Sample records for room temperature magnetic

  1. Room temperature organic magnets derived from sp3 functionalized graphene.

    PubMed

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-02-20

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp 3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp 2 -conjugated diradical motifs embedded in an sp 3 matrix and superexchange interactions via -OH functionalization.

  2. Room temperature organic magnets derived from sp3 functionalized graphene

    PubMed Central

    Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek

    2017-01-01

    Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636

  3. A Designed Room Temperature Multilayered Magnetic Semiconductor

    NASA Astrophysics Data System (ADS)

    Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team

    2015-03-01

    A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.

  4. Magnetic heat pumping near room temperature

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1976-01-01

    It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible

  5. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    NASA Astrophysics Data System (ADS)

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V-1 s-1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  6. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass.

    PubMed

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-An; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-12-08

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III-V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co 28.6 Fe 12.4 Ta 4.3 B 8.7 O 46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm 2  V -1  s -1 . Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.

  7. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

    PubMed Central

    Liu, Wenjian; Zhang, Hongxia; Shi, Jin-an; Wang, Zhongchang; Song, Cheng; Wang, Xiangrong; Lu, Siyuan; Zhou, Xiangjun; Gu, Lin; Louzguine-Luzgin, Dmitri V.; Chen, Mingwei; Yao, Kefu; Chen, Na

    2016-01-01

    Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co28.6Fe12.4Ta4.3B8.7O46 magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm2 V−1 s−1. Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. PMID:27929059

  8. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT

    PubMed Central

    Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F.

    2013-01-01

    Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10−7 sm−1. PMID:23443562

  9. Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gómez-Polo, C.; Larumbe, S.; Pastor, J. M.

    2013-05-01

    Room-temperature ferromagnetism in non-magnetic doped TiO2 semiconductor nanoparticles is analyzed in the present work. Undoped and N-doped TiO2 nanoparticles were obtained employing sol-gel procedure using urea as the nitrogen source. The obtained gels were first dried at 70 °C and afterwards calcined in air at 300 °C. A residual carbon concentration was retained in the samples as a consequence of the organic decomposition process. Post-annealing treatments at 300 °C under air and vacuum conditions were also performed. The crystallographic structure of nanoparticles was analyzed by X-ray diffraction, obtaining a single anatase crystalline phase after the calcinations (mean nanoparticle diameters around 5-8 nm). SQUID magnetometry was employed to analyze the magnetic response of the samples. Whereas for the undoped samples synthesized with hydrolysis rate h = 6, paramagnetic like behavior is observed at room temperature, the N-doped nanoparticles (h = 3) show a weak ferromagnetic response (saturation magnetization ≈10-3 emu/g). Moreover, a clear reinforcement of the room-temperature ferromagnetism response is found with the post-annealing treatments, in particular that performed in vacuum. Thus, the results indicate the dominant role of the oxygen stoichiometry and the oxygen vacancies in the room temperature ferromagnetic response of these TiO2 nanoparticles.

  10. Low and room temperature magnetic features of the traffic related urban airborne PM

    NASA Astrophysics Data System (ADS)

    Winkler, A.; Sagnotti, L.

    2012-04-01

    We used magnetic measurements and analyses - such as hysteresis loops and FORCs both at room temperature and at 10K, isothermal remanent magnetization (IRM) vs temperature curves (from 10K to 293K) and IRM vs time decay curves - to characterize the magnetic properties of the traffic related airborne particulate matter (PM) in Rome. This study was specifically addressed to the identification of the ultrafine superparamagnetic (SP) particles, which are particularly sensitive to thermal relaxation effects, and on the eventual detection of low temperature phase transitions which may affect various magnetic minerals. We compared the magnetic properties at 10K and at room temperature of Quercus ilex leaves, disk brakes, diesel and gasoline exhaust pipes powders collected from vehicles circulating in Rome. The magnetic properties of the investigated powders significantly change upon cooling, and no clear phase transition occurs, suggesting that the thermal dependence is mainly triggered by the widespread presence of ultrafine SP particles. The contribution of the SP fraction to the total remanence of traffic related PM samples was quantified at room temperature measuring the decay of a IRM 100 s after the application of a saturation magnetic field. This same method has been also tested at 10K to investigate the temperature dependence of the observed time decay.

  11. Tuning magnetic spirals beyond room temperature with chemical disorder

    NASA Astrophysics Data System (ADS)

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-12-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.

  12. Tuning magnetic spirals beyond room temperature with chemical disorder

    PubMed Central

    Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    2016-01-01

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127

  13. Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.

  14. Enhanced magnetic Purcell effect in room-temperature masers

    PubMed Central

    Breeze, Jonathan; Tan, Ke-Jie; Richards, Benjamin; Sathian, Juna; Oxborrow, Mark; Alford, Neil McN

    2015-01-01

    Recently, the world’s first room-temperature maser was demonstrated. The maser consisted of a sapphire ring housing a crystal of pentacene-doped p-terphenyl, pumped by a pulsed rhodamine-dye laser. Stimulated emission of microwaves was aided by the high quality factor and small magnetic mode volume of the maser cavity yet the peak optical pumping power was 1.4 kW. Here we report dramatic miniaturization and 2 orders of magnitude reduction in optical pumping power for a room-temperature maser by coupling a strontium titanate resonator with the spin-polarized population inversion provided by triplet states in an optically excited pentacene-doped p-terphenyl crystal. We observe maser emission in a thimble-sized resonator using a xenon flash lamp as an optical pump source with peak optical power of 70 W. This is a significant step towards the goal of continuous maser operation. PMID:25698634

  15. Room-temperature antiferromagnetic memory resistor.

    PubMed

    Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R

    2014-04-01

    The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

  16. Metastable gamma-Iron Nickel Nanostructures for Magnetic Refrigeration Near Room Temperature

    NASA Astrophysics Data System (ADS)

    Ucar, Huseyin

    The observation of a giant magnetocaloric effect in Gd5Ge 1.9Si2Fe0.1 has stimulated the magnetocaloric research in the last two decades. However, the high price of Gd and its proclivity to corrosion of these compounds have prevented their commercial use. To reduce raw materials cost, transition metal-based alloys are investigated to replace rare earth-based materials. Environmental considerations, substitution for scarce and strategic elements, and cost considerations all speak to potential contributions of these new materials to sustainability. Efforts in improving the refrigeration capacity (RC) of refrigerants mainly rely on broadening the magnetic entropy change. One promising technique is to couple two phases of magnetic materials with desirable properties. Second is the investigation of nanoparticle synthesis routes, with ball milling being the most widely used one. The motivation for the nanoparticles synthesis is rooted in their inherent tendency to have distributed exchange coupling, which will broaden the magnetic entropy curve. As proven with the cost analysis, the focus is believed to shift from improving the RC of refrigerants toward finding the most economically advantageous magnetic refrigerant with the highest performance. Mechanically alloyed Fe70Ni30 and Fe72Ni 28 alloys were characterized in terms of their structural and magnetic properties. Previous studies showed that single phase FCC gamma-FeNi alloys with 26-30 at. % Ni have Curie temperatures, TC, near room temperature. Having TC near room temperatures along with large magnetization makes gamma-FeNi alloys attractive for room temperature magnetocaloric cooling technologies. To obtain a single gamma-phase, particles were solution annealed in the gamma-phase field and water quenched. The preferential oxidation of Fe during ball milling was used as a means to tune the TC of the alloy. Refrigeration capacities, RCFWHM, of the Fe70Ni30 and the Fe72Ni28 alloys were calculated to be 470 J/kg and

  17. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  18. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  19. Novel room temperature ferromagnetic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Amita

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will bemore » higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn

  20. Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.A. Gschneidner, Jr; V.K. Pecharsky'

    2008-05-01

    The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic coolingmore » is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.« less

  1. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties

    NASA Astrophysics Data System (ADS)

    Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.

    2010-06-01

    Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.

  2. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials

    NASA Astrophysics Data System (ADS)

    Nayak, Ajaya K.; Kumar, Vivek; Ma, Tianping; Werner, Peter; Pippel, Eckhard; Sahoo, Roshnee; Damay, Franoise; Rößler, Ulrich K.; Felser, Claudia; Parkin, Stuart S. P.

    2017-08-01

    . Direct imaging by Lorentz transmission electron microscopy shows field-stabilized antiskyrmion lattices and isolated antiskyrmions from 100 kelvin to well beyond room temperature, and zero-field metastable antiskyrmions at low temperatures. These results enlarge the family of magnetic skyrmions and pave the way to the engineering of complex bespoke designed skyrmionic structures.

  3. Room-temperature photomagnetism in the spinel ferrite (Mn,Zn,Fe)3O4 as seen via soft x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Bettinger, J. S.; Piamonteze, C.; Chopdekar, R. V.; Liberati, M.; Arenholz, E.; Suzuki, Y.

    2009-10-01

    We have used x-ray magnetic circular dichroism (XMCD) in conjunction with multiplet simulations to directly probe the origin of photomagnetism in nanocrystalline (Mn,Zn,Fe)3O4 . A photomagnetic effect at room temperature has been observed in these films with HeNe illumination. We have verified an intervalence charge transfer among octahedral Fe cations to account for the increase in magnetization observed at and above room temperature in small magnetic fields. Using XMCD, we demonstrate that the dichroism of Fe in octahedral sites increases by 18% at room temperature, while the dichroism of Fe in tetrahedral sites does not change.

  4. Room Temperature Ferromagnetic Mn:Ge(001).

    PubMed

    Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail

    2013-12-27

    We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5-8 nm diameter Mn₅Ge₃ and Mn 11 Ge₈ agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe ~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge-Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  5. Room temperature magnetism and metal to semiconducting transition in dilute Fe doped Sb1-xSex semiconducting alloy thin films

    NASA Astrophysics Data System (ADS)

    Agrawal, Naveen; Sarkar, Mitesh; Chawda, Mukesh; Ganesan, V.; Bodas, Dhananjay

    2015-02-01

    The magnetism was observed in very dilute Fe doped alloy thin film Fe0.008Sb1-xSex, for x = 0.01 to 0.10. These thin films were grown on silicon substrate using thermal evaporation technique. Structural, electrical, optical, charge carrier concentration measurement, surface morphology and magnetic properties were observed using glancing incidence x-ray diffraction (GIXRD), four probe resistivity, photoluminescence, Hall measurement, atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques, respectively. No peaks of iron were seen in GIXRD. The resistivity results show that activation energy increases with increase in selenium (Se) concentration. The Arrhenius plot reveals metallic behavior below room temperature. The low temperature conduction is explained by variable range-hopping mechanism, which fits very well in the temperature range 150-300 K. The decrease in density of states has been observed with increasing selenium concentration (x = 0.01 to 0.10). There is a metal-to-semiconductor phase transition observed above room temperature. This transition temperature is Se concentration dependent. The particle size distribution ˜47-61 nm is evaluated using AFM images. These thin films exhibit ferromagnetic interactions at room temperature.

  6. Room Temperature Ferromagnetic Mn:Ge(001)

    PubMed Central

    Lungu, George Adrian; Stoflea, Laura Elena; Tanase, Liviu Cristian; Bucur, Ioana Cristina; Răduţoiu, Nicoleta; Vasiliu, Florin; Mercioniu, Ionel; Kuncser, Victor; Teodorescu, Cristian-Mihail

    2014-01-01

    We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001), heated at relatively high temperature (starting with 250 °C). The samples were characterized by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID), and magneto-optical Kerr effect (MOKE). Samples deposited at relatively elevated temperature (350 °C) exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001) crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm) deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001). The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed. PMID:28788444

  7. Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications

    PubMed Central

    Lee, Juwon; Subramaniam, Nagarajan Ganapathi; Agnieszka Kowalik, Iwona; Nisar, Jawad; Lee, Jaechul; Kwon, Younghae; Lee, Jaechoon; Kang, Taewon; Peng, Xiangyang; Arvanitis, Dimitri; Ahuja, Rajeev

    2015-01-01

    The article presents, using Bi doped ZnO, an example of a heavy ion doped oxide semiconductor, highlighting a novel p-symmetry interaction of the electronic states to stabilize ferromagnetism. The study includes both ab initio theory and experiments, which yield clear evidence for above room temperature ferromagnetism. ZnBixO1−x thin films are grown using the pulsed laser deposition technique. The room temperature ferromagnetism finds its origin in the holes introduced by the Bi doping and the p-p coupling between Bi and the host atoms. A sizeable magnetic moment is measured by means of x-ray magnetic circular dichroism at the O K-edge, probing directly the spin polarization of the O(2p) states. This result is in agreement with the theoretical predictions and inductive magnetometry measurements. Ab initio calculations of the electronic and magnetic structure of ZnBixO1−x at various doping levels allow to trace the origin of the ferromagnetic character of this material. It appears, that the spin-orbit energy of the heavy ion Bi stabilizes the ferromagnetic phase. Thus, ZnBixO1−x doped with a heavy non-ferromagnetic element, such as Bi, is a credible example of a candidate material for a new class of compounds for spintronics applications, based on the spin polarization of the p states. PMID:26592564

  8. Room-temperature ferromagnetism observed in C-/N-/O-implanted MgO single crystals

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Zhang, Jie; Zhang, Lijuan; Kong, Wei; Weng, Huimin; Ye, Bangjiao

    2013-01-01

    MgO single crystals were implanted with 70 keV C/N/O ions at room temperature with respective doses of 2 × 1016 and 2 × 1017 ions/cm2. All samples with high-dose implantation showed room temperature hysteresis in magnetization loops. Magnetization and slow positron annihilation measurements confirmed that room temperature ferromagnetism in O-implanted samples was attributed to the presence of Mg vacancies. Furthermore, the introduction of C or N played more effective role in ferromagnetic performance than Mg vacancies. Moreover, the magnetic moment possibly occurred from the localized wave function of unpaired electrons and the exchange interaction formed a long-range magnetic order.

  9. Magnetically tunable graphene-based reflector under linear polarized incidence at room temperature

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Tian, Jing; Giddens, Henry; Poumirol, Jean-Marie; Wu, JingBo; Kuzmenko, Alexey B.; Hao, Yang

    2018-04-01

    At the terahertz spectrum, the 2D material graphene has diagonal and Hall conductivities in the presence of a magnetic field. These peculiar properties provide graphene-based structures with a magnetically tunable response to electromagnetic waves. In this work, the absolute reflection intensity was measured for a graphene-based reflector illuminated by linearly polarized incident waves at room temperature, which demonstrated the intensity modulation depth (IMD) under different magnetostatic biases by up to 15%. Experimental data were fitted and analyzed by a modified equivalent circuit model. In addition, as an important phenomenon of the graphene gyrotropic response, Kerr rotation is discussed according to results achieved from full-wave simulations. It is concluded that the IMD is reduced for the best Kerr rotation in the proposed graphene-based reflector.

  10. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  11. Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature

    NASA Astrophysics Data System (ADS)

    Yang, F. J.; Su, P.; Wei, C.; Chen, X. Q.; Yang, C. P.; Cao, W. Q.

    2011-12-01

    Ceramics of Nd/Co co-substituted Bi5Ti3FeO15, i.e., (Bi4Nd)Ti3(Fe0.5Co0.5)O15 were prepared by the conventional solid-state reaction method. The X-ray diffraction pattern demonstrates that the sample of the layered perovskite phase was successfully obtained, even if little Bi-deficient pyrochlore Bi2Ti2O7 also existed. The ferroelectric and magnetic Curie temperatures were determined to be 1077 K and 497 K, respectively. The multiferroic property of the sample at room temperature was demonstrated by ferroelectric and magnetic measurements. Remarkably, by Nd/Co co-substituting, the sample exhibited large magnetic response with 2Mr = 330 memu/g and 2Hc = 562 Oe at applied magnetic field of 8 kOe at room temperature. The present work suggests the possibility of doped Bi5Ti3FeO15 as a potential multiferroic.

  12. A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.

  13. A multi-state synthetic ferrimagnet with controllable switching near room temperature

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2018-06-01

    Ferrite composites with temperature-induced magnetization reversal, and synthetic ferrimagnets and antiferromagnets have been of great interest to the scientific community due to their uncommon thermal properties and potential applications in magnetic storage, spintronic devices, and several other fields. One of the advantages of these structures is the strong antiferromagnetic coupling, which stabilizes the magnetization state and gives access to interesting static and dynamical magnetic behaviors. Some of their drawbacks lie in that it is difficult to induce temperature-induced magnetization reversal at room temperature in composites, and that the strong interaction makes it difficult to induce a parallel magnetization state (and thus a high magnetic moment). In this work, we study numerically the magnetization behaviour of a Cu(1 0 0)/Ni/Pt/[Co/Pt]4 synthetic ferrimagnet and show that is possible to revert the sign of its magnetization by varying the temperature in ranges around room temperature. We also show that the four parallel and antiparallel magnetization states are stable at temperatures up to 360 K, and demonstrate that it is possible to change deterministically between these states by increasing the temperature of the device and/or applying a magnetic field, showcasing simultaneous non-hysteretic and hysteretic switching processes induced by temperature. Thus, this structure opens the possibility to have reconfigurable magnetic devices with multiple purposes based on the nature of the different switching events and the interplay between them.

  14. Magnetic properties and magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys

    NASA Astrophysics Data System (ADS)

    Thanh, Tran Dang; Mai, Nguyen Thi; Dan, Nguyen Huy; Phan, The-Long; Yu, Seong-Cho

    2014-11-01

    In this work, we present a detailed study of the magnetic properties and the magnetocaloric effect at room temperature of Ni50- x Ag x Mn37Sn13 alloys with x = 1, 2, and 4, which were prepared by using an arc-melting method. Experimental results reveal that a partial replacement of Ag for Ni leads to a decrease in the anti-FM phase in the alloys. In addition, the martensitic-austenitic phase transition shifts towards lower temperature and is broaded. The Curie temperature ( T C A ) for the austenitic phase also shifts toward to lower temperature, but not by much. The Curie temperature was found to be 308, 305, and 298 K for x = 1, 2, and 4, respectively. The magnetic entropy change (Δ S m ) of the samples was calculated by using isothermal magnetization data. Under an applied magnetic field change of 10 kOe, the maximum value of Δ S m (|Δ S max |) was achieved at around room temperature and did not change much (~0.8 J·kg-1·K-1) with increasing Ag-doping concentration. Particularly, the M 2 vs. H/ M curves prove that all the samples exhibited a second-order magnetic phase transition. Based on Landau's phase-transition theory and careful analyses of the magnetic data around the T C A , we have determined the critical parameters β, γ, δ, and T C . The results show that the β values are located between those expected for the 3D-Heisenberg model ( β = 0.365) and mean-field theory ( β = 0.5). Such a result proves the coexistence of short-range and long-range ferromagnetic interactions in Ni50- x Ag x Mn37Sn13 alloys. The nature of the changes in the critical parameters and the |Δ S max | is thoroughly discussed by means of structural analyses.

  15. A Stable Room-Temperature Luminescent Biphenylmethyl Radical.

    PubMed

    Ai, Xin; Chen, Yingxin; Feng, Yuting; Li, Feng

    2018-03-05

    There is only one family of room-temperature luminescent radicals, the triphenylmethyl radicals, to date. Herein, we synthesize a new stable room-temperature luminescent radical, (N-carbazolyl)bis(2,4,6-tirchlorophenyl)methyl radical (CzBTM), which has improved properties compared to the triphenylmethyl radicals. X-ray crystallography, electron paramagnetic resonance spectroscopy, and magnetic susceptibility measurements confirmed the radical structure. CzBTM shows room-temperature deep-red to near-infrared emission in various solutions. Both thermal and photo stability were significantly enhanced by the replacement of trichlorobenzene by the carbazole moiety. The electroluminescence results of CzBTM verify its potential application to circumvent the problem of triplet harvesting in traditional fluorescent OLEDs. A new family of stable luminescent radicals based on CzBTM is anticipated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  17. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route < 250°C, to prepare a high temperature cubic zirconia phase. Powder XRD pattern shows broad diffraction peaks suggesting nanometric size of the particles. Magnetic behavior of 1-5 at% Ni doped samples show a threshold for substitutional induced room temperature ferromagnetism up to 3 at% of Ni. TGA data reveals that Ni-doped ZrO2 polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  18. Tuning magnetic spirals beyond room temperature with chemical disorder

    NASA Astrophysics Data System (ADS)

    Canevet, Emmanuel; Morin, Mickael; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa

    In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets with spiral magnetic orders. Such materials are of high current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low magnetic order temperatures (typically lower than 100K) greatly restrict their fields of application. In this talk we will show that chemical disorder is a powerful tool that can be used to stabilize magnetic spiral phases at higher temperatures. To illustrate this mechanism, we will present our recent results obtain by neutron diffraction on the perovskyte YBaFeCuCuO5, where a controlled manipulation of the Cu/Fe chemical disorder was successfully used to increase the spiral order temperature from 154 to 310K.

  19. Giant room temperature magnetoelectric response in strain controlled nanocomposites

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Herklotz, Andreas; Dörr, Kathrin; Manzoor, Sadia

    2017-05-01

    We report giant magnetoelectric coupling at room temperature in a self-assembled nanocomposite of BiFeO3-CoFe2O4 (BFO-CFO) grown on a BaTiO3 (BTO) crystal. The nanocomposite consisting of CFO nanopillars embedded in a BFO matrix exhibits weak perpendicular magnetic anisotropy due to a small out-of-plane compression (˜0.3%) of the magnetostrictive (CFO) phase, enabling magnetization rotation under moderate in-plane compression. Temperature dependent magnetization measurements demonstrate strong magnetoelastic coupling between the BaTiO3 substrate and the nanocomposite film, which has been exploited to produce a large magnetoelectric response in the sample. The reorientation of ferroelectric domains in the BTO crystal upon the application of an electric field (E) alters the strain state of the nanocomposite film, thus enabling control of its magnetic anisotropy. The strain mediated magnetoelectric coupling coefficient α = μ o d M / d E calculated from remnant magnetization at room temperature is 2.6 × 10-7 s m-1 and 1.5 × 10-7 s m-1 for the out-of-plane and in-plane orientations, respectively.

  20. Realization of ground-state artificial skyrmion lattices at room temperature

    DOE PAGES

    Gilbert, Dustin A.; Maranville, Brian B.; Balk, Andrew L.; ...

    2015-10-08

    We report that the topological nature of magnetic skyrmions leads to extraordinary properties that provide new insights into fundamental problems of magnetism and exciting potentials for novel magnetic technologies. Prerequisite are systems exhibiting skyrmion lattices at ambient conditions, which have been elusive so far. We demonstrate the realization of artificial Bloch skyrmion lattices over extended areas in their ground state at room temperature by patterning asymmetric magnetic nanodots with controlled circularity on an underlayer with perpendicular magnetic anisotropy (PMA). Polarity is controlled by a tailored magnetic field sequence and demonstrated in magnetometry measurements. The vortex structure is imprinted from themore » dots into the interfacial region of the underlayer via suppression of the PMA by a critical ion-irradiation step. In conclusion, the imprinted skyrmion lattices are identified directly with polarized neutron reflectometry and confirmed by magnetoresistance measurements. Our results demonstrate an exciting platform to explore room-temperature ground-state skyrmion lattices.« less

  1. Electric field modulated ferromagnetism in ZnO films deposited at room temperature

    NASA Astrophysics Data System (ADS)

    Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan

    2018-04-01

    The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.

  2. Interface induced ferromagnetism in topological insulator above room temperature

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Chang, Cui-Zu; Liu, Yawen; Chen, Tingyong; Moodera, Jagadeesh; Shi, Jing

    The quantum anomalous Hall effect (QAHE) observed in magnetic topological insulators (TI), an outcome of time reversal symmetry broken surface states, exhibits many exotic properties. However, a major obstacle towards high temperature QAHE is the low Curie temperature in the disordered magnetically doped TI systems. Here we report a study on heterostructures of TI and magnetic insulator in which the magnetic insulator, namely thulium iron garnet or TIG, has perpendicular magnetic anisotropy. At the TIG/TI interface, TIG magnetizes the surface states of the TI film by exchange coupling, as revealed by the anomalous Hall effect (AHE). We demonstrate that squared AHE hysteresis loops persist well above room temperature. The interface proximity induced high-temperature ferromagnetism in topological insulators opens up new possibilities for the realization of QAHE at high temperatures. This work was supported as part of the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  3. Room temperature ferroelectricity in one-dimensional single chain molecular magnets [{M(Δ)M(Λ)}(ox)2(phen)2]n (M = Fe and Mn)

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Mukadam, M. D.; Meena, S. S.; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Mandal, B. P.; Yusuf, S. M.

    2017-03-01

    The ferroelectric materials are mainly focused on pure inorganic oxides; however, the organic molecule based materials have recently attracted great attention because of their multifunctional properties. The mixing of oxalate and phenanthroline ligands with metal ions (Fe or Mn) at room temperature followed by hydrothermal treatment results in the formation of one-dimensional single chain molecular magnets which exhibit room temperature dielectric and ferroelectric behavior. The compounds are chiral in nature, and exhibit a ferroelectric behavior, attributed to the polar point group C2, in which they crystallized. The compounds are also associated with a dielectric loss and thus a relaxation process. The observed electric dipole moment, essential for a ferroelectricity, has been understood quantitatively in terms of lattice distortions at two different lattice sites within the crystal structure. The studied single chain molecular magnetic materials with room temperature ferroelectric and dielectric properties could be of great technological importance in non-volatile memory elements, and high-performance insulators.

  4. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    DOEpatents

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  5. Highly Efficient Extraction of Phenolic Compounds by Use of Magnetic Room Temperature Ionic Liquids for Environmental Remediation

    PubMed Central

    Deng, Ning; Li, Min; Zhao, Lijie; Lu, Chengfei; de Rooy, Sergio L.; Warner, Isiah M.

    2011-01-01

    A hydrophobic magnetic room temperature ionic liquid (MRTIL), trihexyltetradecylphosphonium tetrachloroferrate(III) ([3C6PC14][FeCl4]), was synthesized from trihexyltetradecylphosphonium chloride and FeCl3·6H2O. This MRTIL was investigated as a possible separation agent for solvent extraction of phenolic compounds from aqueous solution. Due to its strong paramagnetism, [3C6PC14][FeCl4] responds to an external neodymium magnet, which was employed in the design of a novel magnetic extraction technique. The conditions for extraction, including extraction time, volume ratio between MRTIL and aqueous phase, pH of aqueous solution, and structures of phenolic compounds were investigated and optimized. The magnetic extraction of phenols achieved equilibrium in 20 min and the phenolic compounds were found to have higher distribution ratios under acidic conditions. In addition, it was observed that phenols containing a greater number of chlorine or nitro substitutents exhibited higher distribution ratios. For example, the distribution ratio of phenol (DPh) was 107. In contrast, 3,5-dichlorophenol distribution ratio (D3,5-DCP) had a much higher value of 6372 under identical extraction conditions. When compared with four selected traditional non-magnetic room temperature ionic liquids, our [3C6PC14][FeCl4] exhibited significantly higher extraction efficiency under the same experimental conditions used in this work. Pentachlorophenol, a major component in the contaminated soil sample obtained from a superfund site, was successfully extracted and removed by use of [3C6PC14][FeCl4] with high extraction efficiency. Pentachlorophenol concentration was dramatically reduced from 7.8 μg.mL−1 to 0.2 μg.mL−1 after the magnetic extraction by use of [3C6PC14][FeCl4]. PMID:21783320

  6. Noninvasive liver iron measurements with a room-temperature susceptometer

    PubMed Central

    Avrin, W F; Kumar, S

    2011-01-01

    Magnetic susceptibility measurements on the liver can quantify iron overload accurately and noninvasively. However, established susceptometer designs, using Superconducting QUantum Interference Devices (SQUIDs) that work in liquid helium, have been too expensive for widespread use. This paper presents a less expensive liver susceptometer that works at room temperature. This system uses oscillating magnetic fields, which are produced and detected by copper coils. The coil design cancels the signal from the applied field, eliminating noise from fluctuations of the source-coil current and sensor gain. The coil unit moves toward and away from the patient at 1 Hz, cancelling drifts due to thermal expansion of the coils. Measurements on a water phantom indicated instrumental errors less than 30 μg of iron per gram of wet liver tissue, which is small compared with other errors due to the response of the patient’s body. Liver iron measurements on eight thalassemia patients yielded a correlation coefficient r=0.98 between the room-temperature susceptometer and an existing SQUID. These results indicate that the fundamental accuracy limits of the room-temperature susceptometer are similar to those of the SQUID. PMID:17395991

  7. Room-temperature spin-orbit torque in NiMnSb

    NASA Astrophysics Data System (ADS)

    Ciccarelli, C.; Anderson, L.; Tshitoyan, V.; Ferguson, A. J.; Gerhard, F.; Gould, C.; Molenkamp, L. W.; Gayles, J.; Železný, J.; Šmejkal, L.; Yuan, Z.; Sinova, J.; Freimuth, F.; Jungwirth, T.

    2016-09-01

    Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin-orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin-orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin-orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin-orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin-orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.

  8. Room-temperature synthesis of core-shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins.

    PubMed

    Lin, Guo; Gao, Chaohong; Zheng, Qiong; Lei, Zhixian; Geng, Huijuan; Lin, Zian; Yang, Huanghao; Cai, Zongwei

    2017-03-28

    Core-shell structured magnetic covalent organic frameworks (Fe 3 O 4 @COFs) were synthesized via a facile approach at room temperature. Combining the advantages of high porosity, magnetic responsiveness, chemical stability and selectivity, Fe 3 O 4 @COFs can serve as an ideal absorbent for the highly efficient enrichment of peptides and the simultaneous exclusion of proteins from complex biological samples.

  9. Room Temperature Ferromagnetic, Anisotropic, Germanium Rich FeGe(001) Alloys.

    PubMed

    Lungu, George A; Apostol, Nicoleta G; Stoflea, Laura E; Costescu, Ruxandra M; Popescu, Dana G; Teodorescu, Cristian M

    2013-02-21

    Ferromagnetic Fe x Ge 1- x with x = 2%-9% are obtained by Fe deposition onto Ge(001) at high temperatures (500 °C). Low energy electron diffraction (LEED) investigation evidenced the preservation of the (1 × 1) surface structure of Ge(001) with Fe deposition. X-ray photoelectron spectroscopy (XPS) at Ge 3d and Fe 2p core levels evidenced strong Fe diffusion into the Ge substrate and formation of Ge-rich compounds, from FeGe₃ to approximately FeGe₂, depending on the amount of Fe deposited. Room temperature magneto-optical Kerr effect (MOKE) evidenced ferromagnetic ordering at room temperature, with about 0.1 Bohr magnetons per Fe atom, and also a clear uniaxial magnetic anisotropy with the in-plane easy magnetization axis. This compound is a good candidate for promising applications in the field of semiconductor spintronics.

  10. Direct observation of the magnetic domain evolution stimulated by temperature and magnetic field in PrMnGeSi alloy

    NASA Astrophysics Data System (ADS)

    Zuo, S. L.; Zhang, B.; Qiao, K. M.; Peng, L. C.; Li, R.; Xiong, J. F.; Zhang, Y.; Zhao, X.; Liu, D.; Zhao, T. Y.; Sun, J. R.; Hu, F. X.; Zhang, Y.; Shen, B. G.

    2018-05-01

    The magnetic domain evolution behavior under external field stimuli of temperature and magnetic field in PrMn2Ge0.4Si1.6 compound is investigated using Lorentz transmission electron microscopy. A spontaneous 180° magnetic domain is observed at room temperature and it changes with temperature. Dynamic magnetization process is related to the rotation of magnetic moments, resulting in the transforming of magnetic domains from 180° type to a uniform ferromagnetic state with almost no pinning effects under the in-plane magnetic field at room temperature. X-ray powder diffraction is performed on PrMn2Ge0.4Si1.6 at different temperatures to study the temperature dependence of crystal structure and lattice parameter.

  11. A dynamic sandwich assay on magnetic beads for selective detection of single-nucleotide mutations at room temperature.

    PubMed

    Wang, Junxiu; Xiong, Guoliang; Ma, Liang; Wang, Shihui; Zhou, Xu; Wang, Lei; Xiao, Lehui; Su, Xin; Yu, Changyuan

    2017-08-15

    Single-nucleotide mutation (SNM) has proven to be associated with a variety of human diseases. Development of reliable methods for the detection of SNM is crucial for molecular diagnosis and personalized medicine. The sandwich assays are widely used tools for detecting nucleic acid biomarkers due to their low cost and rapid signaling. However, the poor hybridization specificity of signal probe at room temperature hampers the discrimination of mutant and wild type. Here, we demonstrate a dynamic sandwich assay on magnetic beads for SNM detection based on the transient binding between signal probe and target. By taking the advantage of mismatch sensitive thermodynamics of transient DNA binding, the dynamic sandwich assay exhibits high discrimination factor for mutant with a broad range of salt concentration at room temperature. The beads used in this assay serve as a tool for separation, and might be helpful to enhance SNM selectivity. Flexible design of signal probe and facile magnetic separation allow multiple-mode downstream analysis including colorimetric detection and isothermal amplification. With this method, BRAF mutations in the genomic DNA extracted from cancer cell lines were tested, allowing sensitive detection of SNM at very low abundances (0.1-0.5% mutant/wild type). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Stable room-temperature ferromagnetic phase at the FeRh(100) surface

    DOE PAGES

    Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; ...

    2016-03-03

    Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at themore » Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.« less

  13. Room Temperature Ferromagnetic, Anisotropic, Germanium Rich FeGe(001) Alloys

    PubMed Central

    Lungu, George A.; Apostol, Nicoleta G.; Stoflea, Laura E.; Costescu, Ruxandra M.; Popescu, Dana G.; Teodorescu, Cristian M.

    2013-01-01

    Ferromagnetic FexGe1−x with x = 2%–9% are obtained by Fe deposition onto Ge(001) at high temperatures (500 °C). Low energy electron diffraction (LEED) investigation evidenced the preservation of the (1 × 1) surface structure of Ge(001) with Fe deposition. X-ray photoelectron spectroscopy (XPS) at Ge 3d and Fe 2p core levels evidenced strong Fe diffusion into the Ge substrate and formation of Ge-rich compounds, from FeGe3 to approximately FeGe2, depending on the amount of Fe deposited. Room temperature magneto-optical Kerr effect (MOKE) evidenced ferromagnetic ordering at room temperature, with about 0.1 Bohr magnetons per Fe atom, and also a clear uniaxial magnetic anisotropy with the in-plane [110] easy magnetization axis. This compound is a good candidate for promising applications in the field of semiconductor spintronics. PMID:28809330

  14. Tailoring of magnetic orderings in Fe substituted GdMnO3 bulk samples towards room temperature

    NASA Astrophysics Data System (ADS)

    Pal, A.; Dhana Sekhar, C.; Venimadhav, A.; Murugavel, P.

    2017-10-01

    The evolution of various magnetic ordering has been studied for the orthorhombic perovskite GdMn1-x Fe x O3 (0  ⩽  x  ⩽  0.7) system to obtain its comprehensive magnetic phase diagram. We observed that the substitution of Fe in GdMnO3 increases the antiferromagnetic Neel temperature (T N) from 40 K to above 400 K and importantly induces a spin-reorientation transition (T SR) for x  ⩾  0.4. These transitions are close to room temperature at x  =  0.5 and then gradually separated at a higher x value. The static orbital ordering induced by the Jahn-Teller distortion seems to play an important role in changing the T N. The variations of spin-reorientation ordering along with the competition between the magnetic orderings as a function of the composition were discussed with respect to antisymmetric exchange interactions and Mn3+ single-ion anisotropy in detail. In addition, the correlation between structural and magnetic properties suggests that the subtle structural change at composition x  =  0.4 may affect the magnetic ordering. The observed tunable T SR and T N in GdMn1-x Fe x O3 could add a practical value for these compositions in fields like spintronics and sensors.

  15. Magnetic-field-induced irreversible antiferromagnetic-ferromagnetic phase transition around room temperature in as-cast Sm-Co based SmCo7-xSix alloys

    NASA Astrophysics Data System (ADS)

    Feng, D. Y.; Zhao, L. Z.; Liu, Z. W.

    2016-04-01

    A magnetic-field-induced irreversible metamagnetic phase transition from antiferro- to ferromagnetism, which leads to an anomalous initial-magnetization curve lying outside the magnetic hysteresis loop, is reported in arc-melted SmCo7-xSix alloys. The transition temperatures are near room temperature, much higher than other compounds with similar initial curves. Detailed investigation shows that this phenomenon is dependent on temperature, magnetic field and Si content and shows some interesting characteristics. It is suggested that varying interactions between the Sm and Co layers in the crystal are responsible for the formation of a metastable AFM structure, which induces the anomalous phenomenon in as-cast alloys. The random occupation of 3g sites by Si and Co atoms also has an effect on this phenomenon.

  16. Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li

    2018-04-01

    Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.

  17. Entanglement and Bell's inequality violation above room temperature in metal carboxylates

    NASA Astrophysics Data System (ADS)

    Souza, A. M.; Soares-Pinto, D. O.; Sarthour, R. S.; Oliveira, I. S.; Reis, M. S.; Brandão, P.; Dos Santos, A. M.

    2009-02-01

    In the present work we show that a particular family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic-susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the copper carboxylate {Cu2(O2CH)4}{Cu(O2CH)2(2-methylpyridine)2} , and we have found this to be above room temperature (Te˜630K) . Furthermore, the results show that the system remains maximally entangled until close to ˜100K and the Bell’s inequality is violated up to nearly room temperature (˜290K) .

  18. Low-temperature magnetic properties of greigite (Fe3S4)

    NASA Astrophysics Data System (ADS)

    Chang, Liao; Roberts, Andrew P.; Rowan, Christopher J.; Tang, Yan; Pruner, Petr; Chen, Qianwang; Horng, Chorng-Shern

    2009-01-01

    We provide comprehensive low-temperature magnetic results for greigite (Fe3S4) across the spectrum from superparamagnetic (SP) to multidomain (MD) behavior. It is well known that greigite has no low-temperature magnetic transitions, but we also document that it has strong domain-state dependence of magnetic properties at low temperatures. Blocking of SP grains and increasing thermal stability with decreasing temperature is apparent in many magnetic measurements. Thermally stable single-domain greigite undergoes little change in magnetic properties below room temperature. For pseudo-single-domain (PSD)/MD greigite, hysteresis properties and first-order reversal curve diagrams exhibit minor changes at low temperatures, while remanence continuously demagnetizes because of progressive domain wall unpinning. The low-temperature demagnetization is grain size dependent for PSD/MD greigite, with coarser grains undergoing larger remanence loss. AC susceptibility measurements indicate consistent blocking temperatures (TB) for all synthetic and natural greigite samples, which are probably associated with surficial oxidation. Low-temperature magnetic analysis provides much more information about magnetic mineralogy and domain state than room temperature measurements and enables discrimination of individual components within mixed magnetic mineral assemblages. Low-temperature rock magnetometry is therefore a useful tool for studying magnetic mineralogy and granulometry of greigite-bearing sediments.

