Science.gov

Sample records for root nerve signals

  1. Prevention of nerve root adhesions after laminectomy.

    PubMed

    Yong-Hing, K; Reilly, J; de Korompay, V; Kirkaldy-Willis, W H

    1980-01-01

    In repeat lumbar surgery for failure of the original operation to provide lasting relief, well-organized fibrous tissue is often noted binding together the dura, nerve roots, and erector spinae muscles. Lumbar laminectomy was carried out in 46 dogs and seven groups of animals studied. Gelfoam failed to prevent fibrosis. Free fat grafts prevented fibrosis whether the graft was placed at the laminectomy site or around the nerve roots. Vascularization of the grafts was demonstrated by injection of India ink before sacrifice. Ligamentum nuchae, which is similar to ligamentum flavum in its high elastic content, was also effective in preventing scar formation. The operative biopsy findings at reexploration in four patients who had free fat grafts following laminectomy are presented. PMID:7361199

  2. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    NASA Astrophysics Data System (ADS)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  3. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration.

    PubMed

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains. PMID:21804177

  4. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia

    PubMed Central

    LI, QINWEN; CHEN, JIANGHAI; CHEN, YANHUA; CONG, XIAOBIN; CHEN, ZHENBING

    2016-01-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post-compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR-labeled DRG neurons were significantly higher, relative to the sham-operated group, however, the numbers of FG-labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)-extracellular signal-regulated kinase 1/2, and significantly lower levels of p-c-Jun N-terminal kinase and p-p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF-β1, CTGF and collagen type I, with involvement of the mitogen-activated protein kinase signaling pathway. PMID:26820076

  5. Safety of CT-Guided Lumbar Nerve Root Infiltrations

    PubMed Central

    Gossner, Johannes

    2014-01-01

    Summary Selective nerve root infiltrations are frequently performed in patients with lumbar radiculopathy. Computed tomography (CT) is now commonly used for image guidance. Despite the widespread use of CT-guided lumbar nerve root infiltrations few studies have systematically examined the safety of this approach. In a two-year period, 231 lumbar nerve root infiltrations were performed on in-patients and were retrospectively reviewed. No major complications like inflammation (especially spondylodiscitis), large haematomas requiring surgery, severe allergic reactions or spinal ischaemia occurred. In accordance with other published studies, CT-guided lumbar nerve root infiltrations seem to be safe. To minimize the risk of catastrophic neurological complications due to spinal ischaemia, careful needle placement dorsal to the nerve root and the use of a non-particulate corticosteroid, like dexamethasone, are advocated. PMID:25363255

  6. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia.

    PubMed

    Li, Qinwen; Chen, Jianghai; Chen, Yanhua; Cong, Xiaobin; Chen, Zhenbing

    2016-03-01

    In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post‑compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR‑labeled DRG neurons were significantly higher, relative to the sham‑operated group, however, the numbers of FG‑labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor‑β1 (TGF‑β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)‑extracellular signal‑regulated kinase 1/2, and significantly lower levels of p‑c‑Jun N‑terminal kinase and p‑p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF‑β1, CTGF and collagen type I, with involvement of the mitogen‑activated protein kinase signaling pathway. PMID:26820076

  7. Conjoint Lumbosacral Nerve Root-A Case Report

    PubMed Central

    Jokhi, Vispi.H.; Ponde, Saurabh Vilas; Sonawane, Chandrashekhar; Bansal, Samarjit Singh; Chavhan, Ashwin

    2015-01-01

    Introduction: Conjoint nerve root is embryological nerve root anomaly mainly involving lumbosacral region. The anomalous roots present primarily as a bifid, conjoined structure arising from a wide area of the dura. Because of their size and attachment to surrounding structures, they are uniquely susceptible to trauma. The effects of compression and entrapment are amplified in the presence of stenosis of the lateral recesses where developmental changes and disc herniations deplete the available reserve space [1]. Case Report: We report a case of conjoint lumbosacral nerve root which was missed on MRI and diagnosed intra-operatively. Conclusion: The importance of the case report lies in the fact that one must be aware of finding conjoint nerve root directly while operating and do appropriate level of surgery, misinterpretation can lead to devastating results. PMID:27299088

