciTech Connect

    Beck, F.A.; Arasteh, D.

    1992-10-01

    Over the last five years, vinyl-framed windows have gained an increased market share in both new and retrofit residential construction. This success has been mainly due to their low manufacturing cost and relatively good thermal performance (i.e., total window U-values with double glazing between 0.50 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [2.86 W/m{sup 2}{center_dot}K] and 0.30 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F [1.70 W/m{sup 2}{center_dot}K]). Turning such windows into ``superwindows,`` windows with a U-value of 0.20 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (1.14 W/m{sup 2}{center_dot}K) or less that can act as passive solar elements even on north-facing orientations in cold climates, requires further significant decreases in heat transfer through both the glazing system and the frame/edge. Three-layer glazing systems (those with two low-emissivity coatings and a low-conductivity gas fill) offer center-of-glass U-values as low as 0.10 Btu/h{center_dot}ft{sup 2}{center_dot}{degree}F (0.57 W/m{sup 2}{center_dot}K); such glazings are being manufactured today and can be incorporated into existing or new vinyl frame profiles. This paper focuses on the use of a state-of the-art infrared imaging system and a two-dimensional finite-difference model to improve the thermal performance of commercially available vinyl profiles and glazing edge systems. Such evaluation tools are extremely useful in identifying exactly which components and design features limit heat transfer and which act as thermal short circuits. Such an analysis is not possible with conventional whole-window testing in hot boxes where testing uncertainties with superwindows are often greater than proposed improvements.

  8. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are the transporter shelters and the vehicle maintenance facilities as well as the ALMA gate house. The construction started in August 2006 and will be completed in December 2007. ESO PR Photo 13b/07 ESO PR Photo 13b/07 The Ceremony The ceremony took place in the presence of representatives of the regional authorities, members of the Chilean Parliament, and representatives of the local community, including the mayor of San Pedro, Ms. Sandra Berna, who joined more than 40 representatives of ESO, NRAO and NAOJ - the organisations that are, together, building ALMA. "This is certainly a big step in the realisation of the ALMA Project. The completion of this facility will be essential for assembly, testing and adjustment as well as operation and maintenance of all ALMA antennas from Europe, North America and from Japan," said Ryusuke Ogasawara, the representative of NAOJ in Chile. "This is a tremendous achievement and represents a major milestone for the ALMA project," said Adrian Russell, North American Project Manager for ALMA. ESO PR Photo 13c/07 ESO PR Photo 13c/07 The OSF (Artist's View) The first ALMA antennas, the prototypes of which successfully achieved their first combined astronomical observation last week, are expected to arrive at the ALMA site in a few months. These huge antennas will travel in pieces from Europe, USA and Japan and will be assembled next to the OSF building. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership among Europe, Japan and North America, in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organisation for Astronomical Research in the Southern Hemisphere, in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO, on behalf of Japan by the National As

  9. Predictive Service Life Tests for Roofing Membranes

    NASA Astrophysics Data System (ADS)

    Bailey, David M.; Cash, Carl G.; Davies, Arthur G.

    2002-09-01

    The average service life of roofing membranes used in low-slope applications on U.S. Army buildings is estimated to be considerably shorter than the industry-presumed 20-year design life, even when installers carefully adhere to the latest guide specifications. This problem is due in large part to market-driven product development cycles, which do not include time for long-term field testing. To reduce delivery costs, contractors may provide untested, interior membranes in place of ones proven satisfactory in long-term service. Federal procurement regulations require that roofing systems and components be selected according to desired properties and generic type, not brand name. The problem is that a material certified to have satisfactory properties at installation time will not necessarily retain those properties in service. The overall objective of this research is to develop a testing program that can be executed in a matter of weeks to adequately predict a membrane's long-term performance in service. This report details accelerated aging tests of 12 popular membrane materials in the laboratory, and describes outdoor experiment stations set up for long-term exposure tests of those same membranes. The laboratory results will later be correlated with the outdoor test results to develop performance models and predictive service life tests.

  10. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  11. Thermal hydraulic performance analysis of a small integral pressurized water reactor core

    E-print Network

    Blair, Stuart R. (Stuart Ryan), 1972-

    2003-01-01

    A thermal hydraulic analysis of the International Reactor Innovative and Secure (IRIS) core has been performed. Thermal margins for steady state and a selection of Loss Of Flow Accidents have been assessed using three ...

  12. Green Roof Research through EPA's Regional Applied Research Effort - slides

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roof projects...

  13. Thermal radiant exitance model performance: Soils and forests

    SciTech Connect

    Balick, L.K.; Smith, J.A.

    1995-12-31

    Models of surface temperatures of two land surface types based on their energy budgets were developed to simulate the effects of environmental factors on thermal radiant exitance. The performance of these models is examined in detail. One model solves the non-linear differential equation for heat diffusion in solids using a set of submodels for surface energy budget components. The model performance is examined under three desert conditions thought to be a strong test of the submodels. The accuracy of the temperature predictions and submodels is described. The accuracy of the model is generally good but some discrepancies between some of the submodels and measurements are noted. The sensitivity of the submodels is examined and is seen to be strongly controlled by interaction and feedback among energy components that are a function of surface temperature. The second model simulates vegetation canopies with detailed effects of surface geometry on radiant transfer in the canopy. Foliage solar absorption coefficients are calculated using a radiosity approach for a three layer canopy and long wave fluxes are modeled using a view factor matrix. Sensible and latent heat transfer through the canopy are also simulated using, nearby meteorological data but heat storage in the canopy is not included. Simulations for a coniferous forest canopy are presented and the sensitivity of the model to environmental inputs is discussed.

  14. Thermal performance of a multi-evaporator loop heat pipe with thermal masses and thermal electrical coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermal electric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of condenser is fully utilized. Ammonia was used ad the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 1OW even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/-0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing the orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.

  15. Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance

    SciTech Connect

    Delmas, A.A.; Wilkes, K.E.

    1992-04-01

    A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

  16. Dermal exposure and urinary 1-hydroxypyrene among asphalt roofing workers

    SciTech Connect

    McClean, M.D.; Rinehart, R.D.; Sapkota, A.; Cavallari, J.M.; Herrick, R.F.

    2007-07-01

    The primary objective of this study was to identify significant determinants of dermal exposure to polycyclic aromatic compounds (PACs) among asphalt roofing workers and use urinary 1-hydroxyprene (1-OHP) measurements to evaluate the effect of dermal exposure on total absorbed dose. The study population included 26 asphalt roofing workers who performed three primary tasks: tearing off old roofs, putting down new roofs, and operating the kettle at ground level. During multiple consecutive work shifts, dermal patch samples were collected from the underside of each worker's wrists and were analyzed for PACs, pyrene, and benzo(a)pyrene (BAP). During the same work week, urine samples were collected at pre-shift, post-shift, and bedtime each day and were analyzed for 1-OHP (205 urine samples). Linear mixed effects models were used to evaluate the dermal measurements for the purpose of identifying important determinants of exposure, and to evaluate urinary 1-OHP measurements for the purpose of identifying important determinants of total absorbed dose. Dermal exposures to PAC, pyrene, and BAP were found to vary significantly by roofing task and by the presence of an old coal tar pitch roof. For each of the three analytes, the adjusted mean dermal exposures associated with tear-off were approximately four times higher than exposures associated with operating the kettle. Exposure to coal tar pitch was associated with a 6-fold increase in PAC exposure, an 8-fold increase in pyrene exposure and a 35-fold increase in BAP exposure. The presence of coal tar pitch was the primary determinant of dermal exposure, particularly for exposure to BAP. However, the task-based differences that were observed while controlling for pitch suggest that exposure to asphalt also contributes to dermal exposures.

  17. Inclusion of cool roofs in nonresidential Title 24 prescriptiverequirements

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

    2003-07-01

    Roofs that have high solar reflectance (high ability toreflect sunlight) and high thermal emittance (high ability to radiateheat) tend to stay cool in the sun. The same is true of low-emittanceroofs with exceptionally high solar reflectance. Substituting a cool rooffor a non-cool roof tends to decrease cooling electricity use, coolingpower demand, and cooling-equipment capacity requirements, while slightlyincreasing heating energy consumption. Cool roofs can also lower citywideambient air temperature in summer, slowing ozone formation and increasinghuman comfort.DOE-2.1E building energy simulations indicate that use of acool roofing material on a prototypical California nonresidential (NR)building with a low-sloped roof yields average annual cooling energysavings of approximately 3.2 kW h/m2 (300 kW h/1000 ft2), average annualnatural gas deficits of 5.6 MJ/m2 (4.9 therm/1000 ft2), average annualsource energy savings of 30 MJ/m2 (2.6 MBTU/1000 ft2), and average peakpower demand savings of 2.1 W/m2 (0.19 kW/1000 ft2). The 15-year netpresent value (NPV) of energy savings averages $4.90/m2 ($450/1000 ft2)with time-dependent valuation (TDV), and $4.00/m2 ($370/1000 ft2) withoutTDV. When cost savings from downsizing cooling equipment are included,the average total savings (15-year NPV+equipment savings) rises to$5.90/m2 ($550/1000 ft2) with TDV, and to $5.00/m2 ($470/1000 ft2)without TDV.Total savings range from 1.90 to 8.30 $/m2 (0.18 0.77 $/ft2)with TDV, and from 1.70 to 7.10 $/m2 (0.16 0.66 $/ft2) without TDV,across California's 16 climate zones. The typical cost premium for a coolroof is 0.00 2.20 $/m2 (0.00 0.20 $/ft2). Cool roofs with premiums up to$2.20/m2 ($0.20/ft2) are expected to be cost effective in climate zones 216; those with premiums not exceeding $1.90/m2 ($0.18/ft2) are expectedto be also cost effective in climate zone 1. Hence, this study recommendsthat the year-2005 California building energy efficiency code (Title 24,Part 6 of the California Code of Regulations) for NR buildings withlow-sloped roofs include a cool-roof prescriptive requirement in allCalifornia climate zones. Buildings with roofs that do not meetprescriptive requirements may comply with the code via an"overall-envelope" approach (non-metal roofs only), or via a performanceapproach (all roof types).

  18. Demonstration of energy savings of cool roofs

    SciTech Connect

    Konopacki, S.; Gartland, L.; Akbari, H.; Rainer, L.

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  19. Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)

    SciTech Connect

    Shrestha, Som S; Miller, William A; Desjarlais, Andre Omer

    2013-01-01

    Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

  20. 29 CFR Appendix A to Subpart M of... - Determining Roof Widths

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fall Protection Pt. 1926, Subpt. M, App. A Appendix A to Subpart...use of a safety monitoring system alone as a means of providing fall protection during the performance of roofing...

  1. Role of Random Roughness On Thermal Performance of Microfins

    E-print Network

    Bahrami, Majid

    . The effect of roughness is more profound in lower convective heat transfer coefficient (natural convection coefficient, W=m2 K k = fin thermal conductivity, W=mK kf = fluid thermal conductivity, W=mK L = microfin of Waterloo, Waterloo, Ontario N2L 3G1, Canada DOI: 10.2514/1.22353 Heat transfer in rough circular cylinder

  2. Assessment of Relevant Physical Phenomena Controlling Thermal Performance of Nanofluids

    E-print Network

    Bahrami, Majid

    conductivity, W=mK n = 3= a parameter in Eq. (2) Q = heat flow rate, W rp = particle radius, m R = thermal%). Pak and Cho [10] studied the convective heat transfer coefficient of nanofluids in cylindrical tubes thermal conductivity of nanofluids. Through an investigation, a large degree of randomness and scatter has

  3. NISTIR 7401 Thermal Performance of Fire Resistive Materials

    E-print Network

    Bentz, Dale P.

    capacity, thermal conductivity, and enthalpies of reactions and phase changes. In this report, procedures............................................................................................................ 2 2.3 Thermal Conductivity fire, e.g., a 2 h rating does not mean that the FRM will protect the steel (or other substrate) for 2 h

  4. ROOF, A view looking north/northeast on roof of building toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ROOF, A view looking north/northeast on roof of building toward penthouses, with various air handling systems in the foreground - Department of Energy, Mound Facility, Isolated Building (I Building), One Mound Road, Miamisburg, Montgomery County, OH

  5. A Comparison Of Infrared Flyover, Infrared Walkover, And Visual Inspection Techniques For Detecting Roof Moisture Anomalies

    NASA Astrophysics Data System (ADS)

    Ourts, Karen B.; Vanier, Jay G.; Brotherson, Donald E.

    1984-03-01

    This paper compares results of aerial infrared, infrared walkover, and Air Force visual inspection techniques for assessing the condition of built-up roofing systems. The two infrared techniques focus on locating thermal signatures indicating subsurface moisture damage. The visual inspection method rates visible surface defects, which may represent current or potential sources of moisture damage. The subject in this case was an 8.8-acre factory/warehouse roof in Danville, Illinois. Results of aerial and walkover infrared inspections corresponded strongly for large anomalies, but diverged on smaller ones. Roof Condition Index ratings from the visual inspection did not correlate significantly with the percentage of roof area judged suspect by either the aerial or walkover infrared inspection.

  6. Thermal Performance of a Multi-Evaporator Loop Heat Pipe with Thermal Masses and Thermoelectric Coolers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Ottenstein, Laura; Birur, Gajanana

    2004-01-01

    This paper describes thermal performance of a loop heat pipe (LHP) with two evaporators and two condensers in ambient testing. Each evaporator has an outer diameter of 15mm and a length of 76mm, and has an integral compensation chamber (CC). An aluminum mass of 500 grams is attached to each evaporator to simulate the instrument mass. A thermoelectric cooler (TEC) is installed on each CC to provide heating as well as cooling for CC temperature control. A flow regulator is installed in the condenser section to prevent vapor from going back to the evaporators in the event that one of the condensers is fully utilized. Ammonia was used as the working fluid. Tests conducted included start-up, power cycle, heat load sharing, sink temperature cycle, operating temperature control with TECs, and capillary limit tests. Experimental data showed that the loop could start with a heat load of less than 10W even with added thermal masses. The loop operated stably with even and uneven evaporator heat loads, and even and uneven condenser sink temperatures. The operating temperature could be controlled within +/- 0.5K of the set point temperature using either or both TECs, and the required TEC control heater power was less than 2W under most test conditions. Heat load sharing between the two evaporators was also successfully demonstrated. The loop had a heat transport capability of 120W to 140W, and could recover from a dry-out when the heat load was reduced. The 500-gram aluminum mass on each evaporator had a negligible effect on the loop operation. Existing LHPs servicing orbiting spacecraft have a single evaporator with an outer diameter of about 25mm. Important performance characteristics demonstrated by this LHP included: 1) Operation of an LHP with 15mm diameter evaporators; 2) Robustness and reliability of an LHP with multiple evaporators and multiple condensers under various test conditions; 3) Heat load sharing among LHP evaporators; 4) Effectiveness of TECs in controlling the LHP operating temperature; and 5 ) Effectiveness of the flow regulator in preventing vapor from going back the evaporators.

  7. The effectiveness of cool and green roofs as urban heat island mitigation strategies

    NASA Astrophysics Data System (ADS)

    Li, Dan; Bou-Zeid, Elie; Oppenheimer, Michael

    2014-05-01

    Mitigation of the urban heat island (UHI) effect at the city-scale is investigated using the Weather Research and Forecasting (WRF) model in conjunction with the Princeton Urban Canopy Model (PUCM). Specifically, the cooling impacts of green roof and cool (white/high-albedo) roof strategies over the Baltimore-Washington metropolitan area during a heat wave period (7 June-10 June 2008) are assessed using the optimal set-up of WRF-PUCM described in the companion paper by Li and Bou-Zeid (2014). Results indicate that the surface UHI effect (defined based on the urban-rural surface temperature difference) is reduced significantly more than the near-surface UHI effect (defined based on urban-rural 2 m air temperature difference) when these mitigation strategies are adopted. In addition, as the green and cool roof fractions increase, the surface and near-surface UHIs are reduced almost linearly. Green roofs with relatively abundant soil moisture have comparable effect in reducing the surface and near-surface UHIs to cool roofs with an albedo value of 0.7. Significant indirect effects are also observed for both green and cool roof strategies; mainly, the low-level advection of atmospheric moisture from rural areas into urban terrain is enhanced when the fraction of these roofs increases, thus increasing the humidity in urban areas. The additional benefits or penalties associated with modifications of the main physical determinants of green or cool roof performance are also investigated. For green roofs, when the soil moisture is increased by irrigation, additional cooling effect is obtained, especially when the ‘unmanaged’ soil moisture is low. The effects of changing the albedo of cool roofs are also substantial. These results also underline the capabilities of the WRF-PUCM framework to support detailed analysis and diagnosis of the UHI phenomenon, and of its different mitigation strategies.