  19. High temperature superconductor dc SQUID micro-susceptometer for room temperature objects

    NASA Astrophysics Data System (ADS)

    Faley, M. I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Atwood, C. G.; Sarwinski, R. E.; Paulson, D. N.; Starr, T. N.; Fagaly, R. L.

    2004-05-01

    We have developed a scanning magnetic microscope (SMM) with 25 µm resolution in spatial position for the magnetic features of room temperature objects. The microscope consists of a high-temperature superconductor (HTS) dc SQUID sensor, suspended in vacuum with a self-adjusting standoff, close spaced liquid nitrogen Dewar, X-Y scanning stage and a computer control system. The HTS SQUIDs were optimized for better spatial and field resolutions for operation at liquid nitrogen temperature. Measured inside a magnetic shield, the 10 pT Hz-1/2 typical noise of the SQUIDs is white down to frequencies of about 10 Hz, increasing up to about 20 pT Hz-1/2 at 1 Hz. The microscope is mounted on actively damped platforms, which negate vibrations from the environment as well as damping internal stepper motor noises. A high-resolution video telescope and a 1 µm precision z-axis positioning system allow a close positioning of the sample under the sensor. The ability of the sensors to operate in unshielded environmental conditions with magnetic fields up to about 15 G allowed us to perform 2D mapping of the local ac and dc susceptibility of the objects.

  20. Lateral spin transfer torque induced magnetic switching at room temperature demonstrated by x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Buhl, M.; Erbe, A.; Grebing, J.; Wintz, S.; Raabe, J.; Fassbender, J.

    2013-10-01

    Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM).

  1. Room temperature ferromagnetism in a phthalocyanine based carbon material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.

    2014-02-07

    We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

  2. Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature

    NASA Astrophysics Data System (ADS)

    Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.

    2018-04-01

    The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.

  3. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO3 nanoparticles in (GdMnO3)0.70(CoFe2O4)0.30

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.

    2017-02-01

    Nanoparticles of GdMnO3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe2O4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below 100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations.

  4. Preparation of Boron Nitride Nanoparticles with Oxygen Doping and a Study of Their Room-Temperature Ferromagnetism.

    PubMed

    Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe

    2018-04-18

    In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.

  5. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE PAGES

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  6. Entanglement and Bell's inequality violation above room temperature in metal carboxylates.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, A M; Soares-Pinto, D O; Sarthour, R S

    In the present work we show that a particular family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic-susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the copper carboxylate {Cu-2(O2CH)(4)}{Cu(O2CH)(2)(2-methylpyridine)(2)}, and we have found this to be above room temperature (T-e similar to 630 K). Furthermore, the results show that the system remains maximally entangled until close to similar to 100 K and the Bell's inequality is violated up to nearly room temperature (similar to 290 K).

  7. Room temperature magnetic and dielectric properties of cobalt doped CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Chunhong; Song, Yuanqiang, E-mail: yuanqiangsong@uestc.edu.cn; Wang, Xiaoning

    2015-05-07

    CaCu{sub 3}Ti{sub 4−x}Co{sub x}O{sub 12} (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu{sub 3}Ti{sub 4}O{sub 12} is well known for its colossal dielectric constant inmore » a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ′) as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu{sub 3}Ti{sub 4}O{sub 12} was discussed.« less

  8. Room-temperature creation and spin-orbit torque-induced manipulation of skyrmions in thin film

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang; Li, Wenyuan; Im, Se Kwon K.; Fan, Yabin; Wong, Kin L.; Tserkovnyak, Yaroslav; Amiri, Pedram Khalili; Wang, Kang L.

    Magnetic skyrmions, which are topologically protected spin texture, are promising candidates for ultra-low energy and ultra-high density magnetic data storage and computing applications1, 2. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of materials available is limited and there is a lack of electrical means to control of skyrmions. Here, we experimentally demonstrate a method for creating skyrmion bubbles phase in the ferromagnetic thin film at room temperature. We further demonstrate that the created skyrmion bubbles can be manipulated by electric current. This room-temperature creation and manipulation of skyrmion in thin film is of particular interest for applications, being suitable for room-temperature operation and compatible with existing semiconductor manufacturing tools. 1. Nagaosa, N., Tokura, Y. Nature Nanotechnology 8, 899-911 (2013). 2. Fert, A., et al., Nature Nanotechnology 8, 152-156 (2013).

  9. High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Tucker, Randall; Kenny, Andrew; Kang, Kyung-Dae; Ghandi, Varun; Liu, Jinfang; Choi, Heeju; Provenza, Andrew

    2008-01-01

    This paper summarizes the development of a magnetic bearing designed to operate at 1,000 F. A novel feature of this high temperature magnetic bearing is its homopolar construction which incorporates state of the art high temperature, 1,000 F, permanent magnets. A second feature is its fault tolerance capability which provides the desired control forces with over one-half of the coils failed. The construction and design methodology of the bearing is outlined and test results are shown. The agreement between a 3D finite element, magnetic field based prediction for force is shown to be in good agreement with predictions at room and high temperature. A 5 axis test rig will be complete soon to provide a means to test the magnetic bearings at high temperature and speed.

  10. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    PubMed

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  11. Mossbauer Study of Low Temperature Magnetic and magnetooptic Properties of Amorphous Tb/Fe Multilayers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ataur

    Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.

  12. Verification of antiferromagnetic exchange coupling at room temperature using polar magneto-optic Kerr effect in thin EuS/Co multilayers with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goschew, A., E-mail: alexander.goschew@fu-berlin.de; Scott, M.; Fumagalli, P.

    2016-08-08

    We report on magneto-optic Kerr measurements in polar geometry carried out on a series of thin Co/EuS multilayers on suitable Co/Pd-multilayer substrates. Thin Co/EuS multilayers of a few nanometers individual layer thickness usually have their magnetization in plane. Co/Pd multilayers introduce a perpendicular magnetic anisotropy in the Co/EuS layers deposited on top, thus making it possible to measure magneto-optic signals in the polar geometry in remanence in order to study exchange coupling. Magneto-optic Kerr-effect spectra and hysteresis loops were recorded in the visible and ultraviolet photon-energy range at room temperature. The EuS contribution to the magneto-optic signal is extracted atmore » 4.1 eV by combining hysteresis loops measured at different photon energies with polar magneto-optic Kerr-effect spectra recorded in remanence and in an applied magnetic field of 2.2 T. The extracted EuS signal shows clear signs of antiferromagnetic coupling of the Eu magnetic moments to the Co layers. This implies that the ordering temperature of at least a fraction of the EuS layers is above room temperature proving that magneto-optic Kerr-effect spectroscopy can be used here as a quasi-element-specific method.« less

  13. Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Han, Jiahao; Richardella, A.; Siddiqui, Saima A.; Finley, Joseph; Samarth, N.; Liu, Luqiao

    2017-08-01

    The strongly spin-momentum coupled electronic states in topological insulators (TI) have been extensively pursued to realize efficient magnetic switching. However, previous studies show a large discrepancy of the charge-spin conversion efficiency. Moreover, current-induced magnetic switching with TI can only be observed at cryogenic temperatures. We report spin-orbit torque switching in a TI-ferrimagnet heterostructure with perpendicular magnetic anisotropy at room temperature. The obtained effective spin Hall angle of TI is substantially larger than the previously studied heavy metals. Our results demonstrate robust charge-spin conversion in TI and provide a direct avenue towards applicable TI-based spintronic devices.

  14. Tailoring the magnetostructural transition and magnetocaloric properties around room temperature: In-doped Ni-Mn-Ga alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin

    2014-09-01

    Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.

  15. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic

    NASA Astrophysics Data System (ADS)

    Mundy, Julia A.; Brooks, Charles M.; Holtz, Megan E.; Moyer, Jarrett A.; Das, Hena; Rébola, Alejandro F.; Heron, John T.; Clarkson, James D.; Disseler, Steven M.; Liu, Zhiqi; Farhan, Alan; Held, Rainer; Hovden, Robert; Padgett, Elliot; Mao, Qingyun; Paik, Hanjong; Misra, Rajiv; Kourkoutis, Lena F.; Arenholz, Elke; Scholl, Andreas; Borchers, Julie A.; Ratcliff, William D.; Ramesh, Ramamoorthy; Fennie, Craig J.; Schiffer, Peter; Muller, David A.; Schlom, Darrell G.

    2016-09-01

    Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

  16. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    PubMed

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  17. The effect of reaction temperature on the room temperature ferromagnetic property of sol-gel derived tin oxide nanocrystal

    NASA Astrophysics Data System (ADS)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2018-06-01

    In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.

  18. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Li, Dong-Xiang; Qin, Xiu-Bo; Zheng, Li-Rong; Li, Yu-Xiao; Cao, Xing-Zhong; Li, Zhuo-Xin; Yang, Jing; Wang, Bao-Yi

    2013-03-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+—VO defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.

  19. Magnetic Properties and Microstructure of Some 2:17 High Temperature Magnets

    NASA Astrophysics Data System (ADS)

    Meng-Burany, X.; Hadjipanayis, George C.; Chui, S. T.

    1997-03-01

    Recent DOD demands for electric vehicle/plane applications require the use of magnets with operating temperatures > 450^circ C . Of existing high performance magnets, only the Sm(Co,Fe,Cu,Zr)z precipitation--hardened magnets have an operating temperature (300^circ C) which is close to the desired temperature and this makes these magnets potential candidates for further optimization studies. We have started a systematic study and modeling of the high temperature magnetic properties of several commercial magnets and other specially designed magnets supplied to us by Crucible Research. All the samples studied had a room temperature coercivity above 15 kOe. The coercivity was found to decrease with increasing temperature, with values of less than 4 kOe at 450^circ C , except for one sample which had a better temperature dependence with a coercivity above 6 kOe. TEM studies showed a cellular microstructure in all samples. The sample with better temperature properties had a smaller cell size but thicker cell walls. Lorentz electron microscopy studies are underway to image the domain walls and study their interaction with the cellular structure. The results of these studies will hopefully help us to understand the composition--microstructure--property relation in these magnets.

  20. Room temperature magnetization in Co-doped anatase phase of TiO2

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mageto, Maxwel Joel; Etefagh, Reyhaneh; Azhir, Elahe; Mwamburi, Mghendi; Topalian, Zareh

    2013-01-01

    CoxTi1-xO2 films were deposited by spray pyrolysis technique on Si(1 0 0) substrates at 475 °C. A hydro-alcoholic solution containing titanium (iv) isopropoxide and Co(NO3)2 with various Co doping levels from x = 0-0.015 in solution was used as spray solution. Grazing incident angle of X-ray diffraction illustrates that the CoxTi1-xO2 films are single phase and polycrystal with mixed orientations. Study of surface morphology of the films by atomic force microscope reveals that the annealing atmosphere does not significantly affect the grain size and the microstructure of the films. This study provides further insight into the importance of annealing atmosphere on magnetization of the films. Room temperature magneto-optical Kerr measurement was employed in polar mode. A hysteresis loop and a paramagnetic behavior have been recorded for samples annealed in H2 ambient gas and air, respectively. Chemical composition analysis by X-ray photo-electron spectroscopy showed that Co atoms are bounded to oxygen and no metallic clusters are present. Moreover, it indicates the formation of high spin Co2+ for the sample x = 0.008 annealed in H2 ambient gas. The origin of magnetization can be attributed to the contribution of oxygen vacancies in the spin polarization of the structure.

  1. Room-temperature d0 ferromagnetism in carbon-doped Y2O3 for spintronic applications: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Brahmananda; Nandi, Prithwish K.; Kawazoe, Yoshiyuki; Ramaniah, Lavanya M.

    2018-05-01

    Through density functional theory simulations with the generalized gradient approximation, confirmed by the more sophisticated hybrid functional, we predict the triggering of d0 ferromagnetism in C doped Y2O3 at a hole density of 3.36 ×1021c m-3 (one order less than the critical hole density of ZnO) having magnetic moment of 2.0 μB per defect with ferromagnetic coupling large enough to promote room-temperature ferromagnetism. The persistence of ferromagnetism at room temperature is established through computation of the Curie temperature by the mean field approximation and ab initio molecular dynamics simulations. The induced magnetic moment is mainly contributed by the 2 p orbital of the impurity C and the 2 p orbital of O and we quantitatively and extensively demonstrate through the analysis of density of states and ferromagnetic coupling that the Stoner criterion is satisfied to activate room-temperature ferromagnetism. As the system is stable at room temperature, C doped Y2O3 has feasible defect formation energy and ferromagnetism survives for the choice of hybrid exchange functional, and at room temperature we strongly believe that C doped Y2O3 can be tailored as a room-temperature diluted magnetic semiconductor for spintronic applications.

  2. Room-Temperature Determination of Two-Dimensional Electron Gas Concentration and Mobility in Heterostructures

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    A technique for determination of room-temperature two-dimensional electron gas (2DEG) concentration and mobility in heterostructures is presented. Using simultaneous fits of the longitudinal and transverse voltages as a function of applied magnetic field, we were able to separate the parameters associated with the 2DEG from those of the parallel layer. Comparison with the Shubnikov-de Haas data derived from measurements at liquid helium temperatures proves that the analysis of the room-temperature data provides an excellent estimate of the 2DEG concentration. In addition we were able to obtain for the first time the room-temperature mobility of the 2DEG, an important parameter to device application. Both results are significantly different from those derived from conventional Hall analysis.

  3. Disorder-induced Room Temperature Ferromagnetism in Glassy Chromites

    PubMed Central

    Araujo, C. Moyses; Nagar, Sandeep; Ramzan, Muhammad; Shukla, R.; Jayakumar, O. D.; Tyagi, A. K.; Liu, Yi-Sheng; Chen, Jeng-Lung; Glans, Per-Anders; Chang, Chinglin; Blomqvist, Andreas; Lizárraga, Raquel; Holmström, Erik; Belova, Lyubov; Guo, Jinghua; Ahuja, Rajeev; Rao, K. V.

    2014-01-01

    We report an unusual robust ferromagnetic order above room temperature upon amorphization of perovskite [YCrO3] in pulsed laser deposited thin films. This is contrary to the usual expected formation of a spin glass magnetic state in the resulting disordered structure. To understand the underlying physics of this phenomenon, we combine advanced spectroscopic techniques and first-principles calculations. We find that the observed order-disorder transformation is accompanied by an insulator-metal transition arising from a wide distribution of Cr-O-Cr bond angles and the consequent metallization through free carriers. Similar results also found in YbCrO3-films suggest that the observed phenomenon is more general and should, in principle, apply to a wider range of oxide systems. The ability to tailor ferromagnetic order above room temperature in oxide materials opens up many possibilities for novel technological applications of this counter intuitive effect. PMID:24732685

  4. Room-temperature ferromagnetic Zn1- x Ni x S nanoparticles

    NASA Astrophysics Data System (ADS)

    Kunapalli, Chaitanya Kumar; Shaik, Kaleemulla

    2018-05-01

    Nickel-doped zinc sulfide nanoparticles (Zn1- x Ni x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1- x Ni x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV-Vis-NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1- x Ni x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1- x Ni x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1- x Ni x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.

  5. Giant Room-Temperature Magnetodielectric Response in a MOF at 0.1 Tesla.

    PubMed

    Chen, Li-Hong; Guo, Jiang-Bin; Wang, Xuan; Dong, Xin-Wei; Zhao, Hai-Xia; Long, La-Sheng; Zheng, Lan-Sun

    2017-11-01

    A giant room-temperature magnetodielectric (MD) response upon the application of a small magnetic field is of fundamental importance for the practical application of a new generation of devices. Here, the giant room-temperature magnetodielectric response is demonstrated in the metal-organic framework (MOF) of [NH 2 (CH 3 ) 2 ] n [Fe III Fe II (1- x ) Ni II x (HCOO) 6 ] n (x ≈ 0.63-0.69) (1) with its MD coefficient remaining between -20% and -24% in the 300-410 K temperature range, even at 0.1 T. Because a room-temperature magnetodielectric response has never been observed in MOFs, the present work not only provides a new type of magnetodielectric material but also takes a solid step toward the practical application of MOFs in a new generation of devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  7. Electromagnon Resonance at Room Temperature with Gigantic Magnetochromism

    NASA Astrophysics Data System (ADS)

    Shishikura, H.; Tokunaga, Y.; Takahashi, Y.; Masuda, R.; Taguchi, Y.; Kaneko, Y.; Tokura, Y.

    2018-04-01

    The elementary excitation characteristic of magnetoelectric (ME) multiferroics is a magnon endowed with electric activity, which is referred to as an electromagnon. The electromagnon resonance mediated by the bilinear exchange coupling potentially exhibits strong terahertz light-matter interaction with optical properties different from the conventional magnon excitation. Here we report the robust electromagnon resonance on helimagnetic Y -type hexaferrites in a wide temperature range including room temperature. Furthermore, the efficient magnetic field controls of the electromagnon are demonstrated on the flexible spin structure of these compounds, leading to the generation or annihilation of the resonance as well as the large resonance energy shift. These terahertz characteristics of the electromagnon exemplify the versatile magneto-optical functionality driven by the ME coupling in multiferroics, paving a way for possible terahertz applications as well as terahertz control of a magnetic state of matter.

  8. Room temperature ferromagnetism in Cu doped ZnO

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  9. Experimental High Temperature Characterization of a Magnetic Bearing for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Montague, Gerald; Jansen, Mark; Provenza, Andrew; Palazzolo, Alan; Jansen, Ralph; Ebihara, Ben

    2003-01-01

    Open loop, experimental force and power measurements of a radial, redundant-axis, magnetic bearing at temperatures to 1000 F (538 C) and rotor speeds to 15,000 RPM along with theoretical temperature and force models are presented in this paper. The experimentally measured force produced by a single C-core using 22A was 600 lb. (2.67 kN) at room temperature and 380 lb. (1.69 kN) at 1000 F (538 C). These values were compared with force predictions based on a 1D magnetic circuit analysis and a thermal analysis of gap growth as a function of temperature. Tests under rotating conditions showed that rotor speed has a negligible effect on the bearing s load capacity. One C-core required approximately 340 W of power to generate 190 lb. (8.45 kN) of magnetic force at 1000 F (538 C); however the magnetic air gap was much larger than at room temperature. The data presented is after the bearing had already operated six thermal cycles and eleven total (not consecutive) hours at 1000 F (538 C).

  10. Room-temperature ferromagnetic Cr-doped Ge/GeOx core-shell nanowires.

    PubMed

    Katkar, Amar S; Gupta, Shobhnath P; Seikh, Md Motin; Chen, Lih-Juann; Walke, Pravin S

    2018-06-08

    The Cr-doped tunable thickness core-shell Ge/GeO x nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr 3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (T C  > 300 K) with the dominating values of its magnetic remanence (M R ) and coercivity (H C ) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeO X core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  11. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    NASA Astrophysics Data System (ADS)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  12. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  13. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2.

    PubMed

    Khan, M A; Leuenberger, Michael N

    2018-04-18

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS 2 , has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS 2 is magnetic in nature with a magnetic moment μ of  ∼2 [Formula: see text] and, remarkably, exhibits an exceptionally large atomic scale MAE [Formula: see text] of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin-orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 [Formula: see text] and 3 [Formula: see text] by varying the Fermi energy [Formula: see text], which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS 2 :Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS 2 and could provide a route to nanoscale spintronic devices.

  14. A Polar Corundum Oxide Displaying Weak Ferromagnetism at Room Temperature

    PubMed Central

    2012-01-01

    Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K—this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3. PMID:22280499

  15. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature.

    PubMed

    Kumar, Ashok; Scott, J F; Katiyar, R S

    2011-08-08

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm(3) at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO(3) (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (-E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10(-12) sm(-1).

  16. Designing switchable near room-temperature multiferroics via the discovery of a novel magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Feng, J. S.; Xu, Ke; Bellaiche, Laurent; Xiang, H. J.

    2018-05-01

    Magnetoelectric (ME) coupling is the key ingredient for realizing the cross-control of magnetism and ferroelectricity in multiferroics. However, multiferroics are not only rare, especially at room-temperature, in nature but also the overwhelming majority of known multiferroics do not exhibit highly-desired switching of the direction of magnetization when the polarization is reversed by an electric field. Here, we report group theory analysis and ab initio calculations demonstrating, and revealing the origin of, the existence of a novel form of ME coupling term in a specific class of materials that does allow such switching. This term naturally explains the previously observed electric field control of magnetism in the first known multiferroics, i.e., the Ni–X boracite family. It is also presently used to design a switchable near room-temperature multiferroic (namely, LaSrMnOsO6 perovskite) having rather large ferroelectric polarization and spontaneous magnetization, as well as strong ME coupling.

  17. Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5Mn 0.5O 3

    DOE PAGES

    Choi, Eun -Mi; Fix, Thomas; Kursumovic, Ahmed; ...

    2014-10-14

    In this study, highly strained films of BiFe 0.5Mn 0.5O 3 (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetization measurements demonstrated ferrimagnetism (T C ~ 600K), with a room temperature saturation moment (M S) of up to 90 emu/cc (~0.58μ B/f.u) on high quality (001) SrTiO 3. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe 3+ and Mn 3+ . While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magneticmore » properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.« less

  18. Epitaxial Ni-Mn-Ga films deposited on SrTiO{sub 3} and evidence of magnetically induced reorientation of martensitic variants at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heczko, O.; Thomas, M.; Buschbeck, J.

    2008-02-18

    Epitaxial Ni-Mn-Ga films were grown on SrTiO{sub 3} by sputter deposition. The films deposited at 673 K are ferromagnetic and martensitic at room temperature. Pole figure measurements indicate that the twinned orthorhombic martensite microstructure of the film has a lower symmetry compared to bulk. Magnetically induced reorientation or magnetic shape memory effect is indicated by magnetization curve measurements. Though the overall extension of the film is constrained by a rigid substrate, the reorientation is possible due to the additional degree of freedom in the orthorhombic phase.

  19. Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO_{3}.

    PubMed

    Kézsmárki, I; Nagel, U; Bordács, S; Fishman, R S; Lee, J H; Yi, Hee Taek; Cheong, S-W; Rõõm, T

    2015-09-18

    Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO_{3} over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.

  20. A Two-Dimensional Manganese Gallium Nitride Surface Structure Showing Ferromagnetism at Room Temperature.

    PubMed

    Ma, Yingqiao; Chinchore, Abhijit V; Smith, Arthur R; Barral, María Andrea; Ferrari, Valeria

    2018-01-10

    Practical applications of semiconductor spintronic devices necessitate ferromagnetic behavior at or above room temperature. In this paper, we demonstrate a two-dimensional manganese gallium nitride surface structure (MnGaN-2D) which is atomically thin and shows ferromagnetic domain structure at room temperature as measured by spin-resolved scanning tunneling microscopy and spectroscopy. Application of small magnetic fields proves that the observed magnetic domains follow a hysteretic behavior. Two initially oppositely oriented MnGaN-2D domains are rotated into alignment with only 120 mT and remain mostly in alignment at remanence. The measurements are further supported by first-principles theoretical calculations which reveal highly spin-polarized and spin-split surface states with spin polarization of up to 95% for manganese local density of states.

  1. Room Temperature Antiferromagnetic Ordering of Nanocrystalline Tb1.90Ni0.10O3

    NASA Astrophysics Data System (ADS)

    Mandal, J.; Dalal, M.; Sarkar, B. J.; Chakrabarti, P. K.

    2017-02-01

    Nanocrystalline Ni-doped terbium oxide (Tb1.90Ni0.10O3) has been synthesized by the co-precipitation method followed by annealing at 700°C for 6 h in vacuum. The crystallographic phase and the substitution of Ni2+ ions in the lattice of Tb2O3 are confirmed by Rietveld analysis of the x-ray diffraction pattern using the software MAUD. High-resolution transmission electron microscopy is also carried out to study the morphology of the sample. Magnetic measurements are carried out at different temperatures from 5 K to 300 K using a superconducting quantum interference device (SQUID) magnetometer. The dependence of the magnetization of Tb1.90Ni0.10O3 as a function of temperature ( M- T) and magnetic field ( M- H) suggests the presence of both paramagnetic and antiferromagnetic phase at room temperature, but antiferromagnetic phase dominates below ˜120 K. The lack of saturation in the M- H curve and good fitting of the M- T curve by the Johnston formula also indicate the presence of both paramagnetic and antiferromagnetic phase at room temperature. Interestingly, an antiferromagnetic to ferromagnetic phase transition is observed below ˜40 K. The result also shows a high value of magnetization at 5 K.

  2. Investigation of Room temperature Ferromagnetism in Mn doped Ge

    NASA Astrophysics Data System (ADS)

    Colakerol Arslan, Leyla; Toydemir, Burcu; Onel, Aykut Can; Ertas, Merve; Doganay, Hatice; Gebze Inst of Tech Collaboration; Research Center Julich Collaboration

    2014-03-01

    We present a systematic investigation of structural, magnetic and electronic properties of MnxGe1 -x single crystals. MnxGe1-x films were grown by sequential deposition of Ge and Mn by molecular-beam epitaxy at low substrate temperatures in order to avoid precipitation of ferromagnetic Ge-Mn intermetallic compounds. Reflected high energy electron diffraction and x-ray diffraction observations revealed that films are epitaxially grown on Si (001) substrates from the initial stage without any other phase formation. Magnetic measurements carried out using a physical property measurement system showed that all samples exhibited ferromagnetism at room temperature. Electron spin resonance indicates the presence of magnetically ordered localized spins of divalent Mn ions. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ge-sites. The ferromagnetism was mainly induced by Mn substitution for Ge site, and indirect exchange interaction of these magnetic ions with the intrinsic charge carriers is the origin of ferromagnetism. The magnetic interactions were better understood by codoping with nonmagnetic impurities. This work was supported by Marie-Curie Reintegration Grant (PIRG08-GA-2010-276973).

  3. Non-local electrical spin injection and detection in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  4. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature

    PubMed Central

    Kumar, Ashok; Scott, J. F.; Katiyar, R. S.

    2011-01-01

    Here, we report the tuning of room-temperature magnon frequencies from 473 GHz to 402 GHz (14%) and magnetic moment from 4 to 18 emu∕cm3 at 100 Oe under the application of external electric fields (E) across interdigital electrodes in BiFeO3 (BFO) thin films. A decrease in magnon frequencies and increase in phonon frequencies were observed with Magnon and phonon Raman intensities are asymmetric with polarity, decreasing with positive E (+E) and increasing with negative E (−E) where polarity is with respect to in-plane polarization P. The magnetoelectric coupling (α) is proved to be linear and a rather isotropic α = 8.5 × 10−12 sm−1. PMID:21901050

  5. Investigation of room temperature ferromagnetic nanoparticles of Gd 5Si 4

    DOE PAGES

    Hadimani, R. L.; Gupta, S.; Harstad, S. M.; ...

    2015-07-06

    Gd 5(Si xGe 1-x) 4 compounds undergo first-order phase transitions close to room temperature when x ~ = 0.5, which are accompanied by extreme changes of properties. We report the fabrication of the nanoparticles of one of the parent compounds-Gd 5Si 4-using high-energy ball milling. Crystal structure, microstructure, and magnetic properties have been investigated. Particles agglomerate at long milling times, and the particles that are milled >20 min lose crystallinity and no longer undergo magnetic phase transition close to 340 K, which is present in a bulk material. The samples milled for >20 min exhibit a slightly increased coercivity. Asmore » a result, magnetization at a high temperature of 275K decreases with the increase in the milling time.« less

  6. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    ERIC Educational Resources Information Center

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  7. Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films

    NASA Astrophysics Data System (ADS)

    Tolley, R.; Montoya, S. A.; Fullerton, E. E.

    2018-04-01

    We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface, resulting in reduced saturation magnetization, magnetic anisotropy, and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3 μ m and transport measurements demonstrate these features can be displaced by means of spin-orbit torques with current densities as low as J =2 ×108A / m2 and display a skyrmion Hall effect.

  8. Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material

    PubMed Central

    Ma, Shuailing; Bao, Kuo; Tao, Qiang; Zhu, Pinwen; Ma, Teng; Liu, Bo; Liu, Yazhou; Cui, Tian

    2017-01-01

    We synthesized orthorhombic FeB-type MnB (space group: Pnma) with high pressure and high temperature method. MnB is a promising soft magnetic material, which is ferromagnetic with Curie temperature as high as 546.3 K, and high magnetization value up to 155.5 emu/g, and comparatively low coercive field. The strong room temperature ferromagnetic properties stem from the positive exchange-correlation between manganese atoms and the large number of unpaired Mn 3d electrons. The asymptotic Vickers hardness (AVH) is 15.7 GPa which is far higher than that of traditional ferromagnetic materials. The high hardness is ascribed to the zigzag boron chains running through manganese lattice, as unraveled by X-ray photoelectron spectroscopy result and first principle calculations. This exploration opens a new class of materials with the integration of superior mechanical properties, lower cost, electrical conductivity, and fantastic soft magnetic properties which will be significant for scientific research and industrial application as advanced structural and functional materials. PMID:28262805

  9. Room temperature electrical spin injection into GaAs by an oxide spin injector

    PubMed Central

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2014-01-01

    Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time τ ~ 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of τ. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a τ of ~0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices. PMID:24998440

  10. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Guobin; Li, Xiaofeng; Sun, Xianping; Feng, Jiwen; Ye, Chaohui; Zhou, Xin

    2013-12-01

    We present a Cs atomic magnetometer with a sensitivity of 150 fT/Hz1/2 operating near room temperature. The nuclear magnetic resonance (NMR) signal of 125 μL tap water was detected at an ultralow magnetic field down to 47 nT, with the signal-to-noise ratio (SNR) of the NMR signal approaching 50 after eight averages. Relaxivity experiments with a Gd(DTPA) contrast agent in zero field were performed, in order to show the magnetometer's ability to measure spin-lattice relaxation time with high accuracy. This demonstrates the feasibility of an ultralow field NMR spectrometer based on a Cs atomic magnetometer, which has a low working temperature, short data acquisition time and high sensitivity. This kind of NMR spectrometer has great potential in applications such as chemical analysis and magnetic relaxometry detection in ultralow or zero fields.

  11. Proposal for a room-temperature diamond maser

    PubMed Central

    Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao

    2015-01-01

    The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758

  12. Microwave SQUID Multiplexing of Metallic Magnetic Calorimeters: Status of Multiplexer Performance and Room-Temperature Readout Electronics Development

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Karcher, N.; Krömer, O.; Richter, D.; Ahrens, F.; Sander, O.; Kempf, S.; Weber, M.; Enss, C.

    2018-02-01

    To our present best knowledge, microwave SQUID multiplexing (μ MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to 100% as well as a highly linear detector response is based on μ MUXing. Within this paper, we summarize the state of the art in MMC μ MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.

  13. Characterization of the magnetic properties of NdFeB thick films exposed to elevated temperatures

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ryogen; Devillers, Thibaut; Givord, Dominique; Dempsey, Nora M.

    2018-05-01

    Hard magnetic films used in magnetic micro-systems may be exposed to elevated temperatures during film and system fabrication and also during use of the micro-system. In this work, we studied the influence of temperature on the magnetic properties of 10 μm thick out-of-plane textured NdFeB films fabricated by high rate triode sputtering. Out-of-plane hysteresis loops were measured in the range 300K - 650K to establish the temperature dependence of coercivity, magnetization at 7 T and remanent magnetization. Thermal demagnetization was measured and magnetization losses were recorded from 350K in films heated under zero or low (-0.1 T) external field and from 325 K for films heated under an external field of -0.5 T. The effect of thermal cycling under zero field on the remanent magnetization was also studied and it was found that cycling between room temperature and 323 K did not lead to any significant loss in remanence at room temperature, while a 4% drop is recorded when the sample is cycled between RT and 343K. Measurement of hysteresis loops at room temperature following exposure to elevated temperatures reveals that while remanent magnetisation is practically recovered in all cases, irreversible losses in coercivity occur (6.7 % following heating to 650K, and 1.3 % following heating to 343K). The relevance of these results is discussed in terms of system fabrication and use.

  14. Room temperature ferromagnetic and semiconducting properties of graphene adsorbed with cobalt oxide using electrochemical method

    NASA Astrophysics Data System (ADS)

    Park, Chang-Soo; Lee, Kyung Su; Chu, Dongil; Lee, Juwon; Shon, Yoon; Kim, Eun Kyu

    2017-12-01

    We report the room temperature ferromagnetic properties of graphene adsorbed by cobalt oxide using electrochemical method. The cobalt oxide doping onto graphene was carried out in 0.1 M LiCoO2/DI-water solution. The doped graphene thin film was determined to be a single layer from Raman analysis. The CoO doped graphene has a clear ferromagnetic hysteresis at room temperature and showed a remnant magnetization, 128.2 emu/cm3. The temperature dependent conductivity of the adsorbed graphene showed the semiconducting behavior and a band gap opening of 0.12 eV.

  15. Lead palladium titanate: A room-temperature multiferroic

    NASA Astrophysics Data System (ADS)

    Gradauskaite, Elzbieta; Gardner, Jonathan; Smith, Rebecca M.; Morrison, Finlay D.; Lee, Stephen L.; Katiyar, Ram S.; Scott, James F.

    2017-09-01

    There have been a large number of papers on bismuth ferrite (BiFe O3 ) over the past few years, trying to exploit its room-temperature magnetoelectric multiferroic properties. Although these are attractive, BiFe O3 is not the ideal multiferroic due to weak magnetization and the difficulty in limiting leakage currents. Thus there is an ongoing search for alternatives, including such materials as gallium ferrite (GaFe O3 ). In the present work we report a comprehensive study of the perovskite PbT i1 -xP dxO3 with 0 magnetization measurements, conductivity analysis, and study of crystallographic phases present in the samples, with special attention paid to minor phases identified as PdO, PbPd O2 , and P d3Pb . The work is remarkable in two ways: Pd is difficult to substitute into A B O3 perovskite oxides (where it might be useful for catalysis), and Pd is magnetic under only unusual conditions (under strain or internal electric fields).

  16. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Scooter D., E-mail: scooter.johnson@nrl.navy.mil; Glaser, Evan R.; Cheng, Shu-Fan

    Highlights: • We deposit yttrium iron garnet films at room temperature using aerosol deposition. • Films are 96% of theoretical density for yttrium iron garnet. • We report magnetic and structural properties post-deposition and post-annealing. • Low-temperature annealing decreases the FMR linewidth. • We discuss features of the FMR spectra at each anneal temperature. - Abstract: We have employed aerosol deposition to form polycrystalline yttrium iron garnet (YIG) films on sapphire at room temperature that are 90–96% dense. We characterize the structural and dynamic magnetic properties of the dense films using scanning electron microscopy, X-ray diffraction, and ferromagnetic resonance techniques.more » We find that the as-deposited films are pure single-phase YIG formed of compact polycrystallites ∼20 nm in size. The ferromagnetic resonance mode occurs at 2829 G with a linewidth of 308 G. We perform a series of successive anneals up to 1000 °C on a film to explore heat treatment on the ferromagnetic resonance linewidth. We find the narrowest linewidth of 98 G occurs after a 750 °C anneal.« less

  17. Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods

    NASA Astrophysics Data System (ADS)

    Sakthiraj, K.; Hema, M.; Balachandrakumar, K.

    2016-04-01

    The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol-gel, microwave assisted sol-gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6-12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M-H curve of all the samples. But the sol-gel derived sample shows the higher values of saturation magnetization (Ms) and remanence (Mr) than other two samples. This study reveals that the sol-gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.

  18. Toward realizing high power semiconductor terahertz laser sources at room temperature

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    2011-05-01

    The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (~ 36 meV) in this material system. With a much larger LO-phonon energy of ~ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths.

  19. Optical diode effect at spin-wave excitations in the room-temperature multiferroic BiFeO 3.

    DOE PAGES

    Kezsmarki, I.; Nagel, U.; Bordacs, S.; ...

    2015-09-15

    The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO 3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Ourmore » findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.« less

  20. Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential

    NASA Astrophysics Data System (ADS)

    Haber, E.; Badea, R.; Berezovsky, J.

    2018-05-01

    The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.

  1. Comparative studies on the room-temperature ferrielectric and ferrimagnetic Ni3TeO6-type A2FeMoO6 compounds (A = Sc, Lu)

    PubMed Central

    Song, Guang; Zhang, Weiyi

    2016-01-01

    First-principles calculations have been carried out to study the structural, electric, and magnetic properties of Ni3TeO6-type A2FeMoO6 compounds (A = Sc, Lu). Their electric and magnetic properties behave like room-temperature ferrielectric and ferrimagnetic insulators where polarization comes from the un-cancelled antiparallel dipoles of (A(1), Fe3+) and (A(2), Mo3+) ion groups, and magnetization from un-cancelled antiparallel moments of Fe3+ and Mo3+ ions. The net polarization increases with A’s ionic radius and is 7.1 and 8.7 μCcm−2 for Sc2FeMoO6 and Lu2FeMoO6, respectively. The net magnetic moment is 2 μB per formula unit. The magnetic transition temperature is estimated well above room-temperature due to the strong antiferromagnetic superexchange coupling among Fe3+ and Mo3+ spins. The estimated paraelectric to ferrielectric transition temperature is also well above room-temperature. Moreover, strong magnetoelectric coupling is also anticipated because the magnetic ions are involved both in polarization and magnetization. The fully relaxed Ni3TeO6-type A2FeMoO6 structures are free from soft-phonon modes and correspond to stable structures. As a result, Ni3TeO6-type A2FeMoO6 compounds are possible candidates for room-temperature multiferroics with large magnetization and polarization. PMID:26831406

  2. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

  3. High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature.

    PubMed

    Trifunovic, Luka; Pedrocchi, Fabio L; Hoffman, Silas; Maletinsky, Patrick; Yacoby, Amir; Loss, Daniel

    2015-06-01

    Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science such as biology, chemistry, neuroscience and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made sufficiently small. Here, we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen-vacancy magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques that are already experimentally available, our proposed set-up is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micrometre. This scheme further benefits when used for nitrogen-vacancy ensemble measurements, enhancing sensitivity by an additional three orders of magnitude.