  8. Study on lumbosacral nerve root compression using DTI

    PubMed Central

    Li, Jinfeng; Wang, Yonghao; Wang, Yueyi; Lv, Yang; Ma, Lin

    2016-01-01

    Diffusion tensor imaging (DTI) can objectively describe the distribution of nerve roots in morphology, and provide a set of objective reference data on the quantitative indicators. The present study aimed to investigate the value of DTI in lumbosacral nerve root compression in patients with lumbar intervertebral disc degeneration. DTI was performed in 45 patients with lumbar intervertebral disc degeneration. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in compressed and normal nerve roots. Fiber tracking imaging was also applied to observe the lumbosacral nerve roots. ADC value was significantly lower in the compressed group (1.314±0.14 mm2/sec) compared to in the uncompressed group (1.794±0.11 mm2/sec) (P<0.05). The FA value was significantly lower in the compressed group (0.196±0.020) compared to the uncompressed group (0.272±0.016) (P<0.05). DTI can evidently reveal the compressed nerve roots. DTI could be used to evaluate the lumbosacral nerve injury in patients with lumbar intervertebral disc degeneration to quantitatively assess nerve roots. PMID:27602215

  9. [Prevention from secondary nerve root adhesion: an experimental study].

    PubMed

    Yao, M; Sun, Y; Yan, J

    1996-06-01

    In the study, 27 dogs were divided into three groups: A, B and C. Then all of the dogs had their lumbar intervertebral disks removed. Into the wounded cavity of group A, 1 ml of dimethicone was dropped and gelatin sponge was applied on the surface of the nerve root of group B. Group C was served as the control. The dogs were killed and the operation area was removed respectively 2 weeks, 4 weeks, and 12 weeks after the operation for macroscopical observation, nerve root motility measurement and histological examination. The result of the experiment proved that dimethicone was fairly effective in the prevention from secondary nerve root adhesion. While gelatin sponge in the process of its absorption induced the formation of quite a few scar tissues, thus aggrevating nerve root adhesion. PMID:9594172

  10. [Sacral nerve root cysts. Discussion on the mechanism of nerve root suffering. Apropos of 4 cases].

    PubMed

    Bourgeois, P; Gaillard, S; Chastanet, P; Christiaens, J L

    1997-01-01

    Low back pain, sciatia or perineal chronic pain are sometimes related to perineural sacral cysts. Surgical treatment is difficult and may lead to pain or neurological worsening. We report four cases of symptomatic perineural cysts; three of them where operated on with two good results and one increasing perineal pain. Anatomical and radiological description are reviewed. From a therapeutical point of view, we can distinguish two clinical types of radicular suffering. Perineural cyst can cause a commun radicular extrinsic compression; in such a case surgical operation will improve radicular pain. The cystic nerve root can present an intrinsic suffering because of on intradural dilaceration. Then surgery must be avoided specially when many roots are involved because it may worsen the pluriradicular suffering. PMID:9686226

  11. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation.

    PubMed

    Rijkhoff, N J; Koldewijn, E L; d'Hollosy, W; Debruyne, F M; Wijkstra, H

    1996-01-01

    Experiments to investigate restoration of lower urinary tract control by electrical stimulation of the sacral nerve roots are mostly performed on dogs, yet little morphometric data (such as canine root and fiber diameter distributions) are available. The aim of this study was to acquire morphometric data of the intradural canine sacral dorsal and ventral roots (S1-S3). Cross-sections of sacral roots of two beagle dogs were analyzed using a light microscope and image processing software. The cross-sectional area of each root was measured. The diameters of the fibers and the axons in the cross-sections of the S2 and S3 roots were measured and used to construct nerve fiber diameter frequency distribution histograms. The results show a unimodal diameter distribution for the dorsal roots and a bimodal distribution for the ventral roots. In addition the average ratio g of the axon diameter to fiber diameter was calculated for each root. PMID:8732990

