Sample records for room-temperature ionic liquid

  1. Zwitterionic Polymersomes in an Ionic Liquid: Room Temperature TEM Characterization

    E-print Network

    Tew, Gregory N.

    Zwitterionic Polymersomes in an Ionic Liquid: Room Temperature TEM Characterization Raghavendra R)- dimethylammonium methanesulfonate (see Figure 1). Polymer vesicles, also known as "polymersomes", have attracted

  2. Tribological Performance of Room-Temperature Ionic Liquids as Lubricant

    Microsoft Academic Search

    Weimin Liu; Chengfeng Ye; Qingye Gong; Haizhong Wang; Peng Wang

    2002-01-01

    The tribological performance of room-temperature ionic liquid of alkylimidazolium tetrafluoroborate was evaluated using an Optimol SRV oscillating friction and wear tester in air and a CZM vacuum friction tester in vacuum (1×10-3 Pa) using a steel\\/steel (SAE52100) contact. From the results, the ionic liquid exhibits excellent friction-reduction, antiwear proprieties, both in air and vacuum, which are superior to phosphazene (X-1P)

  3. Contracting cardiomyocytes in hydrophobic room-temperature ionic liquid

    SciTech Connect

    Hoshino, Takayuki [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan) [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Fujita, Kyoko [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)] [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Higashi, Ayako; Sakiyama, Keiko [Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)] [Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Ohno, Hiroyuki [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)] [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Morishima, Keisuke, E-mail: morishima@mech.eng.osaka-u.ac.jp [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan) [Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Bio-Application and System Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Biocompatible room-temperature ionic liquid was applied on beating cardiomyocyte. Black-Right-Pointing-Pointer The lifetime of beating cardiomyocytes was depended on anion functional group. Black-Right-Pointing-Pointer A longer lifetime was recorded for no functional group on alkyl chain on their anion. Black-Right-Pointing-Pointer Amino group on alkyl chain and fluorine in anion induced fatal condition changes. Black-Right-Pointing-Pointer We reported liquid electrolyte interface to stimulate cardiomyocytes. -- Abstract: Room-temperature ionic liquids (RTILs) are drawing attention as a new class of nonaqueous solvents to replace organic and aqueous solvents for chemical processes in the liquid phase at room temperature. The RTILs are notable for their characteristics of nonvolatility, extremely low vapor pressure, electric conductivity, and incombustibility. These distinguished properties of RTILs have brought attention to them in applications with biological cells and tissue in vacuum environment for scanning electron microscopy, and in microfluidic devices for micro-total analysis system (micro-TAS). Habitable RTILs could increase capability of nonaqueous micro-TAS for living cells. Some RTILs seemed to have the capability to replace water in biological applications. However, these RTILs had been applied to just supplemental additives for biocompatible test, to fixed cells as a substitute for an aqueous solution, and to simple molecules. None of RTILs in which directly soaks a living cell culture. Therefore, we demonstrated the design of RTILs for a living cell culture and a liquid electrolyte to stimulate contracting cardiomyocytes using the RTILs. We assessed the effect of RTILs on the cardiomyocytes using the beating lifetime to compare the applicability of RTILs for biological applications. Frequent spontaneous contractions of cardiomyocytes were confirmed in amino acid anion RTILs [P{sub 8,8,8,8}][Leu] and [P{sub 8,8,8,8}][Ala], phosphoric acid derivatives [P{sub 8,8,8,8}][MeO(H)PO{sub 2}], and [P{sub 8,8,8,8}][C{sub 7}CO{sub 2}]. The anion type of RTILs had influence on applicable characteristics for the contracting cardiomyocyte. This result suggested the possibility for biocompatible design of hydrophobic group RTILs to achieve biological applications with living cells.

  4. Abstraction of Nano Copper in a Room Temperature Ionic Liquid

    SciTech Connect

    Peng, C. Y.; Huang, C. H. [Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan (China); Wang, H. Paul [Department of Environmental Engineering, National Cheng Kung University, Tainan City, Taiwan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan City, Taiwan (China); Wei Yuling [Department of Environmental Science and Engineering, TungHai University, Taichung City, Taiwan (China)

    2007-02-02

    Speciation of copper in the abstraction of nano copper with a room temperature ionic liquid (RTIL) (1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6]) has been studied by X-ray absorption near edge structural (XANES) and extended X-ray absorption fine structural (EXAFS) spectroscopies in the present work. The least-square fits of the XANES spectra suggest that nano CuO (79%) and Cu(II) complex (Cu(II)-IL) (21%) are the main copper species in the RTIL. The fitted EXAFS spectra show that the Cu-O (1st shell) bond distance is 2.08 A with a coordination number (CN) of 2.6. In the second shells of copper, the average bond distance of Cu-Cu is 2.99 A with a CN of 5.1.

  5. Phosphonium chloromercurate room temperature ionic liquids of variable composition.

    PubMed

    Metlen, Andreas; Mallick, Bert; Murphy, Richard W; Mudring, Anja-Verena; Rogers, Robin D

    2013-12-16

    The system trihexyl(tetradecyl)phosphonium ([P66614]Cl)/mercury chloride (HgCl2) has been investigated by varying the stoichiometric ratios from 4:1 to 1:2 (25, 50, 75, 100, 150, and 200 mol % HgCl2). All investigated compositions turn out to give rise to ionic liquids (ILs) at room temperature. The prepared ionic liquids offer the possibility to study the structurally and compositionally versatile chloromercurates in a liquid state at low temperatures in the absence of solvents. [P66614]2[HgCl4] is a simple IL with one discrete type of anion, while [P66614]{HgCl3} (with {} indicating a polynuclear arrangement) is an ionic liquid with a variety of polyanionic species, with [Hg2Cl6](2-) apparently being the predominant building block. [P66614]2[Hg3Cl8] and [P66614][Hg2Cl5] appear to be ILs at ambient conditions but lose HgCl2 when heated in a vacuum. For the liquids with the compositions 4:1 and 4:3, more than two discrete ions can be evidenced, namely, [P66614](+), [HgCl4](2-), and Cl(-) and [P66614](+), [HgCl4](2-), and the polynuclear {HgCl3}(-), respectively. The different stoichiometric compositions were characterized by (199)Hg NMR, Raman- and UV-vis spectroscopy, and cyclic voltammetry, among other techniques, and their densities and viscosities were determined. The [P66614]Cl/HgCl2 system shows similarities to the well-known chloroaluminate ILs (e.g., decrease in viscosity with increasing metal content after addition of more than 0.5 mol of HgCl2/mol [P66614]Cl, increasing density with increasing metal content, and the likely formation of polynuclear/polymeric/polyanionic species) but offer the advantage that they are air and water stable. PMID:24274831

  6. Dynamics of Isolated Water Molecules in a Sea of Ions in a Room Temperature Ionic Liquid

    E-print Network

    Fayer, Michael D.

    Dynamics of Isolated Water Molecules in a Sea of Ions in a Room Temperature Ionic Liquid Daryl B2O molecules in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium resolved in the IR absorption spectrum in spite of the fact that the D2O is surrounded by a sea of ions

  7. Pronounced structure in confined aprotic room-temperature ionic liquids.

    PubMed

    Hayes, Robert; El Abedin, Sherif Zein; Atkin, Rob

    2009-05-21

    Room-temperature ionic liquids (ILs) are attracting considerable research interest as replacements for traditional molecular solvents in a diverse range of chemical applications, mostly due to their green characteristics and remarkable physical properties. Previously, we reported the liquid structure of 1-ethyl-3-methylimidazolium acetate confined between mica and an atomic force microscope (AFM) tip, and found that approximately three solvation layers form. In this manuscript, we present new data, derived from similar experiments, for three different aprotic ILs [1-butyl-3-methylimidazolium hexafluorphosphate (BMIm PF6), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMIm TSFA), and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP TSFA)] and between five and six solvation layers are identified depending on the IL species. These new results allow us to make suggestions for molecularly designing IL architectures likely to be suitable for a particular application, depending on whether near surface order is desirable or not. Where mobility of component ions and transfer of species to and from the interface is required (DSSCs, hetereogeneous catalysis, etc.), multiple sterically hindered allylic functional groups could be incorporated to minimize substrate-IL interactions and maximize compressibility of the solvation layers. Conversely, in situations where IL adsorption to the interface is desirable (e.g., lubrication or electrode surface restructuring), symmetric ions with localized charge centers are preferable. PMID:19438273

  8. Mesophases in nearly 2D room-temperature ionic liquids.

    PubMed

    Manini, N; Cesaratto, M; Del Pópolo, M G; Ballone, P

    2009-11-26

    Computer simulations of (i) a [C(12)mim][Tf(2)N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C(12)mim][Tf(2)N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C(4)mim][Tf(2)N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants. PMID:19886615

  9. Mesophases in Nearly 2D Room-Temperature Ionic Liquids

    E-print Network

    N. Manini; M. Cesaratto; M. G. Del Popolo; P. Ballone

    2009-10-27

    Computer simulations of (i) a [C12mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C12mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C4mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.

  10. Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations

    E-print Network

    Ong, Shyue Ping

    We investigated the cathodic and anodic limits of six room-temperature ionic liquids (ILs) formed from a combination of two common cations, 1-butyl-3-methylimidazolium (BMIM) and N,N-propylmethylpyrrolidinium (P13), and ...

  11. Nanoscale organization in piperidinium-based room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Triolo, Alessandro; Russina, Olga; Fazio, Barbara; Appetecchi, Giovanni Battista; Carewska, Maria; Passerini, Stefano

    2009-04-01

    Here we report on the complex nature of the phase diagram of N-alkyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquids using several complementary techniques and on their structural order in the molten state using small-wide angle x-ray scattering. The latter study indicates that the piperidinium aliphatic alkyl chains tend to aggregate, forming alkyl domains embedded into polar regions, similar to what we recently highlighted in the case of other ionic liquids.

  12. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: Electrochemical couples and physical properties

    Microsoft Academic Search

    Joan Fuller; R. T. Carlin; R. A. Osteryoung

    1997-01-01

    Room temperature molten salts composed of the 1-ethyl-3-methylimidazolium cation and a chloroaluminate anion have received much attention for use in a variety of commercial applications such as batteries, photovoltaics, metal deposition, and capacitors. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBFâ) was demonstrated as a versatile electrolyte by examining three representative electrochemical couples: ferrocene and tetrathiafulvalene oxidations and lithium ion

  13. Static and transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids.

    PubMed

    Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro

    2014-05-01

    We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ? [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids. PMID:24702446

  14. Formation and reactions of alkylzinc reagents in room-temperature ionic liquids.

    PubMed

    Law, Man Chun; Wong, Kwok-Yin; Chan, Tak Hang

    2005-12-01

    [reaction: see text] The presence of a suitable amount of bromide or chloride ions was found to be critical in forming the alkylzinc reagents from alkyl iodides and zinc metal in the room-temperature ionic liquid, N-butylpyridinium tetrafluoroborate. Beta-hydride transfer in the reactions of butylzinc reagents with aldehydes can also be reduced by a bromide ion. PMID:16323854

  15. Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids

    E-print Network

    Reid, Scott A.

    Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids by Near to determine association binding constants between phe- nol and r-, - and -cyclodextrin (CD) in [butylmethyl interaction between phenol and CDs may not be inclusion complex formation but rather external adsorption

  16. Synthesis and characterization of ionic polymer networks in a room-temperature ionic liquid.

    PubMed

    Stanzione, Joseph F; Jensen, Robert E; Costanzo, Philip J; Palmese, Giuseppe R

    2012-11-01

    Ionic liquid gels (ILGs) for potential use in ion transport and separation applications were generated via a free radical copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N'-methylene(bis)acrylamide (MBA) using 1-ethyl-3-methylimidazolium ethylsulfate (IL) as a room temperature ionic liquid solvent medium. The AMPS and MBA monomer solubility window in the IL in the temperature range of 25 to 65 °C was determined. In situ ATR-FTIR showed near complete conversion of monomers to a cross-linked polymer network. ILGs with glass transition temperatures (T(g)s) near -50 °C were generated with T(g) decreasing with increasing IL content. The elastic moduli in compression (200 to 6600 kPa) decreased with increasing IL content and increasing AMPS content while the conductivities (0.35 to 2.14 mS cm?¹) increased with increasing IL content and decreasing MBA content. The polymer-IL interaction parameter (?) (0.48 to 0.55) was determined via a modified version of the Bray and Merrill equation. PMID:23088450

  17. Tribological Characteristics of Imidazolium-based Room Temperature Ionic Liquids Under High Vacuum

    Microsoft Academic Search

    Akihito Suzuki; Yoshihiro Shinka; Masabumi Masuko

    2007-01-01

    Tribological characteristics of two imidazolium-based room temperature ionic liquids (RTILs), 1-hexyl-3-methylimidazolium\\u000a tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate were investigated under high vacuum conditions. Viscosity–temperature\\u000a characteristics and thermogravimetric characteristics of these compounds were also investigated. Imidazolium-based RTILs have\\u000a relatively good viscosity–temperature characteristics that are comparable to those of multiply-alkylated cyclopentane (MAC).\\u000a Thermogravimetric results showed that ionic liquids have high thermal stability and low

  18. Anion pairs in room temperature ionic liquids predicted by molecular dynamics simulation, verified by spectroscopic characterization

    SciTech Connect

    Schwenzer, Birgit; Kerisit, Sebastien N.; Vijayakumar, M.

    2014-01-01

    Molecular-level spectroscopic analyses of an aprotic and a protic room-temperature ionic liquid, BMIM OTf and BMIM HSO4, respectively, have been carried out with the aim of verifying molecular dynamics simulations that predict anion pair formation in these fluid structures. Fourier-transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy of various nuclei support the theoretically-determined average molecular arrangements.

  19. NMR evidence of hydrogen bonding in 1-ethyl-3-methylimidazolium-tetrafluoroborate room temperature ionic liquid

    Microsoft Academic Search

    Jing-Fang Huang; Po-Yu Chen; I-Wen Sun; S. P. Wang

    2001-01-01

    The 1-ethyl-3-methylimidazolium-tetrafluoroborate (EMI–BF4) room temperature ionic liquid was investigated with NMR techniques. Diffusion coefficients measured at temperatures ranging from 300 to 360 K indicate that phase-change occurred in the vicinity of 333 K, which is supported by 11B quadrupolar relaxation rates. This phase change is ascribed to the transformation of the diffusion particle from ‘discrete ion-pair’ to ‘individual ion’ at

  20. Li\\/LiFePO 4 batteries with room temperature ionic liquid as electrolyte

    Microsoft Academic Search

    J. Jin; H. H. Li; J. P. Wei; X. K. Bian; Z. Zhou; J. Yan

    2009-01-01

    Room temperature ionic liquid (RTIL) was prepared on basis of N-methyl-N-butylpiperidinium bis(trifluoromethanesulfonyl)imide (PP14TFSI), which showed a wide electrochemical window (?0.1–5.2V vs. Li+\\/Li) and is theoretically feasible as an electrolyte for batteries with metallic Li as anodes. The addition of vinylene carbonate (VC) improved the compatibility of PP14TFSI-based electrolyte towards lithium anodes and enhanced the formation of solid electrolyte interphase film

  1. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect

    Griffin, Phillip [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Agapov, Alexander L [ORNL; Kisliuk, Alexander [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Novikov, Vladimir [ORNL; Sokolov, Alexei P [ORNL

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  2. DEVELOPMENT OF ROOM TEMPERATURE IONIC LIQUIDS FOR APPLICATIONS IN ACTINIDE CHEMISTRY

    SciTech Connect

    W. OLDHAM; D. COSTA; W. SMITH

    2001-05-01

    One area of on-going research in our group at Los Alamos National Laboratory is directed toward characterization of the basic coordination chemistry and electrochemical behavior of f-element ions dissolved in room temperature ionic liquids (RTILs). The ultimate goal of this work is to introduce advanced, environmentally sustainable, nuclear processing and purification strategies into both the DOE complex and the civilian nuclear industry. Efforts to develop ambient temperature electrorefining and/or electrowinning technologies are focused on the design of ionic liquids characterized by extended cathodic stability. In this chapter a summary of the synthesis, physical properties and electrochemical behavior of the ionic liquids used in this work is presented. The feasibility of efficient electrochemical production of high electropositive metals is demonstrated through reversible plating and stripping of sodium and potassium metals.

  3. Supported Room Temperature Ionic Liquid Membranes for CO{sub 2}/CH{sub 4} Separation

    SciTech Connect

    Iarikov, D. D.; Hacarlioglu, P.; Oyama, S. T.

    2011-01-01

    Room temperature ionic liquids (RTILs) are organic salts which are liquid at or around room temperature. These compounds exhibit many outstanding physical properties such as great thermal stability and no measurable vapor pressure. In this work supported ionic liquid membranes (SILMs) were prepared by impregnating pores of ?-alumina inorganic supports with various ionic liquids. In addition to membranes prepared with pure RTILs we were able to synthesize membranes with RTIL mixtures using 1-aminopyridinium iodide dissolved in 1-butyl-4-methylpyridinium tetrafluoroborate or methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. This combination of an RTIL with an organic salt containing an amine group dramatically improved the membrane separation properties. The SILMs displayed CO{sub 2} permeance on the order of 5 × 10{sup ?10} to 5 × 10{sup ?9} mol m{sup ?2} s{sup ?1} Pa{sup ?1} combined with CO{sub 2}/CH{sub 4} selectivity of 5–30. Although these values are comparable with the current systems for CO{sub 2} purification, CO{sub 2} permeance is still rather low for these compounds.

  4. EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid

    Microsoft Academic Search

    Mark P. Jensen; Julie A. Dzielawa; Paul Rickert; Mark L. Dietz

    2002-01-01

    The Sr(II)-crown ether complexes formed in a room-temperature ionic liquid (RTIL), 1-methyl-3-pentylimidazolium bis[(trifluoromethyl)sulfonyl]amide, have been studied by X-ray absorption fine structure measurements at the Sr K-edge. When a Sr(NO)-crown ether complex is directly dissolved in a water-saturated RTIL, both nitrate ligands and the crown ether coordinate the Sr, as observed in a conventional two-phase water-octanol system. When the cationic Sr-crown

  5. SEM Observation of Hydrous Superabsorbent Polymer Pretreated with Room-Temperature Ionic Liquids

    PubMed Central

    Tsuda, Tetsuya; Mochizuki, Eiko; Kishida, Shoko; Iwasaki, Kazuki; Tsunashima, Katsuhiko; Kuwabata, Susumu

    2014-01-01

    Room-temperature ionic liquid (RTIL), which is a liquid salt at or below room temperature, shows peculiar physicochemical properties such as negligible vapor pressure and relatively-high ionic conductivity. In this investigation, we used six types of RTILs as a liquid material in the pretreatment process for scanning electron microscope (SEM) observation of hydrous superabsorbent polymer (SAP) particles. Very clear SEM images of the hydrous SAP particles were obtained if the neat RTILs were used for the pretreatment process. Of them, tri-n-butylmethylphosphonium dimethylphosphate ([P4, 4, 4, 1][DMP]) provided the best result. On the other hand, the surface morphology of the hydrous SAP particles pretreated with 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) was damaged. The results of SEM observation and thermogravimetry analysis of the hydrous SAP pretreated with the RTILs strongly suggested that most water in the SAP particles are replaced with RTIL during the pretreatment process. PMID:24621609

  6. Polyoxometalate-lyotropic liquid crystal hybrid material formed in room-temperature ionic liquids.

    PubMed

    Jiang, Wenqing; Liu, Liping; Hao, Jingcheng

    2011-03-01

    Manganese(II)-substituted polyoxometalate, Na6(NH4)4[(Mn(II)(H2O)3)2(WO2)2(BiW9O33)2] x 37H2O (POM-Mn), was assembled within lyotropic hexagonal liquid crystal (LLC) formed in the room-temperature ionic liquids (RT-ILs), ethylammonium nitrate (EAN), fabricating the POM-LLC inorganic-organic hybrid materials. Polarized optical microscope images combined with small-angle X-ray scattering (SAXS) results indicate that the introduction of POM-Mn does not destroy the structure of hexagonal LLCs. The increase of d spacing demonstrates the integration of POM-Mn within the basic unit of the hexagonal LLCs. The FTIR spectra of the POM-LLC hybrid material show the characteristic absorption peaks of W-O bond. The rheological results indicate POM-LLC hybrid materials are highly viscoelastic and that the apparent viscosity is enhanced due to the introduction of the POM-Mn. The tribological properties were explored to greatly extend the applications of POM-LLC composites in RT-ILs as lubricating materials. The research of magnetic properties indicates the POM-LLC composite is ferromagnetic, therefore illuminating the potential application in the fields of magnetic materials. PMID:21449365

  7. Solvation dynamics in room temperature ionic liquids studied by ultrafast vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Garrett-Roe, Sean; Ren, Zhe; Couchot-Vore, Duane; Brinzer, Thomas

    2014-03-01

    Room temperature ionic liquids are a challenging new area for understanding solvation dynamics. These solvent systems are liquids with a delicate balance of electrostatic, dispersion, and hydrogen-bonding forces which lead to complex structure and dynamics on many time- and length-scales. Here we probe the dynamics of thiocyanate ions in several imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids from femtoseconds to 100 ps using ultrafast vibrational spectroscopy. Two-dimensional infrared (2D-IR) spectroscopy of thiocyanate ions detects both intertial motion (on the hundreds of femtosecond timescale) as well as slower, diffusive motions (on the tens of picosecond timescale). The 2D-IR experiments show that the rate of fluctuation of the electrostatic environment around the thiocyanate is sensitive to hydrogen bonding at the 2-position of the imidazolium ring, depends mildly on water concentration, changes with counter-ion, and is roughly independent of the thiocyanate concentration (up to 30 mM). The results are compared to ab initio simulations which predicted a 10 - 15 picosecond hydrogen bond lifetime. The implications for topics such as the concept of ionicity, the effect of hydrogen bonding on viscosity, and structural and dynamical heterogeneity will be discussed.

  8. Existence of optical phonons in the room temperature ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate

    PubMed Central

    Burba, Christopher M.; Frech, Roger

    2011-01-01

    The technologically important properties of room temperature ionic liquids (RTILs) are fundamentally linked to the ion–ion interactions present among the constituent ions. These ion–ion interactions in one RTIL (1-ethyl-3-methylimidazolium trifluoromethanesulfonate, [C2mim]CF3SO3) are characterized with transmission FTIR spectroscopy and polarized attenuated total reflection (ATR) FTIR spectroscopy. A quasilattice model is determined to be the best framework for understanding the ionic interactions. A novel spectroscopic approach is proposed to characterize the degree of order that is present in the quasilattice by comparing the dipole moment derivative calculated from two independent spectroscopic measurements: (1) the TO–LO splitting of a vibrational mode using dipolar coupling theory and (2) the optical constants of the material derived from polarized ATR experiments. In principle, dipole moment derivatives calculated from dipolar coupling theory should be similar to those calculated from the optical constants if the quasilattice of the RTIL is highly structured. However, a significant disparity for the two calculations is noted for [C2mim]CF3SO3, indicating that the quasilattice of [C2mim]CF3SO3 is somewhat disorganized. The potential ability to spectroscopically characterize the structure of the quasilattice, which governs the long-range ion–ion interactions in a RTIL, is a major step forward in understanding the interrelationship between the molecular-level interactions among the constituent ions of an ionic liquid and the important physical properties of the RTIL. PMID:21476760

  9. Simulations of room temperature ionic liquids: From polarizable to coarse-grained force fields

    E-print Network

    Salanne, Mathieu

    2015-01-01

    Room temperature ionic liquids (RTILs) are solvent with unusual properties, which are difficult to characterize experimentally because of their intrinsic complexity (large number of atoms, strong Coulomb interactions). Molecular simulations have therefore been essential in our understanding of these systems. Depending on the target property and on the necessity to account for fine details of the molecular structure of the ions, a large range of simulation techniques are available. Here I focus on classical molecular dynamics, in which the level of complexity of the simulation, and therefore the computational cost, mostly depends on the force field. Depending on the representation of the ions, these are either classified as all-atom or coarse-grained. In addition, all-atom force fields may account for polarization effects if necessary. The most widely used methods for RTILs are described together with their main achievements and limitations.

  10. Free Radical Polymerization of Styrene and Methyl Methacrylate in Various Room Temperature Ionic Liquids

    SciTech Connect

    Zhang, Hongwei [University of Tennessee, Knoxville (UTK); Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

    2005-01-01

    Conventional free radical polymerization of styrene and methyl methacrylate was carried out in various room temperature ionic liquids (RTILs). The RTILs used in this research encompass a wide range of cations and anions. Typical cations include imidazolium, phosphonium, pyridinium, and pyrrolidinium; typical anions include amide, borate, chloride, imide, phosphate, and phosphinate. Reactions are faster and polymers obtained usually have higher molecular weights when compared to polymerizations carried out in volatile organic solvents under the same conditions. This shows that rapid rates of polymerization and high molecular weights are general features of conventional radical polymerizations in RTILs. Attempts to correlate the polarities and viscosities of the RTILs with the polymerization behavior fail to yield discernible trends.

  11. Positronium bubble oscillation in room temperature ionic liquids-Temperature dependence

    NASA Astrophysics Data System (ADS)

    Hirade, T.

    2015-06-01

    The temperature dependent oscillation of the ortho-positronium pick-off annihilation rate was successfully observed for a room temperature ionic liquid (IL), N,N,N-trimethyl-N- propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI). The fundamental frequencies at 25C and 30C were 5.85GHz and 4.00GHz, respectively. The decay of the oscillation was faster at higher temperature, 30C. Moreover, the higher harmonic frequencies could explain the change of ortho-positronium pick-off annihilation rate successfully. The macroscopic viscosity of the IL could not explain the appearance of the oscillation. It indicated that the positron annihilation methods were very strong tools to study the properties of IL's in sub-nanometer scale that must be very different from the macroscopic properties.

  12. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.

    PubMed

    Vatamanu, Jenel; Vatamanu, Mihaela; Bedrov, Dmitry

    2015-06-23

    The enhancement of non-Faradaic charge and energy density stored by ionic electrolytes in nanostructured electrodes is an intriguing issue of great practical importance for energy storage in electric double layer capacitors. On the basis of extensive molecular dynamics simulations of various carbon-based nanoporous electrodes and room temperature ionic liquid (RTIL) electrolytes, we identify atomistic mechanisms and correlations between electrode/electrolyte structures that lead to capacitance enhancement. In the symmetric electrode setup with nanopores having atomically smooth walls, most RTILs showed up to 50% capacitance increase compared to infinitely wide pore. Extensive simulations using asymmetric electrodes and pores with atomically rough surfaces demonstrated that tuning of electrode nanostructure could lead to further substantial capacitance enhancement. Therefore, the capacitance in nanoporous electrodes can be increased due to a combination of two effects: (i) the screening of ionic interactions by nanopore walls upon electrolyte nanoconfinement, and (ii) the optimization of nanopore structure (volume, surface roughness) to take into account the asymmetry between cation and anion chemical structures. PMID:26038979

  13. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Griffin, Philip J.; Holt, Adam P.; Tsunashima, Katsuhiko; Sangoro, Joshua R.; Kremer, Friedrich; Sokolov, Alexei P.

    2015-02-01

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.

  14. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids.

    PubMed

    Griffin, Philip J; Holt, Adam P; Tsunashima, Katsuhiko; Sangoro, Joshua R; Kremer, Friedrich; Sokolov, Alexei P

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs. PMID:25725739

  15. Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid-liquid microextraction.

    PubMed

    Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani

    2015-01-01

    A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05?gL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. PMID:25528072

  16. Understanding and optimizing microemulsions with magnetic room temperature ionic liquids (MRTILs).

    PubMed

    Klee, Andreas; Prevost, Sylvain; Gasser, Urs; Gradzielski, Michael

    2015-03-12

    Nonaqueous microemulsions containing the magnetic room temperature ionic liquid (MRTIL) bmimFeCl4 as polar phase were studied with respect to their macroscopic phase behavior and structure by means of small angle neutron scattering (SANS). The phase behavior was studied in detail for different alcohols as cosurfactant and different oils as nonpolar phase and mainly by varying the chain length of the used ionic surfactant (CnmimCl with n = 14, 16, 18). In general, phase behavior and structural ordering in the mesophases were found to be comparable to water systems where with increasing content of MRTIL the microemulsions seems to become less and less structured leading to a rough and softer interface with less long-range ordering. The extent of structuring increases with increasing chain length of the surfactant. However, the pure surfactant is not able to form microemulsions and a rather large amount of alcohol is required for stabilization, where the effectiveness of the alcohol increases with increasing chain length of the alcohol. From this comprehensive investigation systematic trends can be deduced in order to formulate correspondingly structured microemulsions with MRTIL as polar phase. PMID:25679318

  17. Kinetics and Thermodynamics of Hydrogen Oxidation and Oxygen Reduction in Hydrophobic Room-Temperature Ionic Liquids

    PubMed Central

    Rollins, Julie B.; Conboy, John C.

    2010-01-01

    In this study 1-dodecyl-3-methylimidazolium (C12mim) bis(pentafluoroethylsulfonyl)imide (BETI) and 1-dodecylimidazolium (C12im) BETI hydrophobic room-temperature ionic liquids (RTILs) were synthesized and used as proton-conducting electrolytes in a nonhumidified feed gas electrochemical cell. The ionic conductivities of C12mimBETI and C12imBETI were similar and increased linearly with an increase in temperature from 20 to 130°C. However, when used in the electrochemical system the protic water-equilibrated C12imBETI had a larger maximum current and power density compared to the aprotic water-equilibrated C12mimBETI. The effect of water content on the reaction rates and thermodynamics of these hydrophobic RTILs was also examined. The efficiency of the C12mimBETI increased upon removal of water while that of the C12imBETI decreased in efficiency when water was removed. The water structure in these RTILs was examined using attenuated total internal reflection Fourier transform IR spectroscopy and depended on the chemical structure of the cation. These studies give further insight into the possible mechanism of proton transport in these RTIL systems. PMID:20414470

  18. Simple synthesis of Prussian blue analogues in room temperature ionic liquid solution and their catalytic application in epoxidation of styrene.

    PubMed

    Wang, Qianqian; Wang, Ning; He, Sifa; Zhao, Jihua; Fang, Jian; Shen, Weiguo

    2015-07-01

    In this article, a new application of the room temperature ionic liquid, tetramethylammonium tetrafluoroborate, is described. This ionic liquid is used as a stabilizing agent and the reaction medium for the synthesis of CoFe Prussian blue analogue nanoparticles using N,N-dimethyl formamide as a complexing agent. The as-synthesized Prussian blue analogues were characterized by various techniques and were used to catalyze the reaction of epoxidation of styrene. The catalytic activity of Prussian blue analogues prepared in ionic liquid was superior to that of Prussian blue analogues prepared in aqueous solution. PMID:26102295

  19. Hydrogen-bonding interactions and protic equilibria in room-temperature ionic liquids containing crown ethers.

    SciTech Connect

    Marin, T.; Shkrob, I.; Dietz, M. (Chemical Sciences and Engineering Division); (Benedictine Univ.); (Univ. of Wisconsin at Milwaukee)

    2011-04-14

    Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between different clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.

  20. Stability of the Liquid State of Imidazolium-Based Ionic Liquids under High Pressure at Room Temperature.

    PubMed

    Yoshimura, Yukihiro; Shigemi, Machiko; Takaku, Mayumi; Yamamura, Misaho; Takekiyo, Takahiro; Abe, Hiroshi; Hamaya, Nozomu; Wakabayashi, Daisuke; Nishida, Keisuke; Funamori, Nobumasa; Sato, Tomoko; Kikegawa, Takumi

    2015-06-25

    To understand the stability of the liquid phase of ionic liquids under high pressure, we investigated the phase behavior of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ([Cnmim][BF4]) homologues with different alkyl chain lengths for 2 ? n ? 8 up to ?7 GPa at room temperature. The ionic liquids exhibited complicated phase behavior, which was likely due to the conformational flexibility in the alkyl chain. The present results reveal that [Cnmim][BF4] falls into superpressed state around 2-3 GPa range upon compression with an implication of multiple phase or structural transitions to ?7 GPa. Remarkably, a characteristic nanostructural organization in ionic liquids largely diminishes at the superpressed state. The behaviors of imidazolium-based ionic liquids can be classified into, at least, three patterns: (1) pressure-induced crystallization, (2) superpressurization upon compression, and (3) decompression-induced crystallization from the superpressurized glass. Interestingly, the high-pressure phase behavior was relevant to the glass transition behavior at low temperatures and ambient pressure. As n increases, the glass transition pressure (pg) decreases (from 2.8 GPa to ?2 GPa), and the glass transition temperature increases. The results indicate that the p-T range of the liquid phase is regulated by the alkyl chain length of [Cnmim][BF4] homologues. PMID:25988295

  1. Understanding the impact of nanoscale aggregation on charge transport and structural dynamics in room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Griffin, Philip; Holt, Adam; Wang, Yangyang; Sokolov, Alexei

    2015-03-01

    Amphiphilic room temperature ionic liquids (ILs) segregate on the nanoscale, forming intricate networks of charge-rich ionic domains intercalated with charge-poor aliphatic domains. While this structural phenomenon has been well established through x-ray diffraction studies and atomistic MD simulations, the precise effects of nanophase segregation on ion transport and structural dynamics in ILs remains poorly understood. Using a combination of broadband dielectric spectroscopy, light scattering spectroscopy, and rheology, we have characterized the ionic conductivity, structural dynamics, and shear viscosity of a homologous series of quaternary ammonium ionic liquids over a wide temperature range. Upon increasing the length and volume fraction of the alkyl side chains of these quaternary ammonium ILs, ionic conductivity decreases precipitously, although no corresponding slowing of the structural dynamics is observed. Instead, we identify the dynamical signature of supramolecular aggregates. Our results directly demonstrate the role that chemical structure and ionic aggregation plays in determining the charge transport properties of amphiphilic ILs.

  2. Studies on room-temperature electric-field effect in ionic-liquid gated VO2 three-terminal devices

    NASA Astrophysics Data System (ADS)

    Yang, Zheng; Zhou, You; Ramanathan, Shriram

    2012-01-01

    We present a study of electrostatic gating of VO2 thin films in ionic-liquid-based electric double-layer transistor geometry. Devices were fabricated by lithographic patterning of VO2 thin films as channel on sapphire substrates, ionic liquid as gate dielectric, and Au as gate/source/drain electrode, respectively. A significant unipolar increase in channel conductance at room temperature is observed. The VO2 channel resistance decreases ˜50% at + 2 V gate bias, whereas it increases slightly under negative bias. The polarity dependence of resistance modulation suggests electrons to be a dominant carrier, which is consistent with Hall measurements. In the high-temperature metallic state of VO2, no gating effect is observed. The effect of multiple transition cycles on the channel resistance change under bias is discussed. The study contributes to on-going efforts to realize room-temperature field-effect switches with correlated oxides.

  3. Room temperature ionic liquid as solvent for in situ Pd/H formation: hydrogenation of carbon-carbon double bonds.

    PubMed

    Martindale, Benjamin C M; Menshykau, Dzianis; Ernst, Sven; Compton, Richard G

    2013-01-28

    This work undertakes mechanistic studies of H(+) reduction on a palladium microelectrode in a room temperature ionic liquid. It was found that the electrode was initially in a partially passivated state in [NTf(2)](-) based RTILs and that pre-anodisation of the electrode surface has a dramatic effect on the reversibility of the system, also triggering a change from hydrogen evolution to hydrogen absorption. Theoretical modelling supported the idea of Pd/H formation under these conditions. Utilising Pd/H as an activated hydrogen source, a proof-of-concept method for hydrogenation of multiple bond containing organic molecules by in situ generation of Pd/H via reduction of H(+) on palladium in a room temperature ionic liquid has been demonstrated. PMID:23223389

  4. Synthesis and Characterization of Thiazolium-Based Room Temperature Ionic Liquids for Gas Separations

    SciTech Connect

    Hillesheim, Patrick C [ORNL; Mahurin, Shannon Mark [ORNL; Fulvio, Pasquale F [ORNL; Yeary, Joshua S [ORNL; Oyola, Yatsandra [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

    2012-01-01

    A series of novel thiazolium-bis(triflamide) based ionic liquids has been synthesized and characterized. Physicochemical properties of the ionic liquids such as thermal stability, phase transitions, and infrared spectra were analysed and compared to the imidazolium-based congeners. Several unique classes of ancillary substitutions are examined with respect to impacts on overall structure, in addition to their carbon dioxide absorption properties in supported ionic-liquid membranes for gas separation.

  5. Electrodeposition of antimony in a water-stable 1-ethyl-3-methylimidazolium chloride tetrafluoroborate room temperature ionic liquid

    Microsoft Academic Search

    M. H. Yang; I. W. Sun

    2003-01-01

    The electrochemistry and electrodeposition of antimony were investigated on glassy carbon and nickel electrodes in a basic 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate room temperature ionic liquid. Cyclic voltammetry results show that Sb(III) may be either oxidized to Sb(V) via a quasi-reversible charge-transfer process or reduced to Sb metal. Diffusion coefficients for both Sb(III) and Sb(V) species were calculated from rotating disc voltammetric data.

  6. Anodic electrode reaction of p-type silicon in 1-ethyl-3-methylimidazolium fluorohydrogenate room-temperature ionic liquid

    Microsoft Academic Search

    Tetsuya Tsuda; Toshiyuki Nohira; Koji Amezawa; Kan Hachiya; Rika Hagiwara; Ofer Raz; Yair Ein-Eli

    2008-01-01

    The anodic electrode behavior for a p-type silicon single crystal electrode ((100), ?=0.01–0.02?cm, boron doped) was examined in the 1-ethyl-3-methylimidazolium fluorohydrogenate, EtMeIm(FH)2.3F, room-temperature ionic liquid (RTIL). The electrochemical behavior was very similar to that in conventional HF aqueous solution. After the anodic electrode reaction, the Si electrode was uniformly covered with a mesoporous Si layer having a pore size of

  7. Separation of N2O and CO2 using Room-Temperature Ionic Liquid [bmim][Ac

    Microsoft Academic Search

    Mark B. Shiflett; Beth A. Elliott; Anne Marie S. Niehaus; A. Yokozeki

    2012-01-01

    We have developed a ternary equation of state (EOS) model for the N2O\\/CO2\\/1-butyl-3-methylimidazolium acetate ([bmim][Ac]) system in order to understand the separation of N2O and CO2 using room-temperature ionic liquids (RTILs). The present model is based on a generic RK (Redlich-Kwong) EOS, with empirical interaction parameters for each binary system. The interaction parameters have been determined using our measured VLE

  8. A study on the ultrasonic preparation of nanocrystalline zinc oxide in room temperature ionic liquid and triethylene glycol

    Microsoft Academic Search

    Hao Yang; Hai-yan Wang; Yue-tao Yang; Xiao-jun Liu; Shu-yi Zhang

    2010-01-01

    A fast and green approach has been developed for the preparation of nanocrystalline zinc oxide (ZnO) in room-temperature ionic liquid (RTIL) via ultrasonic irradiation. For comparison, ZnO nanoparticles have been prepared under the same experimental condition in triethylene glycol (TEG). The results show that ZnO nanorods can be prepared in RTIL, while spherical nanoparticles are obtained in TEG. A possible

  9. An electrochemical gas sensor based on paper supported room temperature ionic liquids.

    PubMed

    Dossi, Nicolò; Toniolo, Rosanna; Pizzariello, Andrea; Carrilho, Emanuel; Piccin, Evandro; Battiston, Simone; Bontempelli, Gino

    2012-01-01

    A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 ?M; dynamic range: 2-200 ?M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: ±7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications. PMID:22076475

  10. What type of nanoscopic environment does a cationic fluorophore experience in room temperature ionic liquids?

    PubMed

    Ghosh, Anup; De, Chayan K; Chatterjee, Tanmay; Mandal, Prasun K

    2015-07-01

    In the presence of a cationic fluorophore (rhodamine 6G) whose absorption has a significant spectral overlap with the emission of a room temperature ionic liquid (RTIL), the emission of the latter gets quenched, and the quenching has been shown to be dynamic in nature. It has been shown that resonance energy transfer (RET) indeed happens between the RTIL (donor) and rhodamine 6G (cationic acceptor), and RET is the reason for the quenching of the RTIL emission. The spectral and temporal aspects of the RET (between neat RTILs as the donors and rhodamine 6G as the acceptor) were closely studied by steady-state and picosecond time-resolved fluorescence spectroscopy. The influence of the alkyl chain length of the cation, size of the anion, excitation wavelength and concentration of the acceptor on the RET dynamics were also investigated. The energy transfer time (obtained from the rise time of the acceptor) was noted to vary from 2.5 ns to 4.1 ns. By employing the Förster formulation, the donor-acceptor distance was obtained, and its magnitude was found to vary between 31.8 and 37.1 Å. The magnitude of the donor-acceptor distance was shown to be independent of the alkyl chain length of the cation but dependent on the size of the anion of the RTIL. Moreover, the donor-acceptor distance was observed to be independent of the excitation wavelength or concentration of the acceptor. It was shown that the Förster formulation can possibly account for the mechanism and hence can explain the experimental observables in the RET phenomenon. Following the detailed experiments and rigorous analysis, a model has been put forward, which can successfully explain the nanoscopic environment that a cationic fluorophore experiences in an RTIL. Moreover, the nanoscopic environment experienced by the cationic probe has been noted to be different from that experienced by a neutral fluorophore. PMID:26055159

  11. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids.

    PubMed

    Benedetto, Antonio; Bingham, Richard J; Ballone, Pietro

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim](+)) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim](+) into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim](+) and of POPC. The [bmim](+) absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers. PMID:25833602

  12. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.

    PubMed

    Bara, Jason E; Camper, Dean E; Gin, Douglas L; Noble, Richard D

    2010-01-19

    Clean energy production has become one of the most prominent global issues of the early 21st century, prompting social, economic, and scientific debates regarding energy usage, energy sources, and sustainable energy strategies. The reduction of greenhouse gas emissions, specifically carbon dioxide (CO(2)), figures prominently in the discussions on the future of global energy policy. Billions of tons of annual CO(2) emissions are the direct result of fossil fuel combustion to generate electricity. Producing clean energy from abundant sources such as coal will require a massive infrastructure and highly efficient capture technologies to curb CO(2) emissions. Current technologies for CO(2) removal from other gases, such as those used in natural gas sweetening, are also capable of capturing CO(2) from power plant emissions. Aqueous amine processes are found in the vast majority of natural gas sweetening operations in the United States. However, conventional aqueous amine processes are highly energy intensive; their implementation for postcombustion CO(2) capture from power plant emissions would drastically cut plant output and efficiency. Membranes, another technology used in natural gas sweetening, have been proposed as an alternative mechanism for CO(2) capture from flue gas. Although membranes offer a potentially less energy-intensive approach, their development and industrial implementation lags far behind that of amine processes. Thus, to minimize the impact of postcombustion CO(2) capture on the economics of energy production, advances are needed in both of these areas. In this Account, we review our recent research devoted to absorptive processes and membranes. Specifically, we have explored the use of room-temperature ionic liquids (RTILs) in absorptive and membrane technologies for CO(2) capture. RTILs present a highly versatile and tunable platform for the development of new processes and materials aimed at the capture of CO(2) from power plant flue gas and in natural gas sweetening. The desirable properties of RTIL solvents, such as negligible vapor pressures, thermal stability, and a large liquid range, make them interesting candidates as new materials in well-known CO(2) capture processes. Here, we focus on the use of RTILs (1) as absorbents, including in combination with amines, and (2) in the design of polymer membranes. RTIL amine solvents have many potential advantages over aqueous amines, and the versatile chemistry of imidazolium-based RTILs also allows for the generation of new types of CO(2)-selective polymer membranes. RTIL and RTIL-based composites can compete with, or improve upon, current technologies. Moreover, owing to our experience in this area, we are developing new imidazolium-based polymer architectures and thermotropic and lyotropic liquid crystals as highly tailorable materials based on and capable of interacting with RTILs. PMID:19795831

  13. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOEpatents

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  14. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    PubMed

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product. PMID:22372467

  15. Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids

    Microsoft Academic Search

    Piotr Stepnowski; Adriana Zaleska

    2005-01-01

    Imidazolium ionic liquids have been widely researched as possible “green” replacements for organic solvents. The “green” aspect is related mainly to their non-measurable vapor pressure, which is obviously not enough to justify calling a technology cleaner. Some quantities of ionic liquids will soon be present in technological wastewater, where, because of their great stability, they could become persistent pollutants and

  16. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Giammanco, Chiara H.; Fayer, Michael D.

    2015-06-01

    The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water, 42 ps for methanol, and 88 ps for ethanol. The shape and volume of the probe, therefore, impact reorientation far more severely than they do spectral diffusion at long times, though these two processes occur on similar timescales at earlier times.

  17. Dynamics of water, methanol, and ethanol in a room temperature ionic liquid.

    PubMed

    Kramer, Patrick L; Giammanco, Chiara H; Fayer, Michael D

    2015-06-01

    The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water, 42 ps for methanol, and 88 ps for ethanol. The shape and volume of the probe, therefore, impact reorientation far more severely than they do spectral diffusion at long times, though these two processes occur on similar timescales at earlier times. PMID:26049428

  18. Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-01-24

    In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol. PMID:16418271

  19. Heterogeneity in a room-temperature ionic liquid: Persistent local environments and the red-edge effect

    PubMed Central

    Hu, Zhonghan; Margulis, Claudio J.

    2006-01-01

    In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported “red-edge effect” (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on ?ex is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol. PMID:16418271

  20. NOVEL FISSION PRODUCT SEPARATION BASED ON ROOM-TEMPERATURE IONIC LIQUIDS

    SciTech Connect

    Hussey, Charles L.

    2004-06-01

    The DoE/NE underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive species, mainly 137Cs and 90Sr. Because the other components of the liquid waste are mainly sodium nitrate and sodium hydroxide, most of this tank waste can be treated inexpensively as low-level waste if 137Cs and 90Sr can be selectively removed. Many ionophores (crown ether and calixarene compounds) have been synthesized for the purpose of selectively extracting Cs+ and Sr2+ from an aqueous phase into an immiscible organic phase. Recent studies conducted at ORNL1,2 reveal that hydrophobic ionic liquids might be better solvents for extracting metal ions from aqueous solutions with these ionophores than conventional immiscible organic solvents, such as benzene, toluene, and dichloromethane, because both Cs+ and Sr2+ exhibit larger distribution coefficients in the ionic liquids. In addition, the vapor pressures of these ionic liquids are insignificant. Thus, there is little or no vaporization loss of these solvents. Most of the ionic liquids under investigation are relatively nontoxic compared to the hydrocarbon solvents that they replace, classifying them as ''green'' solvents.

  1. Metal electrodeposition and electron transfer studies of uranium compounds in room temperature ionic liquids.

    SciTech Connect

    Stoll, M. E. (Michael E.); Oldham, W. J. (Warren J.); Costa, D. A. (David A.)

    2004-01-01

    Room temperature ionic liquids (RTIL's) comprised of 1,3-dialkylimidazolium or quaternary ammonium cations and one of several anions such as PF{sub 6}{sup -}, BF{sub 4}{sup -}, or {sup -}N(SO{sub 2}CF{sub 3}){sub 2}, represent a class of solvents that possess great potential for use in applications employing electrochemical procedures. Part of the intrigue with RTIL's stems from some of their inherent solvent properties including negligible vapor pressure, good conductivity, high chemical and thermal stability, and non-flammability. Additionally, a substantial number of RTIL's can be envisioned simply by combining different cation and anion pairs, thereby making them attractive for specific application needs. We are interested in learning more about the possible use of RTIL's within the nuclear industry. In this regard our research team has been exploring the electron transfer behavior of simple metal ions in addition to coordination and organometallic complexes in these novel solvents. Results from our research have also provided us with insight into the bonding interactions between our current anion of choice, bis(trifluoromethylsulfonyl)imide = NTf{sub 2}, and open coordination sites on actinide and transition metal fragments. This presentation will focus on recent results in two areas: the electrodeposition of electropositive metal ions from RTIL solutions and the electron transfer behavior for several uranium complexes. Details concerning the cathodic electrodeposition and anodic stripping of alkali metals (Na, K) from various working electrode surfaces (Pt, Au, W, Glassy Carbon) will be discussed. Figure 1 displays typical behavior for the electrodeposition of potassium metal from an RTIL containing potassium ions produced through the reaction of KH with H[NTf{sub 2}]. Our efforts with other metal ions, including our results to date with uranium electrodeposition, will be covered during the presentation. The electron transfer behavior for a number of uranium complexes have been studied with various electrochemical methods including cyclic and square-wave voltammetry, chronoamperometry, and bulk coulometry. Results from these studies will be presented to show the general electron transfer behavior of metal complexes in the RTIL's. As an example, Figure 2 shows the difference in chemical stability of an electrogenerated U(V) anion for two uranyl (U(VI)O{sub 2}{sup 2+}) complexes due to the difference in ancillary ligands about the uranyl moiety. Figure 2a shows a cyclic voltammogram (CV) for the U(VI)/U(V) couple of a uranyl complex containing a multi-dentate chelating nitrogen/oxygen ligand (inset in figure). The couple is both chemically and electrochemically reversible. The CV in Figure 2b is that of [UO{sub 2}Cl{sub 4}]{sup 2-} in which the electrogenerated U(V) derivative is unstable yielding a chemically irreversible wave. For the compound giving rise to the CV in Figure 2a its electrochemical behavior in a conventional nonaqueous electrolyte medium is very similar to that obtained in the RTIL. While this result does not illustrate a distinct advantage for employing the RTIL solvent in this particular case, we believe it effectively demonstrates the ability of the RTIL to be utilized as a solvent/electrolyte medium for detailed electrochemical studies without severe limitations.

  2. Solvation Dynamics of Dipolar Probes in Dipolar Room Temperature Ionic Liquids: Separation of Ion-Dipole and Dipole-Dipole Interaction Contributions

    E-print Network

    Biswas, Ranjit

    Solvation Dynamics of Dipolar Probes in Dipolar Room Temperature Ionic Liquids: Separation of Ion temperature ionic liquids (RTIL) have revealed large dynamic Stokes' shifts and biphasic solvation energy to the observed Stokes' shift and its dynamics. Conventional time-resolved measurements, however, cannot separate

  3. NOvel Fission Product Separation Based on Room-Temperature Ionic liquids

    SciTech Connect

    Hussey, Charles L.