  4. Stability of procalcitonin at room temperature.

    PubMed

    Milcent, Karen; Poulalhon, Claire; Fellous, Christelle Vauloup; Petit, François; Bouyer, Jean; Gajdos, Vincent

    2014-01-01

    The aim was to assess procalcitonin (PCT) stability after two days of storage at room temperature. Samples were collected from febrile children aged 7 to 92 days and were rapidly frozen after sampling. PCT levels were measured twice after thawing: immediately (named y) and 48 hours later after storage at room temperature (named x). PCT values were described with medians and interquartile ranges or by categorizing them into classes with thresholds 0.25, 0.5, and 2 ng/mL. The relationship between x and y PCT levels was analyzed using fractional polynomials in order to predict the PCT value immediately after thawing (named y') from x. A significant decrease in PCT values was observed after 48 hours of storage at room temperature, either in median, 30% lowering (p < 0.001), or as categorical variable (p < 0.001). The relationship between x and y can be accurately modeled with a simple linear model: y = 1.37 x (R2 = 0.99). The median of the predicted PCT values y' was quantitatively very close to the median of y and the distributions of y and y' across categories were very similar and not statistically different. PCT levels noticeably decrease after 48 hours of storage at room temperature. It is possible to pre- dict accurately effective PCT values from the values after 48 hours of storage at room temperature with a simple statistical model.

  5. Giant volume magnetostriction in the Y{sub 2}Fe{sub 17} single crystal at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, S. A., E-mail: nikitin@phys.msu.ru; Pankratov, N. Yu.; Smarzhevskaya, A. I.

    2015-05-21

    An investigation of the Y{sub 2}Fe{sub 17} compound belonging to the class of intermetallic alloys of rare-earth and 3d-transition metals is presented. The magnetization, magnetostriction, and thermal expansion of the Y{sub 2}Fe{sub 17} single crystal were studied. The forced magnetostriction and magnetostriction constants were investigated in the temperature range of the magnetic ordering close to the room temperature. The giant field induced volume magnetostriction was discovered in the room temperature region in the magnetic field up to 1.2 T. The contributions of both anisotropic single-ion and isotropic pair exchange interactions to the volume magnetostriction and magnetostriction constants were determined. The experimentalmore » results were interpreted within the framework of the Standard Theory of Magnetostriction and the Landau thermodynamic theory. It was found out that the giant values of the volume magnetostriction were caused by the strong dependence of the 3d-electron Coulomb charge repulsion on the deformations and width of the 3d-electron energy band.« less

  6. Room-Temperature Creation and Spin–Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang

    2016-03-09

    Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB–MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise tomore » a force acting on the skyrmions, in addition to the current-induced spin–orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.« less

  7. Room-Temperature Creation and Spin–Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang

    2016-02-10

    Magnetic skyrmions, which are topologically protected spin textures, are promising candidates for ultralow-energy and ultrahigh-density magnetic data storage and computing applications. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of available materials is limited, and there is a lack of electrical means to control skyrmions in devices. In this work, we demonstrate a new method for creating a stable skyrmion bubble phase in the CoFeB–MgO material system at room temperature, by engineering the interfacial perpendicular magnetic anisotropy of the ferromagnetic layer. Importantly, we also demonstrate that artificially engineered symmetry breaking gives rise tomore » a force acting on the skyrmions, in addition to the current-induced spin–orbit torque, which can be used to drive their motion. This room-temperature creation and manipulation of skyrmions offers new possibilities to engineer skyrmionic devices. The results bring skyrmionic memory and logic concepts closer to realization in industrially relevant and manufacturable thin film material systems.« less

  8. Room-temperature ferromagnetism in hydrogenated ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Xue, Xudong; Liu, Liangliang; Wang, Zhu; Wu, Yichu

    2014-01-01

    The effect of hydrogen doping on the magnetic properties of ZnO nanoparticles was investigated. Hydrogen was incorporated by annealing under 5% H2 in Ar ambient at 700 °C. Room-temperature ferromagnetism was induced in hydrogenated ZnO nanoparticles, and the observed ferromagnetism could be switched between "on" and "off" states through hydrogen annealing and oxygen annealing process, respectively. It was found that Zn vacancy and OH bonding complex (VZn + OH) was crucial to the observed ferromagnetism by using the X-ray photoelectron spectroscopy and positron annihilation spectroscopy analysis. Based on first-principles calculations, VZn + OH was favorable to be presented due to the low formation energy. Meanwhile, this configuration could lead to a magnetic moment of 0.57 μB. The Raman and photoluminescence measurements excluded the possibility of oxygen vacancy as the origin of the ferromagnetism.

  9. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ikhlas, Muhammad; Tomita, Takahiro; Koretsune, Takashi; Suzuki, Michi-To; Nishio-Hamane, Daisuke; Arita, Ryotaro; Otani, Yoshichika; Nakatsuji, Satoru

    2017-11-01

    A temperature gradient in a ferromagnetic conductor can generate a transverse voltage drop perpendicular to both the magnetization and heat current. This anomalous Nernst effect has been considered to be proportional to the magnetization, and thus observed only in ferromagnets. Theoretically, however, the anomalous Nernst effect provides a measure of the Berry curvature at the Fermi energy, and so may be seen in magnets with no net magnetization. Here, we report the observation of a large anomalous Nernst effect in the chiral antiferromagnet Mn 3Sn (ref. ). Despite a very small magnetization ~0.002 μB per Mn, the transverse Seebeck coefficient at zero magnetic field is ~0.35 μV K-1 at room temperature and reaches ~0.6 μV K-1 at 200 K, which is comparable to the maximum value known for a ferromagnetic metal. Our first-principles calculations reveal that this arises from a significantly enhanced Berry curvature associated with Weyl points near the Fermi energy. As this effect is geometrically convenient for thermoelectric power generation--it enables a lateral configuration of modules to cover a heat source--these observations suggest that a new class of thermoelectric materials could be developed that exploit topological magnets to fabricate efficient, densely integrated thermopiles.

  10. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3-δ

    NASA Astrophysics Data System (ADS)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.

    2018-05-01

    Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

  11. Mobile Neel skyrmions at room temperature: Status and future

    DOE PAGES

    Jiang, Wanjun; Zhang, Wei; Yu, Guoqiang; ...

    2016-03-07

    Magnetic skyrmions are topologically protected spin textures that exhibit many fascinating features. As compared to the well-studied cryogenic Bloch skyrmions in bulk materials, we focus on the room- temperature Néel skyrmions in thin-film systems with an interfacial broken inversion symmetry in this article. Specifically, we show the stabilization, the creation, and the implementation of Néel skyrmions that are enabled by the electrical current-induced spin-orbit torques. As a result, towards the nanoscale Néel skyrmions, we further discuss the challenges from both material optimization and imaging characterization perspectives.

  12. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co 2TiX (X=Si, Ge, or Sn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Guoqing; Xu, Su -Yang; Zheng, Hao

    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co 2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that,more » in the absence of spin-orbit coupling, Co 2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Lastly, our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co 2TiX compounds at high temperature.« less

  13. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co 2TiX (X=Si, Ge, or Sn)

    DOE PAGES

    Chang, Guoqing; Xu, Su -Yang; Zheng, Hao; ...

    2016-12-15

    Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co 2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that,more » in the absence of spin-orbit coupling, Co 2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Lastly, our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co 2TiX compounds at high temperature.« less

  14. Room-temperature electron spin amplifier based on Ga(In)NAs alloys.

    PubMed

    Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M

    2013-02-06

    The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOx barriers

    DOE PAGES

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.; ...

    2018-02-13

    Perpendicular magnetic tunnel junctions with GdO X tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here we investigate the quality of the GdO X barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlO X and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence includingmore » sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.« less

  16. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOx barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.

    Perpendicular magnetic tunnel junctions with GdO X tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here we investigate the quality of the GdO X barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlO X and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence includingmore » sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.« less

  17. New Low-Temperature Magnetic Data Acquired on Synthetic Lepidocrocite

    NASA Astrophysics Data System (ADS)

    Guyodo, Y.; Bonville, P.; Ona-Nguema, G.; Carvallo, C.; Wang, Y.; Morin, G.

    2007-12-01

    Lepidocrocite (γ-FeOOH) is an iron oxyhydroxide commonly found in the environment, which is assumed to be antiferromagnetic with a small ferromagnetic-like behavior and a Néel temperature of about 50K (e.g., Hirt et al., 2002, JGR, 107, 10.1029/2001JB000242). It is currently used as starting material in bio- reduction experiments leading to the formation of Fe(II)-bearing minerals such as green rusts, magnetite, and siderite (e.g., Ona-Nguema et al., 2002, Environ. Sci. Technol., 36, 16-20). Both initial and resulting materials are being characterized using various techniques including low-temperature magnetic methods. At this meeting, results obtained on the initial synthetic lepidocrocite samples will be presented, which describe an unusual magnetic behavior. In particular, field cooled and zero field cooled induced magnetization curves (obtained using a 5mT magnetic induction) merge at a temperature around 150K (well above 50K). Below this temperature, the difference between the two curves can be qualified as a remanent magnetization, acquired during cooling of the sample in the presence of a magnetic field. As a consequence, some ferromagnetic-like behavior persists at temperatures above the admitted Néel temperature. The cooling/warming cycle of the room temperature remanent magnetization (acquired using a 2.5T magnetic induction) also indicates that some remanence can be acquired well above that temperature. Other types of measurement have been performed in order to better constrain the low-temperature magnetic behavior of these samples, in particular using a high-field VSM.

  18. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

    NASA Astrophysics Data System (ADS)

    Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-01

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  19. A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity.

    PubMed

    Fernández-Posada, Carmen M; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey

    2016-09-28

    There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO 3 -BiCoO 3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO 3 -BiMnO 3 -PbTiO 3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

  20. Temperature dependence dynamical permeability characterization of magnetic thin film using near-field microwave microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.

    2011-08-01

    A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.

  1. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    NASA Astrophysics Data System (ADS)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  2. 230% room-temperature magnetoresistance in CoFeB /MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Djayaprawira, David D.; Tsunekawa, Koji; Nagai, Motonobu; Maehara, Hiroki; Yamagata, Shinji; Watanabe, Naoki; Yuasa, Shinji; Suzuki, Yoshishige; Ando, Koji

    2005-02-01

    Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.

  3. Bose-Einstein condensation of spin wave quanta at room temperature.

    PubMed

    Dzyapko, O; Demidov, V E; Melkov, G A; Demokritov, S O

    2011-09-28

    Spin waves are delocalized excitations of magnetic media that mainly determine their magnetic dynamics and thermodynamics at temperatures far below the critical one. The quantum-mechanical counterparts of spin waves are magnons, which can be considered as a gas of weakly interacting bosonic quasi-particles. Here, we discuss the room-temperature kinetics and thermodynamics of the magnon gas in yttrium iron garnet films driven by parametric microwave pumping. We show that for high enough pumping powers, the thermalization of the driven gas results in a quasi-equilibrium state described by Bose-Einstein statistics with a non-zero chemical potential. Further increases of the pumping power cause a Bose-Einstein condensation documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the Brillouin light scattering spectroscopy to the degree of coherence of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, occurring if their density exceeds a critical value.

  4. Mechanical Behaviour of 304 Austenitic Stainless Steel Processed by Room Temperature Rolling

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Goel, Sunkulp; Verma, Raviraj; Jayaganthan, R.; Kumar, Abhishek

    2018-03-01

    To study the effect of room temperature rolling on mechanical properties of 304 Austenitic Stainless Steel, the as received 304 ASS was rolled at room temperature for different percentage of plastic deformation (i.e. 30, 50, 70 and 90 %). Microstructural study, tensile and hardness tests were performed in accordance with ASTM standards to study the effect of rolling. The ultimate tensile strength (UTS) and hardness of a rolled specimen have enhanced with rolling. The UTS has increased from 693 MPa (as received) to 1700 MPa (after 90% deformation). The improvement in UTS of processed samples is due to combined effect of grain refinement and stress induced martensitic phase transformation. The hardness values also increases from 206 VHN (as received) to 499 VHN (after 90% deformation). Magnetic measurements were also conducted to confirm the formation of martensitic phase.

  5. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Shukla, Satyajit V. (Inventor); Cho, Hyoung (Inventor); Seal, Sudipta (Inventor); Ludwig, Lawrence (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  6. Demonstration of Ru as the 4th ferromagnetic element at room temperature.

    PubMed

    Quarterman, P; Sun, Congli; Garcia-Barriocanal, Javier; Dc, Mahendra; Lv, Yang; Manipatruni, Sasikanth; Nikonov, Dmitri E; Young, Ian A; Voyles, Paul M; Wang, Jian-Ping

    2018-05-25

    Development of novel magnetic materials is of interest for fundamental studies and applications such as spintronics, permanent magnetics, and sensors. We report on the first experimental realization of single element ferromagnetism, since Fe, Co, and Ni, in metastable tetragonal Ru, which has been predicted. Body-centered tetragonal Ru phase is realized by use of strain via seed layer engineering. X-ray diffraction and electron microscopy confirm the epitaxial mechanism to obtain tetragonal phase Ru. We observed a saturation magnetization of 148 and 160 emu cm -3 at room temperature and 10 K, respectively. Control samples ensure the ferromagnetism we report on is from tetragonal Ru and not from magnetic contamination. The effect of thickness on the magnetic properties is also studied, and it is observed that increasing thickness results in strain relaxation, and thus diluting the magnetization. Anomalous Hall measurements are used to confirm its ferromagnetic behavior.

  7. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)

    DOE PAGES

    Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; ...

    2011-12-05

    Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr 0.53Ti 0.47O 3) (1-x)- (PbFe 0.5Ta 0.5O 3) x. Our study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C 2v-C 4v (Pmm2-P4mm) transition. Furthermore, the material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization P r = 25 μC/cm 2, whichmore » actually increases (to 40 μC/cm 2) in the high-T tetragonal phase, representing an exciting new room temperature oxide multiferroic to compete with BiFeO 3. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. Finally, these are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.« less

  8. Electronic structure, optical and magnetic studies of PLD-grown (Mn, P)-doped ZnO nanocolumns at room temperature

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Ho, T. A.; Dang, N. T.; Nguyen, Manh Cuong; Dao, Van-Duong

    2017-07-01

    We prepared well-aligned Zn1-x Mn x O:yP nanocolumns (x  =  0-0.02, and y  =  0 and 1 mol%) on SiO2/Si(0 0 1) substrates by using pulsed laser deposition (PLD) and then investigated their electronic structure and optical and magnetic properties at room temperature. The analyses of x-ray photoelectron and x-ray absorption fine structure spectra revealed Mn2+ and/or P ions existing in nanocolumns, where Mn2+ ions are situated in the Zn2+ site of the ZnO-wurtzite structure. Although the incorporation of Mn2+ and/or P ions did not form secondary phases, as confirmed by x-ray and electron diffraction patterns, more lattice defects were created, and consequently changed the band-gap energy as well as the electron-phonon interactions in the nanocolumns. Magnetization versus magnetic-field measurements revealed that all the samples exhibited FM order. In particular, the (Mn, P) co-doping with x  =  0.02 and y  =  1 remarkably enhanced the magnetic moment up to 2.92 µ B/Mn. Based on the results obtained from analyzing the electronic structures, UV-Vis absorption and resonant Raman scattering spectra, and theoretical calculations, we believe that the enhancement of the FM order in (Mn, P)-doped ZnO nanocolumns is due to exchange interactions taking place between vacancy-mediated Mn2+ ions.

  9. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    PubMed

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  10. Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50 keV nitrogen implanted rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.

    2018-02-01

    Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.

  11. Origin of Ferrimagnetism and Ferroelectricity in Room-Temperature Multiferroic ɛ -Fe2O3

    NASA Astrophysics Data System (ADS)

    Xu, K.; Feng, J. S.; Liu, Z. P.; Xiang, H. J.

    2018-04-01

    Exploring and identifying room-temperature multiferroics is critical for developing better nonvolatile random-access memory devices. Recently, ɛ -Fe2O3 was found to be a promising room-temperature multiferroic with a large polarization and magnetization. However, the origin of the multiferroicity in ɛ -Fe2O3 is still puzzling. In this work, we perform density-functional-theory calculations to reveal that the spin frustration between tetrahedral-site Fe3 + spins gives rise to the unexpected ferrimagnetism. For the ferroelectricity, we identify a low-energy polarization switching path with an energy barrier of 85 meV /f .u . by performing a stochastic surface walking simulation. The switching of the ferroelectric polarization is achieved by swapping the tetrahedral Fe ion with the octahedral Fe ion, different from the usual case (e.g., in BaTiO3 and BiFeO3 ) where the coordination number remains unchanged after the switching. Our results not only confirm that ɛ -Fe2O3 is a promising room-temperature multiferroic but also provide guiding principles to design high-performance multiferroics.

  12. Effect of magnetic dipolar interactions on temperature dependent magnetic hyperthermia in ferrofluids

    NASA Astrophysics Data System (ADS)

    Palihawadana-Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman M.; Naik, Ratna

    2017-01-01

    Magnetic hyperthermia (MHT), where localized heating is generated when magnetic nanoparticles (MNPs) are subjected to a radiofrequency magnetic field, has a great potential as a non-invasive cancer therapy treatment. The efficiency of heat generation depends on the magnetic properties of MNPs, such as saturation magnetization (Ms) and magnetic anisotropy (K), as well as the particle size distribution and magnetic dipolar interactions. We have investigated MHT in two Fe3O4 ferrofluids prepared by co-precipitation (CP) and hydrothermal (HT) synthesis methods showing similar physical particle size distribution (14 ± 4 nm) and saturation magnetization (70 ± 2 emu/g of Fe3O4) but very different specific absorption rates (SAR) of ˜110 W/g and ˜40 W/g at room temperature (measured with an ac magnetic field amplitude of 240 Oe and a frequency of 375 kHz). This observed reduction in SAR has been explained by taking into account the dipolar interactions and the distribution of the magnetic core size of MNPs in ferrofluids. The HT ferrofluid shows a higher effective dipolar interaction and a wider distribution of the magnetic core size of MNPs compared to those of the CP ferrofluid. We have fitted the temperature dependent SAR data using the linear response theory, incorporating an effective dipolar interaction, to determine the magnetic anisotropy constant of MNPs prepared by CP (22 ± 2 kJ/m3) and HT (26 ± 2 kJ/m3) synthesis methods. These values are in good agreement with the magnetic anisotropy constant determined using frequency and temperature dependent magnetic susceptibility data obtained on powder samples.

  13. Room-temperature ductile inorganic semiconductor.

    PubMed

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag 2 S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  14. Room-temperature ductile inorganic semiconductor

    NASA Astrophysics Data System (ADS)

    Shi, Xun; Chen, Hongyi; Hao, Feng; Liu, Ruiheng; Wang, Tuo; Qiu, Pengfei; Burkhardt, Ulrich; Grin, Yuri; Chen, Lidong

    2018-05-01

    Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  15. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19

    NASA Astrophysics Data System (ADS)

    Tang, Rujun; Zhou, Hao; You, Wenlong; Yang, Hao

    2016-08-01

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe10.2Sc1.8O19 have been investigated. The results show that the magnetic moments of insulating BaFe10.2Sc1.8O19 can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominant mechanism. The above results show that the hexaferrite BaFe10.2Sc1.8O19 is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.

  16. Room temperature ferroelectricity in fluoroperovskite thin films.

    PubMed

    Yang, Ming; Kc, Amit; Garcia-Castro, A C; Borisov, Pavel; Bousquet, E; Lederman, David; Romero, Aldo H; Cen, Cheng

    2017-08-03

    The NaMnF 3 fluoride-perovskite has been found, theoretically, to be ferroelectric under epitaxial strain becoming a promising alternative to conventional oxides for multiferroic applications. Nevertheless, this fluoroperovskite has not been experimentally verified to be ferroelectric so far. Here we report signatures of room temperature ferroelectricity observed in perovskite NaMnF 3 thin films grown on SrTiO 3 . Using piezoresponse force microscopy, we studied the evolution of ferroelectric polarization in response to external and built-in electric fields. Density functional theory calculations were also performed to help understand the strong competition between ferroelectric and paraelectric phases as well as the profound influences of strain. These results, together with the magnetic order previously reported in the same material, pave the way to future multiferroic and magnetoelectric investigations in fluoroperovskites.

  17. [Studies on the health standard for room temperature in cold regions].

    PubMed

    Meng, Z L

    1990-03-01

    The microclimate of 205 rooms of single storey houses in four new rural residential districts in coastal and inland Shandong was monitored and studied the blood circulation of the finger, skin temperature, sweating function and other physiological indexes among 2,401 peasants. We interrogated their personal sensation to cold and warmth. The count was done by the application of thermal equilibrium index (TEI), predicted 4-hour Sweat Rate (P4SR) and the uncomfortable index. The standard room temperature is recommended as follows. In rural area in winter the appropriate room temperature is 14-16 degrees C, the comfortable room temperature is 16-20 degrees C, the lowest room temperature must not be below 14 degrees C. In summer the appropriate room temperature is 25-28 degrees C, the comfortable room temperature is 26-27 degrees C, the highest temperature must not be above 28 degrees C.

  18. Synthesis of low-moment CrVTiAl: a potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, Gregory; Wolfsberg, Jacob; McDonald, Ian; Lejeune, Brian; Lewis, Laura; Heiman, Don

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials - semiconductors with unequal band gaps for each spin channel - can generate spin-polarized current without the need for spin-polarizing electrodes. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing fringing fields to interfere with neighboring components. Several quaternary Heusler compounds have recently been predicted to have spin-filter properties and Curie temperatures TC >1000 K. In this work, CrVTiAl has been synthesized in the Y-type Heusler structure, as confirmed by X-ray diffractometry. Magnetization measurements exhibit an exceptionally small temperature-independent moment of 10-3μB /f.u. up to 400 K, a result that is consistent with zero-moment ferrimagnetism. In addition, temperature dependent resistivity measurements reveal the existence of a semiconducting conduction channel. These results suggest that CrVTiAl is a promising candidate for future spintronic devices.

  19. The heat is on: room temperature affects laboratory equipment--an observational study.

    PubMed

    Butler, Julia M; Johnson, Jane E; Boone, William R

    2013-10-01

    To evaluate the effect of ambient room temperature on equipment typically used in in vitro fertilization (IVF). We set the control temperature of the room to 20 °C (+/-0.3) and used CIMScan probes to record temperatures of the following equipment: six microscope heating stages, four incubators, five slide warmers and three heating blocks. We then increased the room temperature to 26 °C (+/-0.3) or decreased it to 17 °C (+/-0.3) and monitored the same equipment again. We wanted to determine what role, if any, changing room temperature has on equipment temperature fluctuation. There was a direct relationship between room temperature and equipment temperature stability. When room temperature increased or decreased, equipment temperature reacted in a corresponding manner. Statistical differences between equipment were found when the room temperature changed. What is also noteworthy is that temperature of equipment responded within 5 min to a change in room temperature. Clearly, it is necessary to be aware of the affect of room temperature on equipment when performing assisted reproductive procedures. Room and equipment temperatures should be monitored faithfully and adjusted as frequently as needed, so that consistent culture conditions can be maintained. If more stringent temperature control can be achieved, human assisted reproduction success rates may improve.

  20. Crystal Structure of the Caged Magnetic Compound DyFe2Zn20 at Low Temperature Magnetic Ordering State

    NASA Astrophysics Data System (ADS)

    Kishii, Nobuya; Tateno, Shota; Ohashi, Masashi; Isikawa, Yosikazu

    We have carried out X-ray powder diffraction and thermal expansion measurements of the caged magnetic compound DyFe2Zn20. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks at 14 K correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. Although the temperature change of the lattice constant is isotropic, an anomalous behavior was observed in the thermal expansion coefficient around 15 K, while the anomaly around TC = 53 K is not clear. The results indicate that the volume change is not caused by the ferromagnetic interaction between Fe and Dy but by the exchange interaction between two Dy ions.

  1. Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki

    2018-05-01

    The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.

  2. Temperature characteristics and magnetization mechanism of Fe1.2Co films

    NASA Astrophysics Data System (ADS)

    Dong, Dashun; Fang, Qingqing; Wang, Wenwen; Yang, Jingjing

    2017-11-01

    Fe1.2Co films with various thicknesses were prepared on glass substrates by pulsed laser deposition (PLD). The Fe1.2Co crystal structure exhibited a preferred orientation in the <1 1 0> direction. Also, we found that changing the film thickness affected its magnetic properties and the formation of its reversed nucleus. By measuring magnetism-temperature (M-T) curves under applied field cooling (FC) and zero-field cooling (ZFC), we found that the mechanism of the formation and growth of the reversed nucleus played a main role in blocking the motion of domain walls: the mechanism was competition between a ferromagnetic phase (FM) and an anti-ferromagnetic phase (AFM) at 10-300 K. Moreover, we found that the reversed nucleus blocked the motion of magnetic domains more at 10 K than at 300 K. We suggest that the reversed nucleus affects the magnetism more at low temperatures, which causes the coercivity to be higher at low temperature than at room temperature. These results will help us to understand the magnetic properties and temperature characteristics of FeCo thin films.

  3. Synthesis of Water-Dispersible Mn2+ Functionalized Silicon Nanoparticles under Room Temperature and Atmospheric Pressure for Fluorescence and Magnetic Resonance Dual-Modality Imaging.

    PubMed

    Dou, Ya-Kun; Chen, Yang; He, Xi-Wen; Li, Wen-You; Li, Yu-Hao; Zhang, Yu-Kui

    2017-11-07

    Silicon nanoparticles (Si NPs) have been widely used in fluorescence imaging. However, rigorous synthesis conditions and the single modality imaging limit the further development of Si NPs in the field of biomedical imaging. Here, we reported a method for synthesizing water-dispersible Mn 2+ functionalized Si NPs (Mn-Si NPs) under mild experimental conditions for fluorescence and magnetic resonance dual-modality imaging. The whole synthesis process was completed under room temperature and atmospheric pressure, and no special and expensive equipment was required. The synthetic nanoparticles, with favorable pH stability, NaCl stability, photostability, and low toxicity, emitted green fluorescence (512 nm). At the same time, the nanoparticles also demonstrated excellent magnetic resonance imaging ability. In vitro, their T 1 -weighted magnetic resonance imaging effect was obvious, and the value of longitudinal relaxation degree r 1 reached 4.25 mM -1 s -1 . On the basis of their good biocompatibility, Mn-Si NPs were successfully used for the fluorescence imaging as well as magnetic resonance imaging in vivo.

  4. Room-Temperature Spin Polariton Diode Laser

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aniruddha; Baten, Md Zunaid; Iorsh, Ivan; Frost, Thomas; Kavokin, Alexey; Bhattacharya, Pallab

    2017-08-01

    A spin-polarized laser offers inherent control of the output circular polarization. We have investigated the output polarization characteristics of a bulk GaN-based microcavity polariton diode laser at room temperature with electrical injection of spin-polarized electrons via a FeCo /MgO spin injector. Polariton laser operation with a spin-polarized current is characterized by a threshold of ˜69 A / cm2 in the light-current characteristics, a significant reduction of the electroluminescence linewidth and blueshift of the emission peak. A degree of output circular polarization of ˜25 % is recorded under remanent magnetization. A second threshold, due to conventional photon lasing, is observed at an injection of ˜7.2 kA /cm2 . The variation of output circular and linear polarization with spin-polarized injection current has been analyzed with the carrier and exciton rate equations and the Gross-Pitaevskii equations for the condensate and there is good agreement between measured and calculated data.

  5. Full-Vector, Low-Temperature Magnetic Measurements of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Feinberg, J.; Sølheid, P.; Bowles, J. A.; Jackson, M. J.; Moskowitz, B. M.

    2010-12-01

    The magnetic properties of geologic materials offer insights into an enormous range of important geophysical phenomena ranging from core dynamics to paleoclimate. Low-temperature (<300 K) magnetic behavior can indicate the dominant magnetic mineral phases in a sample, determine the grain size distribution of the constituent magnetic minerals, and even reveal evidence of biogenic iron minerals. Low-temperature cycling across the magnetite Verwey transition is sometimes used to remove remanence associated with multi-domain grains, which is undesirable for paleointensity and other paleomagnetic experiments. Despite the utility of low-temperature magnetic data, probing these low-temperature phenomena from the perspective of understanding the underlying physical behavior has been hampered by instrumental limitations. Until now, nearly all measurements of low-temperature magnetization have been single-axis and are rarely done in true zero-field environments. Low-temperature remanence measurements at the Institute for Rock Magnetism (IRM) have been carried out almost exclusively on the Quantum Designs Magnetic Properties Measurement System (MPMS) where magnetization is measured only in the vertical direction, and “zero-fields” of up to 1 μT are common. The IRM - with funding from the Instrumentation and Facilities Program of the National Science Foundation, Earth Science Division, and in conjunction with ColdEdge Technologies (Allentown, Pennsylvania) - is developing a low-cost, cryogenic insert designed to work with a standard, horizontal-loading, 2G Enterprises magnetometer. Full three-axis measurements may now be made in ultra-low-field environments (nT) from ~17 K to room temperature. The design is compatible with both the large (7.6 cm) and small (4.2 cm) bore magnetometers, as well as many standard pulse magnetizers. Used in conjunction with the in-line degausser on the IRM’s pass-through magnetometer, it will ultimately be possible to acquire anhysteretic

  6. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases.

    PubMed

    Mascolo, Maria Cristina; Pei, Yongbing; Ring, Terry A

    2013-11-28

    Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C₂H₅)₄NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms) value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

  7. Preparation of Pd/Fe3O4 nanoparticles by use of Euphorbia stracheyi Boiss root extract: A magnetically recoverable catalyst for one-pot reductive amination of aldehydes at room temperature.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2016-02-15

    We describe a method for supporting palladium nanoparticles on magnetic nanoparticles using Euphorbia stracheyi Boiss root extract as the natural source of reducing and stabilizing agent. The progress of the reaction was monitored using UV-visible spectroscopy. The nanocatalyst was characterized by FE-SEM, TEM, XRD, EDS, FT-IR spectroscopy and ICP. The nanocatalyst was applied as an efficient, magnetically recoverable, highly reusable and heterogeneous catalyst for one-pot reductive amination of aldehydes at room temperature. The nanocatalyst was easily recovered by applying an external magnet and reused several times without considerable loss of activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  9. Ba3Fe1.56Ir1.44O9: A Polar Semiconducting Triple Perovskite with Near Room Temperature Magnetic Ordering.

    PubMed

    Ferreira, Timothy; Carone, Darren; Huon, Amanda; Herklotz, Andreas; Stoian, Sebastian A; Heald, Steve M; Morrison, Gregory; Smith, Mark D; Loye, Hans-Conrad Zur

    2018-05-29

    The crystal chemistry and magnetic properties for two triple perovskites, Ba 3 Fe 1.56 Ir 1.44 O 9 and Ba 3 NiIr 2 O 9 , grown as large, highly faceted single crystals from a molten strontium carbonate flux, are reported. Unlike the idealized A 3 MM 2 'O 9 hexagonal symmetry characteristic of most triple perovskites, including Ba 3 NiIr 2 O 9, Ba 3 Fe 1.56 Ir 1.44 O 9 possesses significant site-disorder, resulting in a noncentrosymmetric polar structure with trigonal symmetry. The valence of iron and iridium in the heavily distorted Fe/Ir sites was determined to be Fe(III) and Ir(V) by X-ray absorption near edge spectroscopy (XANES). Density functional theory calculations were conducted to understand the effect of the trigonal distortion on the local Fe(III)O 6 electronic structure, and the spin state of iron was determined to be S = 5/2 by Mössbauer spectroscopy. Conductivity measurements indicate thermally activated semiconducting behavior in the trigonal perovskite. Magnetic properties were measured and near room temperature magnetic ordering (T N = 270 K) was observed for Ba 3 Fe 1.56 Ir 1.44 O 9 .

  10. Continuous-wave room-temperature diamond maser.

    PubMed

    Breeze, Jonathan D; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN; Kay, Christopher W M

    2018-03-21

    The maser-the microwave progenitor of the optical laser-has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen-vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  11. Continuous-wave room-temperature diamond maser

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.

    2018-03-01

    The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

  12. Temperature Effects on the Magnetization and Magnetoimpedance in Ferromagnetic Glass-Covered microwires

    NASA Astrophysics Data System (ADS)

    Uddin, A.; Evstigneeva, S. A.; Dzhumazoda, A.; Salem, M. M.; Nematov, M. G.; Adam, A. M.; Panina, LV; Morchenko, A. T.

    2017-11-01

    The effect of temperature on static and dynamic magnetization in Co-based amorphous microwires was investigated with the aim of potential applications in miniature temperature sensors. The wires of two compositions with different magnetostriction and Curie temperature in glass-cover and after removing the glass layer demonstrated very different temperature behaviour of the magnetization loops and magnetoimpedance. The mechanisms of the temperature effects are related to the residual stress distribution due to fast solidification, the difference in thermal expansion coefficient of metal and glass and the proximity to the Curie temperature. The interplay of these factors may result in a very strong temperature dependence of magnetoimpedance in a moderate temperature range (room temperature -373K). Such elements may be incorporated in various composite materials for a local temperature monitoring.

  13. Growth of room temperature ferromagnetic Ge1-xMnx quantum dots on hydrogen passivated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo

    2018-05-01

    A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.

  14. Effects of room temperature aging on two cryogenic temperature sensor models used in aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Krause, John

    2012-06-01

    Cryogenic temperature sensors used in aerospace applications are typically procured far in advance of the mission launch date. Depending upon the program, the temperature sensors may be stored at room temperature for extended periods as installation and groundbased testing can take years before the actual flight. The effects of long term storage at room temperature are sometimes approximated by the use of accelerated aging at temperatures well above room temperature, but this practice can yield invalid results as the sensing material and/or electrical contacting method can be increasingly unstable with higher temperature exposure. To date, little data are available on the effects of extended room temperature aging on sensors commonly used in aerospace applications. This research examines two such temperature sensors models - the Lake Shore Cryotronics, Inc. model CernoxTM and DT-670-SD temperature sensors. Sample groups of each model type have been maintained for ten years or longer with room temperature storage between calibrations. Over an eighteen year period, the CernoxTM temperature sensors exhibited a stability of better than ±20 mK for T<30 K and better than ±0.1% of temperature for T>30 K. Over a ten year period the model DT-670-SD sensors exhibited a stability of better than ±140 mK for T<25 K and better than ±75 mK for T>25 K.

  15. Large magneto-conductance and magneto-electroluminescence in exciplex-based organic light-emitting diodes at room temperature

    NASA Astrophysics Data System (ADS)

    Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong

    2015-11-01

    In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.

  16. Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.

    DTIC Science & Technology

    1979-12-01

    ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers

  17. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  18. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOEpatents

    Xu, Shoujun [Berkeley, CA; Lowery, Thomas L [Belmont, MA; Budker, Dmitry [El Cerrito, CA; Yashchuk, Valeriy V [Richmond, CA; Wemmer, David E [Berkeley, CA; Pines, Alexander [Berkeley, CA

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  19. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications

    NASA Astrophysics Data System (ADS)

    Reddy, N. Narayana; Ravindra, S.; Reddy, N. Madhava; Rajinikanth, V.; Raju, K. Mohana; Vallabhapurapu, Vijaya Srinivasu

    2015-11-01

    The present work deals with the development of temperature and magnetic responsive hydrogel networks based on poly (N-isopropylacrylamide)/acrylamido propane sulfonic acid. The hydrogel matrices are synthesized by polymerizing N-isopropylacrylamide (NIPAM) monomer in the presence of acrylamido propane sulphonicacid (AMPS) using a cross-linker (N,N-methylenebisacrylamide, MBA) and redox initiating system [ammonium persulphate (APS)/tetramethylethylenediamine (TMEDA)]. The magnetic nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating iron ions and subsequent treatment with ammonia. A series of hydrogel-magnetic nanocomposites (HGMNC) are developed by varying AMPS composition. The synthesized hydrogel magnetic nanocomposites (HGMNC) are characterized by using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), Thermal Analyses and Electron Microscopy analysis (Scanning and Transmission Electron Microscope). The metal extraction capacities of the prepared hydrogel (HG) and hydrogel magnetic nanocomposites (HGMNC) were studied at different temperatures. The results suggest that HGMNCs have higher extraction capacity compared to HG and HG loaded iron ions. This data also reveals that the extraction of metals by hydrogel magnetic nanocomposites (HGMNCs) is higher at higher temperatures than room temperature. The prepared HGMNCs are also subjected to hyperthermia (cancer therapy) studies.

  20. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  1. Tunability of room-temperature ferromagnetism in spintronic semiconductors through nonmagnetic atoms

    NASA Astrophysics Data System (ADS)

    Leedahl, Brett; Abooalizadeh, Zahra; LeBlanc, Kyle; Moewes, Alexander

    2017-07-01

    The implementation and control of room-temperature ferromagnetism (RTFM) by adding magnetic atoms to a semiconductor's lattice has been one of the most important problems in solid-state physics in the last decade. Herein we report on the mechanism that allows RTFM to be tuned by the inclusion of nonmagnetic aluminum in nickel ferrite. This material, NiFe2 -xAlxO4 (x =0 ,0.5 ,1.5 ), has already shown much promise for magnetic semiconductor technologies, and we are able to add to its versatility technological viability with our results. The site occupancies and valencies of Fe atoms (Fe3 +Td , Fe2 +Oh , and Fe3 +Oh ) can be methodically controlled by including aluminum. Using the fact that aluminum strongly prefers a 3+ octahedral environment, we can selectively fill iron sites with aluminum atoms, and hence specifically tune the magnetic contributions for each of the iron sites, and therefore the bulk material as well. Interestingly, the influence of the aluminum is weak on the electronic structure, allowing one to retain the desirable electronic properties while achieving desirable magnetic properties.

  2. Super-formable pure magnesium at room temperature.

    PubMed

    Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick

    2017-10-17

    Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.