  8. Performance of Thermal Insulation Containing Microencapsulated Phase Change Material

    SciTech Connect

    Kosny, Jan; Yarbrough, David; Syed, Azam M

    2007-01-01

    The objective of this study is dynamic thermal performance microencapsulated phase change material (PCM) blended with loose-fill cellulose insulation. Dynamic hot-box testing and heat-flux measurements have been made for loose-fill cellulose insulation with and without uniformly distributed microencapsulated PCM. The heat flux measurements were made with a heat-flow-meter (HFM) apparatus built in accordance with ASTM C 518. Data were obtained for 1.6 lb{sub m}/ft{sup 3} cellulose insulation containing 0 to 40 wt% PCM. Heat-flux data resulting from a rapid increase in the temperature on one side of a test specimen initially at uniform temperature were analyzed to access the effect of PCM on total heat flow. The heat flux was affected by the PCM for about 100 minutes after the temperature increase. The total heat flow during this initial period decreased linearly with PCM content from 6.5 Btu/ft{sup 2} at 0% PCM to 0.89 Btu/ft{sup 2} for 40 wt% PCM. The cellulose insulation with PCM discharged heat faster than the untreated cellulose when the hot-side temperature of the test specimen was reduced. In addition, hot-box apparatus built in accordance with ASTM C 1363 was utilized for dynamic hot-box testing of a wood stud wall assembly containing PCM-enhanced cellulose insulation. Experimental data obtained for wood-frame wall cavities containing cellulose insulation with PCM was compared with results obtained from cavities containing only cellulose insulation.

  9. Performance of solar thermal systems with liquid metal MHD conversion

    SciTech Connect

    Pierson, E.S.; Jackson, W.D.; Berry, G.; Petrick, M.; Dennis, C.

    1984-06-15

    Liquid metal magnetohydrodynamic conversion (LMMHD) is found to be compatible with concentrating solar receivers employing a liquid metal as a heat transfer medium and offers significant increases in the system thermal efficiency over the 33% considered attainable with conventional turbo-machinery. There are two candidate liquid metals - sodium and lithium. With sodium at a temperature of 1150/sup 0/F (922/sup 0/K), the maximum calculated efficiency is 39.5% while with lithium at 1400/sup 0/F (1033/sup 0/K) a peak efficiency for 46.5% is predicted. Up to two percentage points may be added by temperature increase and/or parameter limit relaxation in the sodium case. The sodium-steam heat exchanger is eliminated in liquid metal systems. Where LMMHD systems employ the same working fluid as the solar receiver, no recirculating pump is required as pumping power is provided directly by the cycle. For sodium, coupling with either a gas turbine or a steam turbine is beneficial and provides similar performance. With lithium, the gas turbine cycle is clearly superior. Sodium systems can be based on existing materials experience while the use of lithium will require an engineering development effort to establish suitable materials for containment. The existing sources of LMMHD data are generally sufficient for establishing a preliminary engineering basis for conceptual studies. An exception is the dc to ac power conditioning sub-system where further study is required. The design of concentrating solar receivers requires revisiting to accommodate the particular characteristics of the LMMHD system and its potential for operating at temperatures above those of conventional steam turbo-alternator systems.

  10. Contrasted thermal preferences translate into divergences in habitat use and realized performance in two

    E-print Network

    Blouin-Demers, Gabriel

    ectotherm; thermoregulatory strategy; cost- benefit model of thermoregulation; microhabitat selection-7998.2011.00802.x Abstract Temperature influences ectotherm fitness by affecting physiological performance Ectotherms depend on environmental thermal conditions to optimize physiological performances (Huey

  11. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Technical Reports Server (NTRS)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  12. ATS-6 engineering performance report. Volume:Program and systems summaries: Mechanical and thermal details

    NASA Technical Reports Server (NTRS)

    Wales, R. O. (editor)

    1981-01-01

    The overall mission and spacecraft systems, testing, and operations are summarized. The mechanical subsystems are reviewed, encompassing mechanical design requirements; separation and deployment mechanisms; design and performance evaluation; and the television camera reflector monitor. Thermal control and contamination are discussed in terms of thermal control subsystems, design validation, subsystems performance, the advanced flight experiment, and the quartz-crystal microbalance contamination monitor.

  13. Thermal Performance of Idealized Double Windows, Unvented. Research Paper No. 223.

    ERIC Educational Resources Information Center

    Christensen, G.; And Others

    The testing plans, procedures, and results of an experiment are revealed concerning the thermal performance and variable factors of unvented double windows, their heat transmission and inner surface temperature. Data are given to help improve the design and development of standards for the thermal performance of windows. Building humidity, window…

  14. Thermal fatigue performance of integrally cast automotive turbine wheels

    NASA Technical Reports Server (NTRS)

    Humphreys, V. E.; Hofer, K. E.

    1980-01-01

    Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.

  15. Radiative transfer and thermal performance levels in foam insulation boardstocks

    E-print Network

    Moreno, John David

    1991-01-01

    The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically ...

  16. Determination of thermal performance characteristics of modular passive solar storage walls

    SciTech Connect

    Kennish, W.J.; Ahmed, M.; McCabe, M.; McKinstry, M.

    1980-01-01

    A conceptual study of testing procedures to determine thermal performance characteristics of Trombe-Wall type passive solar storage wall systems has been performed. In the study, a finite-difference thermal model of a passive solar storage wall in a test facility was used to predict the wall thermal performance in a particular climatic location. The simulated test results were used in a multiple regression analysis to characterize the thermal performance of test wall. These characteristics were then used in a simplified calculation procedure to predict the thermal performance of the solar storage wall in different climatic regions. A comparison of these predictions with detailed computer simulation results for these other climatic regions show that the test procedure and data reduction technique provides a simple method of characterizing the passive solar storage wall and has potential wide scale applications for modular passive components.

  17. Long-term performance and cost goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.

    1985-04-01

    Long term performance and cost goals recently developed for the solar thermal technology are described. These goals were developed in support of the draft 1985 to 1989 National Solar Thermal Technology Program Five Year Research and Development Plan, and are intended to aid in planning research activities needed to make solar thermal energy an option which is both technically and economically attractive (DOE 1984). Goals were developed for both utility electric applications and for industrial process heat applications. Solar thermal technology goals are intended to provide targets, which when met, would result in the widespread usage of solar thermal technologies in the marketplace. The goals described include system goals and component goals. System goals are energy price targets which must be met for solar thermal to be economically viable in a given market. Component goals are performance and cost targets for the primary elements of a solar thermal plant (concentrators, receivers, etc.) which would allow achievement of the system level goal.

  18. Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1993-01-01

    This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.

  19. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, S. D.; Kittredge, K. B.

    2003-01-01

    A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

  20. Preparation and performance of thermal insulation energy saving coating materials for exterior wall.

    PubMed

    Wang, Fei; Liang, Jinsheng; Tang, Qingguo; Chen, Gong; Chen, Yalei

    2014-05-01

    Nano zinc oxide with a high refractive index has good thermal reflection performance, hollow glass microspheres have good thermal reflection and insulation performance, and sepiolite nanofibers with many nanostructural pores have good thermal insulation performance. The dispensability of nano zinc oxide in coating materials was improved by optimizing surface silane coupling agent modification process, leading to the good thermal reflection performance. The thermal insulation performance was improved by hollow glass microspheres and sepiolite nanofibers. On this basis, the thermal insulation coating materials were prepared by exploring the effect of amount, complex mode, and other factors of the above three kinds of functional fillers on the thermal reflection and insulation performance of coating materials. The results showed that the surface modification effect of nano zinc oxide was the best when the silane coupling agent addition was 6%. The reflection and insulation performance of the coatings were the best when the additions of modified nano zinc oxide, hollow glass microspheres, and sepiolite nanofibers were 3%, 4%, and 4%, respectively. Compared with the control coating materials, the thermal insulation effect was improved obviously, which was evaluated by the -13.5 degrees C increase of maximum temperature difference between the upper and the lower surfaces. PMID:24734652

  1. The Submillimeter-Wave Astronomy Satellite: On-Orbit Thermal Performance and Design Retrospective

    NASA Technical Reports Server (NTRS)

    Boyd, David A.; Ousley, Wes; Fantano, Louis; Powers, Edward I. (Technical Monitor)

    1999-01-01

    A large telescope aperture, stringent thermal stability and temperature range requirements, and a passively-cooled 150 K module presented major challenges in thermal design and hardware fabrication of this Small Explorer satellite. This paper reviews briefly the thermal design of the SWAS science instrument, and examines the first three months of on-orbit thermal history. Measured temperatures for both the science payload and the spacecraft module and solar arrays are compared with those predicted by the correlated analytical model. Similarities and differences are interpreted in terms of the major uncertainties remaining after thermal-balance testing, especially those of MLI performance and telescope aperture properties. Review of the thermal model adequacy and thermal design verification are included to suggest improvements in the thermal design process for future missions.

  2. The performance of adobe and other thermal mass materials in residential buildings

    SciTech Connect

    Robertson, D.

    1986-01-01

    This paper reviews the history and current status of thermal mass research, and national, state, and local codes with respect to thermal mass; and offers specific recommendations on how best to use thermal mass for energy efficiency and comfort. Much of the material comes directly from the Southwest Thermal Mass Study (SWTMS), an experimental research study on the thermal performance of adobe conducted at Tesuque Pueblo, New Mexico, in the early 1980s. The focus is primarily on residential construction, although the theory and most of the recommendations apply to small commercial buildings as well.

  3. Integrated roof wind energy system

    NASA Astrophysics Data System (ADS)

    Suma, A. B.; Ferraro, R. M.; Dano, B.; Moonen, S. P. G.

    2012-10-01

    Wind is an attractive renewable source of energy. Recent innovations in research and design have reduced to a few alternatives with limited impact on residential construction. Cost effective solutions have been found at larger scale, but storage and delivery of energy to the actual location it is used, remain a critical issue. The Integrated Roof Wind Energy System is designed to overcome the current issues of urban and larger scale renewable energy system. The system is built up by an axial array of skewed shaped funnels that make use of the Venturi Effect to accelerate the wind flow. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a vertical-axis wind turbine in the top of the roof for generation of a relatively high amount of energy. The methods used in this overview of studies include an array of tools from analytical modelling, PIV wind tunnel testing, and CFD simulation studies. The results define the main design parameters for an efficient system, and show the potential for the generation of high amounts of renewable energy with a novel and effective system suited for the built environment.

  4. Roofs--Their Problems and Solutions.

    ERIC Educational Resources Information Center

    Swentkofske, Carl J.

    Most roofs are meant to withstand the elements for a period of 20 years; to achieve this goal, however, school officials must believe in a dedicated maintenance program and sell it to their superiors and school boards. Establishment of a school district roof maintenance program is explained. Job qualifications and training methods for an inhouse…

  5. Roofing Workbook and Tests. Plans and Specifications.

    ERIC Educational Resources Information Center

    Mongerson, M. Duane, Comp.

    This combination workbook and set of tests on plans and specifications is one in a series of nine individually bound units of instruction for roofing apprenticeship classes. The five topics covered are (1) regulations governing the roofing and waterproofing industry, (2) an overview of blueprints, (3) an overview of specifications, (4)…

  6. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  7. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L. (Berkeley, CA)

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  8. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  9. OPTIMIZING GREEN ROOF TECHNOLOGIES IN THE MIDWEST

    EPA Science Inventory

    Green roofs, while extensively used in Europe, are an emerging technology in the U.S. They have an array of potential benefits (including improved storm water management, increased energy conservation of buildings, reduced urban heat island effects, and extended roof life) ...

  10. Metal Roofing in a "Class" by Itself.

    ERIC Educational Resources Information Center

    Nimtz, Paul D.

    1990-01-01

    The structural standing seam roof has the advantages of ease of application, low maintenance, and low life-cycle costs. Explains and illustrates how the system's concealed clip attachments are designed so that the roof panels can expand and contract independently of the insulation. (MLF)

  11. THE THERMAL 15 RELIEF WELL AND PRODUCTION PERFORMANCE OF THE THERMAL SHALLOW RESERVOIR

    SciTech Connect

    Mogen, P.; Maney, J.

    1985-01-22

    Thermal 15 was drilled in November, 1983, to a TD of 700 feet. A steam entry encountered at 490 feet was found to communicate with the high-permeability upflow zone of the Thermal Shallow Reservoir. A low-flow-rate, higher-pressure steam entry at 600 feet was not detected while drilling but was indicated during a subsequent spinner survey. The pressure, flowrate, and enthalpy of the five wells completed in the upflow zone, including the Thermal 4 blowout, were monitored and recorded over a four month period before, during and after Thermal 15 was drilled. It was found that the Thermal 4 blowout communicates with the upflow zone of the Thermal Shallow Reservoir, the Thermal 4 flowrate is controlled by the shallow reservoir pressure, and the high permeability of the upflow zone allows such strong interference effects that three of the four commercial production wells will maximize production from this reservoir. A simple model was developed which describes the pressure-production characteristics of the reservoir over the normal range of operating conditions.

  12. CTS TEP thermal anomalies: Heat pipe system performance

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.

    1977-01-01

    A part of the investigation is summarized of the thermal anomalies of the transmitter experiment package (TEP) on the Communications Technology Satellite (CTS) which were observed on four occasions in 1977. Specifically, the possible failure modes of the variable conductance heat pipe system (VCHPS) used for principal thermal control of the high-power traveling wave tube in the TEP are considered. Further, the investigation examines how those malfunctions may have given rise to the TEP thermal anomalies. Using CTS flight data information, ground test results, analysis conclusions, and other relevant information, the investigation concentrated on artery depriming as the most likely VCHPS failure mode. Included in the study as possible depriming mechanisms were freezing of the working fluid, Marangoni flow, and gas evolution within the arteries. The report concludes that while depriming of the heat pipe arteries is consistent with the bulk of the observed data, the factors which cause the arteries to deprime have yet to be identified.

  13. Analytical prediction of the performance of an air photovoltaic/thermal flat-plate collector

    SciTech Connect

    Raghuraman, P.

    1980-04-30

    A one-dimensional analysis developed by MIT Lincoln Laboratory predicts the electrical and thermal performance of an air photovoltaic/thermal flat-plate collector. The analysis compares well with test measurements, predicting the thermal efficiency to within 2 percent. From the analysis, the poor thermal performance of the collector is attributable, in part, to the large undulations of the cell/silicone pottant surface in contact with the flowing air that results in less effective convective heat-transfer areas between the cell and the air.

  14. Lunar Eclipse Observations Reveal Anomalous Thermal Performance of Apollo Reflectors

    E-print Network

    Murphy, T W; Johnson, N H; Goodrow, S D

    2013-01-01

    Laser ranging measurements during the total lunar eclipse on 2010 December 21 verify previously suspected thermal lensing in the retroreflectors left on the lunar surface by the Apollo astronauts. Signal levels during the eclipse far exceeded those historically seen at full moon, and varied over an order of magnitude as the eclipse progressed. These variations can be understood via a straightforward thermal scenario involving solar absorption by a ~50% covering of dust that has accumulated on the front surfaces of the reflectors. The same mechanism can explain the long-term degradation of signal from the reflectors as well as the acute signal deficit observed near full moon.

  15. Thermal performance of windows having high solar transmittance

    SciTech Connect

    Rubin, M.; Selkowitz, S.

    1981-07-01

    Antireflected polyester films and low-iron glass sheets have values of solar transmittance that are substantially higher than those of their untreated counterparts. The plastic films utilize coatings to reduce loses due to surface reflectance and the glass is made with low levels of impurities to reduce adsorption within the material itself. The optical and thermal properties of these materials are discussed and the solar and thermal characteristics of windows incorporating high-transmittance glazing layers are derived. Comparisons among these and other types of windows are made on the basis of net energy use for residential buildings in winter.

  16. Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions (Invited paper)

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2008-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.

  17. Green roof impact on the hydrological cycle components

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.

  18. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  19. Analytic model for assessing thermal performance of SCUBA divers

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.

    1975-01-01

    To assist design of adequate protective clothing, mathematical model of man's thermoregulatory system has been developed so that body thermal responses under immersed conditions can be predicted accurately. Experimental data encompassed wide range of water temperatures, protective clothing, breathing-gas mixtures, and durations of immersion.

  20. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    SciTech Connect

    Not Available

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  1. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other...

  2. 29 CFR 570.67 - Occupations in roofing operations and on or about a roof (Order 16).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pitch, asphalt prepared paper, tile, composite roofing materials, slate, metal, translucent materials, and shingles of asbestos, asphalt, wood or other materials) to roofs of buildings or other...

  3. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  4. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  5. Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria

    2008-01-01

    The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.

  6. Performance of finned thermal capacitors. Ph.D. Thesis - Texas Univ., Austin

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1974-01-01

    The performance of typical thermal capacitors, both in earth and orbital environments, was investigated. Techniques which were used to make predictions of thermal behavior in a one-g earth environment are outlined. Orbital performance parameters are qualitatively discussed, and those effects expected to be important under zero-g conditions are outlined. A summary of thermal capacitor applications are documentated, along with significant problem areas and current configurations. An experimental program was conducted to determine typical one-g performance, and the physical significance of these data is discussed in detail. Numerical techniques were employed to allow comparison between analytical and experimental data.

  7. Hybrid Model of Existing Buildings for Transient Thermal Performance Estimation 

    E-print Network

    Xu, X.; Wang, S.

    2006-01-01

    Building level energy models are important to provide accurate prediction of energy consumption for building performance diagnosis and energy efficiency assessment of retrofitting alternatives for building performance upgrading. Simplified...