    2005-11-13

    The effective extraction of Cs+ and Sr2+ into a relatively new and heretofore untested hydrophobic ionic liquid, tri-n-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide was demonstrated with calix[4]arene-bis(tert-octylbenzo-crown-6) and dicyclohexano-18-crown-6, respectively. The coordinated Cs+ and Sr2+ were subsequently removed from the ionic liquid extraction solvent by an electrochemical reduction process carried out at mercury electrodes. This process is non-destructive, permitting the ionic liquid and ionophores to be recycled. Although the process is based on mercury electrodes, this is a benefit rather than a detriment because the liquid mercury containing the Cs and Sr can be easily transported to another electrochemical cell where the Cs and Sr could be electrochemically recovered from the mercury amalgam and concentrated into a minimum volume of water or some other inexpensive solvent. This should facilitate the development of a suitable waste form for the extracted Cs+ and Sr2+. Thus, the feasibility of the proposed ionic liquid-based extraction cycle for the removal of 137Cs+ and 90Sr2+ from simulated aqueous tank waste was demonstrated.

  4. DETERMINATION OF HENRY'S LAW CONSTANTS FOR VOCS IN ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Ionic liquids (ILs) have been shown to be a newer medium for a wide variety of chemical reactions and are considered as the potential replacements for traditional volatile organic solvents. However, the separation and recovery of organic compounds from ILs has not been systematic...

  5. FISSION-PRODUCT SEPARATION BASED ON ROOM-TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new ext...

  6. Electrochemistry and spectroscopy of electrolytes and cathode materials in room-temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Ryan, David Martin

    The demonstration of a stable, reversible, alkali metal anode is an important step in the development of practical secondary batteries using room temperature chloroaluminate molten salts as electrolytes. Such melts are made by mixing 1-ethyl-3-methylimidazolium chloride (EMIC) with aluminum chloride, and can be Lewis buffered by adding LiCl or NaCl. It has been shown previously that protons added to a sodium chloride buffered melt as 1-ethyl-3-methyfimidazolium hydrogen dichloride (EMIHCl2) provide a more negative voltage window and nearly reversible deposition-stripping behavior for sodium. It is reported here that triethanolamine hydrogen chloride is effective in widening the voltage window, allows the plating and stripping of both lithium and sodium, and is stable in buffered EMIC/AlCl3 melts for months. It is suggested that deprotonation of one ethanolic group of triethanolamine HCl is responsible for the effect. The electrochemistry and UV-visible spectroscopy of several vanadium oxides have been examined in room temperature melts. By varying the mole ratio of the two components, Lewis basic, neutral and acidic melts were made. Most oxides have very low solubility: V2O4 and V2O3 are insoluble and V2O5 has a solubility limit less than 5 mM, but the solubilities of the salts NaVO 3, Na3VO4, and NH4VO3, VOCl 3 and VOF3 are significantly higher. The electrochemistry of V2O5, NaVO3, Na3VO4, NH4VO3, VOCl3 and VOF3 is similar in neutral and acidic melts. In the neutral melt each compound shows an irreversible reduction at about 0.45V vs. an Al wire reference electrode. In an acidic melt (mole fraction AlCl3 = 0.55) each of these compounds exhibit additional reduction peaks at more positive potentials. Coulometric and spectroscopic data for the 0.45V reduction suggest that mixed oxidation state polyvanadates may be formed. Controlled potential coulometry demonstrated that the reduction at 0.45V was the reduction of V(V) to V(IV) and the more positive reduction peaks were caused by the reduction of some other species of V(V) present in the acidic melts. New room temperature melts have been prepared by mixing Lewis acidic, VOCl3, with Lewis basic, EMIC. The new melts are dark red homogeneous liquids that are very conductive and easily reduced.

  7. Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid

    Microsoft Academic Search

    Kei Sekiguchi; Mahito Atobe; Toshio Fuchigami

    2003-01-01

    Electrooxidative polymerization of aromatic compounds such as pyrrole, thiophene and aniline was carried out in air-and moisture-stable ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMICF3SO3). The polymerization rate and morphological structure of polymer films formed on the anode were affected, and the electroconductivity was significantly increased. Furthermore, the polypyrrole film prepared in EMICF3SO3 was applied to a matrix for hosting catalyst particles electrodeposited.

  8. Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid

    Microsoft Academic Search

    Kei Sekiguchi; Mahito Atobe; Toshio Fuchigami

    2002-01-01

    Air and moisture stable ionic liquid like 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMICF3SO3) has been used as an electrolyte for the electrooxidative polymerization of pyrrole; the morphological structure of polypyrrole film formed on the anode was greatly affected, and the polymerization rate, electrochemical capacity and electroconductivity were significantly increased. Furthermore, it was also found that EMICF3SO3 could be recovered by a simple extraction

  9. Differential scanning calorimetric study of nonionic surfactant mixtures with a room temperature ionic liquid, bmimBF4.

    PubMed

    Inoue, Tohru; Higuchi, Yuka; Misono, Takeshi

    2009-10-01

    The melting behavior of polyethyleneglycol dodecyl ethers (C(12)E(6), C(12)E(7), and C(12)E(8)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), was investigated by means of differential scanning calorimetry (DSC). The melting temperature as a function of the surfactant concentration, combined with the cmc curve and cloud point curve, provided phase diagrams for the surfactant/bmimBF(4) mixtures in solvent-rich region. The characteristic feature of the mixtures is an existence of the Krafft temperature which is usually not observed with aqueous solutions of nonionic surfactants. The heat of fusion as a function of the surfactant concentration provided the interaction energy between the surfactant and bmimBF(4). The interaction energy shows a linear dependence on the length of polyoxyethylene (POE) chain of the surfactants, which suggests that the solvation takes place around the POE chain. PMID:19501832

  10. Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature.

    PubMed

    Jiang, Yunqing; Zhu, Wenshuai; Li, Huaming; Yin, Sheng; Liu, Hua; Xie, Qingjie

    2011-03-21

    Oxidation of the sulfur-containing compounds benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been studied in a desulfurization system composed of model oil, hydrogen peroxide, and different types of ionic liquids [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3), [(C(8)H(17))(3)CH(3)N]Cl/CuCl(2), [(C(8)H(17))(3)CH(3)N]Cl/ZnCl(2), [(C(8)H(17))(3)CH(3)N]Cl/SnCl(2), [(C(4)H(9))(3)CH(3)N]Cl/FeCl(3), [C(10)H(21)(CH(3))(3)N]Cl/FeCl(3), [(C(10)H(21))(2)(CH(3))(2)N]Cl/FeCl(3). Deep desulfurization is achieved in the Fenton-like ionic liquid [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) at 25?°C for 1?h. The desulfurization of DBT reaches 97.9%, in consuming very low amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) (only 0.702?mmol). The reaction conditions, for example, the amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) or H(2)O(2), the temperature, and the molar ratio of FeCl(3) to [(C(8)H(17))(3)CH(3)N]Cl, are investigated for this system. The oxidation reactivity of the different sulfur-containing compounds is found to decrease in the order of DBT>BT>4,6-DMDBT. The desulfurization system can be recycled six times without significant decrease in activity. The sulfur level of FCC gasoline could be reduced from 360?ppm to 110?ppm. PMID:21394927

  11. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    SciTech Connect

    Jiang, Xikai [ORNL; Huang, Jingsong [ORNL; Zhao, Hui [University of Nevada, Las Vegas; Sumpter, Bobby G [ORNL; Qiao, Rui [Clemson University

    2014-01-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic

  12. Electrochemical gas sensors based on paper-supported room-temperature ionic liquids for improved analysis of acid vapours.

    PubMed

    Toniolo, Rosanna; Dossi, Nicolò; Pizzariello, Andrea; Casagrande, Alice; Bontempelli, Gino

    2013-04-01

    A prototype of a fast-response task-specific amperometric gas sensor based on paper-supported room-temperature ionic liquids (RTILs) is proposed here for improved analysis of volatile acid species. It consists of a small filter paper foil soaked with a RTIL mixture containing an ionic liquid whose anion (acetate) displays a basic character, upon which three electrodes are screen printed by carbon ink profiting from a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs and of their easy immobilization into a porous and inexpensive supporting material such as paper. The performance of this device, used as a wall-jet amperometric detector for flow injection analyses of headspace samples in equilibrium with aqueous solutions at controlled concentrations, was evaluated for phenol and 1-butanethiol vapours which were adopted as model acid gaseous analytes. The results obtained showed that the quite high potentials required for the detection of these analytes are lowered significantly, thanks to the addition of the basic acetate RTIL. In such a way, overlap with the medium discharge is avoided, and the possible adverse effect of interfering species is minimised. The sensor performance was quite satisfactory (detection limits, ca. 0.3 ?M; dynamic range, ca. 1-200 ?M, both referred to solution concentrations; correlation coefficients in the range 0.993-0.997; repeatability, ± 6% RSD; long-term stability, 9%); thus suggesting the possible use of this device for manifold applications. PMID:23232956

  13. Ion Transport and Local Structural Dynamics in Analogous Quaternary Ammonium and Phosphonium-Based Room Temperature Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Holt, Adam; Griffin, Philip; Tsunashima, Katsuhiko; Sangoro, Joshua; Sokolov, Alexei

    2015-03-01

    The ion transport and structural dynamics in a homologous pair of quaternary ammonium and phosphonium based room temperature ionic liquids (IL), [N2228][NTF2] and [P2228][NTF2], are investigated by depolarized dynamic light scattering and dielectric spectroscopy. The atomic identity of the cation center has a pronounced effect on both long-range ion conduction as well as structural relaxation in these quaternary ILs. The dc conductivity is significantly higher in the phosphonium based IL. While the increase in dc conductivity can be attributed to a lower glass transition temperature, i.e. faster structural dynamics, of the phosphonium IL, we also have found the atomic identity of the cation center strongly influences the local secondary relaxations. The secondary relaxations in the ammonium IL exhibit an unexpected non-Arrhenius temperature dependence -in stark contrast to its phosphonium counterpart. In addition to structural dynamics, changes in the secondary relaxations suggest the differences in dc conductivity may also be attributed to a change in counter-ion coordination and could lead to a difference in the mesoscale aggregation of alkyl moieties which is known to exist in these ILs. Therefore, subtle changes of inter-ionic interactions have a direct consequence on local, structural, and long-range dynamics in these analogous ILs.

  14. Room temperature ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide as lubricant for steel–steel contact

    Microsoft Academic Search

    Qiming Lu; Haizhong Wang; Chengfeng Ye; Weimin Liu; Qunji Xue

    2004-01-01

    The ionic liquid 1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide was synthesized and evaluated as lubricant for the contact of steel\\/steel. The tribological properties of the ionic liquid as lubricant were investigated on an Optimol SRV oscillating friction and wear tester in ambient condition. The synthetic ionic liquid shows excellent tribological performance and is superior to the ionic liquid of alkylimidazolium tetrafluoroborate and the conventional high

  15. Acidic 1-ethyl-3-methylimidazolium fluoride: a new room temperature ionic liquid

    Microsoft Academic Search

    Rika Hagiwara; Takayuki Hirashige; Tetsuya Tsuda; Yasuhiko Ito

    1999-01-01

    Reaction of 1-ethyl-3-methyl imidazolium chloride (EMIC) and hydrogen fluoride gives an yellow, involatile liquid, EMIF·2.3HF. The liquid is stable in air and able to be stored in a glass container. The specific conductivity was about 12Sm?1 at 298K.

  16. A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid.

    PubMed

    Mahmoudian, Shaya; Wahit, Mat Uzir; Imran, Muhammad; Ismail, A F; Balakrishnan, Harintharavimal

    2012-07-01

    This study presents the preparation of regenerated cellulose (RC)/graphene nanoplatelets (GNPs) nanocomposites via room temperature ionic liquid, 1-ethyl-3-methylimidazolium acetate (EMIMAc) using solution casting method. The thermal stability, gas permeability, water absorption and mechanical properties of the films were studied. The synthesized nanocomposite films were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The T20 decomposition temperature of regenerated cellulose improved with the addition of graphene nanoplatelets up to 5 wt%. The tensile strength and Young's modulus of RC films improved by 34 and 56%, respectively with the addition of 3 wt% GNPs. The nanocomposite films exhibited improved oxygen and carbon dioxide gas barrier properties and water absorption resistance compared to RC. XRD and SEM results showed good interaction between RC and GNPs and well dispersion of graphene nanoplatelets in regenerated cellulose. The FTIR spectra showed that the addition of GNPs in RC did not result in any noticeable change in its chemical structure. PMID:22966551

  17. Effects of Water on Solvation Layers of Imidazolium-Type Room Temperature Ionic Liquids on Silica and Mica.

    PubMed

    Sakai, Kenichi; Okada, Kohei; Uka, Akihito; Misono, Takeshi; Endo, Takeshi; Sasaki, Shinya; Abe, Masahiko; Sakai, Hideki

    2015-06-01

    Effects of the addition of water on solvation layers of imidazolium-type room temperature ionic liquids (RT-ILs) have been studied through force curve measurements of atomic force microscopy (AFM). Two kinds of RT-ILs were employed in this study; one is a hydrophilic RT-IL (1-butyl-3-methylimidazolium tetrafluoroborate, BmimBF4), and the other is a hydrophobic one (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, EmimTFSI). These RT-ILs form solvation layers on hydrophilic solid substances (i.e., silica and mica) in the absence of added water. The addition of water into BmimBF4 resulted in the disruption of the solvation layers and then the formation of an interfacial water phase on silica. In contrast, the formation of the interfacial water phase was not evidenced on mica because of the absence of hydrogen-bonding sites on the mica surface. Interestingly, the addition of water into EmimTFSI induced the formation of the interfacial water phase on the two solid surfaces. In the EmimTFSI system, importantly, significantly greater adhesion forces were observed on silica than on mica. This reflects the different formation mechanisms of the interfacial water phase on the two solid surfaces. We conclude that the hydrogen bonding is a key factor in determining whether water molecules can be adsorbed on the solid surfaces, but it is also necessary to take into account the hydrophilic/hydrophobic nature of the RT-ILs. PMID:25996798

  18. Ultrafast relaxation and reaction of diiodide anion after photodissociation of triiodide in room-temperature ionic liquids.

    PubMed

    Nishiyama, Yoshio; Terazima, Masahide; Kimura, Yoshifumi

    2012-08-01

    Vibrational dephasing, vibrational relaxation, and rotational relaxation of diiodide (I(2)(-)) after photodissociation of triiodide (I(3)(-)) in room-temperature ionic liquids (RTILs) were investigated by ultrafast transient absorption spectroscopy. The vibrational energy relaxation (VER) rate of I(2)(-) produced by the photodissociation reaction of I(3)(-) was determined from the spectral profile of the transient absorption. The rates in RTILs were slightly slower than those in conventional liquids. On the other hand, the coherent vibration of I(2)(-) was not observed in RTILs, and the vibrational dephasing of the photoproduced I(2)(-) was accelerated. This was explained by the interaction between I(2)(-) and I consisting of a caged contact pair in RTILs. The orientational relaxation time of I(2)(-) determined by the transient absorption anisotropy was much longer in RTILs than in conventional liquids due to their high viscosities although the relaxation time was shorter than the prediction from the Stokes-Einstein-Debye (SED) theory. The deviation from the SED prediction was interpreted by the frequency dependence of the shear stress acting on the molecule. The dynamics of I(2)(-) in 1-butyl-3-methylimidazolium iodide ([BMIm]I) were quite different from those in other conventional RTILs: the coherent vibration of I(2)(-) was observed for the time profile of the transient absorption and the initial value of the anisotropy was reduced to 0.31 from 0.36 in conventional RTILs. These results suggest that an ultrafast reaction between the photofragment I and the solvent I(-) may occur during the photodissociation process of I(3)(-). The anomaly in the ground state coherent vibration and steady state Raman spectrum of I(3)(-) also suggest the possibility that I(3)(-) and I(-) can be located in vicinity and interact strongly with each other in [BMIm]I. PMID:22694152

  19. Electrodeposition behavior of nickel in the water- and air-stable 1-ethyl-3-methylimidazolium-dicyanamide room-temperature ionic liquid

    Microsoft Academic Search

    Ming-Jay Deng; I.-Wen Sun; Po-Yu Chen; Jeng-Kuei Chang; Wen-Ta Tsai

    2008-01-01

    The electrodeposition behavior of nickel was investigated at glassy carbon and polycrystalline copper electrodes in the 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA) room-temperature ionic liquid. Amperometric titration experiments suggest that Ni(II) reacted with DCA? anions forming [Ni(DCA)4]2? complex anion, which could be reduced to nickel metal via a single-step electron transfer process. However, the anodic dissolution of the nickel deposits was sluggish. The

  20. Direct electrochemistry and electrocatalysis of myoglobin based on silica-coated gold nanorods\\/room temperature ionic liquid\\/silica sol–gel composite film

    Microsoft Academic Search

    Wen-Lei Zhu; Yang Zhou; Jian-Rong Zhang

    2009-01-01

    A novel biosensor based on the silica-coated gold nanorods (GNRs@SiO2) and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tetrafluroborate ([bmim][BF4]) was fabricated for the determination of hydrogen peroxide (H2O2) and nitrite. GNRs@SiO2 can not only act as a binder to hinder [bmim][BF4] (RTIL) leaking from the electrode surface, but also provide a favorable microenvironment for direct electrochemistry of myoglobin (Mb).

  1. Effect of nitrate, perchlorate, and water on uranyl(VI) speciation in a room-temperature ionic liquid: a spectroscopic investigation.

    PubMed

    Pasilis, Sofie P; Blumenfeld, Alexander

    2011-09-01

    Room-temperature ionic liquids form potentially important solvents in novel nuclear waste reprocessing methods, and the solvation, speciation, and complexation behaviors of lanthanides and actinides in these solvents are of great current interest. In the study reported here, the coordination environment of uranyl(VI) in solutions of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf(2)N]) containing perchlorate, tetrabutylammonium nitrate, and water was investigated using Raman, ATR-FTIR, and NMR spectroscopies in order to better understand the role played in uranyl(VI) solution chemistry in room-temperature ionic liquids by water and other small, weakly complexing ligands. The (2)H NMR chemical shift for water in a solution of uranyl perchlorate hexahydrate in [EMIM][Tf(2)N] appears at 6.52 ppm, indicating that water is coordinated to uranyl(VI). A broad ?(OH) stretching mode at 3370 cm(-1) in the ATR-FTIR spectrum shows that this coordinated water is engaged in hydrogen bonding with water molecules in a second coordination sphere. A significant upfield shift in the (2)H NMR signal for water and the appearance of distinct ?(as)(HOH) (at 3630 cm(-1)) and ?(s)(HOH) (at 3560 cm(-1)) vibrational bands in the ATR-FTIR spectra show that coordinated water is displaced by nitrate upon formation of the UO(2)(NO(3))(2) and UO(2)(NO(3))(3)(-) complexes. The Raman spectra indicate that perchlorate complexed to uranyl(VI) is also displaced by nitrate. Our results indicate that perchlorate and water, though weakly complexing ligands, do have a role in uranyl(VI) speciation in room-temperature ionic liquids and that Raman, infrared, and NMR spectroscopies are valuable additions to the suite of tools currently used to study the chemical behavior of uranyl(VI)-ligand complexes in these solvents. PMID:21786806

  2. Investigation of the Effect of Functional Group Substitutions on the Gas-Phase Electron Affinities and Ionization Energies of Room-Temperature Ionic Liquids Ions using Density Functional Theory

    E-print Network

    Ong, Shyue Ping

    The cathodic and anodic stabilities of room-temperature ionic liquids (ILs) are important factors in their applications in electrochemical devices. In this work, we investigated the electron affinities of cations and ...

  3. High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons

    NASA Astrophysics Data System (ADS)

    Perez, Carlos R.

    The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries. Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material. This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon nanomaterials such as nanoporous CDC nanopowders, vertically aligned carbon nanotube arrays, and single wall carbon nanotube aerogels, were synthesized and used as electrodes, alongside RTIL electrolytes with systematically varying ion sizes and compositions. While electrode/electrolyte development can take place along parallel lines, both must be properly matched to the device's ultimate operating conditions and specific application. The resulting devices exhibit good performance characteristics, and the best temperature range of any electrochemical storage device to date.

  4. Electrochemical study of tris(4-bromophenyl)amine and 2,2,6,6-tetramethylpiperidine-1-oxyl in room-temperature ionic liquids

    Microsoft Academic Search

    Ajith C. Herath; James Y. Becker

    2010-01-01

    The electrochemical behavior of tris(4-bromophenyl)amine (TBPA) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) was comparatively studied in room temperature ionic liquids (RTILs) containing 1-butyl-3-methylimidazolium cation [BMIm]+ and the anions BF4?, PF6?and CF3SO3?. TEMPO showed a well-defined electrochemical reversibility with anodic to cathodic peak current ratio (Ia\\/Ic) equals to unity in all RTILs, at a glassy carbon electrode. In contrast, Ia\\/Ic ratio greater than unity

  5. Production of CNT-taxol-embedded PCL microspheres using an ammonium-based room temperature ionic liquid: as a sustained drug delivery system.

    PubMed

    Kim, Seong Yeol; Hwang, Ji-Young; Seo, Jae-Won; Shin, Ueon Sang

    2015-03-15

    We describe a one-pot method for the mass production of polymeric microspheres containing water-soluble carbon-nanotube (w-CNT)-taxol complexes using an ammonium-based room temperature ionic liquid. Polycaprolactone (PCL), trioctylmethylammonium chloride (TOMAC; liquid state from -20 to 240°C), and taxol were used, respectively, as a model polymer, room temperature ionic liquid, and drug. Large quantities of white colored PCL powder without w-CNT-taxol complexes and gray colored PCL powders containing w-CNT-taxol (1:1 or 1:2 wt/wt) complexes were produced by phase separation between the hydrophilic TOMAC and the hydrophobic PCL. Both microsphere types had a uniform, spherical structure of average diameter 3-5?m. The amount of taxol embedded in PCL microspheres was determined by HPLC and (1)H NMR to be 8-12?g per 1.0mg of PCL (loading capacity (LC): 0.8-1.2%; entrapment efficiency (EE): 16-24%). An in vitro HPLC release assay showed sustain release of taxol without an initial burst over 60days at an average rate of 0.003-0.0073mg per day. The viability patterns of human breast cancer cells (MCF-7) for PCTx-1 and -2 showed dose-dependent inhibitory effects. In the presence of PCTx-1 and -2, the MCF-7 cells showed high viability in the concentration level of, respectably, <70 and <5?g/mL. PMID:25527087

  6. Sonochemistry and Sonoluminescence of Room-Temperature Ionic Liquids James D. Oxley, Tanya Prozorov, and Kenneth S. Suslick*

    E-print Network

    Suslick, Kenneth S.

    as 5000 K, pressures up to 800 atm, and cooling rates in excess of 1010 K/s.9,10 These conditions and to maximize the temperatures reached within the bubbles during cavitation, high- boiling hydrocarbon solvents °C under an Ar flow. During sonication, all of the imidazolium ionic liquids darkened from colorless

  7. Self-assembly of imidazolium-based surfactants in magnetic room-temperature ionic liquids: binary mixtures.

    PubMed

    Klee, Andreas; Prevost, Sylvain; Gradzielski, Michael

    2014-12-15

    The phase behaviour of binary mixtures of ionic surfactants (1-alkyl-3-imidazolium chloride, C(n)mimCl with n=14, 16 and 18) and imidazolium-based ionic liquids (1-alkyl-3-methylimidazolium tetrachloroferrate, C(n)mimFeCl4, with n=2 and 4) over a broad temperature range and the complete range of compositions is described. By using many complementary methods including differential scanning calorimetry (DSC), polarised microscopy, small-angle neutron and X-ray scattering (SANS/SAXS), and surface tension, the ability of this model system to support self-assembly is described quantitatively and this behaviour is compared with common water systems. The existence of micelles swollen by the solvent can be deduced from SANS experiments and represent a possible model for aggregates, which has barely been considered for ionic-liquid systems until now, and can be ascribed to the rather low solvophobicity of the surfactants. Our investigation shows that, in general, C(n)mimCl is a rather weak amphiphile in these ionic liquids. The amphiphilic strength increases systematically with the length of the alkyl chain, as seen from the phase behaviour, the critical micelle concentration, and also the level of definition of the aggregates formed. PMID:25314359

  8. Evaluation of solid-supported room-temperature ionic liquids containing crown ethers as media for metal ion separation and preconcentration.

    PubMed

    Hawkins, Cory A; Momen, M A; Garvey, Sarah L; Kestell, John; Kaminski, Michael D; Dietz, Mark L

    2015-04-01

    Extraction chromatographic (EXC) resins incorporating an appropriate crown ether in an oxygenated organic solvent such as 1-octanol are well established as sorbents for the analytical-scale separation and preconcentration of radiostrontium from a variety of sample types. Recent solvent extraction studies employing crown ethers in various 1-alkyl-3-methylimidazolium-based (CnC1im(+)) room-temperature ionic liquids (RTILs) indicate that under certain conditions, distribution ratios (DSr) for strontium far in excess of those observed with conventional organic solvents are observed. To determine if this increase in liquid-liquid extraction efficiency will lead to improved strontium sorbents, several EXC resins and sol-gel glasses incorporating di-tert-butylcyclohexano-18-crown-6 (DtBuCH18C6) in either 1-decyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C10C1imTf2N) or the related hydroxyalkyl-functionalized IL 1-(12-hydroxydodecyl)-3-butylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C12OHC4im Tf2N) were prepared and characterized. Unexpectedly the performance of these materials was not uniformly better than that of a conventional EXC resin, an apparent result of the greater viscosity of the ionic liquids and the lower solubility of the crown ether in ILs versus conventional organic solvents. PMID:25640134

  9. Assembly of CeO2-TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants.

    PubMed

    Ghasemi, S; Setayesh, S Rahman; Habibi-Yangjeh, A; Hormozi-Nezhad, M R; Gholami, M R

    2012-01-15

    CeO(2)-TiO(2) nanoparticles were prepared by the sol-gel process using 2-hydroxylethylammonium formate as room-temperature ionic liquid and calcined at different temperatures (500-700°C). CeO(2)-TiO(2)-graphene nanocomposites were prepared by hydrothermal reaction of graphene oxide with CeO(2)-TiO(2) nanoparticles in aqueous solution of ethanol. The photocatalysts were characterized by X-ray diffraction, BET surface area, diffuse reflectance spectroscopy, scanning electron microscopy, and Fourier transformed infrared techniques. The results demonstrate that the room-temperature ionic liquid inhibits the anatase-rutile phase transformation. This effect was promoted by addition of CeO(2) to TiO(2). The addition of graphene to CeO(2)-TiO(2) nanoparticles enhances electron transport and therefore impedes the charge recombination of excited TiO(2). The photodegradation results of the pollutants in aqueous medium under UV irradiation revealed that CeO(2)-TiO(2)-graphene nanocomposites exhibit much higher photocatalytic activity than CeO(2)-TiO(2) and pure TiO(2). The photocatalytic activity of CeO(2)-TiO(2)-graphene nanocomposites decreases with additional increasing of the graphene content. Moreover, comparison of the photocatalytic activities of CeO(2)-TiO(2)-graphene with the other CeO(2)-TiO(2)-carbon demonstrates that CeO(2)-TiO(2)-graphene nanocomposites have the highest photocatalytic activity due to their unique structure and electronic properties. Chemical oxygen demand for solutions of the pollutants gave a good idea about mineralization of them. PMID:22104082

  10. Novel method of room temperature ionic liquid assisted Fe{sub 3}O{sub 4} nanocubes and nanoflakes synthesis

    SciTech Connect

    Ramalakshmi, M. [Sustainable Energy and Smart Materials Lab., Department of Nanoscience and Technology, Alagappa University, Karaikudi 630 002, Tamilnadu (India); Department of Industrial Chemistry, Alagappa University, Karaikudi India (India); Shakkthivel, P., E-mail: apsakthivel@yahoo.com [Sustainable Energy and Smart Materials Lab., Department of Nanoscience and Technology, Alagappa University, Karaikudi 630 002, Tamilnadu (India); Sundrarajan, M. [Department of Industrial Chemistry, Alagappa University, Karaikudi India (India); Chen, S.M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan (China)

    2013-08-01

    Graphical abstract: - Highlights: • First time [Bmim][TfO] IL is used for the Fe{sub 3}O{sub 4} nanoparticle synthesis. • Novel method tunes Fe{sub 3}O{sub 4} nanocubes and nanoflakes forms influenced by the base and IL. • Fe{sub 3}O{sub 4} oxidized topotactically into ?-Fe{sub 2}O{sub 3} nanoparticles by annealing and base. • Uniform morphology with average size of 33 nm negligible superstructure are formed. • Ms values are characterized by thin layer of ?-Fe{sub 2}O{sub 3} on the nanoparticle surface. - Abstract: For the first time, the nanomagnetite superparamagnetic particles are successfully synthesized by precipitation method using 1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [Bmim][TfO] ionic liquid medium/surfactant. The obtained Fe{sub 3}O{sub 4} particles are nanocubes and nanoflakes and this formation is influenced by the base concentration and anisotropic circumstances produced by the ionic liquid and their size varies from 20 nm to 150 × 300 nm (width × length). The synthesized magnetite nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM) studies. The results show that the core of the Fe{sub 3}O{sub 4} nanoparticles is surrounded by a thin layer of ?-Fe{sub 2}O{sub 3} by topotactical partial oxidation, which is remarkably proceed with the subsequent calcination. The magnetite nanocubes have high saturation magnetization value and exhibit superparamagnetic hysteresis loop.

  11. Ultrafast solvation response in room temperature ionic liquids: Possible origin and importance of the collective and the nearest neighbour solvent modes

    NASA Astrophysics Data System (ADS)

    Daschakraborty, Snehasis; Biswas, Ranjit

    2012-09-01

    Recent three-pulse photon echo peak shift (3PEPS) measurements [M. Muramatsu, Y. Nagasawa, and H. Miyasaka, J. Phys. Chem. A 115, 3886 (2011)], 10.1021/jp108282v with several room temperature ionic liquids (RTILs) have revealed multi-exponential dynamics with ultrafast solvation timescale in the range, 20 < ?1/fs < 250, for both imidazolium and phosphonium RTILs. This is striking for two reasons: (i) the timescale is much faster than those reported by the dynamic Stokes shift (DSS) experiments [S. Arzhantsev, H. Jin, G. A. Baker, and M. Maroncelli, J. Phys. Chem. B 111, 4978 (2007)], 10.1021/jp067273m and (ii) sub-hundered femtosecond solvation response in phosphonium ionic liquids is reported for the first time. Here, we present a mode coupling theory based calculation where such ultrafast solvation in 3PEPS measurements has been visualized to originate from the nearest neighbour solute-solvent interaction. Consideration of Lennard-Jones interaction for the nearest neighbour solute-solvent non-dipolar interaction leads to biphasic dynamics with a predicted ultrafast time constant in the ˜100-250 fs range, followed by a slower one similar to that reported by the 3PEPS measurements. In addition, the calculated fast time constants and amplitudes are found to be in general agreement with those from computer simulations. Different microscopic mechanisms for ultrafast solvation response measured by the 3PEPS and DSS experiments have been proposed and relative contributions of the collective and nearest neighbour solvent modes investigated. Relation between the single particle rotation and ultrafast polar solvation in these RTILs has been explored. Our analyses suggest 3PEPS and DSS experiments are probably sensitive to different components of the total solvation energy relaxation of a laser-excited dye in a given ionic liquid. Several predictions have also been made, which may be re-examined via suitable experiments.

  12. Electrochemical oxidation of nitrite and the oxidation and reduction of NO2 in the room temperature ionic liquid [C2mim][NTf2].

    PubMed

    Broder, Tessa L; Silvester, Debbie S; Aldous, Leigh; Hardacre, Christopher; Compton, Richard G

    2007-07-12

    The electrochemical oxidation of potassium nitrite has been studied in the room temperature ionic liquid (RTIL) [C2mim][NTf2] by cyclic voltammetry at platinum electrodes. A chemically irreversible oxidation peak was observed, and a solubility of 7.5(+/-0.5) mM and diffusion coefficient of 2.0(+/-0.2)x10(-11) m2 s(-1) were calculated from potential step chronoamperometry on the microdisk electrode. A second, and sometimes third, oxidation peak was also observed when the anodic limit was extended, and these were provisionally assigned to the oxidation of nitrogen dioxide (NO2) and nitrate (NO3-), respectively. The electrochemical oxidation of nitrogen dioxide gas (NO2) was also studied by cyclic voltammetry in [C2mim][NTf2] on Pt electrodes of various size, giving a solubility of ca. 51(+/-0.2) mM and diffusion coefficient of 1.6(+/-0.05)x10(-10) m2 s(-1) (at 25 degrees C). It is likely that NO2 exists predominantly as its dimer, N2O4, at room temperature. The oxidation mechanism follows a CE process, which involves the initial dissociation of the dimer to the monomer, followed by a one-electron oxidation. A second, larger oxidation peak was observed at more positive potentials and is thought to be the direct oxidation of N2O4. In addition to understanding the mechanisms of NO2- and NO2 oxidations, this work has implications in the electrochemical detection of nitrite ions and of NO2 gas in RTIL media, the latter which may be of particular use in gas sensing. PMID:17571880

  13. Part I. Synthesis and characterization of C2 substituted imidazolium room temperature ionic liquids. Part II. Survey and analysis of organic chemistry textbooks

    NASA Astrophysics Data System (ADS)

    Ennis, Elliot G.

    Part I. Among room temperature ionic liquids (RTILs), those derived from the imidazolium cation are the most common. RTILs have generally been viewed solely as solvents, but they are able to participate in certain types of reactions, particularly due to the relatively high acidity at the imidazolium C2. Deprotonation affords N-heterocyclic carbenes (NHCs), which can cause unwanted side reactions. Consequently, the major limitation of imidazolium RTILs is that they cannot be used as solvents in highly basic reactions such as the Baylis-Hillman and Grignard reactions. This work reveals a convenient route for the preparation of C2-substituted imidazolium ionic liquids. This method involves the alkylation of N-heterocyclic carbenes, which are readily generated from the C2-unsubstituted imidazolium ionic liquids. It works well for nonfunctionalized alkyl chlorides and less well for alkyl bromides and iodides, likely due to competing elimination reactions. The resulting C2-substituted salts can be transformed into ionic liquids via standard anion metathesis reactions. Part II. Recent advances in media and the increasingly encyclopedic nature of traditional textbooks have made their role in college classes uncertain. In an effort to discover what is really being taught in organic chemistry courses across the US, a survey of organic chemistry professors in all 50 states was conducted to determine what material is covered in their organic chemistry courses for science majors. Survey Monkey, an online survey program, was used to construct a short 10-item survey which was sent to organic chemistry professors at various types of institutions across the nation. We sent out 2417 surveys and received 489 responses. The results of this survey revealed what topics the professors believe is core material and what they feel is extraneous. Additionally, this research identifies the things these professors would like to see changed in the organic chemistry texts. From the open-ended portion of the survey data, an analysis of organic chemistry textbooks was created. Books were analyzed for number and types of problems, number of example problems, and number of problems containing answers in the back of the book. The analysis of the thirteen books revealed there was a statistically significant difference between the books in number and types of problems. This work will reveal the findings of the analysis.

  14. Voltammetry of ion transfer across the electrochemically polarized micro liquid-liquid interface between water and a room-temperature ionic liquid, tetrahexylammonium bis(trifluoromethylsulfonyl)imide, using a glass capillary micropipette.

    PubMed

    Tsujioka, Norihiro; Imakura, Seiichi; Nishi, Naoya; Kakiuchi, Takashi

    2006-05-01

    Ion transfer across the polarized interface between a room-temperature ionic liquid (RTIL) or room-temperature molten salt, tetrahexylammonium bis(trifluoromethylsulfonyl)imide (THAC(1)C(1)N), and water has been studied voltammetrically using a micro liquid-liquid interface formed at the orifice of a glass capillary micropipette. A small current of nanoampere level circumvents the problem of the iR drop in the viscous ionic liquid phase. Voltammograms for the transfer of moderately hydrophilic ions, such as BF(4)(-) and ClO(4)(-), from the aqueous phase in the capillary to the bulk of THAC(1)C(1)N in which the capillary is submerged, show steady-state characteristics in that the current does not depend on the scan rate up to a few hundred millivolt per second, and the plateau in the limiting current region is proportional to the bulk concentration of analyte ions. Owing to the steady-state current, which is presumably ascribed to a noncylindrical geometry of the capillary tip, the relative magnitude of the hydrophobicity, or the affnity to the RTIL, of a series of ions can be determined from the half-wave potentials of voltammograms. PMID:16770042

  15. SO(2) saturation of the room temperature ionic liquid [C(2)mim][NTf(2)] much reduces the activation energy for diffusion.

    PubMed

    Barrosse-Antle, Laura E; Hardacre, Christopher; Compton, Richard G

    2009-01-29

    The physical effect of high concentrations of reversibly dissolved SO(2) on [C(2)mim][NTf(2)] was examined using cyclic voltammetry, chronoamperometry, and ESR spectroscopy. Cyclic voltammetry of the oxidation of solutions of ferrocene, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and chloride in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethanesufonyl)imide ([C(2)mim][NTf(2)]) reveals an increase in limiting current of each species corresponding to the addition of increasing concentrations of sulfur dioxide. Quantitative chronoamperometry reveals an increase in each species' diffusion coefficient with SO(2) concentration. When chronoamperometric data were obtained for ferrocene in [C(2)mim][NTf(2)] at a range of temperatures, the translational diffusion activation energy (29.0 +/- 0.5 kJ mol(- 1)) was found to be in good agreement with previous studies. Adding SO(2) results in apparent near-activationless translational diffusion. A significant decrease in the activation energy of rotational diffusion with the SO(2) saturation of a 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) solution in [C(2)mim][NTf(2)] (29.9 +/- 2.0 to 7.7 +/- 5.3 kJ mol(- 1)) was observed using electron spin resonance (ESR) spectroscopy. The reversible physical absorption of SO(2) by [C(2)mim][NTf(2)] should have no adverse effect on the ability of that ionic liquid to be employed as a solvent in an electrochemical gas sensor, and it is possible that the SO(2)-mediated reduction of RTIL viscosity could have intrinsic utility. PMID:19123829

  16. Structure and stability of phospholipid bilayers hydrated by a room-temperature ionic liquid/water solution: a neutron reflectometry study.

    PubMed

    Benedetto, Antonio; Heinrich, Frank; Gonzalez, Miguel A; Fragneto, Giovanna; Watkins, Erik; Ballone, Pietro

    2014-10-23

    Neutron reflectometry (NR) measurements were carried out to probe the structure and stability of two model biomembranes consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) phospholipid bilayers hydrated by water solutions of two prototypical room-temperature ionic liquids (RTILs), namely, 1-butyl-3-methyl-imidazolium chloride ([bmim][Cl]) and choline chloride ([Chol][Cl]) at concentrations of 0.1 M and 0.5 M, respectively. The raw data were analyzed by fitting a distribution of scattering length densities arising from the different chemical species in the system. The results of this analysis show that (a) for all systems and concentrations that we considered, the thickness of the bilayers shrinks by ?1 Å upon dissolving the ionic liquid into water and that (b) the RTIL ions enter the bilayer, finding their way to a preferred location in the lipid range that is nearly independent of the lipid and of the [bimim](+) or [Chol](+) choice. The volume fraction of RTIL sorbed in/on the bilayer, however, does depend on the lipid, but, again, is the same for [bmim][Cl] and for [Chol][Cl]. Thus, the RTIL occupies ?5% of the bilayer volume in POPC, rising to ?10% in DMPC. Repeating the measurements and data analysis after rinsing in pure water shows that the changes in the bilayer due to the RTIL sorption are irreversible and that a measurable amount of IL remains in the lipid fraction, that is, ?2.5% of the bilayer volume in POPC and ?8% in DMPC. PMID:25251987

  17. Electron spin dynamics of triplet and doublet molecules in room temperature ionic liquids studied by a time-resolved EPR method

    NASA Astrophysics Data System (ADS)

    Kawai, Akio; Hidemori, Takehiro; Shibuya, Kazuhiko

    2006-05-01

    A time-resolved (TR-) EPR method was applied to measure the triplet spectra of porphyrins such as ZnTPP (TPP, tetraphenylporphyrin) and H4TPP2+ in room temperature ionic liquids (RTIL). The spectra were successfully obtained at 298 K with clear canonical peaks of the triplet sublevels. Magneto-photo selection experiments were carried out for ZnTPP in NR4BF4 (NR4: N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium) and H4TPP2+ in BmimPF6 (Bmim: 1-butyl-3-methylimidazolium). In these systems, the intensity ratio of the canonical peaks depends on the orientation between the laser polarization and the external magnetic field at the delay time on the order of submicro-seconds. This experimental finding suggests that there are very slow tumbling motions of ZnTPP and H4TPP2+ in RTILs. Electron spin polarization created in the triplet-doublet system is also successfully observed in RTILs by the TR-EPR method. Based on the analysis of the time evolution curves of both the triplet and doublet molecules, spin polarization mechanisms in the RTILs were discussed.

  18. Determination of the hydrogen-bonding induced local viscosity enhancement in room temperature ionic liquids via femtosecond time-resolved depleted spontaneous emission.

    PubMed

    Ma, Xiaonan; Yan, Linyin; Wang, Xuefei; Guo, Qianjin; Xia, And Andong

    2011-07-14

    The fluorescence depletion dynamics of Rhodamine 700 (R-700) molecules in room temperature ionic liquids (RTILs) 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF(4)]) and 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate ([HOemim][BF(4)]) were investigated to determine the local viscosity of the microenvironment surrounding the fluorescent molecules, which is induced by strong hydrogen bonding interaction between cationic and anionic components in RTILs. The solvation and rotation dynamics of R-700 molecules in RTILs show slower time constants relative to that in conventional protic solvents with the same bulk viscosity, indicating that the probe molecule is facing a more viscous microenvironment in RTILs than in conventional solvents because of the strong hydrogen bonding interaction between cationic and anionic components. In addition, this effect is more pronounced in hydroxyl-functionalized ionic liquid than in the regular RTIL due to the presence of a hydroxyl group as a strong hydrogen bonding donor. The hydrogen-bonding-induced local viscosity enhancement effect related to the heterogeneity character of RTILs is confirmed by the nonexponential rotational relaxation of R-700 determined by time-correlated single photon counting (TCSPC). The geometry of hydrogen bonding complexes with different components and sizes are further optimized by density functional theory methods to show the possible hydrogen-bond networks. A model of the hydrogen-bonding network in RTILs is further proposed to interpret the observed specific solvation and local viscosity enhancement effect in RTILs, where most of the fluoroprobes exist as the free nonbonding species in the RTIL solutions and are surrounded by the hydrogen-bonding network formed by the strong hydrogen-bonding between the cationic and anionic components in RTIL. The optimized geometry of hydrogen bonding complexes with different components and sizes by density functional theory methods confirms the local viscosity enhancement effect deduced from fluorescence depletion and TCSPC experiments. The calculated interaction energies reveal the existence of the stronger hydrogen bonding network in RTILs (especially in hydroxyl-functionalized ionic liquid) than that in conventional protic solvent, which leads to the enhancement effect of local microviscosity, and therefore leads to the slow solvation and rotation dynamics of probe molecules observed in RTILs. PMID:21648476

  19. Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies.

    PubMed

    Mohapatra, Prasanta K; Sengupta, Arijit; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem

    2013-03-01

    Diglycolamide-functionalized calix[4]arenes (C4DGAs) with varying structural modifications were evaluated for actinide complexation from their extraction behavior toward actinide ions such as UO2(2+), Pu(4+), PuO2(2+), and Am(3+) in the room temperature ionic liquid (RTIL) 1-n-octyl-3-methylimidazolium bis(trifluoromethane)sulfonamide (C8mimNTf2). The formation constants were calculated for Am(3+) which showed a significant role of ligand structure, nature of substituents, and spacer length. Although the alkyl substituents on the amidic nitrogen increase the extraction efficiency of americium at lower acidity because of the inductive effect of the alkyl groups, at higher acidity the steric crowding around the ligating site determines the extraction efficiency. All C4DGAs formed 1:1 complexes with Am(3+) while for the analogous Eu(3+) complexes no inner sphere water molecules were detected and the asymmetry of the metal ligand complex differed from one another as proved by time-resolved laser induced fluorescence spectroscopy (TRLIFS). Thermodynamic studies indicated that the extraction process, predominant by the Am(3+)-C4DGA complexation reaction, is exothermic. The unique role of the medium on Am(3+) complexation with the C4DGA molecules with varying spacer length, L-IV and L-V, was noticed for the first time with a reversal in the trend observed in the RTIL compared to that seen in a nonpolar molecular diluent like n-dodecane. Various factors leading to a more preorganized structure were responsible for favorable metal ion complexation. The solvent systems show promise to be employed for nuclear waste remediation, and sustainability options were evaluated from radiolytic stability as well as stripping studies. PMID:23394577

  20. The Partitioning Behavior of Tyramine and 2?Methoxyphenethylamine in a Room Temperature Ionic Liquid–Water System Compared to Traditional Organic–Water System

    Microsoft Academic Search

    Kelly K. L. Yung; Jilska M. Perera; Craig D. Smith; Geoffrey W. Stevens

    2005-01-01

    Ionic liquids have been proposed as replacements for volatile organic solvents (VOSs) by a range of authors, due to their very low vapor pressure, ability to dissolve a range of organic, inorganic, and organometallic compounds, immiscibility with water, and ability to form biphasic systems depending on the choice of cation\\/anion combination making up the ionic liquid. In this study the

  1. Ion–ion interaction in room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate studied by large angle X-ray scattering experiment and molecular dynamics simulations

    Microsoft Academic Search

    Ryo Kanzaki; Takushi Mitsugi; Shuhei Fukuda; Kenta Fujii; Munetaka Takeuchi; Yasufumi Soejima; Toshiyuki Takamuku; Toshio Yamaguchi; Yasuhiro Umebayashi; Shin-ichi Ishiguro

    2009-01-01

    Large angle X-ray scattering (LAXS) experiment for 1-ethyl-3-methylimidazolium tetrafluoroborate [EMI+][BF4?] ionic liquid was carried out at 298 K, to reveal the closest ion–ion interaction in the ionic liquid. The intra-molecular atom–atom correlations based on the molecular geometries in crystals were subtracted from the total pair correlation function to yield the inter-molecular pair correlation function. In the inter-molecular pair correlation function, peaks

  2. Room temperature ionic liquid-based dispersive liquid phase microextraction for the separation/preconcentration of trace Cd(2+) as 1-(2-pyridylazo)-2-naphthol (PAN) complex from environmental and biological samples and determined by FAAS.

    PubMed

    Khan, Sumaira; Soylak, Mustafa; Kazi, Tasneem Gul

    2013-12-01

    The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered "Green Solvents" for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 ?g/L and 50, respectively. The relative standard deviation of 100 ?g/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 ?g/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples. PMID:24197606

  3. Supported Phospholipid Bilayer Interaction with Components Found in Typical Room-Temperature Ionic Liquids – a QCM-D and AFM Study †

    PubMed Central

    Evans, Kervin O.

    2008-01-01

    Quartz crystal microbalance with dissipation (QCM-D) monitoring and atomic force microscopy (AFM) were combined to evaluate the defects created by an ionic liquid anion and a cation in a supported phospholipid bilayer composed of zwitterionic lipids on a silica surface. The cation 1-octyl-3-methyl imidazolium (OMIM+) was shown to remove lipids from the bilayer, increase the roughness to approximately 2.8 nm (~0.2 for stable supported bilayer) and possibly redeposit lipids with entrapped water. The anion bis(trifluoromethylsulfonyl)imide (Tf2N-) was found to leave distinct defects within the bilayer that had large pore-like interiors which left the surrounding bilayer intact. However, the ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-Tf2N) formed a film over the supported bilayer. This work demonstrates, for the first time, the direct effects common components of ionic liquids have on a supported phospholipids bilayer. PMID:19325765

  4. Crystal polymorphism of a room-temperature ionic liquid, 1,3-dimethylimidazolium hexafluorophosphate: Calorimetric and structural studies of two crystal phases having melting points of ˜50 K difference

    NASA Astrophysics Data System (ADS)

    Endo, Takatsugu; Morita, Takeshi; Nishikawa, Keiko

    2011-12-01

    We found crystal polymorphism of a room-temperature ionic liquid (RTIL), 1,3-dimethylimidazolium hexafluorophosphate, by a laboratory-built calorimeter with a precise temperature controller. This polymorphism differs from hitherto reported phase behavior of other RTILs that the present RTIL lacks conformational flexibility in the associated ions. In addition, the observed difference between the melting points of two crystals, 364.3 and 314.3 K, is much larger than those reported for other polymorphic RTIL crystals. Their crystal structures were studied by Raman spectroscopy and X-ray powder diffraction. The origin of these characteristics is discussed in terms of entropy and cation-anion interactions.