  3. Room temperature magnetoelectric coupling and electrical properties of Ni doped Co - ferrite - PZT nanocomposites

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sarit; Mandal, S. K.; Dey, P.; Saha, B.

    2018-04-01

    Multiferroic magnetoelectric materials are very interesting for the researcher for the potential application in device preparation. We have prepared 0.3Ni0.5Co0.5Fe2O4 - 0.7PbZr0.58Ti0.42O3 magnetoelectric nanocomposites through chemical pyrophoric reaction process followed by solid state reaction and represented magnetoelectric coupling coefficient, thermally and magnetically tunable AC electrical properties. For the structural characterization XRD pattern and SEM micrograph have been analyzed. AC electrical properties reveal that the grain boundaries resistances are played dominating role in the conduction process in the system. Dielectric studies are represents that the dielectric polarization is decreased with frequency as well as magnetic field where it increases with increasing temperature. The dielectric profiles also represents the electromechanical resonance at a frequency of ˜183 kHz. High dielectric constant and low dielectric loss at room temperature makes the material very promising for the application of magnetic field sensor devices.

  4. Non-local opto-electrical spin injection and detection in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Rortais, Fabien; Zucchetti, Carlo; Ghirardini, Lavinia; Ferrari, Alberto; Vergnaud, Celine; Widiez, Julie; Marty, Alain; Attane, Jean-Philippe; Jaffres, Henri; George, Jean-Marie; Celebrano, Michele; Isella, Giovanni; Ciccacci, Franco; Finazzi, Marco; Bottegoni, Federico

    Non-local charge carriers injection/detection schemes lie at the foundation of information manipulation in integrated systems. The next generation electronics may operate on the spin instead of the charge and germanium appears as the best hosting material to develop such spintronics for its compatibility with mainstream silicon technology and long spin lifetime at room temperature. Moreover, the energy proximity between the direct and indirect bandgaps allows for optical spin orientation. In this presentation, we demonstrate injection of pure spin currents in Ge, combined with non-local spin detection blocks at room temperature. Spin injection is performed either electrically through a magnetic tunnel junction (MTJ) or optically, by using lithographed nanostructures to diffuse the light and create an in-plane polarized electron spin population. Pure spin current detection is achieved using either a MTJ or the inverse spin-Hall effect across a Pt stripe. Supported by the ANR project SiGeSPIN #ANR-13-BS10-0002 and the CARIPLO project SEARCH-IV (Grant 2013-0623).

  5. Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with MagnetoEncephaloGraphy Environment

    PubMed Central

    Galante, Angelo; Sinibaldi, Raffaele; Conti, Allegra; De Luca, Cinzia; Catallo, Nadia; Sebastiani, Piero; Pizzella, Vittorio; Romani, Gian Luca; Sotgiu, Antonello; Della Penna, Stefania

    2015-01-01

    In recent years, ultra-low field (ULF)-MRI is being given more and more attention, due to the possibility of integrating ULF-MRI and Magnetoencephalography (MEG) in the same device. Despite the signal-to-noise ratio (SNR) reduction, there are several advantages to operating at ULF, including increased tissue contrast, reduced cost and weight of the scanners, the potential to image patients that are not compatible with clinical scanners, and the opportunity to integrate different imaging modalities. The majority of ULF-MRI systems are based, until now, on magnetic field pulsed techniques for increasing SNR, using SQUID based detectors with Larmor frequencies in the kHz range. Although promising results were recently obtained with such systems, it is an open question whether similar SNR and reduced acquisition time can be achieved with simpler devices. In this work a room-temperature, MEG-compatible very-low field (VLF)-MRI device working in the range of several hundred kHz without sample pre-polarization is presented. This preserves many advantages of ULF-MRI, but for equivalent imaging conditions and SNR we achieve reduced imaging time based on preliminary results using phantoms and ex-vivo rabbits heads. PMID:26630172

  6. Room-temperature storage of medications labeled for refrigeration.

    PubMed

    Cohen, Victor; Jellinek, Samantha P; Teperikidis, Leftherios; Berkovits, Elliot; Goldman, William M

    2007-08-15

    Data regarding the recommended maximum duration that refrigerated medications available in hospital pharmacies may be stored safely at room temperature were collected and compiled in a tabular format. During May and June of 2006, the prescribing information for medications labeled for refrigeration as obtained from the supplier were reviewed for data addressing room-temperature storage. Telephone surveys of the products' manufacturers were conducted when this information was not available in the prescribing information. Medications were included in the review if they were labeled to be stored at 2-8 degrees C and purchased by the pharmacy department for uses indicated on the hospital formulary. Frozen antibiotics thawed in the refrigerator and extemporaneously compounded medications were excluded. Information was compiled and arranged in tabular format. The U.S. Pharmacopeia's definition of room temperature (20-25 degrees C [68-77 degrees F]) was used for this review. Of the 189 medications listed in AHFS Drug Information 2006 for storage in a refrigerator, 89 were present in the pharmacy department's refrigerator. Since six manufacturers were unable to provide information for 10 medications, only 79 medications were included in the review. This table may help to avoid unnecessary drug loss and expenditures due to improper storage temperatures. Information regarding the room-temperature storage of 79 medications labeled for refrigerated storage was compiled.

  7. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    DOEpatents

    Zoch, Harold L.

    1979-11-27

    A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.

  8. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  9. Room-temperature semiconductor heterostructure refrigeration

    NASA Astrophysics Data System (ADS)

    Chao, K. A.; Larsson, Magnus; Mal'shukov, A. G.

    2005-07-01

    With the proper design of semiconductor tunneling barrier structures, we can inject low-energy electrons via resonant tunneling, and take out high-energy electrons via a thermionic process. This is the operation principle of our semiconductor heterostructure refrigerator (SHR) without the need of applying a temperature gradient across the device. Even for the bad thermoelectric material AlGaAs, our calculation shows that at room temperature, the SHR can easily lower the temperature by 5-7K. Such devices can be fabricated with the present semiconductor technology. Besides its use as a kitchen refrigerator, the SHR can efficiently cool microelectronic devices.

  10. Evidence for spin injection and transport in solution-processed TIPS-pentacene at room temperature

    NASA Astrophysics Data System (ADS)

    Mooser, S.; Cooper, J. F. K.; Banger, K. K.; Wunderlich, J.; Sirringhaus, H.

    2012-10-01

    Recently, there has been growing interest in the field of organic spintronics, where the research on organic semiconductors (OSCs) has extended from the complex aspects of charge carrier transport to the study of the spin transport properties of those anisotropic and partly localized systems.1 Furthermore, solution-processed OSCs are not only interesting due to their technological applications, but it has recently been shown in 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) thin film transistors that they can exhibit a negative temperature coefficient of the mobility due to localized transport limited by thermal lattice fluctuations.2 Here, spin injection and transport in solution-processed TIPS-pentacene are investigated exploiting vertical CoPt/TIPSpentacene/AlOx/Co spin valve architectures.3 The antiparallel magnetization state of the relative orientation of CoPt and Co is achieved due to their different coercive fields. A spin valve effect is detected from T = 175 K up to room temperature, where the resistance of the device is lower for the antiparallel magnetization state. The first observation of the scaling of the magnetoresistance (MR) with the bulk mobility of the OSC as a function of temperature, together with the dependence of the MR on the interlayer thickness, clearly indicates spin injection and transport in TIPS-pentacene. From OSC-spacer thickness-dependent MR measurements, a spin relaxation length of TIPS-pentacene of (24+/-6) nm and a spin relaxation time of approximately 3.5 μs at room temperature are estimated, taking the measured bulk mobility of holes into account.

  11. Demonstration of charge breeding in a compact room temperature electron beam ion trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobjev, G.; Sokolov, A.; Herfurth, F.

    2012-05-15

    For the first time, a small room-temperature electron beam ion trap (EBIT), operated with permanent magnets, was successfully used for charge breeding experiments. The relatively low magnetic field of this EBIT does not contribute to the capture of the ions; single-charged ions are only caught by the space charge potential of the electron beam. An over-barrier injection method was used to fill the EBIT's electrostatic trap with externally produced, single-charged potassium ions. Charge states as high as K{sup 19+} were reached after about a 3 s breeding time. The capture and breeding efficiencies up to 0.016(4)% for K{sup 17+} havemore » been measured.« less

  12. Producing >60,000-fold room-temperature 89Y NMR signal enhancement

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Jindal, Ashish; Merritt, Matthew; Malloy, Craig; Sherry, A. Dean; Kovacs, Zoltan

    2011-03-01

    89 Y in chelated form is potentially valuable in medical imaging because its chemical shift is sensitive to local factors in tumors such as pH. However, 89 Y has a low gyromagnetic ratio γn thus its NMR signal is hampered by low thermal polarization. Here we show that we can enhance the room-temperature NMR signal of 89 Y up to 65,000 times the thermal signal, which corresponds to 10 % nuclear polarization, via fast dissolution dynamic nuclear polarization (DNP). The relatively long spin-lattice relaxation time T1 (~ 500 s) of 89 Y translates to a long polarization lifetime. The 89 Y NMR enhancement is optimized by varying the glassing matrices and paramagnetic agents as well as doping the samples with a gadolinium relaxation agent. Co-polarization of 89 Y-DOTA with a 13 C sample shows that both nuclear spin species acquire the same spin temperature Ts , consistent with thermal mixing mechanism of DNP. The high room-temperature NMR signal enhancement places 89 Y, one of the most challenging nuclei to detect by NMR, in the list of viable magnetic resonance imaging (MRI) agents when hyperpolarized under optimized conditions. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.

  13. Magnetic properties of nitrogen-doped ZrO2: Theoretical evidence of absence of room temperature ferromagnetism

    PubMed Central

    Albanese, Elisa; Leccese, Mirko; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2016-01-01

    N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700–1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering. PMID:27527493

  14. Annealing temperature effects on the magnetic properties and induced defects in C/N/O implanted MgO

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2013-02-01

    Virgin MgO single crystals were implanted with 70 keV C/N/O ions at room temperature to a dose of 2 × 1017/cm2. After implantation the samples showed room temperature hysteresis in magnetization loops. The annealing effects on the magnetic properties and induced defects of these samples were determined by vibrating sample magnetometer and positron annihilation spectroscopy, respectively. The experimental results indicate that ferromagnetism can be introduced to MgO single crystals by doping with C, N or introduction of Mg related vacancy defects. However, the Mg vacancies coexistence with C or N ions in the C-/N-implanted samples may play a negative role in magnetic performance in these MgO samples. The rapid increase of magnetic moment in O-implanted sample is attributed to the formation of new type of vacancy defects.

  15. Room Temperature Memory for Few Photon Polarization Qubits

    NASA Astrophysics Data System (ADS)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  16. Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Rujun, E-mail: tangrj@suda.edu.cn, E-mail: yanghao@nuaa.edu.cn; Zhou, Hao; You, Wenlong

    2016-08-22

    The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} have been investigated. The results show that the magnetic moments of insulating BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominantmore » mechanism. The above results show that the hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.« less

  17. Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range

    NASA Astrophysics Data System (ADS)

    Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.

    2017-03-01

    M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.

  18. Enhanced room-temperature magnetoresistance in self-assembled Ag-coated multiphasic chromium oxide nanocomposites.

    PubMed

    Dwivedi, S; Biswas, S

    2016-09-14

    Self-assembled Ag-coated multiphasic diluted magnetic chromium oxide nanocomposites were developed by a facile chemical synthesis route involving a reaction of CrO3 in the presence of Ag(+) ions in an aqueous solution of poly-vinyl alcohol (PVA) and sucrose. The tiny ferromagnetic single domains of tetragonal and orthorhombic CrO2 (t-CrO2 and o-CrO2) embedded in a dominantly insulating matrix of antiferromagnetic Cr2O3 and Cr3O8, and paramagnetic CrO3 and Cr2O, with a correlated diamagnetic thin and discontinuous shell layer of Ag efficiently tailor useful magnetic and room-temperature magnetoresistance (RTMR) properties. The t-CrO2, o-CrO2, possible canted ferromagnetism due to spin disorder in the matrix components, and the associated exchange interactions are the elements responsible for the observed ferromagnetism in the composite structure. The chain of ferromagnetic centers embedded in the composite matrix constitutes a type of magnetic tunnel junction through which spin-polarized electrons can effectively move without significant local interruptions. Electrical transport measurements showed that the spin-dependent tunneling (SDT) mechanism in the engineered microstructure of the nanocomposites exists even at room temperature (RT). A typical sample unveils a markedly enhanced RTMR-value, e.g., -80% at an applied field (H) of 3 kOe, compared to the reported values for compacted CrO2 powders or composites. The enhanced RTMR-value observed in the Coulomb blockade regime appears not only due to the considerably suppressed spin flipping at RT but primarily due to a highly effective SDT mechanism through an interlinked structure of Ag-coated multiphasic chromium oxide nanocomposites.

  19. X-ray diffraction study of the caged magnetic compound DyFe 2 Zn 20 at low temperatures

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y.

    2018-05-01

    We have carried out high-angle X-ray powder diffraction measurements of the caged magnetic compound DyFe2Zn20 at low temperature between 14 and 300 K. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. The Debye temperature is obtained to be 227 K from the results of the volumetric thermal expansion coefficient, which is approximately coincident with that of CeRu2Zn20 (245 K) and that of pure Zn metal (235 K).

  20. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-10-01

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  1. Room temperature single-photon detectors for high bit rate quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  2. Room temperature ferromagnetism in Mg-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaspal, E-mail: jaspal0314@gmail.com; Vashihth, A.; Gill, Pritampal Singh

    Zn{sub 1-x}Mg{sub x}O (x = 0, 0,10) nanoparticles were successfully synthesized using sol-gel method. X-ray diffraction (XRD) confirms that the synthesized nanoparticles possess wurtzite phase having hexagonal structure. Morphological analysis was carried out using transmission electron microscopy (TEM) which depicts the spherical morphology of ZnO nanoparticles. Energy dispersive spectroscopy (EDS) showed the presence of Mg in ZnO nanoparticles. Electron spin resonance (ESR) signal was found to be decreasing with increasing of Mg-doping concentration. The room temperature ferromagnetism was observed in undoped and Mg-doped ZnO nanoparticles. The increase of Mg-doping concentration resulted in decrease of saturation magnetization value which could bemore » attributed to decrease of oxygen vacancies present in host nanoparticles.« less

  3. Spin-Induced Polarizations and Nonreciprocal Directional Dichroism of the Room-Temperature Multiferroic BiFeO 3

    DOE PAGES

    Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; ...

    2015-09-14

    A microscopic model for the room-temperature multiferroic BiFeO 3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO 3 is dominated by the spin-currentmore » polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO 3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less

  4. Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization

    DTIC Science & Technology

    2012-09-01

    Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization by Justin R. Bickford, Neal K. Bambha, and Wayne H. Chang...Adelphi, MD 20783-1197 ARL-TR-6169 September 2012 Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization...temperature Mid-infrared Photoconductor Signal and Noise Characterization 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  5. Room-temperature superfluidity in a polariton condensate

    NASA Astrophysics Data System (ADS)

    Lerario, Giovanni; Fieramosca, Antonio; Barachati, Fábio; Ballarini, Dario; Daskalakis, Konstantinos S.; Dominici, Lorenzo; de Giorgi, Milena; Maier, Stefan A.; Gigli, Giuseppe; Kéna-Cohen, Stéphane; Sanvitto, Daniele

    2017-09-01

    Superfluidity--the suppression of scattering in a quantum fluid at velocities below a critical value--is one of the most striking manifestations of the collective behaviour typical of Bose-Einstein condensates. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier-Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.

  6. Magnetically suspended stepping motors for clean room and vacuum environments

    NASA Technical Reports Server (NTRS)

    Higuchi, Toshiro

    1994-01-01

    To answer the growing needs for super-clean or contact free actuators for uses in clean rooms, vacuum chambers, and space, innovative actuators which combine the functions of stepping motors and magnetic bearings in one body were developed. The rotor of the magnetically suspended stepping motor is suspended like a magnetic bearing and rotated and positioned like a stepping motor. The important trait of the motor is that it is not a simple mixture or combination of a stepping motor and conventional magnetic bearing, but an amalgam of a stepping motor and a magnetic bearing. Owing to optimal design and feed-back control, a toothed stator and rotor are all that are needed structurewise for stable suspension. More than ten types of motors such as linear type, high accuracy rotary type, two-dimensional type, and high vacuum type were built and tested. This paper describes the structure and design of these motors and their performance for such applications as precise positioning rotary table, linear conveyor system, and theta-zeta positioner for clean room and high vacuum use.

  7. Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit

    NASA Astrophysics Data System (ADS)

    O'Hara, Dante J.; Zhu, Tiancong; Trout, Amanda H.; Ahmed, Adam S.; Luo, Yunqiu Kelly; Lee, Choong Hee; Brenner, Mark R.; Rajan, Siddharth; Gupta, Jay A.; McComb, David W.; Kawakami, Roland K.

    2018-05-01

    Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe$_x$) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe$_2$) monolayer, while for thicker films it could originate from a combination of vdW MnSe$_2$ and/or interfacial magnetism of $\\alpha$-MnSe(111). Magnetization measurements of monolayer MnSe$_x$ films on GaSe and SnSe$_2$ epilayers show ferromagnetic ordering with large saturation magnetization of ~ 4 Bohr magnetons per Mn, which is consistent with density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe$_2$. Growing MnSe$_x$ films on GaSe up to high thickness (~ 40 nm) produces $\\alpha$-MnSe(111), and an enhanced magnetic moment (~ 2x) compared to the monolayer MnSe$_x$ samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveal an abrupt and clean interface between GaSe(0001) and $\\alpha$-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe$_2$ monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.

  8. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less

  9. The influence of room temperature on Mg isotope measurements by MC-ICP-MS.

    PubMed

    Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min

    2018-03-24

    We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.

  10. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE PAGES

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  11. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  12. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  13. Highly Efficient Room Temperature Spin Injection Using Spin Filtering in MgO

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    2007-03-01

    Efficient electrical spin injection into GaAs/AlGaAs quantum well structures was demonstrated using CoFe/MgO tunnel spin injectors at room temperature. The spin polarization of the injected electron current was inferred from the circular polarization of electroluminescence from the quantum well. Polarization values as high as 57% at 100 K and 47% at 290 K were obtained in a perpendicular magnetic field of 5 Tesla. The interface between the tunnel spin injector and the GaAs interface remained stable even after thermal annealing at 400 ^oC. The temperature dependence of the electron-hole recombination time and the electron spin relaxation time in the quantum well was measured using time-resolved optical techniques. By taking into account of these properties of the quantum well, the intrinsic spin injection efficiency can be deduced. We conclude that the efficiency of spin injection from a CoFe/MgO spin injector is nearly independent of temperature and, moreover, is highly efficient with an efficiency of ˜ 70% for the temperature range studied (10 K to room temperature). Tunnel spin injectors are thus highly promising components of future semiconductor spintronic devices. Collaborators: Roger Wang^1, 3, Gian Salis^2, Robert Shelby^1, Roger Macfarlane^1, Seth Bank^3, Glenn Solomon^3, James Harris^3, Stuart S. P. Parkin^1 ^1 IBM Almaden Research Center, San Jose, CA 95120 ^2 IBM Zurich Research Laboratory, S"aumerstrasse 4, 8803 R"uschlikon, Switzerland ^3 Solid States and Photonics Laboratory, Stanford University, Stanford, CA 94305

  14. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces

    NASA Astrophysics Data System (ADS)

    Hossain, Md I.; Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-07-01

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.

  15. Super-giant magnetoresistance at room-temperature in copper nanowires due to magnetic field modulation of potential barrier heights at nanowire-contact interfaces.

    PubMed

    Hossain, Md I; Maksud, M; Palapati, N K R; Subramanian, A; Atulasimha, J; Bandyopadhyay, S

    2016-07-29

    We have observed a super-giant (∼10 000 000%) negative magnetoresistance at 39 mT field in Cu nanowires contacted with Au contact pads. In these nanowires, potential barriers form at the two Cu/Au interfaces because of Cu oxidation that results in an ultrathin copper oxide layer forming between Cu and Au. Current flows when electrons tunnel through, and/or thermionically emit over, these barriers. A magnetic field applied transverse to the direction of current flow along the wire deflects electrons toward one edge of the wire because of the Lorentz force, causing electron accumulation at that edge and depletion at the other. This lowers the potential barrier at the accumulated edge and raises it at the depleted edge, causing a super-giant magnetoresistance at room temperature.

  16. Influence of annealing temperature on structural and magnetic properties of pulsed laser-deposited YIG films on SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Nag, Jadupati; Ray, Nirat

    2018-05-01

    Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.

  17. High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x

    NASA Astrophysics Data System (ADS)

    Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.

    2017-02-01

    The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x  =  0.5  +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx  ≈  0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.

  18. Protocols for dry DNA storage and shipment at room temperature

    PubMed Central

    Ivanova, Natalia V; Kuzmina, Masha L

    2013-01-01

    The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica® DNAstable® plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at −20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica® provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica® at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at −20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. PMID:23789643

  19. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  20. On the defect origin of the room-temperature magnetism universally exhibited by metal-oxide nanoparticles.

    PubMed

    Panchakarla, L S; Sundarayya, Y; Manjunatha, S; Sundaresan, A; Rao, C N R

    2010-06-07

    The occurrence of ferromagnetism in nanoparticles of otherwise non-magnetic oxides seems to be well established. It is, however, necessary to understand the origin of ferromagnetism in these materials. Herein, we present a combined study of the magnetic properties and photoluminescence (PL) behavior of nanoparticles of ZnO, ZrO(2), and MgO annealed at different temperatures (and therefore of different sizes). We find that the magnetization and the intensity of the bands due to defects vary parallel in all these materials. The adsorption of ethanol leads to a decrease in the magnetization and to a reduced intensity of the defect PL band of ZnO nanoparticles whereas UV irradiation has the opposite effect. We have also examined the effect of the morphology of the ZnO on the properties.

  1. Discovery of room-temperature spin-glass behaviors in two-dimensional oriented attached single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Chen, Kezheng

    2016-05-01

    In this study, room-temperature spin-glass behaviors were observed in flake-like oriented attached hematite (α-Fe2O3) and iron phosphate hydroxide hydrate (Fe5(PO4)4(OH)3·2H2O) single crystals. Remarkably, their coercivity (HC) values were found to be almost invariable at various given temperatures from 5 to 300 K. The spin topographic map in these flakes was assumed as superparamagnetic (SPM) "islands" isolated by spin glass (SG)-like "bridges". A spin-glass model was then proposed to demonstrate the spin frustration within these "bridges", which were formed by the staggered atomic planes in the uneven surfaces belonging to different attached nanoparticles. Under the spatial limitation and coupling shield of these "bridges", the SPM "islands" were found to be collectively frozen to form a superspin glass (SSG) state below 80 K in weak applied magnetic fields; whereas, when strong magnetic fields were applied, the magnetic coupling of these "islands" would become superferromagnetic (SFM) through tunneling superexchange, so that, these SFM spins could antiferromagnetically couple with the SG-like "bridges" to yield pronounced exchange bias (EB) effect.

  2. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    PubMed

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  3. Magnetocardiography measurements with 4He vector optically pumped magnetometers at room temperature

    NASA Astrophysics Data System (ADS)

    Morales, S.; Corsi, M. C.; Fourcault, W.; Bertrand, F.; Cauffet, G.; Gobbo, C.; Alcouffe, F.; Lenouvel, F.; Le Prado, M.; Berger, F.; Vanzetto, G.; Labyt, E.

    2017-09-01

    In this paper, we present a proof of concept study which demonstrates for the first time the possibility of recording magnetocardiography (MCG) signals with 4He vector optically pumped magnetometers (OPM) operated in a gradiometer mode. Resulting from a compromise between sensitivity, size and operability in a clinical environment, the developed magnetometers are based on the parametric resonance of helium in a zero magnetic field. Sensors are operated at room temperature and provide a tri-axis vector measurement of the magnetic field. Measured sensitivity is around 210 f T (√Hz)-1 in the bandwidth (2 Hz; 300 Hz). MCG signals from a phantom and two healthy subjects are successfully recorded. Human MCG data obtained with the OPMs are compared to reference electrocardiogram recordings: similar heart rates, shapes of the main patterns of the cardiac cycle (P/T waves, QRS complex) and QRS widths are obtained with both techniques.

  4. Room temperature acoustic transducers for high-temperature thermometry

    NASA Astrophysics Data System (ADS)

    Ripple, D. C.; Murdock, W. E.; Strouse, G. F.; Gillis, K. A.; Moldover, M. R.

    2013-09-01

    We have successfully conducted highly-accurate, primary acoustic thermometry at 600 K using a sound source and a sound detector located outside the thermostat, at room temperature. We describe the source, the detector, and the ducts that connected them to our cavity resonator. This transducer system preserved the purity of the argon gas, generated small, predictable perturbations to the acoustic resonance frequencies, and can be used well above 600 K.

  5. Stable room temperature magnetocurrent in electrodeposited permeable n-type metal base transistor

    NASA Astrophysics Data System (ADS)

    Silva, G. V. O.; Teixeira, H. A.; Mello, S. L. A.; de Araujo, C. I. L.

    2018-02-01

    We investigated a permeable metal base transistor consisting of a ZnO/NiFe/Si heterostructure. Both ZnO and NiFe layers were grown by electrodeposition techniques, using only adhesive tape masks to define deposition regions. The base permeability can thus be controlled by varying the NiFe deposition time. We report here our best results obtained for the permeable NiFe base close to the electrical percolation threshold, which gives reasonable sensitivity to the device. Magnetocurrent measurements carried out at room temperature show that this permeable metal base transistor is stable and sensitive under applied magnetic fields of low intensities, ˜100 Oe, required for electronics integration.

  6. Enhanced room temperature ferromagnetism in Cr-doped ZnO nanoparticles prepared by auto-combustion method

    NASA Astrophysics Data System (ADS)

    Haq, Khizar-ul; Irfan, M.; Masood, Muhammad; Saleem, Murtaza; Iqbal, Tahir; Ahmad, Ishaq; Khan, M. A.; Zaffar, M.; Irfan, Muhammad

    2018-04-01

    Zn1‑x Cr x O (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) nanoparticles were synthesized, by an auto-combustion method. Structural, optical, and magnetic characteristics of Cr-doped ZnO samples calcined at 600 °C have been analyzed by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV–Vis spectroscopy and vibrating sample magnetometer (VSM). The XRD data confirmed the hexagonal wurtzite structure of pure and Cr-doped ZnO nanoparticles. The calculated values of grain size using Scherrer's formula are in the range of 30.7–9.2 nm. The morphology of nanopowders has been observed by FESEM, and EDS results confirmed a systematic increase of Cr content in the samples and clearly indicate with no impurity element. The band gaps, computed by UV–Vis spectroscopy, are in the range of 2.83–2.35 eV for different doping concentrations. By analyzing VSM data, significantly enhanced room temperature ferromagnetism is identified in Cr-doped ZnO samples. The value of magnetization is a 12 times increased of the value reported by Daunet al. (2010). Room temperature ferromagnetism of the nanoparticles is of vital prominence for spintronics applications. Project supported by the Office of Research, Innovation, and Commercialization (ORIC), MUST Mirpur (AJK).

  7. Protocols for dry DNA storage and shipment at room temperature.

    PubMed

    Ivanova, Natalia V; Kuzmina, Masha L

    2013-09-01

    The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica(®) DNAstable(®) plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at -20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica(®) provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica(®) at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at -20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  8. Defect types and room temperature ferromagnetism in N-doped rutile TiO2 single crystals

    NASA Astrophysics Data System (ADS)

    Qin, Xiu-Bo; Li, Dong-Xiang; Li, Rui-Qin; Zhang, Peng; Li, Yu-Xiao; Wang, Bao-Yi

    2014-06-01

    The magnetic properties and defect types of virgin and N-doped TiO2 single crystals are probed by superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), and positron annihilation analysis (PAS). Upon N doping, a twofold enhancement of the saturation magnetization is observed. Apparently, this enhancement is not related to an increase in oxygen vacancy, rather to unpaired 3d electrons in Ti3+, arising from titanium vacancies and the replacement of O with N atoms in the rutile structure. The production of titanium vacancies can enhance the room temperature ferromagnetism (RTFM), and substitution of O with N is the onset of ferromagnetism by inducing relatively strong ferromagnetic ordering.

  9. A Highly Reversible Room-Temperature Sodium Metal Anode

    PubMed Central

    2015-01-01

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating–stripping cycles at 0.5 mA cm–2. The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies. PMID:27163006

  10. A Highly Reversible Room-Temperature Sodium Metal Anode.

    PubMed

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming; Cui, Yi

    2015-11-25

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating-stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved over 300 plating-stripping cycles at 0.5 mA cm(-2). The long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium-sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.

  11. A highly reversible room-temperature sodium metal anode

    DOE PAGES

    Seh, Zhi Wei; Sun, Jie; Sun, Yongming; ...

    2015-11-02

    Owing to its low cost and high natural abundance, sodium metal is among the most promising anode materials for energy storage technologies beyond lithium ion batteries. However, room-temperature sodium metal anodes suffer from poor reversibility during long-term plating and stripping, mainly due to formation of nonuniform solid electrolyte interphase as well as dendritic growth of sodium metal. Herein we report for the first time that a simple liquid electrolyte, sodium hexafluorophosphate in glymes (mono-, di-, and tetraglyme), can enable highly reversible and nondendritic plating–stripping of sodium metal anodes at room temperature. High average Coulombic efficiencies of 99.9% were achieved overmore » 300 plating–stripping cycles at 0.5 mA cm –2. In this study, the long-term reversibility was found to arise from the formation of a uniform, inorganic solid electrolyte interphase made of sodium oxide and sodium fluoride, which is highly impermeable to electrolyte solvent and conducive to nondendritic growth. As a proof of concept, we also demonstrate a room-temperature sodium–sulfur battery using this class of electrolytes, paving the way for the development of next-generation, sodium-based energy storage technologies.« less

  12. Isotropic Elastic Stress Induced Large Temperature Range Liquid Crystal Blue Phase at Room Temperature.

    PubMed

    Manna, Suman K; Dupont, Laurent; Li, Guoqiang

    2016-08-11

    A thermodynamically stable blue phase (BP) based on the conventional rod like nematogen is demonstrated for the first time at room temperature by only diluting a chiral-nematic mixture with the help of some nonmesogenic isotropic liquid. It is observed that addition of this isotropic liquid does not only stabilize the BPs at room temperature, but also significantly improves the temperature range (reversible during heating and cooling) of the BPs to the level of more than 28 °C. Apart from that, we have observed its microsecond electro-optic response time and, external electric field induced wavelength tuning, which are the two indispensable requirements for next generation optical devices, photonic displays, lasers, and many more. Here we propose that the isotropic liquid plays two crucial roles simultaneously. On one hand, it reduces the effective elastic moduli (EEM) of the BP mixtures and stabilizes the BPs at room temperature, and on the other hand, it increases the symmetry of the mutual orientation ordering among the neighboring unit cells of the BP. Hence, the resultant mixture becomes better resistive to some microscopic change due to the change in temperature, even over a large range.

  13. Negative differential resistance in GaN nanocrystals above room temperature.

    PubMed

    Chitara, Basant; Ivan Jebakumar, D S; Rao, C N R; Krupanidhi, S B

    2009-10-07

    Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is approximately 7 V above room temperature.

  14. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  15. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  16. Extended magnetic exchange interactions in the high-temperature ferromagnet MnBi

    DOE PAGES

    Christianson, Andrew D.; Hahn, Steven E.; Fishman, Randy Scott; ...

    2016-05-09

    Here, the high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coercivity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientationmore » that occurs below 140~K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.« less

  17. Room temperature CO and H2 sensing with carbon nanoparticles.

    PubMed

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo

    2011-12-02

    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H(2) at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H(2) at room temperature even without Pd or Pt catalysts commonly used for splitting H(2) molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H(2) molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  18. Room temperature polariton light emitting diode with integrated tunnel junction.

    PubMed

    Brodbeck, S; Jahn, J-P; Rahimi-Iman, A; Fischer, J; Amthor, M; Reitzenstein, S; Kamp, M; Schneider, C; Höfling, S

    2013-12-16

    We present a diode incorporating a large number (12) of GaAs quantum wells that emits light from exciton-polariton states at room temperature. A reversely biased tunnel junction is placed in the cavity region to improve current injection into the device. Electroluminescence studies reveal two polariton branches which are spectrally separated by a Rabi splitting of 6.5 meV. We observe an anticrossing of the two branches when the temperature is lowered below room temperature as well as a Stark shift of both branches in a bias dependent photoluminescence measurement.

  19. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.

    PubMed

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-05

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data

  20. Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo

    2018-04-01

    Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data

  1. Temperature compensation for miniaturized magnetic sector

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    2002-01-01

    Temperature compensation for a magnetic sector used in mass spectrometry. A high temperature dependant magnetic sector is used. This magnetic sector is compensated by a magnetic shunt that has opposite temperature characteristics to those of the magnet.

  2. Defect-induced room temperature ferromagnetism in silicon carbide nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Guijin; Wu, Yanyan; Ma, Shuyi; Fu, Yujun; Gao, Daqiang; Zhang, Zhengmei; Li, Jinyun

    2018-07-01

    Silicon carbide (SiC) nanosheets with different sizes and thickness were synthesized by a liquid exfoliation method by varying the exfoliating time in the N, N-dimethylformamide organic solvent. During the exfoliating time increasing from 4 to 16 h, the size of the SiC nanosheets decreases gradually from 500 to 200 nm, and the thickness decreases from 9 to 3.5 nm. Results showed that all prepared SiC nanosheets show intrinsic room temperature ferromagnetism, which is greatly different to the diamagnetism nature of virgin bulk SiC. Moreover, the saturation magnetization of the SiC nanosheets increases monotonously from 0.005 to 0.018 emu/g as the size and thickness decrease. Further studies via transmission electron microscopy, superconducting quantum interference device, and electron spin resonance revealed that the origin of the ferromagnetism in SiC nanosheets might be attributed to the defects with carbon dangling bond on the surface of nanosheets.

  3. Stability of alemtuzumab solutions at room temperature.

    PubMed

    Goldspiel, Justin T; Goldspiel, Barry R; Grimes, George J; Yuan, Peng; Potti, Gopal

    2013-03-01

    The 24-hour stability of alemtuzumab solutions prepared at concentrations not included in the product label and stored in glass or polyolefin containers at room temperature was evaluated. Triplicate solutions of alemtuzumab (6.67, 40, and 120 μg/mL) in 0.9% sodium chloride were prepared in either glass bottles or polyolefin containers and stored at room temperature under normal fluorescent lighting conditions. The solutions were analyzed by a validated stability-indicating high-performance liquid chromatography (HPLC) assay at time zero and 8, 14, and 24 hours after preparation; solution pH values were measured and the containers visually inspected at all time points. Stability was defined as the retention of ≥90% of the initial alemtuzumab concentration. HPLC analysis indicated that the percentage of the initial alemtuzumab concentration retained was >90% for all solutions evaluated, with no significant changes over the study period. The most dilute alemtuzumab solution (6.67 μg/mL) showed some degradation (91% of the initial concentration retained at hour 24), whereas the retained concentration was >99% for all other preparations throughout the study period. Solution pH values varied by drug concentration but did not change significantly over 24 hours. No evidence of particle formation was detected in any solution by visual inspection at any time during the study. Solutions of alemtuzumab 6.67 μg/mL stored in glass bottles and solutions of 40 and 120 μg/mL stored in polyolefin containers were stable for at least 24 hours at room temperature.

  4. Energy-filtered cold electron transport at room temperature.

    PubMed

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-09-10

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.

  5. Energy-filtered cold electron transport at room temperature

    PubMed Central

    Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin

    2014-01-01

    Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839

  6. Reducing pain with genetic amniocentesis-A randomized trial of subfreezing versus room temperature needles.

    PubMed

    Wax, Joseph R; Pinette, Michael G; Carpenter, Molly; Chard, Renée; Blackstone, Jacquelyn; Cartin, Angelina

    2005-10-01

    To determine whether pain associated with second trimester genetic amniocentesis is decreased by using subfreezing rather than room temperature needles. Subjects were randomized to a -14 degrees C or room temperature (20-22 degrees C) 22-gauge spinal needle. Patients, blinded to allocation, recorded anticipated and actual pain before and after the procedure, respectively, using a 0-10 visual analog scale with 0 = no pain and 10 = excruciating pain. Thirty-three subjects were randomized to room temperature and 29 subjects to subfreezing needles. Anticipated pain was similar in room temperature, 5.1 +/- 1.7, and subfreezing groups, 4.9 +/- 2.0, respectively (p = 0.6). Actual pain was also similar in the room temperature, 3.6 +/- 2.0, and subfreezing groups, 2.8 +/- 2.0, respectively (p = 0.14). Similar numbers of subjects in the room temperature and subfreezing groups reported less actual pain (20 vs. 18), greater actual pain (4 vs. 4) or no difference in pain (9 vs. 5) than anticipated (p = 0.6). A subfreezing 22-gauge spinal needle does not decrease perceived pain associated with second trimester genetic amniocentesis.

  7. Quantum correlations from a room-temperature optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Purdy, T. P.; Grutter, K. E.; Srinivasan, K.; Taylor, J. M.

    2017-06-01

    The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam’s thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks.

  8. Metal nanoparticle film-based room temperature Coulomb transistor.

    PubMed

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-07-01

    Single-electron transistors would represent an approach to developing less power-consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations.

  9. Thermal stability and temperature coefficients of four rare-earth-cobalt matrix magnets heated in dry air

    NASA Astrophysics Data System (ADS)

    Strnat, R. M. W.; Liu, S.; Strnat, K. J.

    1982-03-01

    Flux-loss characteristics during long-term air aging of four rare-earth-cobalt matrix magnet types were measured. Irreversible losses and reversible temperature coefficients on heating above room temperature are reported. Purely magnetic and permanent microstructure-related changes during aging were differentiated by measuring hysteresis curves before and after long-term exposure. Three commercial polymer-bonded magnets using different rare-earth-cobalt-transition metal alloys and a solder-matrix magnet with Sm(Co, Cu, Fe, Zr)7.4 were studied. They were cycled between 25 °C and maximum temperatures to 150 °C (25 ° intervals) as applicable. Aging data at 50 and 125 °C for an exposure time of 3300 h are reported. The 2-17 samples have a stability far superior to bonded 1-5. The soft metal binder imparts significantly better aging behavior on precipitation-hardened 2-17 magnet alloys above 100 °C than an epoxy resin matrix.