  8. Heat Shielding Characteristics and Thermostructural Performance of a Superalloy Honeycomb Sandwich Thermal Protection System (TPS)

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2004-01-01

    Heat-transfer, thermal bending, and mechanical buckling analyses have been performed on a superalloy "honeycomb" thermal protection system (TPS) for future hypersonic flight vehicles. The studies focus on the effect of honeycomb cell geometry on the TPS heat-shielding performance, honeycomb cell wall buckling characteristics, and the effect of boundary conditions on the TPS thermal bending behavior. The results of the study show that the heat-shielding performance of a TPS panel is very sensitive to change in honeycomb core depth, but insensitive to change in honeycomb cell cross-sectional shape. The thermal deformations and thermal stresses in the TPS panel are found to be very sensitive to the edge support conditions. Slight corrugation of the honeycomb cell walls can greatly increase their buckling strength.

  9. Ballistic Performance of Porous-Ceramic, Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Bohl, W. E.; Christiansen, Eric C.; Davis, B. A.; Foreman, C. D.

    2011-01-01

    Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/cu ft alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.

  10. Flightweight radiantly and actively cooled panel: Thermal and structural performance

    NASA Technical Reports Server (NTRS)

    Shore, C. P.; Nowak, R. J.; Kelly, H. N.

    1982-01-01

    A 2- by 4-ft flightweight panel was subjected to thermal/structural tests representative of design flight conditions for a Mach 6.7 transport and to off-design conditions simulating flight maneuvers and cooling system failures. The panel utilized Rene 41 heat shields backed by a thin layer of insulation to radiate away most of the 12 Btu/ft2-sec incident heating. A solution of ethylene glycol in water circulating through tubes in an aluminum-honeycomb-sandwich panel absorbed the remainder of the incident heating (0.8 Btu/sq ft-sec). The panel successfully withstood (1) 46.7 hr of radiant heating which included 53 thermal cycles and 5000 cycles of uniaxial inplane loading of + or - 1200 lfb/in; (2) simulated 2g-maneuver heating conditions and simulated cooling system failures without excessive temperatures on the structural panel; and (3) the extensive thermal/structural tests and the aerothermal tests reported in NASA TP-1595 without significant damage to the structural panel, coolant leaks, or hot-gas ingress to the structural panel.

  11. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... period of occupancy shall be used to determine the degree to which the thermal insulation requirements of... 7 Agriculture 12 2014-01-01 2013-01-01 true Thermal Performance Construction Standards D Exhibit D... and Other Development Pt. 1924, Subpt. A, Exh. D Exhibit D to Subpart A of Part...

  12. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... period of occupancy shall be used to determine the degree to which the thermal insulation requirements of... 7 Agriculture 12 2012-01-01 2012-01-01 false Thermal Performance Construction Standards D Exhibit... Construction and Other Development Pt. 1924, Subpt. A, Exh. D Exhibit D to Subpart A of Part...

  13. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... period of occupancy shall be used to determine the degree to which the thermal insulation requirements of... 7 Agriculture 12 2013-01-01 2013-01-01 false Thermal Performance Construction Standards D Exhibit... Construction and Other Development Pt. 1924, Subpt. A, Exh. D Exhibit D to Subpart A of Part...

  14. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation

    E-print Network

    Mench, Matthew M.

    High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal: Vanadium redox flow battery Carbon paper Kinetics Surface area Thermal activation Electrode a b s t r a c in an all-vanadium redox flow battery (VRFB) by utilizing modified carbon paper elec- trodes in the high

  15. Decision Guide for Roof Slope Selection

    SciTech Connect

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  16. Insulation Performance of Heat-Resistant Material for High-Speed Aircraft Under Thermal Environments

    NASA Astrophysics Data System (ADS)

    Wu, Dafang; Wang, Yuewu; Gao, Zhentong; Yang, Jialing

    2015-09-01

    Lightweight insulation materials are widely used to thermally protect high-speed aircraft, such as missiles. Thermal conductivity is an important parameter used to evaluate the efficiency of a material's thermal insulation performance. Since thermal conductivities provided from material handbooks or manufacturers are discrete data for different temperature ranges, there is a deviation between those and actual parameters in terms of continuous nonlinear variations. Therefore, this study measures the thermal conductivities of lightweight thermal insulation materials at high temperatures, and the relationship between the thermal conductivity and temperature is obtained. A finite element model of the thermal insulation materials is also established and applied to numerically calculate the thermal insulation properties for high-temperature ceramic fiber insulation materials using the experimentally obtained nonlinear relationship between thermal conductivity and temperature. Additionally, a transient aerodynamic heating experiment simulation system is used to thermally test the same materials; the calculated and experimental results for the same materials are compared, which exhibit good consistency that demonstrates that accurate results can be obtained from the numerical computation using the relationship established from the experimentally measured conductivity and temperature.

  17. Modeling the effects of reflective roofing

    SciTech Connect

    Gartland, L.M.; Konopacki, S.J.; Akbari, H.

    1996-08-01

    Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

  18. The Envelope Thermal Test Unit (ETTU): Full Measurement of WallPerform ance

    SciTech Connect

    Sonderegger, R.C.; Sherman, M.H.; Adams, J.W.

    1981-10-01

    There are many ways of calculating the dynamic thermal performance of walls and many ways of measuring the performance of walls in the laboratory, relatively few field measurements have been made of the dynamic performance of wall in situ. Measuring the thermal performance of walls in situ poses two separate problems: measuring the heat fluxes and surface temperatures of the wall, and reducing this data set into usable parameters. We have solved the first problem by developing the Envelope Thermal Test Unit (ETTU). ETTU consists of two specially constructed polystyrene blankets, 1.2m square, placed on either side of the test wall that both control and measure the surface fluxes and surface temperatures of the wall. To solve the second problem we have developed a simplified dynamic model that describes the thermal performance of a wall in terms of its steady-state conductance, a time constant, and some storage terms. We have used ETTU in the field to measure the thermal performance of walls, and have applied our simplified analysis to calculate simplified thermal parameters from this data set. In this report, we present the in-situ measurements made to date using ETTU, and the resulting model predictions. The agreement between measured and predicted surface fluxes demonstrates the ability of our test unit and analytic model to describe the dynamic performance of walls in situ.

  19. Roof Coating Procedures and Their Productivity Gains 

    E-print Network

    Bonaby, J.; Schaub, D.

    2006-01-01

    stream_source_info ESL-IE-06-05-12.pdf.txt stream_content_type text/plain stream_size 1795 Content-Encoding ISO-8859-1 stream_name ESL-IE-06-05-12.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Roof Coating... of the installation of different roof coating technologies and comparable application procedures of these technologies are ambiguous. The focal point of this research is to determine the effective correlation between various commercially available roof coatings...

  20. Short time scale thermal mechanical shock wave propagation in high performance microelectronic packaging configuration 

    E-print Network

    Nagaraj, Mahavir

    2004-11-15

    The generalized theory of thermoelasticity was employed to characterize the coupled thermal and mechanical wave propagation in high performance microelectronic packages. Application of a Gaussian heat source of spectral profile similar to high...

  1. Simulation and study of thermal performance of liquid desiccant cooling cycle configurations 

    E-print Network

    Dhir, Rajesh

    1995-01-01

    cycles is judged by the thermal Coefficient of Performance (COP). The Sensible Heat Ratio (SHR) is used to quantify the ratio of sensible cooling provided to the total cooling done (sensible plus latent)....

  2. Thermal Impact of Fasteners in High-Performance Wood-Framed Walls

    SciTech Connect

    Dane Christensen

    2011-01-01

    This paper discusses high-performance wood-framed walls that use much less than 40% of the energy consumed by similar homes built to minimum code, and evaluates the thermal impact of fasteners used to construct these walls.

  3. Thermal mass performance in residential construction : an energy analysis using a cube model

    E-print Network

    Ledwith, Alison C. (Alison Catherine)

    2012-01-01

    Given the pervasiveness of energy efficiency concerns in the built environment, this research aims to answer key questions regarding the performance of thermal mass construction. The work presents the Cube Model, a simplified ...

  4. Antenna performance predictions of a radio telescope subject to thermal perturbations

    E-print Network

    Doyle, Keith B.

    Antenna performance predictions and calibration times are estimated on a 37 m diameter radio telescope subject to thermal perturbations. The telescope is designed to operate at frequencies up to 325 GHz with a one-way ...

  5. Millikelvin thermal and electrical performance of lossy transmission line filters

    SciTech Connect

    Slichter, Daniel; Naaman, Ofer; Siddiqi, Irfan

    2009-03-11

    We report on the scattering parameters and Johnson noise emission of low-pass stripline filters employing a magnetically loaded silicone dielectric down to 25 mK. The transmission characteristic of a device with f-3dB=1.3 GHz remains essentially unchanged upon cooling. Another device with f-edB=0.4 GHz, measured in its stopband, exhibits a steady state noise power emission consistent with a temperature difference of a few mK relative to a well-anchored cryogenic microwave attenuator at temperatures down to 25 mK, thus presenting a matched thermal load.

  6. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, T.M.

    1992-06-23

    A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.

  7. Process of making cryogenically cooled high thermal performance crystal optics

    SciTech Connect

    Kuzay, T.M.

    1990-06-29

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N{sub 2} is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  8. Process of making cryogenically cooled high thermal performance crystal optics

    DOEpatents

    Kuzay, Tuncer M. (Naperville, IL)

    1992-01-01

    A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.

  9. Thermal performance of a proposed evacuated multi-layer insulation system for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Dube, W. P.; Slifka, A. J.; Jeffs, R. L.

    1991-01-01

    The National Aerospace Plane (NASP) will require thermal insulation systems which are consistent with cryogenic fluids, high thermal loads, and design restrictions such as weight and volume. Test sections of the proposed system have been constructed and evaluated. In this paper we discuss the components of the insulation system, the application of the insulation system to the NASP liquid hydrogen fuel tank system, and thermal conductivity measurements performed on test sections of the system. Both steady-state and transient thermal measurements are presented.

  10. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  11. Thermal effects on human performance in office environment measured by integrating task speed and accuracy.

    PubMed

    Lan, Li; Wargocki, Pawel; Lian, Zhiwei

    2014-05-01

    We have proposed a method in which the speed and accuracy can be integrated into one metric of human performance. This was achieved by designing a performance task in which the subjects receive feedback on their performance by informing them whether they have committed errors, and if did, they can only proceed when the errors are corrected. Traditionally, the tasks are presented without giving this feedback and thus the speed and accuracy are treated separately. The method was examined in a subjective experiment with thermal environment as the prototypical example. During exposure in an office, 12 subjects performed tasks under two thermal conditions (neutral & warm) repeatedly. The tasks were presented with and without feedback on errors committed, as outlined above. The results indicate that there was a greater decrease in task performance due to thermal discomfort when feedback was given, compared to the performance of tasks presented without feedback. PMID:23871091

  12. Differential thermal performance curves in response to different habitats in the parasitoid Venturia canescens

    NASA Astrophysics Data System (ADS)

    Foray, Vincent; Gibert, Patricia; Desouhant, Emmanuel

    2011-08-01

    Environmental variability is expected to be important in shaping performance curves, reaction norms of phenotypic traits related to fitness. Models predict that the breadth of performance curves should increase with environmental variability at the expense of maximal performance. In this study, we compared the thermal performance curves of two sympatric populations of the parasitoid Venturia canescens that were observed under contrasting thermal regimes in their respective preferred habitats and differing in their modes of reproduction. Our results confirm the large effect of developmental temperature on phenotypic traits of insects and demonstrate that thelytokous and arrhenotokous wasps respond differently to temperature during development, in agreement with model predictions. For traits related to fecundity, thelytokous parasitoids, which usually occur in stable thermal conditions, exhibit specialist performance curves, maximising their reproductive success under a restricted range of temperature. In contrast, arrhenotokous parasitoids, which occur in variable climates, exhibit generalist performance curves, in keeping with the hypothesis "jack of all temperatures, master of none".

  13. Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry.

    PubMed

    Gannon, Ruan; Taylor, Matthew D; Suthers, Iain M; Gray, Charles A; van der Meulen, Dylan E; Smith, James A; Payne, Nicholas L

    2014-09-01

    Theoretical and laboratory studies generally show that ectotherm performance increases with temperature to an optimum, and subsequently declines. Several physiological mechanisms probably shape thermal performance curves, but responses of free-ranging animals to temperature variation will represent a compromise between these mechanisms and ecological constraints. Thermal performance data from wild animals balancing physiology and ecology are rare, and this represents a hindrance for predicting population impacts of future temperature change. We used internally implanted accelerometers near the middle of a species' geographical distribution and gill-net catch data near the species' latitudinal extremes to quantify temperature-related activity levels of a wild predatory fish (Platycephalus fuscus). We examined our data in the context of established models of thermal performance, and the relationship between thermal performance thresholds and biogeography. Acceleration data approximated a thermal performance curve, with activity peaking at 23°C but declining rapidly at higher temperatures. Gill-net catch data displayed a similar trend, with a temperature-associated increase and decrease in catch rates in temperate and tropical regions, respectively. Extrapolated estimates of zero activity (CTmin and CTmax) from the accelerometers were similar to the minimum and maximum mean monthly water temperatures experienced at the southern and northern (respectively) limits of the species distribution, consistent with performance-limited biogeography in this species. These data highlight the fundamental influence of temperature on ectotherm performance, and how thermal performance limits may shape biogeography. Biologging approaches are rarely used to examine thermal performance curves in free-ranging animals, but these may be central to understanding the trade-offs between physiology and ecology that constrain species' biogeographies and determine the susceptibility of ectotherms to future increases in temperature. PMID:24948630

  14. Characterization of mouth-formed mouthguards: thermal performance.

    PubMed

    Guerard, Sandra; Barou, Jean-Luc; Petit, Julien; Poisson, Philippe

    2014-01-01

    This study examined whether the thermo-modeling process suits the thermal properties of the material constituting mouth-formed mouthguards (MGs). Five mouth-formed MGs were compared: four commercially available MGs (SDI™, Gel Nano™, Opro Shield Gold™, and Kipsta R300™) and one prototype. Differential scanning calorimetry was used to determine melting (T(m)) and crystallization (T(c)) temperatures and specific fusion and crystallization enthalpies (?H(f) and ?H(c) (J/g)). MGs were modeled with recording of vestibular flange and occlusal cushion temperatures (Toccl). Tm ranged from 45.3°C to 53.0°C and Tc ranged from 40.9°C to 48.2°C. Specific heat of fusion ranged from 40.2 J/g to 62.0 J/g. Toccl was higher than Tm for all MGs except Kipsta R300™. Guidelines provided by manufacturers may not be adapted to thermal properties of the MG material. To ensure proper thermomodeling, heating and biting durations should be adjusted. PMID:25311336

  15. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems. PMID:20300196

  16. Performance Testing of Thermal Cutting Systems for Sweet Pepper Harvesting Robot in Greenhouse Horticulture

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-03-01

    This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.

  17. Thermal design and performance of the balloon-borne large aperture submillimeter telescope for polarimetry BLASTPol

    E-print Network

    Soler, J D; Angilè, F E; Benton, S J; Devlin, M J; Dober, B; Fissel, L M; Fukui, Y; Galitzki, N; Gandilo, N N; Klein, J; Korotkov, A L; Matthews, T G; Moncelsi, L; Mroczkowski, A; Netterfield, C B; Novak, G; Nutter, D; Pascale, E; Poidevin, F; Savini, G; Scott, D; Shariff, J A; Thomas, N E; Truch, M D; Tucker, C E; Tucker, G S; Ward-Thompson, D

    2014-01-01

    We present the thermal model of the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). This instrument was successfully flown in two circumpolar flights from McMurdo, Antarctica in 2010 and 2012. During these two flights, BLASTPol obtained unprecedented information about the magnetic field in molecular clouds through the measurement of the polarized thermal emission of interstellar dust grains. The thermal design of the experiment addresses the stability and control of the payload necessary for this kind of measurement. We describe the thermal modeling of the payload including the sun-shielding strategy. We present the in-flight thermal performance of the instrument and compare the predictions of the model with the temperatures registered during the flight. We describe the difficulties of modeling the thermal behavior of the balloon-borne platform and establish landmarks that can be used in the design of future balloon-borne instruments.

  18. Thermal Conductivity of UO2 Fuel: Predicting Fuel Performance from Simulation

    SciTech Connect

    Phillpot, Simon R.; El-Azab, Anter; Chernatynskiy, Aleksandr; Tulenko, James S.

    2011-08-19

    Recent progress in understanding the thermal-transport properties of UO? for fission reactors is reviewed from the perspective of computer simulations. A path to incorporating more accurate materials models into fuel performance codes is outlined. In particular, it is argued that a judiciously integrated program of atomic-level simulations and mesoscale simulations offers the possibility of both better predicting the thermal-transport properties of UO? in light-water reactors and enabling the assessment of the thermal performances of novel fuel systems for which extensive experimental databases are not available.