  5. Extraction and separation of thorium(IV) from lanthanides(III) with room-temperature ionic liquids containing primary amine N{sub 1923}

    SciTech Connect

    Zuo, Y. [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Chen, J.; Bai, Y.; Li, D.Q. [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2008-07-01

    The extraction behavior of Th(IV) by primary amine N{sub 1923} in imidazolium-based ionic liquid namely 1-octyl-3-methylimidazolium hexafluorophosphate (N{sub 1923}/IL) was studied in this paper. Results showed that N{sub 1923}/IL had poorer extraction ability for Th(IV) than N{sub 1923} in n-heptane (N{sub 1923}/HEP). The separation coefficients between Th(IV) and lanthanides(III) ({beta}{sub Th/Ln}) were obtained and compared with those in the N{sub 1923}/HEP system. On this basis, we made a preliminary assessment for the possibility of using ionic liquids as solvents for the separation of Th(IV) from lanthanides(III) sulfate in a clean process. (authors)

  6. Green synthesis of ZnO nanoparticles in a room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    Microsoft Academic Search

    Elaheh K. Goharshadi; Yulong Ding; Paul Nancarrow

    2008-01-01

    Nanoparticles of ZnO with the wurtzite structure have been successfully synthesized via a microwave through the decomposition of zinc acetate dihydrate in an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as a solvent. Fundamental characterizations including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were conducted for the ZnO nanostructures.To explore the growth mechanism, the samples have been prepared

  7. Ionic Liquids in Chemical Analysis

    Microsoft Academic Search

    Mihkel Koel

    2005-01-01

    Room-temperature ionic liquids are salts with a melting point close to or below room temperature. They form liquids composed in the majority of ions. This gives these materials the potential to behave very differently when they are used as solvents compared to conventional molecular liquids. The search for their application is growing in every area of analytical chemistry—electrochemistry, chromatography, electrophoresis,

  8. Photorheological ionic liquids.

    PubMed

    Avó, João; Cidade, M T; Rodriguez, Vincent; Lima, João C; Parola, A Jorge

    2015-06-01

    Two room temperature ionic liquids (ILs) bearing coumarin and p-hydroxycinnamic acid moieties are synthesized, and their photochemistry is studied in solution and neat conditions. Irradiation at absorption maxima leads to photochemical transformations and results in changes of their rheological properties which are evaluated by rotational rheometry. Samples of ionic liquids are also studied by Hyper-Rayleigh scattering, and the effect of their photochemistry on ionic nanoaggregation is discussed. PMID:25970078

  9. Crystal structures of frozen room temperature ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF 4), hexafluoroniobate (EMImNbF 6) and hexafluorotantalate (EMImTaF 6), determined by low-temperature X-ray diffraction

    Microsoft Academic Search

    Kazuhiko Matsumoto; Rika Hagiwara; Zoran Mazej; Primož Benki?; Boris Žemva

    2006-01-01

    The crystal structures of three salts, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), hexafluoroniobate (EMImNbF6) and hexafluorotantalate (EMImTaF6), all of which form room-temperature ionic liquids (RTILs), have been determined by low-temperature X-ray diffraction studies of their single crystals. EMImBF4 crystallizes in the monoclinic space group P21\\/c with a=8.653(5) Å, b=9.285(18) Å, c=13.217(7) Å, ?=121.358(15) Å, V=906.8(19) Å3, Z=4 at 100 K. EMImBF4 exhibits a unique structure wherein EMIm cations

  10. A study of the time-resolved fluorescence spectrum and red edge effect of ANF in a room-temperature ionic liquid.

    PubMed

    Hu, Zhonghan; Margulis, Claudio J

    2006-06-15

    In a recent article, we have analyzed using molecular dynamics simulations the steady-state red edge effect (REE) observed by Samanta and co-workers when the fluorescent probe 2-amino-7-nitrofluorene (ANF) is photoexcited at different wavelengths in 1-butyl-3-methylimidazolium ([BMIM+]) hexafluorophosphate ([PF6-]). In this letter, we predict the time- and wavelength-dependent emission spectra of ANF in the same ionic solvent. From the analysis of our simulated data, we are able to derive an approximate time scale for reorganization of the solvent around the solute probe. The effect that slow varying local liquid environments have on the overall time-dependent signal is also discussed. PMID:16771357

  11. Effect of Temperature on the Physico-Chemical Properties of a Room Temperature Ionic Liquid (1-Methyl-3-pentylimidazolium Hexafluorophosphate) with Polyethylene Glycol Oligomer

    PubMed Central

    Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Peng, Yu-Chun; Sun, I-Wen

    2011-01-01

    A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol) (PEG) [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ?, refractive index, n, viscosity, ?, and surface tension, ?, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values. PMID:21731460

  12. The electrochemical reduction of 1-bromo-4-nitrobenzene at zinc electrodes in a room-temperature ionic liquid: a facile route for the formation of arylzinc compounds.

    PubMed

    Ernst, Sven; Norman, Sarah E; Hardacre, Christopher; Compton, Richard G

    2014-03-14

    The electrochemical reduction of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) at zinc microelectrodes in the [C4mPyrr][NTf2] ionic liquid was investigated via cyclic voltammetry. The reduction was found to occur via an EC type mechanism, where p-BrC6H4NO2 is first reduced by one electron, quasi-reversibly, to yield the corresponding radical anion. The radical anions then react with the Zn electrode to form arylzinc products. Introduction of carbon dioxide into the system led to reaction with the arylzinc species, fingerprinting the formation of the latter. This method thus demonstrates a proof-of-concept of the formation of functionalised arylzinc species. PMID:24473222

  13. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  14. Orientational Dynamics in a Lyotropic Room Temperature Ionic Adam L. Sturlaugson, Aaron Y. Arima, Heather E. Bailey, and Michael D. Fayer*

    E-print Network

    Fayer, Michael D.

    to gelation. Here, new OHD-OKE experiments on mixtures of the room temperature ionic liquid 1-methyl-3, batteries, solar cells, crystallization, drug delivery, and optics.1-8 Because the constituent ions in RTILs

  15. Effect of alkyl chain of room temperature ionic liquid (RTILs) on the phase behavior of [C2mim][C(n)SO4]/TX-100/cyclohexane microemulsions: solvent and rotational relaxation study.

    PubMed

    Ghosh, Surajit; Banerjee, Chiranjib; Mandal, Sarthak; Rao, Vishal Govind; Sarkar, Nilmoni

    2013-05-16

    In this investigation, we present microemulsions comprising a nonionic surfactant, Triton X-100 (TX-100), cyclohexane as nonpolar phase, and room temperature ionic liquids (RTILs) as a polar medium. To investigate the effect of alkyl chain length of ionic liquid on the physicochemical properties of microemulsions, we have used 1-ethyl-3-methylimidazolium n-butyl sulfate [C2mim][C4SO4], 1-ethyl-3-methylimidazolium n-hexyl sulfate [C2mim][C6SO4], and 1-ethyl-3-methylimidazolium n-octyl sulfate [C2mim][C8SO4] as polar media. The phase behavior of these ternary systems is investigated by direct observation of transition from clear transparent solution to turbid solution by using UV-vis spectrophotometer at 298 K. The single-phase region is found to increase with increase in chain length of RTIL anion. Dynamic light scattering (DLS) measurements revealed the formation of highly stable nano-sized RTIL-containing microemulsions. The size of the microemulsions increases with the addition of ionic liquid. The maximum increase in size is observed with the addition of [C2mim][C4SO4]. It is proposed that the long octyl chain of octyl sulfate allows the anion to align itself along the TX-100 molecules which increases the rigidity of microemulsions, whereas in case of [C2mim][C4SO4], the short butyl chain is apparently unable to do the same. The dynamics of solvent and rotational relaxation of coumarin 480 (C-480) has also been investigated in these ionic liquid containing microemulsions ([C2mim][C4SO4]/TX-100/cyclohexane, [C2mim][C6SO4]/TX-100/cyclohexane, and [C2mim][C8SO4]/TX-100/cyclohexane) using picosecond time-resolved fluorescence spectroscopy. In RTIL microemulsions, solvent relaxation becomes retarded compared to neat RTIL. We have also shown that with increasing R value, the solvation dynamics becomes faster and the decrease in average solvation time is more pronounced in [C2mim][C4SO4]/TX-100/cyclohexane compared to [C2mim][C6SO4]/TX-100/cyclohexane and [C2mim][C8SO4]/TX-100/cyclohexane microemulsions. PMID:23597208

  16. Organic–inorganic composites based on room temperature ionic liquid and 12-phosphotungstic acid salt with high assistant catalysis and proton conductivity

    Microsoft Academic Search

    Zhiying Li; Qian Zhang; Hongtao Liu; Ping He; Xiudong Xu; Jinghong Li

    2006-01-01

    Proton-conducting composite material was synthesized from 1-butyl-3-methyl-imidazolium chloride (BMImCl) and 12-phosphotungstic acid (PWA). The structure, assistant catalytic effect and ionic conductivity of the composites for the as-synthesized, 200 and 400°C annealed samples were studied, respectively. The as-synthesized salt was crystal and kept Keggin structure even being annealed at 400°C, but the organic part was partly decomposed with increasing of the

  17. Surface exploration of a room-temperature ionic liquid-chitin composite film decorated with electrochemically deposited PdFeNi trimetallic alloy nanoparticles by pattern recognition: an elegant approach to developing a novel biotin biosensor.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C; Paimard, Giti; Skov, Thomas

    2015-01-01

    In this study, a novel biosensing system for the determination of biotin (BTN) based on electrodeposition of palladium-iron-nickel (PdFeNi) trimetallic alloy nanoparticles (NPs) onto a glassy carbon electrode (GCE) modified with a room-temperature ionic liquid (RTIL)-chitin (Ch) composite film (PdFeNi/ChRTIL/GCE) is established. NPs have a wide range of applications in science and technology and their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we used a pattern recognition method (digital image processing, DIP) for measuring particle size distributions (PSDs) from scanning electron microscopic (SEM) images in the presence of an uneven background. Different depositions were performed by varying the number of cyclic potential scans (N) during electroreduction step. It was observed that the physicochemical properties of the deposits were correlated to the performance of the PdFeNi/ChRTIL/GCE with respect to BTN assay. The best results were obtained for eight electrodeposition cyclic scans, where small-sized particles (19.54 ± 6.27 nm) with high density (682 particles µm(-2)) were obtained. Under optimized conditions, a linear range from 2.0 to 44.0 × 10(-9) mol L(-1) and a limit of detection (LOD) of 0.6 × 10(-9) mol L(-1) were obtained. The PdFeNi/ChRTIL nanocomposite showed excellent compatibility, enhanced electron transfer kinetics, large electroactive surface area, and was highly sensitive, selective, and stable toward BTN determination. Finally, the PdFeNi/ChRTIL/GCE was satisfactorily applied to the determination of BTN in infant milk powder, liver, and egg yolk samples. PMID:25281100

  18. Ionic liquids in tribology.

    PubMed

    Minami, Ichiro

    2009-01-01

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided. PMID:19553900

  19. New insight of coordination and extraction of uranium(VI) with N-donating ligands in room temperature ionic liquids: N,N'-diethyl-N,N'-ditolyldipicolinamide as a case study.

    PubMed

    Yuan, Li-Yong; Sun, Man; Mei, Lei; Wang, Lin; Zheng, Li-Rong; Gao, Zeng-Qiang; Zhang, Jing; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-02-16

    Room temperature ionic liquids (RTILs) represent a recent new class of solvents applied in liquid/liquid extraction based nuclear fuel reprocessing, whereas the related coordination chemistry and detailed extraction processes are still not well understood and remain of deep fundamental interest. The work herein provides a new insight of coordination and extraction of uranium(VI) with N-donating ligands, e.g., N,N'-diethyl-N,N'-ditolyldipicolinamide (EtpTDPA), in commonly used RTILs. Exploration of the extraction mechanism, speciation analyses of the extracted U(VI), and crystallographic studies of the interactions of EtpTDPA with U(VI) were performed, including the first structurally characterized UO2(EtpTDPA)2(NTf2) and UO2(EtpTDPA)2(PF6)2 compounds and a first case of crystallographic differentiation between the extracted U(VI) complexes in RTILs and in molecular solvents. It was found that in RTILs two EtpTDPA molecules coordinate with one U(VI) ion through the carbonyl and pyridine nitrogen moieties, while NTf2(-) and PF6(-) act as counterions. The absence of NO3(-) in the complexes is coincident with a cation-exchange extraction. In contrast, both the extracted species and extraction mechanisms are greatly different in dichloromethane, in which UO2(2+) coordinates in a neutral complex form with one EtpTDPA molecule and two NO3(-) cations. In addition, the complex formation in RTILs is independent of the cation exchange since incorporating UO2(NO3)2, EtpTDPA, and LiNTf2 or KPF6 in a solution also produces the same complex as that in RTILs, revealing the important roles of weakly coordinating anions on the coordination chemistry between U(VI) and EtpTDPA. These findings suggest that cation-exchange extraction mode for ILs-based extraction system probably originates from the supply of weakly coordinating anions from RTILs. Thus the coordination of uranium(VI) with extractants as well as the cation-exchange extraction mode may be potentially changed by varying the counterions of uranyl or introducing extra anions. PMID:25629464

  20. 3-Methylpiperidinium ionic liquids.

    PubMed

    Belhocine, Tayeb; Forsyth, Stewart A; Gunaratne, H Q Nimal; Nieuwenhuyzen, Mark; Nockemann, Peter; Puga, Alberto V; Seddon, Kenneth R; Srinivasan, Geetha; Whiston, Keith

    2015-04-28

    A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rm?pip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmm?pip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmm?pip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmm?pip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. PMID:25669485

  1. Phosphonium-based ionic liquids and uses

    DOEpatents

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  2. Benzotriazole as the additive for ionic liquid lubricant: one pathway towards actual application of ionic liquids

    Microsoft Academic Search

    X. Liu; F. Zhou; Y. Liang; W. Liu

    2006-01-01

    In this paper, we report on the first tribological evaluation of the room temperature ionic liquids (RTILs) compatible lubricant additive. Benzotriazole (BTA) was chosen for study in that it shows good miscibility with imidazole ionic liquids because of similar molecular structure. BTA can greatly improve the tribological behaviors of ionic liquids carrying hexafluorophosphate anions for Steel\\/Cu–Sn alloy sliding pair mainly

  3. Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion

    E-print Network

    Courtney, Daniel George

    2011-01-01

    Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

  4. How Is Diffusion of Neutral and Charged Tracers Related to the Structure and Dynamics of a Room-Temperature Ionic Liquid? Large Deviations from Stokes-Einstein Behavior Explained.

    PubMed

    Araque, Juan C; Yadav, Sharad K; Shadeck, Michael; Maroncelli, Mark; Margulis, Claudio J

    2015-06-11

    The deviations from Stokes-Einstein hydrodynamics of small solutes are more pronounced in ionic liquids than in conventional solvents (J. Phys. Chem. B 2013 117 (39), 11697). Small neutral solutes diffuse much faster than expected, whereas small charged solutes diffuse much slower. This article attempts to establish a link between the local friction experienced by tracer solutes and the polar/apolar structure of ionic liquids. We find that small neutral solutes probe locally "stiff" (mostly charged, high electrostriction) regions and locally "soft" (mostly apolar, low electrostriction) regions. These regions of high and low friction are associated with cage and jump regimes. Enhanced neutral tracer mobility in the low friction regions associated with the cationic apolar component has an important bearing on the large positive deviations from Stokes-Einstein behavior. In contrast, diminished charged tracer mobility involves long caging dynamics separated by jump events often triggered by the loss and recovery of counterions. PMID:25811753

  5. Solubility and Aggregation of Charged Surfactants in Ionic Liquids Lang G. Chen and Harry Bermudez*

    E-print Network

    Solubility and Aggregation of Charged Surfactants in Ionic Liquids Lang G. Chen and Harry Bermudez Supporting Information ABSTRACT: Room-temperature ionic liquids (ILs) exhibit a unique set of properties between solutes and IL solvents. INTRODUCTION Room-temperature ionic liquids (ILs), organic salts

  6. USING CARBON DIOXIDE AND IONIC LIQUIDS FOR ABSORPTION REFRIGERATION

    Microsoft Academic Search

    MIHIR SEN; SAMUEL PAOLUCCI

    The use of a new set of compounds, known as ionic liquids, is proposed for applications in thermal engineering. Ionic liquids are organic salts that are liquid at room temperature. They have certain properties that make them friendly to the environment: they do not evaporate, they are not toxic, and they are stable as liquids over a very wide temperature

  7. The room temperature annealing peak in ionomers: Ionic crystallites or water absorption

    SciTech Connect

    Goddard, R.J.; Grady, B.P.; Cooper, S.L. (Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemical Engineering)

    1994-03-28

    A quaternized diol, 3-(trimethylammonio)-1,2-propanediol neutralized with either bromine or iodine, was used to produce a polyurethane cationomer with a poly(tetramethylene oxide) soft segment and a 4,4[prime]-diphenylmethane diisocyanate hard segment. If those cationomers were annealed at room temperature for a period of approximately 1 month in a desiccator filled with dry CaSO[sub 4], differential scanning calorimetry (DSC) studies showed an endotherm centered near 70 C which was not present in the unannealed polymer and did not reappear upon subsequent cooling and heating cycles in the DSC. Some authors have suggested that a very similar endotherm found in other ionomers, most notably ethylene-methacrylic acid (E-MAA) copolymer ionomers, was due to an order-disorder transition within the ionic aggregates, i.e. ionic crystallite melting. In order to isolate the origin of this endotherm, the local environment around the anion in compression molded bromine neutralized samples was measured using the extended X-ray absorption fine-structure (EXAFS) technique. By measuring the change in the local environment over the temperature range corresponding to the DSC endotherm, it has been shown that this endotherm corresponds to water leaving the bromine coordination shell, rather than ionic crystallite melting. Other studies which include thoroughly drying the material in a vacuum oven below the transition temperature to remove the water suggest that the endotherm is due to the energetic change associated with water leaving the coordination environment of the anion in combination with water vaporization.

  8. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  9. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    Microsoft Academic Search

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-01-01

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction\\/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed

  10. Electronic dephasing in nonpolar room temperature liquids: UV photon echo pulse duration dependent measurements

    E-print Network

    Fayer, Michael D.

    Electronic dephasing in nonpolar room temperature liquids: UV photon echo pulse duration dependent determined by comparing the pulse duration dependent resonant enhancement of the total two pulse four wave mixing signal to a numerically evaluated theory. Data was taken with 80 and 400 fs transform limited

  11. Ionic liquids with ammonium cations as lubricants or additives

    Microsoft Academic Search

    Jun Qu; J. J. Truhan; Sheng Dai; Huimin Luo; P. J. Blau

    2006-01-01

    A new class of more effective lubricants could lead to huge energy savings. Limited recent literature has suggested potential for using room-temperature ionic liquids as lubricants, however, only a few out of millions (or more) of species possible have been evaluated. In this study, a series of new protic alkylammonium ionic liquids were synthesized by neutralization and metathesis reactions, and

  12. Ionic Liquids to Replace Hydrazine

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  13. Factors Influencing Electrochemical Actuation of Polyaniline Fibers in Ionic Liquids

    Microsoft Academic Search

    Wen Lu; Benjamin R. Mattes

    2005-01-01

    Room-temperature ionic liquids have been demonstrated to be advantageous in the development of conducting polymer electrochemical devices. In this paper, we fabricated electrochemical actuators using polyaniline fibers and ionic liquid electrolytes and investigated factors that influence their actuation performance in the ionic liquid [BMIM][BF4], such as the dopant anion, conductive and mechanical properties of the polyaniline fibers, external load, and

  14. Electrochemical transistors with ionic liquids for enzymatic sensing

    E-print Network

    Lee, Hyowon

    liquids (ILs) are low melting salts, thus forming liquids that are comprised entirely of cations and anions. According to the current convention, a salt melting below the normal boiling point of water is known as an "ionic liquid" or by one of many synonyms including low / ambient / room temperature molten

  15. Room-temperature ionic liquids: a novel versatile lubricant.

    PubMed

    Ye, C; Liu, W; Chen, Y; Yu, L

    2001-11-01

    Alkylimidazolium tetrafluoroborates are promising versatile lubricants for the contact of steel/steel, steel/aluminium, steel/copper, steel/SiO2, Si3N4/SiO2, steel/Si(100), steel/sialon ceramics and Si3N4/sialon ceramics; they show excellent friction reduction, antiwear performance and high load-carrying capacity. PMID:12240132

  16. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  17. Ionic liquid electrolytes for dye-sensitized solar cells.

    PubMed

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells. PMID:18688394

  18. Measurement of the Order Parameter in a Room Temperature Liquid Crystal: An Experiment for the Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    DuPre, Donald B.; Chapoy, L. Lawrence

    1979-01-01

    Presented here is a laboratory experiment for a course in physical chemistry. Students are requested to directly measure the degree of orientational order in a liquid crystal at room temperature. A minimum amount of equipment is necessary. (Author/SA)

  19. Room Temperature Bubble Point Tests on Porous Screens: Implications for Cryogenic Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason; Mann, J. Adin, Jr.

    2012-01-01

    We present experimental results for room temperature bubble point tests conducted at the Cedar Creek Road Cryogenic Complex, Cell 7 (CCL-7) at the NASA Glenn Research Center. The purpose of these tests was to investigate the performance of three different fine mesh screens in room temperature liquids to provide pretest predictions in cryogenic liquid nitrogen (LN2) and hydrogen (LH2) as part of NASA's microgravity LAD technology development program. Bench type tests based on the maximum bubble point method were conducted for a 325 x 2300, 450 x 2750, and 510 x 3600 mesh sample in pure room temperature liquid methanol, acetone, isopropyl alcohol, water, and mixtures of methanol and water to cover the intermediate to upper surface tension range. A theoretical model for the bubble point pressure is derived from the Young-LaPlace equation for the pressure drop across a curved interface. Governing equations are reduced in complexity through a set of simplifying assumptions to permit direct comparison with the experimental data. Screen pore sizes are estimated from scanning electron microscopy (SEM) to make pretest predictions. Pore sizes based on SEM analysis are compared with historical data available in the literature for the 325 x 2300 and 450 x 2750 screens as well with data obtained from bubble point tests conducted in this work. Experimental results show that bubble point pressure is proportional to the surface tension of the liquid. We show that there is excellent agreement between data and model for pure fluids when the data is corrected for non-zero contact angle measured on the screens using a modified Sessile Drop technique. SEM image analysis of the three meshes indicated that bubble point pressure would be a maximum for the finest mesh screen. The pore diameters based on SEM analysis and experimental data obtained here are in excellent agreement for the 325 x 2300 and 450 x 2750 meshes, but not for the finest 510 x 3600 mesh. Therefore the simplified model can be used to interpolate predictions for low surface tension cryogenic liquids only when pore diameters are based on room temperature bubble point tests and not SEM analysis as presently implemented.

  20. Dye-doped cholesteric-liquid-crystal room-temperature single-photon source

    SciTech Connect

    Lukishova, S.G.; Schmid, A.W.; Supranowitz, C.M.; Lippa, N.; McNamara, A.J.; Boyd, R.W.; Stroud, Jr., C.R.

    2004-06-15

    Fluorescence antibunching from single terrylene molecules embedded in a cholesteric-liquid-crystal host is used to demonstrate operation of a room-temperature single-photon source. One-dimensional (1-D) photonic-band-gap microcavities in planar-aligned cholesteric liquid crystals with band gaps from visible to near-infrared spectral regions are fabricated. Liquid-crystal hosts (including liquid crystal oligomers and polymers) increase the source efficiency, firstly, by aligning the dye molecules along the direction preferable for maximum excitation efficiency (deterministic molecular alignment provides deterministically polarized output photons), secondly, by tuning the 1-D photonic-band-gap microcavity to the dye fluorescence band and thirdly, by protecting the dye molecules from quenchers, such as oxygen.

  1. Vapor–liquid equilibria of ammonia + ionic liquid mixtures

    Microsoft Academic Search

    A. Yokozeki; Mark B. Shiflett

    2007-01-01

    Solubilities of ammonia in room-temperature ionic liquids, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium thiocyanate, 1-ethyl-3-methylimidazolium ethylsulfate, and N,N-dimethylethanolammonium acetate have been measured for the first time. Static phase equilibrium cells used in our previous work have been slightly modified for the present solubility measurements. Six mixture compositions of each binary system were prepared for the present experiments from about 30 to 85mol% of

  2. Tunable emissive lanthanidomesogen derived from a room-temperature liquid-crystalline Schiff-base ligand.

    PubMed

    Pramanik, Harun A R; Das, Gobinda; Bhattacharjee, Chira R; Paul, Pradip C; Mondal, Paritosh; Prasad, S Krishna; Rao, D S Shankar

    2013-09-23

    A novel photoluminescent room-temperature liquid-crystalline salicylaldimine Schiff base with a short alkoxy substituent and a series of lanthanide(III) complexes of the type [Ln(LH)3(NO3)3] (Ln = La, Pr, Sm, Gd, Tb, Dy; LH = (E)-5-(hexyloxy)-2-[{2-(2-hydroxyethylamino)ethylimino]methyl}phenol) have been synthesized and characterized by FTIR, (1)H and (13)C?NMR, UV/Vis, and FAB-MS analyses. The ligand coordinates to the metal ions in its zwitterionic form. The thermal behavior of the compounds was investigated by polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The ligand exhibits an enantiotropic hexagonal columnar (Col(h)) mesophase at room temperature and the complexes show an enantiotropic lamellar columnar (Col(L)) phase at around 120?°C with high thermal stability. Based on XRD results, different space-filling models have been proposed for the ligand and complexes to account for the columnar mesomorphism. The ligand exhibits intense blue emission both in solution and in the condensed state. The most intense emissions were observed for the samarium and terbium complexes, with the samarium complex glowing with a bright-orange light (ca. 560-644?nm) and the terbium complex emitting green light (ca. 490-622?nm) upon UV irradiation. DFT calculations performed by using the DMol3 program at the BLYP/DNP level of theory revealed a nine-coordinate structure for the lanthanide complexes. PMID:23939837

  3. Tribo-Chemistry of Phosphonium-Derived Ionic Liquids

    Microsoft Academic Search

    Ichiro Minami; Taketo Inada; Ryusuke Sasaki; Hidetaka Nanao

    2010-01-01

    The tribological properties of room temperature ionic liquids containing tetraalkylphosphonium cations were evaluated on the\\u000a basis of the chemical structure of their salts. The tribochemistry of these ionic liquids was discussed on the basis of the\\u000a results of tribo-tests and surface analyses. The tribological properties of the tetraalkylphosphonium salts examined in this\\u000a work were observed to be better than those

  4. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    Microsoft Academic Search

    R. G. Reddy

    2007-01-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such

  5. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  6. Ionic liquids screening for desulfurization of natural gasoline by liquid–liquid extraction

    Microsoft Academic Search

    Natalya V. Likhanova; Diego Guzmán-Lucero; Eugenio A. Flores; Paloma García; Marco A. Domínguez-Aguilar; Jorge Palomeque; Rafael Martínez-Palou

    2010-01-01

    Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization\\u000a of NG was performed by means of liquid–liquid extraction method at room temperature and atmospheric pressure. Experimental\\u000a ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally\\u000a and under microwave and sonochemical conditions. The effect

  7. Evaluation of Vapor Pressure and UltraHigh Vacuum Tribological Properties of Ionic Liquids

    Microsoft Academic Search

    Wilfredo Morales; Victor R. Koch; Daniel J. Valco; Ryan M. Richard; Nicole Hanks

    2011-01-01

    Ionic liquids are a class of salts that incorporate polyatomic anions and cations. These materials are typically viscous fluids at room temperature. The fluids are generally characterized as possessing negligible vapor pressures under ambient conditions. These beneficial properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as lubricants with space

  8. Direct Writing of Flexible Electronics through Room Temperature Liquid Metal Ink

    PubMed Central

    Gao, Yunxia; Li, Haiyan; Liu, Jing

    2012-01-01

    Background Conventional approaches of making a flexible circuit are generally complex, environment unfriendly, time and energy consuming, and thus expensive. Here, we describe for the first time the method of using high-performance GaIn10-based electrical ink, a significantly neglected room temperature liquid metal, as both electrical conductors and interconnects, for directly writing flexible electronics via a rather easy going and cost effective way. Methods The new generation electric ink was made and its wettability with various materials was modified to be easily written on a group of either soft or rigid substrates such as epoxy resin board, glass, plastic, silica gel, paper, cotton, textiles, cloth and fiber etc. Conceptual experiments were performed to demonstrate and evaluate the capability of directly writing the electrical circuits via the invented metal ink. Mechanisms involved were interpreted through a series of fundamental measurements. Results The electrical resistivity of the fluid like GaIn10-based material was measured as 34.5 µ?·cm at 297 K by four point probe method and increased with addition of the oxygen quantity, which indicates it as an excellent metal ink. The conductive line can be written with features that are approximately 10 µm thick. Several functional devices such as a light emitting diode (LED) array showing designed lighting patterns and electrical fan were made to work by directly writing the liquid metal on the specific flexible substrates. And satisfactory performances were obtained. Conclusions The present method opens the way to directly and quickly writing flexible electronics which can be as simple as signing a name or drawing a picture on the paper. The unique merit of the GaIn10-based liquid metal ink lies in its low melting temperature, well controlled wettability, high electrical conductivity and good biocompability. The new electronics writing strategy and basic principle has generalized purpose and can be extended to more industrial areas, even daily life. PMID:23029044

  9. Ionic liquids behave as dilute electrolyte solutions

    PubMed Central

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  10. Ionic liquids behave as dilute electrolyte solutions.

    PubMed

    Gebbie, Matthew A; Valtiner, Markus; Banquy, Xavier; Fox, Eric T; Henderson, Wesley A; Israelachvili, Jacob N

    2013-06-11

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force-distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin-Landau-Verwey-Overbeek theory with an additive repulsive steric (entropic) ion-surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high-free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  11. Formulation of a room temperature ferroelectric liquid crystal mixture with sub-millisecond switching time

    NASA Astrophysics Data System (ADS)

    Debnath, A.; Sinha, D.; Mandal, P. K.; Dabrowski, R.

    2015-06-01

    Ferroelectric liquid crystal (FLC) based display devices show faster response compared to nematic LC based devices. Since pure FLC compounds are high temperature LCs and do not possess optimum parameters necessary for display devices, a room temperature FLC mixture has been formulated, first time by any Indian group. The mixture is prepared by doping an appropriate chiral compound in a four-component LC based achiral host mixture. Resulting mixture was characterized using optical polarizing microscopy, frequency domain dielectric spectroscopy and electro-optic methods. It shows very wide range ferroelectric SmC* phase followed by paraelectric SmA* phase (Cr< 19°CSmC*89°C SmA* 108°C I) which would facilitate attaining book shelf geometry alignment in display devices. Dielectric spectroscopy study reveals Goldstone (in kHz region) and soft mode (in hundred kHz region) relaxations in SmC* and SmA* phases respectively. The mixture possesses moderate tilt angle (34.5° - 13°), low viscosity (0.9 - 0.05 N.s.m-2) and moderately high spontaneous polarization (112 - 36 nC.cm-2) which decrease with temperature. These result in very fast switching, slowest response time being 475 µs at ambient temperature.

  12. VOC and HAP recovery using ionic liquids

    SciTech Connect

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and ?-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and ?-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

  13. Ionic liquid ethanol sensor.

    PubMed

    Lee, Yuan Gee; Chou, Tse-Chuan

    2004-07-30

    Ionic liquids containing lithium methylsulfonyl group were prepared from the precursors poly(propylene glycol)-block-(ethylene glycol)-block-(propylene glycol)-bis(2-aminopropyl ether) with different molecular weight. These liquids revealed excellent electrical conductivity in the temperature range -25 to 85 degrees C. Also, they exhibited a high boiling temperature and hence a low vapor pressure in ambient condition. Additionally, they showed a high fluidity with their viscosities being comparative with that of water. To determine the sensitivity of an ethanol sensor by using these ionic liquids, these liquids were subjected into a sequential electrochemical tests with nickel electrodes which performed a high sensitivity for the ethanol sensor. It was found that only the derivative with low molecular weight could detect ethanol. Furthermore, a linear relationship between the response current and the concentration of ethanol was constructed. The detection limit was found to be 0.13% (v/v) and its response time was 336 s. PMID:15142574

  14. Homopolymer Dissolution in a Hydrophilic Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2010-03-01

    Dissolution, structure, and dynamics of both neutral and charged polymers dissolved in a hydrophilic room temperature ionic liquid (IL), ethylmethylimidazolium ethyl sulfate [EMIM][EtSO4], have been studied by classical physicochemical methods (static and dynamic light scattering, intrinsic viscosity, refractometry) to determine differences in solution behavior from conventional aqueous and organic solvents. This IL is water miscible. Many neutral polymers and charged polymer salts molecularly dissolve, although solubility doesn't correlate with polymer hydrophilicity. Model neutral soluble polymers are polyvinylpyrrolidone and hydroroxyethyl cellulose while sodium poly(styrene sulfonate) and the iodo salt of methyl-quaternized poly(vinyl pyridine) fill the same role for charged polymers. The latter display none of the polyelectrolyte effects found in low ionic strength water, consistent with strong electrostatic screening in IL. In virial coefficient and coil size, the IL acts for these neutral and charged polymers as a classical good solvent. (Support: UMass MRSEC)

  15. Dissolving Polymers in Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  16. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  17. Use of Ionic Liquids for ?-Conjugated Polymer Electrochemical Devices

    NASA Astrophysics Data System (ADS)

    Lu, Wen; Fadeev, Andrei G.; Qi, Baohua; Smela, Elisabeth; Mattes, Benjamin R.; Ding, Jie; Spinks, Geoffrey M.; Mazurkiewicz, Jakub; Zhou, Dezhi; Wallace, Gordon G.; MacFarlane, Douglas R.; Forsyth, Stewart A.; Forsyth, Maria

    2002-08-01

    ?-Conjugated polymers that are electrochemically cycled in ionic liquids have enhanced lifetimes without failure (up to 1 million cycles) and fast cycle switching speeds (100 ms). We report results for electrochemical mechanical actuators, electrochromic windows, and numeric displays made from three types of ?-conjugated polymers: polyaniline, polypyrrole, and polythiophene. Experiments were performed under ambient conditions, yet the polymers showed negligible loss in electroactivity. These performance advantages were obtained by using environmentally stable, room-temperature ionic liquids composed of 1-butyl-3-methyl imidazolium cations together with anions such as tetrafluoroborate or hexafluorophosphate.

  18. Properties of Water Confined in Ionic Liquids

    PubMed Central

    Saihara, Koji; Yoshimura, Yukihiro; Ohta, Soichi; Shimizu, Akio

    2015-01-01

    The varying states of water confined in the nano-domain structures of typical room temperature ionic liquids (ILs) were investigated by 1H NMR and by measurements of self-diffusion coefficients while systematically varying the IL cations and anions. The NMR peaks for water in BF4-based ILs were clearly split, indicating the presence of two discrete states of confined water (H2O and HOD). Proton and/or deuterium exchange rate among the water molecules was very slowly in the water-pocket. Notably, no significant changes were observed in the chemical shifts of the ILs. Self-diffusion coefficient results showed that water molecules exhibit a similar degree of mobility, although their diffusion rate is one order of magnitude faster than that of the IL cations and anions. These findings provide information on a completely new type of confinement, that of liquid water in soft matter. PMID:26024339

  19. Properties of water confined in ionic liquids.

    PubMed

    Saihara, Koji; Yoshimura, Yukihiro; Ohta, Soichi; Shimizu, Akio

    2015-01-01

    The varying states of water confined in the nano-domain structures of typical room temperature ionic liquids (ILs) were investigated by (1)H NMR and by measurements of self-diffusion coefficients while systematically varying the IL cations and anions. The NMR peaks for water in BF4-based ILs were clearly split, indicating the presence of two discrete states of confined water (H2O and HOD). Proton and/or deuterium exchange rate among the water molecules was very slowly in the water-pocket. Notably, no significant changes were observed in the chemical shifts of the ILs. Self-diffusion coefficient results showed that water molecules exhibit a similar degree of mobility, although their diffusion rate is one order of magnitude faster than that of the IL cations and anions. These findings provide information on a completely new type of confinement, that of liquid water in soft matter. PMID:26024339

  20. Lubrication of Inconel 600 with ionic liquids at high temperature

    Microsoft Academic Search

    A. E. Jiménez; M. D. Bermúdez; P. Iglesias

    2009-01-01

    The friction and wear behavior of Inconel 600 against AISI 52100 steel have been studied in the presence of three ionic liquid (IL) lubricants, two imidazolium derivatives, 1-methyl-3-octylimidazolium tetrafluoroborate (L108) and 1-methyl-3-hexylimidazolium hexafluorophosphate (L-P106), and the quaternary ammonium chloride AMMOENG™101 (AM-101), and compared with a mineral base oil at room temperature. The IL lubricants have been studied at high temperature.

  1. Hydrodynamic and oxygen mass transfer studies in a three-phase (air–water–ionic liquid) stirred tank bioreactor

    Microsoft Academic Search

    D. Torres-Martínez; R. Melgarejo-Torres; M. Gutiérrez-Rojas; L. Aguilera-Vázquez; M. Micheletti; G. J. Lye; S. Huerta-Ochoa

    2009-01-01

    Recently, room temperature ionic liquids have been investigated as organic solvent replacements in multiphase partitioning bioreactors. They could prove particularly useful for oxidative bioconversions due to their non-volatile and non-flammable nature. In order to promote high mass transfer rates stirred tank bioreactors are normally used. However, for multiphase systems, particularly those featuring ionic liquids, there is little hydrodynamic information available

  2. Low Toxic Ionic Liquids, Liquid Catanionics, and Ionic Liquid Microemulsions

    Microsoft Academic Search

    Werner Kunz; Eva Maurer; Regina Klein; Didier Touraud; Doris Rengstl; Agnes Harrar; Susanne Dengler; Oliver Zech

    2011-01-01

    In the future the demand of sustainable and low toxic surfactants and solvents will constantly increase. In this article, we present some new approaches to meet these requirements. Whereas ionic liquids are often based on imidazolium ions, we will show that there are also much less toxic ones, especially with choline as cation. Choline salts, even if solid at room

  3. Ionic liquids in confined geometries.

    PubMed

    Perkin, Susan

    2012-04-21

    Over recent years the Surface Force Apparatus (SFA) has been used to carry out model experiments revealing structural and dynamic properties of ionic liquids confined to thin films. Understanding characteristics such as confinement induced ion layering and lubrication is of primary importance to many applications of ionic liquids, from energy devices to nanoparticle dispersion. This Perspective surveys and compares SFA results from several laboratories as well as simulations and other model experiments. A coherent picture is beginning to emerge of ionic liquids as nano-structured in pores and thin films, and possessing complex dynamic properties. The article covers structure, dynamics, and colloidal forces in confined ionic liquids; ionic liquids are revealed as a class of liquids with unique and useful confinement properties and pertinent future directions of research are highlighted. PMID:22301770

  4. Graphene terahertz modulators by ionic liquid gating

    E-print Network

    Wu, Yang; Qiu, Xuepeng; Liu, Jingbo; Deorani, Praveen; Banerjee, Karan; Son, Jaesung; Chen, Yuanfu; Chia, Elbert E M; Yang, Hyunsoo

    2015-01-01

    Graphene based THz modulators are promising due to the conical band structure and high carrier mobility of graphene. Here, we tune the Fermi level of graphene via electrical gating with the help of ionic liquid to control the THz transmittance. It is found that, in the THz range, both the absorbance and reflectance of the device increase proportionately to the available density of states due to intraband transitions. Compact, stable, and repeatable THz transmittance modulation up to 93% (or 99%) for a single (or stacked) device has been demonstrated in a broad frequency range from 0.1 to 2.5 THz, with an applied voltage of only 3 V at room temperature.

  5. Piperidinium, piperazinium and morpholinium ionic liquid crystals.

    PubMed

    Lava, Kathleen; Binnemans, Koen; Cardinaels, Thomas

    2009-07-16

    Piperidinium, piperazinium and morpholinium cations have been used for the design of ionic liquid crystals. These cations were combined with several types of anions, namely bromide, tetrafluoroborate, hexafluorophosphate, dodecylsulfate, bis(trifluoromethylsulfonyl)imide, dioctylsulfosuccinate, dicyclohexylsulfosuccinate, and dihexylsulfosuccinate. For the bromide salts of piperidinium containing one alkyl chain, the chain length was varied, ranging from 8 to 18 carbon atoms (n = 8, 10, 12, 14, 16, 18). The compounds show a rich mesomorphic behavior. High-ordered smectic phases (crystal smectic E and T phases), smectic A phases, and hexagonal columnar phases were observed, depending on the type of cation and anion. The morpholinium compounds with sulfosuccinate anions showed hexagonal columnar phases at room temperature and a structural model for the self-assembly of these morpholinium compounds into hexagonal columnar phases is proposed. PMID:19586072

  6. Low-melting mixtures based on choline ionic liquids.

    PubMed

    Rengstl, Doris; Fischer, Veronika; Kunz, Werner

    2014-11-01

    In this article a strategy is proposed for the design of low toxic, room temperature liquid low-melting mixtures (LMMs) which are entirely composed of natural materials. From literature it is well known that, in general, deep eutectic solvents based on choline chloride and dicarboxylic acids are LMMs, but not liquids at room temperature, with one exception: a 1?:?1 molar mixture of malonic acid and choline chloride. Therefore, the starting point of this study was the decrease of the melting point of one of the components, namely the dicarboxylic acid, which is succinic, glutaric or adipic acid. For this purpose, one of the two protons of the acidic group was exchanged by a bulky unsymmetrical choline cation. The resulting ionic liquids (ILs) were still solid at room temperature, but have a reduced melting temperature compared to the corresponding acids. In the second step, mixtures of these ILs with choline chloride were prepared. It turned out that choline glutarate-choline chloride mixtures are liquids at room temperature at compositions containing 95-98 wt% of choline glutarate. Finally, urea was added as another hydrogen bond donor. Density, conductivity and viscosity measurements were performed for all obtained mixtures. Moreover, a Walden plot was drawn which indicates that all mixtures are liquids with fully dissociated ions moving independently. Therefore, they are considered as "good" ionic liquids and, thus, for example they can be used to exchange more toxic or less biodegradable ILs in application processes. A brief outlook containing application possibilities is given. It is demonstrated that choline dodecylsulfate is readily soluble in these mixtures, forming aggregates in the LMM at temperatures exceeding 55 °C. PMID:25242504

  7. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity. PMID:23949284

  8. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    SciTech Connect

    Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my [PETRONAS Ionic Liquids Center, Universiti Teknologi PETRONAS (Malaysia); Wilfred, Cecilia Devi; Taha, M. F. [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Thanabalan, M. [Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  9. Ionic liquids as lubricants for steel–aluminum contacts at low and elevated temperatures

    Microsoft Academic Search

    Ana-Eva Jiménez; María-Dolores Bermúdez

    2007-01-01

    Room temperature ionic liquids (ILs) are high performance fluids with a wide thermal stability range. In this work we present\\u000a the first study of ILs as lubricants under a wide range of temperature conditions (?30, 100, and 200 C). The tribological\\u000a performance of the imidazolium ionic liquids 1-hexyl, 3-methyl (L106) and 1-octyl, 3-methyl (L108) imidazolium tetrafluoroborates\\u000a have been compared with that

  10. A novel lubricant additive based on carbon nanotubes for ionic liquids

    Microsoft Academic Search

    Bo Yu; Zhilu Liu; Feng Zhou; Weimin Liu; Yongmin Liang

    2008-01-01

    Room Temperature Ionic Liquid (RTIL)\\/Multi-Walled Carbon Nanotubes (MWNTs) composite was prepared by chemical modification. The composite was analyzed by using laser Raman spectroscopy and X-ray photoelectron spectroscopy. The RTIL\\/MWNTs composite was evaluated as lubricant additive in ionic liquid due to their excellent dispersibility. Tribological performances of RTIL\\/MWNTs composite as lubricant additive were performed on a universal UMT-2MT Tribo-tester. It is

  11. The friction and wear characteristics and lubrication mechanism of imidazole phosphate ionic liquid

    Microsoft Academic Search

    Lin Zhang; DaPeng Feng; Bin Xu; XuQing Liu; WeiMin Liu

    2009-01-01

    Several imidazole phosphate ionic liquids with varying carbon chain length have been synthesized at room temperature. Corrosion\\u000a characteristics and tribological properties of these synthesized ionic liquids were studied using four-ball friction and wear\\u000a testing machine. Its lubrication mechanism was also investigated by means of electron microscopy and X-ray photoelectron spectroscopy.\\u000a The experimental results showed that no corrosion was generated when

  12. Ionic Liquids with Ammonium Cations as Lubricants or Additives

    SciTech Connect

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Dai, Sheng [ORNL; Luo, Huimin [ORNL; Truhan, Jr., John J [ORNL

    2006-01-01

    Friction and wear are estimated to cost 6% of the US gross national product, or around $700 billion annually. A new class of more effective lubricants could lead to huge energy savings. Limited recent literature has suggested potential for using room-temperature ionic liquids as lubricants, however only a few out of millions (or more) of species have been evaluated. Recent ORNL work discovered a new category of ionic liquids with ammonium cations that have demonstrated promising lubricating properties as net lubricants or lubricant additives, particularly in lubricating difficult-to-lubricate metals like aluminum. More than 30% friction reduction has been observed on ammonium-based ionic liquids compared to conventional hydrocarbon oils. The inherent polarity of ionic liquids is believed to provide strong adhesion to contact surfaces and form a boundary lubricating film leading to friction and wear reductions. Other advantages of ionic liquids include (1) negligible volatility, (2) high thermal stability, (3) non-flammability, and (4) better intrinsic properties that eliminate the necessity of many expensive lubricant additives. With very flexible molecular structures, this new class of lubricants, particularly ammonium-based ionic liquids, can be tailored to fit a big variety of applications including but not limited to bearings, combustion engines, MEMS, and metal forming.

  13. Preparation of Sm-doped ceria (SDC) nanowires and tubes by gas-liquid co-precipitation at room temperature

    SciTech Connect

    Gu Lina [Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei (China); School of Chemistry and Chemical Engineering, Anhui University, 230039 Hefei (China)], E-mail: gln@mail.ustc.edu.cn; Meng Guangyao [Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei (China)

    2008-06-03

    Sm-doped cerium dioxide (SDC) with fcc structure was formed using a gas-liquid chemical co-precipitation process at room temperature. Morphology and structure of the as-prepared samples were characterized using TG, XRD, TEM, HRTEM and SAED techniques. Under our specific experimental conditions, two kinds of 1D nano-structures SDC have been mainly obtained. SDC nanowires are 0.3-1.2 {mu}m in lengths and 5-20 nm in diameters. SDC nanotubes have outer diameters in 10-40 nm with lengths up to 2 {mu}m. The as-prepared SDC shows very strong UV absorption ability and the maximum absorption peak redshifts compared with that of SDC nanoparticles.

  14. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  15. Novel hydrophobic ionic liquids electrolyte based on cyclic sulfonium used in dye-sensitized solar cells

    Microsoft Academic Search

    Lei Guo; Xu Pan; Meng Wang; Changneng Zhang; Xiaqin Fang; Shuanghong Chen; Songyuan Dai

    2011-01-01

    A novel series of hydrophobic room temperature ionic liquids based on six cyclic sulfonium cations were first time synthesized and applied in dye-sensitized solar cells as pure solvents for electrolyte system. The chronoamperograms result showed that the length of substituent on sulfonium cations could inhibit the I diffusion and the five-ring structure of sulfonium was benefit for fast triiodide ion

  16. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R. (Lincoln, MA); Nanjundiah, Chenniah (Lynn, MA); Carlin, Richard T. (Nashua, NH)

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  17. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  18. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

  19. Polarization versus temperature in pyridinium ionic liquids.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2014-12-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge transfer generally decay as temperature increases, although their presence should be expected over an entire condensed state temperature range. For the first time, we use three popular pyridinium-based RTILs to investigate temperature dependence of electronic polarization in RTILs, based on a nonperiodic electronic density description for a cation-anion pair. Atom-centered density matrix propagation molecular dynamics, supplemented by a weak coupling to an external bath, is used to simulate the temperature impact on system properties. We show that, quite surprisingly, nonadditivity in the cation-anion interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry and engineering. PMID:25387327

  20. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    SciTech Connect

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  1. Room temperature compressibility and diffusivity of liquid water from first principles

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Artacho, Emilio; Soler, José M.; Alexandre, S. S.; Fernández-Serra, M.-V.

    2013-11-01

    The isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ˜30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region. The discrepancies between the two functionals are explained in terms of the low- and high-density structures of the liquid.

  2. Room temperature compressibility and diffusivity of liquid water from first principles.

    PubMed

    Corsetti, Fabiano; Artacho, Emilio; Soler, José M; Alexandre, S S; Fernández-Serra, M-V

    2013-11-21

    The isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ~30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region. The discrepancies between the two functionals are explained in terms of the low- and high-density structures of the liquid. PMID:24320334

  3. Dissolution and dissolved state of cytochrome C in a neat, hydrophilic ionic liquid.

    PubMed

    Bihari, Malvika; Russell, Thomas P; Hoagland, David A

    2010-11-01

    The dissolution and dissolved molecular state of cytochrome c were investigated in the room temperature ionic liquid ethylmethylimidazolium ethylsulfate, [EMIM][EtSO4], by viscometry, optical and vibrational spectroscopies, and peroxidase activity. In dilute mixtures, viscometry demonstrated true molecular dissolution of cytochrome c in the ionic liquid and uncovered a molecular size larger than that in aqueous buffer, suggesting altered solvation or slight denaturation. The protein's heme unit absorbs light outside the spectral range masked by [EMIM], enabling conformational assessments by UV-visible and circular dichroism spectroscopies. Adding trends from fluorescence and Fourier transform infrared spectroscopy, unchanged secondary but perturbed tertiary structures were determined, consistent with the appreciable peroxidase activity measured. Different than in aqueous buffers, denaturation is not accompanied by aggregation. Results are relevant to the proposed application of ionic liquids as media for room temperature preservation of biomacromolecules. PMID:20929217

  4. Ionic Liquids as Lubricants of Titanium–Steel Contact

    Microsoft Academic Search

    Ana Eva Jiménez; María-Dolores Bermúdez

    2009-01-01

    The friction and wear behavior of grade 3 titanium have been studied against AISI 52100 steel at room temperature and at 100 °C,\\u000a in the presence of six ionic liquid (IL) lubricants, four imidazolium ILs, 1-ethyl-3-methylimidazolium tetrafluoroborate (L102),\\u000a 1-octyl,-3-methylimidazolium tetrafluoroborate (L108), 1-hexyl, 3-methylimidazolium hexafluorophosphate (L-P106) and 1-benzyl,3-methylimidazolium\\u000a chloride (ClB), and two quaternary ammonium salts, the chloride derivative AMMOENG™ 101 (AM-101) and

  5. Keggin-type polyoxometalate-based ionic liquid gels.

    PubMed

    Huang, Tianpei; Tian, Naiqin; Wu, Qingyin; Yan, Wenfu

    2015-05-27

    A series of reversible phase transformation ammonium- and phosphonium-based polyoxometalate ionic liquid (POM-IL) gels were synthesized and studied with a focus on the correlation between their physicochemical properties and their chemical structure. The products were successfully characterized by IR, UV, XRD and TG-DTA, and their ionic conductivities were measured. The Keggin-type heteropolyanion clusters decorated with long alkyl chains demonstrated a tendency to exhibit a gel state at room temperature, while all the gels transformed into liquids after heating and then recovered after cooling. With a decrease in the alkyl chain length, a significant improvement in the thermal stability and conductivity of the ammonium-based POM-IL gels can be achieved. Moreover, compared with the corresponding ammonium compound, phosphonium-based POM-IL gel was found to be more stable at high temperature and exhibited better conductivity. PMID:25947074

  6. Electrodeposition of magnesium film from BMIMBF 4 ionic liquid

    NASA Astrophysics Data System (ADS)

    NuLi, Yanna; Yang, Jun; Wang, Pu

    2006-09-01

    In this paper, we reported for the first time magnesium electrodeposition and dissolution processes in the ionic liquid of BMIMBF 4 with 1 M Mg(CF 3SO 3) 2 at room temperature. Our study found that complete electrochemical reoxidation of the electrodeposited magnesium film was feasible only on Ag substrate, comparing with the Pt, Ni, and stainless-steel. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) results showed that magnesium was found in the deposited film and the deposits were dense. The electrodeposition of magnesium on Ag substrate in the ionic liquid was considered to be a reversible process by cyclic voltammetry. Plots of peak current versus the square root of the scan rate were found to be linear, which indicates that the mass-transport process of electroactive species was mainly diffusion controlled. The diffusion coefficient D values of electroactive species were calculated from cyclic voltammetry and chronoamperometry, respectively.