  10. Multifield Control of Domains in a Room-Temperature Multiferroic 0.85BiTi0.1Fe0.8Mg0.1O3-0.15CaTiO3 Thin Film.

    PubMed

    Jia, Tingting; Fan, Ziran; Yao, Junxiang; Liu, Cong; Li, Yuhao; Yu, Junxi; Fu, Bi; Zhao, Hongyang; Osada, Minoru; Esfahani, Ehsan Nasr; Yang, Yaodong; Wang, Yuanxu; Li, Jiang-Yu; Kimura, Hideo; Cheng, Zhenxiang

    2018-06-20

    Single-phase materials that combine electric polarization and magnetization are promising for applications in multifunctional sensors, information storage, spintronic devices, etc. Following the idea of a percolating network of magnetic ions (e.g., Fe) with strong superexchange interactions within a structural scaffold with a polar lattice, a solid solution thin film with perovskite structure at a morphotropic phase boundary with a high level of Fe atoms on the B site of perovskite structure is deposited to combine both ferroelectric and ferromagnetic ordering at room temperature with magnetoelectric coupling. In this work, a 0.85BiTi 0.1 Fe 0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film has been deposited by pulsed laser deposition (PLD). Both the ferroelectricity and the magnetism were characterized at room temperature. Large polarization and a large piezoelectric effective coefficient d 33 were obtained. Multifield coupling of the thin film has been characterized by scanning force microscopy. Ferroelectric domains and magnetic domains could be switched by magnetic field ( H), electric field ( E), mechanical force ( F), and, indicating that complex cross-coupling exists among the electric polarization, magnetic ordering and elastic deformation in 0.85BiTi 0.1 F e0.8 Mg 0.1 O 3 -0.15CaTiO 3 thin film at room temperature. This work also shows the possibility of writing information with electric field, magnetic field, and mechanical force and then reading data by magnetic field. We expect that this work will benefit information applications.

  11. Practical and efficient magnetic heat pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1978-01-01

    Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.

  12. Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor

    DOEpatents

    O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.

    1981-01-01

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  13. Enhanced room temperature multiferroic characteristics in hexagonal LuFe1-xNixO3 (x = 0 - 0.3) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Vijaya Laxmi, K.; Anil Kumar, P. S.

    2018-02-01

    Single phase polycrystalline LuFe1-xNixO3 (x = 0 - 0.3) (LFNO) nanoparticles are synthesized using the sol-gel method. X-ray diffraction measurements revealed that the crystal structure of Ni-doped samples is isomorphic to hexagonal LuFeO3 (LFO). The phase pure hexagonal P63cm symmetry exists for 0 ≤ x ≤ 0.3, and the secondary phases appear for x ≥ 0.4. Raman spectra show a shift in the mode frequency corresponding to the changes in Lu-O and Fe-O bond lengths with Ni doping. An enhancement in the magnetization is observed for LFNO throughout the temperature range (400-5 K) compared to LFO. The antiferromagnetic state of LFO becomes ferrimagnetic at low temperatures, and a net magnetization is observed at room temperature with Ni doping. As Ni concentration increases, a systematic increment in the ferroelectric polarization is observed. This enhancement in polarization is believed to be due to the distortion in FeO5 cage, while the improvement in magnetic properties is due to the induced magnetic interactions, caused by the Fe-Ni interactions on the triangular lattice with Ni doping in LuFeO3.

  14. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; hide

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  15. Room temperature synthesis of biodiesel using sulfonated ...

    EPA Pesticide Factsheets

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  16. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.

    PubMed

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-29

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  17. Room temperature, air crystallized perovskite film for high performance solar cells

    DOE PAGES

    Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...

    2016-05-31

    For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH 3NH 3PbI 3 nanorods/PC 60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films keptmore » for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less

  18. Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-01

    Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.

  19. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  20. Synthesis of low-moment CrVTiAl: A potential room temperature spin filter

    NASA Astrophysics Data System (ADS)

    Stephen, G. M.; McDonald, I.; Lejeune, B.; Lewis, L. H.; Heiman, D.

    2016-12-01

    The efficient production of spin-polarized currents at room temperature is fundamental to the advancement of spintronics. Spin-filter materials—semiconductors with unequal band gaps for each spin channel—can generate spin-polarized current without the need for spin-polarized contacts. In addition, a spin-filter material with zero magnetic moment would have the advantage of not producing strong fringing fields that would interfere with neighboring electronic components and limit the volume density of devices. The quaternary Heusler compound CrVTiAl has been predicted to be a zero-moment spin-filter material with a Curie temperature in excess of 1000 K. In this work, CrVTiAl has been synthesized with a lattice constant of a = 6.15 Å. Magnetization measurements reveal an exceptionally low moment of μ = 2.3 × 10-3 μB/f.u. at a field of μ0H = 2 T that is independent of temperature between T = 10 K and 400 K, consistent with the predicted zero-moment ferrimagnetism. Transport measurements reveal a combination of metallic and semiconducting components to the resistivity. Combining a zero-moment spin-filter material with nonmagnetic electrodes would lead to an essentially nonmagnetic spin injector. These results suggest that CrVTiAl is a promising candidate for further research in the field of spintronics.

  1. Effect of magnetic anisotropy and particle size distribution on temperature dependent magnetic hyperthermia in Fe3O4 ferrofluids

    NASA Astrophysics Data System (ADS)

    Palihawadana Arachchige, Maheshika; Nemala, Humeshkar; Naik, Vaman; Naik, Ratna

    Magnetic hyperthermia (MHT) has a great potential as a non-invasive cancer therapy technique. Specific absorption rate (SAR) which measures the efficiency of heat generation, mainly depends on magnetic properties of nanoparticles such as saturation magnetization (Ms) and magnetic anisotropy (K) which depend on the size and shape. Therefore, MHT applications of magnetic nanoparticles often require a controllable synthesis to achieve desirable magnetic properties. We have synthesized Fe3O4 nanoparticles using two different methods, co-precipitation (CP) and hydrothermal (HT) techniques to produce similar XRD crystallite size of 12 nm, and subsequently coated with dextran to prepare ferrofluids for MHT. However, TEM measurements show average particle sizes of 13.8 +/-3.6 nm and 14.6 +/-3.6 nm for HT and CP samples, implying the existence of an amorphous surface layer for both. The MHT data show the two samples have very different SAR values of 110 W/g (CP) and 40W/g (HT) at room temperature, although they have similar Ms of 70 +/-4 emu/g regardless of their different TEM sizes. We fitted the temperature dependent SAR using linear response theory to explain the observed results. CP sample shows a larger magnetic core with a narrow size distribution and a higher K value compared to that of HT sample.

  2. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOEpatents

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  3. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  4. Carboxylate-based molecular magnet: One path toward achieving stable quantum correlations at room temperature

    DOE PAGES

    Cruz, C.; Soares-Pinto, D. O.; Brandão, P.; ...

    2016-03-07

    The control of quantum correlations in solid-state systems by means of material engineering is a broad avenue to be explored, since it makes possible steps toward the limits of quantum mechanics and the design of novel materials with applications on emerging quantum technologies. This letter explores the potential of molecular magnets to be prototypes of materials for quantum information technology in this context. More precisely, we engineered a material and from its geometric quantum discord we found significant quantum correlations up to 9540 K (even without entanglement); and, a pure singlet state occupied up to around 80 K (above liquidmore » nitrogen temperature), additionally. Our results could only be achieved due to the carboxylate group promoting a metal-to-metal huge magnetic interaction.« less

  5. High temperature superconductor dc-SQUID microscope with a soft magnetic flux guide

    NASA Astrophysics Data System (ADS)

    Poppe, U.; Faley, M. I.; Zimmermann, E.; Glaas, W.; Breunig, I.; Speen, R.; Jungbluth, B.; Soltner, H.; Halling, H.; Urban, K.

    2004-05-01

    A scanning SQUID microscope based on high-temperature superconductor (HTS) dc-SQUIDs was developed. An extremely soft magnetic amorphous foil was used to guide the flux from room temperature samples to the liquid-nitrogen-cooled SQUID sensor and back. The flux guide passes through the pick-up loop of the HTS SQUID, providing an improved coupling of magnetic flux of the object to the SQUID. The device measures the z component (direction perpendicular to the sample surface) of the stray field of the sample, which is rastered with submicron precision in the x-y direction by a motorized computer-controlled scanning stage. A lateral resolution better than 10 µm, with a field resolution of about 0.6 nT Hz-1/2 was achieved for the determination of the position of the current carrying thin wires. The presence of the soft magnetic foil did not significantly increase the flux noise of the SQUID.

  6. Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping.

    PubMed

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A; Debelius, Justine; Morton, James T; Hyde, Embriette; Robbins-Pianka, Adam; Knight, Rob

    2017-01-01

    The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria , grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., "bloomed") at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called "Deblur" to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has been shown not

  7. Primary and secondary room temperature molten salt electrochemical cells

    NASA Astrophysics Data System (ADS)

    Reynolds, G. F.; Dymek, C. J., Jr.

    1985-07-01

    Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.

  8. Ether-based nonflammable electrolyte for room temperature sodium battery

    NASA Astrophysics Data System (ADS)

    Feng, Jinkui; Zhang, Zhen; Li, Lifei; Yang, Jian; Xiong, Shenglin; Qian, Yitai

    2015-06-01

    Safety problem is one of the key points that hinder the development of room temperature sodium batteries. In this paper, four well-known nonflammable organic compounds, Trimethyl Phosphate (TMP), Tri(2,2,2-trifluoroethyl) phosphite (TFEP), Dimethyl Methylphosphonate (DMMP), Methyl nonafluorobuyl Ether (MFE), are investigated as nonflammable solvents in sodium batteries for the first time. Among them, MFE is stable towards sodium metal at room temperature. The electrochemical properties and electrode compatibility of MFE based electrolyte are investigated. Both Prussian blue cathode and carbon nanotube anode show good electrochemical performance retention in this electrolyte. The results suggest that MFE is a promising option as nonflammable electrolyte additive for sodium batteries.

  9. Metal nanoparticle film–based room temperature Coulomb transistor

    PubMed Central

    Willing, Svenja; Lehmann, Hauke; Volkmann, Mirjam; Klinke, Christian

    2017-01-01

    Single-electron transistors would represent an approach to developing less power–consuming microelectronic devices if room temperature operation and industry-compatible fabrication were possible. We present a concept based on stripes of small, self-assembled, colloidal, metal nanoparticles on a back-gate device architecture, which leads to well-defined and well-controllable transistor characteristics. This Coulomb transistor has three main advantages. By using the scalable Langmuir-Blodgett method, we combine high-quality chemically synthesized metal nanoparticles with standard lithography techniques. The resulting transistors show on/off ratios above 90%, reliable and sinusoidal Coulomb oscillations, and room temperature operation. Furthermore, this concept allows for versatile tuning of the device properties such as Coulomb energy gap and threshold voltage, as well as period, position, and strength of the oscillations. PMID:28740864

  10. [Synthesis and spectral characteristic of Ga-Fe3O4 at room temperature].

    PubMed

    Wang, Jing; Deng, Tong; Yang, Cai-Qin; Lin, Yu-Long; Wang, Wei; Wu, Hai-Yan

    2008-03-01

    Gallium bearing ferrites with different gallium content were synthesized by oxidation of ferrous and gallium ions under alkaline condition and room temperature. The samples were subjected to IR, XRD, Mossbauer spectral analysis and magnetization characterization. The results indicated that the green-rust intermediate phase would be produced during the procedure of Ga-Fe3O4 formation, and the green-rust intermediate phase was converted to ferrites with spinel structure during the drying under hot-N2 atmosphere. With the introduction of gallium into the spinel structure, the interplanar crystal spacing of the spinel structure decreased, as indicated from XRD spectra, and the lattice vibration of M(T)-O-M(o) moved to the high-frequency resulting from IR spectra. A small amount gallium introduction entered the tetrahedral sites preferentially rather than the octahedral sites, and increasing gallium introduction would enhance the occupation of octahedral sites. Furthermore, a small content of gallium in the initial solution could prevent the formation of non-magnetic Fe2O3.

  11. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes.

    PubMed

    Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro

    2017-02-21

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlO x spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density ( J ) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm 2 There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results.

  12. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes

    PubMed Central

    Nishibayashi, Kazuhiro

    2017-01-01

    We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small schemes in the tested spin-LEDs: first, the stripe-laser-like structure that helps intensify the EL light at the cleaved side walls below the spin injector Fe slab, and second, the crystalline AlOx spin-tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density (J) region, whereas it increases steeply and reaches close to the pure CP when J > 100 A/cm2. There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent reabsorption, spin-induced birefringence, and optical spin-axis conversion are suggested to account for the observed experimental results. PMID:28174272

  13. Room Temperature Monoclinic Phase in BaTiO3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman

    2010-03-01

    BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.

  14. Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: A highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature

    NASA Astrophysics Data System (ADS)

    Nasrollahzadeh, Mahmoud; Atarod, Monireh; Sajadi, S. Mohammad

    2016-02-01

    This paper reports the green and in-situ preparation of the Cu/Fe3O4 magnetic nanocatalyst synthesized using Morinda morindoides leaf extract without stabilizers or surfactants. The catalyst was characterized by XRD, SEM, EDS, UV-visible, TEM, VSM and TGA-DTA. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4-nitrophenol (4-NP), Congo red (CR) and Rhodamine B (RhB) in an environmental friendly medium at room temperature. The catalyst was recovered using an external magnet and reused several times without appreciable loss of its catalytic activity. In addition, the stability of the recycled catalyst has been proved by SEM and EDS techniques.

  15. Electric field control of ferromagnetism at room temperature in GaCrN (p-i-n) device structures

    NASA Astrophysics Data System (ADS)

    El-Masry, N. A.; Zavada, J. M.; Reynolds, J. G.; Reynolds, C. L.; Liu, Z.; Bedair, S. M.

    2017-08-01

    We have demonstrated a room temperature dilute magnetic semiconductor based on GaCrN epitaxial layers grown by metalorganic chemical vapor deposition. Saturation magnetization Ms increased when the GaCrN film is incorporated into a (p-GaN/i-GaCrN/n-GaN) device structure, due to the proximity of mediated holes present in the p-GaN layer. Zero field cooling and field cooling were measured to ascertain the absence of superparamagnetic behavior in the films. A (p-GaN/i-GaCrN/n-GaN) device structure with room temperature ferromagnetic (FM) properties that can be controlled by an external applied voltage has been fabricated. In this work, we show that the applied voltage controls the ferromagnetic properties, by biasing the (p-i-n) structure. With forward bias, ferromagnetism in the GaCrN layer was increased nearly 4 fold of the original value. Such an enhancement is due to carrier injection of holes into the Cr deep level present in the i-GaCrN layer. A "memory effect" for the FM behavior of the (p-i-n) GaCrN device structure persisted for 42 h after the voltage bias was turned off. These measurements also support that the observed ferromagnetism in the GaCrN film is not due to superparamagnetic clusters but instead is a hole-mediated phenomenon.

  16. Room temperature ferromagnetism and luminescent behavior of Ni doped ZnO nanoparticles prepared by coprecipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Deepawali; Mahajan, Aman; Kaur, Parvinder

    2016-05-23

    The samples of Zn{sub 1-x}Ni{sub x}O (x= 0.00 and 0.05) were prepared using coprecipitation method and annealed at different temperatures. The effect of Ni ion substitution on the structural and optical properties has been studied using X-ray Diffraction, UV-Visible, Photoluminescence and Magnetic measurements. XRD measurements demonstrate that all the prepared samples are wurtzite polycrystalline single phase in nature, ruling out the presence of any secondary phase formation. Ultraviolet visible measurements showed a decrease in band gap with the increase in annealing temperature and doping concentration. The PL data shows the red shift in all the samples and luminescence quenching withmore » Ni doping. Compared to undoped ZnO, Ni doped ZnO showed room temperature ferromagnetism.« less

  17. Temperature Dependence of Smectic Liquid Crystals Mixed With Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Jefferson W.; Kurihara, Lynn K.; Martinez-Miranda, Luz J.

    2012-02-01

    We investigate the properties of bulk liquid crystal mixed with a magnetic nanoparticle (CoFe) as a function of temperature. We compare our results to those of a heat capacity measurement of Cordoyiannis et al.ootnotetextGeorge Cordoyiannis, Lynn K. Kurihara, Luz J. Martinez-Miranda, Christ Glorieux, and Jan Thoen, Phys. Rev. E 79, 011702 (2009) and compare the way the smectic as a function of temperature the way the nematic behaves. We study how the liquid crystal reorganizes in the presence of the functionalized nanoparticles as a function of temperature and compare it to how it behaves at room temperature.ootnotetextL. J. Mart'inez-Miranda, and Lynn Kurihara, J. Appl. Phys, 105, p. 084305 (2009). The X-rays give rise to three or four peaks whose evolution in temperature varies depending on their origin. In particular the second peak does not seem to vary much with temperature, and can be associated with the first several molecular layers attached to the nanoparticles.

  18. Substrate effect on the room-temperature ferromagnetism in un-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Wang, Weipeng; Xie, Zheng; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-07-01

    Room-temperature ferromagnetism was achieved in un-doped ZnO films on silicon and quartz substrates. Photoluminescence measurement and positron annihilation analysis suggested that the ferromagnetism was originated from singly occupied oxygen vacancies (roughly estimated as ˜0.55 μB/vacancy), created in ZnO films by annealing in argon. The saturated magnetization of ZnO films was enhanced from ˜0.44 emu/g (on quartz) to ˜1.18 emu/g (on silicon) after annealing at 600 °C, as silicon acted as oxygen getter and created more oxygen vacancies in ZnO films. This study clarified the origin of ferromagnetism in un-doped ZnO and provides an idea to enhance the ferromagnetism.

  19. Effects of the thermal and magnetic paths on first order martensite transition of disordered Ni45Mn44Sn9In2 Heusler alloy exhibiting a giant magnetocaloric effect and magnetoresistance near room temperature

    NASA Astrophysics Data System (ADS)

    Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.

    2018-05-01

    The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic  →  paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M   =  24 J kg‑1 K‑1 at 298 K) and magnetoresistance (=  ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be  ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.

  20. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    PubMed

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  1. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10-3 S cm-1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  2. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  3. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.

    PubMed

    Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li

    2016-08-30

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  4. A stable room-temperature sodium-sulfur battery.

    PubMed

    Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha; Choudhury, Snehashis; Lu, Yingying; Tu, Zhengyuan; Ma, Lin; Archer, Lynden A

    2016-06-09

    High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium-sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium-sulfur battery that uses a microporous carbon-sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g(-1)) with 600 mAh g(-1) reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.

  5. Magnetic nanoparticle temperature estimation.

    PubMed

    Weaver, John B; Rauwerdink, Adam M; Hansen, Eric W

    2009-05-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 degree K between 20 and 50 degrees C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  6. Quantitative Investigation of Room-Temperature Breakdown Effects in Pixelated TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Koehler, Will; He, Zhong; Thrall, Crystal; O'Neal, Sean; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2014-10-01

    Due to favorable material properties such as high atomic number (Tl: 81, Br: 35), high density ( 7.56 g/cm3), and a wide band gap (2.68 eV), thallium-bromide (TlBr) is currently under investigation for use as an alternative room-temperature semiconductor gamma-ray spectrometer. TlBr detectors can achieve less than 1% FWHM energy resolution at 662 keV, but these results are limited to stable operation at - 20°C. After days to months of room-temperature operation, ionic conduction causes these devices to fail. This work correlates the varying leakage current with alpha-particle and gamma-ray spectroscopic performances at various operating temperatures. Depth-dependent photopeak centroids exhibit time-dependent transient behavior, which indicates trapping sites form near the anode surface during room-temperature operation. After refabrication, similar performance and functionality of failed detectors returned.

  7. The effect of procedure room temperature and humidity on LASIK outcomes.

    PubMed

    Seider, Michael I; McLeod, Stephen D; Porco, Travis C; Schallhorn, Steven C

    2013-11-01

    To determine whether procedure room temperature or humidity during LASIK affect refractive outcomes in a large patient sample. Retrospective cohort study. A total of 202 394 eyes of 105 712 patients aged 18 to 75 years who underwent LASIK at an Optical Express, Inc., location in their United Kingdom and Ireland centers from January 1, 2008, to June 30, 2011, who met inclusion criteria. Patient age, gender, flap creation technique, pre- and 1-month post-LASIK manifest refraction, and ambient temperature and humidity during LASIK were recorded. Effect size determination and univariate and multivariate analyses were performed to characterize the relationships between LASIK procedure room temperature and humidity and postoperative refractive outcome. One month post-LASIK manifest refraction. No clinically significant effect of procedure room temperature or humidity was found on LASIK refractive outcomes. When considering all eyes in our population, an increase of 1°C during LASIK was associated with a 0.003 diopter (D) more hyperopic refraction 1 month postoperatively, and an increase in 1% humidity was associated with a 0.0004 more myopic refraction. These effect sizes were the same or similar when considering only myopic eyes, only hyperopic eyes, and subgroups of eyes stratified by age and preoperative refractive error. Neither procedure room temperature nor humidity during LASIK were found to have a clinically significant relationship with postoperative manifest refraction in our population. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. The effect of procedure room temperature and humidity on LASIK outcomes

    PubMed Central

    Seider, Michael I.; McLeod, Stephen D.; Porco, Travis C.; Schallhorn, Steven C.

    2013-01-01

    Objective To determine if procedure room temperature and humidity during LASIK affects refractive outcomes in a very large patient sample. Design Retrospective cohort study. Participants 202,394 eyes of 105,712 patients aged 18 to 75 years old who underwent LASIK at an Optical Express, Inc. location in their United Kingdom and Ireland centers from January 1, 2008 to June 30, 2011 who met inclusion criteria. Methods Patient age, gender, pre- and one month post-LASIK manifest refraction and flap creation technique were recorded as well as the ambient temperature and humidity during LASIK. Effect size determination, in addition to univariate and multivariate analysis was performed to characterize the relationships between LASIK procedure room temperature and humidity and post-operative refractive outcome. Main Outcome Measures One month post-LASIK manifest refraction. Results No clinically significant effect of procedure room temperature or humidity was found on LASIK refractive outcomes. When considering all eyes in our population, an increase of one degree Celsius during LASIK was associated with a 0.003 diopter more hyperopic refraction one month post-operatively and an increase in one percent humidity was associated with a 0.0004 more myopic refraction. These effect sizes were the same or similar when considering only myopic eyes, only hyperopic eyes and subgroups of eyes stratified by age and pre-operative refractive error. Conclusions Procedure room temperature or humidity during LASIK was found to have no clinically significant relationship with post-operative manifest refraction in our population. PMID:23769199

  9. Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping

    PubMed Central

    Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A.; Debelius, Justine; Morton, James T.; Hyde, Embriette; Robbins-Pianka, Adam

    2017-01-01

    ABSTRACT The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria, grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., “bloomed”) at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called “Deblur” to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has

  10. Experimental evaluation of the magnetic properties of commercially available magnetic microspheres.

    PubMed

    Connolly, Joan; St Pierre, Timothy G; Dobson, Jon

    2005-01-01

    The magnetic properties of 5 commercially available magnetic microsphere samples are tested and compared with those stated by their manufacturers. A suspension of magnetic, iron oxide nanoparticles is studied for comparison. Two of the microsphere samples have magnetic properties which do not support the manufacturer's claims of superparamagnetism. The remaining 3 microsphere samples as well as the nanoparticle suspension are superparamagnetic or ferromagnetic as claimed by the manufacturers. Field cooled and zero field cooled magnetisations indicate that the non-superparamagnetic microsphere samples contain blocked magnetic particles at room temperature. This observation is supported by the open hysteresis loops of the room temperature, field dependent magnetisation measurement. There is a significant paramagnetic component in the superparamagnetic microspheres. This is also present to a lesser extent in a nanoparticle suspension.

  11. Delayed elasticity in Zerodur® at room temperature

    NASA Astrophysics Data System (ADS)

    Pepi, John W.; Golini, Donald

    1991-12-01

    Much has been written about structural relaxation, viscous flow, delayed elasticity, hysteresis, and other dimensional stability phenomena of glass and ceramics at elevated temperatures. Less has been documented about similar effects at room temperature. The time dependent phenomenon of delayed elasticity exhibited by Zerodur has been studied at room temperature and is presented here. Using a high-performance mechanical profilometer, a delayed strain on the order of 1 percent is realized over a period of a few weeks, under low stress levels. An independent test using optical interferometry validates the results. A comparison of Corning ULE silica glass is also made. The effect is believed to be related to the alkali oxide content of the glass ceramic and rearrangement of the ion groups within the structure during stress. The effect, apparent under externally applied load, is elastic and repeatable, that is, no hysteresis of permanent set, as measured at elevated temperature, is evidenced within measurement capabilities. Nonetheless, it must be accounted for in determining the magnitude of distortion under load (delayed elastic creep) and upon load removal (delayed elastic recovery). This is particularly important for large lightweight optics which might undergo large strain during fabrication and environmental loading, such as experienced in gravity release or in dynamic control of active optics.

  12. A 2.5-2.7 THz Room Temperature Electronic Source

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Mehdi, Imran; Lin, Robert; Siles, Jose Vicente; Lee, Choonsup; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Bertrand, Thomas; Ward, John

    2011-01-01

    We report on a room temperature 2.5 to 2.7 THz electronic source based on frequency multipliers. The source utilizes a cascade of three frequency multipliers with W-band power amplifiers driving the first stage multiplier. Multiple-chip multipliers are utilized for the two initial stages to improve the power handling capability and a sub-micron anode is utilized for the final stage tripler. Room temperature measurements indicate that the source can put out a peak power of about 14 microwatts with more than 4 microwatts in the 2.5 to 2.7 THz range.

  13. Driving Curie temperature towards room temperature in the half-metallic ferromagnet K2Cr8O16 by soft redox chemistry.

    PubMed

    Pirrotta, I; Fernández-Sanjulián, J; Moran, E; Alario-Franco, M A; Gonzalo, E; Kuhn, A; García-Alvarado, F

    2012-02-14

    The half-metallic ferromagnet K(2)Cr(8)O(16) with the hollandite structure has been chemically modified using soft chemistry methods to increase the average oxidation state of chromium. The synthesis of the parent material has been performed under high pressure/high temperature conditions. Following this, different redox reactions have been carried out on K(2)Cr(8)O(16). Oxidation to obtain potassium-de-inserted derivatives, K(2-x)Cr(8)O(16) (0 ≤x≤ 1), has been investigated with electrochemical methods, while the synthesis of sizeable amounts was achieved chemically by using nitrosonium tetrafluoroborate as a highly oxidizing agent. The maximum amount of extracted K ions corresponds to x = 0.8. Upon oxidation the hollandite structure is maintained and the products keep high crystallinity. The de-insertion of potassium changes the Cr(3+)/Cr(4+) ratio, and therefore the magnetic properties. Interestingly, the Curie temperature increases from ca. 175 K to 250 K, getting therefore closer to room temperature.

  14. Room temperature electrodeposition of actinides from ionic solutions

    DOEpatents

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  15. Quantum correlations from a room-temperature optomechanical cavity.

    PubMed

    Purdy, T P; Grutter, K E; Srinivasan, K; Taylor, J M

    2017-06-23

    The act of position measurement alters the motion of an object being measured. This quantum measurement backaction is typically much smaller than the thermal motion of a room-temperature object and thus difficult to observe. By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical force fluctuations at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. We use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path toward absolute thermometry with quantum mechanically calibrated ticks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Probing the magnetic profile of diluted magnetic semiconductors using polarized neutron reflectivity.

    PubMed

    Luo, X; Tseng, L T; Lee, W T; Tan, T T; Bao, N N; Liu, R; Ding, J; Li, S; Lauter, V; Yi, J B

    2017-07-24

    Room temperature ferromagnetism has been observed in the Cu doped ZnO films deposited under an oxygen partial pressure of 10 -3 and 10 -5 torr on Pt (200 nm)/Ti (45 nm)/Si (001) substrates using pulsed laser deposition. Due to the deposition at relatively high temperature (873 K), Cu and Ti atoms diffuse to the surface and interface, which significantly affects the magnetic properties. Depth sensitive polarized neutron reflectometry method provides the details of the composition and magnetization profiles and shows that an accumulation of Cu on the surface leads to an increase in the magnetization near the surface. Our results reveal that the presence of the copper at Zn sites induces ferromagnetism at room temperature, confirming intrinsic ferromagnetism.

  17. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for

  18. Room-Temperature Processing of TiOx Electron Transporting Layer for Perovskite Solar Cells.

    PubMed

    Deng, Xiaoyu; Wilkes, George C; Chen, Alexander Z; Prasad, Narasimha S; Gupta, Mool C; Choi, Joshua J

    2017-07-20

    In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO 2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiO x layer that performs as well as the high temperature TiO 2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiO x is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO 2 . Flexible perovskite solar cells that employ a room-temperature TiO x layer with a power conversion efficiency of 14.3% are demonstrated.

  19. Measurement of magnetic property of FePt granular media at near Curie temperature

    NASA Astrophysics Data System (ADS)

    Yang, H. Z.; Chen, Y. J.; Leong, S. H.; An, C. W.; Ye, K. D.; Hu, J. F.

    2017-02-01

    The characterization of the magnetic switching behavior of heat assisted magnetic recording (HAMR) media at near Curie temperature (Tc) is important for high density recording. In this study, we measured the magnetic property of FePt granular media (with room temperature coercivity 25 kOe) at near Tc with a home built HAMR testing instrument. The local area of HAMR media is heated to near Tc by a flat-top optical heating beam. The magnetic property in the heated area was in-situ measured by a magneto-optic Kerr effect (MOKE) testing beam. The switching field distribution (SFD) and coercive field (Hc) of the FePt granular media and their dependence on the optical heating power at near Tc were studied. We measured the DC demagnetization (DCD) signal with pulsed laser heating at different optical powers. We also measured the Tc distribution of the media by measuring the AC magnetic signal as a function of optical heating power. In a summary, we studied the SFD, Hc of the HAMR media at near Tc in a static manner. The present methodology will facilitate the HAMR media testing.

  20. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE PAGES

    Russi, Silvia; González, Ana; Kenner, Lillian R.; ...

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite

  1. Conformational variation of proteins at room temperature is not dominated by radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russi, Silvia; González, Ana; Kenner, Lillian R.

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite

  2. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    NASA Astrophysics Data System (ADS)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  3. Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.

    PubMed

    Dragoman, Daniela; Dragoman, Mircea

    2015-12-04

    We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.

  4. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  5. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Grutter, Alexander J.; Yun, Yu; Cui, Zhangzhang; Lu, Yalin

    2018-04-01

    Unambiguous magnetic characterization of room-temperature multiferroic materials remains challenging due in part to the difficulty of distinguishing their very weak ferromagnetism from magnetic impurity phases and other contaminants. In this study, we used polarized neutron reflectivity to probe the magnetization of B i6FeCoT i3O18 and LaB i5FeCoT i3O18 in their epitaxial thin films while eliminating a variety of impurity contributions. Our results show that LaB i5FeCoT i3O18 exhibits a magnetization of about 0.016 ±0.027 μB/Fe -Co pair at room temperature, while the B i6FeCoT i3O18 thin film only exhibits a weak magnetic moment below room temperature, with a saturation magnetization of 0.049 ±0.015 μB/Fe -Co pair at 50 K. This polarized-neutron-reflectivity study places an upper magnetization limit on the matrix material of the magnetically doped Aurivillius oxides and helps to clarify the true mechanism behind the room-temperature magnetic performance.

  6. Change in the magnetic properties of nanoferrihydrite with an increase in the volume of nanoparticles during low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.; Bayukov, O. A.; Vorotynov, A. M.; Volochaev, M. N.; Dubrovskiy, A. A.

    2016-09-01

    The results of the investigation into the effect of low-temperature annealing of a powder of nanoparticles of bacterial ferrihydrite on its magnetic properties have been presented. It has been found that an increase in the time (up to 240 h) and temperature (in the range from 150 to 200°C) of annealing leads to a monotonic increase in the superparamagnetic blocking temperature, the coercive force, and the threshold field of the opening of the magnetic hysteresis loop (at liquid-helium temperatures), as well as to an increase in the magnetic resonance line width at low temperatures and in the magnetic susceptibility at room temperature. At the same time, according to the results of the analysis of the Mössbauer spectra, the annealing of ferrihydrite does not lead to the formation of new iron oxide phases. Most of these features are well consistent with the fact that the low-temperature annealing of ferrihydrite causes an increase in the size of nanoparticles, which is confirmed by the results of transmission electron microscopy studies.

  7. Room-Temperature Multiferroics and Thermal Conductivity of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 Epitaxial Thin Films (x = 0.1 and 0.2).

    PubMed

    Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao

    2017-08-02

    Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.

  8. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/O2, Xe/N2 and Xe/CO2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less

  9. Xenon Recovery at Room Temperature using Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsaidi, Sameh K.; Ongari, Daniele; Xu, Wenqian

    2017-07-24

    Xenon is known to be a very efficient anesthetic gas but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycle from anesthetic gas mixture can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low temperature distillation to recover Xe, which is expensive to use in medical facilities. Herein, we propose much efficient and simpler system to recover and recycle Xe from simulant exhale anesthetic gas mixture at room temperature using metal organic frameworks. Among the MOFs tested, PCN-12 exhibitsmore » unprecedented performance with high Xe capacity, Xe/N2 and Xe/O2 selectivity at room temperature. The in-situ synchrotron measurements suggest the Xe is occupied in the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.« less

  10. Room temperature spin valve effect in NiFe/WS₂/Co junctions.

    PubMed

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood

    2016-02-12

    The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.18% at room temperature to 0.47% at 4.2 K. We observed that the junction resistance decreases monotonically as temperature is lowered. These results revealed that semiconducting WS2 thin film works as a metallic conducting interlayer between NiFe and Co electrodes.

  11. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    NASA Astrophysics Data System (ADS)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  12. Impacts of exhalation flow on the microenvironment around the human body under different room temperatures

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro

    2018-04-01

    Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.

  13. Giant Spin-Driven Ferroelectric Polarization in BiFeO 3 at Room Temperature

    DOE PAGES

    Lee, Jun Hee; Fishman, Randy S.

    2015-11-11

    Although BiFeO 3 is the most extensively investigated multiferroic material, its magnetoelectic couplings are barely understood. Here we report a thorough study of the magentoelectric (ME) couplings in spin-cycloidal buk BiFeO 3 using first-principles calculations and microscopic spin-wave models compared with neutron-scattering measurements. We find that huge exchange-striction (ES) polarizations, i.e. the electric response of the magnetic exchange through ferroelectric and antiferrodistortive distortions, is giant enough to dominate over all other ME couplings. We show that BiFeO 3 has a hidden record-high spin-driven polarization ( 3 C/cm 2) at room-temperature. The huge ES polarizations can be tuned by coupling tomore » the antiferrodistortive rotations.« less

  14. Room temperature exchange bias in multiferroic BiFeO3 nano- and microcrystals with antiferromagnetic core and two-dimensional diluted antiferromagnetic shell

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Wang, Shou Yu; Liu, Wei Fang; Xu, Xun Ling; Li, Xiu; Zhang, Hong; Gao, Ju; Li, De Jun

    2017-05-01

    Exchange bias (EB) of multiferroics presents many potential opportunities for magnetic devices. However, instead of using low-temperature field cooling in the hysteresis loop measurement, which usually shows an effective approach to obtain obvious EB phenomenon, there are few room temperature EB. In this article, extensive studies on room temperature EB without field cooling were observed in BiFeO3 nano- and microcrystals. Moreover, with increasing size the hysteresis loops shift from horizontal negative exchange bias (NEB) to positive exchange bias (PEB). In order to explain the tunable EB behaviors with size dependence, a phenomenological qualitative model based on the framework of antiferromagnetic (AFM) core-two-dimensional diluted antiferromagnet in a field (2D-DAFF) shell structure was proposed. The training effect (TE) ascertained the validity of model and the presence of unstable magnetic structure using Binek's model. Experimental results show that the tunable EB effect can be explained by the competition of ferromagnetic (FM) exchange coupling and AFM exchange coupling interaction between AFM core and 2D-DAFF shell. Additionally, the local distortion of lattice fringes was observed in hexagonal-shaped BiFeO3 nanocrystals with well-dispersed behavior. The electrical conduction properties agreed well with the space charge-limited conduction mechanism.

  15. Large anomalous Hall effect in a non-collinear antiferromagnet Mn3Sn at room temperature

    NASA Astrophysics Data System (ADS)

    Higo, Tomoya; Kiyohara, Naoki; Nakatsuji, Satoru

    Recent development in theoretical and experimental studies have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets. In this talk, we will present experimental results showing that the antiferromagnet Mn3Sn, which has a non-collinear 120-degree spin order, exhibits a large anomalous Hall effect. The magnitude of the Hall conductivity is ~ 20 Ω-1 cm-1 at room temperature and > 100 Ω-1 cm-1 at low temperatures. We found that a main component of the Hall signal, which is nearly independent of a magnetic field and magnetization, can change the sign with the reversal of a small applied field, corresponding to the rotation of the staggered moments of the non-collinear antiferromagnetic spin order which carries a very small net moment of a few of mμB. Supported by PRESTO, JST, and Grants-in-Aid for Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. R2604) and Scientific Research on Innovative Areas (15H05882 and 15H05883) from JSPS.

  16. Reversible photoinduced spectral change in Eu2O3 at room temperature

    NASA Astrophysics Data System (ADS)

    Mochizuki, Shosuke; Nakanishi, Tauto; Suzuki, Yuya; Ishi, Kimihiro

    2001-12-01

    When Eu2O3 powder compact and film are irradiated with ultraviolet (UV) laser light in a vacuum, their photoluminescence (PL) spectra change from a red sharp-line structure to a white broad band, which can be clearly seen with the naked eye. After removing the UV laser light, the white PL continues for more than several months at room temperature under room light, in spite of any changes of atmosphere. By irradiating with the same UV laser light at room temperature under O2 gas atmosphere, the original red PL state reappears. Such a reversible phenomenon may well yield materials for white-light-emitting devices and erasable optical storage.