  12. Metastatic nerve root tumor: A case report and literature review

    PubMed Central

    LI, LONG; WU, YUAN; HU, LIU; XU, HONGBIN; HE, HAICUI; HU, DESHENG

    2016-01-01

    Nerve root metastasis of cancer has been rarely reported. We herein report the case of a cervical cancer patient with metastasis to peripheral nerve roots. A 47 year-old woman with cervical squamous cell carcinoma was admitted to our department with a 6-month history of right leg pain, and was investigated for cancer recurrence. Magnetic resonance imaging revealed lymph node metastasis near the right iliac blood vessels; the patient was then treated with chemotherapy with paclitaxel and carboplatin. However, the pain worsened and the muscle strength of her right leg decreased. On positron emission tomography/computed tomography scans, the sacral plexus L5/S1 and L4/5 nerves appeared thickened, suggesting nerve metastases. Intensity-modulated radiation therapy was applied, with notable clinical benefit. However, the patient succumbed to the disease 3 months later. PMID:27284440

  13. Proposed Classification of Auriculotemporal Nerve, Based on the Root System

    PubMed Central

    Komarnitki, Iulian; Tomczyk, Jacek; Ciszek, Bogdan; Zalewska, Marta

    2015-01-01

    The topography of the auriculotemporal nerve (ATN) root system is the main criterion of this nerve classification. Previous publications indicate that ATN may have between one and five roots. Most common is a one- or two-root variant of the nerve structure. The problem of many publications is the inconsistency of nomenclature which concerns the terms “roots”, “connecting branches”, or “branches” that are used to identify the same structures. This study was performed on 80 specimens (40 adults and 40 fetuses) to propose a classification based on: (i) the number of roots, (ii) way of root division, and (iii) configuration of interradicular fibers that form the ATN trunk. This new classification is a remedy for inconsistency of nomenclature of ATN in the infratemporal fossa. This classification system has proven beneficial when organizing all ATN variants described in previous studies and could become a helpful tool for surgeons and dentists. Examination of ATN from the infratemporal fossa of fetuses (the youngest was at 18 weeks gestational age) showed that, at that stage, the nerve is fully developed. PMID:25856464

  14. Spontaneous lateral pontine hemorrhage with associated trigeminal nerve root hematoma.

    PubMed

    Veerapen, R

    1989-09-01

    Spontaneous hemorrhage into the lateral part of the pons with sequelae compatible with survival has been documented previously. The author describes an unusual case with spontaneous hemorrhage into the lateral pons, with intraneural extension into the right trigeminal nerve root. Radiological features were of an expanding mass of the cerebellopontine angle. The patient was treated surgically with success. PMID:2771016

  15. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  16. The diameters and number of nerve fibers in spinal nerve roots

    PubMed Central

    Liu, YongTao; Zhou, XiaoJi; Ma, Jun; Ge, YingBin; Cao, Xiaojian

    2015-01-01

    Objective To investigate the anatomical and histological features of spinal nerve roots and provide base data for neuroanastomosis therapy for paraplegia. Methods Spinal nerve roots from C1 to S5 were exposed on six adult cadavers. The diameter and the number of nerve fibers of each nerve root were measured, respectively, with a caliper and image analysis software. Results As for ventral roots, the diameter of C5 (2.50 ± 0.55 mm) was the largest in cervical segments. In thoracic and lumbosacral segments, the diameter gradually increased from T11 to S1 and then decreased from S1 to S5 except L3. S1 (1.43 ± 0.16 mm) was the thickest root and S5 (0.14 ± 0.02 mm) was the thinnest one. As for dorsal roots, the diameter of C7 (4.61 ± 0.87 mm) was the largest in cervical segments. From T11 to S1, the diameter increased and then decreased gradually from S1 to S5. The diameter of dorsal roots from T1 to S5 was largest at S1 (2.95 ± 0.57 mm) and smallest at S5 (0.27 ± 0.13 mm), respectively. C7 (8467 ± 1019), T12 (6538 ± 892), L3 (9169 ± 1160), and S1 (8253 ± 1419) ventral roots contained the most nerve fibers in cervical, thoracic, lumbar, and sacral segments, respectively. Similarly, C7 (39 653 ± 8458), T1 (26 507 ± 7617), L5 (34 455 ± 2740), and S1 (41 543 ± 3036) dorsal roots, respectively, contained the most nerve fibers in their corresponding segments. Conclusion The findings in the current study provided the imperative data and may be valuable for spinal nerve root microanastomosis surgery in the paraplegic patients. PMID:24605949