  7. Solubility and aggregation of charged surfactants in ionic liquids.

    PubMed

    Chen, Lang G; Bermudez, Harry

    2012-01-17

    Room-temperature ionic liquids (ILs) exhibit a unique set of properties, leading to opportunities for numerous applications. To obtain a better understanding of IL interfaces at a molecular level, we combined charged surfactants with ILs and studied their interfacial behavior. The critical micelle concentration (cmc) of each surfactant-IL pair was determined from both solubility phase diagrams and isotherms. Because the cmc is equivalent to the solubility at the Krafft temperature, a connection between the solubility of the surfactant and the physical properties of the underlying ionic liquid was established. Interfacial energy was found to be the major factor affecting the surfactant aggregation process, although its magnitude depends strongly on the IL structure. The results here give insight into explaining the nature of self-assembly of surfactants at IL interfaces and the interaction between solutes and IL solvents. PMID:22168452

  8. Synthesis and characterization of 5-cyanotetrazolide-based ionic liquids.

    PubMed

    Bergholz, Timm; Oelkers, Benjamin; Huber, Benedikt; Roling, Bernhard; Sundermeyer, Jörg

    2015-02-01

    New salts based on imidazolium, pyrrolidinium, phosphonium, guanidinium, and ammonium cations together with the 5-cyanotetrazolide anion [C2 N5 ](-) are reported. Depending on the nature of cation-anion interactions, characterized by XRD, the ionic liquids (ILs) have a low viscosity and are liquid at room temperature or have higher melting temperatures. Thermogravimetric analysis, cyclic voltammetry, viscosimetry, and impedance spectroscopy display a thermal stability up to 230?°C, an electrochemical window of 4.5?V, a viscosity of 25?mPa?s at 20?°C, and an ionic conductivity of 5.4 mS cm(-1) at 20?°C for the IL 1-butyl-1-methylpyrrolidinium 5-cyanotetrazolide [BMPyr][C2 N5 ]. On the basis of these results, the synthesized compounds are promising electrolytes for lithium-ion batteries. PMID:25504790

  9. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  10. Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies

    Microsoft Academic Search

    Matthew D. Green; Timothy E. Long

    2009-01-01

    Imidazolium-based ionic liquids and ionic liquid monomers are becoming increasingly popular in a variety of areas including biphasic reaction catalysis, electromechanical actuator membranes and diluents, separation science membranes, and water purification agents. Ionic liquids first incorporated the imidazole ring in 1984 and this heterocyclic ring has emerged as the focal point of the ionic liquid field. Imidazole was targeted for

  11. Ionic liquids as lubricants of metal-polymer contacts. Preparation and properties of the first dispersions of ionic liquids and nanoparticles in polymers

    Microsoft Academic Search

    Jose Sanes Molina

    2008-01-01

    Room-temperature ionic liquids (ILs) are high performance fluids that stand out because of a wide range of functional properties and exhibit a great potential for engineering applications. Although they have been employed as lubricants in metal-metal, metal-ceramic and ceramic-ceramic contacts, in this thesis we present the first study about the use of ILs as pure lubricants in polymer\\/steel contacts. The

  12. Application of Ionic Liquids in Liquid Chromatography

    Microsoft Academic Search

    Micha? Piotr Marsza??; Roman Kaliszan

    2007-01-01

    Interest in ionic liquids (ILs) for their potential application in analytical chemistry continues to grow. Their usefulness can be due to favourable physicochemical properties, like the lack of vapour pressure, good thermal and chemical stability as well as very good dissolution properties regarding both organic and inorganic compounds. A specific feature of ILs is that these compounds provide strong proton

  13. Chemistry of polynuclear transition-metal complexes in ionic liquids.

    PubMed

    Ahmed, Ejaz; Ruck, Michael

    2011-10-01

    Transition-metal chemistry in ionic liquids (IL) has achieved intrinsic fascination in the last few years. The use of an IL as environmental friendly solvent, offers many advantages over traditional materials synthesis methods. The change from molecular to ionic reaction media leads to new types of materials being accessible. Room-temperature IL have been found to be excellent media for stabilising transition-metal clusters in solution and to crystallise homo- and heteronuclear transition-metal complexes and clusters. Furthermore, the use of IL as solvent provides the option to replace high-temperature routes, such as crystallisation from the melt or gas-phase deposition, by convenient room- or low-temperature syntheses. Inorganic IL composed of alkali metal cations and polynuclear transition-metal cluster anions are also known. Each of these areas will be discussed briefly in this contribution. PMID:21743925

  14. Gas-liquid interface-mediated room-temperature synthesis of "clean" PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation.

    PubMed

    Wang, Rongfang; Ma, Yuanyuan; Wang, Hui; Key, Julian; Ji, Shan

    2014-11-01

    PdNiP alloy nanoparticle networks (PdNiP NN) were prepared by simultaneous reduction of PdCl2, NiCl2 and NaH2PO2 with NaBH4via a gas-liquid interface reaction at room temperature using N2 bubbles. PdNiP NN had markedly higher activity and durability for ethanol oxidation than PdNi nanoparticle networks and PdNiP grain aggregates. PMID:25213875

  15. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  16. Application of ionic liquids in hydrometallurgy.

    PubMed

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  17. Tribological Testing and Thermal Analysis of an Alkyl Sulfate Series of Ionic Liquids for Use as Aerospace Lubricants

    Microsoft Academic Search

    Wilfredo Morales; Ryan M. Richard; Daniel J. Valco

    2012-01-01

    Due to their low vapor pressures, low melting points, high boiling points, high radiation resistance and high thermal stability, room temperature Ionic Liquids (ILs) appear to be suitable candidates as new aerospace lubricants for the upcoming return to the Moon and eventual Mars missions and for air and rotorcraft applications. In this study, three ILs having the same cation, 1-butyl-3-methylimidazolium,

  18. COMPARISON OF PEROXIDASE ACTIVITIES OF HEMIN, CYTOCHROME C AND MICROPEROXIDASE-11 IN MOLECULAR SOLVENTS AND IMIDAZOLIUM-BASED IONIC LIQUIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of ferriprotoporphyrin(IX) chloride (hemin), microperoxidase-11 (MP-11), and cytochrome c (cyt-c) to oxidize guaiacol (2-methoxyphenol) was examined in the room-temperature ionic liquids (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and the hexafluorophosphates of 1-...

  19. Room-Temperature Ionic Liquids and Protective Phospholipid Membranes: Interactions on Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green chemistry is a growing area of research that involves reducing or eliminating hazardous materials (products and solvents) from chemical processes. An area of green chemistry that is quite interesting to us is bioelectrocatalytic transformation of lipids in non-aqueous solvents called room-tem...

  20. The Influence of Lithium Cations on Dynamics and Structure of Room Temperature Ionic Liquids

    E-print Network

    Fayer, Michael D.

    applications, such as use as solvents for chemical reactions1 and as electrolytes for lithium-ion batteries.2 associated with volatile organic solvents used in conventional lithium-ion batteries. Relative to the neat windows, non- flammability, and negligible vapor pressure, which helps avoid the fire and explosion risks

  1. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  2. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids

    Microsoft Academic Search

    WANG Jian-long; Di-shun ZHAO; Er-peng ZHOU; Zhi DONG

    2007-01-01

    Six N-alkyl-pyridinium-based ionic liquids, N-butyl-pyridinium nitrate ([BPy]NO3), N-ethyl-pyridinium nitrate ([EPy]NO3), N-butyl-pyridinium tetrafluoroborate ([BPy]BF4), N-ethyl-pyridinium tetrafluoroborate ([EPy]BF4), N-ethyl-pyridinium acetate ([EPy]Ac), and N-butyl-pyridinium acetate ([BPy]Ac), were prepared and tested in the extraction desulfurization of gasoline. It is found that [BPy]BF4 has the best effect on the selective removal of sulfur-containing compounds from gasoline at room temperature among these ionic liquids. The extraction

  3. Exploring field effects on ionic liquid boundary lubrication

    NASA Astrophysics Data System (ADS)

    Capozza, Rosario; Benassi, Andrea; Vanossi, Andrea; Tosatti, Erio

    2014-03-01

    Ionic liquids, organic salts that are liquid at room temperature, are of great physical as well as of technological interest. Their adhesion properties to solid surfaces under pressure suggests their use as boundary lubricants. One potentially interesting feature would be the possibility that electrical charging of the solid plates or more generally an applied static or dynamic electric field could modify the nearby perpendicular and parallel ordering of ions, and in turn also modify the sliding friction. While these effects have just begun to be pursued by experimental groups, we have undertaken molecular dynamics simulations aimed at exploring some of these questions. Preliminary results obtained using very simple molten salt boundary lubrication models will be presented and discussed. Partly sponsored by SNSF Project CRSII2 136287/1, and by ERC Grant N. 320796 MODPHYSFRICT.

  4. Raman stpectroscopy of vibrational and rotational relaxation of acetonitrile molecules dissolved in ionic liquids

    Microsoft Academic Search

    V. Aleksa; V. Barkauskas; V. Pogorelov; H. Fuess

    2007-01-01

    Vibrational and rotational relaxation processes of acetonitrile (AN) molecules as molecular probes dissolved in the imidazolium-based room-temperature ionic liquid (RTIL) 1-decyl-3-methyl-imidazolium bromide have been studied by Ra- man spectroscopy technique (the band shape analysis using different polarizations of the incident and scattered light). It has been shown that the vibrational relaxation processes are quickened in the RTIL surrounding. The corresponding

  5. Electrodeposition Behaviour of Cadmium Telluride from 1-ethyl-3-methylimidazolium Chloride Tetrafluoroborate Ionic Liquid

    Microsoft Academic Search

    S.-I. Hsiu; I.-W. Sun

    2004-01-01

    Voltammetry at a glassy carbon electrode was used to study the electrochemical deposition of Cd–Te from the Lewis basic 1-ethyl-3-methylimidazolium chloride\\/tetrafluoroborate air-stable room temperature ionic liquid between 80 °C and 140 °C. Deposition of tellurium alone occurs through a four-electron reduction of Te(iv) to Te which could be further reduced to Te(-ii) at a more negative potential. The Cd–Te electrodeposits

  6. Electrodeposition of palladium–indium from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid

    Microsoft Academic Search

    Shu-I Hsiu; Chia-Cheng Tai; I-Wen Sun

    2006-01-01

    Voltammetry at a glassy carbon electrode was used to study the electrochemical co-deposition of Pd–In from a chloride-rich 1-ethyl-3-methylimidazolium chloride\\/tetrafluoroborate air-stable room temperature ionic liquid at 120°C. Deposition of Pd alone occurs prior to the overpotential deposition (OPD) of bulk In. However, underpotential deposition (UPD) of In on the deposited Pd was observed at the potential same as the deposition

  7. Tribological properties of Ti-doped DLC coatings under ionic liquids lubricated conditions

    Microsoft Academic Search

    Xin Feng; Yanqiu Xia

    In this paper, titanium doped diamond-like carbon (Ti-DLC) coatings were prepared onto AISI 52100 steel substrates using medium frequency magnetic sputtering process, and were analyzed using the Raman and transmission electron microscope (TEM). Two kinds of 1,3-dialkyl imidazolium ionic liquids (ILs) were synthesized and evaluated as lubricants for Ti-DLC\\/steel contacts at room temperature, and PFPE as comparison lubricant. The tribological

  8. Imidazolium hexafluorophosphate ionic liquids as high temperature lubricants for steel–steel contacts

    Microsoft Academic Search

    Meihuan Yao; Mingjin Fan; Yongmin Liang; Feng Zhou; Yanqiu Xia

    2010-01-01

    A series of long-chain 1,3-dialkyl imidazolium ionic liquids (ILs) were synthesized and evaluated as lubricants for steel–steel contacts both at room temperature and 150°C. Relationship between the alkyl chain length and the tribological properties of the ILs was investigated in detail. The results indicated that the ILs bearing long alkyl side chains have excellent friction-reducing and anti-wear properties, especially at

  9. Novel hydrophobic ionic liquids electrolyte based on cyclic sulfonium used in dye-sensitized solar cells

    Microsoft Academic Search

    Lei Guo; Xu Pan; Meng Wang; Changneng Zhang; Xiaqin Fang; Shuanghong Chen; Songyuan Dai

    2011-01-01

    A novel series of hydrophobic room temperature ionic liquids based on six cyclic sulfonium cations were first time synthesized and applied in dye-sensitized solar cells as pure solvents for electrolyte system. The chronoamperograms result showed that the length of substituent on sulfonium cations could inhibit the I3- diffusion and the five-ring structure of sulfonium was benefit for fast triiodide ion

  10. Anion Effects in the Extraction of Lanthanide 2Thenoyltrifluoroacetone Complexes into an Ionic Liquid

    Microsoft Academic Search

    Mark P. Jensen; Marian Borkowski; Ivan Laszak; James V. Beitz; Paul G. Rickert; Mark L. Dietz

    2012-01-01

    The extraction of trivalent lanthanides from an aqueous phase containing 1 M NaClO4 into the room temperature ionic liquid 1-butyl-3-methylimidazolium nonafluoro-1-butanesulfonate by the ?-diketone extractant 2-thenoyltrifluoroacetone (Htta) was studied. Radiotracer distribution, absorption spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and X-ray absorption fine structure measurements point to the extraction of multiple lanthanide species. At low extractant concentrations, fully hydrated aqua cations of the

  11. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries

    Microsoft Academic Search

    R.-S. Kühnel; N. Böckenfeld; S. Passerini; M. Winter; A. Balducci

    2011-01-01

    In this paper we report the results of physical–chemical and electrochemical investigations performed on ternary mixtures of the room temperature ionic liquid (IL) N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI), propylene carbonate (PC), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as electrolyte for lithium-ion batteries. The thermal stability, ionic conductivity, viscosity and electrochemical stability windows of all considered mixtures were investigated and compared with those of electrolytes

  12. Metathesis of fatty acid ester derivatives in 1,1-dialkyl and 1,2,3-trialkyl imidazolium type ionic liquids.

    PubMed

    Thomas, Priya A; Marvey, Bassie B; Ebenso, Eno E

    2011-01-01

    The self-metathesis of methyl oleate and methyl ricinoleate was carried out in the presence of ruthenium alkylidene catalysts 1-4 in [bmim] and [bdmim][X] type ionic liquids (RTILs) (X = PF(6) (-), BF(4) (-) and NTf(2) (-)) using the gas chromatographic technique. Best catalytic performance was obtained in [bdmim][X] type ionic liquids when compared with [bmim][X] type ionic liquids. Catalyst recycling studies were also carried out in the room temperature ionic liquids (RTILs) with catalysts 1-4 in order to explore their possible industrial application. PMID:21747719

  13. Metathesis of Fatty Acid Ester Derivatives in 1,1-Dialkyl and 1,2,3-Trialkyl Imidazolium Type Ionic Liquids

    PubMed Central

    Thomas, Priya A.; Marvey, Bassie B.; Ebenso, Eno E.

    2011-01-01

    The self-metathesis of methyl oleate and methyl ricinoleate was carried out in the presence of ruthenium alkylidene catalysts 1–4 in [bmim] and [bdmim][X] type ionic liquids (RTILs) (X = PF6?, BF4? and NTf2?) using the gas chromatographic technique. Best catalytic performance was obtained in [bdmim][X] type ionic liquids when compared with [bmim][X] type ionic liquids. Catalyst recycling studies were also carried out in the room temperature ionic liquids (RTILs) with catalysts 1–4 in order to explore their possible industrial application. PMID:21747719

  14. Polymer Crystallization-Driven Gelation of an Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2008-03-01

    Polyethylene glycol dissolves in the room temperature ionic liquid 1-ethyl-3-methylimidiazolium ethyl sulfate [EMIM][EtSO4] when heated above about 60C, the neat polymer's melting temperature. At typical polymer molecular weight and concentration, the homogeneous, slightly viscous solution solidifies during subsequent cooling, forming a semitransparent gel. For example, a 5 wt. percent solution of 6000 MW polymer produces a gel with modulus exceeding 1 KPa at 45C; cooled further to room temperature, the gel's modulus rises to a temperature-insensitive plateau of over 100 KPa. By DSC, rheology, and optical microscopy, gelation of the liquid is traced to kinetically frustrated polymer crystallization, a phenomenon previously reported for many pairings of crystallizable polymer and traditional solvent. Polarized optical microscopy reveals nucleation and growth of fibrillar polymer crystals during cooling, and these crystals, here with largest dimenions of tens to hundreds of microns, act as junction points. Melting is at a temperature higher than for gelation. Surprisingly, gelation can occur even when the starting polymer concentration is an order of magnitude below coil overlap. [EMIM][EtSO4] is hygroscopic, and with water uptake, the modulus drops.

  15. Quantized friction across ionic liquid thin films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-01

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition. PMID:23942943

  16. Quantized friction across ionic liquid thin films

    NASA Astrophysics Data System (ADS)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  17. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  18. Aluminium corrosion in room temperature molten salt

    Microsoft Academic Search

    Béatrice Garcia; Michel Armand

    2004-01-01

    Aluminium corrosion in a room temperature molten salt is studied to validate the use of a new kind of electrolyte in a lithium battery. Two solvents have been compared, the room temperature molten salt ethyl-methyl-imidazolium bis(trifluoromethane-sulfonyl)imide (EMI-TFSI), and the liquid organic solvent EC\\/DMC containing the lithium salt LiTFSI. After confirmation of high aluminium corrosion in the liquid solvent, the results

  19. Protein Structure and Stability in Neat Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Bihari, Malvika; Russell, Thomas P.; Hoagland, David A.

    2010-03-01

    Ionic liquid (IL) as a medium for room temperature preservation of biomacromolecules has been proposed, and to investigate the possibility, we studied physicochemical and enzymatic properties of several proteins in the neat hydrophilic IL, ethylmethyl imidazolium ethyl sulfate [EMIM][EtSO4]. Molecular dissolution of ?-chymotypsin, cytochrome-c and other proteins could be achieved with moderate heating (60C). Dynamic light scattering and dilute solution viscometry typically reveal protein size slightly larger than in buffer, suggesting different solvation or protein unfolding. Spectroscopic methods (UV-Vis, fluorescence, FTIR, CD) show largely unchanged secondary structure but significantly changed tertiary structure. IL-dissolved cytochrome-c has heightened peroxidase activity, supporting the same conclusions. Transfer of dissolved protein from IL to buffer and ensuing alterations to protein conformation/activity will be discussed.

  20. Influence of an ionic liquid on the conduction characteristics of lithium niobophosphate glass

    NASA Astrophysics Data System (ADS)

    Dabas, Prashant; Hariharan, K.

    2013-02-01

    A new solid electrolyte, mol% 1 [EMI]BF4-99(0.5Li2O-0.45P2O5-0.05Nb2O5), with room temperature ionic conductivity of 1.7 × 10-5 S/cm is reported for solid state device applications. Glass transition temperature of the hybrid system decreases by 20 K as compared to the pristine glass. Raman spectra in conjunction with thermal studies reveal that the addition of ionic liquid to the glass seems to increase the disorder in the glass leading to enhanced conductivity.

  1. Chiral discrimination by ionic liquids: impact of ionic solutes.

    PubMed

    Brown, Christopher J; Hopkins, Todd A

    2015-04-01

    Chiral ionic liquids hold promise in many asymmetric applications. This study explores the impact of ionic solutes on the chiral discrimination of five amino acid methyl ester-based ionic liquids, including L- and D-alanine methyl ester, L-proline methyl ester, L-leucine methyl ester, and L-valine methyl ester cations combined with bis(trifluoromethanesulfonimide) anion. Circularly polarized luminescence spectroscopy was used to study the chiral discrimination by measuring the racemization equilibrium of a dissymmetric europium complex, Eu(dpa)3(3-) (where dpa = 2,6-pyridinedicarboxylate). The chiral discrimination measured was dependent on the concentration of Eu(dpa)3(3-) and this concentration-dependence was different in each of the ionic liquids. Ionic liquids with L-leucine methyl ester and L-valine methyl ester even switched enantiomeric preference based on the solute concentration. Changing the cation of the Eu(dpa)3(3-) salt from tetrabutylammonium to tetramethylammonium ion also affected the chiral discrimination demonstrated by the ionic liquids. PMID:25727925

  2. Bilayer membrane permeability of ionic liquid-filled block copolymer vesicles in aqueous solution.

    PubMed

    Bai, Zhifeng; Zhao, Bin; Lodge, Timothy P

    2012-07-19

    The bilayer membrane permeability of block copolymer vesicles ("polymersomes") with ionic liquid interiors dispersed in water is quantified using fluorescence quenching. Poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) block copolymer vesicles in water with their interiors filled with a common hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, were prepared containing a hydrophobic dye, Nile Red, by intact migration of dye-encapsulated vesicles from the ionic liquid to water at room temperature. A small quencher molecule, dichloroacetamide, was added to the aqueous solution of the dye-loaded vesicles, and the permeation of the quencher passing through the membrane into the interior was determined from the fluorescence quenching kinetics. Rapid permeation of the quencher across the nanoscale membrane was observed, consistent with the high fluidity of the liquid polybutadiene membrane. Two different PB-PEO copolymers were employed, in order to vary the thickness of the solvophobic membrane. A significant increase in membrane permeability was also observed with decreasing membrane thickness, which is tentatively attributable to differences in quencher solubility in the membranes. Quantitative migration of the vesicles from the aqueous phase back to an ionic liquid phase was achieved upon heating. These microscopically heterogeneous and thermoresponsive vesicles with permeable and robust membranes have potential as recyclable nanoreactors, in which the high viscosity and capital expense of an ionic liquid reaction medium can be mitigated, while retaining the desirable features of ionic liquids as reaction media, and facile catalyst recovery. PMID:22765509

  3. Nonlinear polarization of ionic liquids: theory, simulations, experiments

    NASA Astrophysics Data System (ADS)

    Kornyshev, Alexei

    2010-03-01

    Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

  4. Liquid-liquid equilibrium of cholinium-derived bistriflimide ionic liquids with water and octanol.

    PubMed

    Costa, Anabela J L; Soromenho, Mário R C; Shimizu, Karina; Marrucho, Isabel M; Esperança, José M S S; Canongia Lopes, J N; Rebelo, Luís Paulo N

    2012-08-01

    The liquid-liquid equilibria of mixtures of cholinum-based ionic liquids (N-alkyl-N,N-dimethylhydroxyethylammonium bis(trifluoromethane)sulfonylimide, [N(11n2OH)][Ntf(2)], n = 1, 2, 3, 4, and 5) plus water or 1-octanol were investigated at atmospheric pressure over the entire composition range. The experiments were conducted between 265 and 385 K using the cloud-point method. The systems exhibit phase diagrams consistent with the existence of upper critical solution temperatures. The solubility of [N(1 1 n 2OH)][Ntf(2)] in water is lower for cations with longer alkyl side chains (larger n values). The corresponding trend in the octanol mixtures is reversed. The ([N(1 1 1 2OH)][Ntf(2)] + water + octanol) ternary system shows triple liquid-liquid immiscibility at room temperature and atmospheric pressure. A combined analytic/synthetic method was used to estimate the corresponding phase diagram under those conditions. Auxiliary molecular dynamics simulation data were used to interpret the experimental results at a molecular level. PMID:22770438

  5. Electrochemical transistors with ionic liquids for enzymatic sensing

    NASA Astrophysics Data System (ADS)

    Fraser, Kevin J.; Yang, Sang Yoon; Cicoira, Fabio; Curto, Vincenzo F.; Byrne, Robert; Benito-Lopez, Fernando; Khodagholy, Dion; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

    2011-10-01

    Over the past decade conducting polymer electrodes have played an important role in bio-sensing and actuation. Recent developments in the field of organic electronics have made available a variety of devices that bring unique capabilities at the interface with biology. One example is organic electrochemical transistors (OECTs) that are being developed for a variety of bio-sensing applications, including the detection of ions, and metabolites, such as glucose and lactate. Room temperature ionic liquids (RTILs) are organic salts, which are liquid at ambient temperature. Their nonvolatile character and thermal stability makes them an attractive alternative to conventional organic solvents. Here we report an enzymatic sensor based on an organic electro-chemical transistor with RTIL's as an integral part of its structure and as an immobilization medium for the enzyme and the mediator. Further investigation shows that these platforms can be incorporated into flexible materials such as carbon cloth and can be utilized for bio-sensing. The aim is to incorporate the overall platform in a wearable sensor to improve athlete performance with regards to training. In this manuscript an introduction to ionic liquids (ILs), IL - enzyme mixtures and a combination of these novel materials being used on OECTs are presented.

  6. Nitrile-functionalized pyridinium, pyrrolidinium, and piperidinium ionic liquids.

    PubMed

    Lethesh, Kallidanthiyil Chellappan; Van Hecke, Kristof; Van Meervelt, Luc; Nockemann, Peter; Kirchner, Barbara; Zahn, Stefan; Parac-Vogt, Tatjana N; Dehaen, Wim; Binnemans, Koen

    2011-07-01

    Two series of 1-alkylpyridinium and N-alkyl-N-methylpiperidinium ionic liquids functionalized with a nitrile group at the end of the alkyl chain have been synthesized. Structural modifications include a change of the alkyl spacer length between the nitrile group and the heterocycle of the cationic core, as well as adding methyl or ethyl substituents on different positions of the pyridinium ring. The anions are the bromide and the bis(trifluoromethylsulfonyl)imide ion. All the bis(trifluoromethylsulfonyl)imide salts as well as the bromide salts with a long alkyl spacer were obtained as viscous liquids at room temperature, but some turned out to be supercooled liquids. In addition, pyrrolidinium and piperidinium ionic liquids with two nitrile functions attached to the heterocyclic core have been prepared. The crystal structures of seven pyridinium bis(trifluoromethylsulfonyl)imide salts are reported. Quantum chemical calculations have been performed on model cations and ion pairs with the bis(trifluoromethylsulfonyl)imide anion. A continuum model has been used to take solvation effects into account. These calculations show that the natural partial charge on the nitrogen atom of the nitrile group becomes more negative when the length of the alkyl spacer between the nitrile functional group and the heterocyclic core of the cation is increased. Methyl or methoxy substituents on the pyridinium ring slightly increase the negative charge on the nitrile nitrogen atom due to their electron-donating abilities. The position of the substituent (ortho, meta, or para) has only a very minor effect on the charge of the nitrogen atom. The (15)N NMR spectra of the bis(trifluoromethylsulfonyl)imide ionic liquids were recorded with the nitrogen-15 nucleus at its natural abundance. The chemical shift of the (15)N nucleus of the nitrile nitrogen atom could be correlated with the calculated negative partial charge on the nitrogen atom. PMID:21609018

  7. Novel halogen-free chelated orthoborate-phosphonium ionic liquids: synthesis and tribophysical properties.

    PubMed

    Shah, Faiz Ullah; Glavatskih, Sergei; MacFarlane, Douglas R; Somers, Anthony; Forsyth, Maria; Antzutkin, Oleg N

    2011-07-28

    We report on the synthesis, characterisation, and physical and tribological properties of halogen-free ionic liquids based on various chelated orthoborate anions with different phosphonium cations, both without halogen atoms in their structure. Important physical properties of the ILs including glass transition temperatures, density, viscosity and ionic conductivity were measured and are reported here. All of these new halogen-free orthoborate ionic liquids (hf-BILs) are hydrophobic and hydrolytically stable liquids at room temperature. As lubricants, these hf-BILs exhibit considerably better antiwear and friction reducing properties under boundary lubrication conditions for steel-aluminium contacts as compared with fully formulated (15W-50 grade) engine oil. Being halogen free these hf-BILs offer a more environmentally benign alternative to ILs being currently developed for lubricant applications. PMID:21687897

  8. Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium–steel lubrication

    Microsoft Academic Search

    Ana-Eva Jiménez; María-Dolores Bermúdez

    2008-01-01

    Four room-temperature ionic liquids (ILs), 1-CnH2n+1-3-CH3-imidazolium X? [X=PF6; n=6 (L-P106). X=BF4; n=2 (L102), 6 (L106). X=CF3SO3; n=2 (L-T102)], have been studied as 1wt.% additives of the synthetic ester propylene glycol dioleate (PGDO) in pin-on-disk tests for AISI 52100 steel–ASTM 2011 aluminium contacts at 25 and 100°C. At room temperature, friction values for PGDO+1wt.% IL are similar or higher than that

  9. Unraveling the heterogeneity in N butyl-N-methylpiperidinium trifluromethanesulfonimide ionic liquid by 1D and 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tripathi, Neha; Saha, Satyen

    2014-06-01

    Room temperature ionic liquids are one of the most exciting classes of materials in the last decade. In particular piperidinium (PIP) cation based ionic liquid (IL) (such as PIP14NTf2) have found application in electrochemistry/batteries. In this Letter, 2D NMR (NOESY and HOESY) is employed for studying the interactions present between cations and anions. HOESY spectrum shows that fluorine of NTf2 unusually interacts with all proton of the cation (PIP14). Combined HOESY and NOESY indicate that NTf2 anion is distributed heterogeneously in liquid. Existence of micro heterogeneity in this important class of IL is proposed.

  10. Spatial-decomposition analysis of electrical conductivity in ionic liquid.

    PubMed

    Tu, Kai-Min; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2014-12-28

    The electrical conductivity of room temperature ionic liquid (IL) is investigated with molecular dynamics simulation. A trajectory of 1??s in total is analyzed for the ionic liquid [C4mim][NTf2] (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and the anion is also called TFSI or TFSA), and the ion motions are examined in direct connection to the conductivity within the framework formulated previously [K.-M. Tu, R. Ishizuka, and N. Matubayasi, J. Chem. Phys. 141, 044126 (2014)]. As a transport coefficient, the computed electrical conductivity is in fair agreement with the experiment. The conductivity is then decomposed into the autocorrelation term of Nernst-Einstein form and the cross-correlation term describing the two-body motions of ions, and the cross-correlation term is further decomposed spatially to incorporate the structural insights on ion configurations into the dynamic picture. It is observed that the ion-pair contribution to the conductivity is not spatially localized and extends beyond the first coordination shell. The extent of localization of the cross-correlation effect in the conductivity is in correspondence to that of the spatial correlation represented by radial distribution function, which persists over nanometer scale. PMID:25554167

  11. Ionic liquids adsorbed cellulose electro active paper actuator

    NASA Astrophysics Data System (ADS)

    Mahadeva, Suresha K.; Nayak, Jyoti; Kim, Jaehwan

    2009-03-01

    Cellulose has been reported as a smart material that can be used as sensors and actuators. The cellulose smart material is termed as Electro-active paper (EAPap), which is made by regenerating cellulose. However, regeneration of cellulose resulted in reduced performance output of actuators at low humidity levels. To solve this drawback, EAPap bending actuators were made by activating wet cellulose films in three different room temperature ionic liquids BMIPF6, BMICL and BMIBF4. Results showed that the actuator performance was dependent on the type of anions in the ionic liquids and it was in the order of BF4 > Cl > PF6Â. BMIBF4 activated actuator showed the maximum displacement of 3.8 mm with low electrical power consumption at relatively low humidity level. Also, it found that, although size of PF6 anion is larger than BF4 anion it showed the low displacement output due to poor adsorption as indicated the FTIR analysis.

  12. Ionic Liquids as Lubricants of Titanium–Steel Contact. Part 3. Ti6Al4V Lubricated with Imidazolium Ionic Liquids with Different Alkyl Chain Lengths

    Microsoft Academic Search

    A. E. Jiménez; M. D. Bermúdez

    2010-01-01

    The tribological behaviour and surface interactions of Ti6Al4V sliding against AISI 52100 steel have been studied in the presence\\u000a of three commercial methylimidazolium (mim) room-temperature ionic liquids (ILs) containing the same anion, bis(trifluoromethylsulfonyl)amide,\\u000a [(CF3SO2)2N] (Tf2N), and cations with increasing alkyl chain length, 1-ethyl-3-methylimidazolium [C2mim], 1-butyl-3-methylimidazolium [C4mim] and 1-octyl-3-methylimidazolium [C8mim]. Increasing alkyl chain length increases viscosity whilst reducing the onset temperature

  13. Properties of Polyelectrolytes in an Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Harner, John; Hoagland, David

    2008-03-01

    In solvents such as water, polyelectrolyte properties depend strongly on ionic strength, reflecting the ability of free ions to screen electrostatic interactions. At high ionic strength, polyelectrolytes remaining soluble behave similarly to neutral polymers. What happens to polyelectrolyte properties in an ionic liquid? A series of polyelectrolytes were dissolved in [EMIM][EtSO4] (ethyl-methyl-imidazolium ethylsulfate) and studied by viscometry as well as static and dynamic light scattering. Both scattering approaches show that sodium polystyrene sulfonate is more swollen in aqueous 0.1M NaBr than in [EMIM][EtSO4]. Furthermore, classical polyelectrolyte effects (fast and slow mode, increased reduced viscosity with dilution) are absent in the ionic liquid. Lastly, variably quaternized polyvinylpyridine exhibits no evidence of coil expansion as charge density increases. We conclude macroion charges are fully screened in ionic liquids.

  14. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  15. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal.

    PubMed

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  16. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  17. Task-Specific Ionic Liquids for Mars Exploration (Green Chemistry for a Red Planet)

    NASA Technical Reports Server (NTRS)

    Karr, L. J.; Curreri, P. A.; Paley, M. S.; Kaukler, W. F.; Marone, M. J.

    2012-01-01

    Ionic Liquids (ILs) are organic salts with low melting points that are liquid at or near room temperature. The combinations of available ions and task-specific molecular designability make them suitable for a huge variety of tasks. Because of their low flammability, low vapor pressure, and stability in harsh environments (extreme temperatures, hard vacuum) they are generally much safer and "greener" than conventional chemicals and are thus suitable for a wide range of applications that support NASA exploration goals. This presentation describes several of the ongoing applications that are being developed at MSFC.

  18. Lyotropic liquid crystal phases of phytantriol in a protic ionic liquid with fluorous anion.

    PubMed

    Shen, Yan; Greaves, Tamar L; Kennedy, Danielle F; Weerawardena, Asoka; Kirby, Nigel; Song, Gonghua; Drummond, Calum J

    2014-10-21

    The phase behaviour of phytantriol in the protic ionic liquid (PIL) 1-methylimidazolium pentadecafluorooctanoate (MImOF) and four different MImOF-water compositions was investigated by small- and wide-angle X-ray scattering (SAXS/WAXS), cross polarised optical microscopy (CPOM) and infrared spectroscopy (IR). MImOF is a distinct protic ionic liquid in that it contains a fluorocarbon anion and a hydrocarbon cation. This leads to MImOF having an unusual liquid nanostructure, such that it contains fluorocarbon, hydrocarbon and polar domains. No lyotropic liquid crystal phases were observed for phytantriol in neat MImOF. However, on addition of water, lamellar, cubic Ia3¯d and micellar phases were observed for specific MImOF-phytantriol-water compositions at room temperature, and up to 60 °C. The phase behaviour for phytantriol in the solvent mixture of 25 wt%-MImOF-75 wt%-water was the most similar to the phytantriol-water phase diagram. Only this MImOF-water composition supported the Ia3¯d cubic phase, which had a lattice parameter between 100-140 Å compared to 86-100 Å in deionised water, indicating significant swelling due to the MImOF. IR spectroscopy showed that a percentage of the water molecules were hydrogen bonded to the N-H of the MIm cation, and this water decreased the hydrogen bonding present between the cation and anion of the ionic liquid. This investigation furthers our understanding of the interaction of ionic liquids with solutes, and the important role that the different IL nanostructures can have on influencing these interactions. PMID:25177837

  19. Peptide and micelle morphologies in ionic liquid

    NASA Astrophysics Data System (ADS)

    Montgomery, Ashley; Naik, Sandeep; Ray, Jacob; Savin, Daniel

    2010-03-01

    Ionic liquids (ILs) are considered ``green'' solvents that have shown interesting properties in polymeric solutions; however, potential screening effects in polyelectrolytes remain largely unexplored. These studies intend to compare the solution behavior of traditional polyelectrolytes like poly(styrene sulfonate) in ionic liquid and water. This will be extended into charged polypeptides such as poly(L-lysine) (PK) and PK-containing block copolymers. In particular, we are interested in the solution chain dimensions and secondary structure of the polypeptide and how it can potentially influence micelle morphologies in ionic liquids. Circular dichroism, dynamic light scattering and electron microscopy were used for characterization of peptide secondary structure and aggregate morphology respectively. The aggregation in ionic liquids will be compared with their aqueous counterparts.

  20. Ionic liquids as lubricants of polystyrene and polyamide 6-steel contacts. Preparation and properties of new polymer-ionic liquid dispersions

    Microsoft Academic Search

    J. Sanes; F. J. Carrión; M. D. Bermúdez; G. Martínez-Nicolás

    2006-01-01

    Room-temperature ionic liquids (ILs) have been used as external lubricants in polystyrene (PS) and polyamide 6 (PA6)-steel contacts and as internal lubricants in new polymer-IL dispersions. 1?C\\u000a n\\u000a H2n+1?3?CH3-imidazolium X? [X=BF4; n=2 (IL1), 6 (IL2), 8 (IL3). X=PF6; n=6 (IL4). X=CF3SO3; n=2 (IL5). X=(4?CH3C6H4SO3); n=2 (IL6)] ionic liquids give low friction and extremely mild wear in PS\\/AISI 316L stainless steel

  1. Zeolite synthesis in hydrated silicate ionic liquids.

    PubMed

    van Tendeloo, Leen; Haouas, Mohamed; Martens, Johan A; Kirschhock, C E A; Breynaert, Eric; Taulelle, Francis

    2015-01-01

    Hydrated alkali silicate ionic liquids (HSIL) were prepared by hydrolysis of tetraethoxysilane (TEOS) in alkali hydroxide-water mixtures, inducing coacervation and phase separation. The resulting optically clear, homogenous silicate ionic liquid offers exceptional potential for monitoring zeolite crystallisation. This enhanced synthesis route provides access to analysis of speciation, mechanistic details of zeolite formation, and brings organic-template-free zeolite synthesis by design within reach. PMID:25886652

  2. The Solubility Parameters of Ionic Liquids

    PubMed Central

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  3. Surface structure at the ionic liquid-electrified metal interface.

    PubMed

    Baldelli, Steven

    2008-03-01

    Room-temperature ionic liquids are a new class of liquids with many important uses in electrical and electrochemical devices. The liquids are composed purely of ions in the liquid state with no solvent. They generally have good electrical and ionic conductivity and are electrochemically stable. Since their applications often depend critically on the interface structure of the liquid adjacent to the electrode, a molecular level description is necessary to understanding and improving their performance. There are currently no adequate models or descriptions on the organization of the ions, in these pure ionic compounds, adjacent to the electrode surface. In normal electrolytic solutions, the organization of solvent and ions is adequately described by the Gouy-Chapman-Sterns model. However, this model is based on the same concepts as those in Debye-Huckel theory, that is a dilute electrolyte, where ions are well-separated and noninteracting. This is definitely not the situation for ionic liquids. Thus our goal was to investigate the ionic liquid-metal interface using surface-specific vibrational spectroscopy sum frequency generation, SFG. This technique can probe the metal-liquid interface without interference from the bulk electrolyte. Thus the interface is probed in situ while the electrode potential is changed. To compliment the vibrational spectroscopy, electrochemical impedance spectroscopy (EIS) is used to measure the capacitance and estimate the "double layer" thickness and the potential of zero charge (PZC). In addition, the vibrational Stark shift of CO adsorbed on the Pt electrode was measured to provide an independent measure of the "double layer" thickness. All techniques were measured as a function of applied potential to provide full description of the interface for a variety of imidazolium-based (cation) ionic liquids. The vibrational Stark shift and EIS results suggest that ions organize in a Helmholtz-like layer at the interface, where the potential drop occurs over the a range of 3-5 A from the metal surface into the liquid. Further, the SFG results imply that the "double layer" structure is potential-dependent; At potentials positive of the PZC, anions adsorbed to the surface and the imidazolium ring are repelled to orient more along the surface normal, compared with the potentials negative of the PZC, at which the cation is oriented more parallel to the surface plane and the anions are repelled from the surface. The results present a view of the ionic liquid-metal electrode interface having a very thin "double layer" structure where the ions form a single layer at the surface to screen the electrode charge. However, the results also raise many other fundamental questions as to the detailed nature of the interfacial structure and interpretations of both electrochemical and spectroscopic data. PMID:18232666

  4. Effects of hydrophobic aggregation on the charge transport mechanism of quaternary ammonium ionic liquids

    NASA Astrophysics Data System (ADS)

    Griffin, Philip; Holt, Adam; Wang, Yangyang; Novikov, Vladimir; Sangoro, Joshua; Sokolov, Alexei

    2014-03-01

    Aprotic quaternary ammonium ionic liquids (ILs) are an important class of ILs due to their large electrochemical window and hydrophobicity. However, many of these ILs suffer from relatively low conductivity at room temperature which limits their use in electrochemical applications. In order to understand the nature of this low conductivity and its relation to the chemical structure of the alkyl ammonium cation, we have measured the charge transport properties and structural dynamics of the room temperature ionic liquid methyltrioctylammonium bistriflimide [m3oa][ntf2] over a broad temperature range using dielectric spectroscopy, dynamic light scattering, rheology, and pulsed field gradient nuclear magnetic resonance. We demonstrate that the low values of dc conductivity are due to the combined effects of significantly reduced ion mobility as well as reduced free ion concentration relative to other types of ILs. Secondly we find evidence for a mesoscopic scale structural relaxation process that we attribute to the reorientational motion of nanometer sized alkyl nanodomains. These two findings indicate that hydrophobic aggregation plays an important role in the charge transport mechanism of aprotic ammonium ionic liquids with long aliphatic side chains.

  5. Surface Nanocrystallization of an Ionic Liquid

    Microsoft Academic Search

    Yoonnam Jeon; David Vaknin; Wei Bu; Jaeho Sung; Yukio Ouchi; Woongmo Sung; Doseok Kim

    2012-01-01

    Surface crystallization at the vapor-liquid interface of the ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) is observed in synchrotron x-ray diffraction studies. Sharp Bragg reflections emerge in grazing-angle x-ray diffraction patterns 37 C above the bulk melting temperature, indicating the presence of a long-range ordered phase at the surface in coexistence with the bulk parent liquid. The unique structure of the vapor-liquid interface

  6. A study of the influence of ionic liquids properties on the Kemp elimination reaction.

    PubMed

    D'Anna, Francesca; La Marca, Sandra; Lo Meo, Paolo; Noto, Renato

    2009-08-10

    The morpholino-induced elimination of 5-nitrobenzisoxazole into the relevant 2-cyano-4-nitrophenolate has been used as a sample reaction in order to investigate molecular properties of some room temperature ionic liquids. The kinetic study was carried out at 298 K by means of spectrophotometric measurements. Ionic liquids, which differ in both their cation and anion properties, were used as solvent systems. In particular, aliphatic (pyrrolidinium, piperidinium, and ammonium) and aromatic (imidazolium and pyridinium) ionic liquids were used. For aromatic cations, imidazolium ions having different hydrogen-bond donor ability or a different alkyl-chain length were taken into account. The anions chosen ([BF(4)(-)], [PF(6)(-)], [SbF(6)(-)], and [NTf(2)(-)]; where NTf(2) = bis(trifluoromethansulfonyl)imide) showed different shape, size, and coordination ability. Solvent parameters of all ionic liquids used were determined by using spectroscopic probes, such as 4-nitroaniline, N,N-diethyl-4-nitroaniline, Nile Red, and Reichardt's dye. Finally, in order to obtain information on the structural organization of the solvent systems, resonance light-scattering measurements were carried out. The collected data provide evidence that ionic liquids are solvent media which exhibit peculiar features, whose effects can be rationalized only considering all parameters affecting their three-dimensional structure. PMID:19562783

  7. Water in ionic liquids at electrified interfaces: the anatomy of electrosorption.

    PubMed

    Feng, Guang; Jiang, Xikai; Qiao, Rui; Kornyshev, Alexei A

    2014-11-25

    Complete removal of water from room-temperature ionic liquids is nearly impossible. For the electrochemical applications of ionic liquids, how water is distributed in the electrical double layers when the bulk liquids are not perfectly dry can potentially determine whether key advantages of ionic liquids, such as a wide electrochemical window, can be harnessed in practical systems. In this paper, we study the adsorption of water on electrode surfaces in contact with humid, imidazolium-based ionic liquids using molecular dynamics simulations. The results revealed that water molecules tend to accumulate within sub-nanometer distance from charged electrodes. At low amount of water in the bulk, the distributions of ions and of electrostatic potential in the double layer are affected weakly by the presence of water, but the spatial distribution of water molecules is strongly dependent on both. The preferential positions of water molecules in double layers are determined by the balance of several factors: the tendency to follow the positions of the maximal absolute value of the electrical field, the association with their ionic surroundings, and the propensity to settle at positions where more free space is available. The balance between these factors changes with charging the electrode, but the adsorption of water generally increases with voltage. The ion specificity of water electrosorption is manifested in the stronger presence of water near positive electrodes (where anions are the counterions) than near negative electrodes (where cations are counterions). These predictions await experimental verification. PMID:25341189

  8. Solvation thermodynamics of alkali and halide ions in ionic liquids through integral equations

    NASA Astrophysics Data System (ADS)

    Bruzzone, Samantha; Malvaldi, Marco; Chiappe, Cinzia

    2008-08-01

    In this work, we study the solvation thermodynamics and other solvation properties of small ions in two room-temperature ionic liquids, dimethyl imidazolium hexafluorophosphate [mmim] [pf6] and dimethyl imidazolium chloride [mmim][cl] with the reference interaction site model (RISM). The nature of the charge affects several aspects of solvation, from electrostriction to the mutual disposition of cations around the solute; nevertheless, the long-range screening behavior of the liquid appears to be insensitive to both charge and dimensions of the solute. The ion solvation is energy driven, as expected for the nature of the solvent, and displays a marked asymmetry between cation and anion solvation chemical potential. Such asymmetry is dependent, even qualitatively, on the ionic liquid chosen as solvent. Partial molar volumes of ions in solution are found to follow the nature of ion-solvent interaction.

  9. Effect of anion on micro\\/nano-tribological properties of ultra-thin imidazolium ionic liquid films on silicon wafer

    Microsoft Academic Search

    Wenjie Zhao; Min Zhu; Yufei Mo; Mingwu Bai

    2009-01-01

    Four kinds of room temperature ionic liquids (RTILs), as a new kind of lubricant for micro\\/nano-electromechanical system, with the same imidazolium cation but carrying different anions including hexafluorophosphate, tetrafluoroborate, nitrate and perchlorate were synthesized and these nano-scale films were prepared on single-crystal silicon wafer by dip-coating method. Atomic force microscopy was used to examine the morphologies of the films and

  10. Tribological properties of ultra-thin ionic liquid films on single-crystal silicon wafers with functionalized surfaces

    Microsoft Academic Search

    Bo Yu; Feng Zhou; Zonggang Mu; Yongmin Liang; Weimin Liu

    2006-01-01

    Two kinds of room temperature ionic liquid (RTIL) films carrying vinyl and hydroxyl functional groups were prepared on single-crystal Si wafers by spin coating. The tribological properties of the RTIL films sliding against AISI-52100 steel ball and Si3N4 ball in a ball-on-plate configuration were investigated on a dynamic–static friction coefficient measurement apparatus, using perfluoropolyether (PFPE) film as a comparison. The

  11. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes

    Microsoft Academic Search

    V. Baranchugov; E. Markevich; E. Pollak; G. Salitra; D. Aurbach

    2007-01-01

    High lithiation capacity at low red-ox potentials in combination with good safety characteristics makes amorphous Si as a very promising anode material for rechargeable Li batteries.Thin film silicon electrodes were prepared by DC magnetron sputtering of silicon on stainless steel substrates. Their behavior as Li insertion\\/extraction electrodes was studied by voltammetry and chronopotentiometry at room temperature in the ionic liquid

  12. Electrochemical Generation of Superoxide Ion in Ionic Liquid 1-(3-Methoxypropyl)-1-Methylpiperidinium Bis (Trifluoromethylsulfonyl) Imide

    NASA Astrophysics Data System (ADS)

    Hayyan, Maan; Mjalli, Farouq S.; Hashim, Mohd Ali; AlNashef, Inas M.