  17. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  18. Room-temperature resonant quantum tunneling transport of macroscopic systems.

    PubMed

    Xiong, Zhengwei; Wang, Xuemin; Yan, Dawei; Wu, Weidong; Peng, Liping; Li, Weihua; Zhao, Yan; Wang, Xinmin; An, Xinyou; Xiao, Tingting; Zhan, Zhiqiang; Wang, Zhuo; Chen, Xiangrong

    2014-11-21

    A self-assembled quantum dots array (QDA) is a low dimensional electron system applied to various quantum devices. This QDA, if embedded in a single crystal matrix, could be advantageous for quantum information science and technology. However, the quantum tunneling effect has been difficult to observe around room temperature thus far, because it occurs in a microcosmic and low temperature condition. Herein, we show a designed a quasi-periodic Ni QDA embedded in a single crystal BaTiO3 matrix and demonstrate novel quantum resonant tunneling transport properties around room-temperature according to theoretical calculation and experiments. The quantum tunneling process could be effectively modulated by changing the Ni QDA concentration. The major reason was that an applied weak electric field (∼10(2) V cm(-1)) could be enhanced by three orders of magnitude (∼10(5) V cm(-1)) between the Ni QDA because of the higher permittivity of BaTiO3 and the 'hot spots' of the Ni QDA. Compared with the pure BaTiO3 films, the samples with embedded Ni QDA displayed a stepped conductivity and temperature (σ-T curves) construction.

  19. Remote temperature distribution sensing using permanent magnets

    DOE PAGES

    Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...

    2016-10-31

    Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less

  20. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  1. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  2. Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.

    PubMed

    Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T

    2013-08-06

    The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.

  3. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  4. Floating Magnet Demonstration.

    ERIC Educational Resources Information Center

    Wake, Masayoshi

    1990-01-01

    A room-temperature demonstration of a floating magnet using a high-temperature superconductor is described. The setup and operation of the apparatus are described. The technical details of the effect are discussed. (CW)

  5. Phase transition temperatures and magnetic entropy change in Ni-Mn-In-B based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Gautam, Bhoj; Dubenko, Igor; Ali, Naushad

    2008-03-01

    One of the aspects of great attention of Heusler alloys is the large value of magnetic entropy change (δSM) and their possible application as a working material in magnetocaloric effect based magnetic refrigerators. It was reported earlier that Ni50Mn34.8In15.2 has first order martensitic transition temperature TM 212K, Curie temperature of austenitic phase TC 328K and δSM value associated with TM and TC are respectively 13 and -7 J/kg K [1]. In the present study, we are reporting the effect of partial substitution of In by B in Ni50Mn34.8In15.2 by AC susceptibility, thermal expansion, and magnetization measurements. We observed that substitution of boron sharply increase TM, and significantly enhance the δSM peak value higher than 30 J/kg K at TM 296K; however the δSM value remains almost same at TC. Therefore, the Ni-Mn-In-B based Heusler alloys will be potential material for the study of room temperature magnetic refrigerator materials. Reference: [1] A. K. Pathak, M. Khan, I. Dubenko, S. Stadler, and N. Ali, Appl. Phys. Lett. 90, 262504 (2007).

  6. Does apartment's distance to an in-built transformer room predict magnetic field exposure levels?

    PubMed

    Huss, Anke; Goris, Kelly; Vermeulen, Roel; Kromhout, Hans

    2013-01-01

    It has been shown that magnetic field exposure in apartments located directly on top or adjacent to transformer rooms is higher compared with exposure in apartments located further away from the transformer rooms. It is unclear whether this also translates into exposure contrast among individuals living in these apartments. We performed spot measurements of magnetic fields in 35 apartments in 14 apartment buildings with an in-built transformer and additionally performed 24-h personal measurements in a subsample of 24 individuals. Apartments placed directly on top of or adjacent to a transformer room had on average exposures of 0.42 μT, apartments on the second floor on top of a transformer room, or sharing a corner or edge with the transformer room had 0.11 μT, and apartments located further away from the transformer room had levels of 0.06 μT. Personal exposure levels were approximately a factor 2 lower compared with apartment averages, but still showed exposure contrasts, but only for those individuals who live in the apartments directly on top or adjacent to a transformer room compared with those living further away, with 0.23 versus 0.06 μT for personal exposure when indoors, respectively. A classification of individuals into 'high' and 'low' exposed based on the location of their apartment within a building with an in-built transformer is possible and could be applied in future epidemiological studies.

  7. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  8. Colossal Terahertz Magnetoresistance at Room Temperature in Epitaxial La0.7Sr0.3MnO3 Nanocomposites and Single-Phase Thin Films.

    PubMed

    Lloyd-Hughes, J; Mosley, C D W; Jones, S P P; Lees, M R; Chen, A; Jia, Q X; Choi, E-M; MacManus-Driscoll, J L

    2017-04-12

    Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of La 0.7 Sr 0.3 MnO 3 . At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: the mean free path was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. The VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.

  9. Structure determination of an integral membrane protein at room temperature from crystals in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axford, Danny; Foadi, James; Imperial College London, London SW7 2AZ

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samplesmore » and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.« less

  10. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In1 -xFex )2O3

    NASA Astrophysics Data System (ADS)

    Green, R. J.; Regier, T. Z.; Leedahl, B.; McLeod, J. A.; Xu, X. H.; Chang, G. S.; Kurmaev, E. Z.; Moewes, A.

    2015-10-01

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2 O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  11. On the possibility of room temperature ferromagnetism on chunk-shape BaSnO3/ZnO core/shell nanostructures

    NASA Astrophysics Data System (ADS)

    Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.

  12. Long-term room temperature stability of TlBr gamma detectors

    NASA Astrophysics Data System (ADS)

    Conway, A. M.; Voss, L. F.; Nelson, A. J.; Beck, P. R.; Graff, R. T.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L. J.; Shah, K.

    2011-09-01

    TlBr is a material of interest for use in room temperature gamma ray detector applications due to is wide bandgap 2.7 eV and high average atomic number (Tl 81, Br 35). Researchers have achieved energy resolutions of 1.3 % at 662 keV, demonstrating the potential of this material system. However, these detectors are known to polarize using conventional configurations, limiting their use. Continued improvement of room temperature, high-resolution gamma ray detectors based on TlBr requires further understanding of the degradation mechanisms. While high quality material is a critical starting point for excellent detector performance, we show that the room temperature stability of planar TlBr gamma spectrometers can be significantly enhanced by treatment with both hydrofluoric and hydrochloric acid. By incorporating F or Cl into the surface of TlBr, current instabilities are eliminated and the longer term current of the detectors remains unchanged. 241Am spectra are also shown to be more stable for extended periods; detectors have been held at 2000 V/cm for 52 days with less than 10% degradation in peak centroid position. In addition, evidence for the long term degradation mechanism being related to the contact metal is presented.

  13. Sub-nano tesla magnetic imaging based on room-temperature magnetic flux sensors with vibrating sample magnetometry

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiaki; Oyama, Daisuke

    2017-05-01

    We developed a two-dimensional imaging method for weak magnetic charge distribution using a commercially available magnetic impedance sensor whose magnetic field resolution is 10 pT/Hz1/2 at 10 Hz. When we applied the vibrating sample magnetometry, giving a minute mechanical vibration to the sample and detecting magnetic signals modulated by the vibration frequency, the effects of 1/f noise and the environmental low-frequency band noise were suppressed, and a weak magnetic charge distribution was obtained without magnetic shielding. Furthermore, improvement in the spatial resolution was also expected when the signals were demodulated at the second harmonic frequency of the vibration. In this paper, a preliminary magnetic charge imaging using the vibrating sample magnetometry and its results are demonstrated.

  14. Room-temperature ferromagnetism in Dy films doped with Ni

    NASA Astrophysics Data System (ADS)

    Edelman, I.; Ovchinnikov, S.; Markov, V.; Kosyrev, N.; Seredkin, V.; Khudjakov, A.; Bondarenko, G.; Kesler, V.

    2008-09-01

    Temperature, magnetic field and spectral dependences of magneto-optical effects (MOEs) in bi-layer films Dy (1-x)Ni x-Ni and Dy (1-x)(NiFe) x-NiFe were investigated, x changes from 0 to 0.06. Peculiar behavior of the MOEs was revealed at temperatures essentially exceeding the Curie temperature of bulk Dy which is explained by the magnetic ordering of the Dy layer containing Ni under the action of two factors: Ni impurities distributed homogeneously over the whole Dy layer and atomic contact of this layer with continues Ni layer. The mechanism of the magnetic ordering is suggested to be associated with the change of the density of states of the alloy Dy (1-x)Ni x owing to hybridization with narrow peaks near the Fermi level character for Ni.

  15. Precipitation hardening behaviour of Al-Mg-Si alloy processed by cryorolling and room temperature rolling

    NASA Astrophysics Data System (ADS)

    Hussain, Maruff; Nageswara rao, P.; Singh, Dharmendra; Jayaganthan, R.

    2018-04-01

    The precipitation hardenable aluminium alloy (Al-Mg-Si) plates were solutionized and subjected to rolling at room temperature and liquid nitrogen temperature (RTR, CR) up to a true strain of ∼2.7. The rolled sheets were uniformly aged at room temperature and above room temperature (125 °C) to induce precipitation. The rolled and aged samples were analysed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness and tensile tests. The strength and ductility were simultaneously improved after controlled ageing of the cryorolled (CR) and room temperature rolled (RTR) samples. However, the increment in strength is more in RTR material than CR material with same ductility. Transmission electron microscopy analysis revealed the formation of ultrafine grains (UFG) filled with dislocations and nanosized precipitates in the CR and RTR conditions after ageing treatment. The behaviour of CR and RTR alloy is same under natural ageing conditions.

  16. Dynamical mean-field theoretical approach to explore the temperature-dependent magnetization in Ta-doped TiO2

    NASA Astrophysics Data System (ADS)

    Majidi, M. A.; Umar, A. S.; Rusydi, A.

    2017-04-01

    TiO2 has, in recent years, become a hot subject as it holds a promise for spintronic application. Recent experimental study on anatase Ti1-x Ta x O2 (x ~ 0.05) thin films shows that the system changes from non-magnetic to ferromagnetic due to Ti vacancies that are formed when a small percentage of Ti atoms are substituted by Ta. Motivated by those results that reveal the ferromagnetic phase at room temperature, we conduct a theoretical study on the temperature-dependent magnetization and the Currie temperature of that system. We hypothesize that when several Ti vacancies are formed in the system, each of them induces a local magnetic moment, then such moments couple each other through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, forming a ferromagnetic order. To study the temperature dependence of the magnetization and predict the Curie temperature, we construct a tight-binding based Hamiltonian for this system and use the method of dynamical mean-field theory to perform calculations for various temperatures. Our work is still preliminary. The model and method may need further improvement to be consistent with known existing facts. We present our preliminary results to show how the present model works.

  17. Cryogenic Magnetic Bearing Test Facility (CMBTF)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Cryogenic Magnetic Bearing Test Facility (CMBTF) was designed and built to evaluate compact, lightweight magnetic bearings for use in the SSME's (space shuttle main engine) liquid oxygen and liquid hydrogen turbopumps. State of the art and tradeoff studies were conducted which indicated that a hybrid permanent magnet bias homopolar magnetic bearing design would be smaller, lighter, and much more efficient than conventional industrial bearings. A test bearing of this type was designed for the test rig for use at both room temperature and cryogenic temperature (-320 F). The bearing was fabricated from state-of-the-art materials and incorporated into the CMBTF. Testing at room temperature was accomplished at Avcon's facility. These preliminary tests indicated that this magnetic bearing is a feasible alternative to older bearing technologies. Analyses showed that the hybrid magnetic bearing is one-third the weight, considerably smaller, and uses less power than previous generations of magnetic bearings.

  18. Room temperature ammonia and VOC sensing properties of CuO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations frommore » 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.« less

  19. Superior room-temperature ductility of typically brittle quasicrystals at small sizes

    PubMed Central

    Zou, Yu; Kuczera, Pawel; Sologubenko, Alla; Sumigawa, Takashi; Kitamura, Takayuki; Steurer, Walter; Spolenak, Ralph

    2016-01-01

    The discovery of quasicrystals three decades ago unveiled a class of matter that exhibits long-range order but lacks translational periodicity. Owing to their unique structures, quasicrystals possess many unusual properties. However, a well-known bottleneck that impedes their widespread application is their intrinsic brittleness: plastic deformation has been found to only be possible at high temperatures or under hydrostatic pressures, and their deformation mechanism at low temperatures is still unclear. Here, we report that typically brittle quasicrystals can exhibit remarkable ductility of over 50% strains and high strengths of ∼4.5 GPa at room temperature and sub-micrometer scales. In contrast to the generally accepted dominant deformation mechanism in quasicrystals—dislocation climb, our observation suggests that dislocation glide may govern plasticity under high-stress and low-temperature conditions. The ability to plastically deform quasicrystals at room temperature should lead to an improved understanding of their deformation mechanism and application in small-scale devices. PMID:27515779

  20. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  1. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucivero, Vito Giovanni, E-mail: vito-giovanni.lucivero@icfo.es; Anielski, Pawel; Gawlik, Wojciech

    2014-11-15

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature {sup 85}Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT/√(Hz) at 7.6 μT. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 μT to 75 μT. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  2. Magnetic nanostructuring and overcoming Brown's paradox to realize extraordinary high-temperature energy products

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Balamurugan; Mukherjee, Pinaki; Skomski, Ralph; Manchanda, Priyanka; Das, Bhaskar; Sellmyer, David J.

    2014-09-01

    Nanoscience has been one of the outstanding driving forces in technology recently, arguably more so in magnetism than in any other branch of science and technology. Due to nanoscale bit size, a single computer hard disk is now able to store the text of 3,000,000 average-size books, and today's high-performance permanent magnets--found in hybrid cars, wind turbines, and disk drives--are nanostructured to a large degree. The nanostructures ideally are designed from Co- and Fe-rich building blocks without critical rare-earth elements, and often are required to exhibit high coercivity and magnetization at elevated temperatures of typically up to 180 °C for many important permanent-magnet applications. Here we achieve this goal in exchange-coupled hard-soft composite films by effective nanostructuring of high-anisotropy HfCo7 nanoparticles with a high-magnetization Fe65Co35 phase. An analysis based on a model structure shows that the soft-phase addition improves the performance of the hard-magnetic material by mitigating Brown's paradox in magnetism, a substantial reduction of coercivity from the anisotropy field. The nanostructures exhibit a high room-temperature energy product of about 20.3 MGOe (161.5 kJ/m3), which is a record for a rare earth- or Pt-free magnetic material and retain values as high as 17.1 MGOe (136.1 kJ/m3) at 180°C.

  3. Effects of reduced nocturnal temperature on pig performance and energy consumption in swine nursery rooms.

    PubMed

    Johnston, L J; Brumm, M C; Moeller, S J; Pohl, S; Shannon, M C; Thaler, R C

    2013-07-01

    The objective of this investigation was to determine the effect of a reduced nocturnal temperature (RNT) regimen on performance of weaned pigs and energy consumption during the nursery phase of production. The age of weaned pigs assigned to experiments ranged from 16 to 22 d. In Exp. 1, 3 stations conducted 2 trials under a common protocol that provided data from 6 control rooms (CON; 820 pigs) and 6 RNT rooms (818 pigs). Two mirror-image nursery rooms were used at each station. Temperature in the CON room was set to 30°C for the first 7 d, then reduced by 2°C per week through the remainder of the experiment. Room temperature settings were held constant throughout the day and night. The temperature setting in the RNT room was the same as CON during the first 7 d, but beginning on the night of d 7, the room temperature setting was reduced 6°C from the daytime temperature from 1900 to 0700 h. The use of heating fuel and electricity were measured weekly in each room. Overall, ADG (0.43 kg), ADFI (0.62 kg), and G:F (0.69) were identical for CON and RNT rooms. Consumption of heating fuel [9,658 vs. 7,958 British thermal units (Btu)·pig(-1)·d(-1)] and electricity (0.138 vs. 0.125 kilowatt-hour (kWh)·pig(-1)·d(-1)] were not statistically different for CON and RNT rooms, respectively. In Exp. 2, 4 stations conducted at least 2 trials that provided data from 9 CON rooms (2,122 pigs) and 10 RNT rooms (2,176 pigs). Experimental treatments and protocols were the same as Exp. 1, except that the RNT regimen was imposed on the night of d 5 and the targeted nighttime temperature reduction was 8.3°C. Neither final pig BW (21.8 vs. 21.5 kg; SE = 0.64), ADG (0.45 vs. 0.44 kg; SE = 0.016), ADFI (0.61 vs. 0.60 kg; SE = 0.019), nor G:F (0.75 vs. 0.75; SE = 0.012) were different for pigs housed in CON or RNT rooms, respectively. Consumption of heating fuel and electricity was consistently reduced in RNT rooms for all 4 stations. Consumption of heating fuel (10,019 vs. 7,061 Btu

  4. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1

    PubMed Central

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat

    2017-01-01

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm−1. Significantly, these films show room temperature mobilities up to 120 cm2 V−1 s−1 even at carrier concentrations above 3 × 1020 cm−3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III–N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality. PMID:28474675

  5. Accessing protein conformational ensembles using room-temperature X-ray crystallography

    PubMed Central

    Fraser, James S.; van den Bedem, Henry; Samelson, Avi J.; Lang, P. Therese; Holton, James M.; Echols, Nathaniel; Alber, Tom

    2011-01-01

    Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation. PMID:21918110

  6. Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection.

    PubMed

    Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan

    2017-11-15

    Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Room temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity.

    PubMed

    Cabañas, M V; Peña, J; Román, J; Vallet-Regí, M

    2006-09-01

    An original shaping technique has been applied to prepare porous bodies at room temperature. Agarose, a biodegradable polysaccharide, was added as binder of a sol-gel glass in powder form, yielding an easy to mold paste. Interconnected tailored porous bodies can be straightforwardly prepared by pouring the slurry into a polymeric scaffold, previously designed by stereolitography, which is subsequently eliminated by alkaline dissolution at room temperature. The so obtained pieces behave like a hydrogel with an enhanced consistency that makes them machinable and easy to manipulate. These materials generate an apatite-like layer when immersed in a simulated body fluid, indicating a potential in vivo bioactivity. The proposed method can be applied to different powdered materials to produce pieces, at room temperature, with various shapes and sizes and with tailored interconnected porosity.

  8. Oxygen vacancy-induced room-temperature ferromagnetism in D—D neutron irradiated single-crystal TiO2 (001) rutile

    NASA Astrophysics Data System (ADS)

    Xu, Nan-Nan; Li, Gong-Ping; Pan, Xiao-Dong; Wang, Yun-Bo; Chen, Jing-Sheng; Bao, Liang-Man

    2014-10-01

    Remarkable room temperature ferromagnetism in pure single-crystal rutile TiO2 (001) samples irradiated by D—D neutron has been investigated. By combining X-ray diffraction and positron annihilation lifetime, the contracted lattice has been clearly identified in irradiated TiO2, where Ti4+ ions can be easily reduced to the state of Ti3+. As there were no magnetic impurities that could contaminate the samples during the whole procedure, some Ti3+ ions reside on interstitial or substituted sites accompanied by oxygen vacancies should be responsible for the ferromagnetism.

  9. Magnetic biosensor using a high transition temperature SQUID

    NASA Astrophysics Data System (ADS)

    Grossman, Helene Lila

    A high transition temperature (Tc) Superconducting QUantum Interference Device (SQUID) is used to detect magnetically-labeled microorganisms. The targets are identified and quantified by means of magnetic relaxation measurements, with no need for unbound magnetic labels to be washed away. The binding rate between antibody-linked magnetic particles and targets can be measured with this technique. Installed in a "SQUID microscope," a YBa2Cu 3O7-delta SQUID is mounted on a sapphire rod thermally linked to a liquid nitrogen can; these components are enclosed in a fiberglass vacuum chamber. A thin window separates the vacuum chamber from the sample, which is at room temperature and atmospheric pressure. In one mode of the experiment, targets are immobilized on a substrate and immersed a suspension of ˜50 nm diameter superparamagnetic particles, coated with antibodies. A pulsed magnetic field aligns the magnetic dipole moments, and the SQUID measures the magnetic relaxation signal each time the field is turned off. Unbound particles relax within ˜50 mus by Brownian rotation, too fast for the SQUID system to measure. In contrast, particles bound to targets have their Brownian motion inhibited. These particles relax in ˜1 s by rotation of the internal dipole moment, and this Neel relaxation process is detected by the SQUID. This assay is demonstrated with a model system of liposomes carrying the FLAG epitope; the detection limit is (2.7 +/- 0.2) x 105 particles. The replacement of the SQUID with a gradiometer improves the detection limit to (7.0 +/- 0.7) x 103 particles. In an alternate mode of the experiment, freely suspended targets (larger than ˜1 mum diameter) are detected. Since the Brownian relaxation time of the targets is longer than the measurement time, particles bound to targets are effectively immobilized and exhibit Neel relaxation. Listeria monocytogenes are detected using this method; the sensitivity is (1.1 +/- 0.2) x 105 bacteria in 20 muL. For a 1 n

  10. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    NASA Astrophysics Data System (ADS)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  11. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    PubMed

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  12. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    EPA Science Inventory

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  13. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    DOE PAGES

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; ...

    2016-12-19

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  14. Mechanical and electrical properties of low temperature phase MnBi

    DOE PAGES

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; ...

    2016-01-21

    The low temperature phase (LTP) MnBi is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and its large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have started to consider MnBi magnet for motor applications. In addition to the magnetic properties, there are other physical properties that could significantly affect a motor design. Here, we report the results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their dependence on temperature. We found at room temperature the sintered MnBi magnet fractures when the compression stressmore » exceeds 193 MPa; and its room temperature electric resistance is about 6.85 μΩ-m.« less

  15. Self-generated Local Heating Induced Nanojoining for Room Temperature Pressureless Flexible Electronic Packaging

    PubMed Central

    Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman

    2015-01-01

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019

  16. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    PubMed Central

    2011-01-01

    A large quantity of ultrafine tetragonal barium titanate (BaTiO3) nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature. PMID:21781339

  17. Stabilization of superionic α-Agl at room temperature in a glass matrix

    NASA Astrophysics Data System (ADS)

    Tatsumisago, Masahiro; Shinkuma, Yoshikane; Minami, Tsutomu

    1991-11-01

    SINCE the discovery1 that the high-temperature phase of silver iodide (α-AgI) has an ionic conductivity comparable to that of the best liquid electrolytes, solid electrolytes have attracted wide interest. Possible applications of these materials range from solid-state batteries to electrochromic displays and sensors2. Although α-AgI displays conductivities of more than 10 S cm-1 (ref. 3), owing to the almost liquid-like mobility of Ag+ ions, the crystal transforms below 147 °C to the β-phase with a conductivity of only ~10-5 S cm-1 at room temperature. Efforts to achieve good conductivities at lower temperatures have focused on the addition of a second component to AgI to form solid solutions or new compounds such as RbAg4I5 and Ag2HgI4 (refs 4-7). Here we report our success in depressing the α-->β transformation temperature so as to stabilize α-AgI itself at room temperature. We use a melt-quenching technique to prepare crystallites of α-AgI frozen into a silver borate glass matrix. The quenched material showed diffraction peaks characteristic of α-AgI and displayed ionic conductivities of about 10-1 S cm-1. Further development of these glass/crystal composites may make the high ionic conductivity of α-AgI available for room-temperature solid-state applications.

  18. Novel poly(dimethylsiloxane) bonding strategy via room temperature "chemical gluing".

    PubMed

    Lee, Nae Yoon; Chung, Bong Hyun

    2009-04-09

    Here we propose a new scheme for bonding poly(dimethylsiloxane) (PDMS), namely, a "chemical gluing", at room temperature by anchoring chemical functionalities on the surfaces of PDMS. Aminosilane and epoxysilane are anchored separately on the surfaces of two PDMS substrates, the reaction of which are well-known to form a strong amine-epoxy bond, therefore acting as a chemical glue. The bonding is performed for 1 h at room temperature without employing heat. We characterize the surface properties and composition by contact angle measurement, X-ray photoelectron spectroscopy analysis, and fluorescence measurement to confirm the formation of surface functionalities and investigate the adhesion strength by means of pulling, tearing, and leakage tests. As confirmed by the above-mentioned analyses and tests, PDMS surfaces were successfully modified with amine and epoxy functionalities, and a bonding based on the amine-epoxy chemical gluing was successfully realized within 1 h at room temperature. The bonding was sufficiently robust to tolerate intense introduction of liquid whose per minute injection volume was almost 2000 times larger than the total internal volume of the microchannel used. In addition to the bonding of PDMS-PDMS homogeneous assembly, the bonding of the PDMS-poly(ethylene terephthalate) heterogeneous assembly was also examined. We also investigate the potential use of the multifunctionalized walls inside the microchannel, generated as a consequence of the chemical gluing, as a platform for the targeted immobilization.

  19. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures

    NASA Astrophysics Data System (ADS)

    Stein, C. R.; Bezerra, M. T. S.; Holanda, G. H. A.; André-Filho, J.; Morais, P. C.

    2018-05-01

    This study reports on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by chemical co-precipitation in alkaline medium at increasing temperatures in the range of 27 °C to 100 °C. High-quality samples in the size range of 5 to 10 nm were produced using very low stirring speed (250 rpm) and moderate alkaline aqueous solution concentration (4.8 mol/L). Three samples were synthesized and characterized by x-ray diffraction (XRD) and room-temperature (RT) magnetization measurements. All samples present superparamagnetic (SPM) behavior at RT and Rietveld refinements confirm the inverse cubic spinel structure (space group Fd-3m (227)) with minor detectable impurity phase. As the synthesis temperature increases, structural parameters such as lattice constant and grain size change monotonically from 8.385 to 8.383 Å and from 5.8 to 7.4 nm, respectively. Likewise, as the synthesis temperature increases the NPs' magnetic moment and saturation magnetization increases monotonically from 2.6 ×103 to 16×103 μB and from 37 to 66 emu/g, respectively. The RT magnetization (M) versus applied field (H) curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. The excellent curve-fitting of the M versus H data is credited to a reduced particle-particle interaction due to both the SPM behavior and the existence of a surface amorphous shell layer (dead layer), the latter reducing systematically as the synthesis temperature increases.

  20. Instantaneous radioiodination of rose bengal at room temperature and a cold-kit therefor. [DOE patent application

    DOEpatents

    O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.

    The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.

  1. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    PubMed Central

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-01-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. PMID:27991593

  2. Low temperature magnetic properties of monoclinic pyrrhotite with particular relevance to the Besnus transition

    NASA Astrophysics Data System (ADS)

    Volk, M.; Gilder, S.; Feinberg, J. M.

    2016-12-01

    Monoclinic pyrrhotite (Fe7S8) is an important mineral on earth as well as in some meteorites. It owes its ferrimagnetism to an ordered array of Fe vacancies. Its magnetic properties change markedly around 30 K, in what is known as the Besnus transition. Plausible explanations for the Besnus transition are either due to changes in crystalline anisotropy from a transformation in crystal symmetry or from the establishment of a two-phase system with magnetic interaction between the two phases. To help resolve this discrepancy, we measured hysteresis loops every 5° and back field curves every 10° in the basal plane of an oriented single crystal of monoclinic pyrrhotite at 300 K and at 21 temperature steps from 50 K through the Besnus transition until 20 K. Between 50 and 30 K, hysteresis loops possess double inflections between crystallographic a-axes and only a single inflection parallel to the a-axes. The second inflection phenomenon and relative differences of the loops show a six-fold symmetry in this temperature range. The Besnus transition is best characterized by changes in magnetic remanence and coercivity over a 6° temperature span with a maximum rate of change at 30 K. A surprising yet puzzling finding is that the coercivity ratio becomes less than unity below the transition when four-fold symmetry arises. The saturation magnetization of natural pyrrhotite cycled from room temperature to successively lower temperatures through the Besnus transition decreases 2-4 times less than equivalent grain sizes of magnetite, with less than a 10% loss in remanence between 300 K and 150 K in pseudo-single domain pyrrhotite. As pseudo-single domain monoclinic pyrrhotite carries the magnetic remanence in some meteorites, it is likely that low temperature cycling in space to the Earth's surface will have only a minor influence on paleointensity values derived from those meteorites.

  3. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  4. Vaporisation of an ionic liquid near room temperature.

    PubMed

    Lovelock, Kevin R J; Deyko, Alexey; Licence, Peter; Jones, Robert G

    2010-08-21

    The temperature at which the vapour phase of the ionic liquids (ILs) 1-ethyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(2)C(1)Im][Tf(2)N], and 1-ethyl-3-methylimidazolium ethylsulfate, [C(2)C(1)Im][EtOSO(3)], can be detected was investigated using line-of-sight mass spectrometry (LOSMS). By optimising the detection system used in previous experiments, the lowest temperature for which vapour was detected for [C(2)C(1)Im][Tf(2)N] was approximately 340 K, whereas for [C(2)C(1)Im][EtOSO(3)] it was approximately 390 K. Initial investigations also show that the temperature at which measurements are made affects the enthalpy of vaporisation at 298 K, Delta(vap)H(298). The reasons for these differences in Delta(vap)H(298) with respect to temperature are discussed. The vapour pressure of both ILs is estimated at far lower temperatures than previously achieved and extrapolations to room temperature are given.

  5. Adjacent Fe-Vacancy Interactions as the Origin of Room Temperature Ferromagnetism in (In(1-x)Fe(x))2O3.

    PubMed

    Green, R J; Regier, T Z; Leedahl, B; McLeod, J A; Xu, X H; Chang, G S; Kurmaev, E Z; Moewes, A

    2015-10-16

    Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

  6. Nickel-catalyzed synthesis of aryl trifluoromethyl sulfides at room temperature.

    PubMed

    Zhang, Cheng-Pan; Vicic, David A

    2012-01-11

    Inexpensive nickel-bipyridine complexes were found to be active for the trifluoromethylthiolation of aryl iodides and aryl bromides at room temperature using the convenient [NMe(4)][SCF(3)] reagent. © 2011 American Chemical Society

  7. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature

    NASA Astrophysics Data System (ADS)

    Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.

    2014-02-01

    We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.

  8. Characteristics of the mechanical milling on the room temperature ferromagnetism and sensing properties of TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bolokang, A. S.; Cummings, F. R.; Dhonge, B. P.; Abdallah, H. M. I.; Moyo, T.; Swart, H. C.; Arendse, C. J.; Muller, T. F. G.; Motaung, D. E.

    2015-03-01

    We report on the correlation between defect-related emissions, the magnetization and sensing of TiO2 nanoparticles (NPs) prepared by milling method. Surface morphology analyses showed that the size of the TiO2 NPs decreases with milling time. Raman and XRD studies demonstrated that the structural properties of the TiO2 transform to orthorhombic structure upon milling. Magnetization improved with an increase of a defect-related band originating from oxygen vacancies (VO), which can be ascribed to a decrease in the size of the NPs due to the milling time. Moreover, the longer-milled TiO2 exhibited enhanced gas-sensing properties to humidity in terms of sensor response, with about 12 s response time at room temperature. A combination of photoluminescence, X-ray photoelectron spectroscopy, vibrating sample magnetometer and sensing analyses demonstrated that a direct relation exists between the magnetization, sensing and the relative occupancy of the VO present on the surface of TiO2 NPs.

  9. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of themore » large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.« less

  10. Flexible thin-film transistors on plastic substrate at room temperature.

    PubMed

    Han, Dedong; Wang, Wei; Cai, Jian; Wang, Liangliang; Ren, Yicheng; Wang, Yi; Zhang, Shengdong

    2013-07-01

    We have fabricated flexible thin-film transistors (TFTs) on plastic substrates using Aluminum-doped ZnO (AZO) as an active channel layer at room temperature. The AZO-TFTs showed n-channel device characteristics and operated in enhancement mode. The device shows a threshold voltage of 1.3 V, an on/off ratio of 2.7 x 10(7), a field effect mobility of 21.3 cm2/V x s, a subthreshold swing of 0.23 V/decade, and the off current of less than 10(-12) A at room temperature. Recently, the flexible displays have become a very hot topic. Flexible thin film transistors are key devices for realizing flexible displays. We have investigated AZO-TFT on flexible plastic substrate, and high performance flexible TFTs have been obtained.

  11. Iron-aluminum alloys having high room-temperature and method for making same

    DOEpatents

    Sikka, Vinod K.; McKamey, Claudette G.

    1993-01-01

    Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.

  12. Room temperature spin valve effect in NiFe/WS2/Co junctions

    PubMed Central

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood

    2016-01-01

    The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.18% at room temperature to 0.47% at 4.2 K. We observed that the junction resistance decreases monotonically as temperature is lowered. These results revealed that semiconducting WS2 thin film works as a metallic conducting interlayer between NiFe and Co electrodes. PMID:26868638

  13. Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong

    2015-08-24

    The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth.more » Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.« less

  14. Electrical detection of proton-spin motion in a polymer device at room temperature

    NASA Astrophysics Data System (ADS)

    Boehme, Christoph

    With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.

  15. Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Maheshwar Repaka, D. V.; Chaudhary, V.; Ramanujan, R. V.

    2017-04-01

    Magnetic cooling is an environmentally friendly, energy efficient, thermal management technology relying on high performance magnetocaloric materials (MCM). Current research has focused on low cost, corrosion resistant, rare earth (RE) free MCMs. We report the structural and magnetocaloric properties of novel, low cost, RE free, iron based (Fe0.72Cr0.28)3Al alloys. The arc melted buttons and melt spun ribbons possessed the L21 crystal structure and B2 crystal structure, respectively. A notable enhancement of 33% in isothermal entropy change (-ΔS m) and 25% increase in relative cooling power (RCP) for the ribbons compared to the buttons can be attributed to higher structural disorder in the Fe-Cr and Fe-Al sub-lattices of the B2 structure. The critical behavior was investigated using modified Arrott plots, the Kouvel-Fisher plot and the critical isotherm technique; the critical exponents were found to correspond to the short-range order 3D Heisenberg model. The field and temperature dependent magnetization curves of (Fe0.72Cr0.28)3Al alloys revealed their soft magnetic nature with negligible hysteresis. Thus, these alloys possess promising performance attributes for near room temperature magnetic cooling applications.

  16. Novel magneto-luminescent effect in LSMO/ZnS:Mn nanocomposites at near-room temperature

    NASA Astrophysics Data System (ADS)

    Beltran-Huarac, Juan; Diaz-Diestra, Daysi; Bsatee, Mohammed; Wang, Jingzhou; Jadwisienczak, Wojciech M.; Weiner, Brad R.; Morell, Gerardo

    2016-02-01

    We report the tuning of the internal Mn photoluminescence (PL) transition of magnetically-ordered Sr-doped lanthanum manganite (LSMO)/Mn-doped zinc sulfide (ZnS:Mn) nanocomposites (NCs) by applying a static magnetic field in the range of 0-1 T below the critical temperature of ˜225 K. To do that, we have systematically fabricated LSMO/ZnS:Mn at different concentrations (1:1, 1:3, 1:5 and 1:10 wt%) via a straightforward solid-state reaction. X-ray diffraction and Raman analyses reveal that both phases coexist with a high degree of crystallinity and purity. Electron microscopy indicates that the NCs are almost spherical with an average crystal size of ˜6 nm, and that their surfaces are clean and smooth. The bifunctional character of LSMO/ZnS:Mn was evidenced by vibrating sample magnetometry and PL spectroscopy analyses, which show a marked ferromagnetic behavior and a broad, intense Mn orange emission band at room temperature. Moreover, the LSMO/ZnS:Mn at 1:3 wt% exhibits magneto-luminescent (ML) coupling below 225 K, and reaches the largest suppression of Mn-band PL intensity (up to ˜10%) at 150 K, when a magnetic field of 1.0 T is applied. The ML effect persists at magnetic fields as low as 0.2 T at 8 K, which can be explained by evoking a magnetic-ordering-induced spin-dependent restriction of the energy transfer to Mn states. No ML effect was observed in bare ZnS:Mn nanoparticles under the same experimental parameters. Our findings suggest that this NC can be considered as a new ML compound, similar to FeCo/InGaN-GaN and LSMO/ZnO NCs, useful as q-bits for quantum computation. The results presented here bring forth new avenues to better understand the interaction between semiconductors and perovskites, and exploit their synergistic effects in magneto-optics, spintronics and nanoelectronics.

  17. Efficient simple sealed-off CO laser at room temperature

    NASA Astrophysics Data System (ADS)

    Peters, P. J. M.; Witteman, W. J.; Zuidema, R. J.

    1980-07-01

    The paper reports a simple sealed-off CW CO laser with gold electrodes. A constant long-life output power of more than 29 W/m and a maximum efficiency of 15% at room temperature are reported. No auxiliary features, such as a palladium hydrogen extraction tube, are necessary.

  18. Gold catalysed synthesis of 3-alkoxyfurans at room temperature.

    PubMed

    Pennell, Matthew N; Foster, Robert W; Turner, Peter G; Hailes, Helen C; Tame, Christopher J; Sheppard, Tom D

    2014-02-09

    Synthetically important 3-alkoxyfurans can be prepared efficiently via treatment of acetal-containing propargylic alcohols (obtained from the addition of 3,3-diethoxypropyne to aldehydes) with 2 mol% gold catalyst in an alcohol solvent at room temperature. The resulting furans show useful reactivity in a variety of subsequent transformations.

  19. Unconditional polarization qubit quantum memory at room temperature

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  20. Colossal terahertz magnetoresistance at room temperature in epitaxial La 0.7Sr 0.3MnO 3 nanocomposites and single-phase thin films

    DOE PAGES

    Lloyd-Hughes, James; Mosley, C. D. W.; Jones, S. P. P.; ...