  17. Intra-radicuar Disc Herniation mimicking a Nerve Root Tumor

    PubMed Central

    Pillai, Suresh Sivadasan

    2012-01-01

    Introduction: Intra-radicular disc herniations are rare disorders with only few cases reported in literature. In most of these cases there is evidence of some part of the disc in adjacent area. We present a case of completely intra-radicular disc which was misdiagnosed as nerve root tumor as there was no evidence of disc prolapse at the time of diagnosis. Case Presentation: 51 year old male presented with history of severe back pain radiating to right lower limb since 11/2 month. MRI showed hypointense lesion completely inside the S1 root and a provisional diagnosis of nerve root tumor was done. At surgery, fluffy material was removed from the lesion which was histopathologically confirmed as intervertebral disc. Post operatively all symptoms of patient was relieved except dysesthesia in sole which lasted for a year post surgery. At 5 year follow up patient has no symptoms. Conclusion: A diagnosis of intra-radicular disc should be considered in differential of nerve root tumor. Surgical excision of intra-radicular disc gives good clinical and functional results.

  18. Infrared neural stimulation of human spinal nerve roots in vivo

    PubMed Central

    Cayce, Jonathan M.; Wells, Jonathon D.; Malphrus, Jonathan D.; Kao, Chris; Thomsen, Sharon; Tulipan, Noel B.; Konrad, Peter E.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2015-01-01

    Abstract. Infrared neural stimulation (INS) is a neurostimulation modality that uses pulsed infrared light to evoke artifact-free, spatially precise neural activity with a noncontact interface; however, the technique has not been demonstrated in humans. The objective of this study is to demonstrate the safety and efficacy of INS in humans in vivo. The feasibility of INS in humans was assessed in patients (n=7) undergoing selective dorsal root rhizotomy, where hyperactive dorsal roots, identified for transection, were stimulated in vivo with INS on two to three sites per nerve with electromyogram recordings acquired throughout the stimulation. The stimulated dorsal root was removed and histology was performed to determine thermal damage thresholds of INS. Threshold activation of human dorsal rootlets occurred in 63% of nerves for radiant exposures between 0.53 and 1.23  J/cm2. In all cases, only one or two monitored muscle groups were activated from INS stimulation of a hyperactive spinal root identified by electrical stimulation. Thermal damage was first noted at 1.09  J/cm2 and a 2∶1 safety ratio was identified. These findings demonstrate the success of INS as a fresh approach for activating human nerves in vivo and providing the necessary safety data needed to pursue clinically driven therapeutic and diagnostic applications of INS in humans. PMID:26157986

  19. Molecular signaling and pulpal nerve development.

    PubMed

    Fried, K; Nosrat, C; Lillesaar, C; Hildebrand, C

    2000-01-01

    The purpose of this review is to discuss molecular factors influencing nerve growth to teeth. The establishment of a sensory pulpal innervation occurs concurrently with tooth development. Epithelial/mesenchymal interactions initiate the tooth primordium and change it into a complex organ. The initial events seem to be controlled by the epithelium, and subsequently, the mesenchyme acquires odontogenic properties. As yet, no single initiating epithelial or mesenchymal factor has been identified. Axons reach the jaws before tooth formation and form terminals near odontogenic sites. In some species, local axons have an initiating function in odontogenesis, but it is not known if this is also the case with mammals. In diphyodont mammals, the primary dentition is replaced by a permanent dentition, which involves a profound remodeling of terminal pulpal axons. The molecular signals underlying this remodeling remain unknown. Due to the senescent deterioration of the dentition, the target area of tooth nerves shrinks with age, and these nerves show marked pathological-like changes. Nerve growth factor and possibly also brain-derived neurotrophic factor seem to be important in the formation of a sensory pulpal innervation. Neurotrophin-3 and -4/5 are probably not involved. In addition, glial cell line-derived neurotrophic factor, but not neurturin, seems to be involved in the control of pulpal axon growth. A variety of other growth factors may also influence developing tooth nerves. Many major extracellular matrix molecules, which can influence growing axons, are present in developing teeth. It is likely that these molecules influence the growing pulpal axons. PMID:11021633