    2011-02-01

    In this work, the superoxide ion was generated and analysed electrochemically using cyclic voltammetry (CV) techniques from oxygen dissolved in a room-temperature ionic liquid, 1-(3-methoxypropyl)-1-methylpiperidinium bis (trifluoromethylsulfonyl) imide, at atmospheric pressure. It was found that the generated superoxide ion was stable which indicates its possible use for further useful applications. To the best of our knowledge, this is the first time a piperidinium based IL has been used for the electrochemical generation of O2.

  13. Ionic liquid matrix-induced metastable decay of peptides and oligonucleotides and stabilization of phospholipids in MALDI FTMS analyses

    Microsoft Academic Search

    Jeffrey J. Jones; S. Mariccor A. B. Batoy; Charles L. Wilkins; Rohana Liyanage; Jackson O. Lay

    2005-01-01

    Room-temperature ionic liquid matrices (ILMs) have recently been investigated for use in matrix-assisted laser desorption\\/ionization\\u000a (MALDI) mass spectrometry (MS) and proven to be advantageous. Literature accounts of ILM performance for biological samples\\u000a document increased sensitivity and ionization efficiency. These claims have been investigated here, and are supported for\\u000a MALDI TOF applications to peptides, oligonucleotides, and phospholipids. Peptides and oligonucleotides however,

  14. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Yin, Kun; Yang, Li; Tachibana, Kazuhiro; Hirano, Shin-ichi

    2015-03-01

    In this work, the ordered mesoporous silica, SBA-15, is chosen as the matrix for the first time to prepare quasi-solid-state electrolytes (QSSEs) with an ionic liquid, LiTFSI salt and PVdF-HFP. The as-obtained QSSEs are evaluated by electrochemical methods. Lithium metal batteries containing these QSSEs exhibit high discharge capacity and good cycle performance at room temperature, indicating successful battery operation.

  15. Effect of Embedded Pd Microstructures on the Flat-Band-Voltage Operation of Room Temperature ZnO-Based Liquid Petroleum Gas Sensors

    PubMed Central

    Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.

    2013-01-01

    Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 ?m mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.

  16. Physicochemical Properties of Imidazolium-derived Ionic Liquids with Different C-2 Substitutions

    SciTech Connect

    Liao, Chen [ORNL; Shao, Nan [ORNL; Han, Kee Sung [ORNL; Sun, Xiao-Guang [ORNL; Jiang, Deen [ORNL; Hagaman, Edward {Ed} W [ORNL; Dai, Sheng [ORNL

    2011-01-01

    Five room temperature ionic liquids based on C-2 substituted imidazolium cations and bis(trifluoromethanesulfonyl)imide (TFSI) anion were synthesized and their physicochemical properties: thermal property, density, viscosity, ionic conductivity, self-diffusion coefficients, and electrochemical stability were systematically investigated. The temperature dependence of both viscosity and ionic conductivities of these ionic liquids can be described by Vogel-Fulcher-Tamman (VFT) equation. Compared with the reference, 1-propyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, the introduction of functional groups at the C-2 position generally increased the viscosity and lowered the ionic conductivity. The introduction of ether group ( CH2OCH2CH2CH2CH3) at the C-2 position not only enhanced the reduction stability of the ionic liquids but also exhibited the lowest solid electrolyte interfacial resistance (RSEI). On the contrary, the introduction of a cyano group ( CN) at the C-2 position not only decreased the reduction stability but also adversely increased the SEI resistance. The effect of the C-2 substitution on the reduction stability was explained by the change of the energy level of the lowest unoccupied molecular orbital. The self-diffusion coefficients (D) of each ion were measured by pulsed field gradient nuclear magnetic resonance (PFG-NMR). The lithium transference number (tLi) of 0.5 M LiTFSI/IL solutions calculated from the self-diffusion coefficients was in the range of 0.04 and 0.09.

  17. Diffusion of organic dyes in ionic liquid and giant micron sized ionic liquid mixed micelle: fluorescence correlation spectroscopy.

    PubMed

    Sasmal, Dibyendu Kumar; Mandal, Amit Kumar; Mondal, Tridib; Bhattacharyya, Kankan

    2011-06-23

    Diffusion of organic dyes in neat room temperature ionic liquid (RTIL) and RTIL-mixed micelle has been studied by fluorescence correlation spectroscopy (FCS). We have selected two RTILs, 3-pentyl-1-methyl imidazolium bromide ([C5C1Im][Br]) and the corresponding tetra-fluoroborate ([C5C1Im][BF(4)]). Diffusion coefficients (D(t)) of three organic dyes--DCM (neutral), C480 (neutral), and C343 (anionic)--in these RTILs are ?100 times slower compared to water. This indicates very high viscosity of the RTILs. In contrast to water, the D(t) in RTIL exhibits a wide distribution which suggests the presence of heterogeneity (nanoscale organization). The presence of ions in the RTILs markedly affects diffusion in the RTILs. D(t)'s of C480 (neutral) and C343 (anionic) are very similar in water but in RTILs the ionic dye C343 diffuses 1.7 times slower than neutral C480. This is attributed to the electrostatic force exerted by the ions in the RTILs. In the giant (?2-4 ?m) [C5C1Im][Br]-triblock copolymer (P123) mixed micelle D(t) of DCM, C480, and C343 are found to be 7, 15, and 7 ?m(2) s(-1), respectively. The results are compared with those in P123 micelle and gel. PMID:21619001

  18. Modification and implications of changes in electrochemical responses encountered when undertaking deoxygenation in ionic liquids.

    PubMed

    Zhao, Chuan; Bond, Alan M; Compton, Richard G; O'Mahony, Aoife M; Rogers, Emma I

    2010-05-01

    Physicochemical changes and substantially modified electrochemical behavior have been reported when ionic liquids are degassed with nitrogen. In conventional experiments in aqueous and organic media, degassing with N(2) is commonly used to remove the electroactive dissolved oxygen. However, in hydrophilic ionic liquid media, degassing with N(2) removes not only the dissolved oxygen but also a significant amount of the adventitious water present. Given the low viscosity of water, this in turn leads to a dramatic change of the viscosity of the degassed ionic liquid and hence mass transport properties that influence voltammetric responses. In the widely used and relatively viscous room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF(4)) containing the redox probe tetracyanoquinodimethane (TCNQ) and 9% (v/v) deliberately added water, 1 h degassing with very dry N(2) under benchtop conditions results in a dramatic decrease of the TCNQ reduction current obtained under steady-state conditions at a 1 mum diameter microdisc electrode. This is reflected by a change of diffusion coefficient of TCNQ (D(TCNQ)) from 2.6 x 10(-7) to 4.6 x 10(-8) cm(2) s(-1). Karl Fischer titration measurements show that almost complete removal of the deliberately added 9% water is achieved by degassing under benchtop conditions. However, displacement of oxygen by nitrogen in the ionic liquid solution results in the decrease of electrochemical reduction current by 6%, implying that dissolved gases need not be inert with respect to solvent properties. Oxygen removal by placing the BMIMBF(4) ionic liquid in a nitrogen-filled glovebox or in a vacuum cell also simultaneously leads to removal of water and alteration of voltammetric data. This study highlights that (i) important physicochemical differences may arise upon addition or removal of a solute from viscous ionic liquids; (ii) degassing with dry nitrogen removes water as well as oxygen from ionic liquids, which may have implications on the viscosity and structure of the medium; (iii) particular caution must be exercised when deoxygenation is applied in ionic liquid media as part of the protocol used in electrochemical experiments to remove oxygen; (iv) gases such as oxygen, argon, and nitrogen dissolved in ionic liquids need not be innocent with respect to the properties of an ionic liquid. The use of vacuum based techniques to eliminate all volatile solutes, including water and oxygen, is advocated. PMID:20392069

  19. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G. [Fachrichtung Physik, Technische Universitaet Dresden, Helmholtzstrasse 10, D-01069 Dresden (Germany); Ullmann, F. [DREEBIT GmbH, Zur Wetterwarte 50, D-01109 Dresden (Germany); Pilz, W.; Bischoff, L. [Helmholtzzentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden (Germany)

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  20. Surface Nanocrystallization of an Ionic Liquid

    SciTech Connect

    Jeon, Yoonnam; Vaknin, David; Bu, Wei; Sung, Jaeho; Ouchi, Yukio; Sung, Woongmo; Kim, Doseok (Iowa State); (Nagoya); (Sogang)

    2012-03-26

    Surface crystallization at the vapor-liquid interface of the ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) is observed in synchrotron x-ray diffraction studies. Sharp Bragg reflections emerge in grazing-angle x-ray diffraction patterns 37 C above the bulk melting temperature, indicating the presence of a long-range ordered phase at the surface in coexistence with the bulk parent liquid. The unique structure of the vapor-liquid interface where butyl chains attached to the cations are expelled to the vapor side facilitates interionic electrostatic interactions that lead to the crystallization. Our results demonstrate the complexity of ionic-liquid structure with their tendency to spontaneously phase separate into nanodomains with finite correlation lengths in coexistence with the liquid phase. By virtue of interfacial boundary conditions, these nanodomains grow laterally to form quasi-two-dimensional crystals.

  1. Surface nanocrystallization of an ionic liquid.

    PubMed

    Jeon, Yoonnam; Vaknin, David; Bu, Wei; Sung, Jaeho; Ouchi, Yukio; Sung, Woongmo; Kim, Doseok

    2012-02-01

    Surface crystallization at the vapor-liquid interface of the ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) is observed in synchrotron x-ray diffraction studies. Sharp Bragg reflections emerge in grazing-angle x-ray diffraction patterns 37?°C above the bulk melting temperature, indicating the presence of a long-range ordered phase at the surface in coexistence with the bulk parent liquid. The unique structure of the vapor-liquid interface where butyl chains attached to the cations are expelled to the vapor side facilitates interionic electrostatic interactions that lead to the crystallization. Our results demonstrate the complexity of ionic-liquid structure with their tendency to spontaneously phase separate into nanodomains with finite correlation lengths in coexistence with the liquid phase. By virtue of interfacial boundary conditions, these nanodomains grow laterally to form quasi-two-dimensional crystals. PMID:22400939

  2. Surface Nanocrystallization of an Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Jeon, Yoonnam; Vaknin, David; Bu, Wei; Sung, Jaeho; Ouchi, Yukio; Sung, Woongmo; Kim, Doseok

    2012-02-01

    Surface crystallization at the vapor-liquid interface of the ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) is observed in synchrotron x-ray diffraction studies. Sharp Bragg reflections emerge in grazing-angle x-ray diffraction patterns 37°C above the bulk melting temperature, indicating the presence of a long-range ordered phase at the surface in coexistence with the bulk parent liquid. The unique structure of the vapor-liquid interface where butyl chains attached to the cations are expelled to the vapor side facilitates interionic electrostatic interactions that lead to the crystallization. Our results demonstrate the complexity of ionic-liquid structure with their tendency to spontaneously phase separate into nanodomains with finite correlation lengths in coexistence with the liquid phase. By virtue of interfacial boundary conditions, these nanodomains grow laterally to form quasi-two-dimensional crystals.

  3. The thiocyanate anion is a primary driver of carbon dioxide capture by ionic liquids

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-01-01

    Carbon dioxide, CO2, capture by room-temperature ionic liquids (RTILs) is a vivid research area featuring both accomplishments and frustrations. This work employs the PM7-MD method to simulate adsorption of CO2 by 1,3-dimethylimidazolium thiocyanate at 300 K. The obtained result evidences that the thiocyanate anion plays a key role in gas capture, whereas the impact of the 1,3-dimethylimidazolium cation is mediocre. Decomposition of the computed wave function on the individual molecular orbitals confirms that CO2-SCN binding extends beyond just expected electrostatic interactions in the ion-molecular system and involves partial sharing of valence orbitals.

  4. Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel\\/steel contacts

    Microsoft Academic Search

    A. Hernández Battez; R. González; J. L. Viesca; D. Blanco; E. Asedegbega; A. Osorio

    2009-01-01

    In this paper two room-temperature ionic liquids (ILs), 1-hexyl-3-methylimidazolium tetrafluroborate [HMIM][BF4] and 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], have been studied as 1%wt. additives of a mineral hydrocracking oil for steel–steel contacts. Rheological properties of the mixtures and base oil were determined over shear rates and temperatures ranging 1–1000s?1 and 40–100°C, respectively. Friction and wear testing was made using a block-on-ring tribometer set

  5. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors

    Microsoft Academic Search

    A. Balducci; F. Soavi; M. Mastragostino

    2006-01-01

    The aim of this paper is to demonstrate that the use of ionic liquids (ILs) in activated carbon (AC)\\/\\/poly(3-methyl-thiophene)\\u000a (pMeT) hybrid supercapacitors is a very promising strategy to develop high voltage supercapacitors operating above room temperature\\u000a with solvent-free green electrolytes. The ILs used were 1-butyl-3-methyl-imidazolium tetrafluoroborate, 1-butyl-3-methyl-imidazolium\\u000a hexafluorophosphate, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. We report and discuss the performance\\u000a of AC and pMeT

  6. Performance of Nitrile-Containing Anions in Task-Specific Ionic Liquids for Improved CO2/N2 Separation

    SciTech Connect

    Mahurin, Shannon Mark [ORNL; Lee, Jeseung [ORNL; Baker, Gary A [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2010-01-01

    This work explores the performance of a series of ionic liquids that incorporate a nitrile-containing anion paired to 1-alkyl-3-methylimidazolium cations in tailoring the selectivity and permeance of supported ionic liquid membranes for CO2/N2 separations. The permeance and selectivity of three ionic liquids, each with an increasing number of nitrile groups in the anion (i.e., two, three, and four), were measured using a non-steady-state permeation method. By predictably varying the molar volume and viscosity of the ionic liquids, we show that the solubility, selectivity, and permeance can be optimized for CO2/N2 separation through controlled introduction of the nitrile functionality into the anion. Of the three nitrile-based ionic liquids studied, 1-ethyl-3-methylimidazolium tetracyanoborate, [emim][B(CN)4], showed the highest permeance with a value of 2.55 10 9 mol/(m2 Pa s), a magnitude 30% higher than that of the popular ionic liquid [emim][Tf2N]. This same nitrile-bearing ionic liquid also exhibited a high CO2/N2 selectivity of approximately 53. Additionally, the carbon dioxide solubility for each ionic liquid was measured at room temperature with [emim][B(CN)4] again exhibiting the highest CO2 solubility. Results from our study of the nitrile-based ionic liquids can be rationalized in terms of regular solution theory wherein the selectivity and permeance of a given SILM system are largely determined by the molar volume and viscosity of the corresponding ionic liquid phase.

  7. Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data

    Microsoft Academic Search

    María D. Guillen; Encarnación Goicoechea

    2009-01-01

    The oil liquid matrix of several corn oil samples that have been stored at room temperature in closed receptacles for different periods of time is studied by means of 1H nuclear magnetic resonance (1H NMR), in order to further knowledge about this type of edible oil oxidation. As expected, the degradation of linoleic acyl groups predominates. In samples at early

  8. Understanding the polarity of ionic liquids.

    PubMed

    Ab Rani, M A; Brant, A; Crowhurst, L; Dolan, A; Lui, M; Hassan, N H; Hallett, J P; Hunt, P A; Niedermeyer, H; Perez-Arlandis, J M; Schrems, M; Welton, T; Wilding, R

    2011-10-01

    The polarities of a wide range of ionic liquids have been determined using the Kamlet-Taft empirical polarity scales ?, ? and ?*, with the dye set Reichardt's Dye, N,N-diethyl-4-nitroaniline and 4-nitroaniline. These have been compared to measurements of these parameters with different dye sets and to different polarity scales. The results emphasise the importance of recognising the role that the nature of the solute plays in determining these scales. It is particularly noted that polarity scales based upon charged solutes can give very different values for the polarity of ionic liquids compared to those based upon neutral probes. Finally, the effects of commonplace impurities in ionic liquids are reported. PMID:21858359

  9. Interactions of ionic liquids and water.

    PubMed

    Ficke, Lindsay E; Brennecke, Joan F

    2010-08-19

    Experimental excess enthalpies of ionic liquid and water mixtures in combination with calculated CHELPG atomic charges were used to investigate the interactions between the species in solution. The excess enthalpies of ionic liquids in water were obtained by calorimetry, using a Setaram C80 calorimeter, including temperatures from (313.15 to 348.15) K and the entire range of composition. The ionic liquids investigated all contain the 1-ethyl-3-methylimidazolium cation except one, which has an added hydroxyl group on the cation (1-(2-hydroxyethyl)-3-methylimidazolium cation). The anions investigated are ethylsulfate, methylsulfate, hydrogensulfate, trifluoromethanesulfonate, methanesulfonate, and trifluoroacetate, and these will demonstrate the effect of systematically varying the substituents on the anion. The CHELPG atomic charges on the cations and anions were calculated using the Gaussian 03 program. The CHELPG atomic charges are consistent with the observed trends in excess enthalpy and provide insight into cation/water, anion/water, and cation/anion interactions. PMID:20701381

  10. TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.

    SciTech Connect

    DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

    2007-11-30

    The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

  11. Ionic liquids as active pharmaceutical ingredients.

    PubMed

    Ferraz, Ricardo; Branco, Luís C; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Zeljko

    2011-06-01

    Ionic liquids (ILs) are ionic compounds that possess a melting temperature below 100 °C. Their physical and chemical properties are attractive for various applications. Several organic materials that are now classified as ionic liquids were described as far back as the mid-19th century. The search for new and different ILs has led to the progressive development and application of three generations of ILs: 1) The focus of the first generation was mainly on their unique intrinsic physical and chemical properties, such as density, viscosity, conductivity, solubility, and high thermal and chemical stability. 2) The second generation of ILs offered the potential to tune some of these physical and chemical properties, allowing the formation of "task-specific ionic liquids" which can have application as lubricants, energetic materials (in the case of selective separation and extraction processes), and as more environmentally friendly (greener) reaction solvents, among others. 3) The third and most recent generation of ILs involve active pharmaceutical ingredients (API), which are being used to produce ILs with biological activity. Herein we summarize recent developments in the area of third-generation ionic liquids that are being used as APIs, with a particular focus on efforts to overcome current hurdles encountered by APIs. We also offer some innovative solutions in new medical treatment and delivery options. PMID:21557480

  12. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

  13. A novel mechanism for the extraction of metals from water to ionic liquids.

    PubMed

    Janssen, Camiel H C; Sánchez, Antonio; Witkamp, Geert-Jan; Kobrak, Mark N

    2013-11-11

    We present a novel mechanism for the extraction of metals from aqueous phases to room-temperature ionic liquids (ILs) by use of a high-temperature salt as an extraction agent. The mechanism capitalizes on the fact that charged metal complexes are soluble in ILs; this allows for extraction of charged complexes rather than the neutral species, which are formed by conventional approaches. The use of a well-chosen extraction agent also suppresses the competing ion-exchange mechanism, thus preventing degradation of the ionic liquid. The approach permits the use of excess extractant to drive the recovery of metals in high yield. This work presents both a thermodynamic framework for understanding the approach and experimental verification of the process in a range of different ILs. The method has great potential value in the recovery of metals, water purification and nuclear materials processing. PMID:24590618

  14. Tunable amphiphilicity and multifunctional applications of ionic-liquid-modified carbon quantum dots.

    PubMed

    Wang, Baogang; Song, Aixin; Feng, Lei; Ruan, Hong; Li, Hongguang; Dong, Shuli; Hao, Jingcheng

    2015-04-01

    During the past decade, increasing attention has been paid to photoluminescent nanocarbon materials, namely, carbon quantum dots (CQDs). It is gradually accepted that surface engineering plays a key role in regulating the properties and hence the applications of the CQDs. In this paper, we prepared highly charged CQDs through a one-pot pyrolysis with citric acid as carbon source and a room-temperature imidazolium-based ionic liquid as capping agent. The as-prepared CQDs exhibit high quantum yields up to 25.1% and are stable under various environments. In addition, the amphiphilicity of the CQDs can be facilely tuned by anion exchange, which leads to a spontaneous phase transfer between water and oil phase. The promising applications of the CQDs as ion sensors and fluorescent inks have been demonstrated. In both cases, these ionic-liquid-modified CQDs were found to possess novel characteristics and/or superior functions compared to existing ones. PMID:25774972

  15. Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid

    SciTech Connect

    Jensen, Mark P.; Beitz, James V.; Rickert, Paul G. [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Borkowski, Marian [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Los Alamos Natl Lab, Earth and Environm Sci Div, Carlsbad, NM, (United States); Laszak, Ivan [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Commisariat Energie Atom, DEN DPC SERC LANIE, Gif Sur Yvette, (France); Dietz, Mark L. [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Wisconsin-Milwaukee Univ, Department of Chemistry and Biochemistry, Milwaukee, WI, (United States)

    2012-07-01

    The extraction of trivalent lanthanides from an aqueous phase containing 1 M NaClO{sub 4} into the room temperature ionic liquid 1-butyl-3-methylimidazolium nonafluoro-1-butane sulfonate by the beta-diketone extractant 2-thenoyltrifluoroacetone (Htta) was studied. Radiotracer distribution, absorption spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and X-ray absorption fine structure measurements point to the extraction of multiple lanthanide species. At low extractant concentrations, fully hydrated aqua cations of the lanthanides are present in the ionic liquid phase. As the extractant concentration is increased 1:2 and 1:3 lanthanide:tta species are observed. In contrast, 1:4 Ln:tta complexes were observed in the extraction of lanthanides by Htta into 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. (authors)

  16. Capacitive Energy Storage from - 50o to 100o Using an Ionic Liquid Electrolyte

    SciTech Connect

    Lin, Rongying [Universite Paul Sabatier, Toulouse Cedex, France.; Taberna, Pierre-Louis [Universite Paul Sabatier, Toulouse Cedex, France.; Santini, Sebastien [SOLVIONIC Company, Toulouse, France; Presser, Volker [ORNL; Perez, Carlos R. [Drexel University; Malbosc, Francois [SOLVIONIC Company, Toulouse, France; Rupesinghe, Nalin L. [AIXTRON, Cambridge, UK; Teo, Kenneth B. K. [AIXTRON, Cambridge, UK; Gogotsi, Yury G. [Drexel University; Simon, Patrice [Universite Paul Sabatier, Toulouse Cedex, France.

    2011-01-01

    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from 50 to 100 C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

  17. Polyoxometalate ionic liquids as self-repairing acid-resistant corrosion protection.

    PubMed

    Herrmann, Sven; Kostrzewa, Monika; Wierschem, Andreas; Streb, Carsten

    2014-12-01

    Corrosion is a global problem for any metallic structure or material. Herein we show how metals can easily be protected against acid corrosion using hydrophobic polyoxometalate-based ionic liquids (POM-ILs). Copper metal disks were coated with room-temperature POM-ILs composed of transition-metal functionalized Keggin anions [SiW11 O39 TM(H2 O)](n-) (TM=Cu(II) , Fe(III) ) and quaternary alkylammonium cations (Cn H2?n+1 )4 N(+) (n=7-8). The corrosion resistance against acetic acid vapors and simulated "acid rain" was significantly improved compared with commercial ionic liquids or solid polyoxometalate coatings. Mechanical damage to the POM-IL coating is self-repaired in less than one minute with full retention of the acid protection properties. The coating can easily be removed and recovered by rinsing with organic solvents. PMID:25332068

  18. Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content.

    PubMed

    Girard, G M A; Hilder, M; Zhu, H; Nucciarone, D; Whitbread, K; Zavorine, S; Moser, M; Forsyth, M; MacFarlane, D R; Howlett, P C

    2015-04-14

    Electrolytes of a room temperature ionic liquid (RTIL), trimethyl(isobutyl)phosphonium (P111i4) bis(fluorosulfonyl)imide (FSI) with a wide range of lithium bis(fluorosulfonyl)imide (LiFSI) salt concentrations (up to 3.8 mol kg(-1) of salt in the RTIL) were characterised using a combination of techniques including viscosity, conductivity, differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), nuclear magnetic resonance (NMR) and cyclic voltammetry (CV). We show that the FSI-based electrolyte containing a high salt concentration (e.g. 1?:?1 salt to IL molar ratio, equivalent to 3.2 mol kg(-1) of LiFSI) displays unusual transport behavior with respect to lithium ion mobility and promising electrochemical behavior, despite an increase in viscosity. These electrolytes could compete with the more traditionally studied nitrogen-based ionic liquids (ILs) in lithium battery applications. PMID:25820549

  19. Unravelling nanoconfined films of ionic liquids.

    PubMed

    Lee, Alpha A; Vella, Dominic; Perkin, Susan; Goriely, Alain

    2014-09-01

    The confinement of an ionic liquid between charged solid surfaces is treated using an exactly solvable 1D Coulomb gas model. The theory highlights the importance of two dimensionless parameters: the fugacity of the ionic liquid, and the electrostatic interaction energy of ions at closest approach, in determining how the disjoining pressure exerted on the walls depends on the geometrical confinement. Our theory reveals that thermodynamic fluctuations play a vital role in the "squeezing out" of charged layers as the confinement is increased. The model shows good qualitative agreement with previous experimental data, with all parameters independently estimated without fitting. PMID:25194391

  20. Room temperature microchannel fabrication for microfluidic system

    Microsoft Academic Search

    Da-Jeng Yao; Po-Yu Chen

    2007-01-01

    This paper reports a novel method to fabricate micro structures under room temperature, which could be used in microfluidic system. This micro fluidic system can be used to automatically transport liquid by evaporation at the end without any external driving force. Because the micro fluidic system chip was easy to be fabricated, and it didn't need dynamic temperature control system

  1. Thermal properties of imidazolium ionic liquids

    Microsoft Academic Search

    Helen L Ngo; Karen LeCompte; Liesl Hargens; Alan B McEwen

    2000-01-01

    We investigated the thermal properties of several imidazolium salts using DSC and TGA\\/SDTA data. Many of these salts are liquids at sub-ambient temperatures. These ionic liquids form glasses at low temperatures and have minimal vapor pressure up to their thermal decomposition temperature (>400°C). Thermal decomposition is endothermic with the inorganic anions and exothermic with the organic anions investigated. Halide anions

  2. General impossibility to 'prescribe' diffusion for a geminate pair in a central force field and peculiarities of geminate in ionic liquids.

    SciTech Connect

    Shkrob, I. A. (Chemical Sciences and Engineering Division)

    2011-05-12

    Given the difficulty of obtaining analytical solutions for the diffusion of interacting geminate pairs of (ion) radicals in liquids, it is common, following the original treatment of Mozumder, to 'prescribe' this diffusion. A demonstration is given that such a prescription is impossible for any interaction potential other than the Coulomb potential. This demonstration suggests the inadequacy of this common approach to modeling geminate pair and spur dynamics in the largest emerging class of organic solvents: room-temperature ionic liquids.

  3. 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  4. Esterification of Starch in Ionic Liquids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  5. Ionic liquids as additives for thermoplastics

    Microsoft Academic Search

    K. I. Park; M. Xanthos

    2007-01-01

    In attempts to develop new process modifiers for thermoplastics, two ionic liquids with long chain hydrophobic cations and different anions were introduced in a biodegradable polymer. Methods of incorporation included melt blending, solvent casting and microencapsulation from w\\/o\\/w systems at concentrations up to 10 wt%. The modified polymers were characterized rheologically and by TGA to determine process and thermal stability,

  6. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients

    NASA Astrophysics Data System (ADS)

    Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2009-01-01

    A systematic molecular dynamics study is performed to determine the dynamics and transport properties of 12 room-temperature ionic liquids family with 1-alkyl-3-methylimidazolium cation, [amim]+ (alkyl=methyl, ethyl, propyl, and butyl), with counterions, PF6-, NO3-, and Cl-. The goal of the work is to provide molecular level understanding of the transport coefficients of these liquids as guidance to experimentalists on choosing anion and cation pairs to match required properties of ionic liquid solvents. In the earlier paper (Part I), we characterized the dynamics of ionic liquids and provided a detailed comparison of the diffusion coefficients for each ion using the Einstein and Green-Kubo formulas. In this second part, other transport properties of imidazolium salts are calculated, in particular, the electrical conductivity is calculated from the Nernst-Einstein and Green-Kubo formulas. The viscosity is also determined from the Stokes-Einstein relation. The results of the calculated transport coefficients are consistent with the previous computational and experimental studies of imidazolium salts. Generally, the simulations give electrical conductivity lower than experiment while the viscosity estimate is higher than experiment. Within the same cation family, the ionic liquids with the NO3- counterion have the highest electrical conductivities: ?[NO3]->?[PF6]->?[Cl]-. The [dmim][X] series, due to their symmetric cationic structure and good packing and the [bmim][X] series due to higher inductive van der Waals interactions of [bmim]+, have the highest viscosities in these ionic liquid series. Our simulations show that the major factors determining the magnitude of the self-diffusion, electrical conductivity, and viscosity are the geometric shape, ion size, and the delocalization of the ionic charge in the anion.

  7. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients.

    PubMed

    Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2009-01-01

    A systematic molecular dynamics study is performed to determine the dynamics and transport properties of 12 room-temperature ionic liquids family with 1-alkyl-3-methylimidazolium cation, [amim](+) (alkyl = methyl, ethyl, propyl, and butyl), with counterions, PF(6)(-), NO(3)(-), and Cl(-). The goal of the work is to provide molecular level understanding of the transport coefficients of these liquids as guidance to experimentalists on choosing anion and cation pairs to match required properties of ionic liquid solvents. In the earlier paper (Part I), we characterized the dynamics of ionic liquids and provided a detailed comparison of the diffusion coefficients for each ion using the Einstein and Green-Kubo formulas. In this second part, other transport properties of imidazolium salts are calculated, in particular, the electrical conductivity is calculated from the Nernst-Einstein and Green-Kubo formulas. The viscosity is also determined from the Stokes-Einstein relation. The results of the calculated transport coefficients are consistent with the previous computational and experimental studies of imidazolium salts. Generally, the simulations give electrical conductivity lower than experiment while the viscosity estimate is higher than experiment. Within the same cation family, the ionic liquids with the NO(3)(-) counterion have the highest electrical conductivities: sigma[NO(3)](-)>sigma[PF(6)](-)>sigma[Cl](-). The [dmim][X] series, due to their symmetric cationic structure and good packing and the [bmim][X] series due to higher inductive van der Waals interactions of [bmim](+), have the highest viscosities in these ionic liquid series. Our simulations show that the major factors determining the magnitude of the self-diffusion, electrical conductivity, and viscosity are the geometric shape, ion size, and the delocalization of the ionic charge in the anion. PMID:19140627

  8. INNOVATIVE APPLICATIONS OF IONIC LIQUIDS AS “GREEN” ENGINEERING LIQUIDS

    Microsoft Academic Search

    Hua Zhao

    2006-01-01

    Over the past decade, ionic liquids (ILs) have become one of the fastest growing “green” media for chemists and engineers due to their superb physicochemical properties. The applications of these remarkable salts in reactions and extraction processes have been extensively investigated and reviewed. This review, however, highlights recent advances of ILs as versatile “green” engineering liquids in a variety of

  9. Distributed polarizability models for imidazolium-based ionic liquids.

    PubMed

    Millot, Claude; Chaumont, Alain; Engler, Etienne; Wipff, Georges

    2014-09-25

    Quantum chemical calculations are used to derive distributed polarizability models sufficiently accurate and compact to be used in classical molecular dynamics simulations of imidazolium-based room temperature ionic liquids. Two distributed polarizability models are fitted to reproduce the induction energy of three imidazolium cations (1,3-dimethyl-, 1-ethyl-3-methyl-, and 1-butyl-3-methylimidazolium) and four anions (tetrafluoroborate, hexafluorophosphate, nitrate, and thiocyanate) polarized by a point charge located successively on a grid of surrounding points. The first model includes charge-flow polarizabilities between first-neighbor atoms and isotropic dipolar polarizability on all atoms (except H), while the second model includes anisotropic dipolar polarizabilities on all atoms (except H). For the imidazolium cations, particular attention is given to the transferability of the distributed polarizability sets. The molecular polarizability and its anisotropy rebuilt by the distributed models are found to be in good agreement with the exact ab initio values for the three cations and 23 additional conformers of 1-ethyl-3-methyl-, 1-butyl-3-methyl-, 1-pentyl-3-methyl-, and 1-hexyl-3-methylimidazolium cations. PMID:25133873

  10. Functionalized ionic liquids as electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pandian, Shanthi; Raju, S. G.; Hariharan, Krishnan S.; Kolake, Subramanya M.; Park, Da-Hye; Lee, Myung-Jin

    2015-07-01

    The design of potential and new electrochemically stable electrolytes for Li-ion batteries is an important task in the field of energy. Room temperature ionic liquids (RTILs) characterized by a wide electrochemical window (EW) are the commonly used electrolytes for Li battery applications. In this work, a novel quantum computational method is proposed to estimate the electrochemical stability of RTILs that accurately predicts the trends in EWs of ammonium based ILs and is computationally faster than the state-of-the-art methods. Subsequently, the EW of ILs with phosphonium and sulfonium cations are computed and compared against the well-established ammonium congeners. Based on the criterion of electrochemical stability defined with respect to Li, the increasing order of stability is found to be: sulfonium < ammonium < phosphonium based ILs. The effect of various substituents like butyl, phenyl and benzyl on the phosphonium and sulfonium based ILs is examined and a greater stability for the phenyl over other substituents is observed. The key factor influencing the reduction potential of the cations is inferred as the thermodynamic stability of the radical formed during decomposition. Based on the results, design guidelines to identify stable IL systems as electrolytes in high voltage Li-ion battery applications are provided.

  11. Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Tang, Qunwei; Du, Nan; Qin, Yuancheng; Xiao, Jin; He, Benlin; Chen, Haiyan; Chu, Lei

    2014-02-01

    Volatility of organic solvent in liquid electrolyte has been tremendous obstacle for its application in dye-sensitized solar cells (DSSCs), here we designed an ionic liquid-imbibed polymer gel electrolyte using 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as solvent, 1-methyl-3-propylimidazolium iodide (MPII) as iodine source, and amphiphilic poly(hydroxyethyl methacrylate/glycerol) [poly(HEMA/GR)] as a placeholder. As an amphiphilic matrix, poly(HEMA/GR) material can swell in ionic liquid electrolyte to form a stable gel, benefiting from its extraordinary absorption. The imbibed ionic liquid electrolyte is stored into interconnected poly(HEMA/GR) framework. Resultant quasi-solid-state electrolyte is honored with high ionic conductivity (14.29 mS cm-1) at room temperature and good retention. The ionic liquid-imbibed poly(HEMA/GR) gel electrolyte-based DSSC gives an overall light-to-electric conversion efficiency of 7.15%. The new concept along with easy fabrication promises the ionic liquid-imbibed gel electrolytes good alternatives in efficient DSSCs.

  12. system at room temperature

    NASA Astrophysics Data System (ADS)

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Zhu, Wenjie; Wei, Feng

    2014-04-01

    In this paper, the moderately and lightly doped porous silicon nanowires (PSiNWs) were fabricated by the `one-pot procedure' metal-assisted chemical etching (MACE) method in the HF/H2O2/AgNO3 system at room temperature. The effects of H2O2 concentration on the nanostructure of silicon nanowires (SiNWs) were investigated. The experimental results indicate that porous structure can be introduced by the addition of H2O2 and the pore structure could be controlled by adjusting the concentration of H2O2. The H2O2 species replaces Ag+ as the oxidant and the Ag nanoparticles work as catalyst during the etching. And the concentration of H2O2 influences the nucleation and motility of Ag particles, which leads to formation of different porous structure within the nanowires. A mechanism based on the lateral etching which is catalyzed by Ag particles under the motivation by H2O2 reduction is proposed to explain the PSiNWs formation.

  13. Room temperature polyesterification

    SciTech Connect

    Moore, J.S.; Stupp, S.I. (Univ. of Illinois, Urbana, IL (United States). Dept. of Materials Science and Engineering)

    1990-01-01

    A new room temperature polymerization method has been developed for the synthesis of high molecular weight polyesters directly from carboxylic acids and phenols. The solution polymerization reaction proceeds under mild conditions, near neutral pH, and also avoids the use of preactivated acid derivatives for esterification. The reaction is useful in the preparation of isoregic ordered chains with translational polar symmetry and also in the polymerization of functionalized or chiral monomers. The conditions required for polymerization in the carbodiimide-based reaction included catalysis by the 1:1 molecular complex formed by 4-(dimethylamino)pyridine and p-toluenesulfonic acid. These conditions were established through studies on a model system involving esterification of p-toluic acid and p-cresol. Self-condensation of several hydroxy acid monomers by this reaction has produced routinely good yields of polyesters with molecular weights greater than 15,000. It is believed that the high extents of reaction required for significant degrees of polymerization result from suppression of the side reaction leading to N-acylurea. The utility of this reaction in the formation of polar chains from sensitive monomers is demonstrated hereby the polycondensation of a chiral hydroxy acid.

  14. Increasing the intensity of protonated secondary ions in time-of-flight secondary ion mass spectrometry using a proton-conducting ionic liquid, diethylmethylammonium trifluoromethanesulfonate

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Saito, Naoaki

    2015-07-01

    To increase the secondary ion intensities of organic molecules, room-temperature ionic liquids were investigated in two time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments. First, ionic liquids as well as glycerol were tested as liquid matrices of arginine. The secondary ion intensity of protonated arginine was increased 200-fold by using a proton-conducting ionic liquid, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]). The matrix effect of [dema][TfO] was higher than that of glycerol, which is a typical matrix in SIMS. Next, ionic liquids were tested as primary ion beams. The number of protonated secondary ions of arginine was significantly increased by using a primary ion beam of [dema][TfO].

  15. Miscibility of ionic liquids with polyhydric alcohols.

    PubMed

    Makowska, Anna; Dyoniziak, Ewa; Siporska, Agnieszka; Szyd?owski, Jerzy

    2010-02-25

    Liquid-liquid miscibility temperatures as a function of composition have been determined experimentally for the binary systems formed by ionic liquids ([bmim][BF(4)], [bmim][PF(6)], [emim][Tf(2)N], [bmim][Tf(2)N], [hmim][Tf(2)N]) and polyhydric alcohols (1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2,3-propanetriol, 1,2-butanediol). The impact of ionic liquid and di- or three-hydroxy alcohol characteristics focusing on the effect of the IL's anion nature, cation alkyl chain length, and alcohol structure (number of hydroxyl groups, position of the hydroxy groups in the molecule, and number of carbon atoms in the diols) is presented. It appears that all systems exhibit upper critical solution temperatures. For dihydroxy alcohols mentioned above, miscibility with 1-butyl-3-methylimidazolium ionic liquids follows the order [BF(4)](-) > [Tf(2)N](-) > [PF(6)](-) and is dependent on the hydrogen-bond basicity of the anion. Analysis of these findings leads us to conclude that the miscibility of ionic liquids is likely related to the hydrogen-bond acceptor strength of the anion. Comparing the miscibility of 1,2-ethanediol with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides, it can be seen that surprisingly, T(c)([emim](+)) < T(c)([bmim](+)) < T(c)([hmim](+)). This arrangement of critical temperatures is opposite to that observed earlier for systems with monohydroxy alcohols. Analyzing the influence of the polyhydroxy alcohol structure, we also noticed that the miscibility of the polyhydroxy alcohols with [bmim][Tf(2)N] or [bmim][BF(4)] decreases when the polarity of the alcohol rises. PMID:20095595

  16. Checkerboard Self-Patterning of an Ionic Liquid Film on Mercury

    SciTech Connect

    Ocko, B.M.; Tamam, L.; Reichert, H.; Deutsch, M.

    2011-05-10

    {angstrom}-resolution studies of room temperature ionic liquid (RTIL) interfaces are scarce, in spite of their long-recognized importance for the science and many applications of RTILs. We present an {angstrom}-resolution x-ray study of a Langmuir film of an RTIL on mercury. At low (high) coverage [90 (50) {angstrom}{sup 2}/molecule] a mono-(bi)layer of surface-parallel molecules is found. The molecules self-assemble in a lateral ionic checkerboard pattern, unlike the uniform-charge, alternate-ion layers of this RTIL at its bulk-solid interface. A 2D-smectic order is found, with molecules packed in parallel stripes, forming long-range order normal to, but none along, the stripes.

  17. Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications.

    PubMed

    Lu, Xianbo; Wang, Xue; Jin, Jing; Zhang, Qing; Chen, Jiping

    2014-12-15

    In this study, a facile non-covalent method was developed for preparing water-soluble graphene with excellent electronic conductivity. Room temperature ionic liquids (ILs) with high ionic conductivity were used for the non-covalent surface functionalization of graphene through ?-? stacking interactions. Compared to other ILs used, amino acid ionic liquids (AAILs) were found to be the most effective for improving the dispersion of graphene in water phase. Electrochemical and spectroscopic results confirmed that the obtained AAIL functionalized GR can retain the excellent electronic conductivity of pristine graphene without damaging the graphene lattice. The obtained water-soluble graphene (GR-AAIL) was exemplified to fabricate an electrochemical biosensor using tyrosinase as a model enzyme, and the sensitivity (12,600 mA cm(-2) M(-1)) of GR-AAIL based biosensor was about 17 times higher than that of graphene oxide and other nanomaterial based biosensor, displaying its unprecedented high sensitivity for biosensing. The detection limit for catechol (one important environmental pollutant) reached as low as 8 nM with a response time of 3s and a linear range from 25 nM to 11,100 nM. The AAIL-GR based biosensor also demonstrated good reproducibility, repeatability, selectivity, long-term stability and high recovery for catechol detection. Amino acid ionic liquid functionalized graphene proves to be a robust and versatile electrochemical biosensing platform for fabricating biosensors with excellent performance. PMID:24997366

  18. Reversible Hydrophobic-Hydrophilic Transition of Ionic Liquids Driven by Carbon Dioxide.

    PubMed

    Xiong, Dazhen; Cui, Guokai; Wang, Jianji; Wang, Huiyong; Li, Zhiyong; Yao, Kaisheng; Zhang, Suojiang

    2015-06-15

    Ionic liquids (ILs) with a reversible hydrophobic-hydrophilic transition were developed, and they exhibited unique phase behavior with H2 O: monophase in the presence of CO2 , but biphase upon removal of CO2 at room temperature and atmospheric pressure. Thus, coupling of reaction, separation, and recovery steps in sustainable chemical processes could be realized by a reversible liquid-liquid phase transition of such IL-H2 O mixtures. Spectroscopic investigations and DFT calculations showed that the mechanism behind hydrophobic-hydrophilic transition involved reversible reaction of CO2 with anion of the ILs and formation of hydrophilic ammonium salts. These unique IL-H2 O systems were successfully utilized for facile one-step synthesis of Au porous films by bubbling CO2 under ambient conditions. The Au porous films and the ILs were then separated simultaneously from aqueous solutions by bubbling N2 , and recovered ILs could be directly reused in the next process. PMID:25925191

  19. Preparation of cellulose-based ionic porous material compatibilized with polymeric ionic liquid

    Microsoft Academic Search

    Kamalesh Prasad; Shozaburo Mine; Yoshiro Kaneko; Jun-ichi Kadokawa

    2010-01-01

    Cellulose-based ionic porous material compatibilized with polymeric ionic liquid was prepared by means of templating technique\\u000a using oil\\/ionic liquid emulsion in the presence of sorbitane monooleate. In situ polymerization of a mixture of polymerizable\\u000a ionic liquids, 1-(3-acryloyloxypropyl)-3-methylimidazolium and 1-(3-acryloyloxypropyl)-3-vinylimidazolium bromides was first\\u000a performed in a solution of cellulose in a solvent of an ionic liquid, 1-butyl-3-methylimidazolium chloride. The sonication\\u000a of

  20. Dissolution enthalpies of cellulose in ionic liquids.

    PubMed

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins. PMID:25256460

  1. Ionic Liquids and Supercritical Co 2

    Microsoft Academic Search

    Lynnette A. Blanchard; Zhiyong Gu; Joan F. Brennecke; Eric J. Beckman

    \\u000a Although ionic liquids (ILs) are organic solvents, They exhibit vanishing small vapour pressures [1,2]. Negligible volatility means that the most prevalent route for escape to the atmosphere and also exposure to workers — evaporation\\u000a — is absent. Low vapour pressure may also renders these solvents safer, as flash points will be much higher than for traditional\\u000a organic solvents. The development

  2. Equation of state for ionic liquids

    Microsoft Academic Search

    V. B. Rogankov

    2009-01-01

    A simple form of equation of state for ionic liquids is proposed as an asymptotic low-temperature variant of the fluctuational\\u000a equation of state developed by author. This function predicts reliably the properties of the pure substances and mixtures\\u000a with the quite different molecular structures in the wide temperature- and pressure-ranges including the critical region.\\u000a It is essentially important at evaluation,

  3. Study of Wear and Corrosion Properties of Coated Ionic Liquid

    Microsoft Academic Search

    Zhang Xiaohao; Zhang Xiangjun; Liu Yonghe; Mikhail Kosinsky; Imad Ahmed; Stefan Krischok; Juergen A. Schaefer

    \\u000a In this paper, in order to weaken the corrosion property of ionic liquids and use it as vacuum lubricant, we coated the ionic\\u000a liquids with some other liquid and tested their friction and corrosion properties using microtribometer and scanning electron\\u000a microscope (SEM). The result is gratifying. Compared to the pure ionic liquid, most of the coated samples had a one

  4. Wetting and tribological properties of ionic liquids.

    PubMed

    Castejón, Henry J; Wynn, Troy J; Marcin, Zachary M

    2014-04-01

    A phenomenological study of the surface-wetting and tribological properties of various ionic liquids was conducted using molecular dynamics simulations. The surface-wetting capabilities of the liquids were studied by simulating the morphological transformation of an isolated liquid drop in vacuum to its equilibrium state on solid surface. The tribological properties of the liquids were probed examining their flow behaviors and viscosities in computational lubrication experiments. All liquids exhibited good surface-wetting properties, as demonstrated by the hemispherical shape of the droplets at equilibrium and the surface contact angles. Contact angles for all liquids were much lower than 90°. Lubrication experiments demonstrated a flow behavior for the liquids that depended on the magnitude of the applied shear rate. Three distinctive flow regimes were observed: Newtonian, thixotropic (non-Newtonian), and oversheared. The liquids' viscosities were determined in the Newtonian regime and agree well with experimental results and with previously reported values calculated using equilibrium simulations. The phenomenological approach implemented in this study allowed for the calculation of the transport properties of the liquids and produced values within the appropriate order of magnitude without the use of calculational artifacts. These results corroborate previous reports indicating that nonequilibrium techniques represent a more robust approach for the calculation of transport properties than do equilibrium methods based on time-correlation functions. PMID:24641326

  5. Studies on room-temperature electric-field effect in ionic-liquid gated VO2 three-terminal devices

    E-print Network

    Yang, Zheng

    . INTRODUCTION Electrostatic tuning of carrier concentration in correlated oxides such as vanadium dioxide (VO2 sputtering with a V2O5 target. During growth, the pressure, Ar gas flow rate, and substrate temperature were

  6. Room temperature ionic liquids as lubricant additives in steel–aluminium contacts: Influence of sliding velocity, normal load and temperature

    Microsoft Academic Search

    A. E. Jiménez; M. D. Bermúdez; F. J. Carrión; G. Martínez-Nicolás

    2006-01-01

    1-n-Alkyl-3-methylimidazolium X? [X=PF6; n=6 (L-P106). X=BF4; n=2 (L102), 6 (L106), 8 (L108). X=CF3SO3; n=2 (L-T102). X=(4-CH3C6H4SO3); n=2 (L-To102)] and 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide (L-PY104) have been studied as 1wt.% base oil additives in variable conditions pin-on-disk tests for AISI 52100 steel-ASTM 2011 aluminium contacts. Friction coefficients and wear rates increase under increasing normal loads. Effective lubrication is obtained for a 0.15–0.20ms?1 sliding

  7. Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique

    E-print Network

    Reid, Scott A.

    Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

  8. [Determination of oleanic acid and paeoniflorin in Paeonia lactiflora by ultrasound-assisted ionic liquid-reversed phase liquid chromatography].