    2017-03-13

    Colossal magnetoresistance (CMR) is demonstrated at terahertz (THz) frequencies by using terahertz time-domain magnetospectroscopy to examine vertically aligned nanocomposites (VANs) and planar thin films of La 0.7Sr 0.3MnO 3. At the Curie temperature (room temperature), the THz conductivity of the VAN was dramatically enhanced by over 2 orders of magnitude under the application of a magnetic field with a non-Drude THz conductivity that increased with frequency. The direct current (dc) CMR of the VAN is controlled by extrinsic magnetotransport mechanisms such as spin-polarized tunneling between nanograins. In contrast, we find that THz CMR is dominated by intrinsic, intragrain transport: themore » mean free path was smaller than the nanocolumn size, and the planar thin-film exhibited similar THz CMR to the VAN. Surprisingly, the observed colossal THz magnetoresistance suggests that the magnetoresistance can be large for alternating current motion on nanometer length scales, even when the magnetoresistance is negligible on the macroscopic length scales probed by dc transport. This suggests that colossal magnetoresistance at THz frequencies may find use in nanoelectronics and in THz optical components controlled by magnetic fields. As a result, the VAN can be scaled in thickness while retaining a high structural quality and offers a larger THz CMR at room temperature than the planar film.« less

  1. Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).

    PubMed

    Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B

    2011-02-09

    The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.

  2. Experimental characterization of magnetic materials for the magnetic shielding of cryomodules in particle accelerators

    DOE PAGES

    Sah, Sanjay; Myneni, Ganapati; Atulasimha, Jayasimha

    2015-10-26

    The magnetic properties of two important passive magnetic shielding materials (A4K and Amumetal) for accelerator applications, subjected to various processing and heat treatment conditions are studied comprehensively over a wide range of temperatures: from cryogenic to room temperature. Furthermore, we analyze the effect of processing on the extent of degradation of the magnetic properties of both materials and investigate the possibility of restoring these properties by re-annealing.

  3. Wide bandgap BaSnO 3 films with room temperature conductivity exceeding 10 4 S cm -1

    DOE PAGES

    Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; ...

    2017-05-05

    Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of sign ificant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO 3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 4 S cm -1 . Significantly, these films show room temperature mobilities up to 120 cm 2 V -1 s -1 even at carrier concentrations abovemore » 3 × 10 20 cm -3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.« less

  4. Enhanced room-temperature spin Seebeck effect in a YIG/C60/Pt layered heterostructure

    NASA Astrophysics Data System (ADS)

    Das, R.; Kalappattil, V.; Geng, R.; Luong, H.; Pham, M.; Nguyen, T.; Liu, Tao; Wu, Mingzhong; Phan, M. H.; Srikanth, H.

    2018-05-01

    We report on large enhancement of the longitudinal spin Seebeck effect (LSSE) in the Y3Fe5O12 (YIG)/Pt system at room temperature due to the addition of a thin layer of organic semiconductor (C60) in between the YIG and the Pt. LSSE measurements show that the LSSE voltage increases significantly, from the initial value of 150 nV for the YIG/Pt structure to 240 nV for the YIG/C60(5nm)/Pt structure. Radio-frequency transverse susceptibility experiments reveal a significant decrease in the surface perpendicular magnetic anisotropy (PMA) of the YIG film when C60 is deposited on it. These results suggest that the LSSE enhancement may be attributed to increased spin mixing conductance, the decreased PMA, and the large spin diffusion length of C60.

  5. Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens

    PubMed Central

    Lucon, Enrico; McCowan, Chris N.; Santoyo, Ray L.

    2015-01-01

    The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of −40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at −40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator’s skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at −40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses. PMID:26958453

  6. Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens.

    PubMed

    Lucon, Enrico; McCowan, Chris N; Santoyo, Ray L

    2015-01-01

    The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of -40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at -40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator's skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at -40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses.

  7. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  8. Enhancement of room temperature ferromagnetism in tin oxide nanocrystal using organic solvents

    NASA Astrophysics Data System (ADS)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2017-10-01

    The effect of organic solvents (ethanol & ethylene glycol) on the room temperature ferromagnetism in nanocrystalline tin oxide has been studied. The samples were synthesized using sol-gel method with the mixture of water & organic liquid as solvent. It is found that pristine SnO2 nanocrystal contain two different types of paramagnetic centres over their surface:(i) surface chemisorbed oxygen species and (ii) Sn interstitial & oxygen vacancy defect pair. The magnetic moment induced in the as-prepared samples is mainly contributed by the alignment of local spin moments resulting from these defects. These surface defect states are highly activated by the usage of ethylene glycol solvent rather than ethylene in tin oxide nanostructure synthesis. Powder X-ray diffraction, transmission electron microscope imaging, energy dispersive spectrometry, Fourier transformed infrared spectroscopy, UV-vis absorption spectroscopy, photoluminescence spectroscopy, vibrating sample magnetometer measurement and electron spin resonance spectroscopy were employed to characterize the nanostructured tin oxide materials.

  9. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    PubMed

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  10. Stability of headspace volatiles in a ‘Fallglo’ tangerine juice matrix system at room temperature

    USDA-ARS?s Scientific Manuscript database

    Gas chromatography systems are usually equipped with autosamplers. Samples held in the autosampler tray can stay up to one day or longer at room temperature, if the tray is not equipped with a cooling mechanism. The objective of this research was to determine if holding samples at room temperature i...

  11. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    NASA Astrophysics Data System (ADS)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  12. Room temperature solid-state quantum emitters in the telecom range

    PubMed Central

    Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam

    2018-01-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies. PMID:29670945

  13. Room temperature solid-state quantum emitters in the telecom range.

    PubMed

    Zhou, Yu; Wang, Ziyu; Rasmita, Abdullah; Kim, Sejeong; Berhane, Amanuel; Bodrog, Zoltán; Adamo, Giorgio; Gali, Adam; Aharonovich, Igor; Gao, Wei-Bo

    2018-03-01

    On-demand, single-photon emitters (SPEs) play a key role across a broad range of quantum technologies. In quantum networks and quantum key distribution protocols, where photons are used as flying qubits, telecom wavelength operation is preferred because of the reduced fiber loss. However, despite the tremendous efforts to develop various triggered SPE platforms, a robust source of triggered SPEs operating at room temperature and the telecom wavelength is still missing. We report a triggered, optically stable, room temperature solid-state SPE operating at telecom wavelengths. The emitters exhibit high photon purity (~5% multiphoton events) and a record-high brightness of ~1.5 MHz. The emission is attributed to localized defects in a gallium nitride (GaN) crystal. The high-performance SPEs embedded in a technologically mature semiconductor are promising for on-chip quantum simulators and practical quantum communication technologies.

  14. Three-dimensional spin mapping of antiferromagnetic nanopyramids having spatially alternating surface anisotropy at room temperature.

    PubMed

    Wang, Kangkang; Smith, Arthur R

    2012-11-14

    Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.

  15. SYNTHESIS of MOLECULE/POLYMER-BASED MAGNETIC MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joel S.

    2016-02-01

    We have synthesized and characterized several families of organic-based magnets, a new area showing that organic species can exhibit the technologically important property of magnetic ordering. Thin film magnets with ordering temperatures exceeding room temperature have been exceeded. Hence, organic-based magnets represent a new class of materials that exhibit magnetic ordering and do not require energy-intensive metallurgical processing and are based upon Earth-abundant elements.

  16. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S.

    2016-03-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible with Li-metal anodes, prevent Li dendrite formation, and eliminate risks associated with flammable organic solvents. Less than 10 years ago, LiBH4 was proposed as a solid-state electrolyte. It showed a high ionic conductivity, but only at elevated temperatures. Since then a range of other complex metal hydrides has been reported to show similar characteristics. Strategies have been developed to extend the high ionic conductivity of LiBH4 down to room temperature by partial anion substitution or nanoconfinement. The present paper reviews the recent developments in complex metal hydrides as solid electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries.

  17. Magnetic measurements of the XLS magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, L.; Galayda, J.; Sylvester, C.

    1991-01-01

    The magnets designed and built for Phase 1 (200MeV) of the XLS (X-Ray Lithography Source) project have all been measured and characterized. In this paper, the measurement system designed and utilized for the Phase 1 180 degree dipole magnets is reviewed. Hall probe measurements of the two dipole magnets, with a field of 1.1 Tesla at 1200 amperes, are discussed and presented. Phase 2 (700MeV) of this project includes replacement of the two room temperature dipole magnets with superconducting dipoles (3.9Tesla). 3 figs., 1 tab.

  18. An unusual slowdown of fast diffusion in a room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth,; Mamontov, Eugene; Fulvio, Pasquale F

    2013-01-01

    Using quasielastic neutron scattering in the temperature range from 290 to 350 K, we show that the diffusive motions in a room temperature ionic liquid [H2NC(dma)2][BETI] become faster for a fraction of cations when the liquid is confined in a mesoporous carbon. This applies to both the localized and long-range translational diffusive motions of the highly mobile cations, although the former exhibit an unusual trend of slowing-down as the temperature is increased, until the localized diffusivity is reduced to the bulk ionic liquid value at a temperature of 350 K.

  19. Aging of ceramic carbonized hydroxyapatite at room temperature

    NASA Astrophysics Data System (ADS)

    Tkachenko, M. V.; Kamzin, A. S.

    2016-08-01

    The process of aging of ceramic carbonized hydroxyapatite (CHA) produced in a dry carbon dioxide atmosphere at temperatures of 800-1200°C has been studied by chemical and X-ray structural analysis, infrared spectroscopy, and scanning electron microscopy methods. The phase composition and structure of initial prepared ceramics samples and those aged for a year have been compared. It has been shown that relaxation of internal stresses occurring during pressed sample sintering causes plastic deformation of crystallites at room temperature, accompanied by redistribution of carbonate ions between A1, A2, B1, and B2 sites and CHA decomposition with the formation of CaO separations.

  20. Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning

    NASA Astrophysics Data System (ADS)

    Ullah, Aman; Gul, Hafiza Bushra; Ullah, Amir; Sheeraz, Muhammad; Bae, Jong-Seong; Jo, Wook; Ahn, Chang Won; Kim, Ill Won; Kim, Tae Heon

    2018-01-01

    A thermotropic phase boundary between non-ergodic and ergodic relaxor phases is tuned in lead-free Bi1/2Na1/2TiO3-based ceramics through a structural transition driven by compositional modification (usually named as "morphotropic approach"). The substitution of Bi(Ni1/2Ti1/2)O3 for Bi1/2(Na0.78K0.22)1/2TiO3 induces a transition from tetragonal to "metrically" cubic phase and thereby, the ergodic relaxor ferroelectric phase becomes predominant at room temperature. A shift of the transition temperature (denoted as TF-R) in the non-ergodic-to-ergodic phase transition is corroborated via temperature-dependent dielectric permittivity and loss measurements. By monitoring the chemical composition dependence of polarization-electric field and strain-electric field hysteresis loops, it is possible to track the critical concentration of Bi(Ni1/2Ti1/2)O3 where the (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Ni0.5Ti0.5)O3 ceramic undergoes the phase transition around room temperature. At the Bi(Ni0.5Ti0.5)O3 content of x = 0.050, the highest room-temperature electrostrictive coefficient of 0.030 m4/C2 is achieved with no hysteretic characteristic, which can foster the realization of actual electrostrictive devices with high operational efficiency at room temperature.

  1. Polymer functionalized nanostructured porous silicon for selective water vapor sensing at room temperature

    NASA Astrophysics Data System (ADS)

    Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi

    2017-04-01

    This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.

  2. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  3. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy.

    PubMed

    Edalati, Kaveh; Horita, Zenji; Valiev, Ruslan Z

    2018-04-30

    Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.

  4. Superparamagnetic nanocrystalline ZnFe2O4 with a very high Curie temperature.

    PubMed

    Deka, Sasanka; Joy, P A

    2008-08-01

    Studies on the magnetic properties of nanocrystalline ZnFe2O4 synthesized by an autocombustion method are reported. Superparamagnetic behavior is observed for the nanocrystalline materials with particle sizes of 8 nm and 17 nm, with superparamagnetic blocking temperatures of 65 K and 75 K, respectively. Magnetic hysteresis with very large coercivities of 533 Oe and 325 Oe, respectively, are observed at 12 K. Studies on the temperature variation of the magnetization above room temperature indicate that the Curie temperature is as high as approximately 800 K when compared to the paramagnetic nature of bulk zinc ferrite at room temperature.

  5. Delayed elastic effects in Zerodur at room temperature.

    PubMed

    Pepi, J W

    1992-01-01

    Continuous testing at room temperature of large optics made of Zerodur has revealed a delayed elastic effect under low stress levels during both load and recovery after removal. Using a high-performance mechanical profilometer, a delayed strain of the order of 1% is realized over a period of a few weeks. The time-dependent phenomenon is elastic and reversible, but must be accounted for in various applications of optical design.

  6. In Vivo Intracanal Temperature Evolution during Endodontic Treatment after the Injection of Room Temperature or Preheated Sodium Hypochlorite.

    PubMed

    de Hemptinne, Ferdinand; Slaus, Gunter; Vandendael, Mathieu; Jacquet, Wolfgang; De Moor, Roeland J; Bottenberg, Peter

    2015-07-01

    Heating a sodium hypochlorite solution improves its effectiveness. The aim of this study was to measure the in vivo temperature changes of sodium hypochlorite solutions that were initially preheated to 66°C or at room temperature inside root canals during routine irrigation. Thirty-five root canals were prepared to ISO size 40 with 4% taper. A type K (nickel-chromium-nickel) thermocouple microprobe (Testo NV, Ternat, Belgium) was positioned within 3 mm of the working length to measure the temperature at 1-second intervals. In each canal, 2 test protocols were evaluated in a randomized order with 3% sodium hypochlorite solutions: (1) preheated to 66°C and (2) at room temperature. The temperature measurements began 5 seconds before the 25 seconds of irrigant injections and continued for 240 seconds. This resulted in 270 data points for each protocol. The temperature of the irrigant at room temperature increased from the initial intracanal temperature after injection of 20.7°C (±1.2°C) to 30.9°C (±1.3°C) in 10 seconds and to 35°C (±0.9°C) after 240 seconds. The temperature of the preheated to 66°C solution decreased from 56.4°C (±2.7°C) to 45.4°C (±3.0°C) after 5 seconds, reached 37°C (±0.9°C) after 60 seconds, and reached 35.7°C (±0.8°C) after 240 seconds. The original temperatures of the sodium hypochlorite solutions were buffered inside the root canal and tended to rapidly evolve to equilibrium. The findings of this study contribute to an improved understanding of the thermodynamic behaviors of irrigant solutions inside root canals in vivo. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  8. Room temperature ferromagnetism in transition metal-doped black phosphorous

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaohong; Zhang, Xinwei; Xiong, Fang; Hua, Zhenghe; Wang, Zhihe; Yang, Shaoguang

    2018-05-01

    High pressure high temperature synthesis of transition metal (TM = V, Cr, Mn, Fe, Co, Ni, and Cu) doped black phosphorus (BP) was performed. Room temperature ferromagnetism was observed in Cr and Mn doped BP samples. X-ray diffraction and Raman measurements revealed pure phase BP without any impurity. Transport measurements showed us semiconducting character in 5 at. % doped BP samples Cr5%P95% and Mn5%P95%. The magnetoresistance (MR) studies presented positive MR in the relatively high temperature range and negative MR in the low temperature range. Compared to that of pure BP, the maximum MR was enhanced in Cr5%P95%. However, paramagnetism was observed in V, Fe, Co, Ni, and Cu doped BP samples.

  9. Optically induced strong intermodal coupling in mechanical resonators at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, R.; Okamoto, H.; Yamaguchi, H.

    Strong parametric mode coupling in mechanical resonators is demonstrated at room temperature by using the photothermal effect in thin membrane structures. Thanks to the large stress modulation by laser irradiation, the coupling rate of the mechanical modes, defined as half of the mode splitting, reaches 2.94 kHz, which is an order of magnitude larger than electrically induced mode coupling. This large coupling rate exceeds the damping rates of the mechanical resonators and results in the strong coupling regime, which is a signature of coherent mode interaction. Room-temperature coherent mode coupling will enable us to manipulate mechanical motion at practical operation temperaturesmore » and provides a wide variety of applications of integrated mechanical systems.« less

  10. Room temperature chemical vapor deposition of c-axis ZnO

    NASA Astrophysics Data System (ADS)

    Barnes, Teresa M.; Leaf, Jacquelyn; Fry, Cassandra; Wolden, Colin A.

    2005-02-01

    Highly (0 0 2) oriented ZnO films have been deposited at temperatures between 25 and 230 °C by high-vacuum plasma-assisted chemical vapor deposition (HVP-CVD) on glass and silicon substrates. The HVP-CVD process was found to be weakly activated with an apparent activation energy of ∼0.1 eV, allowing room temperature synthesis. Films deposited on both substrates displayed a preferential c-axis texture over the entire temperature range. Films grown on glass demonstrated high optical transparency throughout the visible and near infrared.

  11. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    PubMed

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  12. Porous Si nanowires for highly selective room-temperature NO2 gas sensing

    NASA Astrophysics Data System (ADS)

    Kwon, Yong Jung; Mirzaei, Ali; Gil Na, Han; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Oum, Wansik; Kim, Sang Sub; Kim, Hyoun Woo

    2018-07-01

    We report the room-temperature sensing characteristics of Si nanowires (NWs) fabricated from p-Si wafers by a metal-assisted chemical etching method, which is a facile and low-cost method. X-ray diffraction was used to the the study crystallinity and phase formation of Si NWs, and product morphology was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After confirmation of Si NW formation via the SEM and TEM micrographs, sensing tests were carried out at room temperature, and it was found that the Si NW sensor prepared from Si wafers with a resistivity of 0.001–0.003 Ω.cm had the highest response to NO2 gas (Rg/Ra = 1.86 for 50 ppm NO2), with a fast response (15 s) and recovery (30 s) time. Furthermore, the sensor responses to SO2, toluene, benzene, H2, and ethanol were nearly negligible, demonstrating the excellent selectivity to NO2 gas. The gas-sensing mechanism is discussed in detail. The present sensor can operate at room temperature, and is compatible with the microelectronic fabrication process, demonstrating its promise for next-generation Si-based electronics fused with functional chemical sensors.

  13. Porous Si nanowires for highly selective room-temperature NO2 gas sensing.

    PubMed

    Kwon, Yong Jung; Mirzaei, Ali; Na, Han Gil; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Oum, Wansik; Kim, Sang Sub; Kim, Hyoun Woo

    2018-07-20

    We report the room-temperature sensing characteristics of Si nanowires (NWs) fabricated from p-Si wafers by a metal-assisted chemical etching method, which is a facile and low-cost method. X-ray diffraction was used to the the study crystallinity and phase formation of Si NWs, and product morphology was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After confirmation of Si NW formation via the SEM and TEM micrographs, sensing tests were carried out at room temperature, and it was found that the Si NW sensor prepared from Si wafers with a resistivity of 0.001-0.003 Ω.cm had the highest response to NO 2 gas (R g /R a  = 1.86 for 50 ppm NO 2 ), with a fast response (15 s) and recovery (30 s) time. Furthermore, the sensor responses to SO 2 , toluene, benzene, H 2 , and ethanol were nearly negligible, demonstrating the excellent selectivity to NO 2 gas. The gas-sensing mechanism is discussed in detail. The present sensor can operate at room temperature, and is compatible with the microelectronic fabrication process, demonstrating its promise for next-generation Si-based electronics fused with functional chemical sensors.

  14. Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2016-06-08

    Room-temperature welding and sintering of metal nanostructures, nanoparticles and nanowires, by capillary condensation of chemical vapors have successfully been demonstrated. Nanoscale gaps or capillaries that are abundant in layers of metal nanostructures have been found to be the preferred sites for the condensation of chemically oxidizing vapor, H2O2 in this work. The partial dissolution and resolidification at such nanogaps completes the welding/sintering of metal nanostructures within ∼10 min at room-temperature, while other parts of nanostructures remain almost intact due to negligible amount of condensation on there. The welded networks of Ag nanowires have shown much improved performances, such as high electrical conductivity, mechanical flexibility, optical transparency, and chemical stability. Chemically sintered layers of metal nanoparticles, such as Ag, Cu, Fe, Ni, and Co, have also shown orders of magnitude increase in electrical conductivity and improved environmental stability, compared to nontreated ones. Pertinent mechanisms involved in the chemical welding/sintering process have been discussed. Room-temperature welding and sintering of metal nanostructures demonstrated here may find widespread application in diverse fields, such as displays, deformable electronics, wearable heaters, and so forth.

  15. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    NASA Technical Reports Server (NTRS)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  16. Engineering giant magnetic anisotropy in single-molecule magnets by dimerizing heavy transition-metal atoms

    NASA Astrophysics Data System (ADS)

    Qu, Jiaxing; Hu, Jun

    2018-05-01

    The search for single-molecule magnets with large magnetic anisotropy energy (MAE) is essential for the development of molecular spintronics devices for use at room temperature. Through systematic first-principles calculations, we found that an Os–Os or Ir–Ir dimer embedded in the (5,5‧-Br2-salophen) molecule gives rise to a large MAE of 41.6 or 51.4 meV, respectively, which is large enough to hold the spin orientation at room temperature. Analysis of the electronic structures reveals that the top Os and Ir atoms play the most important part in the total spin moments and large MAEs of the molecules.

  17. A novel high temperature superconducting magnetic flux pump for MRI magnets

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan

    2010-10-01

    This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.

  18. A Room Temperature Low-Threshold Ultraviolet Plasmonic Nanolaser

    DTIC Science & Technology

    2014-09-23

    Here we demonstrate the first strong room temperature ultraviolet (B370 nm) SP polariton laser with an extremely low threshold (B3.5MWcm 2). We find...localized surface plasmon and propagating surface plasmon polariton (SPP), has been demonstrated in metal nanosphere cavities6, metal-cladding...Quantum plasmonics. Nat. Phys. 9, 329–340 (2013). 4. Berini, P. & De Leon, I. Surface plasmon- polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012

  19. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    DOE PAGES

    Drouhin, Henri-Jean; Wegrowe, Jean-Eric; Razeghi, Manijeh; ...

    2015-09-08

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focusedmore » magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.« less

  20. Temperature and magnetic-field driven dynamics in artificial magnetic square ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouhin, Henri-Jean; Wegrowe, Jean-Eric; Razeghi, Manijeh

    Artificial spin ices are often spoken of as being realisations of some of the celebrated vertex models of statistical mechanics, where the exact microstate of the system can be imaged using advanced magnetic microscopy methods. The fact that a stable image can be formed means that the system is in fact athermal and not undergoing the usual finite-temperature fluctuations of a statistical mechanical system. In this paper we report on the preparation of artificial spin ices with islands that are thermally fluctuating due to their very small size. The relaxation rate of these islands was determined using variable frequency focusedmore » magneto-optic Kerr measurements. We performed magnetic imaging of artificial spin ice under varied temperature and magnetic field using X-ray transmission microscopy which uses X-ray magnetic circular dichroism to generate magnetic contrast. Furthermore, we have developed an on-membrane heater in order to apply temperatures in excess of 700 K and have shown increased dynamics due to higher temperature. Due to the ‘photon-in, photon-out' method employed here, it is the first report where it is possible to image the microstates of an ASI system under the simultaneous application of temperature and magnetic field, enabling the determination of relaxation rates, coercivties, and the analysis of vertex population during reversal.« less

  1. Research on thermal conductivity of HGMs at vacuum in room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Liao, Bin; An, Zhenguo; Yan, Kaiqi; Zhang, Jingjie

    2018-05-01

    Hollow glass microspheres (HGMs) can be used as thermal insulation materials owing to its hollow structure which brings excellent thermal insulation property and low density. At present, most researches on thermal conductivity of HGMs are focused on polymer matrix/HGMs composite materials. However, thermal conductivity of HGMs at vacuum in room temperature has rarely been investigated. In this work, thermal conductivity of six types of HGMs (T17 (0.17g/cm3), T20 (0.20g/cm3), T22 (0.22g/cm3), T25 (0.25g/cm3), T32 (0.32g/cm3) and T40 (0.40g/cm3)) at vacuum in room temperature were calculated by heat transfer of solid conduction and radiation. The calculation results showed that thermal conductivity of HGMs would be decreased by an order of magnitude compared with no vacuum. In order to verify the calculation and study vacuum thermal insulation properties of HGMs, thermal conductivity of above-mentioned HGMs at no vacuum and high vacuum in room temperature were measured by a self-made thermal conductivity measuring apparatus which was based on the transient plane source (TPS) method. The experimental results showed that thermal conductivity of HGMs were in the range of 4.2030E-02 to 6.3300E-02 W/m.K (at no vacuum) and 3.8160E-03 to 4.9660E-03 W/m.K (at high vacuum). The results indicated that experimental thermal conductivity was consistent with the calculation results and both of them were all decreased by 8-13 times at vacuum compared with no vacuum. In addition, the relationship with physical properties and thermal conductivity of HGMs has been discussed in detail. In conclusion, HGMs possess excellent thermal insulation performance at high vacuum in room temperature and have potential to further reduce thermal conductivity at the same conditions.

  2. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Michael A.

    2000-08-05

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enablingmore » technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given.« less

  3. Defect-mediated room temperature ferromagnetism in vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Nori, Sudhakar; Zhou, Honghui; Narayan, Jagdish

    2009-09-01

    High quality epitaxial undoped vanadium oxide (VO2) thin films on c-plane sapphire (0001) substrate have been grown using pulsed laser deposition technique. The as-grown films exhibited excellent structural and transport properties without requiring further annealing treatments for these oxygen-deficient oxide films. The epitaxial growth has been achieved via domain matching epitaxy, where matching of integral multiples of planes occurs across the film-substrate interface. The magnetic properties of vanadium oxide (VO2) films investigated at different temperatures in the range of 10-360 K showed significant magnetic hysteresis as well as saturation of the magnetic moment. The origin of ferromagnetic properties with an estimated Curie temperature above 500 K is discussed in the absence of magnetic impurities in VO2 thin films as determined by x-ray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy.

  4. Exploring the Room-Temperature Ferromagnetism and Temperature-Dependent Dielectric Properties of Sr/Ni-Doped LaFeO3 Nanoparticles Synthesized by Reverse Micelle Method

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Khan, Shakeel; Husain, Shahid; Khan, Wasi

    2018-03-01

    This paper reports the thermal, microstructural, dielectric and magnetic properties of La0.75Sr0.25Fe0.65Ni0.35O3 nanoparticles (NPs) synthesized via reverse micelle technique. The thermogravimetric analysis of as-prepared NPs confirmed a good thermal stability of the sample. Powder x-ray diffraction data analyzed with a Rietveld refinement technique revealed single-phase and orthorhombic distorted perovskite crystal structure of the NPs having Pbnm space group. The transmission electron microscopy images show the crystalline nature and formation of nanostructures with a fairly uniform distribution of particles throughout the sample. Temperature-dependent dielectric properties of the NPs in accordance with the Kramers-Kronig transformation (KKT) model, universal dielectric response model and jump relaxation model have been discussed. Electrode or interface polarization is likely the cause of the observed dielectric behavior. Due to grain boundaries and Schottky barriers of the metallic electrodes of semiconductors, the depletion region is observed, which gives rise to Maxwell-Wagner relaxation and hence high dielectric constants. Magnetic studies revealed the ferromagnetic nature of the prepared NPs upon Sr and Ni doping in LaFeO3 perovskite at room temperature. Therefore, these NPs could be a potential candidate as electrode material in solid oxide fuel cells.

  5. Room-temperature electron spin relaxation of nitroxides immobilized in trehalose: Effect of substituents adjacent to NO-group

    NASA Astrophysics Data System (ADS)

    Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.

    2016-05-01

    Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.

  6. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    PubMed

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.

  7. Room temperature strong light-matter coupling in three dimensional terahertz meta-atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulillo, B., E-mail: bruno.paulillo@u-psud.fr; Manceau, J.-M., E-mail: jean-michel.manceau@u-psud.fr; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr

    2016-03-07

    We demonstrate strong light-matter coupling in three dimensional terahertz meta-atoms at room temperature. The intersubband transition of semiconductor quantum wells with a parabolic energy potential is strongly coupled to the confined circuital mode of three-dimensional split-ring metal-semiconductor-metal resonators that have an extreme sub-wavelength volume (λ/10). The frequency of these lumped-element resonators is controlled by the size and shape of the external antenna, while the interaction volume remains constant. This allows the resonance frequency to be swept across the intersubband transition and the anti-crossing characteristic of the strong light-matter coupling regime to be observed. The Rabi splitting, which is twice themore » Rabi frequency (2Ω{sub Rabi}), amounts to 20% of the bare transition at room temperature, and it increases to 28% at low-temperature.« less

  8. Temperature autocontrol system for the coud%eacute; room of the 1.2 m telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Hua

    The setting up of temperature autocontrol system for the coudé room of the 1.2 m telescope at Yunnan Observatory and realizing the airflow autocirculation, purified the air, keeping the temperature in the coudé room constantly by autocontrol the heater, and then keeping the optical system in the best condition are introduced in this paper. The autocontrol system is designed and developed at the basis of having only the air circulator and the heater controlled by hand.

  9. A room-temperature non-volatile CNT-based molecular memory cell

    NASA Astrophysics Data System (ADS)

    Ye, Senbin; Jing, Qingshen; Han, Ray P. S.

    2013-04-01

    Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.

  10. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.

    2017-09-01

    The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

  11. Formation of Yttrium Oxysulfide Phosphor at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shoji, Masahiko; Sakurai, Kenji

    2005-12-01

    Europium-doped yttrium oxysulfide (Y2O2S:Eu) phosphor was successfully synthesized at room temperature from yttrium oxide, europium oxide, and sulfur. The method employs high-energy ball milling to enable a substitution reaction between oxygen and sulfur, unlike conventional methods, such as heating in a sulfurizing atmosphere. It was found that the material is fluorescent through X-ray irradiation, and the luminescence spectra exhibit four peaks in the wavelength region from 500 to 800 nm.

  12. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature

    NASA Astrophysics Data System (ADS)

    Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-05-01

    We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

  13. Design of a Tunable, Room Temperature, Continuous-Wave Terahertz Source and Detector using Silicon Waveguides

    DTIC Science & Technology

    2008-01-30

    that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3

  14. Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics

    NASA Astrophysics Data System (ADS)

    Sinha, Raju

    The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and

  15. Room-temperature operation of a Co:MgF2 laser

    NASA Technical Reports Server (NTRS)

    Welford, D.; Moulton, P. F.

    1988-01-01

    A normal-mode, pulsed Co:MgF2 laser has been operated at room temperature for the first time. Continuous tuning from 1750 to 2500 nm with pulse energies up to 70 mJ and 46-percent slope efficiency was obtained with a 1338-nm Nd:YAG pump laser.

  16. A Fiber Bragg grating based tilt sensor suitable for constant temperature room

    NASA Astrophysics Data System (ADS)

    Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng

    2015-07-01

    Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10-5 ° (that is, 0.08% of the measuring range).

  17. Exploiting fast detectors to enter a new dimension in room-temperature crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Robin L., E-mail: robin.owen@diamond.ac.uk; Paterson, Neil; Axford, Danny

    2014-05-01

    A departure from a linear or an exponential decay in the diffracting power of macromolecular crystals is observed and accounted for through consideration of a multi-state sequential model. A departure from a linear or an exponential intensity decay in the diffracting power of protein crystals as a function of absorbed dose is reported. The observation of a lag phase raises the possibility of collecting significantly more data from crystals held at room temperature before an intolerable intensity decay is reached. A simple model accounting for the form of the intensity decay is reintroduced and is applied for the first timemore » to high frame-rate room-temperature data collection.« less

  18. Magnetic two-dimensional electron gases with high Curie temperatures at LaAl O3 /SrTi O3:Fe interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Hongrui; Yan, Xi; Zhang, Hui; Wang, Fei; Gu, Youdi; Ning, Xingkun; Khan, Tahira; Li, Rui; Chen, Yuansha; Liu, Wei; Wang, Shufang; Shen, Baogen; Sun, Jirong

    2018-04-01

    Spin-polarized two-dimensional electron gas (2DEG) at the interface of two insulating perovskite oxides has been a focus of intensive studies in recent years. So far all attempts to construct magnetic 2DEG are based on the selection of an appropriate buffer layer or cap layer in SrTi O3 -based heterostructures, and the magnetic effect thus produced on 2DEG is indirect and weak. Here, we fabricated the 2DEG based on Fe-doped SrTi O3 that is superparamagnetic rather than diamagnetic like SrTi O3 . In addition to good metallicity, considerable Kondo effect, and negative magnetoresistance, the most striking observation of the present work is the occurrence of the anomalous Hall effect up to room temperature. This is transport evidence for the existence of spin-polarized 2DEG at high temperatures. As suggested by the monotonic increase of Curie temperature with carrier density, the magnetic exchange between magnetic ions could be mediated by the itinerant electrons of the 2DEG. The present work opens an avenue for the exploration of spin-polarized 2DEG.

  19. Mechanical and electrical properties of low temperature phase MnBi

    NASA Astrophysics Data System (ADS)

    Jiang, Xiujuan; Roosendaal, Timothy; Lu, Xiaochuan; Palasyuk, Olena; Dennis, Kevin W.; Dahl, Michael; Choi, Jung-Pyung; Polikarpov, Evgueni; Marinescu, Melania; Cui, Jun

    2016-01-01

    Low temperature phase (LTP) manganese bismuth (MnBi) is a promising rare-earth-free permanent magnet material due to its high intrinsic coercivity and large positive temperature coefficient. While scientists are making progress on fabricating bulk MnBi magnets, engineers have begun considering MnBi magnets for motor applications. Physical properties other than magnetic ones could significantly affect motor design. Here, we report results of our investigation on the mechanical and electrical properties of bulk LTP MnBi and their temperature dependence. A MnBi ingot was prepared using an arc melting technique and subsequently underwent grinding, sieving, heat treatment, and cryomilling. The resultant powders with a particle size of ˜5 μm were magnetically aligned, cold pressed, and sintered at a predefined temperature. Micro-hardness testing was performed on a part of original ingot and we found that the hardness of MnBi was 109 ± 15 HV. The sintered magnets were subjected to compressive testing at different temperatures and it was observed that a sintered MnBi magnet fractured when the compressive stress exceeded 193 MPa at room temperature. Impedance spectra were obtained using electrochemical impedance spectroscopy at various temperatures and we found that the electrical resistance of MnBi at room temperature was about 6.85 μΩ m.

  20. High-temperature magnetostructural transition in van der Waals-layered α -MoCl3

    NASA Astrophysics Data System (ADS)

    McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.

    2017-11-01

    The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.

  1. High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3

    DOE PAGES

    McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...

    2017-11-07

    Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less

  2. Soft x-ray resonant diffraction study of magnetic structure in magnetoelectric Y-type hexaferrite

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Tanaka, Y.; Wakabayashi, Y.; Kimura, T.

    2018-05-01

    The effect of magnetic field on the magnetic structure associated with magnetoelectric properties in a Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, was investigated by utilizing the soft x-ray resonant diffraction technique. In this hexaferrite, the so-called alternating longitudinal conical phase is stabilized at room temperature and zero magnetic field. Below room temperature, however, this phase is transformed into the so-called transverse conical phase by applying an in-plane magnetic field (≈ 0.3 T). The transverse conical phase persists even after removing the magnetic field. The magnetoelectricity, which is magnetically-induced electric polarization, observed in the hexaferrite is discussed in terms of the temperature-dependent magnetic structure at zero field.

  3. Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zheng, Botian; He, Dabo; Sun, Ruixue; Deng, Zigang; Xu, Xun; Dou, Shixue

    2016-09-01

    Due to the large levitation force or the large guidance force of bulk high-temperature superconducting magnets (BHTSMs) above a permanent magnet guideway (PMG), it is reasonable to employ pre-magnetized BHTSMs to replace applied-magnetic-field-cooled superconductors in a maglev system. There are two combination modes between the BHTSM and the PMG, distinguished by the different directions of the magnetization. One is the S-S pole mode, and the other is the S-N pole mode combined with a unimodal PMG segment. A multi-point magnetic field measurement platform was employed to acquire the magnetic field signals of the BHTSM surface in real time during the pre-magnetization process and the re-magnetization process. Subsequently, three experimental aspects of levitation, including the vertical movement due to the levitation force, the lateral movement due to the guidance force, and the force relaxation with time, were explored above the PMG segment. Moreover, finite element modeling by COMSOL Multiphysics has been performed to simulate the different induced currents and the potentially different temperature rises with different modes inside the BHTSM. It was found that the S-S pole mode produced higher induced current density and a higher temperature rise inside the BHTSM, which might escalate its lateral instability above the PMG. The S-N pole mode exhibits the opposite characteristics. In general, this work is instructive for understanding and connecting the magnetic flux, the inner current density, the levitation behavior, and the temperature rise of BHTSMs employed in a maglev system.

  4. Self-transducing silicon nanowire electromechanical systems at room temperature.

    PubMed

    He, Rongrui; Feng, X L; Roukes, M L; Yang, Peidong

    2008-06-01

    Electronic readout of the motions of genuinely nanoscale mechanical devices at room temperature imposes an important challenge for the integration and application of nanoelectromechanical systems (NEMS). Here, we report the first experiments on piezoresistively transduced very high frequency Si nanowire (SiNW) resonators with on-chip electronic actuation at room temperature. We have demonstrated that, for very thin (~90 nm down to ~30 nm) SiNWs, their time-varying strain can be exploited for self-transducing the devices' resonant motions at frequencies as high as approximately 100 MHz. The strain of wire elongation, which is only second-order in doubly clamped structures, enables efficient displacement transducer because of the enhanced piezoresistance effect in these SiNWs. This intrinsically integrated transducer is uniquely suited for a class of very thin wires and beams where metallization and multilayer complex patterning on devices become impractical. The 30 nm thin SiNW NEMS offer exceptional mass sensitivities in the subzeptogram range. This demonstration makes it promising to advance toward NEMS sensors based on ultrathin and even molecular-scale SiNWs, and their monolithic integration with microelectronics on the same chip.

  5. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    PubMed

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  6. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.