  19. Thermal and Mechanical Performance of a Carbon/Carbon Composite Spacecraft Radiator

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan; Benner, Steve; Butler, Dan; Silk, Eric

    1999-01-01

    Carbon-carbon composite materials offer greater thermal efficiency, stiffness to weight ratio, tailorability, and dimensional stability than aluminum. These lightweight thermal materials could significantly reduce the overall costs associated with satellite thermal control and weight. However, the high cost and long lead-time for carbon-carbon manufacture have limited their widespread usage. Consequently, an informal partnership between government and industrial personnel called the Carbon-Carbon Spacecraft Radiator Partnership (CSRP) was created to foster carbon-carbon composite use for thermally and structurally demanding space radiator applications. The first CSRP flight opportunity is on the New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, scheduled for launch in late 1999. For EO-1, the CSRP designed and fabricated a Carbon-Carbon Radiator (CCR) with carbon-carbon facesheets and aluminum honeycomb core, which will also serve as a structural shear panel. While carbon-carbon is an ideal thermal candidate for spacecraft radiators, in practice there are technical challenges that may compromise performance. In this work, the thermal and mechanical performance of the EO-1 CCR is assessed by analysis and testing. Both then-nal and mechanical analyses were conducted to predict the radiator response to anticipated launch and on-orbit loads. The thermal model developed was based on thermal balance test conditions. The thermal analysis was performed using SINDA version 4.0. Structural finite element modeling and analysis were performed using SDRC/1-DEAS and UAI/NASTRAN, respectively. In addition, the CCR was subjected to flight qualification thermal/vacuum and vibration tests. The panel meets or exceeds the requirements for space flight and demonstrates promise for future satellite missions.

  20. Analysis of the thermal performance of heat pipe radiators

    NASA Technical Reports Server (NTRS)

    Boo, J. H.; Hartley, J. G.

    1990-01-01

    A comprehensive mathematical model and computational methodology are presented to obtain numerical solutions for the transient behavior of a heat pipe radiator in a space environment. The modeling is focused on a typical radiator panel having a long heat pipe at the center and two extended surfaces attached to opposing sides of the heat pipe shell in the condenser section. In the set of governing equations developed for the model, each region of the heat pipe - shell, liquid, and vapor - is thermally lumped to the extent possible, while the fin is lumped only in the direction normal to its surface. Convection is considered to be the only significant heat transfer mode in the vapor, and the evaporation and condensation velocity at the liquid-vapor interface is calculated from kinetic theory. A finite-difference numerical technique is used to predict the transient behavior of the entire radiator in response to changing loads.

  1. Cool Roofs Through Time and Space

    SciTech Connect

    Levinson, Ronnen

    2014-10-17

    Ronnen Levinson, from the Lab's Heat Island Group, presents his research on cool roofs and introduces the California Cities Albedo Map at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California

  2. Design considerations for retractable-roof stadia

    E-print Network

    Frazer, Andrew H., 1981-

    2005-01-01

    As existing open-air or fully enclosed stadia are reaching their life expectancies, cities are choosing to replace them with structures with moving roofs. This kind of facility provides protection from weather for spectators, ...

  3. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (3) Bearing plates used with wood or metal materials shall be at least...plate. (e)(1) The diameter of finishing bits shall be within a tolerance...the roof bolt plates bear against wood; or (ii) Have exceeded the...

  4. 30 CFR 75.204 - Roof bolting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (3) Bearing plates used with wood or metal materials shall be at least...plate. (e)(1) The diameter of finishing bits shall be within a tolerance...the roof bolt plates bear against wood; or (ii) Have exceeded the...

  5. The evolution of thermal performance can constrain dispersal during range shifting.

    PubMed

    Hillaert, J; Boeye, J; Stoks, R; Bonte, D

    2015-12-01

    Organisms can cope with changing temperature under climate change by either adapting to the temperature at which they perform best and/or by dispersing to more benign locations. The evolution of a new thermal niche during range shifting is, however, expected to be strongly constrained by genetic load because spatial sorting is known to induce fast evolution of dispersal. To broaden our understanding of this interaction, we studied the joint evolution of dispersal and thermal performance curves (TPCs) of a population during range shifting by applying an individual-based spatially explicit model. Always, TPCs adapted to the local thermal conditions. Remarkably, this adaptation coincided with an evolution of dispersal at the shifting range front being equally high or lower than at the trailing edge. This optimal strategy reduces genetic load and highlights that evolutionary dynamics during range shifting change when crucial traits such as dispersal and thermal performance jointly evolve. PMID:26406927

  6. Re-roofing slashes chain's cooling costs

    SciTech Connect

    Barber, J.

    1984-03-26

    A re-roofing program to install single-ply synthetic rubber coated with hypalon, a white synthetic rubber, will save each Hardee restaurant an average of $25,000 over a 10-year period. The savings will come from reduced air conditioning costs, which will vary by location. The new roof system tolerates temperatures from -40 to over 150/sup 0/F. Reflection from the white surface makes the material more energy efficient than conventional hot asphalt.

  7. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    SciTech Connect

    Syd S. Peng

    2004-04-15

    A one-year non-cost extension has been granted for this project. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) laboratory tests have been conducted, (2) with the added trendline analysis method, the accuracy of the data interpretation methodology will be improved and the interfaces and voids can be more reliably detected, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (3) about 80% of the development work for the roof geology mapping program, MRGIS, has completed and a special version of the program is in the field testing stage.

  8. Thermal and power integrity analysis and optimization for high performance VLSI

    NASA Astrophysics Data System (ADS)

    Wang, Ting-Yuan

    The ever-increasing demands for more functionality and higher speed have pushed the VLSI industry towards more aggressive scaling. Since this trend leads to higher current density and power dissipation in power/ground (P/G) network, the voltage fluctuations on the on-chip power distribution system are becoming a crucial factor in determining the performance and the reliability of VLSI designs. A complete picture of the power grid integrity can be obtained only when IR-drop, electromigration (EM), and thermal effect are all considered together. However, traditional P/G network design methodologies aim at minimizing the total routing area subject to EM and IR-drop constraints. Thermal effect is ignored in the design, and can cause thermally-induced performance and reliability issues. Therefore, we propose an algorithm for P/G network design with thermal integrity. The basic idea is to include the thermal effect in optimization process. To consider thermal effect in IR-drop, IR-drop constraint must be temperature dependent. In addition, a new self-consistent constraint is defined and used to replace the EM constraint for the thermal integrity. This self-consistent constraint is based on the idea of finding simultaneous solution of EM and SH effects. In order to have required thermal reliability in P/G network, the objective function is based on minimizing the sum of each wire's weighted sum of average power dissipation and wire area. The idea is that the smaller the routing area, the larger the power dissipation will be in P/G network. This approach addresses the power dissipation and thermal integrity. Due to the thermal integrity design of P/G network, we need to effectively analyze the three-dimensional (3-D) substrate temperature distribution and hot-spot locations. Therefore, we develop an efficient transient thermal simulator, 3D Thermal-ADI, using the ADI method to simulate the 3-D temperature profile. Basically, the ADI method is an alternative solution method which instead of solving the three dimensional problems, solves a succession of three one-dimensional problems. Our simulator is not only unconditionally stable but also has a linear runtime and a linear memory usage. In order to analyze the thermal reliability of P/G network, we develop a SPICE-compatible thermal simulator, 3D Thermal-IEKS, for interconnect reliability analysis. The basic idea is to model the thermal simulation problem as electrical simulation problem. An adaptive approach is used to reduce the problem size and achieve enough accuracy. Then an improved extended Krylov subspace (IEKS) engine, independent of the number of input ports, is used for simulation.

  9. Competition moderates the benefits of thermal acclimation to reproductive performance

    E-print Network

    Johnston, Alan

    such as metabolic rate and locomotor performance govern much of the behavioural activities of ectotherms and are highly dependent on body tempera- ture (Angilletta et al. 2006). Many ectotherms display phenotypic of locomotion have been studied across a range of ectotherms (Johnston & Temple 2002; Deere & Chown 2006

  10. Analysis of DOE s Roof Savings Calculator with Comparison to other Simulation Engines

    SciTech Connect

    New, Joshua Ryan; Huang, Yu; Levinson, Ronnen; Mellot, Joe; Sanyal, Jibonananda; Childs, Kenneth W

    2014-01-01

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned based on national averages and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof and attic configurations including different roof slopes, above sheathing ventilation, radiant barriers, low-emittance surfaces, HVAC duct location, duct leakage rates, multiple layers of building materials, ceiling and deck insulation levels, and other parameters. A base case and energy-efficient alternative can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA. However, RSC gives different energy savings estimates than previous cool roof simulation tools so more thorough software and empirical validation proved necessary. This report consolidates much of the preliminary analysis for comparison of RSC s projected energy savings to that from other simulation engines.

  11. The hydrological behaviour of extensive and intensive green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S

    2014-11-15

    This paper presents the results of a hydrological investigation of four medium scale green roofs that were set up at the University of South Australia. In this study, the potential of green roofs as a source control device was investigated over a 2 year period using four medium size green roof beds comprised of two growth media types and two media depths. During the term of this study, 226 rainfall events were recorded and these were representative of the Adelaide climate. In general, there were no statistically significant differences between the rainfall and runoff parameters for the intensive and extensive beds except for peak attenuation and peak runoff delay, for which higher values were recorded in the intensive beds. Longer dry periods generally resulted in higher retention coefficients and higher retention was also recorded in warmer seasons. The average retention coefficient for intensive systems (89%) was higher than for extensive systems (74%). It was shown that rainfall depth, intensity, duration and also average dry weather period between events can change the retention performance and runoff volume of the green roofs. Comparison of green and simulated conventional roofs indicated that the former were able to mitigate the peak of runoff and could delay the start of runoff. These characteristics are important for most source control measures. The recorded rainfall and runoff data displayed a non-linear relationship. Also, the results indicated that continuous time series modelling would be a more appropriate technique than using peak rainfall intensity methods for green roof design and simulation. PMID:25194906

  12. Evaluation of green roof as green technology for urban stormwater quantity and quality controls

    NASA Astrophysics Data System (ADS)

    Kok, K. H.; Sidek, L. M.; Abidin, M. R. Z.; Basri, H.; Muda, Z. C.; Beddu, S.

    2013-06-01

    Promoting green design, construction, reconstruction and operation of buildings has never been more critical than now due to the ever increasing greenhouse gas emissions and rapid urbanizations that are fuelling climate change more quickly. Driven by environmental needs, Green Building Index (GBI) was founded in Malaysia to drive initiative to lead the property industry towards becoming more environment-friendly. Green roof system is one of the assessment criteria of this rating system which is under category of sustainable site planning and management. An extensive green roof was constructed in Humid Tropics Center (HTC) Kuala Lumpur as one of the components for Stormwater Management Ecohydrology (SME) in order to obtain scientific data of the system. This paper evaluates the performance of extensive green roof at Humid Tropics Center with respect to urban heat island mitigation and stormwater quantity and quality controls. Findings indicate that there was a reduction of around 1.5°C for indoor temperature of the building after installation of green roof. Simulations showed that the peak discharge was reduced up to 24% relative to impervious brown roof. The results show an increment of pH and high concentration of phosphate for the runoff generated from the green roof and the runoff water quality ranged between class I and II under INWQS.

  13. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8%Y2O3 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12%Y2O3 or ZrO2-20%Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  14. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y2O3 specimens survived 3000 of the 0.5 sec cycles with falling. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 1 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-2O percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  15. Performance of thermal barrier coatings in high heat flux environments

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Berndt, C. C.

    1984-01-01

    Thermal barrier coatings were exposed to the high temperature and high heat flux produced by a 30 kW plasma torch. Analysis of the specimen heating rates indicates that the temperature drop across the thickness of the 0.038 cm ceramic layer was about 1100 C after 0.5 sec in the flame. An as-sprayed ZrO2-8 percent Y203 specimens survived 3000 of the 0.5 sec cycles with failing. Surface spalling was observed when 2.5 sec cycles were employed but this was attributed to uneven heating caused by surface roughness. This surface spalling was prevented by smoothing the surface with silicon carbide paper or by laser glazing. A coated specimen with no surface modification but which was heat treated in argon also did not surface spall. Heat treatment in air led to spalling in as early as 2 cycle from heating stresses. Failures at edges were investigated and shown to be a minor source of concern. Ceramic coatings formed from ZrO2-12 percent Y2O3 or ZrO2-20 percent Y2O3 were shown to be unsuited for use under the high heat flux conditions of this study.

  16. Performance assessment of low pressure nuclear thermal propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, H. P., Jr.; Doughty, G. E.

    1993-01-01

    A low pressure nuclear thermal propulsion (LPNTP) system, which takes advantage of hydrogen dissociation/recombination, was proposed as a means of increasing engine specific impulse (Isp). The effect of hydrogen dissociation/recombination on LPNTP Isp is examined. A two-dimensional computer model was used to show that the optimum chamber pressure is approximately 100 psia (at a chamber temperature of 3,000 K), with an Isp approximately 15 s higher than at 1,000 psia. At high chamber temperatures and low chamber pressures, the increase in Isp is due to both lower average molecular weights caused by dissociation and added kinetic energy from monatomic hydrogen recombination. Monatomic hydrogen recombination increases the Isp more then hydrogen dissociation. Variations in the mole fraction of monatomic hydrogen are similar to variations in static pressure along the axial nozzle position. Most recombination occurs close to the nozzle throat. Practical variations in nozzle geometry have minimal impact on recombination. Other models which can simulate a wider range of nozzle designs should be used in the future. The uncertainty of the hydrogen kinetic reaction rates at high temperatures (approximately 3,000 K) affects the accuracy of the analysis and should be verified with simple bench tests.

  17. A generic hydrological model for a green roof drainage layer.

    PubMed

    Vesuviano, Gianni; Stovin, Virginia

    2013-01-01

    A rainfall simulator of length 5 m and width 1 m was used to supply constant intensity and largely spatially uniform water inflow events to 100 different configurations of commercially available green roof drainage layer and protection mat. The runoff from each inflow event was collected and sampled at one-second intervals. Time-series runoff responses were subsequently produced for each of the tested configurations, using the average response of three repeat tests. Runoff models, based on storage routing (dS/dt = I-Q) and a power-law relationship between storage and runoff (Q = kS(n)), and incorporating a delay parameter, were created. The parameters k, n and delay were optimized to best fit each of the runoff responses individually. The range and pattern of optimized parameter values was analysed with respect to roof and event configuration. An analysis was performed to determine the sensitivity of the shape of the runoff profile to changes in parameter values. There appears to be potential to consolidate values of n by roof slope and drainage component material. PMID:23985505

  18. The case for using a sacrificial layer of absorbent insulation in the design of flat and low-sloped roofing

    NASA Astrophysics Data System (ADS)

    Stockton, Gregory R.

    2013-05-01

    Beginning about twenty-five years ago, there was a marked increase in the number of single-ply membrane roof designs used to cover and waterproof flat and low-sloped building roofs. Over the past ten years, there has been a substantial increase in the number of installations of white and more reflective single-ply roof systems, mostly using high density cellular foam insulation in the substrate for insulation. A major factor in the increase in the popularity of these highly insulated and more reflective roof systems is the fact that many governments began offering incentives for building owners to use reflective coverings and better insulated roofs. Now, owing to the energy efficient requirements for the design and construction of new buildings put forth in ASHRAE Standard 90.1, "Energy Standard for Buildings Except Low-Rise Residential Buildings" and the world's apparent desire to be "green" (or at least appear to be), more and more roof designs will include these reflective single-ply membranes, which use the cellular foam insulation boards to meet these requirements. Using a lower density traditional insulation will mean that the roof will have to be very thick to comply, increasing the costs of installation. High density cellular foams do not absorb water until time, vapor pressure drive, UV and thermal shock break down the foam and it becomes more absorbent. This could be 5-7 years or longer, depending on the roof construction and other factors. This means that any water that enters the roof through a breach (leak) in the membrane goes straight into the building. This is not a good consequence since the failure mode of any roof is water entering the building. Keeping the water out of the building is the purpose of the waterproofing layer. This paper reviews the techniques of moisture testing on building roofs and infrared (IR) thermography, and puts forth the idea and reasoning behind having a sacrificial layer of very absorbent insulation installed in every flat and low-sloped roof so that when a breach occurs, it can easily be found, documented and repaired during an annual infrared inspection; as IR is an effective predictive maintenance technique and condition monitoring best practice for roof maintenance.

  19. Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin

    2013-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 deg S latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Ls=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.

  20. Thermal Performance of the Mars Science Laboratory Rover During Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Lee, Chern-Jiin

    2013-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. Eight months later, on August 5, 2012, the MSL rover (Curiosity) successfully touched down on the surface of Mars. As of the writing of this paper, the rover had completed over 200 Sols of Mars surface operations in the Gale Crater landing site (4.5 degrees South latitude). This paper describes the thermal performance of the MSL Rover during the early part of its two Earth-0.year (670 Sols) prime surface mission. Curiosity landed in Gale Crater during early Spring (Solar longitude=151) in the Southern Hemisphere of Mars. This paper discusses the thermal performance of the rover from landing day (Sol 0) through Summer Solstice (Sol 197) and out to Sol 204. The rover surface thermal design performance was very close to pre-landing predictions. The very successful thermal design allowed a high level of operational power dissipation immediately after landing without overheating and required a minimal amount of survival heating. Early morning operations of cameras and actuators were aided by successful heating activities. MSL rover surface operations thermal experiences are discussed in this paper. Conclusions about the rover surface operations thermal performance are also presented.