    PubMed

    Liu, Wei; Li, Dong-dong; Yang, Hong-shuai; Chen, Yuan-yuan; Wei, Jin-feng; Kang, Wen-yi; Guo, Xiu-chun

    2015-02-01

    Four kinds of ionic liquids [BMIM] Br, [BMIM] BF4, [BMIM] PF6, [HMIM] PF6 were used to analyze the content of oleanic acid and paeoniflorin in Paeonia lactiflora with ultrasonic-assisted extraction coupled with HPLC. The chromatographic column, Purospher star RP-C18 (4.6 mm x 250 mm, 5 ?m), was used. Acetonitrile and water (90:10) as mobile phase was used to determine the content of oleanic acid with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 210 nm, chromatographic column temperature at room temperature. Paeoniflorin content was determined using acetonitrile and water (18:82) as mobile phase with a gradient elution and flow rate at 1.00 mL · min(-1), detection wavelength at 250 nm, the chromatographic column temperature at room temperature. The result show that oleanic acid has the highest extraction yield when the conditions are solid-liquid ratio of 1:80 (g · mL(-1)), and the [BMIM] Br methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, the content of oleanic acid from 0.24 to 3.76 ?g showed a good linearity (r = 0.9999), the average recovery was 97.20%. Paeoniflorin has the highest extraction yield when the conditions are solid-liquid ratio of 1:130 (g · mL(-1)), and the [C4 MIM] PF6 methanol solution concentration of 0.6 mol · L(-1). Under the optimal extraction conditions, paeoniflorin content from 0.42 to 4.20 ?g showed a good lin- earity (r = 1.000), the average recovery was 98.84%. This method is simple and reliable, its repeatability is also very good. It has important significance in the study P. lactiflora of ionic liquid microextraction. PMID:26084167

  9. Relaxation kinetics of poly(3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide ionic liquid during potential step experiments

    Microsoft Academic Search

    H. Randriamahazaka; C. Plesse; D. Teyssié; C. Chevrot

    2005-01-01

    The relaxation kinetics poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on platinum electrode surface were studied in a room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide (EMITFSI), by means of large amplitude potential step experiments. The influence of the applied potential and the film thickness were analyzed. We have developed a kinetic model allowing the determination of the kinetic features. Accordingly, two time or kinetic constants,

  10. Charging\\/discharging kinetics of poly(3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ionic liquid under galvanostatic conditions

    Microsoft Academic Search

    H. Randriamahazaka; C. Plesse; D. Teyssié; C. Chevrot

    2005-01-01

    The constant current charging\\/discharging experiments of poly(3,4-ethylenedioxythiophene) (PEDOT), modified electrodes in room temperature ionic liquid, for instance 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide, were performed for two types of cell configurations, three and two-electrode cells. In each case, a linear variation of the voltage with respect to time was observed. The electrochemical responses were analyzed in term of a series combination of a resistance

  11. Codeposition of Al–Zn on AZ91D magnesium alloy in AlCl 3–1-ethyl-3-methylimidazolium chloride ionic liquid

    Microsoft Academic Search

    Szu-Jung Pan; Wen-Ta Tsai; Jeng-Kuei Chang; I-Wen Sun

    2010-01-01

    The co-deposition of Al and Zn on AZ91D magnesium alloy from a Lewis acidic aluminum chloride–1-ethyl-3-methylimidazolium chloride (AlCl3–EMIC, with a molar ratio of 60:40) ionic liquid containing 1wt% ZnCl2 at room temperature was studied. The effect of potential on the deposition rate, the microstructure and the chemical composition of the deposit was explored. The experimental results show that the simultaneous

  12. Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact

    Microsoft Academic Search

    Zonggang Mu; Feng Zhou; Shuxiang Zhang; Yongmin Liang; Weimin Liu

    2005-01-01

    Four imidazolium-based room temperature ionic liquids containing phosphonyl functional groups, i.e. 1-(3?-O,O-diethylphosphonyl-n-propyl)-3-alkylimidazolium tetrafluoroborates and hexafluorophosphates, were synthesized. The physical properties of the resulting synthetic products were evaluated, and their tribological behaviors as the lubricants for an aluminum-on-steel sliding system were evaluated on an oscillating friction and wear tester, with the emphasis being placed on the effect of the O,O-diethylphosphonyl groups

  13. Pressure effect on vibrational frequency and dephasing of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids.

    PubMed

    Pison, L; Costa Gomes, M F; Pádua, A A H; Andrault, D; Norman, S; Hardacre, C; Ribeiro, M C C

    2013-08-01

    Raman spectra in the range of the totally symmetric stretching mode of the [PF6](-) anion, ?s(PF6), have been measured for 1-alkyl-3-methylimidazolium ionic liquids [CnC1im][PF6], for n = 4, 6, and 8, as a function of pressure at room temperature. The ionic liquids [C6C1im][PF6] and [C8C1im][PF6] remain in an amorphous phase up to 3.5 GPa, in contrast to [C4C1im][PF6], which crystallizes above ~0.5 GPa. Equations of state based either on a group contribution model or Carnahan-Starling-van der Waals model have been used to estimate the densities of the ionic liquids at high pressures. The shifts of the vibrational frequency of ?s(PF6) with density observed in [C6C1im][PF6] and in [C8C1im][PF6] have been calculated by a hard-sphere model of a pseudo-diatomic solute under short-range repulsive interactions with the neighboring particles. The stochastic model of Kubo for vibrational dephasing has been used to obtain the amplitude of vibrational frequency fluctuation, , and the relaxation time of frequency fluctuation, ?c, as a function of density by Raman band shape analysis of the ?s(PF6) mode of [C6C1im][PF6] and [C8C1im][PF6]. PMID:23927273

  14. Pressure effect on vibrational frequency and dephasing of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids

    NASA Astrophysics Data System (ADS)

    Pison, L.; Costa Gomes, M. F.; Pádua, A. A. H.; Andrault, D.; Norman, S.; Hardacre, C.; Ribeiro, M. C. C.

    2013-08-01

    Raman spectra in the range of the totally symmetric stretching mode of the [PF6]- anion, ?s(PF6), have been measured for 1-alkyl-3-methylimidazolium ionic liquids [CnC1im][PF6], for n = 4, 6, and 8, as a function of pressure at room temperature. The ionic liquids [C6C1im][PF6] and [C8C1im][PF6] remain in an amorphous phase up to 3.5 GPa, in contrast to [C4C1im][PF6], which crystallizes above ˜0.5 GPa. Equations of state based either on a group contribution model or Carnahan-Starling-van der Waals model have been used to estimate the densities of the ionic liquids at high pressures. The shifts of the vibrational frequency of ?s(PF6) with density observed in [C6C1im][PF6] and in [C8C1im][PF6] have been calculated by a hard-sphere model of a pseudo-diatomic solute under short-range repulsive interactions with the neighboring particles. The stochastic model of Kubo for vibrational dephasing has been used to obtain the amplitude of vibrational frequency fluctuation, ???2?, and the relaxation time of frequency fluctuation, ?c, as a function of density by Raman band shape analysis of the ?s(PF6) mode of [C6C1im][PF6] and [C8C1im][PF6].

  15. Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants

    Microsoft Academic Search

    Sayavur Bakhtiyarov; Daniel Scheiman; Alan van Dyke

    2010-01-01

    Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due

  16. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30wt%, 28wt% and 25wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively. PMID:26076596

  17. Tribochemical Reaction of Ionic Liquids on Sliding Metal Surfaces

    Microsoft Academic Search

    Tsutomu Yagi; Shinya Sasaki; Hiroki Mano; Koji Miyake; Miki Nakano; Takao Ishida

    \\u000a Ionic liquids are expected as lubricants under a vacuum condition, because of their low vapor pressure. We carried out high\\u000a vacuum pin-on-disc sliding tests to find out tlie effect of sliding materials (Fe, AI, Cu, Ti, etc.) on tribological properties\\u000a and decomposition of ionic liquids. Ionic liquids provided low friction coefficients for all metals. Rises of some partial\\u000a pressures were

  18. On the radiation stability of crown ethers in ionic liquids.

    SciTech Connect

    Shkrob, I.; Marin, T.; Dietz, M. (Chemical Sciences and Engineering Division); (Benedictine Univ.); (Univ. of Wisconsin at Milwaukee)

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.

  19. On the radiation stability of crown ethers in ionic liquids.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W; Dietz, Mark L

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a "radioprotective" effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime. PMID:21410191

  20. Electrotunable Lubricity with Ionic Liquid Nanoscale Films

    NASA Astrophysics Data System (ADS)

    Fajardo, O. Y.; Bresme, F.; Kornyshev, A. A.; Urbakh, M.

    2015-01-01

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting ``squeezing-out'' of the liquid under compression. These results give a background for controllable variation of friction.

  1. Electrotunable Lubricity with Ionic Liquid Nanoscale Films

    PubMed Central

    Fajardo, O. Y.; Bresme, F.; Kornyshev, A. A.; Urbakh, M.

    2015-01-01

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting “squeezing-out” of the liquid under compression. These results give a background for controllable variation of friction. PMID:25572127

  2. Electrotunable lubricity with ionic liquid nanoscale films.

    PubMed

    Fajardo, O Y; Bresme, F; Kornyshev, A A; Urbakh, M

    2015-01-01

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting "squeezing-out" of the liquid under compression. These results give a background for controllable variation of friction. PMID:25572127

  3. Aprotic Heterocyclic Anion Triazolide Ionic Liquids - A New Class of Ionic Liquid Anion Accessed by the Huisgen Cycloaddition Reaction

    SciTech Connect

    Thompson, Robert L.; Damodaran, Krishnan; Luebke, David; Nulwala, Hunaid

    2013-06-01

    The triazole core is a highly versatile heterocyclic ring which can be accessed easily with the Cu(I)-catalyzed Huisgen cycloaddition reaction. Herein we present the preparation of ionic liquids that incorporate a 1,2,3-triazolide anion. These ionic liquids were prepared by a facile procedure utilizing a base-labile pivaloylmethyl group at the 1-position, which can act as precursors to 1H- 4-substituted 1,2,3-triazole. These triazoles were then subsequently converted into ionic liquids after deprotonation using an appropriate ionic liquid cation hydroxide. The densities and thermal decompositions of these ionic liquids were measured. These novel ionic liquids have potential applications in gas separations and in metal-free catalysis.

  4. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  5. 1- N-alkyl -3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel–aluminium contacts

    Microsoft Academic Search

    A. E. Jiménez; M. D. Bermúdez; P. Iglesias; F. J. Carrión; G. Martínez-Nicolás

    2006-01-01

    The influence of the alkyl chain length and of the anion on the lubricating ability has been studied for the room-temperature ionic liquids (IL) 1-n-alkyl-3-methylimidazolium X? [X=PF6; n=6 (L-P106). X=BF4; n=2 (L102), 6 (L106), 8 (L108). X=CF3SO3; n=2 (L-T102). X=(4-CH3C6H4SO3); n=2 (L-To102)]. Neat IL have been used for AISI 52100 steel-ASTM 2011 aluminium contacts in pin-on-disk tests under variable sliding

  6. Ionic Liquids as Lubricants of Titanium–Steel Contact. Part 2: Friction, Wear and Surface Interactions at High Temperature

    Microsoft Academic Search

    A. E. Jiménez; M. D. Bermúdez

    2010-01-01

    The tribological behaviour and surface interactions of titanium sliding against AISI 52100 steel have been studied at 200\\u000a and 300 °C in the presence of two commercial imidazolium room temperature ionic liquid (ILs): 1-octyl-3-methylimidazolium\\u000a tetrafluoroborate (L108) and 1-hexyl-3-methylimidazolium hexafluorophosphate (LP106). L108 presents the higher thermal stability\\u000a but gives higher friction coefficients and wear rates than LP106, with long running-in periods and

  7. Temperature-dependent structure of ionic liquids: X-ray scattering and simulations

    SciTech Connect

    Kashyap, Hemant K.; Santos, Cherry S.; Annapureddy, Harsha V.R.; Murthy, N. Sanjeeva; Margulis, Claudio J.; Castner, Jr., Edward W. (SUNJ)

    2012-03-15

    In this article we determine the temperature-dependent structure of the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)amide ionic liquid using a combination of X-ray scattering and molecular dynamics simulations. As in many other room-temperature ionic liquids three characteristic intermolecular peaks can be detected in the structure function S(q). A prepeak or first sharp diffraction peak is observed at about q = 0.42 {angstrom}{sup -1}. Long range anion-anion correlations are the most important contributors to this peak. In all systems we have studied to date, this prepeak is a signature of solvation asymmetry. The peak in S(q) near q = 0.75 {angstrom}{sup -1} is the signature of ionic alternation and arises from the charge ordered separation of ions of the same charge. The most intense diffraction peak near q = 1.37 {angstrom}{sup -1} arises from short-range separation between ions of opposite charge combined with a significant contribution from cationic carbon-carbon interactions, indicating that cationic hydrophobic tails have significant contacts.

  8. Toxicity of ionic liquids prepared from biomaterials.

    PubMed

    Gouveia, W; Jorge, T F; Martins, S; Meireles, M; Carolino, M; Cruz, C; Almeida, T V; Araújo, M E M

    2014-06-01

    In search of environmentally-friendly ionic liquids (ILs), 14 were prepared based on the imidazolium, pyridinium and choline cations, with bromide and several amino acids as anions. Good yields were obtained in the synthesis of pyridinium ILs and those prepared from choline and amino acids. Four of the ILs synthesized from choline and the amino acids arginine, glutamine, glutamic acid and cystine are described here for the first time. The toxicity of the synthesized ILs was checked against organisms of various levels of organization: the crustacean Artemia salina; Human cell HeLa (cervical carcinoma); and bacteria with different types of cell wall, Bacillus subtilis and Escherichia coli. The toxicity was observed to depend on both the cation and anion. Choline-amino acid ILs showed a remarkable low toxicity to A. salina and HeLa cell culture, ten times less than imidazolium and pyridinium ILs. None of ionic liquids exhibited marked toxicity to bacteria, and the effect was 2-3 orders of magnitude smaller than that of the antibiotic chloramphenicol. PMID:24268343

  9. Oxygen Extraction from Regolith Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Barrios, Elizabeth A.; Curreri, Peter A.; Karr, Laurel J.

    2011-01-01

    An important concern with long-duration manned space travel is the need to furnish enough materials to the vehicle, as well as the crew, for the duration of the mission. By extracting oxygen from the oxides present in regolith, propellant and life support could be supplied to the vehicle and the crew while in space, thereby limiting the amount of supplies needed prior to lift-off. Using a class of compounds known as ionic liquids, we have been able to lower the electrolysis operating temperature from 1600 C (molten oxide electrolysis) to less than 200 C, making this process much more feasible in terms of energy consumption and materials handling. To make this process ready for deployment into space, we have investigated what steps of the process would be affected by the low-gravity environment in space. In the lab, the solubilization of lunar regolith simulant in ionic liquid produces water vapor that is normally distilled out of solution and subsequently electrolyzed for oxygen production. This distillation is not possible in space, so we have tested a method known as pervaporation and have suggested a way this technique could be incorporated into a reactor design.

  10. Brownian dynamics determine universality of charge transport in ionic liquids

    SciTech Connect

    Sangoro, Joshua R [ORNL; Iacob, Ciprian [University of Leipzig; Mierzwa, Michal [University of Silesia, Uniwersytecka, Katowice, Poland; Paluch, Marian [University of Silesia, Uniwersytecka, Katowice, Poland; Kremer, Friedrich [University of Leipzig

    2012-01-01

    Broadband dielectric spectroscopy is employed to investigate charge transport in a variety of glass-forming ionic liquids over wide frequency, temperature and pressure ranges. Using a combination of Einstein, Einstein-Smoluchowski, and Langevin relations, the observed universal scaling of charge transport in ionic liquids is traced back to the dominant role of Brownian dynamics.

  11. Structure and magnetic behavior of transition metal based ionic liquids

    SciTech Connect

    Del Sesto, Rico E [Los Alamos National Laboratory (LANL); Mccleskey, T [Los Alamos National Laboratory (LANL); Burrell, Anthony K [ORNL; Baker, Gary A [ORNL; Thompson, Joe D. [Los Alamos National Laboratory (LANL); Scott, Brian L. [Los Alamos National Laboratory (LANL); Wilkes, John S [United States Air Force Academy (USAFA), Colorado; Williams, Peg [United States Air Force Academy (USAFA), Colorado

    2008-01-01

    A series of ionic liquids containing different paramagnetic anions have been prepared and all show paramagnetic behavior with potential applications for magnetic and electrochromic switching as well as novel magnetic transport; also, the tetraalkylphosphonium-based ionic liquids reveal anomalous magnetic behavior.

  12. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    PubMed Central

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694

  13. Are Fluorination and Chlorination of the Morpholinium-Based Ionic Liquids Favorable?

    E-print Network

    Chaban, Vitaly V

    2015-01-01

    Room-temperature ionic liquids (RTILs) constitute a fine-tunable class of compounds. Morpholinium-based cations are new to the field. They are promising candidates for electrochemistry, micellization and catalytic applications. We investigate halogenation (fluorination and chlorination) of the N-ethyl-N-methylmorpholinium cation from thermodynamics perspective. We find that substitutional fluorination is much more energetically favorable than substitutional chlorination, although the latter is also a permitted process. Although all halogenation at different locations are possible, they are not equally favorable. Furthermore, the trends are not identical in the case of fluorination and chlorination. We link the thermodynamic observables to electron density distribution within the investigated cation. The reported insights are based on the coupled-cluster technique, which is a highly accurate and reliable electron-correlation method. Novel derivatives of the morpholinium-based RTILs are discussed, motivating fu...

  14. Creating nanoparticle stability in ionic liquid [C4mim][BF4] by inducing solvation layering.

    PubMed

    Gao, Jingsi; Ndong, Rose S; Shiflett, Mark B; Wagner, Norman J

    2015-03-24

    The critical role of solvation forces in dispersing and stabilizing nanoparticles and colloids in 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4] is demonstrated. Stable silica nanoparticle suspensions over 60 wt % solids are achieved by particle surface chemical functionalization with a fluorinated alcohol. A combination of techniques including rheology, dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle neutron scattering (SANS) are employed to determine the mechanism of colloidal stability. Solvation layers of ?5 nm at room temperature are measured by multiple techniques and are thought to be initiated by hydrogen bonds between the anion [BF4](-) and the fluorinated group on the surface coating. Inducing structured solvation layering at particle surfaces through hydrogen bonding is demonstrated as a method to stabilize particles in ionic liquids. PMID:25758381

  15. Pressure-induced amorphization of ionic liquid [HMIM][PF6

    NASA Astrophysics Data System (ADS)

    Ren, Yufen; Li, Haining; Zhu, Xiang; Chen, Liucheng; Su, Lei; Yang, Kun; Yang, Guoqiang; Wang, Hua

    2015-06-01

    Phase behavior of ionic liquid [HMIM][PF6] has been investigated under high pressure up to 5.6 GPa at room temperature. The results indicated that [HMIM][PF6] might experience a phase transition at about 3.4 GPa upon compression, which could be identified as solidification to superpressurized glass by ruby R1 line broadening measurement and synchrotron X-ray diffraction (XRD) patterns. For conformational equilibrium, the fraction of all-anti (AAAA) conformer increased upon compression, while the conformational change was independent of temperature. These facts indicated that there were large differences of the structure in response to the extreme conditions, especially in the structure of the cation.

  16. Thermoreversible gelation of an ionic liquid by crystallization of a dissolved polymer.

    PubMed

    Harner, John M; Hoagland, David A

    2010-03-18

    Poly(ethylene glycol) (PEG) dissolves in the room-temperature ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate [EMIM][EtSO(4)] above approximately 60 degrees C, the neat polymer's melting temperature, and if polymer concentration and molecular weight are high enough, the solution transforms into a semitransparent gel when cooled. The modulus, reaching 100 KPa or higher, is strongly affected by PEG concentration, and self-supporting materials are made even from solutions somewhat below coil overlap. Via differential scanning calorimetry (DSC), rheology, and optical microscopy, thermoreversible solidification is traced to kinetically frustrated polymer crystallization, an established mechanism for many pairings of crystallizable polymer with aqueous or organic solvent. Optical microscopy reveals nucleation and growth of PEG crystals with a largest dimension of tens to hundreds of micrometers. Crystalline chain packing in gels is identical to that of neat PEG, and degrees of crystallization are similar. Simple preparation, nontoxicity, and vanishing volatility suggest unique new gel applications. PMID:20175543

  17. Non-aqueous aluminium-air battery based on ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Revel, Renaud; Audichon, Thomas; Gonzalez, Serge

    2014-12-01

    A promising metal-air secondary battery based on aluminium-oxygen couple is described. In this paper, we observed that an aluminium-air battery employing EMImCl, AlCl3 room temperature ionic liquid (RTIL) as electrolyte and aluminium as negative electrode, has an exceptional reduced self-discharged rate. Due to its new and innovative type of electrolyte, this aluminium-air battery can support relatively high current densities (up to 0.6 mA cm-2) and an average voltage of 0.6-0.8 V. Such batteries may find immediate applications, as they can provide an internal, built-in autonomous and self-sustained energy source.

  18. Phase equilibria study of the binary systems (N-hexylisoquinolinium thiocyanate ionic liquid + organic solvent or water).

    PubMed

    Królikowska, Marta; Karpi?ska, Monika; Zawadzki, Maciej

    2012-04-12

    Liquid-liquid phase equilibria (LLE) of binary mixtures containing a room-temperature ionic liquid N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] with an aliphatic hydrocarbon (n-hexane, n-heptane), aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), cyclohexane, thiophene, water, and 1-alcohol (1-ethanol, 1-butanol, 1-hexanol, 1-octanol, 1-decanol) have been determined using a dynamic method from room temperature to the boiling-point of the solvent at ambient pressure. N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] has been synthesized from N-hexyl-isoquinolinium bromide as a substrate. Specific basic characterization of the new compound including NMR spectra, elementary analysis, and water content have been done. The density and viscosity of pure ionic liquid were determined over a wide temperature range from 298.15 to 348.15 K. The mutual immiscibility with an upper critical solution temperature (UCST) for the binary systems {IL + aliphatic hydrocarbon, cyclohexane, or water} was detected. In the systems of {IL + aromatic hydrocarbon or thiophene} an immiscibility gap with a lower critical solution temperature (LCST) was observed. Complete miscibility in the liquid phase, over a whole range of ionic liquid mole fraction, was observed for the binary mixtures containing IL and an 1-alcohol. For the tested binary systems with immiscibility gap {IL + aliphatic hydrocarbon, aromatic hydrocarbon, cyclohexane, thiophene, or water}, the parameters of the LLE correlation have been derived using the NRTL equation. The basic thermal properties of the pure IL, that is, the glass-transition temperature as well as the heat capacity at the glass-transition temperature, have been measured using a differential scanning microcalorimetry technique (DSC). Decomposition of the IL was detected by simultaneous thermogravimetric/differential thermal analysis (TG/DTA) experiments. PMID:22424076

  19. Room temperature cryogenic test interface

    Microsoft Academic Search

    S. M. Faris; A. Davidson; P. A. Moskowitz; G. A. Sai-Halasz

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be

  20. High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions.

    PubMed

    Oliveira, Filipe S; Pereiro, Ana B; Araújo, João M M; Bernardes, Carlos E S; Canongia Lopes, José N; Todorovic, Smilja; Feio, Gabriel; Almeida, Pedro L; Rebelo, Luís P N; Marrucho, Isabel M

    2013-11-01

    The subject of ionicity has been extensively discussed in the last decade, due to the importance of understanding the thermodynamic and thermophysical behaviour of ionic liquids. In our previous work, we established that ionic liquids' ionicity could be improved by the dissolution of simple inorganic salts in their milieu. In this work, a comparison between the thermophysical properties of two binary systems of ionic liquid + inorganic salt is presented. The effect of the ammonium thiocyanate salt on the ionicity of two similar ionic liquids, 1-ethyl-3-methylimidazolium ethylsulfonate and ethylsulfate, is investigated in terms of the related thermophysical properties, such as density, viscosity and ionic conductivity in the temperature range 298.15-323.15 K. In addition, spectroscopic (NMR and Raman) and molecular dynamic studies were conducted in order to better understand the interactions that occur at a molecular level. The obtained results reveal that although the two anions of the ionic liquid exhibit similar chemical structures, the presence of one additional oxygen in the ethylsulfate anion has a major impact on the thermophysical properties of the studied systems. PMID:24061089

  1. Designer molecular probes for phosphonium ionic liquids.

    PubMed

    Byrne, Robert; Coleman, Simon; Gallagher, Simon; Diamond, Dermot

    2010-02-28

    Investigations into the extent of structuring present in phosphonium based ionic liquids (ILs) have been carried out using photochromic molecular probes. Three spiropyran derivatives containing hydroxyl (BSP-1), carboxylic acid (BSP-2) and aliphatic chain (C(14)H(29)) (BSP-3) functional groups have been analysed in a range of phosphonium based ionic liquids and their subsequent physico-chemical interactions were reported. It is believed that the functional groups locate the probe molecules into specific regions based upon the interaction of the functional groups with particular and defined regions of the ionic liquid. This structuring results in thermodynamic, kinetic and solvatochromic parameters that are not predictable from classical solvent models. BSP-1 and BSP-2 exhibit generally negative entropies of activation ranging from -50 J K(-1) mol(-1) to -90 J K(-1) mol(-1) implying relatively low solvent-solute interactions and possible anion interactions with IL polar functional groups. Higher than expected activation energies of 60 kJ mol(-1) to 100 kJ mol(-1) obtained for polar probes maybe be due to IL functional groups competing with the charged sites of the merocyanine (MC) isomer thus reducing MC stabilisation effects. Differences in thermal relaxation rate constants (2.5 x 10(-3) s(-1) in BSP-1 and 3 x 10(-4) s(-1) in BSP-2 in [P(6,6,6,14)][dbsa]) imply that while the polar probe systems are primarily located in polar/charged regions, each probe experiences slightly differing polar domains. BSP-3 entropies of activation are positive and between 30 J K(-1) mol(-1) to 66 J K(-1) mol(-1). The association of the non-polar functional group is believed to locate the spiropyran moiety in the interfacial polar and non-polar regions. The thermal relaxation of the MC form causes solvent reorientation to accommodate the molecule as it reverts to its closed form. Slow thermal relaxation rate constants were obserevd in contrast to high activation energies (5 x 10(-4) s(-1) and 111.91 kJ mol(-1) respectively, for BSP-3 in [P(6,6,6,14)][dbsa]). This may be due to steric effects arising from proposed nano-cavity formation by the alkyl chains in phosphonium based ILs. PMID:20145857

  2. Fluorescence and Circular Dichroism Spectroscopy of Cytochrome c in Alkylammonium Formate Ionic Liquids

    PubMed Central

    Wei, Wenjun; Danielson, Neil D.

    2012-01-01

    The structural stability of cytochrome c has been studied in alkylammonium formate (AAF) ionic liquids such as methylammonium formate (MAF) and ethylammonium formate (EAF) by fluorescence and circular dichroism (CD) spectroscopy. At room temperature, the native structure of cytochrome c is maintained in relatively high ionic liquid concentrations (50%–70% AAF/water or AAF/phosphate buffer pH 7.0) in contrast to denaturation of cytochrome c in similar solutions of methanol or acetonitrile, with water or buffer co-solvents. Fluorescence and CD spectra indicate the conformation of cytochrome c is maintained in 20% AAF-80% water from 30 – 50 °C. No such temperature stability is found in 80% AAF-20% water. About one third of the enzyme activity of cytochrome c in 80% AAF-20% water can be maintained as compared to phosphate buffer and this is greater than the activities measured in corresponding methanol and acetonitrile aqueous solutions. This biophysical study shows that AAFs have potential application as organic solvent replacements at moderate temperature in the mobile phase for the separation of proteins in their native form by reversed phase liquid chromatography. PMID:21210672

  3. Ionic liquids as advanced lubricant fluids.

    PubMed

    Bermúdez, María-Dolores; Jiménez, Ana-Eva; Sanes, José; Carrión, Francisco-José

    2009-01-01

    Ionic liquids (ILs) are finding technological applications as chemical reaction media and engineering fluids. Some emerging fields are those of lubrication, surface engineering and nanotechnology. ILs are thermally stable, non-flammable highly polar fluids with negligible volatility, these characteristics make them ideal candidates for new lubricants under severe conditions, were conventional oils and greases or solid lubricants fail. Such conditions include ultra-high vacuum and extreme temperatures. Other very promising areas which depend on the interaction between IL molecules and material surfaces are the use of ILs in the lubrication of microelectromechanic and nanoelectromechanic systems (MEMS and NEMS), the friction and wear reduction of reactive light alloys and the modification of nanophases. PMID:19701132

  4. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  5. Ionic liquids as plasticizers for polyelectrolyte complexes.

    PubMed

    Zhang, Bodong; Hoagland, David A; Su, Zhaohui

    2015-02-26

    Uptake of salts by insoluble polyelectrolyte complexes (PECs) leads to plasticization, and here it is shown that ionic liquids (ILs) are more effective plasticizers than simple organic salts such as NaCl. The PEC uptake of IL cation was monitored by solution (1)H NMR, and the mechanical impacts of plasticization were tracked by dynamic mechanical analysis (DMA). PECs prepared with polystyrene sulfonate (PSS) and poly(diallyldimethylammonium chloride) (PDDA) under charge stoichiometric conditions were immersed in aqueous solutions of 1-butyl-3-methylimidazolium chloride [BMIM][Cl] to cause IL uptake, which could be controlled by the solution's IL concentration: higher concentration leads to higher uptake which leads to greater plasticization. The effectiveness of plasticization was assessed through the position and height of a DMA tan(?) peak ascribed to a glassy-to-rubbery PEC transition. Consistent with greater PEC uptake, isothermal titration calorimetry demonstrated that solution binding by PSS of [BMIM](+) was much stronger than binding of Na(+). PMID:25686291

  6. Metsulfuron-methyl-based herbicidal ionic liquids.

    PubMed

    Pernak, Juliusz; Niemczak, Micha?; Shamshina, Julia L; Gurau, Gabriela; G?owacki, Grzegorz; Praczyk, Tadeusz; Marcinkowska, Katarzyna; Rogers, Robin D

    2015-04-01

    Ten sulfonylurea-based herbicidal ionic liquids (HILs) were prepared by combining the metsulfuron-methyl anion with various cation types including quaternary ammonium ([bis(2-hydroxyethyl)methyloleylammonium](+), [2-hydroxyethyltrimethylammonium](+)), pyridinium ([1-dodecylpyridinium](+)), piperidinium ([1-methyl-1-propylpiperidinium](+)), imidazolium ([1-allyl-3-methylimidazolium](+), [1-butyl-3-methylimidazolium](+)), pyrrolidinium ([1-butyl-1-methylpyrrolidinium](+)), morpholinium ([4-decyl-4-methylmorpholinium](+)), and phosphonium ([trihexyltetradecylphosphonium](+) and [tetrabutylphosphonium](+)). Their herbicidal efficacy was studied in both greenhouse tests and field trials. Preliminary results for the greenhouse tests showed at least twice the activity for all HILs when compared to the activity of commercial Galmet 20 SG, with HILs with phosphonium cations being the most effective. The results of two-year field studies showed significantly less enhancement of activity than observed in the greenhouse; nonetheless, it was found that the herbicidal efficacy was higher than that of the commercial analog, and efficacy varied depending on the plant species. PMID:25734891

  7. Halogenation of Imidazolium Ionic Liquids. Thermodynamics Perspective

    E-print Network

    Chaban, Vitaly V

    2015-01-01

    Imidazolium cations are promising for anion exchange membranes, and electrochemical applications and gas capture. They can be chemically modified in many ways including halogenation. Halogenation possibilities of the imidazole ring constitute a particular interest. This work investigates fluorination and chlorination reactions of all symmetrically non-equivalent sites of the imidazolium cation. Halogenation of all carbon atoms is thermodynamically permitted. Out of these, the most favorable site is the first methylene group of the alkyl chain. In turn, the least favorable site is carbon of the imidazole ring. Temperature dependence of enthalpy, entropy, and Gibbs free energy at 1 bar is discussed. The reported results provide an important guidance in functionalization of ionic liquids in search of task-specific compounds.

  8. Femtosecond solvation dynamics in a neat ionic liquid and ionic liquid microemulsion: excitation wavelength dependence.

    PubMed

    Adhikari, Aniruddha; Sahu, Kalyanasis; Dey, Shantanu; Ghosh, Subhadip; Mandal, Ujjwal; Bhattacharyya, Kankan

    2007-11-01

    Solvation dynamics in a neat ionic liquid, 1-pentyl-3-methyl-imidazolium tetra-flouroborate ([pmim][BF4]) and its microemulsion in Triton X-100 (TX-100)/benzene is studied using femtosecond up-conversion. In both the neat ionic liquid and the microemulsion, the solvation dynamics is found to depend on excitation wavelength (lambda(ex)). The lambda(ex) dependence is attributed to structural heterogeneity in neat ionic liquid (IL) and in IL microemulsion. In neat IL, the heterogeneity arises from clustering of the pentyl groups which are surrounded by a network of cation and anions. Such a nanostructural organization is predicted in many recent simulations and observed recently in an X-ray diffraction study. In an IL microemulsion, the surfactant (TX-100) molecules aggregate in form of a nonpolar peripheral shell around the polar pool of IL. The micro-environment in such an assembly varies drastically over a short distance. The dynamic solvent shift (and average solvation time) in neat IL as well as in IL microemulsions decreases markedly as lambda(ex) increases from 375 to 435 nm. In a [pmim][BF4]/water/TX-100/benzene quaternary microemulsion, the solvation dynamics is slower than that in a microemulsion without water. This is ascribed to the smaller size of the water containing microemulsion. The anisotropy decay in an IL microemulsion is found to be faster than that in neat IL. PMID:17944511

  9. How does lithium oxalyldifluoroborate enable the compatibility of ionic liquids and carbon-based capacitors?

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Chen, Yan; Xu, Bin; Zhang, Rong; He, Zhouying; Wu, Feng; Li, Li

    2015-02-01

    Lithium oxalyldifluoroborate (LiODFB) has several unique characteristics, such as high ionic conductivity over a wide temperature range and the ability to form and stabilize solid electrolyte interface films on graphite surfaces. A series of binary, room-temperature, molten electrolytes composed of LiODFB and organic compounds with acylamino groups (acetamide, oxazolidinone or OZO) have been synthesized. Fourier-transform infrared (FT-IR) spectroscopy indicates that Cdbnd O and N-H functional groups undergo blue or red shifts upon addition of LiODFB. The electrolytes have excellent thermal stabilities and electrochemical characteristics that allow them to be promising electrolytes for electrochemical double layer capacitors (EDLCs). Here, we examine 1:5 molar ratio LiODFB and acetamide/OZO ionic liquid (IL) electrolytes in EDLCs. IL compatibility with two types of carbon-based electrodes is investigated theoretically and experimentally. We simulate possible structures and ion diameters for the ILs, which must be compatible with pore sizes of the carbon electrodes. Mesoporous activated carbon AC2, with a pore size similar to the ionic diameter of LiODFB-acetamide, has a specific capacitance of 154.2 Fg-1 at 20 m Ag-1. Additionally, typical capacitive and reversibility behaviors can be seen in the charge-discharge curves over 0-2 V. Finally, the EDLCs exhibit good charging/discharging performances.

  10. Biphasic liquid mixtures of ionic liquids and polyethylene glycols.

    PubMed

    Rodríguez, Héctor; Francisco, María; Rahman, Mustafizur; Sun, Ning; Rogers, Robin D

    2009-12-14

    We have found that 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) can form immiscible liquid mixtures with some polyethylene glycols (PEGs). Binary mixtures of 1-ethyl-3-methylimidazolium chloride with PEG of molecular weight 1500, 2000, or 3400 g mol(-1), or of 1-butyl-3-methylimidazolium chloride with PEG of molecular weight 2000 or 3400 g mol(-1), have been found to give rise to entirely liquid, stable biphasic systems over a significant temperature range (from 333.15 K to 413.15 K), while mixtures of 1-ethyl-3-methylimidazolium chloride with PEG-1000 and 1-butyl-3-methylimidazolium chloride with PEG-1000 and PEG-1500 are miscible. The mutual immiscibility of the IL and the PEG increases as the temperature increases. The evolution of the composition of the phases in equilibrium with the molecular weight of the PEG, or with the variation of the length of the alkyl substituent chain of the imidazolium cation of the IL, has been explored. The trends observed are explained through the complexity of interactions present within the binary system. A thermodynamic analysis of the liquid-liquid equilibrium data indicates negative values for the change of enthalpy and entropy of mixing. The potential application of these biphasic, entirely liquid systems, with low volatility and good solvation properties, for the dissolution and separation of cellulose and lignin at elevated temperature has been preliminarily explored, although only modest results have been achieved to date. PMID:19924326

  11. Inorganic or organic azide-containing hypergolic ionic liquids.

    PubMed

    Joo, Young-Hyuk; Gao, Haixiang; Zhang, Yanqiang; Shreeve, Jean'ne M

    2010-04-01

    Recently extensive research has focused on replacing toxic hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine as liquid propellant fuels. 2-Azido-N,N-dimethylethylamine (1) is a good candidate to replace hydrazine derivatives in certain hypergolic fuel applications. Energetic ionic liquids that contain the 2-azido-N,N,N-trimethylethylammonium cation with nitrocyanamide, dicyanamide, dinitramide, or azide anion have been successfully synthesized in good yields by metathesis reactions. Ionic liquids have received considerable attention as energetic materials. The replacement of hydrazine with tertiary ammonium salts is especially attractive since many ionic liquids are models for green chemistry. In this work, new azide-functionalized ionic liquids are demonstrated to exhibit hypergolic activity with such oxidizers as 100% nitric acid or nitrogen tetraoxide (NTO). PMID:20175509

  12. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries.

    PubMed

    Molina Piper, Daniela; Evans, Tyler; Leung, Kevin; Watkins, Tylan; Olson, Jarred; Kim, Seul Cham; Han, Sang Sub; Bhat, Vinay; Oh, Kyu Hwan; Buttry, Daniel A; Lee, Se-Hee

    2015-01-01

    We are currently in the midst of a race to discover and develop new battery materials capable of providing high energy-density at low cost. By combining a high-performance Si electrode architecture with a room temperature ionic liquid electrolyte, here we demonstrate a highly energy-dense lithium-ion cell with an impressively long cycling life, maintaining over 75% capacity after 500 cycles. Such high performance is enabled by a stable half-cell coulombic efficiency of 99.97%, averaged over the first 200 cycles. Equally as significant, our detailed characterization elucidates the previously convoluted mechanisms of the solid-electrolyte interphase on Si electrodes. We provide a theoretical simulation to model the interface and microstructural-compositional analyses that confirm our theoretical predictions and allow us to visualize the precise location and constitution of various interfacial components. This work provides new science related to the interfacial stability of Si-based materials while granting positive exposure to ionic liquid electrochemistry. PMID:25711124

  13. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Piper, Daniela Molina; Evans, Tyler; Leung, Kevin; Watkins, Tylan; Olson, Jarred; Kim, Seul Cham; Han, Sang Sub; Bhat, Vinay; Oh, Kyu Hwan; Buttry, Daniel A.; Lee, Se-Hee

    2015-02-01

    We are currently in the midst of a race to discover and develop new battery materials capable of providing high energy-density at low cost. By combining a high-performance Si electrode architecture with a room temperature ionic liquid electrolyte, here we demonstrate a highly energy-dense lithium-ion cell with an impressively long cycling life, maintaining over 75% capacity after 500 cycles. Such high performance is enabled by a stable half-cell coulombic efficiency of 99.97%, averaged over the first 200 cycles. Equally as significant, our detailed characterization elucidates the previously convoluted mechanisms of the solid-electrolyte interphase on Si electrodes. We provide a theoretical simulation to model the interface and microstructural-compositional analyses that confirm our theoretical predictions and allow us to visualize the precise location and constitution of various interfacial components. This work provides new science related to the interfacial stability of Si-based materials while granting positive exposure to ionic liquid electrochemistry.

  14. Heparin-like native protein aggregate dissociation by 1-alkyl-3-methyl imidazolium chloride ionic liquids.

    PubMed

    Rawat, Kamla; Bohidar, H B

    2015-02-01

    At room temperature, ionic liquids (ILs) 1-alkyl-3-methyl imidazolium chloride (alkyl: ethyl, butyl, hexyl and octyl) are observed to exhibit aggregate dissociation behavior of native proteins. This is similar to the well known protein aggregation inhibitor and aggregate dissociation molecule heparin. Dynamic light scattering (DLS) experiments performed on three model proteins bovine serum albumin (BSA), ?-lactoglobulin (?-Lg) and immunoglobulin (IgG) revealed that on addition of ILs the fractal aggregates of proteins (apparent maximum hydrodynamic radius Rmax and fractal dimension df=1.5±0.2) dissociated into oligomers (hydrodynamic radius Rh) following an exponential decay profile with time, Rh=Rmaxexp(-kat) The dissociation constant ka has been correlated to hydrophobicity index (H-index) of the protein concerned. Thus, if the combined contributions of dissociation constant and hydration effect on secondary structure are taken into account together, [C8mim][Cl] with BSA, [C2mim][Cl] with ?-Lg and IgG, rank as the best aggregation reversal agent (ARA) amongst all other ionic liquid samples examined. The additional advantage of the used ILs over heparin is the release of mobile Cl(-) ions to the solution. This lead to the increased solution entropy, thereby, providing stability to the final dispersions. PMID:25445684

  15. Tribological properties of Ti-doped DLC coatings under ionic liquids lubricated conditions

    NASA Astrophysics Data System (ADS)

    Feng, Xin; Xia, Yanqiu

    2012-01-01

    In this paper, titanium doped diamond-like carbon (Ti-DLC) coatings were prepared onto AISI 52100 steel substrates using medium frequency magnetic sputtering process, and were analyzed using the Raman and transmission electron microscope (TEM). Two kinds of 1,3-dialkyl imidazolium ionic liquids (ILs) were synthesized and evaluated as lubricants for Ti-DLC/steel contacts at room temperature, and PFPE as comparison lubricant. The tribological properties of the ILs were investigated using a ball-on-disk type UMT reciprocating friction tester. The results indicated that the ILs have excellent friction-reducing properties, the friction coefficient kept at a relatively stable value of 0.07-0.06, which was reduced approximately by 47% compared with perfluoropolyether (PFPE). The worn surfaces of Ti-DLC coatings were observed and analyzed using a MICROXAM-3D non-contact surface profiler, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The Ti-DLC coatings using ionic liquids lubricating systems are considered as potential lubricating system in vacuum and space moving friction pairs.

  16. Excited state proton transfer in ionic liquid mixed micelles.

    PubMed

    Mondal, Tridib; Das, Atanu Kumar; Sasmal, Dibyendu Kumar; Bhattacharyya, Kankan

    2010-10-21

    Excited state proton transfer (ESPT) of pyranine (8-hydroxypyranine-1,3,6-trisulfonate, HPTS) in room temperature ionic liquid (RTIL) mixed micelles is studied by femtosecond up-conversion. The mixed micelle consists of a triblock copolymer, (PEO)(20)-(PPO)(70)-(PEO)(20) (Pluronic P123), and one of the two RTILs, 1-pentyl-3-methyl-imidazolium bromide ([pmim][Br]) and 1-pentyl-3-methyl-imidazolium tetra-fluoroborate ([pmim][BF(4)]). The size and structure of the mixed micelle vary with the relative amount of the RTIL. For [pmim][Br], the hydrodynamic diameter of the mixed micelle is 26 nm in 0.3 M RTIL and 3500 nm in 3.0 M RTIL. The time constant of initial proton transfer (?(PT)) in P123 micelle (65 ps) is 10 times slower than that (5 ps) in water, while the time constants of recombination (?(rec)) and dissociation (?(diss)) are 2-3 times slower in P123 micelle. On addition of the RTIL, the rate of ESPT is markedly modified. In 0.3 M RTIL-P123 mixed micelle, ?(PT) is shorter than that in P123 micelle. In the mixed micelle, ?(PT) increases with an increase in the concentration of the RTIL (230 ps in 3 M [pmim][Br] and 55 ps in 0.9 M [pmim][BF(4)]). This is attributed to large scale penetration of the P123 micelle by RTIL replacing water molecules. The time constants of proton transfer (?(PT), ?(rec), and ?(diss)) are faster than the slowest component (200-500 ps) of solvation dynamics. It seems that the ultrafast component of solvation (<0.3 ps and <5 ps) is enough for inducing proton transfer. The time constant of the proton transfer (?(PT)) in [pmim][BF(4)]-P123 mixed micelle is longer (?20%) than that in [pmim][Br]-P123 mixed micelle for the same concentration of RTIL. The counterion dependence of ESPT is attributed to the difference in the structure and greater hydrophobicity of the [pmim][BF(4)]. PMID:20863113

  17. Novel room temperature ferromagnetic semiconductors

    SciTech Connect

    Gupta, Amita

    2004-11-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  18. Ionogels, ionic liquid based hybrid materials.

    PubMed

    Le Bideau, Jean; Viau, Lydie; Vioux, André

    2011-02-01

    The current interest in ionic liquids (ILs) is motivated by some unique properties, such as negligible vapour pressure, thermal stability and non-flammability, combined with high ionic conductivity and wide electrochemical stability window. However, for material applications, there is a challenging need for immobilizing ILs in solid devices, while keeping their specific properties. In this critical review, ionogels are presented as a new class of hybrid materials, in which the properties of the IL are hybridized with those of another component, which may be organic (low molecular weight gelator, (bio)polymer), inorganic (e.g. carbon nanotubes, silica etc.) or hybrid organic-inorganic (e.g. polymer and inorganic fillers). Actually, ILs act as structuring media during the formation of inorganic ionogels, their intrinsic organization and physicochemical properties influencing the building of the solid host network. Conversely, some effects of confinement can modify some properties of the guest IL, even though liquid-like dynamics and ion mobility are preserved. Ionogels, which keep the main properties of ILs except outflow, while allowing easy shaping, considerably enlarge the array of applications of ILs. Thus, they form a promising family of solid electrolyte membranes, which gives access to all-solid devices, a topical industrial challenge in domains such as lithium batteries, fuel cells and dye-sensitized solar cells. Replacing conventional media, organic solvents in lithium batteries or water in proton-exchange-membrane fuel cells (PEMFC), by low-vapour-pressure and non flammable ILs presents major advantages such as improved safety and a higher operating temperature range. Implementation of ILs in separation techniques, where they benefit from huge advantages as well, relies again on the development of supported IL membranes such as ionogels. Moreover, functionalization of ionogels can be achieved both by incorporation of organic functions in the solid matrix, and by encapsulation of molecular species (from metal complexes to enzymes) in the immobilized IL phase, which opens new routes for designing advanced materials, especially (bio)catalytic membranes, sensors and drug release systems (194 references). PMID:21180731

  19. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  20. The Radiation Chemistry of Ionic Liquids: A Review

    SciTech Connect

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Aqueous Separations and Radiochemistry Dept.; Wishart, James F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based upon a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  1. The radiation chemistry of ionic liquids: a review

    DOE PAGESBeta

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based upon a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  2. Tribological Properties of Ionic Liquids Lubricants Containing Nanoparticles 

    E-print Network

    Lu, Wei

    2014-05-14

    Recently, there has been an increase in research in the application of ionic liquids containing nanoparticles as lubricants due to their properties such as thermally stability, non-volatility and non-flammability. The ...

  3. Tribological Properties of Ionic Liquids Lubricants Containing Nanoparticles

    E-print Network

    Lu, Wei

    2014-05-14

    Recently, there has been an increase in research in the application of ionic liquids containing nanoparticles as lubricants due to their properties such as thermally stability, non-volatility and non-flammability. The purpose of this thesis...

  4. Achieving microkelvin control at room temperature

    NASA Astrophysics Data System (ADS)

    Lytle, Amy L.; Jacobs, D. T.

    2000-03-01

    An experiment is in progress to investigate the turbidity of a liquid-liquid mixture very close to its critical temperature. Temperature is controlled precisely through an onion-layer design, with successive stages of control and measurement. This process is automated using a program in LabVIEW, an icon-based programming language. Control of the temperature has been achieved to within a few microkelvin of the critical temperature, which is near room temperature. The techniques and methodology that allow such precise temperature control and measurement will be presented along with the results showing 10ppb control. Acknowledgment is made to NSF-REU grant DMR 9619406 and to NASA grant NAG8-1433 for support of this research.

  5. Membrane contactor assisted extraction/reaction process employing ionic liquids

    DOEpatents

    Lin, Yupo J. (Naperville, IL); Snyder, Seth W. (Lincolnwood, IL)

    2012-02-07

    The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.

  6. The Pressure–Viscosity Coefficient of Several Ionic Liquids

    Microsoft Academic Search

    A. S. Pensado; M. J. P. Comuñas; J. Fernández

    2008-01-01

    The choice of cation and anion in an ionic liquid (IL) as well as the design of ion side chains determine the fundamental\\u000a properties of ILs, which permits creating tailor-made lubricants and lubricant additives. So, the study of the influence\\u000a of molecular structure on thermophysical properties of ionic liquids is essential for their use in lubrication. Recent results\\u000a from the

  7. Ionic Liquid as a Green Solvent for Lignin

    Microsoft Academic Search

    Yunqiao Pu; Nan Jiang; Arthur J. Ragauskas

    2007-01-01

    This study examined the application of select ionic liquids (ILs) as aprotic green solvents for lignin. Dissolution experiments were carried out employing lignin isolated from pine kraft pulp. Up to 20 wt% lignin could be dissolved in [hmim][CF3SO3], [mmim][MeSO4] and [bmim][MeSO4]. For the [bmim]?containing ionic liquids, the order of lignin solubility for varying anions was: [MeSO4]>Cl?Br?[PF6], indicating that the solubility

  8. Electrokinetics of Correlated Electrolytes and Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Storey, Brian; Bazant, Martin

    2011-11-01

    Perhaps the most basic assumption of classical electrokinetic theory is the mean-field approximation, where the each ion feels only the electric field produced by the mean charge density (via Poisson's equation) rather than the fluctuating Coulomb forces with individual neighbors. Here, we present a simple continuum model for electrostatic correlations between finite-sized ions, which leads to a 4th order modified Poisson equation, convenient for the analysis of electrokinetic phenomena. When the mean-field approximation breaks down, e.g. due to large ion concentrations, large ion valences, and/or nanoscale confinement, the zeta potential loses its significance, and the model predicts that electro-osmotic flows are typically reduced - or even reversed - by correlation effects, compared to the prediction of the Helmholtz-Smoluchowski formula. This may help to explain the over-prediction of induced-charge electro-osmotic flows by classical models. An interesting limit of the model describes electro-osmosis in solvent-free ionic liquids and molten salts, which may be important in energy storage and electroactuation applications.

  9. Resonance shear measurement of nanoconfined ionic liquids.

    PubMed

    Ueno, Kazuhide; Kasuya, Motohiro; Watanabe, Masayoshi; Mizukami, Masashi; Kurihara, Kazue

    2010-04-28

    Two types of imidazolium-based ionic liquid (IL), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C(4)mim][NTF(2)]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([C(4)mim][BF(4)]), confined between silica surfaces were investigated by surface force apparatus (SFA)-based resonance shear measurements together with surface force measurements. The surface force profiles in the ILs showed oscillatory solvation forces below the characteristic surface separations: 10.0 nm for [C(4)mim][NTf(2)] and 6.9 nm for [C(4)mim][BF(4)]. The more pronounced solvation force found in [C(4)mim][NTf(2)] suggests that the crystal-forming ability of the IL contributes to the stronger layering of the ILs adjacent to the surface. The resonance shear measurement and the physical model analysis revealed that the viscosities of the confined ILs were 1-3 orders of magnitude higher than that of the bulk IL. This paper also focused on the correlation between the resonance shear behaviour and the lubrication property of the ILs, and the suspension rheology in the ILs. An understanding of the solid-IL interface and of ILs confined in nanospace will facilitate the further development of novel applications employing ILs. PMID:20379497

  10. Biocompatible Ionic Liquid-Derived Conducting Polymers

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Burns, Christopher; Lee, Sungwon

    2009-03-01

    A significant and frequently encountered challenge when making an electrical connection to a protein is that its electron-transfer sites are buried within the polypeptide matrix and thus, are not readily accessible to bulk metal electrodes. A further complicating factor is that inorganic (i.e., metallic) electrodes are often incompatible with biological samples. These obstacles might be overcome by the use of conducting oligomers and / or polymers, which are flexible, offering a means to access remote redox centers. These oligomers can be readily modified to include chemical moieties that can connect covalently to sites near redox centers. In addition, conducting polymers can be made to be environmentally responsive (dynamic), processable (conformal coating, soluble) and mechanically durable, thus enabling them to function as an electrical conduit (wire or electrode) to biomolecules. In this work, we describe the design, synthesis and electrochemical properties of thiophene-based ionic liquid monomers and their bulk polymerization by chemical oxidation to yield cationic, aqueous-soluble polymers. Preliminary studies evaluating the electropolymerization of these monomers into nanostructured thin films will also be presented.