    PubMed

    Lim, Wei-Xian; Thornton, Aaron W; Hill, Anita J; Cox, Barry J; Hill, James M; Hill, Matthew R

    2013-07-09

    The metal-organic framework beryllium benzene tribenzoate (Be-BTB) has recently been reported to have one of the highest gravimetric hydrogen uptakes at room temperature. Storage at room temperature is one of the key requirements for the practical viability of hydrogen-powered vehicles. Be-BTB has an exceptional 298 K storage capacity of 2.3 wt % hydrogen. This result is surprising given that the low adsorption enthalpy of 5.5 kJ mol(-1). In this work, a combination of atomistic simulation and continuum modeling reveals that the beryllium rings contribute strongly to the hydrogen interaction with the framework. These simulations are extended with a thermodynamic energy optimization (TEO) model to compare the performance of Be-BTB to a compressed H2 tank and benchmark materials MOF-5 and MOF-177 in a MOF-based fuel cell. Our investigation shows that none of the MOF-filled tanks satisfy the United States Department of Energy (DOE) storage targets within the required operating temperatures and pressures. However, the Be-BTB tank delivers the most energy per volume and mass compared to the other material-based storage tanks. The pore size and the framework mass are shown to be contributing factors responsible for the superior room temperature hydrogen adsorption of Be-BTB.

  7. Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.

    PubMed

    Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul

    2017-08-31

    In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.

  8. CuInP₂S₆ Room Temperature Layered Ferroelectric.

    PubMed

    Belianinov, A; He, Q; Dziaugys, A; Maksymovych, P; Eliseev, E; Borisevich, A; Morozovska, A; Banys, J; Vysochanskii, Y; Kalinin, S V

    2015-06-10

    We explore ferroelectric properties of cleaved 2-D flakes of copper indium thiophosphate, CuInP2S6 (CITP), and probe size effects along with limits of ferroelectric phase stability, by ambient and ultra high vacuum scanning probe microscopy. CITP belongs to the only material family known to display ferroelectric polarization in a van der Waals, layered crystal at room temperature and above. Our measurements directly reveal stable, ferroelectric polarization as evidenced by domain structures, switchable polarization, and hysteresis loops. We found that at room temperature the domain structure of flakes thicker than 100 nm is similar to the cleaved bulk surfaces, whereas below 50 nm polarization disappears. We ascribe this behavior to a well-known instability of polarization due to depolarization field. Furthermore, polarization switching at high bias is also associated with ionic mobility, as evidenced both by macroscopic measurements and by formation of surface damage under the tip at a bias of 4 V-likely due to copper reduction. Mobile Cu ions may therefore also contribute to internal screening mechanisms. The existence of stable polarization in a van-der-Waals crystal naturally points toward new strategies for ultimate scaling of polar materials, quasi-2D, and single-layer materials with advanced and nonlinear dielectric properties that are presently not found in any members of the growing "graphene family".

  9. [Association between ambient temperature and hospital emergency room visits for cardiovascular diseases: a case-crossover study].

    PubMed

    Guo, Yu-Ming; Wang, Jia-Jia; Li, Guo-Xing; Zheng, Ya-An; He, Wichmann; Pan, Xiao-Chuan

    2009-08-01

    To explore the association between ambient average temperature and hospital emergency room visits for cardiovascular diseases (International Classification of Diseases, Tenth Vision ICD-10: I00 - I99) in Beijing, China. Data was collected on daily hospital emergency room visits for cardiovascular diseases from Peking University Third Hospital, including meteorological data (daily average temperature, relative humidity, wind speed, and atmospheric pressure) from the China Meteorological Data Sharing Service System, and on air pollution from the Beijing Municipal Environmental Monitoring Center. Time-stratified case-crossover design was used to analyze data on 4 seasons. After adjusting data on air pollution, 1 degree ( degrees C) increase of ambient average temperature would associate with the emergency room visits of odds ratio (ORs) as 1.282 (95%CI: 1.250 - 1.315), 1.027 (95%CI: 1.001 - 1.055), 0.661 (95%CI: 0.637 - 0.687), and 0.960 (95%CI: 0.937 - 0.984) in spring, summer, autumn, and winter respectively. After controlling the influence of relative humidity, wind speed, and atmospheric pressure, 1 degrees C increase in the ambient average temperature would be associated with the emergency room visits on ORs value as 1.423 (95%CI: 1.377 - 1.471), 1.082 (95%CI: 1.041 - 1.124), 0.633 (95%CI: 0.607 - 0.660) and 0.971 (95%CI: 0.944 - 1.000) in spring, summer, autumn, and winter respectively. These data on outcomes suggested that the elevated level of ambient temperature would increase the hospital emergency room visits for cardiovascular diseases in spring and summer while the elevated level of ambient temperature would decrease the hospital emergency room visits for the cardiovascular diseases in autumn and winter, suggesting that patients with cardiovascular diseases should pay attention to the climate change.

  10. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    NASA Astrophysics Data System (ADS)

    Choi, Hyunwoo; Kim, Tae Geun; Shin, Changhwan

    2017-06-01

    A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO2-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., CT-1 = CQ-1 + CSiO2-1). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron-electron interaction in the two-dimensional surface state of the TI.

  11. Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature

    NASA Astrophysics Data System (ADS)

    John, Roger; Lehnert, Jan; Mensing, Michael; Spemann, Daniel; Pezzagna, Sébastien; Meijer, Jan

    2017-05-01

    Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units (amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is ∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at ∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources.

  12. Improvement of Superplasticity in High-Mg Aluminum Alloys by Sacrifice of Some Room Temperature Formability

    NASA Astrophysics Data System (ADS)

    Jin, H.; Amirkhiz, B. Shalchi; Lloyd, D. J.

    2018-03-01

    The mechanical properties of fully annealed Al-4.6 wt pct Mg alloys with different levels of Mn and Fe have been characterized at room and superplastic forming (SPF) temperatures. The effects of Mn and Fe on the intermetallic phase, grain structure, and cavitation were investigated and correlated to the formability at different temperatures. Although both Mn and Fe contribute to the formation of Al6(Mn,Fe) phase, which refines the grain structure by particle-stimulated nucleation and Zener pinning, their effects are different. An increasing Mn reduces the room temperature formability due to the increasing number of intermetallic particles, but significantly improves the superplasticity by fine grain size-induced grain boundary sliding. Meanwhile, the Fe makes the constituent particles very coarse, resulting in reduced formability at all temperatures due to extensive cavitation. A combination of high Mn and low Fe is therefore beneficial to SPF, while low levels of both elements are good for cold forming. Consequently, the superplasticity of high-Mg aluminum alloys can be significantly improved by modifying the chemical composition with sacrifice of some room temperature formability.

  13. Electrical detection of single magnetic skyrmion at room temperature

    NASA Astrophysics Data System (ADS)

    Tomasello, Riccardo; Ricci, Marco; Burrascano, Pietro; Puliafito, Vito; Carpentieri, Mario; Finocchio, Giovanni

    2017-05-01

    This paper proposes a protocol for the electrical detection of a magnetic skyrmion via the change of the tunneling magnetoresistive (TMR) signal in a three-terminal device. This approach combines alternating spin-transfer torque from both spin-filtering (due to a perpendicular polarizer) and spin-Hall effect with the TMR signal. Micromagnetic simulations, used to test and verify such working principle, show that there exists a frequency region particularly suitable for this achievement. This result can be at the basis of the design of a TMR based read-out for skyrmion detection, overcoming the difficulties introduced by the thermal drift of the skyrmion once nucleated.

  14. Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite

    NASA Astrophysics Data System (ADS)

    Jyoti, Kanaujiya, Neha; Varma, G. D.

    2018-05-01

    Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.

  15. Room-temperature giant magneto-mechanical-electric cross-coupling in Si-integrated PbZr0.52Ti0.48O3/Ni50Mn35In15 multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Kirandeep; Kaur, Davinder

    2017-04-01

    The current study reports the strong magnetoelectric coupling (M-E) in silicon (Si)-integrated ferromagnetic shape memory alloy-based PZT/Ni-Mn-In thin-film multiferroic heterostructure. The strain-mediated nature of converse M-E coupling is reflected from the butterfly-shaped normalized magnetization (M/M s) versus electric field plots. The direct M-E properties of the heterostructure were measured with a frequency of AC magnetic field, bias magnetic field, as well as with temperature. A maximum direct M-E coupling in the bilayered thin-film multiferroic heterostructures occurred at resonance frequencies around the first-order structural transitional temperature of the bottom Ni-Mn-In layer. It was observed that the measuring temperature remarkably affects the direct M-E characteristic of the heterostructure. A large direct ME effect and converse ME effect coefficient α DME  ~  894 mV cm-1.Oe and α CME ~ 2.7  ×  10-5 s m-1, respectively, were achieved in the bilayer at room temperature. The mechanism of direct as well as converse M-E effects in the thin-film multiferroic heterostructures is discussed. The electrically driven angular dependence of normalized magnetization (M/M s) reveals the twofold symmetric magnetic anisotropy of the heterostructure, with the drastic shifting of the magnetic hard axis at E  >  E c (coercivity of PZT).

  16. Quality of red blood cells isolated from umbilical cord blood stored at room temperature.

    PubMed

    Zhurova, Mariia; Akabutu, John; Acker, Jason

    2012-01-01

    Red blood cells (RBCs) from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product.

  17. Infrared absorptivities of transition metals at room and liquid-helium temperatures.

    NASA Technical Reports Server (NTRS)

    Jones, M. C.; Palmer, D. C.; Tien, C. L.

    1972-01-01

    Evaluation of experimental data concerning the normal spectral absorptivities of the transition metals, nickel, iron, platinum, and chromium, at both room and liquid-helium temperatures in the wavelength range from 2.5 to 50 microns. The absorptivities were derived from reflectivity measurements made relative to a room-temperature vapor-deposited gold reference mirror. The absorptivity of the gold reference mirror was measured calorimetrically, by use of infrared laser sources. Investigation of various methods of sample-surface preparation resulted in the choice of a vacuum-annealing process as the final stage. The experimental results are discussed on the basis of the anomalous-skin-effect theory modified for multiple conduction bands. As predicted, the results approach a single-band model toward the longer wavelengths. Agreement between theory and experiment is considerably improved by taking into account the modification of the relaxation time due to the photon-electron-phonon interaction proposed by Holstein (1954) and Gurzhi (1958); but, particularly at helium temperatures, the calculated curve is consistently below the experimental results.

  18. Permanent magnet design for magnetic heat pumps using total cost minimization

    NASA Astrophysics Data System (ADS)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Niknia, I.; Rowe, A.

    2017-11-01

    The active magnetic regenerator (AMR) is an attractive technology for efficient heat pumps and cooling systems. The costs associated with a permanent magnet for near room temperature applications are a central issue which must be solved for broad market implementation. To address this problem, we present a permanent magnet topology optimization to minimize the total cost of cooling using a thermoeconomic cost-rate balance coupled with an AMR model. A genetic algorithm identifies cost-minimizing magnet topologies. For a fixed temperature span of 15 K and 4.2 kg of gadolinium, the optimal magnet configuration provides 3.3 kW of cooling power with a second law efficiency (ηII) of 0.33 using 16.3 kg of permanent magnet material.

  19. A photochemical strategy for lignin degradation at room temperature.

    PubMed

    Nguyen, John D; Matsuura, Bryan S; Stephenson, Corey R J

    2014-01-29

    The development of a room-temperature lignin degradation strategy consisting of a chemoselective benzylic oxidation with a recyclable oxidant ([4-AcNH-TEMPO]BF4) and a catalytic reductive C-O bond cleavage utilizing the photocatalyst [Ir(ppy)2(dtbbpy)]PF6 is described. This system was tested on relevant lignin model substrates containing β-O-4 linkages to generate fragmentation products in good to excellent yields.

  20. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    EPA Science Inventory

    Herein, we describe a simple strategy for the bulk and template-free synthesis of reduced leucoemarldine polyaniline nanofibers size ranging from as low as 10 nm to 50 nm without the use of any reducing agents at room temperature.

  1. Bat head contains soft magnetic particles: evidence from magnetism.

    PubMed

    Tian, Lanxiang; Lin, Wei; Zhang, Shuyi; Pan, Yongxin

    2010-10-01

    Recent behavioral observations have indicated that bats can sense the Earth's magnetic field. To unravel the magnetoreception mechanism, the present study has utilized magnetic measurements on three migratory species (Miniopterus fuliginosus, Chaerephon plicata, and Nyctalus plancyi) and three non-migratory species (Hipposideros armiger, Myotis ricketti, and Rhinolophus ferrumequinum). Room temperature isothermal remanent magnetization acquisition and alternating-field demagnetization showed that the bats' heads contain soft magnetic particles. Statistical analyses indicated that the saturation isothermal remanent magnetization of brains (SIRM(1T_brain)) of migratory species is higher than those of non-migratory species. Furthermore, the SIRM(1T_brain) of migratory bats is greater than their SIRM(1T_skull). Low-temperature magnetic measurements suggested that the magnetic particles are likely magnetite (Fe3O4). This new evidence supports the assumption that some bats use magnetite particles for sensing and orientation in the Earth's magnetic field.

  2. Local Magnetic Measurements of Trapped Flux Through a Permanent Current Path in Graphite

    NASA Astrophysics Data System (ADS)

    Stiller, Markus; Esquinazi, Pablo D.; Quiquia, José Barzola; Precker, Christian E.

    2018-04-01

    Temperature- and field-dependent measurements of the electrical resistance of different natural graphite samples suggest the existence of superconductivity at room temperature in some regions of the samples. To verify whether dissipationless electrical currents are responsible for the trapped magnetic flux inferred from electrical resistance measurements, we localized them using magnetic force microscopy on a natural graphite sample in remanent state after applying a magnetic field. The obtained evidence indicates that at room temperature a permanent current flows at the border of the trapped flux region. The current path vanishes at the same transition temperature T_c≈ 370 K as the one obtained from electrical resistance measurements on the same sample. This sudden decrease in the phase is different from what is expected for a ferromagnetic material. Time-dependent measurements of the signal show the typical behavior of flux creep of a permanent current flowing in a superconductor. The overall results support the existence of room-temperature superconductivity at certain regions in the graphite structure and indicate that magnetic force microscopy is suitable to localize them. Magnetic coupling is excluded as origin of the observed phase signal.

  3. Dynamics and Interactions in Room Temperature Ionic Liquids, Surfaces and Interfaces

    DTIC Science & Technology

    2016-01-13

    OHD-OKE) experiments. The first 2D IR experiments on functionalized SiO2 planar surface monolayers of alkyl chains with a vibrational probe head group...alkyl groups lowers the temperature for crystallization below room temperature and can also result in supercooling and glass formation rather than...heterodyne detected optical Kerr effect (OHD-OKE) experiments. During the grant, we performed the first 2D IR experiments on functionalized SiO2

  4. Energy efficient room temperature synthesis of cardanol-based novolac resin using acoustic cavitation.

    PubMed

    Jadhav, Nilesh L; Sastry, Sai Krishna C; Pinjari, Dipak V

    2018-04-01

    The present study deals with synthesis of cardanol-cased novolac (CBN) resin by the condensation reaction between cardanol and formaldehyde using acoustic cavitation. It is a step-growth polymerization which occurs in the presence of an acid catalyst such as adipic acid, citric acid, oxalic acid, sulphuric acid and hydrochloric acid. CBN was also synthesised by a conventional method for the sake of comparison of techniques. The effect of molar ratio, effect of catalyst, effect of different catalyst and effect of power on the conversion to CBN has been studied. The synthesised CBN was characterized using the Fourier Transform Infra Red Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (NMR) Spectroscopy and Thermogravimetric Analysis (TGA). The reaction was monitored by the Acid value, free formaldehyde content and viscosity of the synthesised product. The reaction time required for the conventionally synthesised CBN was 5 h (300 min) with 120 °C as an operating temperature while sonochemically the time reduced to 30 min at room temperature. The amount of time and energy saved can be quantified. Ultrasound facilitated synthesis was found to be an energy efficient and time-saving method for the synthesis of novolac resin. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Room Temperature Ion-Beam-Induced Recrystallization and Large Scale Nanopatterning.

    PubMed

    Satpati, Biswarup; Ghosh, Tanmay

    2015-02-01

    We have studied ion-induced effects in the near-surface region of two eutectic systems. Gold and Silver nanodots on Silicon (100) substrate were prepared by thermal evaporation under high vacuum condition at room temperature (RT) and irradiated with 1.5 MeV Au2+ ions at flux ~1.25 x 10(11) ions cm-2 s-1 also at RT. These samples were characterized using cross-sectional transmission electron microscopy (XTEM) and associated techniques. We have observed that gold act as catalysis in the recrystallization process of ion-beam-induced amorphous Si at room temperature and also large mass transport up to a distance of about 60 nm into the substrate. Mass transport is much beyond the size (~ 6-20 nm) of these Au nanodots. Ag nanoparticles with diameter 15-45 nm are half-way embedded into the Si substrate and does not stimulate in recrystallization. In case of Au nanoparticles upon ion irradiation, mixed phase formed only when the local composition and transient temperature during irradiation is sufficient to cause mixing in accordance with the Au-Si stable phase diagram. Spectroscopic imaging in the scanning TEM using spatially resolved electron energy loss spectroscopy provides one of the few ways to measure the real-space nanoscale mixing.

  6. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Ma, Zhibin; Yang, Guang; Wang, Haoning; Long, Hao; Zhao, Hongyang; Qin, Pingli; Fang, Guojia

    2018-03-01

    Tin oxide (SnO2) film with high mobility and good transmittance has been reported as a promising semiconductor material for high performance perovskite solar cells (PSCs). In this study, ultrathin SnO2 film synthesized by radio frequency magnetron sputtering (RFMS) method at room temperature was employed as hole blocking layer for planar PSCs. The room-temperature sputtered SnO2 film not only shows favourable energy band structure but also improves the surface topography of fluorine doped SnO2 (FTO) substrate and perovskite (CH3NH3PbI3) layer. Thus, this SnO2 hole blocking layer can efficiently promote electron transport and suppress carrier recombination. Furthermore, the best efficiency of 13.68% was obtained for planar PSC with SnO2 hole blocking layer prepared at room temperature. This research highlights the room-temperature preparation process of hole blocking layer in PSC and has a certain reference significance for the usage of flexible and low-cost substrates.

  7. Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pimentel, B.; Caraballo-Vivas, R. J.; Checca, N. R.; Zverev, V. I.; Salakhova, R. T.; Makarova, L. A.; Pyatakov, A. P.; Perov, N. S.; Tishin, A. M.; Shtil, A. A.; Rossi, A. L.; Reis, M. S.

    2018-04-01

    La0.75Sr0.25MnO3 nanoparticles with average diameter close to 20.9 nm were synthesized using a sol-gel method. Measurements showed that the heating process stops at the blocking temperaturesignificantly below the Curie temperature. Measurements of Specific Absorption Rate (SAR) as a function of AC magnetic field revealed a superquadratic power law, indicating that, in addition to usual Néel and Brown relaxation, the hysteresis also plays an important role in the mechanism of heating. The ability to control the threshold heating temperature, a low remanent magnetization and a low field needed to achieve the magnetic saturation are the advantages of this material for therapeutic magnetic hyperthermia.

  8. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    PubMed

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  9. Magnetic Materials Characterization and Modeling for the Enhanced Design of Magnetic Shielding of Cryomodules in Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Sanjay

    Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge canmore » be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.« less

  10. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE PAGES

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    2016-12-21

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  11. Magnetic transition temperatures follow crystallographic symmetry in Samarium under high-pressures and low-temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less

  12. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    NASA Astrophysics Data System (ADS)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  13. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures.

    PubMed

    Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K

    2017-02-15

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  14. Red-light-emitting laser diodes operating CW at room temperature

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Hawrylo, F. Z.

    1976-01-01

    Heterojunction laser diodes of AlGaAs have been prepared with threshold current densities substantially below those previously achieved at room temperature in the 7200-8000-A spectral range. These devices operate continuously with simple oxide-isolated stripe contacts to 7400 A, which extends CW operation into the visible (red) portion of the spectrum.

  15. Magnetic field controlled electronic state and electric field controlled magnetic state in α-Fe1.6Ga0.4O3 oxide

    NASA Astrophysics Data System (ADS)

    Lone, Abdul Gaffar; Bhowmik, R. N.

    2018-04-01

    We have prepared α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) system in rhombohedral phase. The material has shown room temperature ferroelectric and ferromagnetic properties. The existence of magneto-electric coupling at room temperature has been confirmed by the experimental observation of magnetic field controlled electric properties and electric field controlled magnetization. The current-voltage characteristics were controlled by external magnetic field. The magnetic state switching and exchange bias effect are highly sensitive to the polarity and ON and OFF modes of external electric field. Such materials can find novel applications in magneto-electronic devices, especially in the field of electric field controlled spintronics devices and energy storage devices which need low power consumption.

  16. Temperature dependence in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  17. Temperature Dependence of the Magnetization of the Ni52Mn24Ga24 Alloy in Various Structural States

    NASA Astrophysics Data System (ADS)

    Musabirov, I. I.; Sharipov, I. Z.; Mulyukov, R. R.

    2015-10-01

    are presented of a study of the temperature dependence of the magnetization σ(Т) of the polycrystalline Ni52Mn24Ga24 alloy in various structural states: in the initial coarse-grained state, after severe plastic deformation by high pressure torsion, and after stepped annealing of the deformed specimen at temperatures from 200 to 700°С for 30 min. As a study of the σ(Т) curve shows, in an alloy possessing a coarse-grained initial structure, a martensitic phase transition and a magnetic phase transition are observed in the room temperature interval. The martensitic transformation takes place in the ferromagnetic state of the alloy. This transformation is accompanied by an abrupt lowering of the magnetization of the material, associated with a lowering of the symmetry of the crystalline lattice and a high value of the magnetocrystalline anisotropy constant of the alloy in the martensitic phase. It is shown that as a result of plastic deformation there takes place a destruction of ferromagnetic order and a suppression of the martensitic transformation. Consecutive annealing after deformation leads to a gradual recovery of ferromagnetic order and growth of the magnetization of the material. Recovery of the martensitic transformation begins to be manifested only after annealing of the alloy at a temperature of 500°C, when the mean grain size in the recrystallized structure reaches a value around 1 μm.

  18. Comparative study of magnetic ordering in bulk and nanoparticles of Sm0.65Ca0.35MnO3: Magnetization and electron magnetic resonance measurements

    NASA Astrophysics Data System (ADS)

    Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.

    2015-05-01

    To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.

  19. Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature

    NASA Astrophysics Data System (ADS)

    Xu, Tingting; Xue, Jinjuan; Zhang, Xiaolei; He, Guangyu; Chen, Haiqun

    2017-04-01

    A novel composite ultrafine cobalt nanoparticles-reduced graphene oxide (Co-RGO) was firstly synthesized through a modified one-step solvothermal method with Co(OH)2 as the precursor. The prepared low-cost Co-RGO composite exhibited excellent catalytic activity for the reduction of highly toxic Cr(VI) to nontoxic Cr(III) at room temperature when formic acid (HCOOH) was employed as the reductant, and its catalytic performance was even comparable with that of noble metal-based catalysts in the same reduction reaction. Moreover, Co-RGO composite could be readily recovered under an external magnetic field and efficiently participated in recycled reaction for Cr(VI) reduction.

  20. Chemically engineered graphene-based 2D organic molecular magnet.

    PubMed

    Hong, Jeongmin; Bekyarova, Elena; de Heer, Walt A; Haddon, Robert C; Khizroev, Sakhrat

    2013-11-26

    Carbon-based magnetic materials and structures of mesoscopic dimensions may offer unique opportunities for future nanomagnetoelectronic/spintronic devices. To achieve their potential, carbon nanosystems must have controllable magnetic properties. We demonstrate that nitrophenyl functionalized graphene can act as a room-temperature 2D magnet. We report a comprehensive study of low-temperature magnetotransport, vibrating sample magnetometry (VSM), and superconducting quantum interference (SQUID) measurements before and after radical functionalization. Following nitrophenyl (NP) functionalization, epitaxially grown graphene systems can become organic molecular magnets with ferromagnetic and antiferromagnetic ordering that persists at temperatures above 400 K. The field-dependent, surface magnetoelectric properties were studied using scanning probe microscopy (SPM) techniques. The results indicate that the NP-functionalization orientation and degree of coverage directly affect the magnetic properties of the graphene surface. In addition, graphene-based organic magnetic nanostructures were found to demonstrate a pronounced magneto-optical Kerr effect (MOKE). The results were consistent across different characterization techniques and indicate room-temperature magnetic ordering along preferred graphene orientations in the NP-functionalized samples. Chemically isolated graphene nanoribbons (CINs) were observed along the preferred functionality directions. These results pave the way for future magnetoelectronic/spintronic applications based on promising concepts such as current-induced magnetization switching, magnetoelectricity, half-metallicity, and quantum tunneling of magnetization.

  1. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries.

    PubMed

    Hameed, A Shahul; Reddy, M V; Nagarathinam, M; Runčevski, Tomče; Dinnebier, Robert E; Adams, Stefan; Chowdari, B V R; Vittal, Jagadese J

    2015-11-23

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  2. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  3. Nano spin-diodes using FePt-NDs with huge on/off current ratio at room temperature

    PubMed Central

    Makihara, Katsunori; Kato, Takeshi; Kabeya, Yuuki; Mitsuyuki, Yusuke; Ohta, Akio; Oshima, Daiki; Iwata, Satoshi; Darma, Yudi; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Spin transistors have attracted tremendous interest as new functional devices. However, few studies have investigated enhancements of the ON/OFF current ratio as a function of the electron spin behavior. Here, we found a significantly high spin-dependent current ratio—more than 102 at 1.5 V—when changing the relative direction of the magnetizations between FePt nanodots (NDs) and the CoPtCr-coated atomic force microscope (AFM) probe at room temperature. This means that ON and OFF states were achieved by switching the magnetization of the FePt NDs, which can be regarded as spin-diodes. The FePt magnetic NDs were fabricated by exposing a bi-layer metal stack to a remote H2 plasma (H2-RP) on ~1.7 nm SiO2/Si(100) substrates. The ultrathin bi-layers with a uniform surface coverage are changed drastically to NDs with an areal density as high as ~5 × 1011 cm−2. The FePt NDs exhibit a large perpendicular anisotropy with an out-of-plane coercivity of ~4.8 kOe, reflecting the magneto-crystalline anisotropy of (001) oriented L10 phase FePt. We also designed and fabricated double-stacked FePt-NDs with low and high coercivities sandwiched between an ultra-thin Si-oxide interlayer, and confirmed a high ON/OFF current ratio when switching the relative magnetization directions of the low and high coercivity FePt NDs. PMID:27615374

  4. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams.

    PubMed

    Botha, Sabine; Nass, Karol; Barends, Thomas R M; Kabsch, Wolfgang; Latz, Beatrice; Dworkowski, Florian; Foucar, Lutz; Panepucci, Ezequiel; Wang, Meitian; Shoeman, Robert L; Schlichting, Ilme; Doak, R Bruce

    2015-02-01

    Recent advances in synchrotron sources, beamline optics and detectors are driving a renaissance in room-temperature data collection. The underlying impetus is the recognition that conformational differences are observed in functionally important regions of structures determined using crystals kept at ambient as opposed to cryogenic temperature during data collection. In addition, room-temperature measurements enable time-resolved studies and eliminate the need to find suitable cryoprotectants. Since radiation damage limits the high-resolution data that can be obtained from a single crystal, especially at room temperature, data are typically collected in a serial fashion using a number of crystals to spread the total dose over the entire ensemble. Several approaches have been developed over the years to efficiently exchange crystals for room-temperature data collection. These include in situ collection in trays, chips and capillary mounts. Here, the use of a slowly flowing microscopic stream for crystal delivery is demonstrated, resulting in extremely high-throughput delivery of crystals into the X-ray beam. This free-stream technology, which was originally developed for serial femtosecond crystallography at X-ray free-electron lasers, is here adapted to serial crystallography at synchrotrons. By embedding the crystals in a high-viscosity carrier stream, high-resolution room-temperature studies can be conducted at atmospheric pressure using the unattenuated X-ray beam, thus permitting the analysis of small or weakly scattering crystals. The high-viscosity extrusion injector is described, as is its use to collect high-resolution serial data from native and heavy-atom-derivatized lysozyme crystals at the Swiss Light Source using less than half a milligram of protein crystals. The room-temperature serial data allow de novo structure determination. The crystal size used in this proof-of-principle experiment was dictated by the available flux density. However, upcoming

  5. Performance of High-frequency High-flux Magnetic Cores at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammoud, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.

    2002-01-01

    Three magnetic powder cores and one ferrite core, which are commonly used in inductor and transformer design for switch mode power supplies, were selected for investigation at cryogenic temperatures. The powder cores are Molypermalloy Core (MPC), High Flux Core (HFC), and Kool Mu Core (KMC). The performance of four inductors utilizing these cores has been evaluated as a function of temperature from 20 C to -180 C. All cores were wound with the same wire type and gauge to obtain equal values of inductance at room temperature. Each inductor was evaluated in terms of its inductance, quality (Q) factor, resistance, and dynamic hysteresis characteristics (B-H loop) as a function of temperature and frequency. Both sinusoidal and square wave excitations were used in these investigations. Measured data obtained on the inductance showed that both the MPC and the HFC cores maintain a constant inductance value, whereas with the KMC and ferrite core hold a steady value in inductance with frequency but decrease as temperature is decreased. All cores exhibited dependency, with varying degrees, in their quality factor and resistance on test frequency and temperature. Except for the ferrite, all cores exhibited good stability in the investigated properties with temperature as well as frequency. Details of the experimental procedures and test results are presented and discussed in the paper.

  6. Makeup and uses of a basic magnet laboratory for characterizing high-temperature permanent magnets

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1991-01-01

    A set of instrumentation for making basic magnetic measurements was assembled in order to characterize high intrinsic coercivity, rare earth permanent magnets with respect to short term demagnetization resistance and long term aging at temperatures up to 300 C. The major specialized components of this set consist of a 13 T peak field, capacitor discharge pulse magnetizer; a 10 in. pole size, variable gap electromagnet; a temperature controlled oven equipped with iron cobalt pole piece extensions and a removable paddle that carries the magnetization and field sensing coils; associated electronic integrators; and sensor standards for field intensity H and magnetic moment M calibration. A 1 cm cubic magnet sample, carried by the paddle, fits snugly between the pole piece extensions within the electrically heated aluminum oven, where fields up to 3.2 T can be applied by the electromagnet at temperatures up to 300 C. A sample set of demagnetization data for the high energy Sm2Co17 type of magnet is given for temperatures up to 300 C. These data are reduced to the temperature dependence of the M-H knee field and of the field for a given magnetic induction swing, and they are interpreted to show the limits of safe operation.

  7. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  8. Therapeutic Magnets Do Not Affect Tissue Temperatures

    PubMed Central

    Sweeney, Kathleen B.; Ingersoll, Christopher D.; Swez, John A.

    2001-01-01

    Objective: Manufacturers of commercially available “therapeutic” magnets claim that these magnets cause physiologic thermal effects that promote tissue healing. We conducted this study to determine if skin or intramuscular temperatures differed among magnet, sham, and control treatments during 60 minutes of application to the quadriceps muscle. Design and Setting: A 3 × 3 mixed-model, factorial design with repeated measures on both independent variables was used. The first independent variable, application duration, had 3 random levels (20, 40, and 60 minutes). The second independent variable, treatment, had 3 fixed levels (magnet, sham, and control). The dependent variable was tissue temperature (°C). Measurement depth served as a control variable, with 2 levels: skin and 1 cm below the fat layer. Data were collected in a thermoneutral laboratory setting and analyzed using a repeated-measures analysis of variance. Subjects: The study included 13 healthy student volunteers (8 men, 5 women; age, 20.5 ± 0.9 years; height, 176.8 ± 10.4 cm; weight, 73.8 ± 11.8 kg; anterior thigh skinfold thickness, 16.9 ± 6.5 mm). Measurements: Temperatures were measured at 30-second intervals using surface and implantable thermocouples. Temperature data at 20, 40, and 60 minutes were used for analysis. Each subject received all 3 treatments on different days. Results: Neither skin nor intramuscular temperatures were different across the 3 treatments at any time. For both skin and intramuscular temperatures, a statistically significant but not clinically meaningful temperature increase (less than 1°C), was observed over time within treatments, but this increase was similar in all treatment groups. Conclusions: No meaningful thermal effect was observed with any treatment over time, and treatments did not differ from each other. We conclude that flexible therapeutic magnets were not effective for increasing skin or deep temperatures, contradicting one of the fundamental claims

  9. Large low-field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Yue, F. J.; Wang, S.; Lin, L.; Zhang, F. M.; Li, C. H.; Zuo, J. L.; Du, Y. W.; Wu, D.

    2011-01-01

    Acetic acid molecule-coated Fe3O4 nanoparticles, 450-650 nm in size, have been synthesized using a chemical solvothermal reduction method. Fourier transform infrared spectroscopy measurements confirm one monolayer acetic acid molecules chemically bond to the Fe3O4 nanoparticles. The low-field magnetoresistance (LFMR) of more than -10% at room temperature and -23% at 140 K is achieved with saturation field of less than 2 kOe. In comparison, the resistivity of cold-pressed bare Fe3O4 nanoparticles is six orders of magnitudes smaller than that of Fe3O4/molecule nanoparticles, and the LFMR ratio is one order of magnitude smaller. Our results indicate that the large LFMR in Fe3O4/molecule nanoparticles is associated with spin-polarized electrons tunnelling through molecules instead of direct nanoparticle contacts. These results suggest that magnetic oxide-molecule hybrid materials are an alternative type of materials to develop spin-based devices by a simple low-cost approach.

  10. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simimol, A.; Department of Physics, National Institute of Technology Calicut, Calicut 673601; Anappara, Aji A.

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopantmore » concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for

  11. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles.

    PubMed

    Araujo, J F D F; Bruno, A C; Louro, S R W

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10(-8) Am(2) was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  12. Versatile magnetometer assembly for characterizing magnetic properties of nanoparticles

    NASA Astrophysics Data System (ADS)

    Araujo, J. F. D. F.; Bruno, A. C.; Louro, S. R. W.

    2015-10-01

    We constructed a versatile magnetometer assembly for characterizing iron oxide nanoparticles. The magnetometer can be operated at room temperature or inside a cryocooler at temperatures as low as 6 K. The magnetometer's sensor can be easily exchanged and different detection electronics can be used. We tested the assembly with a non-cryogenic commercial Hall sensor and a benchtop multimeter in a four-wire resistance measurement scheme. A magnetic moment sensitivity of 8.5 × 10-8 Am2 was obtained with this configuration. To illustrate the capability of the assembly, we synthesized iron oxide nanoparticles coated with different amounts of a triblock copolymer, Pluronic F-127, and characterized their magnetic properties. We determined that the polymer coating does not affect the magnetization of the particles at room temperature and demonstrates that it is possible to estimate the average size of coating layers from measurements of the magnetic field of the sample.

  13. Magnetization and anisotropy of cobalt ferrite thin films

    NASA Astrophysics Data System (ADS)

    Eskandari, F.; Porter, S. B.; Venkatesan, M.; Kameli, P.; Rode, K.; Coey, J. M. D.

    2017-12-01

    The magnetization of thin films of cobalt ferrite frequently falls far below the bulk value of 455 kA m-1 , which corresponds to an inverse cation distribution in the spinel structure with a significant orbital moment of about 0.6 μB that is associated with the octahedrally coordinated Co2+ ions. The orbital moment is responsible for the magnetostriction and magnetocrystalline anisotropy and its sensitivity to imposed strain. We have systematically investigated the structure and magnetism of films produced by pulsed-laser deposition on different substrates (Ti O2 , MgO, MgA l2O4 , SrTi O3 , LSAT, LaAl O3 ) and as a function of temperature (500 -700 °C) and oxygen pressure (10-4-10 Pa ) . Magnetization at room-temperature ranges from 60 to 440 kA m-1 , and uniaxial substrate-induced anisotropy ranges from +220 kJ m-3 for films on deposited on MgO (100) to -2100 kJ m-3 for films deposited on MgA l2O4 (100), where the room-temperature anisotropy field reaches 14 T. No rearrangement of high-spin Fe3+ and Co2+ cations on tetrahedral and octahedral sites can reduce the magnetization below the bulk value, but a switch from Fe3+ and Co2+ to Fe2+ and low-spin Co3+ on octahedral sites will reduce the low-temperature magnetization to 120 kA m-1 , and a consequent reduction of Curie temperature can bring the room-temperature value to near zero. Possible reasons for the appearance of low-spin cobalt in the thin films are discussed.

  14. Recrystallization in Si upon ion irradiation at room temperature in Co/Si(111) thin film systems

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Satpati, B.; Dev, B. N.

    2018-04-01

    After several decades of research it was concluded that for a constant flux recrystallization in Si upon ion irradiation is possible only at high temperature. At low temperature or at room temperature only amorphization can take place. However we have observed recrystallization in Si upon ion irradiation at room temperature in a Co/Si thin film system. The Co/Si sample was prepared by deposition of 25 nm Co on clean Si(111) substrate. An oxide layer (˜ 2nm) of cobalt at the top of the film due to air exposure. The ion irradiation was done at room temperature under high vacuum with 1MeV Si+ ion with low beam current < 400 nA. Earlier we have shown similar ion induced recrystallization in Si(100) substrate which had a sandwich Si/Ni/Si structure. This system had an epitaxial buffer Si layer on Si substrate. This study also shows that the phenomenon is independent of substrate orientation and buffer layer. We have used transmission electron microscopy (TEM) to study the recrystallization behavior.

  15. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  16. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Choudhary, R. J.; Singh, V. N.; Tomar, M.; Gupta, Vinay; Kumar, Ashok

    2015-08-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr0.52Ti0.48)0.60(Fe0.67W0.33).40]O3]0.80-[CoFe2O4]0.20 (PZTFW-CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4-350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (˜0.4-0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (TB). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite.

  17. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure.

    PubMed

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.

  18. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO3/Pb(Mg,Nb,Ti)O3 magneto-electric heterostructure

    PubMed Central

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; Arenholz, Elke; Nolting, Frithjof; Takamura, Yayoi

    2016-01-01

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to ‘set’ and ‘reset’ the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature. PMID:27271984

  19. Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO 3/Pb(Mg,Nb,Ti)O 3 magneto-electric heterostructure

    DOE PAGES

    Chopdekar, Rajesh Vilas; Buzzi, Michele; Jenkins, Catherine; ...

    2016-06-08

    In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O 3 substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO 3 film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier loweringmore » by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.« less

  20. Plasticity mechanisms in HfN at elevated and room temperature.

    PubMed

    Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R; Thompson, Gregory B

    2016-10-06

    HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 T m ) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.