  1. Thermal performance of a new solar air heater

    SciTech Connect

    Tiris, C.; Ozbalta, N.; Tiris, M.; Dincer, I.

    1995-05-01

    A solar air heater, part of a food drying system using solar energy as a renewable energy source for heat, was developed and tested for several agricultural products (i.e., sultana grapes, green beans, sweet peppers, chili peppers). Drying processes were conducted in the chamber with forced natural air heated partly by solar energy. Solar air heater performances were discussed along with estimates of energy efficiency of the system. The obtained results indicate that the present system is efficiency and effective.

  2. Current performance and potential improvements in solar thermal industrial heat

    NASA Astrophysics Data System (ADS)

    Hale, M. J.; Williams, T.; Barker, G.

    1992-12-01

    A representative current state-of-the-art system using parabolic trough technology was developed using data from a system recently installed in Tehachapi, California. A simulation model was used to estimate the annual energy output from the system at three different insolation locations. Based on discussions with industry personnel and within NREL, we identified a number of technology improvements that offer the potential for increasing the energy performance and reducing the energy-cost of the baseline system. The technology improvements modeled included an evacuated-tube receiver, an antireflective coating on the receiver tube, an improved absorber material, a cleaner reflecting surface, a reflecting surface that can withstand contact cleaning, and two silver reflectors. The properties associated with the improvements were incorporated into the model simulation at the three insolation locations to determine if there were any performance gains. The results showed that there was a potential for a more than 50 percent improvement in the annual energy delivered by a 2677 sq m system incorporating a combination of the enumerated technology improvements. We discuss the commercial and technological status of each design improvement and present performance predictions for the trough-design improvements.

  3. Optimizing Performance of a Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Subirats Soler, Monica

    In this thesis, the problem of electricity demand shifting for the cooling needs of a large institution using a thermal energy storage (TES) tank is considered. The system is formed by electric chillers, cooling towers and a TES tank that can store energy for the cooling demand of most days, but not for the hottest ones. The goal is to supply all the cooling needed while minimizing the cost. This is done by shifting the cooling demand to night and early morning hours, when electricity is cheaper and due to lower temperatures, the chillers work more efficiently. This is all done with the help of the TES tank, that acts as a buffer storing chilled water. After a series of assumptions and simplifications, the cost function becomes convex and thus a minimum solution exists. However, from previous work only the chillers were considered, omitting the negative effect that other components of the system, such as cooling towers, had on the overall cost of operation. Using data from the operation of the power plant under real conditions, a method to model the whole system is presented in this thesis. In addition, the algorithm relied on the knowledge of an accurate prediction of the cooling demand, which obviously is not known in advance. A method to predict it starting from a forecasting of the temperature is presented. Finally, the algorithm can be easily modified to allow the imposition constraints that limit the maximum power use of chillers, during specific periods, in response to the overall needs of the micro-grid.

  4. Three-Dimensional Numerical Evaluation of Thermal Performance of Uninsulated Wall Assemblies: Preprint

    SciTech Connect

    Ridouane, E. H.; Bianchi, M.

    2011-11-01

    This study describes a detailed three-dimensional computational fluid dynamics modeling to evaluate the thermal performance of uninsulated wall assemblies accounting for conduction through framing, convection, and radiation. The model allows for material properties variations with temperature. Parameters that were varied in the study include ambient outdoor temperature and cavity surface emissivity. Understanding the thermal performance of uninsulated wall cavities is essential for accurate prediction of energy use in residential buildings. The results can serve as input for building energy simulation tools for modeling the temperature dependent energy performance of homes with uninsulated walls.

  5. Supersonic Energy Addition for Improving the Performance of Nuclear Thermal Rockets

    E-print Network

    Supersonic Energy Addition for Improving the Performance of Nuclear Thermal Rockets V.P. Chiravalle impulse decreases. Another approach to achieving increased nuclear rocket performance is to add energy additional components to a nuclear rocket which is augmented by laser energy addition using an LSP

  6. Largo hot water system long range thermal performance test report, addendum

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency, temperature distribution, and system performance degradation.

  7. The technical viability of alternative blowing agents in polyisocyanurate roof insulation: A cooperative industry/government project

    SciTech Connect

    Christian, J.E.; Courville, G.E.; Desjarlais, A.O.; Graves, R.S.; Linkous, R.L.; McElroy, D.L.; Weaver, F.J.; Wendt, R.L.; Yarbrough, D.W.

    1993-06-01

    This report is a summary of the cooperative industry/government program to establish the viability of alternative blowing agents to chlorofluorocarbons (CFCs). The project was initiated in 1989 following two workshops that focused on needed research on thermal insulation blown with substitutes for CFC-11 and CFC-12. The project is directed by a steering committee of representatives of the sponsors and of Oak Ridge National Laboratory (ORNL). The purpose of the project is to determine if the performance of polyisocyanurate (PIR) roof insulation foam boards blown with alternate agents differs from the performance of boards blown with CFC-1. This report describes apparent thermal conductivity (k) results obtained from field and laboratory tests from 1989 to 1992 on a set of experimental PIR laminate boardstock produced to evaluate the viability of alternative hydrochlorofluorocarbons (HCFCs) as blowing agents. All boardstock was manufactured from similar formulations that were not optimized for thermal performance. Commercial broadstock made in the future may differ in performance from this set. The PIR boards were prepared with CFC-11, HCFC-123, HCFC-141b, and 50/50 and 65/35 blends of HCFC-123/HCFC-141b.

  8. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels §...

  9. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  10. Application of spatial frequency response as a criterion for evaluating thermal imaging camera performance

    NASA Astrophysics Data System (ADS)

    Lock, Andrew; Amon, Francine

    2008-04-01

    Police, firefighters, and emergency medical personnel are examples of first responders that are utilizing thermal imaging cameras in a very practical way every day. However, few performance metrics have been developed to assist first responders in evaluating the performance of thermal imaging technology. This paper describes one possible metric for evaluating spatial resolution using an application of Spatial Frequency Response (SFR) calculations for thermal imaging. According to ISO 12233, the SFR is defined as the integrated area below the Modulation Transfer Function (MTF) curve derived from the discrete Fourier transform of a camera image representing a knife-edge target. This concept is modified slightly for use as a quantitative analysis of the camera's performance by integrating the area between the MTF curve and the camera's characteristic nonuniformity, or noise floor, determined at room temperature. The resulting value, which is termed the Effective SFR, can then be compared with a spatial resolution value obtained from human perception testing of task specific situations to determine the acceptability of the performance of thermal imaging cameras. The testing procedures described herein are being developed as part of a suite of tests for possible inclusion into a performance standard on thermal imaging cameras for first responders.

  11. Estimation and optimization of thermal performance of evacuated tube solar collector system

    NASA Astrophysics Data System (ADS)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; ?ahin, Arzu ?encan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.

  12. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie

    2015-12-01

    Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.

  13. Thermal Impact on the Performance of Highly Efficient Multi-stage Depressed Collector for Space TWT

    NASA Astrophysics Data System (ADS)

    Gahlaut, Vishant; Latha, A. Mercy; Alvi, Parvez Ahmad; Ghosh, Sanjay Kumar

    2014-01-01

    In a travelling wave tube, much of the waste power is dumped into the collector. If the waste heat is not properly managed, it might pose a serious problem causing even failure of tube. In this paper, the optimal choice of thermal management of a highly efficient multistage depressed collector designed for a space TWT has been made based on several criteria. The structural deformations and stresses developed due to thermal impact have been evaluated. The influence of thermal deformations on the collector electrical performance and high voltage withstanding capability has been studied during hot condition.

  14. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    PubMed

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology. PMID:18409652

  15. Ultrasonic performance of the PVDF thin film sensors under thermal fatigue

    NASA Astrophysics Data System (ADS)

    Rathod, Vivek T.; Roy Mahapatra, D.; Jain, Anjana; Gayathri, A.

    2012-04-01

    In the present work, the ultrasonic strain sensing performance of the large area PVDF thin film subjected to the thermal fatigue is studied. The PVDF thin film is prepared using hot press and the piezoelectric phase ( ?-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The sensors used in aircrafts for structural health monitoring applications are likely to be subjected to a wide range of temperature fluctuations which may create thermal fatigue in both aircraft structures and in the sensors. Thus, the sensitivity of the PVDF sensors for thermal fatigue needs to be studied for its effective implementation in the structural health monitoring applications. In present work, the fabricated films have been subjected to certain number of thermal cycles which serve as thermal fatigue and are further tested for ultrasonic strain sensitivity at various different frequencies. The PVDF sensor is bonded on the beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end of the beam. Sensitivity of PVDF sensor in terms of voltage is obtained for increasing number of thermal cycles. Sensitivity variation is studied at various different extent of thermal fatigue. The variation of the sensor sensitivity with frequency due to thermal fatigue at different temperatures is also investigated. The present investigation shows an appropriate temperature range for the application of the PVDF sensors in structural health monitoring.

  16. How much improvement in thermoelectric performance can come from reducing thermal conductivity?

    SciTech Connect

    Gaultois, Michael W.; Sparks, Taylor D.

    2014-03-17

    Large improvements in the performance of thermoelectric materials have come from designing materials with reduced thermal conductivity. Yet as the thermal conductivity of some materials now approaches their amorphous limit, it is unclear if microstructure engineering can further improve thermoelectric performance in these cases. In this contribution, we use large data sets to examine 300 compositions in 11 families of thermoelectric materials and present a type of plot that quickly reveals the maximum possible zT that can be achieved by reducing the thermal conductivity. This plot allows researchers to quickly distinguish materials where the thermal conductivity has been optimized from those where improvement can be made. Moreover, through these large data sets we examine structure-property relationships to identify methods that decrease thermal conductivity and improve thermoelectric performance. We validate, with the data, that increasing (i) the volume of a unit cell and/or (ii) the number of atoms in the unit cell decreases the thermal conductivity of many classes of materials, without changing the electrical resistivity.

  17. The effect of roof strength on reducing occupant injury in rollovers.

    PubMed

    Herbst, Brian; Forrest, Steve; Orton, Tia; Meyer, Steven E; Sances, Anthony; Kumaresan, Srirangam

    2005-01-01

    Roof crush occurs and potentially contributes to serious or fatal occupant injury in 26% of rollovers. It is likely that glazing retention is related to the degree of roof crush experienced in rollover accidents. Occupant ejection (including partial ejection) is the leading cause of death and injury in rollover accidents. In fatal passenger car accidents involving ejection, 34% were ejected through the side windows. Side window glass retention during a rollover is likely to significantly reduce occupant ejections. The inverted drop test methodology is a test procedure to evaluate the structural integrity of roofs under loadings similar to those seen in real world rollovers. Recent testing on many different vehicle types indicates that damage consistent with field rollover accidents can be achieved through inverted drop testing at very small drop heights. Drop test comparisons were performed on 16 pairs of vehicles representing a large spectrum of vehicle types. Each vehicle pair includes a production vehicle and a vehicle with a reinforced roof structure dropped under the same test conditions. This paper offers several examples of post-production reinforcements to roof structures that significantly increase the crush resistance of the roof as measured by inverted drop tests. These modifications were implemented with minimal impact on vehicle styling, interior space and visual clearances. The results of these modifications indicate that roof crush can be mitigated by nearly an order of magnitude, as roof crush was reduced by 44-91% with only a 1-2.3% increase in vehicle weight. Additionally, this paper analyzes the glazing breakage patterns in the moveable tempered side windows on the side adjacent to the vehicle impact point in the inverted drop tests. A comparison is made between the production vehicles and the reinforced vehicles in order to determine if the amount roof crush is related to glazing integrity in the side windows. Lastly, two drop test pairs, performed with Hybrid III test dummies, indicates that the reduction of roof crush resulted in a direct reduction in neck loading and therefore an increase in occupant protection. PMID:15850089

  18. Characterization of Hollow Cathode Performance and Thermal Behavior

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren

    2006-01-01

    Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.

  19. The Thermal Performance and Air Leakage Characteristics of Six Log Homes in Idaho.

    SciTech Connect

    Roos, Carolyn; Eklund, Ken; Baylon, David

    1993-08-01

    The thermal performance and air leakage characteristics of four electrically heated log houses located in Idaho are summarized. The air leakage and construction characteristics of two additional log homes are also examined. The energy consumption of the four homes was submetered at weekly reporting intervals for up to 16 months. Blower door tests and site audits were performed. In addition, conditions at two of these homes, including heat flux through the log walls, indoor and outdoor temperatures, solar flux and envelope tightness, were measured in detail over several days during winter conditions. The energy use and thermal performance of these two homes were then modeled using SUNCODE-PC, an hourly thermal simulation program employing a finite difference technique.

  20. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    PubMed

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. PMID:26241932

  1. Thermal Performance of Multilayer Insulation Fabricated Around a Horizontally Supported Cylinder

    NASA Astrophysics Data System (ADS)

    Ohmori, T.; Nakajima, M.; Yamamoto, A.

    2004-06-01

    In the so-called horizontal cryostat applied to the superconducting magnet for the high energy particle accelerator, the multilayer insulation (MLI) is fabricated around the horizontally supported cylindrical cold surface. The MLI is compressed more at the upper part of the cylinder than the lower part. The inner layers in the MLI are also compressed more than the outer layers. Those compressions are caused by the weight of the MLI itself. Thus the MLI fabricated around the horizontal cylinder has the distribution in the compressive pressure between the layers radially and azimuthally. The contact heat transfer between the adjacent layers contributes significantly to the thermal performance of MLI and is affected by the compressive pressure caused by the weight of MLI. The authors obtained the relation between the compressive pressure and the contact heat transfer coefficient by comparing the thermal performance data obtained by the guarded cylindrical calorimeter with the analytical results of the thermal performance of MLI when the thermal radiation transmissivity of the aluminized reflective film is not negligible. By using this relation, the thermal performance of the MLI fabricated on the horizontal cylinder is estimated, and its relation to the total number of the fabricated layers is studied.

  2. Thermal performance of gaseous-helium-purged tank-mounted multilayer insulation system during ground-hold and space-hold thermal cycling and exposure to water vapor

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An experimental investigation was conducted to determine (1) the ground-hold and space-hold thermal performance of a multilayer insulation (MLI) system mounted on a spherical, liquid-hydrogen propellant tank and (2) the degradation to the space-hold thermal performance of the insulation system that resulted from both thermal cycling and exposure to moisture. The propellant tank had a diameter of 1.39 meters (4.57ft). The MLI consisted of two blankets of insulation; each blanket contained 15 double-aluminized Mylar radiation shields separated by double silk net spacers. Nineteen tests simulating basic cryogenic spacecraft thermal (environmental) conditions were conducted. These tests typically included initial helium purge, liquid-hydrogen fill and ground-hold, ascent, space-hold, and repressurization. No significant degradation of the space-hold thermal performance due to thermal cycling was noted.

  3. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.

  4. Effect of water turbidity on thermal performance of a salt-gradient solar pond

    SciTech Connect

    Wang, J.; Seyed-Yagoobi, J.

    1995-05-01

    The effect of water turbidity on the thermal performance of a salt-gradient solar pond is studied using a one-dimensional theoretical model. The theoretical model uses an empirical correlation that includes the effect of water turbidity on solar radiation penetration in water. The correlation is based on a uniform turbidity distribution in water; however, the correlation is extended to include a non-uniform turbidity distribution with respect to depth of water. The results indicate that water clarity plays a significant role on thermal performance for salt gradient solar ponds. 24 refs., 11 figs., 1 tab.

  5. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient.

    PubMed

    Gaitán-Espitia, Juan Diego; Bacigalupe, Leonardo D; Opitz, Tania; Lagos, Nelson A; Timmermann, Tania; Lardies, Marco A

    2014-12-15

    Environmental temperature has profound effects on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produce physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus show no differences in the limits of their thermal performance curves and demonstrate a negative correlation of their optimal temperatures with latitude. Additionally, our findings show that high-latitude populations of P. violaceus exhibit broader thermal tolerances, which is consistent with the climatic variability hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean-warming scenarios projected by the IPCC for the end of the twenty-first century. PMID:25394627

  6. Comparison of Thermal Performance Characteristics of Ammonia and Propylene Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kaya, Tarik; Baker, Charles; Ku, Jentung

    2000-01-01

    In this paper, experimental work performed on a breadboard Loop Heat Pipe (LHP) is presented. The test article was built by DCI for the Geoscience Laser Altimeter System (GLAS) instrument on the ICESat spacecraft. The thermal system requirements of GLAS have shown that ammonia cannot be used as the working fluid in this LHP because GLAS radiators could cool to well below the freezing point of ammonia. As a result, propylene was proposed as an alternative LHP working fluid since it has a lower freezing point than ammonia. Both working fluids were tested in the same LHP following a similar test plan in ambient conditions. The thermal performance characteristics of ammonia and propylene LHP's were then compared. In general, the propylene LHP required slightly less startup superheat 5nd less control heater power than the ammonia LHP, The thermal conductance values for the propylene LHP were also lower than the ammonia LHP. Later, the propylene LHP was tested in a thermal vacuum chamber. These tests demonstrated that propylene could meet the GLAS thermal design requirements. Design guidelines were proposed for the next flight-like Development Model (DM) LHP for thermal control of the GLAS instrument.