  11. SemiEmpirical Molecular Modeling of Ionic Liquid Tribology: Ionic Liquid–Aluminum Oxide Surface Interactions

    Microsoft Academic Search

    W. Robert Carper; Phillip G. Wahlbeck; Naveed S. Nooruddin

    The interactions between the selected ionic liquids (ILs) and aluminum oxide surfaces are modeled in this report using theoretical\\u000a methods. A wide range of ILs and their interactions with an aluminum oxide surface are modeled using the PM5 semi-empirical\\u000a method. The ILs modeled in this study contain imidazolium (C3, 4, 6, 8 or 10mim) or ammonium cations including (C6H13)3NH+, (C8H17)3NH+,

  12. Ionic liquids and electrochemistry: from proteins to electrochromic devices.

    SciTech Connect

    Keizer, T. S. (Timothy S.); McCleskey, T. M. (Thomas Mark); Baker, G. A. (Gary A.); Burrell, A. K. (Anthony K.); Baker, S. N. (Sheila N.); Warner, B. P. (Benjamin P.); Hall, S. B. (Simon B.)

    2004-01-01

    We will report on a wide range of activities within the chemistry division at Los Alamos National Laboratory. Results on basic and applied research involving electrochemistry will be discussed. Topics will include electrochemistry of proteins, sensors based on electrochemical signals, temperature sensors, electrochromic devices in ionic liquids and the characterization of organic cation radicals. We have recently developed several applications in ionic liquids that include electrochromic devices, temperature sensors and chemical sensors. The electrochromic windows are being marketed as selftinting automotive mirrors. The ionic liquid based temperature sensor is stable and accurate over a wide range and has the potential to provide high-resolution temperature imaging. Chemical sensors have been developed that use electrochemistry to detect low levels of potential chemical agents in air. We have also studied the basic chemistry of charge transfer complexes and proteins in ionic liquids. Charge transfer complexes display unique behavior in ionic liquid compare to traditional solvents. Proteins can be solubilized at high levels that make it possible to probe electrochemistry in the proper ionic liquid.

  13. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  14. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, R.B.; Van Scyoc, J.M. III; Schlesinger, T.E.

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material is disclosed. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI{sub 2} and preferably HgI{sub 2}, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected. 4 figs.

  15. Electrodrift purification of materials for room temperature radiation detectors

    DOEpatents

    James, Ralph B. (5420 Lenore Ave., Livermore, Alameda County, CA 94550); Van Scyoc, III, John M. (P.O. Box 93, 65 Main St., Apt. 1, Plainfield, Cumberland County, PA 17081); Schlesinger, Tuviah E. (8 Carleton Dr., Mt. Lebanon, Allegheny County, PA 15243)

    1997-06-24

    A method of purifying nonmetallic, crystalline semiconducting materials useful for room temperature radiation detecting devices by applying an electric field across the material. The present invention discloses a simple technology for producing purified ionic semiconducting materials, in particular PbI.sub.2 and preferably HgI.sub.2, which produces high yields of purified product, requires minimal handling of the material thereby reducing the possibility of introducing or reintroducing impurities into the material, is easy to control, is highly selective for impurities, retains the stoichiometry of the material and employs neither high temperatures nor hazardous materials such as solvents or liquid metals. An electric field is applied to a bulk sample of the material causing impurities present in the sample to drift in a preferred direction. After all of the impurities have been transported to the ends of the sample the current flowing through the sample, a measure of the rate of transport of mobile impurities, falls to a low, steady state value, at which time the end sections of the sample where the impurities have concentrated are removed leaving a bulk sample of higher purity material. Because the method disclosed here only acts on the electrically active impurities, the stoichiometry of the host material remains substantially unaffected.

  16. In situ ionic-liquid-dispersive liquid-liquid microextraction of Sudan dyes from liquid samples.

    PubMed

    Xu, Bo; Song, Daqian; Wang, Yuanpeng; Gao, Yan; Cao, Bocheng; Zhang, Hanqi; Sun, Ying

    2014-08-01

    In situ ionic-liquid-dispersive liquid-liquid microextraction was introduced for extracting Sudan dyes from different liquid samples followed by detection using ultrafast liquid chromatography. The extraction and metathesis reaction can be performed simultaneously, the extraction time was shortened notably and higher enrichment factors can be obtained compared with traditional dispersive liquid-liquid microextraction. When the extraction was coupled with ultrafast liquid chromatography, a green, convenient, cheap, and efficient method for the determination of Sudan dyes was developed. The effects of various experimental factors, including type of extraction solvent, amount of 1-hexyl-3-methylimidazolium chloride, ratio of ammonium hexafluorophosphate to 1-hexyl-3-methylimidazolium chloride, pH value, salt concentration in sample solution, extraction time and centrifugation time were investigated and optimized for the extraction of four kinds of Sudan dyes. The limits of detection for Sudan I, II, III, and IV were 0.324, 0.299, 0.390, and 0.655 ng/mL, respectively. Recoveries obtained by analyzing the seven spiked samples were between 65.95 and 112.82%. The consumption of organic solvent (120 ?L acetonitrile per sample) was very low, so it could be considered as a green analytical method. PMID:24840862

  17. The radiation chemistry of ionic liquids: a review

    DOE PAGESBeta

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based upon a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore »radiation chemistry literature as it affects separations, with these considerations in mind.« less

  18. Electrophilic nitration of aromatics in ionic liquid solvents.

    PubMed

    Laali, K K; Gettwert, V J

    2001-01-12

    Potential utility of a series of 1-ethyl-3-methylimidazolium salts [emim][X] with X = OTf-, CF3COO-, and NO3- as well as [HNEtPri2][CF3COO] (protonated Hünig's base) ionic liquids were explored as solvent for electrophilic nitration of aromatics using a variety of nitrating systems, namely NH4NO3/TFAA, isoamyl nitrate/BF3.Et2O, isoamyl nitrate/TfOH, Cu(NO3)/TFAA, and AgNO3/Tf2O. Among these, NH4NO3/TFAA (with [emim][CF3COO], [emim][NO3]) and isoamyl nitrate/BF3.Et2O, isoamyl nitrate/TfOH (with [emim][OTf]) provided the best overall systems both in terms of nitration efficiency and recycling/reuse of the ionic liquids. For [NO2][BF4] nitration, the commonly used ionic liquids [emim][AlCl4] and [emim][Al2Cl7] are unsuitable, as counterion exchange and arene nitration compete. [Emim][BF4] is ring nitrated with [NO2][BF4] producing [NO2-emim][BF4] salt, which is of limited utility due to its increased viscosity. Nitration in ionic liquids is surveyed using a host of aromatic substrates with varied reactivities. The preparative scope of the ionic liquids was also extended. Counterion dependency of the NMR spectra of the [emim][X] liquids can be used to gauge counterion exchange (metathesis) during nitration. Ionic liquid nitration is a useful alternative to classical nitration routes due to easier product isolation and recovery of the ionic liquid solvent, and because it avoids problems associated with neutralization of large quantities of strong acid. PMID:11429927

  19. Raidiation-Induced Fragmentation of Diamide Extraction Agents in Ionic Liquid Diluents

    SciTech Connect

    Bell, Jason R [ORNL; Dai, Sheng [ORNL; Shkrob, Ilya A. [Argonne National Laboratory (ANL); Marin, Timothy W. [Argonne National Laboratory (ANL); Luo, Huimin [ORNL; Hatcher, Jasmine [Brookhaven National Laboratory (BNL); Rimmer, R. Dale [Brookhaven National Laboratory (BNL); Wishart, James F. [Brookhaven National Laboratory (BNL)

    2012-01-01

    N,N,N',N'-Tetraalkyldiglycolamides are extracting agents that are used for liquid-liquid extraction of trivalent metal ions in wet processing of spent nuclear fuel. This application places such agents in contact with the decaying radionuclides, causing radiolysis of the agent in the organic diluent. Recent research seeks to replace common molecular diluents (such as n-dodecane) with hydrophobic room-temperature ionic liquids (ILs), which have superior solvation properties. In alkane diluents, rapid radiolytic deterioration of diglycolamide agents can be inhibited by addition of an aromatic cosolvent that scavenges highly reactive alkane radical cations before these oxidize the extracting agent. Do aromatic ILs exhibit a similar radioprotective effect? To answer this question, we used electron paramagnetic resonance spectroscopy to study the fragmentation pathways in radiolysis of neat diglycolamides, their model compounds, and their solutions in the ILs. Our study indicates that aromatic ILs do not protect these types of solutes from extensive radiolytic damage. Previous research indicated a similar lack of protection for crown ethers, whereas the ILs readily protected di- and trialkyl phosphates (another large class of metal-extracting agents). Our analysis of these unanticipated failures suggests that new types of organic anions are required in order to formulate ILs capable of radioprotection for these classes of solutes. This study is a cautionary tale of the fallacy of analogical thinking when applied to an entirely new and insufficiently understood class of chemical materials.

  20. Recovery of Furfural from Aqueous Solution by Ionic Liquid Based Liquid–Liquid Extraction

    Microsoft Academic Search

    Yuanchao Pei; Kun Wu; Jianji Wang; Jing Fan

    2008-01-01

    Liquid–liquid extraction with imidazolium based ionic liquids ([C4mim][PF6], [C6mim][PF6], and [C8mim][PF6]) is proposed for the separation of furfural or 5-methylfurfural from aqueous solution. Factors affecting the extraction of furfural or 5-methylfurfural have been studied. It was shown that the extraction equilibria can be achieved within 30 min and the process was less affected by the factors such as volume ratio and

  1. Interaction of ionic liquid with water with variation of water content in 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim][PF6])\\/TX-100\\/water ternary microemulsions monitored by solvent and rotational relaxation of coumarin 153 and coumarin 490

    Microsoft Academic Search

    Debabrata Seth; Anjan Chakraborty; Palash Setua; Nilmoni Sarkar

    2007-01-01

    The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]\\/TX-100\\/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the

  2. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2008-12-01

    Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim]+ (alkyl=methyl, ethyl, propyl, and butyl) family with PF6-, NO3-, and Cl- counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO3]-<[Cl]-<[PF6]-. The trends in the diffusion coefficient in the series of cations with identical anions are [emim]+>[pmim]+>[bmim]+ and those for anions with identical cations are [NO3]->[PF6]->[Cl]-. The [dmim]+ has a relatively low diffusion coefficient due to its symmetric structure and good packing in the liquid phase. The major factor for determining the magnitude of the self-diffusion is the geometric shape of the anion of the ionic liquid. Other important factors are the ion size and the charge delocalization in the anion.

  3. Ionic liquids enable accurate chromatographic analysis of polyelectrolytes.

    PubMed

    Kuroda, Kosuke; Ohno, Hiroyuki

    2015-06-16

    The molecular weight distribution of polyelectrolytes was determined with high performance liquid chromatography using ionic liquids as eluents, because the electrostatic repulsion among polyelectrolytes was entirely suppressed in it. A mixed sample of polycation and polyanion was also analysed to detect them independently. PMID:26040549

  4. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Pennline, H.W.; Myers, C.R.

    2007-05-01

    A practical form of CO2 capture at water-gas shift conditions in the IGCC process could serve the dual function of producing a pure CO2 stream for sequestration and forcing the equilibrium-limited shift reaction to completion enriching the stream in H2. The shift temperatures, ranging from the low temperature shift condition of 260°C to the gasification condition of 900°C, limit capture options by diminishing associative interactions which favor removal of CO2 from the gas stream. Certain sorption interactions, such as carbonate formation, remain available but generally involve exceptionally high sorbent regeneration energies that contribute heavily to parasitic power losses. Carbon dioxide selective membranes need only establish an equilibrium between the gas phase and sorption states in order to transport CO2, giving them a potential energetic advantage over other technologies. Supported liquid membranes take advantage of high, liquid phase diffusivities and a solution diffusion mechanism similar to that observed in polymeric membranes to achieve superior permeabilities and selectivites. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of ionic liquids including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Improvements to the ionic liquid and support have allowed testing of these supported ionic liquid membranes at temperatures up to 300°C without loss of support mechanical stability or degradation of the ionic liquid. Substantial improvements in selectivity have also been observed at elevated temperature with the best membrane currently achieving optimum performance at 75°C.

  5. Robust room temperature persistent photoconductivity in polycrystalline indium oxide films

    E-print Network

    Avrutsky, Ivan

    Robust room temperature persistent photoconductivity in polycrystalline indium oxide films A. Dixit be associated with glassy behavior. © 2009 American Institute of Physics. DOI: 10.1063/1.3159623 Indium oxide indium tin oxide, in light emitting diodes, liquid crystal displays, and solar cells.1 However, despite

  6. Recyclability of an ionic liquid for biomass pretreatment.

    PubMed

    Weerachanchai, Piyarat; Lee, Jong-Min

    2014-10-01

    This study investigated the possibility of reusing an ionic liquid for the pretreatment of biomass. The effects of lignin and water content in a pretreatment solvent on pretreatment products were examined, along with the recyclability of an ionic liquid for pretreatment. It was discovered that the presence of lignin and water within a pretreatment solvent resulted in a far less effective pretreatment process. 1-Ethyl-3-methylimidazolium acetate/ethanolamine (60/40 vol%) presents more promising properties than EMIM-AC, providing a small decrease in sugar conversion and also a small increase of lignin deposition with an increasing lignin amount in the pretreatment solvent. Deteriorations of the ionic liquid were observed from considerably low sugar conversions and lignin extraction after using the 5th and 7th batch, respectively. Furthermore, the changes of ionic liquid properties and lignin accumulation in ionic liquid were determined by analyzing their thermal decomposition behavior (TGA) and chemical functional groups (FTIR and (1)H NMR). PMID:25063976

  7. Ionic conductivity of imidazole-functionalized liquid crystal mesogens

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Anthamatten, Mitchell

    2012-02-01

    Imidazole has been investigated as a novel anhydrous proton conducting functional group that could enable higher temperature operation (> 120 ^oC) of polymer electrolyte fuel cells. Its amphoteric behavior can support Grotthuss-like proton transport; however molecular mobility and a high concentration of imidazole groups are needed to achieve high ionic conductivity. Our hypothesis is that liquid crystal ordering, particularly in layered smectic phase, can facilitate formation of 2D proton transport and promote proton conductivity. We have designed and synthesized two imidazole-terminated liquid crystal mesogens, and the ionic conductivities in the liquid crystalline and isotropic states have been measured. Here we report on synthesis and characterization of diacylhydrazine liquid crystals bearing imidazole terminal groups. The proton conductivity of products is compared to pure liquid imidazole and to liquid crystal mesogens without imidazole groups.

  8. Ions transfer mechanisms during the electrochemical oxidation of poly(3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide ionic liquid

    Microsoft Academic Search

    H. Randriamahazaka; C. Plesse; D. Teyssié; C. Chevrot

    2004-01-01

    The cyclic voltammetry and the electrochemical impedance spectroscopy responses of p-doped poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on platinum electrode surface were studied in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide (EMITFSI). The influence of adding salt, lithium bis((trifluoromethyl)sulfonyl)amide (LiTFSI, Li(CF3SO2)2N), was studied. When PEDOT was prepared in acetonitrile, the cyclic voltammograms displayed two distinct anodic peaks indicating at least two redox reaction mechanisms.

  9. Synthesis of soluble poly(amide-ether-imide-urea)s bearing amino acid moieties in the main chain under green media (ionic liquid)

    Microsoft Academic Search

    Shadpour Mallakpour

    2011-01-01

    In this study, an optically active diamine, N,N?-(pyromellitoyl)-bis{N-[4(4-aminophenoxy)phenyl]-2-(4-methyl)pentanamide} (1) containing amino acid l-leucine was prepared in three steps. The step-growth polymerization of this chiral diamine with several diisocyanates in\\u000a room temperature ionic liquid (IL), 1,3-dipropylimidazolium bromide as an environmentally friendly solvent and in a volatile\\u000a organic solvent, is investigated. The polymerization yields and inherent viscosities of the resulting poly(amide-ether-imide-urea)s\\u000a are

  10. Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids

    NASA Astrophysics Data System (ADS)

    Garaev, V.; Pavlovica, S.; Reinholds, I.; Vaivars, G.

    2013-12-01

    In this work, the Nafion 112 membrane impregnated with 2-hydroxyethylammonium carboxylate ionic liquids have been investigated. The used ionic liquids were 2-hydroxyethylammonium formate [HEA]F, acetate [HEA]A and lactate [HEA]L. Prepared composite membranes Nafion/ionic liquid are characterized by mechanical testing, such as tensile test and creep test. It is found that ionic liquids decrease elastic modulus and creep compliance, but do not have significant effect on the tensile strength. Also, composite membranes were studied by wide angle X-ray diffraction. All ionic liquids shift the peak maximum to the lower angle. In this work, only biodegradable ionic liquids were used for composite preparation.

  11. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  12. Morphology and charge transport in ammonium based polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Heres, Maximilian; Minutolo, Joseph; Shamblin, Jacob; Long, Maik; Berdzinski, Stefan; Stremel, Veronika; Sangoro, Joshua

    2015-03-01

    Ionic conduction, structural dynamics and morphology in a series of ammonium based polymerized ionic liquids are investigated using broadband dielectric spectroscopy, temperature-modulated differential scanning calorimetry, and neutron as well as x-ray scattering techniques. The dielectric spectra are dominated on the low frequency regime by electrode polarization while hopping conduction is the underlying mechanism at higher frequencies. At their respective calorimetric glass transition temperatures, a strong correlation between the morphology and ionic conductivity is found. These results are discussed within the recent approaches proposed to explain the decoupling of charge transport from structural dynamics. UT/ORNL Science Alliance.

  13. Applications and Mechanisms of Ionic Liquids in Whole-Cell Biotransformation

    PubMed Central

    Fan, Lin-Lin; Li, Hong-Ji; Chen, Qi-He

    2014-01-01

    Ionic liquids (ILs), entirely composed of cations and anions, are liquid solvents at room temperature. They are interesting due to their low vapor pressure, high polarity and thermostability, and also for the possibility to fine-tune their physicochemical properties through modification of the chemical structures of their cations or anions. In recent years, ILs have been widely used in biotechnological fields involving whole-cell biotransformations of biodiesel or biomass, and organic compound synthesis with cells. Research studies in these fields have increased from the past decades and compared to the typical solvents, ILs are the most promising alternative solvents for cell biotransformations. However, there are increasing limitations and new challenges in whole-cell biotransformations with ILs. There is little understanding of the mechanisms of ILs’ interactions with cells, and much remains to be clarified. Further investigations are required to overcome the drawbacks of their applications and to broaden their application spectrum. This work mainly reviews the applications of ILs in whole-cell biotransformations, and the possible mechanisms of ILs in microbial cell biotransformation are proposed and discussed. PMID:25007820

  14. Ionic liquids as porogens for molecularly imprinted polymers: propranolol, a model study.

    PubMed

    Booker, Katherine; Holdsworth, Clovia I; Doherty, Cara M; Hill, Anita J; Bowyer, Michael C; McCluskey, Adam

    2014-10-01

    The selectivity and rebinding capacity of molecularly imprinted polymers selective for propranolol (1) using the room temperature ionic liquids [BMIM][BF4], [BMIM][PF6], [HMIM][PF6] and [OMIM][PF6] and CHCl3 were examined. The observed IF (imprinting factor) values for MIPBF4, MIPPF6 and MIPCHCl3 were 1.0, 1.98 and 4.64, respectively. The longer chain HMIM and OMIM systems returned lower IF values of 1.1 and 2.3, respectively. MIPPF6 also showed a 25% binding capacity reduction vs. MIPCHCl3 (5 ?mol g(?1)vs. 7 ?mol g(?1) respectively). MIPCHCl3 and MIPPF6 differed in terms of BET surface area (306 m(2) g(?1)vs. 185 m(2) g(?1)), pore size (1.10 and 2.19 nm vs. 0.97 and 7.06 nm), the relative number of pores (Type A: 10.4 vs. 7.5%; Type B: 8.5 vs. 3.0%), and surface zeta potential (?37.9 mV vs. ?20.3 mV). The MIP specificity for 1 was examined by selective rebinding studies with caffeine (2) and ephedrine (3). MIPPF6 rebound higher quantities of 2 than MIPCHCl3, but this was largely due to non-specific binding. Both MIPCHCl3 and MIPPF6 showed a higher affinity for 3 than for 2. Reduction in the Room Temperature Ionic Liquid (RTIL) porogen volume had little impact on the polymer morphology, but did result in a modest decrease in IF from 2.6 to 2.3 and in the binding capacity (30% to 19%). MIPCHCl3 retained the highest template specificity on rebinding from CHCl3 (IF = 4.6) dropping to IF = 0.6 in MeOH/[BMIM][PF6]. The MIPCHCl3 binding capacity remained constant using CHCl3, CH2Cl2 and MeOH (46–52%), dropped to 6% on addition of [BMIM][PF6] and increased to 83% in H2O (but at the expense of specificity with IFH2O = 1.4). MIPPF6 rebinding from MeOH saw an increase in specific rebinding to IF = 4.9 and also an increase in binding capacity to 48% when rebinding 1 from MeOH and to 42% and 45% with H2O and CH2Cl2, respectively, although in the latter case the increased capacity was at the cost of specificity with IFCH2Cl2 = 1.2. Overall the MIPPF6 capacity and specificity were enhanced on addition of MeOH. PMID:24971654

  15. Molecular ions of ionic liquids in the gas phase.

    PubMed

    Gross, Jürgen H

    2008-09-01

    Ionic liquids form neutral ion pairs (CA) upon evaporation. The softness of the gas-phase ionization of field ionization has been used to generate "molecular ions," CA(+*), of ionic liquids, most probably by neutralization of the anion. In detail, 1-ethyl-3-methylimidazolium-thiocyanate, [C(6)H(11)N(2)](+) [SCN](-), 1-butyl-3-methylimidazolium-tricyanomethide, [C(8)H(15)N(2)](+) [C(4)N(3)](-), N-butyl-3-methylpyridinium-dicyanamide, [C(10)H(16)N](+) [C(2)N(3)](-), and 1-butyl-1-methylpyrrolidinium-bis[(trifluormethyl)sulfonyl]amide, [C(9)H(20)N](+) [C(2)F(6)NO(4)S(2)](-) were used. The assignment as CA(+*) ions, which has been confirmed by accurate mass measurements and misassignments due to thermal decomposition of the ionic liquids, has been ruled out by field desorption and electrospray ionization mass spectrometry of the residues. PMID:18650101

  16. Reactions of solvated electrons with imidazolium cations in ionic liquids

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenji; Sato, Toshifumi; Katsumura, Yosuke; Yang, Jinfeng; Kondoh, Takafumi; Yoshida, Yoichi; Katoh, Ryuzi

    2008-10-01

    We examined formation of solvated electrons in several ionic liquids composed of ammonium, pyrrolidinium and piperidinium cations by observing absorption spectra in the visible and near-infrared regions using pulse radiolysi. We also examined reactions of the solvated electrons with imidazolium cations in the ionic liquids. The reaction rate constants were an order of magnitude faster than the diffusion-limited rate calculated from the viscosity. The electrons before full solvation (dry electrons) reacted efficiently with the imidazolium cations. These observations suggest that the electrons in the ionic liquids can move easily before solvation. The scavenging of the dry electron by the imidazolium cation was also examined using C2-alkylated-imidazolium cations. It is found that the alkylation of imidazolium suppresses the reactivity with the dry electron.

  17. Evaluation of cation-anion interaction strength in ionic liquids.

    PubMed

    Fernandes, Ana M; Rocha, Marisa A A; Freire, Mara G; Marrucho, Isabel M; Coutinho, João A P; Santos, Luís M N B F

    2011-04-14

    Electrospray ionization mass spectrometry with variable collision induced dissociation of the isolated [(cation)(2)anion](+) and/or [(anion)(2)cation](-) ions of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids (ILs) combined with a large set of anions, such as chloride, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, and bis[(trifluoromethyl)sulfonyl]imide, was used to carry out a systematic and comprehensive study on the ionic liquids relative interaction energies. The results are interpreted in terms of main influences derived from the structural characteristics of both anion and cation. On the basis of quantum chemical calculations, the effect of the anion upon the dissociation energies of the ionic liquid pair, and isolated [(cation)(2)anion](+) and/or [(anion)(2)cation](-) aggregates, were estimated and are in good agreement with the experimental data. Both experimental and computational results indicate an energetic differentiation between the cation and the anion to the ionic pair. Moreover, it was found that the quantum chemical calculations can describe the trend obtained for the electrostatic cation-anion attraction potential. The impact of the cation-anion interaction strengths in the surface tension of ionic liquids is further discussed. The surface tensions dependence on the cation alkyl chain length, and on the anion nature, follows an analogous pattern to that of the relative cation-anion interaction energies determined by mass spectrometry. PMID:21425809

  18. Study of effective carrier lifetime and ideality factor of BPW 21 and BPW 34B photodiodes from above room temperature to liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Dalapati, P.; Manik, N. B.; Basu, A. N.

    2015-01-01

    In the present work we have studied the temperature dependence of two most important characteristics of the photodiodes (BPW 21and BPW 34B), namely, the ideality factor and the carrier lifetime; both of which are found to change significantly at low temperature. The effective carrier lifetime measured by the Open Circuit Voltage Decay method (OCVD) shows a gradual increase in value from 350 K to about 250 K then sharply decreases by about thirty percent of its highest value at liquid nitrogen temperature, the trend being similar for both the devices. The dark forward current-voltage characteristics over the same temperature range yield the value of ideality factor which increases nearly by a factor of three for both the photodiodes at the liquid nitrogen temperature. The nature of variation of both the parameters has been qualitatively accounted for in terms of the recent tunneling models. The data generated for the first time for the devices and their broad theoretical understanding will help to improve design and application of the photodiodes, particularly at low temperature.

  19. Growth of Gold Nanosheets and Nanopolyhedra in Pyrrolidinium-Based Ionic Liquids: Investigation of the Cation Effect on the Resulting Morphologies

    SciTech Connect

    Bouvy, Claire [ORNL; Baker, Gary A [ORNL; Yin, Hongfeng [ORNL; Dai, Sheng [ORNL

    2010-01-01

    Large gold nanosheets and small gold polyhedra have been successfully synthesized in room-temperature ionic liquids (ILs) by an ionothermal reduction of HAuCl{sub 4} under N{sub 2} atmosphere, without using any additives. The effect of the organic cation on the final morphologies of the gold particles has been studied, and a series of pyrrolidinium-, imidazolium-, and quaternary amine-based ionic liquids have been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements. Our results show that these ILs favor the anisotropic growth of gold by acting as template agents and that only gold microspheres can be obtained with the IL containing a reductive functionality.

  20. Preparation of microfibers from wood/ionic liquid solutions.

    PubMed

    Polaskova, Martina; Cermak, Roman; Verney, Vincent; Ponizil, Petr; Commereuc, Sophie; Gomes, Margarida F Costa; Padua, Agilio A H; Mokrejs, Pavel; Machovsky, Michal

    2013-01-30

    Two types of ionic liquids, 1-ethyl-3-methylimidazolim acetate and 1-ethyl-3-methylimidazolium lactate, were employed for the direct processing of pine wood into microfibers. The concentration of 5 wt.% of wood in ionic liquids was rated as the most appropriate for electrospinning. The fibers were electrospun into the collector water bath. The final structure varied from individual microfibers to fiber bundles. It was demonstrated that 1-ethyl-3-methylimidazolium lactate is a powerful solvent and provides the direct transformation of pristine pine wood into the non-wovens. PMID:23218285

  1. Non-ionogenic amphiphiles in aprotic ionic liquids

    NASA Astrophysics Data System (ADS)

    Zherenkova, L. V.; Komarov, P. V.

    2015-04-01

    Structural properties of the imidazolium ionic liquid-non-ionogenic amphiphile system are studied on the basis of the integral equation theory. The effect of the alkyl substituent lengths of cations and solvent selectivity on the features of amphiphile self-assembly is studied. The need to allow for solvent structure in constructing a theory of phase behavior of amphiphile in ionic liquid is demonstrated. The characteristic scales of structural inhomogeneities of a mixture at the stage of the self-assembly of amphiphile molecules are analyzed. Aggregation characteristics of mixture, particularly medium-field spinodal temperature are calculated, depending on amphiphile concentration.

  2. Tuning the ionic conductivity in protic polymerized ionic liquid homo, random, and block copolymers

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel; UCSB Team

    2015-03-01

    Proton conducting membranes are of interest for a number of energy applications including use in fuel cells and artificial photosynthesis systems. We have synthesized a new class of protic polymerized ionic liquids (PILs) based on imidazolium cations which exhibit high conductivities in the solid state. In contrast to previous imidazolium based PILs, the ionic liquid moiety is attached via a carbon on the imidazole thus leaving the two nitrogens available to act as a proton donor/acceptor. The conductivies of these protic PILs, measured by dielectric spectroscopy, are orders of magnitude higher than the analogous non-protic PILs at a given distance above (Tg). These high conductivities are the result of a strong contribution from proton motion. A series of random and block copolymers containing the polymerized ionic liquid monomer and a non-ionic comonomer were also investigated to determine the role of comonomer on the conductivity of these materials. It was found that methyl acrylate, which has a low glass transition temperature and high dielectric constant, can result in improvements of ionic conductivity. Studies using solid state NMR are underway to understand the role of protons and mobile anions in controlling the overall conductivity of these materials.

  3. Signature of the insulator–metal transition of a semicrystalline conjugated polymer in ionic-liquid-gated transistors

    NASA Astrophysics Data System (ADS)

    Harada, Tomonori; Ito, Hiroshi; Ando, Yoshihiro; Watanabe, Shun; Tanaka, Hisaaki; Kuroda, Shin-ichi

    2015-02-01

    Critical behaviors indicating an insulator–metal (IM) transition are observed in poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) [PBTTT] in ionic-liquid-gated transistors. At room temperature, a maximum channel conductivity of 300 S cm?1 is achieved at the doping concentration of 1021 cm?3. The conductivity shows a very weak temperature dependence; the conductivity at 5 K is only 1.6 times lower than that at 250 K. The signature of the IM transition at low temperatures is evidenced by the results of Zabrodskii plot analysis. The IM transition is benefitted by the semicrystalline lamellar structure of PBTTT enhanced by the substrate treatment with a self-assembled monolayer.

  4. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    SciTech Connect

    Feng, Guang [ORNL; Jiang, Deen [ORNL; Cummings, Peter T [ORNL

    2012-01-01

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

  5. Identification of helicity-dependent photocurrents from topological surface states in Bi2Se3 gated by ionic liquid.

    PubMed

    Duan, Junxi; Tang, Ning; He, Xin; Yan, Yuan; Zhang, Shan; Qin, Xudong; Wang, Xinqiang; Yang, Xuelin; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2014-01-01

    Dirac-like surface states on surfaces of topological insulators have a chiral spin structure with spin locked to momentum, which is interesting in physics and may also have important applications in spintronics. In this work, by measuring the tunable helicity-dependent photocurrent (HDP), we present an identification of the HDP from the Dirac-like surface states at room temperature. It turns out that the total HDP has two components, one from the Dirac-like surface states, and the other from the surface accumulation layer. These two components have opposite directions. The clear gate tuning of the electron density as well as the HDP signal indicates that the surface band bending and resulted surface accumulation are successfully modulated by the applied ionic liquid gate, which provides a promising way to the study of the Dirac-like surface states and also potential applications in spintronic devices. PMID:24809330

  6. Identification of Helicity-Dependent Photocurrents from Topological Surface States in Bi2Se3 Gated by Ionic Liquid

    PubMed Central

    Duan, Junxi; Tang, Ning; He, Xin; Yan, Yuan; Zhang, Shan; Qin, Xudong; Wang, Xinqiang; Yang, Xuelin; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2014-01-01

    Dirac-like surface states on surfaces of topological insulators have a chiral spin structure with spin locked to momentum, which is interesting in physics and may also have important applications in spintronics. In this work, by measuring the tunable helicity-dependent photocurrent (HDP), we present an identification of the HDP from the Dirac-like surface states at room temperature. It turns out that the total HDP has two components, one from the Dirac-like surface states, and the other from the surface accumulation layer. These two components have opposite directions. The clear gate tuning of the electron density as well as the HDP signal indicates that the surface band bending and resulted surface accumulation are successfully modulated by the applied ionic liquid gate, which provides a promising way to the study of the Dirac-like surface states and also potential applications in spintronic devices. PMID:24809330

  7. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect

    Sangoro, Joshua R [ORNL; Kremer, Friedrich [University of Leipzig

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  8. Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation

    E-print Network

    Fedkiw, Timothy Peter

    2010-01-01

    Electrosprays are a well studied source of charged droplets and ions. A specific subclass is the ionic liquid ion source (ILIS), which produce ion beams from the electrostatically stressed meniscus of ionic liquids. ILIS ...

  9. Giant reversible, facet-dependent, structural changes in a correlated-electron insulator induced by ionic liquid gating.

    PubMed

    Jeong, Jaewoo; Aetukuri, Nagaphani B; Passarello, Donata; Conradson, Steven D; Samant, Mahesh G; Parkin, Stuart S P

    2015-01-27

    The use of electric fields to alter the conductivity of correlated electron oxides is a powerful tool to probe their fundamental nature as well as for the possibility of developing novel electronic devices. Vanadium dioxide (VO2) is an archetypical correlated electron system that displays a temperature-controlled insulating to metal phase transition near room temperature. Recently, ionic liquid gating, which allows for very high electric fields, has been shown to induce a metallic state to low temperatures in the insulating phase of epitaxially grown thin films of VO2. Surprisingly, the entire film becomes electrically conducting. Here, we show, from in situ synchrotron X-ray diffraction and absorption experiments, that the whole film undergoes giant, structural changes on gating in which the lattice expands by up to ?3% near room temperature, in contrast to the 10 times smaller (?0.3%) contraction when the system is thermally metallized. Remarkably, these structural changes are fully reversible on reverse gating. Moreover, we find these structural changes and the concomitant metallization are highly dependent on the VO2 crystal facet, which we relate to the ease of electric-field-induced motion of oxygen ions along chains of edge-sharing VO6 octahedra that exist along the (rutile) c axis. PMID:25583517

  10. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis

    Microsoft Academic Search

    Johnathan Gorke; Friedrich Srienc; Romas Kazlauskas

    2010-01-01

    Ionic liquids, also called molten salts, are mixtures of cations and anions that melt below 100°C. Typical ionic liquids are\\u000a dialkylimidazolium cations with weakly coordinating anions such as (MeOSO3) or (PF6). Advanced ionic liquids such as choline citrate have biodegradable, less expensive, and less toxic anions and cations. Deep\\u000a eutectic solvents are also included in the advanced ionic liquids. Deep

  11. Lubrication of Steel\\/Steel Contacts by Choline Chloride Ionic Liquids

    Microsoft Academic Search

    S. D. A. Lawes; S. V. Hainsworth; P. Blake; K. S. Ryder; A. P. Abbott

    2010-01-01

    There is a growing interest in the use of ionic liquids to provide lubrication for challenging contacts. This study is an\\u000a initial assessment of the application of two ionic liquids based on choline chloride cations to be used as ionic liquid lubricants\\u000a for engineering contacts, in this case steel on steel. These ionic liquids, termed ethaline and reline, have anions

  12. Oxidation desulfurization of fuel using pyridinium-based ionic liquids as phase-transfer catalysts

    Microsoft Academic Search

    Dishun Zhao; Yanan Wang; Erhong Duan; Juan Zhang

    2010-01-01

    In this work, several ionic liquids based on pyridinium cations are prepared. The ionic liquids are employed as phase-transfer catalysts (PTCs) for phase-transfer catalytic oxidation of dibenzothiophene (DBT) dissolved in n-octane. The partition coefficients of DBT between ionic liquids and n-octane are investigated. Then H2O2–formic acid is used as an oxidant and ionic liquids are used as PTCs. The reaction

  13. Surfactant-based ionic liquids for extraction of phenolic compounds combined with rapid quantification using capillary electrophoresis.

    PubMed

    Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M

    2014-09-01

    A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 ?g/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 ?g/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. PMID:24798689

  14. Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions.

    PubMed

    ?uczak, Justyna; Jungnickel, Christian; Joskowska, Monika; Thöming, Jorg; Hupka, Jan

    2009-08-01

    The structural similarity between some ionic liquids (ILs) and ionic surfactants, indicates that ILs are expected to exhibit surface adsorption and aggregation properties. The Krafft temperature and the temperature dependence of the critical micelle concentration (CMC) were determined for four imidazolium ionic liquids with varying chain length by measuring concentration dependence of electrical conductivity at different temperatures. The magnitude of the thermodynamic parameters of the micelle formation provide valuable information about the driving force of micellization of these compounds, therefore, the parameters of these chemicals were estimated from the degree of ionization, and the CMC. The thermodynamic parameters were correlated to directly measured values using isothermal titration calorimetry (ITC). It was found that the long-chained imidazolium ILs show similar thermodynamic characteristics as traditional cationic surfactants, whereas the Krafft temperature was shown to be lower than that of traditional cationic surfactants of similar chain length. PMID:19394951

  15. Ionic liquids as potential carriers of low viscosity magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Guerrero-Sanchez, Carlos; Ortiz-Alvarado, Armando; Schubert, Ulrich S.

    2009-03-01

    Based on the latest investigations on the formulation of new magneto-rheological fluids, it is envisioned that the use of ionic liquids as carriers of magneto-rheological fluids will open new possibilities of applications for these smart fluids due to the fact that their physical and chemical properties can be fine-tuned in a broad range. This contribution addresses one potentially important advantage of magneto-rheological fluids which use ionic liquids as novel carriers. In connection with this, magneto-rheological fluids with a low viscosity in the off-state without compromising other properties of the formulations (e. g., sedimentation of the dispersed magnetic particles, liquid state of the carriers in a broad range of temperatures) are often required for specific applications. In this regard, ionic liquids of low viscosity can be very useful in the development of such magneto-rheological fluids. Thus, this contribution reports on the magnetorheological properties of iron(II, III) oxide particles dispersed in the ionic liquid 1-ethyl-3-methylimidazolium thiocyanate (a low viscosity ionic liquid) in the temperature range from 20 °C to 80 °C. The experimental results have revealed that the apparent viscosity of the dispersion slightly changes with the temperature when a constant magnetic field is applied and its value mainly depends on the shear rate and the strength of the magnetic field. The viscosity of the dispersion remains practically unmodified with both the temperature and the magnetic field intensity as the magnetic saturation of the material is reached; in this regime the viscosity will only depend on the applied shear rate. In contrast, the yield stress values of the dispersion as well as the corresponding shear stress vs. shear rate curves have shown an inverse behavior with temperature for a constant magnetic field.

  16. Benzene solubility in ionic liquids: working toward an understanding of liquid clathrate formation.

    PubMed

    Pereira, Jorge F B; Flores, Luis A; Wang, Hui; Rogers, Robin D

    2014-11-17

    The solubility of benzene in 15 imidazolium, pyrrolidinium, pyridinium, and piperidinium ionic liquids has been determined; the resulting, benzene-saturated ionic liquid solutions, also known as liquid clathrates, were examined with (1) H and (19) F nuclear magnetic resonance spectroscopy to try and understand the molecular interactions that control liquid clathrate formation. The results suggest that benzene interacts primarily with the cation of the ionic liquid, and that liquid clathrate formation (and benzene solubility) is controlled by the strength of the cation-anion interactions, that is, the stronger the cation-anion interaction, the lower the benzene solubility. Other factors that were determined to be important in the final amount of benzene in any given liquid clathrate phase included attractive interactions between the anion and benzene (when significant), and larger steric or free volume demands of the ions, both of which lead to greater benzene solubility. PMID:25297708

  17. Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10 simulated

    E-print Network

    Tas, A. Cuneyt

    Rapid coating of Ti6Al4V at room temperature with a calcium phosphate solution similar to 10, we report the utilization of high ionic strength (>1100 mM) calcium phosphate solutions in depositing 20­65- m-thick, bonelike apatitic calcium phosphate on Ti6Al4V within 2­6 h, at room temperature

  18. A Ionic Liquid-Channel Field Effect Transistor

    Microsoft Academic Search

    Stephanie Anne Gajar

    1992-01-01

    A theoretical and experimental study was carried out on a new microfabricated device, an ionic liquid-channel field-effect transistor (ILCFET). The ILCFET resembles a metal-oxide-semiconductor field-effect transistor (MOSFET) except that the current flowing from the source to the drain is carried in thin channels by ions of a liquid electrolyte. Both have an electric field, transverse to the current flow, induced

  19. The use of ionic liquids based on choline chloride for metal deposition: A green alternative?

    Microsoft Academic Search

    Kurt Haerens; Edward Matthijs; Andrzej Chmielarz; Bart Van der Bruggen

    2009-01-01

    Ionic liquids are studied intensively for different applications. They tend to be denoted as “green solvents”, largely because of their low vapour pressure. In recent years toxicity and biotoxicity of ionic liquids have also been investigated, which proved that not all of these are “green”. In this paper the use of ionic liquids based on choline chloride and ethylene glycol

  20. Solvent extraction of rare-earth ions based on functionalized ionic liquids

    SciTech Connect

    Sun, Xiaoqi [ORNL; Dai, Sheng [ORNL; Luo, Huimin [ORNL

    2012-01-01

    We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

  1. Revisiting potential physico-chemical hazards of ionic liquids Alpha O. Diallo,a,b

    E-print Network

    Paris-Sud XI, Université de

    1 Revisiting potential physico-chemical hazards of ionic liquids Alpha O. Diallo,a,b Christophe Len pertaining to ionic liquids. Indeed safety performance of ionic liquids relating to physico-chemical hazards- chemical hazard rating systems and their limitation in the context of overall risk evaluation, and d

  2. Phosphonium-based ionic liquids analogues and their physical properties

    Microsoft Academic Search

    M. A. Kareem; F. S. Mjalli; M. A. Hashim; I. M. Alnashef

    2010-01-01

    New ionic liquids analogues, that is, deep eutectic solvents (DESs), have been successfully synthesized. These DESs have been synthesized by the reaction of phosphonium-based salts with different hydrogen bond donors. Many of these DESs have melting temperatures lower than 100 °C. Preliminary laboratory results showed that these DESs can be used in different applications, for example, electrochemical processes, separation of

  3. Catalytic ignition of ionic liquids for propellant applications.

    PubMed

    Shamshina, Julia L; Smiglak, Marcin; Drab, David M; Parker, T Gannon; Dykes, H Waite H; Di Salvo, Roberto; Reich, Alton J; Rogers, Robin D

    2010-12-21

    In this proof of concept study, the ionic liquids, 2-hydroxyethylhydrazinium nitrate and 2-hydroxyethylhydrazinium dinitrate, ignited on contact with preheated Shell 405 (iridium supported on alumina) catalyst and energetically decomposed with no additional ignition source, suggesting a possible route to hydrazine replacements. PMID:20976311

  4. Ionic Liquid Lubrication Effects on Ceramics in a Water Environment

    Microsoft Academic Search

    B. S. Phillips; J. S. Zabinski

    2004-01-01

    Ionic liquids were studied to determine their effectiveness as boundary lubricant additives for water. The chemical and tribochemical reactions that govern their behavior were probed to understand lubrication mechanisms. Under water lubricated conditions, silicon nitride ceramics are characterized by a running-in period of high friction, during which time the surface is modified causing a dramatic decrease in friction and wear.

  5. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  6. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  7. An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores.

    PubMed

    Weingarth, Daniel; Drumm, Robert; Foelske-Schmitz, Annette; Kötz, Rüdiger; Presser, Volker

    2014-10-21

    Room temperature ionic liquids (RTILs) are an emerging class of electrolytes enabling high cell voltages and, in return, high energy density of advanced supercapacitors. Yet, the low temperature behavior, including freezing and thawing, is little understood when ions are confined in the narrow space of nanopores. This study shows that RTILs may show a tremendously different thermal behavior when comparing bulk with nanoconfined properties as a result of the increased surface energy of carbon pore walls. In particular, a continuous increase in viscosity is accompanied by slowed-down charge-discharge kinetics as seen with in situ electrochemical characterization. Freezing reversibly collapses the energy storage ability and thawing fully restores the initial energy density of the material. For the first time, a different thermal behavior in positively and negatively polarized electrodes is demonstrated. This leads to different freezing and melting points in the two electrodes. Compared to bulk, RTILs in the confinement of electrically charged nanopores show a high affinity for supercooling; that is, the electrode may freeze during heating. PMID:25201074

  8. Refolding of laccase in dilution additive mode with copper-based ionic liquid.

    PubMed

    Bae, Sang-Woo; Ahn, Kihun; Koo, Yoon-Mo; Ha, Sung Ho

    2013-11-01

    Ionic liquids (ILs) are molten salts which do not crystallize at room temperature. Tunable physicochemical properties of ILs including hydrophobicity and polarity facilitate their applications in many biological processes. In this study, a copper-based IL was employed in order to enhance the refolding efficiency of laccase from Trametes versicolor which requires copper as a cofactor. When 1-ethyl-3-methylimidazolium trichlorocuprate ([EMIM][CuCl?]) was added to refolding buffer instead of urea, the laccase refolding yield was improved more than 2.7 times compared to the conventional refolding buffer which contains urea. When the refolding of laccase was carried out at different temperatures (4, 25, and 37 °C), the highest refolding yield was obtained at 25 °C. At low temperature, two conflicting effects, i.e., suppression of the aggregate formation and decrease of folding rate, influence the protein refolding. In contrast, a copper-based IL did not enhance the refolding of lysozyme, a non-copper-containing protein. From these results, we can conclude that this copper-based IL, [EMIM][CuCl?], was exclusively effective on the refolding process of a copper-containing protein. PMID:23975279

  9. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect

    Sun, Xiao-Guang [ORNL; Wang, Xiqing [ORNL; Mayes, Richard T [ORNL; Dai, Sheng [ORNL

    2012-01-01

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  10. Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Taylor, Terry L.

    2013-01-01

    "Green" propellants based on Ionic-liquids (ILs) like Ammonium DiNitramide and Hydroxyl Ammonium Nitrate have recently been developed as reduced-hazard replacements for hydrazine. Compared to hydrazine, ILs offer up to a 50% improvement in available density-specific impulse. These materials present minimal vapor hazard at room temperature, and this property makes IL's potentially advantageous for "ride-share" launch opportunities where hazards introduced by hydrazine servicing are cost-prohibitive. Even though ILs present a reduced hazard compared to hydrazine, in crystalline form they are potentially explosive and are mixed in aqueous solutions to buffer against explosion. Unfortunately, the high water content makes IL-propellants difficult to ignite and currently a reliable "coldstart" capability does not exist. For reliable ignition, IL-propellants catalyst beds must be pre-heated to greater than 350 C before firing. The required preheat power source is substantial and presents a significant disadvantage for SmallSats where power budgets are extremely limited. Design and development of a "micro-hybrid" igniter designed to act as a "drop-in" replacement for existing IL catalyst beds is presented. The design requires significantly lower input energy and offers a smaller overall form factor. Unlike single-use "squib" pyrotechnic igniters, the system allows the gas generation cycle to be terminated and reinitiated on demand.

  11. Ionic Liquid-Derived Blood-Compatible Composite Membranes for Kidney Dialysis

    PubMed Central

    Murugesan, Saravanababu; Mousa, Shaker; Vijayaraghavan, Aravind; Ajayan, Pulickel M.; Linhardt, Robert J.

    2014-01-01

    A novel heparin- and cellulose-based biocomposite is fabricated by exploiting the enhanced dissolution of polysaccharides in room temperature ionic liquids (RTILs). This represents the first reported example of using a new class of solvents, RTILs, to fabricate blood-compatible biomaterials. Using this approach, it is possible to fabricate the biomaterials in any form, such as films or membranes, fibers (nanometer- or micron-sized), spheres (nanometer- or micron-sized), or any shape using templates. In this work, we have evaluated a membrane film of this composite. Surface morphological studies on this biocomposite film showed the uniformly distributed presence of heparin throughout the cellulose matrix. Activated partial thromboplastin time and thromboelastography demonstrate that this composite is superior to other existing heparinized biomaterials in preventing clot formation in human blood plasma and in human whole blood. Membranes made of these composites allow the passage of urea while retaining albumin, representing a promising blood-compatible biomaterial for renal dialysis, with a possibility of eliminating the systemic administration of heparin to the patients undergoing renal dialysis. PMID:16637031

  12. Thermophysical properties of energetic ionic liquids/nitric acid mixtures: Insights from molecular dynamics simulationsa)

    NASA Astrophysics Data System (ADS)

    Hooper, Justin B.; Smith, Grant D.; Bedrov, Dmitry

    2013-09-01

    Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3-] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3-] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.