  7. Weathering of Roofing Materials-An Overview

    SciTech Connect

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  8. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fo?t, Jan; ?erný, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  9. Thermal Performance of Cryogenic Piping Multilayer Insulation in Actual Field Installations

    NASA Technical Reports Server (NTRS)

    Fesmire, J.; Augustnynowicz, S.; Thompson, K. (Technical Monitor)

    2002-01-01

    A standardized way of comparing the thermal performance of different pipelines in different sizes is needed. Vendor data for vacuum-insulated piping are typically given in heat leak rate per unit length (W/m) for a specific diameter pipeline. An overall k-value for actual field installations (k(sub oafi)) is therefore proposed as a more generalized measure for thermal performance comparison and design calculation. The k(sub oafi) provides a direct correspondence to the k-values reported for insulation materials and illustrates the large difference between ideal multilayer insulation (MLI) and actual MLI performance. In this experimental research study, a section of insulated piping was tested under cryogenic vacuum conditions, including simulated spacers and bending. Several different insulation systems were tested using a 1-meter-long cylindrical cryostat test apparatus. The simulated spacers tests showed significant degradation in the thermal performance of a given insulation system. An 18-meter-long pipeline test apparatus is now in operation at the Cryogenics Test Laboratory, NASA Kennedy Space Center, for conducting liquid nitrogen thermal performance tests.

  10. VO2 nanorods for efficient performance in thermal fluids and sensors

    NASA Astrophysics Data System (ADS)

    Dey, Kajal Kumar; Bhatnagar, Divyanshu; Srivastava, Avanish Kumar; Wan, Meher; Singh, Satyendra; Yadav, Raja Ram; Yadav, Bal Chandra; Deepa, Melepurath

    2015-03-01

    VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods.VO2 (B) nanorods with average width ranging between 50-100 nm are synthesized via a hydrothermal method and the post hydrothermal treatment drying temperature is found to be influential in their overall phase and growth morphology evolution. The nanorods with unusually high optical bandgap for a VO2 material are effective in enhancing the thermal performance of ethylene glycol nanofluids over a wide temperature range as is indicated by the temperature dependent thermal conductivity measurements. Humidity and LPG sensors fabricated using the VO2 (B) nanorods bear testament to their efficient sensing performance, which can be partially attributed to the mesoporous nature of the nanorods. Electronic supplementary information (ESI) available: Plots representing the actual ratio Knf/KEG (Knf is the thermal conductivity of the nanofluid and KEG being thermal conductivity of the base fluid) across the entire experimental temperature range of 20 to 80 °C, table representing a comparison of performance of the VO2 sensor towards different gases. See DOI: 10.1039/c4nr06032f

  11. Monitoring roof beam lateral displacement at the waste isolation pilot plant

    SciTech Connect

    Terrill, L.J.; Lewis, R.E.

    1996-08-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole occlusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance.

  12. Automatic Roof Plane Detection and Analysis in Airborne Lidar Point Clouds for Solar Potential Assessment

    PubMed Central

    Jochem, Andreas; Höfle, Bernhard; Rutzinger, Martin; Pfeifer, Norbert

    2009-01-01

    A relative height threshold is defined to separate potential roof points from the point cloud, followed by a segmentation of these points into homogeneous areas fulfilling the defined constraints of roof planes. The normal vector of each laser point is an excellent feature to decompose the point cloud into segments describing planar patches. An object-based error assessment is performed to determine the accuracy of the presented classification. It results in 94.4% completeness and 88.4% correctness. Once all roof planes are detected in the 3D point cloud, solar potential analysis is performed for each point. Shadowing effects of nearby objects are taken into account by calculating the horizon of each point within the point cloud. Effects of cloud cover are also considered by using data from a nearby meteorological station. As a result the annual sum of the direct and diffuse radiation for each roof plane is derived. The presented method uses the full 3D information for both feature extraction and solar potential analysis, which offers a number of new applications in fields where natural processes are influenced by the incoming solar radiation (e.g., evapotranspiration, distribution of permafrost). The presented method detected fully automatically a subset of 809 out of 1,071 roof planes where the arithmetic mean of the annual incoming solar radiation is more than 700 kWh/m2. PMID:22346695

  13. An experiment to evaluate the thermal performance of an oil-heating copper spiral coil

    NASA Astrophysics Data System (ADS)

    Mawire, A.; Abedigamba, O. P.

    2013-05-01

    An experimental setup to evaluate the thermal performance of an oil-heating copper spiral coil heat exchanger is presented. The thermal performance is evaluated in terms of energy and exergy analyses. Results obtained while increasing the flow-rate of the fluid through the coil show an increased heat transfer rate, resulting in a reduction in the temperature difference between the outlet and inlet temperatures of the coil. An increase in the flow-rate is found to increase the rate of heat gained by the oil for a limited range of the flow-rate since heat losses are also increased. The average rate of heat gained by the oil is found to be around 350 W, while the average thermal efficiency of the coil is found to be around 0.25. The rate of exergy delivery and exergy factor results show that lower flow-rates result in a greater rate for the exergy delivered to the oil during the initial stages of the experiments. The heat loss factor is found to increase with an increase in the flow-rate. Due to the simplicity of the experimental setup, it can be used to introduce experimentally the concepts of energetic and exergetic performance of a thermal process or device to senior undergraduate students taking courses in applied thermal physics or applied thermodynamics.

  14. Evaluation of Physically and Empirically Based Models for the Estimation of Green Roof Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Digiovanni, K. A.; Montalto, F. A.; Gaffin, S.; Rosenzweig, C.

    2010-12-01

    Green roofs and other urban green spaces can provide a variety of valuable benefits including reduction of the urban heat island effect, reduction of stormwater runoff, carbon sequestration, oxygen generation, air pollution mitigation etc. As many of these benefits are directly linked to the processes of evaporation and transpiration, accurate and representative estimation of urban evapotranspiration (ET) is a necessary tool for predicting and quantifying such benefits. However, many common ET estimation procedures were developed for agricultural applications, and thus carry inherent assumptions that may only be rarely applicable to urban green spaces. Various researchers have identified the estimation of expected urban ET rates as critical, yet poorly studied components of urban green space performance prediction and cite that further evaluation is needed to reconcile differences in predictions from varying ET modeling approaches. A small scale green roof lysimeter setup situated on the green roof of the Ethical Culture Fieldston School in the Bronx, NY has been the focus of ongoing monitoring initiated in June 2009. The experimental setup includes a 0.6 m by 1.2 m Lysimeter replicating the anatomy of the 500 m2 green roof of the building, with a roof membrane, drainage layer, 10 cm media depth, and planted with a variety of Sedum species. Soil moisture sensors and qualitative runoff measurements are also recorded in the Lysimeter, while a weather station situated on the rooftop records climatologic data. Direct quantification of actual evapotranspiration (AET) from the green roof weighing lysimeter was achieved through a mass balance approaches during periods absent of precipitation and drainage. A comparison of AET to estimates of potential evapotranspiration (PET) calculated from empirically and physically based ET models was performed in order to evaluate the applicability of conventional ET equations for the estimation of ET from green roofs. Results have shown that the empirically based Thornthwaite approach for estimating monthly average PET underestimates compared to AET by 54% over the course of a one year period, and performs similarly on a monthly basis. Estimates of PET from the Northeast Regional Climate Center MORECS model based on a variation of the Penman-Monteith model, overestimates compared to AET by only 2% over a one year period. However, monthly and daily estimates were not accurate, with the model overestimating during warm, summer months by as much as 206% and underestimating during winter months by as much as 58%, which would have significant implications if such estimates were utilized for the evaluation of potential benefits from green roofs. Thus, further evaluation and improvement of these and other methodologies are needed and will be pursued for estimation of ET from green roofs and other urban green spaces including NYC Greenstreets and urban parks.

  15. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    SciTech Connect

    Neuhauser, Ken

    2012-06-01

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  16. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    ERIC Educational Resources Information Center

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  17. Theory vs. Practice in Direct Evaporative Roof Spray Cooling 

    E-print Network

    Smith, J. L.; Smith, J. C.

    1985-01-01

    , and internal and external load on the effectiveness of roof cooling will be considered. Also discussed will be the theoretical and actual effect of roof cooling on a facility's energy consumption, and on internal temperature variations where...

  18. 42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. SOUTHEAST TOWER & EAST WING ROOF FROM SOUTH TOWER ROOF, LOOKING EAST BY NORTHEAST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  19. 46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. OCTAGONAL & WEST TOWERS FROM SOUTH TOWER ROOF, LOOKING NORTHWEST, WITH WEST WING ROOF - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  20. 5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ROOF DETAIL, LOOKING EAST TOWARD SECOND FLOOR WAREHOUSE FROM ROOF OF ASSEMBLY AREA. - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  1. 46. C. 1854 BUILDING ATTIC ROOF SPACE, VIEW OF KING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. C. 1854 BUILDING ATTIC ROOF SPACE, VIEW OF KING POST TRUSS ALONG LENGTH OF THE BUILDING. RAILS ON FLOOR FOR MOVEMENT OF GOODS STORED IN ROOF SPACE. - Continental Gin Company, Prattville, Autauga County, AL

  2. Detail view of roof construction where cornice has fallen away, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of roof construction where cornice has fallen away, exposing column, beam, and concrete plank roof juncture, looking north - Trenton Jewish Community Center, Day Camp Pavilions, 999 Lower Ferry Road, Ewing, Mercer County, NJ

  3. Interior view of the Sheet Metal Shop showing the roof ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  4. Thermal flow monitor: Design and performance in acid rain stacks 1991--1994

    SciTech Connect

    Groce, P.J.

    1995-12-31

    Implementation of Title IV of the Clean Air Act greatly expanded the market of mass flow measurement in utility flue gas ducts and stacks. Lessons learned from recent experience in this demanding application resulted in the rapid evolution of equipment designed to ensure accuracy, reliability and ease of maintenance. Thermal technology, one of three accepted methods of mass flow measurement, has proven to be an extremely accurate and reliable means of measuring mass flow for utility emissions monitoring purposes. This paper offers an overview of thermal flow monitor performance in Part 75 utility applications for Phase 1 and 2 flow measurement. The paper first addresses the history and evaluation of thermal technology for CEM applications, Next, the paper outlines performance results.

  5. Performance characteristics and thermal design of alkali metal thermoelectric conversion system

    NASA Astrophysics Data System (ADS)

    Tanaka, Kotaro; Masuda, Toshihisa; Negishi, Akira; Honda, Takeo; Hori, Yasuhiko

    Experimental studies to improve the performance of the alkali metal thermoelectric converter (AMTEC) have been conducted. A new method for supplying thermal energy to the beta-aluminum solid electrolyte (BASE) is proposed. A porous metal thermal conductor inserted between the thermal source and the BASE tubes reduces the large temperature drop without disturbing the sodium vapor flow from the electrodes to the condenser surfaces. The current-voltage characteristics of three different types of BASE tubes were measured, and the highest power density achieved was 0.6 W/sq cm at 1100 K. A preliminary 7-kW AMTEC system integrated with a space solar receiver (SSR) has been designed based on the state-of-the-art AMTEC performance. The AMTEC-SSR system has achieved a specified mass of approximately 130 kg/kWe, resulting in an expected mass reduction of 20-50 percent as compared with solar dynamic power systems or solar photovoltaic systems.

  6. Thermal performance of prefabricated multistory house in Tallinn, Estonia, based on IR survey

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo T.; Hyartt, Jarmo; Sasi, Lennart

    1997-04-01

    The paper deals with how to improve the thermal performance of prefabricated multistory houses in Tallinn, Estonia, built in the 1960s and 1970s based on the results of thermal scanning during 1995 - 1996. The thermal scanning was performed by VTT Building Technology and reported by Helsinki Univ. of Technology. Based on the results of the first tests, some light renovation works were made, and the second tests showed how the repair work had succeeded. The aim of the project was to develop and test less-expensive and easy repair methods for large prefabricated multi-story house areas. The houses have been planned based on uniform design, when the existing problems can be generalized.

  7. A comparison of theory and experiment for photovoltaic/thermal collector performance

    NASA Astrophysics Data System (ADS)

    Hendrie, S. D.; Raghuraman, P.

    The performance of air and liquid combined photovoltaic-thermal (PV-T) collectors is examined. Thermal efficiencies with concurrent electric energy collection and electrical efficiencies are compared with analytical results for each collector. The air PV-T collector demonstrated a low cell-to-fluid conductivity, and the liquid PV-T collector, low cell-to-absorber and cell-to-tube wall conductivities. For both collectors, the computed thermal loss coefficient and transmission absorption product indicate performance improvement areas. The loss coefficients could be lowered by a higher cell-packing factor and a higher cell-to-fluid conductivity. The transmission absorption products could also be improved with a higher cell-packing factor as well as by higher glass cell-encapsulant transmissivity.

  8. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s?1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s?1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  9. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  10. Three-Dimensional Numerical Evaluation of Thermal Performance of Uninsulated Wall Assemblies

    SciTech Connect

    Ridouane, El Hassan; Bianchi, Marcus V.A.

    2011-11-01

    This study describes a detailed 3D computational fluid dynamics model that evaluates the thermal performance of uninsulated wall assemblies. It accounts for conduction through framing, convection, and radiation and allows for material property variations with temperature. This research was presented at the ASME 2011 International Mechanical Engineering Congress and Exhibition; Denver, Colorado; November 11-17, 2011

  11. THERMAL PERFORMANCE OF A DUAL-CHANNEL, HELIUM-COOLED, TUNGSTEN HEAT EXCHANGER

    E-print Network

    California at Los Angeles, University of

    THERMAL PERFORMANCE OF A DUAL-CHANNEL, HELIUM-COOLED, TUNGSTEN HEAT EXCHANGER Dennis L. Youchison-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications-channel, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore

  12. Thermal Performance of Different Glass Microspheres in Comparison to Perlite Between 77 and 300 K

    NASA Astrophysics Data System (ADS)

    Neumann, H.

    2010-04-01

    Multilayer insulation has the highest potential to be the best insulation. But the thermal performance of multilayer insulation can be disproportionately diminished by e.g. mechanical loads, small gaps at cut-off points or by increasing the residual gas pressure. In addition, multilayer insulation is very expensive and requires a lot of experience to avoid degrading effects concerning the thermal performance. Bulk goods are often a good alternative because of some advantages: They are at low cost, they fit easily to each complex contour and they are able to resist mechanical loads without disproportionate degrading effects concerning the thermal performance. The calorimetric measurement principle is used to study the thermal performance of different microspheres in comparison to perlite. A cylinder with 219 mm diameter and 1820 mm height, filled with liquid nitrogen is insulated by a 45 mm coating of micro-spheres or perlite. The outer limitative wall is a sintered metal cylinder to allow an evacuation of the bulk goods. The article describes the test facility, the measurements and their results with a discussion.

  13. The Thermal Design, Characterization, and Performance of the Spider Long-Duration Balloon Cryostat

    E-print Network

    The Thermal Design, Characterization, and Performance of the Spider Long-Duration Balloon Cryostat J.E. Gudmundssona for the Spider Collaboration: P.A.R. Adeb M. Amiric S.J. Bentona,d J.J. Bockf,g J Research CIFAR Program in Cosmology and Gravity, Toronto, ON, Canada Abstract We describe the Spider flight

  14. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    SciTech Connect

    Kreider, M.A.; White, G.A.; Varrin, R.D. Jr.

    1998-06-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation.

  15. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  16. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature, thermal protection materials (TPM), is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heatshield of Orbiter 105, Endeavor.

  17. Thermal and Temporal Stability of Swimming Performance in the European Sea Bass

    E-print Network

    Nelson, Jay A.

    , as measured by critical swimming speed (Ucrit) before and after the 6-mo ex- posure to simulated natural186 Thermal and Temporal Stability of Swimming Performance in the European Sea Bass Guy Claireaux1 the links between phenotypic selection and swimming abilities in fish. Most research on swim- ming

  18. PERFORMANCE OF NB{sub 3}SN QUADRUPOLE MAGNETS UNDER LOCALIZED THERMAL LOAD

    SciTech Connect

    Kashikhin, V. V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Mokhov, N. V.; Novitski, I.; Zlobin, A. V.

    2010-04-09

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  19. Performance of Nb3Sn quadrupole magnets under localized thermal load

    SciTech Connect

    Kashikhin, V.V.; Bossert, r.; Chlachidze, G.; Lamm, M.; Mokhov, N.V.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2009-06-01

    This paper describes the results of design and analyses performed on 120-mm Nb{sub 3}Sn and NbTi quadrupole magnets with parameters relevant for the LHC IR upgrade. A realistic radiation heat load is evaluated in a wide luminosity range and translated into the magnet quench performance. The simulation results are supported by thermal measurements on a 90-mm Nb{sub 3}Sn quadrupole coil.

  20. Design of longwall gate entry systems using roof classification

    SciTech Connect

    Mark, C.; Chase, F.E.; Molinda, G.M.

    1993-12-31

    Gate entry performance is influenced by a number of geotechnical and design factors, including: pillar size and pillar loading; roof quality; floor quality; entry width; and artificial support. This paper describes a comprehensive, practical, design methodology, based on statistical analysis of a nationwide data base of longwall ground control experience. Geotechnical surveys were conducted at 44 US longwall mines, and underground observations of site geology, entry conditions, and support design were recorded at each mine. The observations were combined with discussions with mine personnel to identify 69 longwall gate entry designs as satisfactory, unsatisfactory, or borderline. Only conventional longwall designs were included in the data base. Designs which employed yield pillars only were excluded. The case histories were characterized using five descriptive parameters. Pillar design was described by the Analysis of Longwall Pillar Stability Factor (ALPS SF). A major new contribution is the Coal Mine Roof Rating (CMRR), a rock mass classification system that quantifies the structural competence of bolted mine roof. Other quantitative measures were developed for primary support, secondary support, and entry width. Multivariate statistical analyses indicated that in 84% of the case histories the tailgate performance could be correctly predicted using just ALPS and the CMRR. Most of the misclassified cases fell within a very narrow borderline region. The analyses also confirmed that primary support and gate entry width are essential elements in successful gate entry design. The relative importance of the floor and of secondary support could not be determined from the data. Based on these results, a simple equation was developed to guide the design of longwall pillars and gate entries: ALPS SF{sub R} = 1.76 {minus} 0.014 CMRR where: ALPS SF{sub R} = ALPS SF suggested for design. Guidelines for entry width and primary support density are also provided.

  1. Use of an infrared scanner and a nuclear meter to find wet insulation in a ballasted roof

    NASA Astrophysics Data System (ADS)

    Tobiasson, Wayne; Greatorex, Alan R.

    1994-03-01

    An IR scanner and a nuclear moisture meter were used to survey a ballasted roof suffering chronic leaks. Infrared surveys, conducted with the ballast in place, uncovered five small wet areas. The thermal anomalies were faint and may have been missed during a routine IR roof moisture survey. Nuclear readings were taken on a 1.5-m (5-ft) grid. HIgh nuclear readings were obtained at the one grid point that fell within one of the five wet areas detected during the IR survey. The other four wet areas were missed. However, the nuclear meter found an additional nine small wet areas that the IR scanner missed. All but one of these areas contained wet urethane insulation directly below the membrane. In three other areas of the roof, nuclear readings were higher than those over the rest of the roof. Core samples verified that the perlite insulation at the base of the roof was wet in these areas, two of which were small but one was 12 X 12 m (40 X 40 ft) when squared off. This `deep' moisture was not detected thermographically. On this roof IR and nuclear surveys both provided valuable information but each missed a portion of the problem. When used in combination, their strengths were complementary.

  2. Which Roof is Tops? Grades PreK-2.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    This introductory activity explores the advantages of different roof shapes for different climates or situations. It addresses questions such as "When you walk or drive around your neighborhood, what do the roofs look like?" and "What if you lived in an area with a different climate, how would that affect the style of roof that you might find?"…

  3. 30 CFR 75.221 - Roof control plan information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof control plan information. 75.221 Section 75.221 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.221 Roof control plan information. (a) The following information...

  4. 30 CFR 75.221 - Roof control plan information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Roof control plan information. 75.221 Section 75.221 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.221 Roof control plan information. (a) The following information...

  5. Recovery and reuse of asphalt roofing waste. Final report

    SciTech Connect

    Desai, S.; Graziano, G.; Shepherd, P.

    1984-02-02

    Burning of asphalt roofing waste as a fuel and incorporating asphalt roofing waste in bituminous paving were identified as the two outstanding resource recovery concepts out of ten studied. Four additional concepts might be worth considering under different market or technical circumstances. Another four concepts were rated as worth no further consideration at this time. This study of the recovery of the resource represented in asphalt roofing waste has identified the sources and quantities of roofing waste. About six million cubic yards of scrap roofing are generated annually in the United States, about 94% from removal of old roofing at the job site and the remainder from roofing material production at factories. Waste disposal is a growing problem for manufacturers and contractors. Nearly all roofing waste is hauled to landfills at a considerable expense to roofing contractors and manufacturers. Recovery of the roofing waste resource should require only a modest economic incentive. The asphalt contained in roofing waste represents an energy resource of more than 7 x 10/sup 13/ Btu/year. Another 1 x 10/sup 13/ Btu/year may be contained in field-applied asphalt on commercial building roofs. The two concepts recommended by this study appear to offer the broadest applicability, the most favorable economics, and the highest potential for near-term implementation to reuse this resource.

  6. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  7. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  8. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  9. 40 CFR 65.44 - External floating roof (EFR).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... breaker vents) and rim space vents, each opening in the noncontact external floating roof shall provide a... they are closed. (iii) Except for automatic bleeder vents, rim space vents, roof drains, and leg... and rim space vents shall be equipped with a gasket. (v) Each roof drain that empties into the...

  10. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    NASA Astrophysics Data System (ADS)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with a focus on the driving thermal design challenges for the instrument. It is shown through both analysis and early testing that the REXIS instrument can perform successfully through all phases of its mission.

  11. The effect of thermal gradients on the performance of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Troxler, Yannic; Wu, Billy; Marinescu, Monica; Yufit, Vladimir; Patel, Yatish; Marquis, Andrew J.; Brandon, Nigel P.; Offer, Gregory J.

    2014-02-01

    An experimental apparatus is described, in which Peltier elements are used for thermal control of lithium-ion cells under isothermal and non-isothermal conditions, i.e. to induce and maintain thermal gradients. Lithium-ion battery packs for automotive applications consist of hundreds of cells, and depending on the pack architecture, individual cells may experience non-uniform thermal boundary conditions. This paper presents the first study of the impact of artificially induced thermal gradients on cell performance. The charge transfer resistance of a 4.8 Ah is verified to have a strong temperature dependence following the Arrhenius law. Thermal cycling of the cell, combined with slow rate cyclic voltammetry, allows to rapidly identify phase transitions in electrodes, due to the thermal effect of entropy changes. A cell with a temperature gradient maintained across is found to have a lower impedance than one held at the theoretical average temperature. This feature is attributed to details of the inner structure of the cell, and to the non-linear temperature dependence of the charge transfer resistance.

  12. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  13. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  14. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    SciTech Connect

    Pérez, Juan J.; Pérez-Cajaraville, Juan J.; Muñoz, Víctor; Berjano, Enrique

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37?°C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup ?1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal damage zone dimension.

  15. Thrust bolting: roof bolt support apparatus

    DOEpatents

    Tadolini, Stephen C. (Lakewood, CO); Dolinar, Dennis R. (Golden, CO)

    1992-01-01

    A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.

  16. Natural Course of Orbital Roof Fractures

    PubMed Central

    Stam, Liselotte H. M.; Wolvius, Eppo B.; Schubert, Warren; Koudstaal, Maarten J.

    2014-01-01

    The natural course of several isolated and nonisolated orbital roof fractures is reported, by showing four cases in which a “wait and see” policy was followed. All four cases showed spontaneous repositioning and stabilizing of the fracture within less than a year. This might be explained by the equilibrium between the intraorbital and intracranial pressures. PMID:25383150

  17. Permeable Pavements, Green Roofs, and Cisterns

    E-print Network

    Hunt, William F.

    ), such as bioretention (see AGW- within low-impact development (LID). 588-05 for more information), permeable LID uses Permeable Pavements, Green Roofs, and Cisterns Stormwater Treatment Practices for Low-Impact Development Stormwater runoff continues to be a concern in communities large and small across North Carolina

  18. COOL ROOF COATINGS INCORPORATING GLASS HOLLOW MICROSPHERES

    EPA Science Inventory

    Solar Gain is in part responsible for up to 56% of energy consumed by cooling systems in residential buildings. By reflecting and scattering radiant energy from the sun, the surface temperature of exterior walls and roofs can be greatly reduced. Previous studies have indicated...

  19. The growth and survival of plants in urban green roofs in a dry climate.

    PubMed

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-04-01

    Green roofs as one of the components of water-sensitive urban design have become widely used in recent years. This paper describes performance monitoring of four prototype-scale experimental green roofs in a northern suburb of Adelaide, South Australia, undertaken over a 1-year period. Four species of indigenous Australian ground cover and grass species comprising Carpobrotus rossii, Lomandra longifolia 'Tanika,' Dianella caerula 'Breeze' and Myoporum parvifolium were planted in extensive and intensive green roof configurations using two different growing media. The first medium consisted of crushed brick, scoria, coir fibre and composted organics while the second comprised scoria, composted pine bark and hydro-cell flakes. Plant growth indices including vertical and horizontal growth rate, leaf succulence, shoot and root biomasses, water use efficiency and irrigation regimes were studied during a 12-month period. The results showed that the succulent species, C. rossii, can best tolerate the hot, dry summer conditions of South Australia, and this species showed a 100% survival rate and had the maximum horizontal growth rate, leaf succulence, shoot biomass and water use efficiency. All of the plants in the intensive green roofs with the crushed brick mix media survived during the term of this study. It was shown that stormwater can be used as a source of irrigation water for green roofs during 8 months of the year in Adelaide. However, supplementary irrigation is required for some of the plants over a full annual cycle. PMID:24468503

  20. Thermal performance of a catalytic/oxidizer for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Wedel, R. K.; Djordjevic, N.; Faulkner, F.

    1993-01-01

    Thermal analysis and testing have been performed for the High Temperature Catalytic/Oxidizer (HTCO) for the Space Station Freedom (SSF) Trace Contaminant Control Subassembly (TCCS). The HTCO consists of a counterflow, plate-fin heat exchanger, a resistance heater, and a charcoal catalytic oxidizer bed. The unit removes various inorganics and hydrocarbons from the SSF cabin air. A thermal model of the unit was developed which was used to design the HEX and catalytic bed. The model has been used to predict both steady state and transient results. Accurate predictions of ground test data have led to confidence in proper operation of the unit in the SSF.

  1. Macro-fiber composites performance under thermal cycling for impedance-based SHM applications

    NASA Astrophysics Data System (ADS)

    Faria, Cassio T.; Owen, Robert B.; Inman, Daniel J.

    2014-03-01

    This work focuses on investigating the effects of thermal cycles in the impedance-based damage detection performance of Macro-Fiber Composites (MFC). A host structure with an MFC bonded to its surface is submitted to a 90 minutes temperature cycle that varies from -20°C to 65° C. After each cycle the electrical impedance of the test sample is measured with and without the presence of a representative damage (an added mass). The results indicate that the thermal cycling affects the smart device by changing its impedance profile, a phenomenon that should be taken into account in damage detection algorithms.

  2. In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric; Baker, Charles; McCarthy, Tom

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.

  3. Thermal Performance Of Space Suit Elements With Aerogel Insulation For Moon And Mars Exploration

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Trevino, Luis A.

    2006-01-01

    Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements. Thermal conductivity evaluations are proposed for different types of aerogels space suit elements to identify the lay-up concept that may have the best overall thermal performance for both Moon and Mars environments. Potential solutions in mitigating the silica dusting issue related to the application of these aerogels materials for the space suit elements are also discussed.

  4. Experimental study on thermal performance of filled-type evacuated tube with U-tube

    NASA Astrophysics Data System (ADS)

    Liang, Ruobing; Ma, Liangdong; Zhang, Jili; Zhao, Dan

    2012-06-01

    The filled-type evacuated tube with U-tube, in which the filled layer is used to transfer energy absorbed by working fluid in the U-tube, is proposed to eliminate the effect of thermal resistance between the absorber tube and copper fin of the conventional solar collector. In this paper, the thermal performance of the filled-type evacuated tube was researched by means of experimental study. In order to avoid the effect of some uncertain factors, the single collector tube was considered as investigated objective. The test setup of the thermal performance of the filled-type evacuated tube with U-tube was established. The results show that the filled-type evacuated tube with U-tube has a favorable thermal performance compared with the evacuated tube with copper fin. The heat efficiency of filled-type evacuated tube is higher than that of copper fin evacuated tube by 12%. The useful energy gain of filled-type evacuated tube is 22% higher than that of copper fin evacuated tube at the practical irradiance received I T = 800 W/m2 and flow rate M f = 0.005 L/s. In addition, the exergy efficiency of the filled-type evacuated tube is higher than that of copper fin evacuated tube.

  5. Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    2013-01-01

    Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.

  6. Suite of proposed imaging performance metrics and test methods for fire service thermal imaging cameras

    NASA Astrophysics Data System (ADS)

    Amon, Francine; Lock, Andrew; Bryner, Nelson

    2008-04-01

    The use of thermal imaging cameras (TIC) by the fire service is increasing as fire fighters become more aware of the value of these tools. The National Fire Protection Association (NFPA) is currently developing a consensus standard for design and performance requirements for TIC as used by the fire service. This standard will include performance requirements for TIC design robustness and image quality. The National Institute of Standards and Technology facilitates this process by providing recommendations for science-based performance metrics and test methods to the NFPA technical committee charged with the development of this standard. A suite of imaging performance metrics and test methods based on the harsh operating environment and limitations of use particular to the fire service has been proposed for inclusion in the standard. The performance metrics include large area contrast, effective temperature range, spatial resolution, nonuniformity, and thermal sensitivity. Test methods to measure TIC performance for these metrics are in various stages of development. An additional procedure, image recognition, has also been developed to facilitate the evaluation of TIC design robustness. The pass/fail criteria for each of these imaging performance metrics are derived from perception tests in which image contrast, brightness, noise, and spatial resolution are degraded to the point that users can no longer consistently perform tasks involving TIC due to poor image quality.

  7. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...demonstrated that the winter daily solar heat gain exceeds the heat loss...properly screened from summer solar heat gain. 5 13/4...wall and roof, between wall panels, at penetrations of utility...adequate overhangs to control solar gain during...

  8. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...demonstrated that the winter daily solar heat gain exceeds the heat loss...properly screened from summer solar heat gain. 5 13/4...wall and roof, between wall panels, at penetrations of utility...adequate overhangs to control solar gain during...

  9. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...demonstrated that the winter daily solar heat gain exceeds the heat loss...properly screened from summer solar heat gain. 5 13/4...wall and roof, between wall panels, at penetrations of utility...adequate overhangs to control solar gain during...

  10. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...demonstrated that the winter daily solar heat gain exceeds the heat loss...properly screened from summer solar heat gain. 5 13/4...wall and roof, between wall panels, at penetrations of utility...adequate overhangs to control solar gain during...

  11. Thermal and lighting performance of toplighting systems in the hot and humid climate of Thailand 

    E-print Network

    Harntaweewongsa, Siritip

    2006-10-30

    .......................................................... 25 3.11 Roof plans of 1 to 1 spacing-to-height ratio prototypes showing glazing position.......................................................................................................... 26 3.12 Sections of 1 to 1 spacing................................................................................................................... 52 4.3 Single unit toplighting: hourly cooling load comparison, Apr 30, without internal gains, when cooling is always available .......................................... 53 4.4 Single unit toplighting: hourly cooling load comparison, Jan 25...

  12. 7 CFR Exhibit D to Subpart A of... - Thermal Performance Construction Standards

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... enclosing heated space, except when demonstrated that the winter daily solar heat gain exceeds the heat loss and the glass area is properly screened from summer solar heat gain. 5 13/4 inch metal-faced door... overhangs to control solar gain during non-heating periods. Examples of proper roof overhangs are given...

  13. Scanning electron microscopy of a blister roof in dystrophic epidermolysis bullosa*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Monteiro, Luciane; Silva, Ricardo Marques e; Rocha, Nara Moreira; Scheffer, Hans

    2013-01-01

    In dystrophic epidermolysis bullosa the genetic defect of anchoring fibrils leads to cleavage beneath the basement membrane, with its consequent loss. We performed scanning electron microscopy of an inverted blister roof of a case of dystrophic epidermolysis bullosa, confirmed by immunomapping and gene sequencing. With a magnification of 2000 times a net attached to the blister roof could be easily identified. This net was composed of intertwined flat fibers. With higher magnifications, different fiber sizes could be observed, some thin fibers measuring around 80 nm and thicker ones measuring between 200 and 300 nm. PMID:24474107

  14. Reclaimed manufacturer asphalt roofing shingles in asphalt mixtures. Final research report

    SciTech Connect

    Reed, A.B.

    1999-04-23

    The purpose of this project was to pave a test section using hot mix asphalt with roofing shingle pieces in the wearing and binder courses and to evaluate. The test project near Allentown, PA plus two other test projects in 1998 provide evidence of very good pavement performance. The bituminous concrete mix was modified with shredded shingles with a maximum size of 1/2 inch which added 1% of the asphalt content. The Department issued a statewide Provisional Specification titled Reclaimed Manufacturer Asphalt Roofing Shingles in Plant-Mixed Bituminous Concrete Courses'' on March 15, 1999. New manufacturer asphalt roofing shingle scrap including tab punch-outs can be successfully incorporated in bituminous concrete pavements if the shingles are shredded to 100% passing the 3/4 inch sieve. To take full advantage of the potential to replace a portion of the asphalt and therefore, reduce mix costs, shingles should be shredded to 100% passing minus 1/2 inch sieve.

  15. Status of cool roof standards in the United States

    SciTech Connect

    Akbari, Hashem; Levinson, Ronnen

    2007-06-01

    Since 1999, several widely used building energy efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool roof credits or requirements. We review the technical development of cool roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discuss the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool roof provisions can be used as models to address cool roofs in building energy standards worldwide.