  13. Solvent-mediated molar conductivity of protic ionic liquids.

    PubMed

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2015-01-01

    The molar conductivity, ?m, of protic ionic liquids (PILs) in molecular solvents is measured at 298.15 K. The decrease in the ?m values of PILs is observed with an increase in the concentration of PILs. The limiting molar conductivities, ?m(0), were obtained for each PIL in different molecular solvents using a least squares method. The ?m(0) data for PILs were correlated with the structural aspects of PILs and solvent properties. The polar protic solvents show poor ionic association as compared to the polar aprotic solvents, which is discussed on the basis of the hydrogen bond donating (HBD) ability of solvents and PILs. The alkyl chain substitution of anions plays a significant role in the ionic association of the PILs. The diffusion coefficient D(0) and the transport number t were determined, which were consistent with the ?m(0) values of PILs in water. The ?m(0) and D(0) values are dependent on the hydrodynamic radius of anions of these ionic liquids. The extent of ionic association for each PIL was discussed using temperature dependent ?m data for aqueous PIL systems in terms of the Walden plot. PMID:25406387

  14. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    PubMed

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes. PMID:26010902

  15. Perspectives on moving ionic liquid chemistry into the solid phase.

    PubMed

    Warner, Isiah M; El-Zahab, Bilal; Siraj, Noureen

    2014-08-01

    Ionic liquid (IL) chemistry has evolved over the past century, such that these organic salts have impacted virtually every area of science and engineering. In the area of chemistry, initial applications of these salts were primarily the domain of chemists or chemical engineers who desired to manipulate the properties of IL solvents for a variety of applications including tuning various chemical processes. Since then, the chemistry of these organic salts has progressed such that changing an important property of a solvent (e.g., melting point or hydrophobicity) often involves simply altering the counterion of the organic salt. It is with this simplicity in mind that we have recently embarked upon the use of such chemistry to manipulate important properties of solid-phase ionic organic materials. To differentiate this chemistry from ionic liquid chemistry, we have coined the acronym GUMBOS (group of uniform materials based on organic salts). In this perspective article, we describe and demonstrate how ionic liquid chemistry can provide distinct and sometimes unique chemistry for solid-phase applications. Solid phase properties which can be manipulated via this chemistry include, but are not limited to, magnetism, melting point, hydrophobicity, fluorescence quantum yields, nanoformulations, material aggregation, viscosity, viscoelasticity, and cytotoxicity. In addition, we discuss a few examples to demonstrate how GUMBOS chemistry, until now, has been beneficial to the general area of materials chemistry and, more broadly, to the field of analytical chemistry. We also project future applications of this technology. PMID:25017178

  16. Thiophene separation from aliphatic hydrocarbons using the 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid

    Microsoft Academic Search

    Luisa Alonso; Alberto Arce; María Francisco; Ana Soto

    2008-01-01

    The ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate has been tested as solvent for the separation of thiophene from aliphatic hydrocarbons. Liquid–liquid equilibrium data have been determined for ternary systems containing the ionic liquid, thiophene and C6, C7, C12 or C16 alkanes at T=298.15K. The performance of the ionic liquid as solvent in such systems has been evaluated. The experimental data were correlated

  17. Quasi-Solid State Dye-sensitized Solar Cells Based on Polyvinylpyrrolidone With Ionic Liquid

    Microsoft Academic Search

    L. Fan; S. Kang; J. Wu; S. Hao; Z. Lan; J. Lin

    2010-01-01

    A new ionic liquid polymer gel electrolyte containing 1-butyl-3-methylimidazolium iodide, polyvinylpyrrolidone, potassium iodide, and iodine has been prepared and characterized. Controlling the concentration of 1-butyl-3-methylimidazolium iodide, KI, and I2 with 0.9 M, 0.5 M, and 0.12 M, respectively, the ionic liquid polymer gel electrolyte attains the maximum ionic conductivity (at 30°C) of 2.3 mS cm. Based on the ionic liquid

  18. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    NASA Astrophysics Data System (ADS)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  19. Asymmetric Glyoxylate-Ene Reactions Catalyzed by Chiral Pd(II) Complexes in the Ionic Liquid [bmim][PF6

    PubMed Central

    He, Xi Jun; Shen, Zhen Lu; Mo, Wei Min; Hu, Bao Xiang; Sun, Nan

    2007-01-01

    The room temperature ionic liquid [bmim][PF6] was employed as the reaction medium in the asymmetric glyoxylate-ene reaction of ?-methyl styrene (4a) with ethyl glyoxylate using chiral palladium(II) complexes as the catalysts. [Pd(S-BINAP)(3,5-CF3-PhCN)2](SbF6)2 (1b) showed the highest catalytic activity. Under the reaction conditions of 40 °C, 0.5 h, and 1b/4a molar ratio of 0.05, ethyl ?-hydroxy-4-phenyl-4-pentenoate was obtained in excellent chemical yield (94 %) with high enantioselectivity (70 %). Other ?-hydroxy esters can also be obtained in high chemical yields and enantioselectities through the glyoxylate-ene reactions of alkenes with glyoxylates catalyzed by 1b in [bmim][PF6]. Moreover, the ionic liquid [bmim][PF6] which contained the palladium(II) complex could be recycled and reused several times without significant loss of the catalytic activity.

  20. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach

    NASA Astrophysics Data System (ADS)

    Ma, Ke; Forsman, Jan; Woodward, Clifford E.

    2015-05-01

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [ C 4 M I M + ] [ B F4 - ] , we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.

  1. Morphology and Ionic Conductivity of Humidity-Responsive Polymerized Ionic Liquid Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sharick, Sharon; Meek, Kelly; Ye, Yuesheng; Elabd, Yossef A.; Winey, Karen I.

    2014-03-01

    We present the ionic conductivity and morphology of humidity-responsive polymerized ionic liquid block copolymers (PIL BCPs), poly(methyl methacrylate- b-1-[2-(methacryloyloxy)ethyl]-3-butylimidazolium-X), where X is a bromide (Br) or hydroxide (OH) anion, as a function of relative humidity (RH), temperature, and PIL composition (?PIL) . PIL BCPs were characterized by in situ small-angle X-ray scattering and electrochemical impedance spectroscopy. These PIL BCPs have microphase separated morphologies and long-range order increases as ?PIL increases. Notably, ionic conductivity increases 3 to 4 orders of magnitude when RH increases from 30 to 90 percent. When ?PIL is greater than 0.37, BCP ionic conductivity approaches or exceeds that of the homopolymer, suggesting that the dynamics in PIL microdomains mimic the homopolymer and long-range order aids ion transport. Moreover, over 60 percent of the BCP is nonconductive without a penalty in ion transport. When ?PIL is less than 0.37, BCP conductivity is 1 to 2 orders of magnitude less than the homopolymer and non-conductive PMMA segments dominate ion transport, as expected. Ionic conductivities at 80 °C, 90 percent RH, are 7.6 mS/cm for the Br-containing BCP with ?PIL = 0.53 and 25.0 mS/cm for the OH-containing BCP with ?PIL = 0.50.

  2. Determining Camera Gain in Room Temperature Cameras

    SciTech Connect

    Joshua Cogliati

    2010-12-01

    James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

  3. Room-temperature creep of tantalum tritides

    SciTech Connect

    Schober, T.; Trinkaus, H. (Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 5170 Juelich, Federal Republic of Germany (DE))

    1990-06-15

    We report on long-term creep experiments on dilute tantalum tritides at room temperature. Significant deviations of the recorded strain rates from isotropic swelling are found above approximately 30 MPa. We attribute this room-temperature creep to a stress-induced preferential dislocation loop punching by bubbles in crystallographic directions close the stress axis. Quantitative estimates show that this mechanism can indeed account for the observed creep rates.

  4. Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants

    NASA Astrophysics Data System (ADS)

    Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan

    2010-11-01

    Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.

  5. Separation of fission products based on ionic liquids: Task-specific ionic liquids containing an aza-crown ether fragment

    SciTech Connect

    Luo, Huimin [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL; Bonnesen, Peter V [ORNL] [ORNL; Buchanan III, A C [ORNL] [ORNL

    2005-01-01

    A new class of task-specific ionic liquids (TSILs) based on the covalent attachment of imidazolium cations to a monoaza-crown ether fragment has been synthesized and characterized. The efficacy of these TSILs for the biphasic extraction of Cs(+) and Sr(2+) from aqueous solutions has been evaluated. The extraction properties of these TSILs can be influenced by the structures of the covalently attached imidazolium cations, which highlight the possibilities to enhance or tune the selectivities of crown ethers toward target ionic species through the covalent coupling with the imidazolium cations. (c) 2005 Elsevier B.V. All rights reserved.

  6. Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids

    PubMed Central

    Liu, Yang; Lu, Caiyan; Twigg, Stephen; Ghaffari, Mehdi; Lin, Junhong; Winograd, Nicholas; Zhang, Q. M.

    2013-01-01

    The recent boom of energy storage and conversion devices, exploiting ionic liquids (ILs) to enhance the performance, requires an in-depth understanding of this new class of electrolytes in device operation conditions. One central question critical to device performance is how the mobile ions accumulate near charged electrodes. Here, we present the excess ion depth profiles of ILs in ionomer membrane actuators (Aquivion/1-butyl-2,3-dimethylimidazolium chloride (BMMI-Cl), 27??m thick), characterized directly by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) at liquid nitrogen temperature. Experimental results reveal that for the IL studied, cations and anions are accumulated at both electrodes. The large difference in the total volume occupied by the excess ions between the two electrodes cause the observed large bending actuation of the actuator. Hence we demonstrate that ToF-SIMS experiment provides great insights on the physics nature of ionic devices. PMID:23512124

  7. Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus

    Microsoft Academic Search

    Michiaki Matsumoto; Kenji Mochiduki; Kei Fukunishi; Kazuo Kondo

    2004-01-01

    In situ extractive fermentation of lactic acid using organic solvents has already been heavily investigated. Now ionic liquids are emerging as alternative solvents for volatile organic compounds traditionally used in liquid–liquid extraction. In this paper, we examine whether imidazolium-based ionic liquids can replace conventional organic solvents in the extractive fermentation of lactate by investigating their extraction behaviors and solvent toxicity.

  8. Determination of pyrethroid pesticides in tomato using ionic liquid-based dispersive liquid-liquid microextraction.

    PubMed

    Han, Dandan; Tang, Baokun; Row, Kyung Ho

    2014-03-01

    A sensitive determination method was developed for the analysis of pyrethroid pesticide residues in tomato samples using ionic liquid-based dispersive liquid-liquid microextraction. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and acetonitrile were used as the extraction solvent and dispersive solvent, respectively. The following experimental parameters affecting the extraction efficiency were examined: types of extraction solvent and volume of extraction solvent, types of dispersive solvent and volume of dispersive solvent and pH and ion strength of the sample solution. Under the optimum conditions, the extraction recoveries ranged from 83.9 to 96.7%. Moreover, the enrichment factors for esbiothrin, fenpropathrin and cyhalothrin were 42, 48 and 45, respectively. The calibration curves were linear with correlation coefficients ranging from 0.9997 to 0.9999 at concentrations of 0.05-1.5 µg/kg. The relative standard deviation (n = 5) was 1.7-4.5%. The limits of detection for esbiothrin, fenpropathrin and cyhalothrin were 8.1, 9.9 and 14.3 µg/kg, respectively. PMID:23519563

  9. Dissolution and depolymerization of barley starch in selected ionic liquids.

    PubMed

    Lappalainen, Katja; Kärkkäinen, Johanna; Lajunen, Marja

    2013-03-01

    Polysaccharides like starch are poorly soluble in common solvents. However, certain ionic liquids (ILs) have been found to dissolve them, although some depolymerization happens during the dissolution. Dissolution and depolymerization of barley starch in ten ionic liquids have been studied with p-TsOH as a catalyst under controlled microwave heating. Dissolution time and the extent of the depolymerization of starch, determined by using HPLC-ELSD, were specific to each IL. Dialkylimidazolium halide ILs dissolved starch fast and depolymerized it substantially producing 79-100% water-soluble starch oligomers with the average molecular weight of 1000-2000Da. 1-Ethyl-3-methylimidazolium phosphate ([EMIM][Me2PO4]) and 2-hydroxyethylammonium formate ([NH3CH2CH2OH][HCOO]) dissolved starch slowly and depolymerized it least among the tested ILs. For the slow depolymerization of starch these ILs can be considered as suitable solvents for starch modifications where its depolymerization should be avoided. PMID:23465905

  10. Reactions of Lignin Model Compounds in Ionic Liquids

    SciTech Connect

    Holladay, John E.; Binder, Joseph B.; Gray, Michel J.; White, James F.; Zhang, Z. Conrad

    2009-09-15

    Lignin, a readily available form of biomass, awaits novel chemistry for converting it to valuable aromatic chemicals. Recent work has demonstrated that ionic liquids are excellent solvents for processing woody biomass and lignin. Seeking to exploit ionic liquids as media for depolymerization of lignin, we investigated reactions of lignin model compounds in these solvents. Using Brønsted acid catalysts in 1-ethyl-3-methylimidazolium triflate at moderate temperatures, we obtained up to 11.6% yield of the dealkylation product guaiacol from the model compound eugenol and cleaved phenethyl phenyl ether, a model for lignin ethers. Despite these successes, acid catalysis failed in dealkylation of the unsaturated model compound 4-ethylguaiacol and did not produce monomeric products from organosolv lignin, demonstrating that further work is required to understand the complex chemistry of lignin depolymerization.

  11. Ionic liquid lubricants: designed chemistry for engineering applications.

    PubMed

    Zhou, Feng; Liang, Yongmin; Liu, Weimin

    2009-09-01

    This tutorial review outlines current state of the art research on ionic liquid lubricants. Ionic liquids (ILs) were first reported as very promising high-performance lubricants in 2001 and have attracted considerable attention in the field of tribology since then because of their remarkable lubrication and anti-wear capabilities as compared with lubrication oils in general use; in recent times we have seen dramatically increased interest in the topic. The review starts with a brief introduction to ILs and fluid lubrication, and then discusses in more detail the tribological properties of IL lubricants, either as lubrication oils, additives or thin films. As well as lubrication mechanisms, some current problems and potential solutions are tentatively discussed. PMID:19690739

  12. Annealing and ionic liquid gating on suspended molybdenum disulfide devices

    NASA Astrophysics Data System (ADS)

    Wang, Fenglin; Stepanov, Petr; Gray, Mason; Itkis, Mikhail; Haddon, Robert; Lau, Chun Ning

    2015-03-01

    We fabricate suspended molybdenum disulfide (MoS2) field effect transistors (FET) devices and develop an effective gas annealing technique that significantly improves device quality and increases conductance by 3-4 orders of magnitude. Temperature dependence measurements reveal two transport mechanisms: electron-phonon scattering at high temperatures and thermal activation over a gate-tunable barrier height at low temperatures. Our results suggest that transport in these devices is not limited by the substrates. Moreover, this suspended MoS2 device structure provides double surface access for ionic liquid gating. We are able to extract the dielectric constant of the ionic liquid, and the latest experimental results will be presented.

  13. Ionic liquid-induced synthesis of selenium nanoparticles

    SciTech Connect

    Langi, Bhushan [Changu Kana Thakur Research Centre, New Panvel 410 206 (India)] [Changu Kana Thakur Research Centre, New Panvel 410 206 (India); Shah, Chetan; Singh, Krishankant [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)] [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Chaskar, Atul, E-mail: achaskar@rediffmail.com [Changu Kana Thakur Research Centre, New Panvel 410 206 (India)] [Changu Kana Thakur Research Centre, New Panvel 410 206 (India); Kumar, Manmohan; Bajaj, Parma N. [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)] [Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-06-15

    A simple wet chemical method has been used to synthesize selenium nanoparticles by the reaction of ionic liquid with sodium selenosulphate, a selenium precursor, in the presence of polyvinyl alcohol stabilizer, in aqueous medium. The method is capable of producing spherical selenium nanoparticles in the size range of 76-150 nm under ambient conditions. This is a first report on the production of nano-selenium assisted by an ionic liquid. The synthesized nanoparticles can be separated easily from the aqueous sol by a high-speed centrifuge machine, and can be re-dispersed in an aqueous medium. The synthesized selenium nanoparticles have been characterized by X-ray diffraction, energy dispersive X-ray analysis, differential scanning calorimetry and transmission electron microscopy techniques.

  14. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  15. Recycling of aluminum metal matrix composite using ionic liquids

    Microsoft Academic Search

    V. Kamavaram; D. Mantha; R. G. Reddy

    2005-01-01

    Recycling of aluminum metal matrix composite via electrolysis in ionic liquids at low-temperature was investigated. The electrolytic melt comprised of 1-butyl-3-methylimidazolium chloride (BMIC) and anhydrous AlCl3. Aluminum metal matrix composite (Duralcan®, Al-380, 20vol.% SiC) was electrochemically dissolved at the anode, and pure aluminum (>98%) was deposited on a copper cathode. The influence of experimental parameters such as concentration of electrolyte

  16. Catalytic conversion of cellulose to chemicals in ionic liquid

    Microsoft Academic Search

    Furong Tao; Huanling Song; Lingjun Chou

    2011-01-01

    A simple and effective route for the production of 5-hydroxymethyl furfural (HMF) and furfural from microcrystalline cellulose (MCC) has been developed. CoSO4 in an ionic liquid, 1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate (IL-1), was found to be an efficient catalyst for the hydrolysis of cellulose at 150°C, which led to 84% conversion of MCC after 300min reaction time. In the presence

  17. A review of ionic liquids towards supercritical fluid applications

    Microsoft Academic Search

    Seda Keskin; Defne Kayrak-Talay; U?ur Akman; Öner Hortaçsu

    2007-01-01

    Ionic liquids (ILs), considered to be a relatively recent magical chemical due their unique properties, have a large variety of applications in all areas of the chemical industries. The areas of application include electrolyte in batteries, lubricants, plasticizers, solvents and catalysis in synthesis, matrices for mass spectroscopy, solvents to manufacture nano-materials, extraction, gas absorption agents, etc. Non-volatility and non-flammability are

  18. Predicting mobility of alkylimidazolium ionic liquids in soils

    Microsoft Academic Search

    Wojciech Mrozik; Christian Jungnickel; Tomasz Ciborowski; William Robert Pitner; Jolanta Kumirska; Zbigniew Kaczy?ski; Piotr Stepnowski

    2009-01-01

    Background, aim, and scope  Ionic liquids (ILs) are a new class of alternative solvents that make ideal non-volatile media for a variety of industrial\\u000a processes such as organic synthesis and biocatalysis, as alternative electrolytes, as phases and phase modifications in separation\\u000a techniques, and as alternative lubricants. Once the large-scale implementation of ILs begins, the industrial application will\\u000a follow. In view of

  19. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  20. Succinoylation of cellulose catalyzed with iodine in ionic liquid

    Microsoft Academic Search

    C. F. Liu; A. P. Zhang; W. Y. Li; F. X. Yue; R. C. Sun

    2010-01-01

    In present study, succinoylation of sugarcane bagasse cellulose was performed with succinic anhydride (SA) using iodine as a catalyst in solvent system containing ionic liquid (IL), 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), and dimethylsulfoxide (DMSO). The results showed that all succinylated cellulosic derivatives had the degree of substitution (DS) in the range of 0.56–1.54, which noticeably increased compared with the products without any

  1. Novel all-cellulose ecocomposites prepared in ionic liquids

    Microsoft Academic Search

    Qiang Zhao; Richard C. M. Yam; Baoqing Zhang; Yingkui Yang; Xinjian Cheng; Robert K. Y. Li

    2009-01-01

    In this study, a kind of novel all-cellulose ecocomposites based on cellulose and rice husk (RH) has been prepared by using\\u000a green solvent, ionic liquid (IL), as processing medium. Due to the presence of the RH, these ecocomposites also contain an\\u000a inorganic component, silica. The content and distribution of the silica in the ecocomposite have been investigated by energy\\u000a dispersive

  2. Electromechanical performance and membrane stability of novel ionic polymer transducers constructed in the presence of ionic liquids

    NASA Astrophysics Data System (ADS)

    Duncan, Andrew J.; Leo, Donald J.; Long, Timothy E.; Akle, Barbar J.; Park, Jong K.; Moore, Robert B.

    2009-03-01

    Ionic polymer transducers (IPT) are a class of devices that leverage electroactive polymers (EAP), specifically electrolyte-swollen ionomeric membranes, to perform energy conversions. Energy transformation from input to output is referred to as transduction and occurs between the electrical and mechanical domains. The present study expands on IPT investigations with a novel series of sulfonated polysulfones (sBPS), with specific interest in the effect of polymer topology on actuator performance. A hydrophilic ionic liquid was combined with a series of sBPS through a casting method to create hydrated membranes that contained target uptakes (f) of the diluent. The ionic liquid's hydrophilic, yet organic nature raised the issue of its degree of compatibility and miscibility with the microphase separated domains of the host ionomeric membrane. Initial studies of the ionomer - ionic liquid morphology were performed with synchrotron small angle X-ray scattering (SAXS). The effective plasticization of the membranes was identified with dynamic mechanical analysis (DMA) in terms of varied storage modulus and thermal transitions with ionic liquid uptake. Electrical impedance spectroscopy (EIS) was employed to quantify the changes in ionic conductivity for each sBPS ionomer across a range of uptake. Combined results from these techniques implied that the presence of large amounts of ionic liquid swelled the hydrophilic domains of the ionomer and greatly increased the ionic conductivity. Decreases in storage modulus and the glass transition temperature were proportional to one another but of a lesser magnitude than changes in conductivity. The present range of ionic liquid uptake for sBPS was sufficient to identify the critical uptake (fc) for three of the four ionomers in the series. Future work to construct IPTs with these components will use the critical uptake as a minimum allowable content of ionic liquid to optimize the balance of electrical and mechanical properties for the device components.

  3. Anion Effects on Interfacial Absorption of Gases in Ionic Liquids. A Molecular Dynamics Study

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2011-06-02

    Molecular dynamics simulations with many-body interactions were carried out to systematic study the effect of anion type, tetrafluoroborate [BF4] or hexafluorophosphate [PF6], paired with the cation 1-butyl-3-methylimidazolium [bmim], on the interfacial absorption of gases in room temperature ionic liquids (RTILs). The potentials of mean force (PMF) of CO2 and H2O at 350 K were calculated across the air-liquid interfaces of [bmim][BF4] and [bmim][PF6]. We found that the PMFs for H2O exhibited no interfacial minima at both interfaces, while the corresponding PMFs for CO2 had significant free energy minima there. However, the PMFs for H2O showed a much higher interfacial free energy than in the bulk for [bmim][BF4], but only a slightly higher interfacial free energy for [bmim][PF6] than in bulk. The reason for this was due to the more hydrophilic nature of the [BF4] anion, and the fact that [BF4] was found to have little propensity for the interface. Our results show that H2O is much more likely to be found at the air-[bmim][PF6] interface than at the air-[bmim][BF4] interface. The free energies of solvation were found to be more negative for [bmim][BF4] than [bmim][PF6] for water and similar for CO2. This observation is consistent with experimental Henry’s law coefficients. Our results show that anion type, in addition to affecting the free energy of solvation into RTILs, should also significantly influence the uptake mechanism. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  4. Amino Acid-based fluorescent chiral ionic liquid for enantiomeric recognition.

    PubMed

    Bwambok, David K; Challa, Santhosh K; Lowry, Mark; Warner, Isiah M

    2010-06-15

    We report on the synthesis and characterization of a new fluorescent chiral ionic liquid (FCIL), l-phenylalanine ethyl ester bis(trifluoromethane) sulfonimide (l-PheC(2)NTf(2)), capable of serving simultaneously as solvent, chiral selector, and fluorescent reporter in chiral analytical measurements. Enantiomers of different analytes, including fluorescent and nonfluorescent compounds, with a variety of structures were shown to induce wavelength- and analyte-dependent changes in the fluorescence intensity of this FCIL. This system may provide both chemo- and enantioselectivity toward multiple analytes simultaneously. The newly synthesized FCIL, derived from commercially available l-phenylalanine ethyl ester chloride and lithium bis(trifluoromethane) sulfonamide, was obtained as liquid at room temperature and is stable to thermal decomposition up to 270 degrees C. Absorption and fluorescence properties of neat l-PheC(2)NTf(2) were complex. While the absorption properties were similar to phenylalanine with a weakly absorbing tail extending beyond 400 nm, multiple excitation and emission bands were observed in its Excitation-Emission Matrix (EEM). A prominent excimer emission displayed the greatest intensity of all emission bands, and a long-wavelength emission shifted toward the red with increasing excitation wavelength. These different spectral regions were shown to respond differently toward several analytes, including sugars such as glucose and mannose, making this an ideal system to exploit the multidimensional properties of fluorescence. The unique properties of l-PheC(2)NTf(2) combined with EEMs resulted in reliable identification of different enantiomers and measurement of enantiomeric composition. Importantly, the choice of excitation and emission wavelength regions was an important variable shown to improve prediction of enantiomeric composition. PMID:20481519

  5. Hydrogen production in aromatic and aliphatic ionic liquids.

    PubMed

    Dhiman, Surajdevprakash B; Goff, George S; Runde, Wolfgang; Laverne, Jay A

    2013-06-01

    The radiolytic production of molecular hydrogen in the ionic liquids N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide ([N1114][Tf2N]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) has been examined with ?-rays, 2-10 MeV protons, and 5-20 MeV helium ions to determine the functional dependence of the yield on particle track structure. Molecular hydrogen is the dominant gaseous radiolysis product from these ionic liquids, and the yields with ?-rays are 0.73 and 0.098 molecules per 100 eV of energy absorbed for [N1114][Tf2N] and [emim][Tf2N], respectively. These low yields are consistent with the relative insensitivity of most aromatic compounds to radiation. However, the molecular hydrogen yields increase considerably on going from ?-rays to protons to helium ions with [emim][Tf2N] while they remain essentially constant for [N1114][Tf2N]. FTIR and UV-vis spectroscopic studies show slight degradation of the ionic liquids with radiation. PMID:23675989

  6. The solvation structures of cellulose microfibrils in ionic liquids

    SciTech Connect

    Mostofian, Barmak [ORNL; Smith, Jeremy C [ORNL; Cheng, Xiaolin [ORNL

    2011-01-01

    The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber s core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

  7. Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): influence of the cation charge of the ionic liquid.

    PubMed

    Hojniak, Sandra D; Khan, Asim Laeeq; Hollóczki, Oldamur; Kirchner, Barbara; Vankelecom, Ivo F J; Dehaen, Wim; Binnemans, Koen

    2013-12-01

    Supported ionic liquid membranes (SILMs) are promising tools for the separation of carbon dioxide from other gases. In this paper, new imidazolium, pyrrolidinium, piperidinium, and morpholinium ionic liquids with a triethylene glycol side chain and tosylate anions, as well as their symmetrical dicationic analogues, have been synthesized and incorporated into SILMs. The selectivities for CO2/N2 and CO2/CH4 separations have been measured. The selectivities exhibited by the dicationic ionic liquids are up to two times higher than the values of the corresponding monocationic ionic liquids. Quantum chemical calculations have been used to investigate the difference in the interaction of carbon dioxide with monocationic and dicationic ionic liquids. The reason for the increased gas separation selectivity of the dicationic ionic liquids is two-fold: (1) a decrease in permeance of nitrogen and methane through the ionic liquid layer, presumably due to their less favorable interactions with the gases, while the permeance of carbon dioxide is reduced much less; (2) an increase in the number of interaction sites for the interactions with the quadrupolar carbon dioxide molecules in the dicationic ionic liquids, compared to the monocationic analogues. PMID:24199938

  8. Electronically and ionically conductive gels of ionic liquids and charge-transfer tetrathiafulvalene-tetracyanoquinodimethane.

    PubMed

    Mei, Xiaoguang; Ouyang, Jianyong

    2011-09-01

    Electronically and ionically conductive gels were fabricated by mixing and mechanically grinding neutral tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) in ionic liquids (ILs) like 3-ethyl-1-methylimidazolium dicyanoamide (EMIDCA), 1-ethyl-3-methylimidazolium thiocyanate (EMISCN), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITf(2)N), trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide (P(14,6,6,6)Tf(2)N), and methyl-trioctylammonium bis(trifluoromethylsulfonyl)imide (MOATf(2)N). Charge-transfer TTF-TCNQ crystallites were generated during the mechanical grinding as indicated by the UV-visibile-near-infrared (UV-vis-NIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction. The charge-transfer TTF-TCNQ crystallites have a needle-like shape. They form solid networks to gelate the ILs. The gel behavior is confirmed by the dynamic mechanical measurements. It depends on both the anions and cations of the ILs. In addition, when 1-methyl-3-butylimidazolium tetrafluoroborate (BMIBF(4)) and 1-methyl-3-propylimidazolium iodide (PMII) were used, the TTF-TCNQ/IL mixtures did not behave as gels. The TTF-TCNQ/IL gels are both electronically and ionically conductive, because the solid phase formed by the charge-transfer TTF-TCNQ crystallites is electronically conductive, while the ILs are ionically conductive. The gel formation is related to needle-like charge-transfer TTF-TCNQ cyrstallites and the ?-? and Coulombic interactions between TTF-TCNQ and ILs. PMID:21800893

  9. Influence of the Electrolyte Film Thickness on Charge Dynamics of Ionic Liquids in Ionic Electroactive Devices

    PubMed Central

    Lin, Junhong; Liu, Yang; Zhang, Q.M.

    2012-01-01

    Developing advanced ionic electroactive devices such as ionic actuators and supercapacitors requires the understanding of ionic diffusion and drifting processes, which depend on the distances over which the ions travel, in these systems. The charge dynamics of [C4mim][PF6] ionic liquid films and Aquivion membranes with 40 wt% [C2mim][TfO] were investigated over a broad film thickness (d) range. It was found that the double layer charging time ?DL follows the classic model ?DL = ?Dd/(2D) very well, where D is the diffusion coefficient and ?D the Debye length. In the longer time regimes (t ? ?DL) where diffusion dominates, the charge dynamics become voltage dependent. For low applied voltage, the later stage charge process seems to follow the d2 dependence. However, at high voltages (> 0.5 V) in which significant device responses occur, the charging process does not show d2 dependence so that ?diff = d2/(4D), corresponding to the ion diffusion from the bulk region, was not observed. PMID:22423148

  10. Hg? removal from flue gas by ionic liquid/H?O?.

    PubMed

    Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming

    2014-09-15

    1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase. PMID:25240646

  11. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System

    PubMed Central

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  12. Application of Ionic Liquids in High Performance Reversed-Phase Chromatography

    PubMed Central

    Wang, Ye; Tian, Minglei; Bi, Wentao; Row, Kyung Ho

    2009-01-01

    Ionic liquids, considered “green” chemicals, are widely used in many areas of analytical chemistry due to their unique properties. Recently, ionic liquids have been used as a kind of novel additive in separation and combined with silica to synthesize new stationary phase as separation media. This review will focus on the properties and mechanisms of ionic liquids and their potential applications as mobile phase modifier and surface-bonded stationary phase in reversed-phase high performance liquid chromatography (RP-HPLC). Ionic liquids demonstrate advantages and potential in chromatographic field. PMID:19582220

  13. Determination of ammonia based on the electro-oxidation of hydroquinone in dimethylformamide or in the room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

    Microsoft Academic Search

    Debora Giovanelli; Marisa C Buzzeo; Nathan S Lawrence; Christopher Hardacre; Kenneth R Seddon; Richard G Compton

    2004-01-01

    The results detail a novel methodology for the electrochemical determination of ammonia based on its interaction with hydroquinone in DMF. It has been shown that ammonia reversibly removes protons from the hydroquinone molecules, thus facilitating the oxidative process with the emergence of a new wave at less positive potentials. The analytical utility of the proposed methodology has been examined with

  14. Electric control of magnetism at room temperature.

    PubMed

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo(2)Ti(2)Fe(8)O(19), large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them. PMID:22355737

  15. Electric control of magnetism at room temperature

    PubMed Central

    Wang, Liaoyu; Wang, Dunhui; Cao, Qingqi; Zheng, Yuanxia; Xuan, Haicheng; Gao, Jinlong; Du, Youwei

    2012-01-01

    In the single-phase multiferroics, the coupling between electric polarization (P) and magnetization (M) would enable the magnetoelectric (ME) effect, namely M induced and modulated by E, and conversely P by H. Especially, the manipulation of magnetization by an electric field at room-temperature is of great importance in technological applications, such as new information storage technology, four-state logic device, magnetoelectric sensors, low-power magnetoelectric device and so on. Furthermore, it can reduce power consumption and realize device miniaturization, which is very useful for the practical applications. In an M-type hexaferrite SrCo2Ti2Fe8O19, large magnetization and electric polarization were observed simultaneously at room-temperature. Moreover, large effect of electric field-controlled magnetization was observed even without magnetic bias field. These results illuminate a promising potential to apply in magnetoelectric devices at room temperature and imply plentiful physics behind them. PMID:22355737

  16. Relaxation stretching, fast dynamics, and activation energy: a comparison of molecular and ionic liquids as revealed by depolarized light scattering.

    PubMed

    Schmidtke, B; Petzold, N; Pötzschner, B; Weingärtner, H; Rössler, E A

    2014-06-26

    Depolarized light scattering (DLS) spectra of a series of 16 molecular and 6 room temperature ionic liquids are investigated by applying tandem-Fabry-Pérot interferometry, double monochromator, and photon correlation spectroscopy. Temperatures up to well above the melting point, in some cases, even up to the boiling point, are covered, and all liquids can be supercooled. The accessed time constants are between 1 ps and 10 ns; in some cases, even longer times are reached. The susceptibility spectra and likewise the corresponding reorientational correlation functions are characterized by stretching parameter ?(CD) (0.32-0.80) for the long-time decay (?-process), strength of fast dynamics 1 - f, and time scale at shortest times expressed by k(B)T/I* with the apparent quantity I* reflecting essentially inertia effects. An additional (intermediate) power-law regime (or excess wing in the frequency domain) between fast dynamics and the ?-process has to be taken into account. For a given system the spectral parameters are virtually temperature independent up to the boiling point, i.e., frequency-temperature superposition applies for the ?-process. Among the liquids, the quantity I* correlates with molecular mass, and the larger 1 - f, the smaller the inertial quantity I*. No correlation among 1 - f and ?(CD) is revealed. Testing for correlation of ?(CD) or 1 - f with parameters describing the temperature dependence of the correlation time ?(?), namely, high-temperature activation energy E(?), fragility m, or glass transition temperature T(g), no significant correlation is found. Regarding molecular vs ionic liquids, no relevant difference in the evolution of their DLS spectra is observed. PMID:24857268

  17. Ionic liquid-based stable nanofluids containing gold nanoparticles.

    PubMed

    Wang, Baogang; Wang, Xiaobo; Lou, Wenjing; Hao, Jingcheng

    2011-10-01

    A one-phase and/or two-phase method were used to prepare the stable ionic liquid-based nanofluids containing same volume fraction but different sizes or surface states of gold nanoparticles (Au NPs) and their thermal conductivities were investigated in more detail. Five significant experiment parameters, i.e. temperature, dispersion condition, particle size and surface state, and viscosity of base liquid, were evaluated to supply experimental explanations for heat transport mechanisms. The conspicuously temperature-dependent and greatly enhanced thermal conductivity under high temperatures verify that Brownian motion should be one key effect factor in the heat transport processes of ionic liquid-based gold nanofluids. While the positive influences of proper aggregation and the optimized particle size on their thermal conductivity enhancements under some specific conditions demonstrate that clustering may be another critical effect factor in heat transport processes. Moreover, the remarkable difference of the thermal conductivity enhancements of the nanofluids containing Au NPs with different surface states could be attributed to the surface state which has a strong correlation with not only Brownian motion but also clustering. Whilst the close relationship between their thermal conductivity enhancements and the viscosity of base liquid further indicate Brownian motion must occupy the leading position among various influencing factors. Finally, a promisingly synergistic effect of Brownian motion and clustering based on experimental clues and theoretical analyses was first proposed, justifying different mechanisms are sure related. The results may shed lights on comprehensive understanding of heat transport mechanisms in nanofluids. PMID:21723564

  18. Entangling Macroscopic Diamonds at Room Temperature

    NASA Astrophysics Data System (ADS)

    Lee, K. C.; Sprague, M. R.; Sussman, B. J.; Nunn, J.; Langford, N. K.; Jin, X.-M.; Champion, T.; Michelberger, P.; Reim, K. F.; England, D.; Jaksch, D.; Walmsley, I. A.

    2011-12-01

    Quantum entanglement in the motion of macroscopic solid bodies has implications both for quantum technologies and foundational studies of the boundary between the quantum and classical worlds. Entanglement is usually fragile in room-temperature solids, owing to strong interactions both internally and with the noisy environment. We generated motional entanglement between vibrational states of two spatially separated, millimeter-sized diamonds at room temperature. By measuring strong nonclassical correlations between Raman-scattered photons, we showed that the quantum state of the diamonds has positive concurrence with 98% probability. Our results show that entanglement can persist in the classical context of moving macroscopic solids in ambient conditions.

  19. Green electrochemical template synthesis of CoPt nanoparticles with tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6).

    PubMed

    Serrà, Albert; Gómez, Elvira; López-Barbera, José Francisco; Nogués, Josep; Vallés, Elisa

    2014-05-27

    Electrodeposition from microemulsions using ionic liquids is revealed as a green method for synthesizing magnetic alloyed nanoparticles, avoiding the use of aggressive reducing agents. Microemulsions containing droplets of aqueous solution (electrolytic solution containing Pt(IV) and Co(II) ions) in an ionic liquid (bmimPF6) define nanoreactors in which the electrochemical reduction takes place. Highly crystalline hcp alloyed CoPt nanoparticles, in the 10-120 nm range with a rather narrow size distribution, have been deposited on a conductive substrate. The relative amount of aqueous solution to ionic liquid determines the size of the nanoreactors, which serve as nanotemplates for the growth of the nanoparticles and hence determine their size and distribution. Further, the stoichiometry (Pt(x)Co(1-x)) of the particles can be tuned by the composition of the electrolytic solution inside the droplets. The control of the size and composition of the particles allows tailoring the room-temperature magnetic behavior of the nanoparticles from superparaparamagnetic to hard magnetic (with a coercivity of HC = 4100 Oe) in the as-obtained state. PMID:24786899

  20. Can ionic liquids be used as templating agents for controlled design of uranium-containing nanomaterials?

    SciTech Connect

    Visser, Ann E., E-mail: ann.visser@srnl.doe.gov; Bridges, Nicholas J.; Tosten, Michael H.

    2013-09-01

    Graphical abstract: - Highlights: • Uranium oxides nanoparticles prepared using ionic liquids. • IL cation alkyl length impacts oxide morphology. • Low temperature UO{sub 2} synthesis. - Abstract: Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design.

  1. Modulating the Solubilities of Ionic Liquid Components in Aqueous-Ionic Liquid Biphasic Systems: A Q-NMR Investigation.

    PubMed

    Atanassova, Maria; Mazan, Valérie; Billard, Isabelle

    2015-06-01

    Aqueous-ionic liquid (A-IL) biphasic systems have been examined in terms of deuterated water, acid, and IL cation and anion mutual solubilities in the upper (water-rich, in mole fraction) and lower phase of aqueous/IL biphasic systems at ambient temperature. The biphasic mixtures were composed of deuterated acids of various concentrations (mainly DCl, DNO3 , and DClO4 from 10(-2) to 10(-4) ?M) and five ionic liquids of the imidazolium family with a hydrophobic anion (CF3 SO2 )2 N(-) , that is, [C1 Cn im][Tf2 N], (n=2, 4, 6, 8 and 10). The analytical techniques applied were (1) H?NMR, (19) F?NMR, Karl-Fischer titration, pH potentiometry for IL cations and anions, and water and acid determination. The effects of the ionic strength (?=0.1?M NaCl and NaNO3 as well as ?=0.1?M, 0.2?M and 0.4?M NaClO4 , according to the investigated acid), the nature of the IL cation, and the nature of the mineral acid on the solubilities of the (D2 O, D(+) , Tf2 N(-) , C1 Cn im(+) ) entities in the lower or upper phases were determined. The addition of sodium perchlorate was found to enhance the Tf2 N(-) solubility while inhibiting the solubility of the ionic liquid cation. Differences in IL cation and anion solubilities of up to 42?mM were evidenced. The consequences for the characterization of the aqueous biphasic system, the solvent extraction process of the metal ions, and the ecological impact of the ILs are discussed. PMID:25787248

  2. Graphene/Ionic Liquid Composite Films and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-06-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force.

  3. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  4. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    PubMed

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb's free energy data and literature enthalpy data. This study highlights that the hydrophobic interaction persists even in the limit of infinite dilution where the hydration effects are usually dominant, implying importance of hydrophobic hydration. Analysis of the results further shows that the hydration of amino acid ionic liquids occurs through the cooperative H-bond formation with the kosmotropic effect in contrast to the usual inorganic salts or hydrophobic salts like tetraalkylammonium halides. PMID:23293839

  5. Hydrolysis of cellulose in SO 3H-functionalized ionic liquids

    Microsoft Academic Search

    Furong Tao; Huanling Song; Lingjun Chou

    2011-01-01

    Influence of acidity and structure of ionic liquids on microcrystalline cellulose (MCC) hydrolysis was investigated. MnCl2-containing ionic liquids (ILs) were efficient catalysts and achieved MCC conversion rates of 91.2% and selectivities for 5-hydroxymethyl furfural (HMF), furfural and levulinic acid (LA) of 45.7%, 26.2% and 10.5%, respectively. X-ray diffractometry indicated that catalytic hydrolysis of MCC in ionic liquids resulted in the

  6. Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents

    Microsoft Academic Search

    Jakub Reiter; Ji?í Vondrák; Ji?í Michálek; Zden?k Mi?ka

    2006-01-01

    New polymer gel electrolytes containing ionic liquids were developed for modern chemical power sources—supercapacitors and lithium-ion batteries. Ternary systems polymer–ionic liquid–aprotic solvent as well as materials containing also lithium salts (LiClO4 or LiPF6) were prepared by direct, thermally initiated polymerisation. Poly(2-ethoxyethyl methacrylate) PEOEMA was combined with various ionic liquids based on 1-methylimidazole. Only 1-butyl-3-methylimidazolium hexafluorophosphate BMIPF6 formed a homogenous and

  7. Density and refractive index measurements of 1-ethyl-3-methylimidazolium-based ionic liquids

    Microsoft Academic Search

    Allan N. Soriano; Bonifacio T. Doma Jr.; Meng-Hui Li

    2010-01-01

    This work was the continuation of our previous study where the correlations between density and refractive index of pure systems of ionic liquids were examined. The density and refractive index of five 1-ethyl-3-methylimidazolium-based ionic liquids were measured at standard pressure and temperature up to 353.2K. Densities and refractive indices of the studied ionic liquids were presented as a function of

  8. Preparation of functional ionic liquids and tribological investigation of their ultra-thin films

    Microsoft Academic Search

    Guiqin Yu; Feng Zhou; Weimin Liu; Yongmin Liang; Shiqiang Yan

    2006-01-01

    Novel ionic liquid materials based on 1-alkyl-4-[5-(alkylsulfanyl)-1,3,4-oxadiazol-2-yl] pyridinium tetrafluoroborate derivatives were synthesized. Ultra-thin ionic liquid films were prepared on silicon wafers by means of spin-coating and their tribological properties were investigated. The wear life increases when the chain length decreases. Under low load, they show good tribological properties which are closely related to the interaction between ionic liquid and substrate

  9. Effect and mechanism of additives for ionic liquids as new lubricants

    Microsoft Academic Search

    Hideto Kamimura; Tomoo Kubo; Ichiro Minami; Shigeyuki Mori

    2007-01-01

    Ionic liquids are unique compounds, which exhibit low viscosity, non-flammability, low vapor pressure, and extremely high thermal stability. Therefore, they are expected as candidates for advanced lubricants. Several ionic liquids, derived from cations such as imidazolium, pridinium, ammonium, and anions such as BF4-, bis(trifluoromethylsulfonyl)imide (TFSI-) were examined under boundary conditions. It was found that tribological properties of ionic liquids are

  10. Ionic liquid promoted selective oxidation of organic compounds with NaBrO 3

    Microsoft Academic Search

    Ahmad Shaabani; Elham Farhangi; Abbas Rahmati

    2008-01-01

    1-Butyl-3-methylimidazolium bromide ([bmim]Br) as an ionic liquid promoted selectively the oxidation of alkyl arenes and alcohols to the corresponding carbonyl compounds\\u000a with NaBrO3 in excellent yields under neutral conditions at the 70°C. Among the various ionic liquids examined, the [bmim]Br exhibited the best performances with NaBrO3. The ionic liquid can be recycled and reused for several runs without any significant

  11. Synthesis of resins with ionic liquids for purification of flavonoids from Hippophae rhamnoides L. leaves.

    PubMed

    Lou, Song; Di, Duolong

    2012-07-01

    The efficient purification method of high-purity flavonoids from Hippophae rhamnoides L. (sea buckthorn) is reported. A novel room temperature ionic liquid-based macroporous adsorption resin (MAR), N-methylimidazole/MARs (Mim/MARs), was prepared on the basis of the Friedel-Crafts-catalyzed and surface-modified technique. The material exhibited favorable characteristics for adsorption application, including high pore volume (1.90 cm(3)/g, 3 times as big as the optimal commercial adsorbent), good pore structure (type IV isotherm with an H1 hysteresis loop, the most favorable structure for adsorption purposes), narrow particle size and pore size distribution (1.2 mm with a standard deviation of 0.106 mm), and excellent chemical stability. This paper also presents the first experimental evidence that the functional groups of the modified materials and composite action of certain molecular interactions between the adsorbent and flavonoids affected the adsorption process. Moreover, a new sphere-size adsorption kinetics model in which the adsorption process contained three or more compartments and detailed parameters of sphere size was developed according to the multicompartment kinetics model and Karichhoff's theory by investigating the regression of the experimental results. The conclusion that the first compartment of the adsorption process onto Mim/MARs mainly occurred on spheres larger than 0.83 mm and the second and third ones mainly occurred on spheres of 0.46-0.83 and 0.22-0.46 mm, respectively, was drawn from this new sphere-size adsorption kinetics model. PMID:22655534

  12. The importance of ion size and electrode curvature on electrical double layers in ionic liquids

    SciTech Connect

    Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

    2011-01-01

    Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ? [BMIM][Cl] (near the negative electrode) ? [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a “Multiple Ion Layers with Overscreening” (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

  13. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    PubMed

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids. PMID:25423581

  14. Crown-Type Ionic Liquids as Lubricants for Steel-on-Steel System

    Microsoft Academic Search

    Dong Jiang; Litian Hu; Dapeng Feng

    2011-01-01

    A series of novel imidazolium-based crown-type phosphate ionic liquid lubricants have been designed and synthesized. Because\\u000a the anions of ionic liquids are organic phosphate, crown-type ionic liquids would not corrode steel. The crown-type ionic\\u000a liquids exhibit better tribological properties than conventional lubricants, which were evaluated by a ball-on-flat type Optimol-SRV\\u000a oscillating friction and wear tester. The chemical compositions of the

  15. High CO2 Solubility, Permeability and Selectivity in Ionic Liquids with the Tetracyanoborate Anion

    SciTech Connect

    Mahurin, Shannon Mark [ORNL; Hillesheim, Patrick C [ORNL; Yeary, Joshua S [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm-1 to 0.148 mol L-1 atm-1. In addition, CO2 permeability and CO2/N2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of the tetracyanoborate, [B(CN)4], anion for the separation of CO2.

  16. The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution

    SciTech Connect

    Judge, Russell A.; Takahashi, Sumiko; Longenecker, Kenton L.; Fry, Elizabeth H.; Abad-Zapatero, Cele; Chiu, Mark L.; (Abbott)

    2009-09-08

    Ionic liquids exhibit a variety of properties that make them attractive solvents for biomaterials. Given the potential for productive interaction between ionic liquids and biological macromolecules, we investigated the use of ionic liquids as precipitating agents and additives for protein crystallization for six model proteins (lysozyme, catalase, myoglobin, trypsin, glucose isomerase, and xylanase). The ionic liquids produced changes in crystal morphology and mediated significant increases in crystal size in some cases. Crystals grown using ionic liquids as precipitating agents or as additives provided X-ray diffraction resolution similar to or better than that obtained without ionic liquids. Based upon the experiments performed with model proteins, the ionic liquids were used as additives for the crystallization of the poorly diffracting monoclonal antibody 106.3 Fab in complex with the B-type natriuretic peptide (5-13). The ionic liquids improved the crystallization behavior and provided improved diffraction resulting in the determination of the structure. Ionic liquids should be considered as useful additives for the crystallization of other proteins.

  17. Methods of using ionic liquids having a fluoride anion as solvents

    DOEpatents

    Pagoria, Philip (Livermore, CA); Maiti, Amitesh (San Ramon, CA); Gash, Alexander (Brentwood, CA); Han, Thomas Yong (Pleasanton, CA); Orme, Christine (Oakland, CA); Fried, Laurence (Livermore, CA)

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  18. Mechanical Properties of Composite SPEEK Polymer Membranes Modified with Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Sprugis, E.; Reinholds, I.; Vaivars, G.

    2015-03-01

    In this work, the mechanical properties of sulphonated polyetheretherketone (SPEEK) membranes impregnated with 3 different ionic liquids (1-butyl-2,3-dimethyl- imidazolium dimethylphosphate ([BMMIM][Me2PO4])), 1,2,3-trimethylimidazolium dimethylphosphate ([MMMIM][Me2PO4])), 1,3-dimethylimidazolium dimethylphosphate ([MMIM][Me2PO4])) have been investigated. Prepared SPEEK/ionic liquid composite membranes are characterized by mechanical testing both in room and elevated temperatures. It was found that the stiffness and tensile strength of composites decreased by increasing the content of ionic liquid and the length of alkyl radical in ionic liquid as well as by increasing the temperature.

  19. ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE

    E-print Network

    Caupin, Frédéric

    ULTRASONIC CAVITATION IN FREON AT ROOM TEMPERATURE FR´ED´ERIC CAUPIN AND VINCENT FOURMOND on ultrasonic cavitation in freon (1,1,2-trichloro 1,2,2-trifluoro ethane). We use a high intensity 1 MHz observe the nucleation of bubbles. We describe the three different methods we use to detect cavitation

  20. Room temperature oxidation of ion bombarded silicon

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.

    1985-10-01

    The room temperature oxidation of silicon surfaces under air ambient after ion bombardment either during dry etching or during ion implantation has been investigated. Depending on the amount of crystalline damage produced by the ion beams the oxidation kinetics was found to change from the crystalline-like to the amorphous-like behavior.