  16. Evaluation of annual performance of 2-tank and thermocline thermal storage for trough plants.

    SciTech Connect

    Kolb, Gregory J.

    2010-08-01

    A study was performed to compare the annual performance of 50 MW{sub e} Andasol-like trough plants that employ either a 2-tank or a thermocline-type molten-salt thermal storage system. trnsys software was used to create the plant models and to perform the annual simulations. The annual performance of each plant was found to be nearly identical in the base-case comparison. The reason that the thermocline exhibited nearly the same performance is primarily due to the ability of many trough power blocks to operate at a temperature that is significantly below the design point. However, if temperatures close to the design point are required, the performance of the 2-tank plant would be significantly better than the thermocline.

  17. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  18. Laser performance, thermal focusing and depolarization effects in Nd:Cr:GSGG and Nd:YAG

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie A.; Barnes, Norman P.

    1990-01-01

    The laser performance of Nd:Cr:GSGG and Nd:YAG was investigated and compared for laser efficiency, thermal focusing, and depolarization effects. Laser efficiency was studied for Nd:Cr:GSGG and Nd:YAG under similar conditions. Laser efficiency was measured as a function of electrical energy and output mirror reflectivity. Maximum laser efficiency was calculated by determining the losses in the laser cavity. Thermal focusing and birefringence loss of Nd:Cr:GSGG and Nd:YAG have been examined by varying the average pump power. The average pump power changed by adjusting both the energy per pulse and the pulse-repetition frequency. Substantial thermal focusing differences for Nd:Cr:GSGG are explained.

  19. Uncooled IRFPA with high-performance and low-thermal time constant

    NASA Astrophysics Data System (ADS)

    Tissot, Jean Luc; Vilain, Michel; Crastes, Arnaud; Tinnes, Sebastien; Larre, Annick; Legras, Olivier; Yon, Jean Jacques

    2004-12-01

    Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Developments are focused on the improvement of their sensitivity enabling the possibility of reducing the pixel pitch in order to decrease the total system size and weight by using smaller optics. We present the ULIS second generation technology used for producing 320 x 240 / 384 x 288 and 160 x 120 IRFPA with a pixel pitch of 35 ?m. This enhanced technology has been developed by CEA / LETI since 2001 and transferred to ULIS in 2003. The device architecture will be described. These device are well adapted to high volume military applications (i.e. thermal weapons sight, enhanced driver vision) or commercial applications (non contact thermometers, thermal imaging cameras...) where system specifications are the result of a trade-off between pixel pitch, performance and system weight and volume. We have developed for these devices low cost packages. IRFPA electro-optical characterization is presented.

  20. Analysis of the temperatures measured in very thick and insulating roofs in the vicinity of a chimney

    NASA Astrophysics Data System (ADS)

    Neri, M.; Luscietti, D.; Bani, S.; Fiorentino, A.; Pilotelli, M.

    2015-11-01

    Chimneys convey exhaust gas produced in domestic heat appliances to the external environment and to do this they have to pass through elements such as roofs and floors. If these elements are made up of flammable materials the fire hazard may occur. In some European countries the number of roof fire is very high and they affect also certified chimneys, that is, tested following the prescription of the related standards. The aim of this paper is to highlight that the certification procedure does not allow to test chimneys in the worst condition, therefore, chimney installed following the manufacturer prescriptions may in some cases cause the overheating and subsequent roof fire. To do this, experimental tests have been performed for measuring the temperature on roofs in the vicinity of a certified chimney. The results show that the certification procedure should be revised.

  1. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this study is to be incorporated in planning of short- and long term maintenance programs of the Swedish Defence. In general the military buildings are expected to have better status than civilian buildings, due to the more rigorous control during the building process, performed by military building authorities.

  2. Thermal Performance Characteristics of Integrated Cooling Solutions Consisting of Multiple Miniature Fans

    NASA Astrophysics Data System (ADS)

    Stafford, J.; Fortune, F.; Newport, D.

    2012-11-01

    Thermal performance characteristics are assessed for multiple miniature axial fans of 24.6 mm diameter that provide impingement cooling on a finned surface. Combined experimental and numerical analyses indicate that fans positioned adjacently in an array can influence heat transfer performance both positively and negatively by up to 35% compared to an equivalent single fan - heat sink unit operating standalone. However the level of thermal performance reductions, coupled with greater geometrical flexibility, makes the design approach a viable alternative to current single fan - heat sink units. Experimental measurements also suggest that for a fixed spacing, fan operating point is a sensitive criterion for ensuring optimal thermal performance over an equivalent single fan unit. Numerical simulations, modelled using experimental inputs, have provided an insight into the flow fields produced by the interaction between adjacent fans and the finned geometry. Fluid recirculation occurs beneath the fan hub of the centrally located fan in the array, with the adjacent fans on the periphery experiencing cross flow in the hub region. A novel experimental approach utilising infrared thermography has been developed to assess the validity of the numerical model. Indeed, the previously stated flow features were confirmed using this assessment, while limitations in the modelling assumptions have been outlined. Overall, the results provide recommendations in the design of fan cooled heat sinks utilising multiple axial fans for jet impingement and an understanding of the flow physics which occur within this compact cooling solution design.

  3. DISPERSION OF ROOF-TOP EMISSIONS FROM ISOLATED BUILDINGS. A WIND TUNNEL STUDY

    EPA Science Inventory

    A fluid modeling study of the dispersion of roof-top emissions from rectangular buildings was performed in the meteorological wind tunnel of the EPA Fluid Modeling Facility. The basic building shape was a 0.18 meter cube. Variations included a building twice as wide and buildings...

  4. 75 FR 17605 - Federal Motor Vehicle Safety Standards; Roof Crush Resistance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... reliability in testing a vehicle's dynamic performance that the petitioner considers to be misleading and... Dynamic Testing Provision ] 1. May 2009 Final Rule Discussion 2. Overall Rationale for Request 3... minimize roof crush injury potential. CfIR stated that it requested reconsideration of JRS dynamic...

  5. Performance of a Haynes 188 metallic standoff thermal protection system at Mach 7

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1981-01-01

    A flight weight, metallic thermal protection system (TPS) model applicable to reentry and hypersonic vehicles was subjected to multiple cycles of both radiant and aerothermal heating to evaluate its aerothermal performance and structural integrity. The TPS was designed for a maximum operating temperature of 1255 K and featured a shingled, corrugation stiffened corrugated skin heat shield of Haynes 188, a cobalt base alloy. The model was subjected to 3 radiant preheat/aerothermal tests for a total of 67 seconds and to 15 radiant heating tests for a total of 85.9 minutes at 1255 K. The TPS limited the primary structure to temperatures below 430 K in all tests. No catastrophic failures occurred in the heat shields, supports, or insulation system. The TPS continued to function even after exposure to a differential temperature 4 times the design value produced thermal buckles in the outer skin. The shingled thermal expansion joint effectively allowed for thermal expansion of the heat shield without allowing any appreciable hot gas flow into the model cavity, even though the overlap gap between shields increased after several thermal cycles.

  6. Analysis and measurement of thermal-electrical performance of microbolometer detector

    NASA Astrophysics Data System (ADS)

    Sun, Lianjun; Chang, Benkang; Zhang, Junju; Qiu, Yafeng; Qian, Yunsheng; Tian, Si

    2007-11-01

    Microbolometer detector is very competent as uncooled infrared detector for a wide range of thermal imaging applications, since it has been found to be more sensitive and has the advantage of using standard Si micro-fabrication process compared with pyroelectric or ferroelectric technology. The heart of microbolometer detector is a two dimensional array of thermal sensitive thin-film layers, which can change their temperatures and resistivities depending on the radiation absorbed. During the entire thermal imaging process, the microbolometer detector's substrate temperature, calibration temperature and ambient temperature are the key parameters which determine the thermal-electrical performance and the ultimate imaging quality of the microbolometer detector. In this work, based on the analysis of the characteristics of these parameters, the experiment has been conducted with the uncooled infrared thermal imaging system based on 320×240 amorphous silicon microbolometer detector working at different substrate temperatures, adopting different calibration temperatures for different ambient temperatures. The corresponding measurement results of the system's NETD, residual nonuniformity and power consumption, as well as the system's imaging results are presented, which all have a great agreement of the theory analysis above.

  7. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    NASA Astrophysics Data System (ADS)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1?kW?m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  8. Vapor cooled lead and stacks thermal performance and design analysis by finite difference techniques

    SciTech Connect

    Peck, S.D.; O'Loughlin, J.M.; Christensen, E.H.

    1984-09-01

    Investigation of the combined thermal performance of the stacks and vapor-cooled leads for the Mirror Fusion Test Facility-B (MFTF-B) demonstrates considerable interdependency. For instance, the heat transfer to the vapor-cooled lead (VCL) from warm bus heaters, environmental enclosure, and stack is a significant additional heat load to the joule heating in the leads, proportionately higher for the lower current leads that have fewer current-carrying, counter flow coolant copper tubes. Consequently, the specific coolant flow (G/sec-kA-lead pair) increases as the lead current decreases. The definition of this interdependency and the definition of necessary thermal management has required an integrated thermal model for the entire stack/VCL assemblies. Computer simulations based on finite difference thermal analyses computed all the heat interchanges of the six different stack/VCL configurations. These computer simulations verified that the heat load of the stacks beneficially alters the lead temperature profile to provide added stability against thermal runaway. Significant energy is transferred through low density foam filler in the stack from warm ambient sources to the vapor-cooled leads.

  9. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. PMID:21532584

  10. Airtightness Results of Roof-Only Air Sealing Strategies on 1 ½-Story Homes in Cold Climates

    SciTech Connect

    Ojczyk, C.; Murry, T.; Mosiman, G.

    2014-07-01

    In this second study on solutions to ice dams in 1-1/2 story homes, the NorthernSTAR Building America Partnership team analyzed five test homes located in both cold and very cold climates for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. These homes were chosen for testing as they are common in Minnesota and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled the team to compare air tightness data from over 220 homes using similar air seal methods.

  11. First responder thermal imaging cameras: establishment of representative performance testing conditions

    NASA Astrophysics Data System (ADS)

    Amon, Francine; Hamins, Anthony; Rowe, Justin

    2006-04-01

    Thermal imaging cameras are rapidly becoming integral equipment for first responders for use in structure fires and other emergencies. Currently there are no standardized performance metrics or test methods available to the users and manufacturers of these instruments. The Building and Fire Research Laboratory (BFRL) at the National Institute of Standards and Technology is conducting research to establish test conditions that best represent the environment in which these cameras are used. First responders may use thermal imagers for field operations ranging from fire attack and search/rescue in burning structures, to hot spot detection in overhaul activities, to detecting the location of hazardous materials. In order to develop standardized performance metrics and test methods that capture the harsh environment in which these cameras may be used, information has been collected from the literature, and from full-scale tests that have been conducted at BFRL. Initial experimental work has focused on temperature extremes and the presence of obscuring media such as smoke. In full-scale tests, thermal imagers viewed a target through smoke, dust, and steam, with and without flames in the field of view. The fuels tested were hydrocarbons (methanol, heptane, propylene, toluene), wood, upholstered cushions, and carpeting with padding. Gas temperatures, CO, CO II, and O II volume fraction, emission spectra, and smoke concentrations were measured. Simple thermal bar targets and a heated mannequin fitted in firefighter gear were used as targets. The imagers were placed at three distances from the targets, ranging from 3 m to 12 m.

  12. Study of thermal and hydraulic performances of circular and square ribbed rough microchannels using LBM

    NASA Astrophysics Data System (ADS)

    Taher, M. A.; Kim, H. D.; Lee, Y. W.

    2015-11-01

    The effects of roughness geometries and relative roughness height at the slip flow regime to investigate the thermal and hydraulic performances of microchannel have been considered in the present article using a thermal Lattice Boltzmann Method (TLBM). A two dimensional 9-bit (D2Q9) single relaxation time (SRT) model is used to simulate this problem. In micro-flows, the local density variation is still relatively small, but the total density changes, therefore, in order to account this density variation and its effect on the kinematic viscosity v, a new relaxation time proposed by Niu et al.[13] is used. The roughness geometry is modeled as a series of square and circular riblets with a relative roughness height from 0% to 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn) and the dimensionless heat transfer rate in terms of Nusselt number (Nu) have been discussed in order to analyze the roughness effects. The thermal-hydraulic performance ( ?) is calculated considering the simultaneous effects of thermal and fluid friction (pressure drop) at the slip flow regime at Knudsen number, Kn, ranging from 0.01 to 0.10 with other controlling parameters for both kind of geometries. The results have been compared with previous published works and it is found to be in very good agreement.

  13. Effect of working fluids on thermal performance of closed loop pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Kolková, Zuzana; Malcho, Milan

    2014-08-01

    Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.

  14. Thermal stability of piezoelectric properties and infrared sensor performance of spin-coated polyurea thin films

    NASA Astrophysics Data System (ADS)

    Morimoto, Masahiro; Koshiba, Yasuko; Misaki, Masahiro; Ishida, Kenji

    2015-10-01

    We have investigated the temperature dependence of the piezoelectric coefficients and infrared sensor performance of spin-coated thin films of polyundecylurea (PUA11). The piezoelectric coefficients of the PUA11 films remained constant at temperatures above 180 °C and these films demonstrated thermal resistance superior to those of poly(vinylidene fluoride/trifluoroethylene) [P(VDF/TrFE)] films. The infrared sensor performance of the PUA11 films was measured after annealing at 125 °C for 500 h and was found to have retained 84% of its preannealing level. The thermal stability of the PUA11 films was higher than that of the P(VDF/TrFE) films; moreover, PUA11 is also expected to have superior electrothermal stability.

  15. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    NASA Technical Reports Server (NTRS)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  16. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    SciTech Connect

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  17. Numerical analysis on thermal hydraulic performance of a flat plate heat pipe with wick column

    NASA Astrophysics Data System (ADS)

    Lu, Longsheng; Liao, Huosheng; Liu, Xiaokang; Tang, Yong

    2015-08-01

    A simplified thermal hydraulic model is developed to investigate the influence of wick column on the performance of a flat plate heat pipe (FPHP). The governing equations of the FPHP are solved by using the computational fluid dynamics package FLUENT. The temperature, velocity and pressure fields are obtained. The validity of the model is confirmed by comparing the present solutions with the open literature data. The numerical results show that with the increase of the wick column size, the maximum velocity of the liquid and vapor decreases while the total thermal resistance and capillary heat transfer limit of the FPHP increases gradually. The performance of the FPHP may degrade if the wick column is placed inside the vapor core asymmetrically.

  18. Exergy analysis for the evaluation of the performance of closed thermal energy storage systems

    SciTech Connect

    Rosen, M.A.; Hooper, F.C.; Barbaris, L.N.

    1988-11-01

    The use of exergy analysis, rather than energy analysis, for the evaluation of the performance of thermal energy storage systems is discussed. The energy and exergy relationships for a simple closed tank storage with heat transfers by heat exchanger are obtained. A complete storing cycle, as well as the individual charging, storing, and discharging periods, are considered. A numerical example for a simple case is given. The work reported is preliminary to the task of developing simplified conventions for the evaluation and comparison of the performance of thermal storages using exergy analysis methods. The establishment of such simplified conventions appears to be a necessary prerequisite to general acceptance of these methods by the engineering community.

  19. Incorporating population-level variation in thermal performance into predictions of geographic range shifts.

    PubMed

    Angert, Amy L; Sheth, Seema N; Paul, John R

    2011-11-01

    Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change. PMID:21705795

  20. Evaluation of the effects of vegetation and green walls on building thermal performance and energy consumption

    NASA Astrophysics Data System (ADS)

    Susorova, Irina

    This research explored the use of vegetation in building facades as a potential solution to the problems of urban ecology and the excessive energy consumption in buildings. Vegetated facades substantially reduce building energy use, reduce the urban heat island effect, improve air quality, and increase the biodiversity of plants and animals in cities. The goal of this research was to evaluate the effects of plants on building thermal performance and energy consumption by developing a thermal model of a building facade covered with a layer of plants. The developed mathematical model accounts for thermal physical processes in a vegetated exterior wall including solar radiation, infrared radiative exchange between the facade and sky, the facade and ground, the facade and vegetation layer, convection to and from the facade, evapotranspiration from the plant layer, heat storage in the facade material, and heat conduction through the facade. The model calculates vegetated facade surface temperature and heat flux through the facade for multiple weather conditions, plant physiological characteristics, and facade parameters inputs. The model was validated with the results of a one-week long experiment measuring the thermal properties of bare and vegetated facades on the Illinois Institute of Technology campus. The experiment and subsequent sensitivity analysis demonstrated that a plant layer can effectively reduce the facade exterior surface temperature, daily temperature fluctuations, exterior wall temperature gradient, and, as a result, provide as much additional thermal insulation to the facade as a 2.5 cm layer of expanded polystyrene insulation. The vegetated facade model was also used to analyze the reduction in energy consumption in generic office and residential thermal zones for multiple parameters. The simulations showed that energy reduction could be as high as 6.2% of annual total energy use and 34.6% of cooling energy use in residential thermal zones. Overall, the model provided new tools for evaluating the impact of plant layers on facade thermal performance in existing buildings retrofitted with green walls and for designing green walls for optimal energy efficiency in new construction.