  20. Function electrical stimulation signals generator circuits for the central nerve and the sciatic nerve.

    PubMed

    Wenyuan, Li; Zhenyu, Zhang; Zhi-Gong, Wang

    2005-01-01

    Circuits for the signal generation of the FES (functional electrical stimulation) of the central nerve and the sciatic nerve have been designed. The circuits were implemented by using discrete devices. The FES circuits consist of two or three operational amplifiers. The bandwidths of the circuits are more than 10 kHz and their gains are variable from 20 dB to 60 dB. To a load of several kilo-ohms, according to the microelectrode with the nerve, the circuit for stimulating central nerve can provide a current signal, and the signal value is more than 1mA. The circuit for stimulating sciatic nerve can provide a stimulating voltage signal of more than 10 Vs. The loads of the circuits are microelectrodes contacted with nerves. The circuits can be used with two kinds of microelectrodes: cuff microelectrodes which for stimulating sciatic nerve and shaft microelectrodes which for stimulating central nerve. PMID:17281443

  1. Familial risks for nerve, nerve root and plexus disorders in siblings based on hospitalisations in Sweden

    PubMed Central

    Hemminki, Kari; Li, Xinjun; Sundquist, Kristina

    2007-01-01

    Background Nerve, nerve root and plexus disorders are common diseases, but little is known about familial clustering in these diseases. This is, to our knowledge, the first systematic family study carried out on these diseases. Methods Familial risks for siblings who were hospitalised for nerve, nerve root and plexus disorders in Sweden were defined. A nationwide database for neurological diseases was constructed by linking the Multigeneration Register on 0–69‐year‐old siblings to the Hospital Discharge Register covering the years 1987–2001. Standardised risk ratios (SIRs) were calculated for affected sibling pairs by comparing them with those whose siblings had no neurological disease. Results 29 686 patients, 43% men and 57% women, were diagnosed at a mean age of 37.5 years. 191 siblings were hospitalised for these disorders, giving an overall SIR of 2.59 (95% CI 1.58 to 4.22), with no sex difference. Plantar nerve mononeuritis and carpal tunnel syndrome showed the highest familial risks: 4.82 (1.08 to 16.04) and 4.08 (2.07 to 7.84), respectively. Lateral poplitean and plantar nerve neuritis preferentially affected women, with SIRs of >8; disorders of the other cranial nerves affected only men, with an SIR of >10. Concordant trigeminal neuralgia, Bell's palsy and carpal tunnel syndrome showed familial risks, but, with the exception of Bell's palsy, they also showed correlation between spouses, implying environmental sharing of risk factors. Conclusions The results cannot distinguish between inheritable or shared environmental factors, or their interactions, but they clearly show familial clustering, suggestive of multifactorial aetiology and inviting for aetiological research. PMID:17183020

  2. Spinal Nerve Root Enhancement on MRI Scans in Children: A Review.

    PubMed

    Kontzialis, Marinos; Poretti, Andrea; Michell, Hans; Bosemani, Thangamadhan; Tekes, Aylin; Huisman, Thierry A G M

    2016-01-01

    Spinal nerve root enhancement in pediatric patients is generally nonspecific, and clinical and laboratory correlation is essential. Nerve root enhancement indicates lack of integrity of the blood-nerve barrier. In this review, we will present a range of pediatric conditions that can present with spinal nerve root enhancement including inflammatory, infectious, hereditary, and neoplastic causes. Familiarity with the various pathologic entities associated with spinal nerve root enhancement is important for a concise differential diagnosis in the appropriate clinical setting. This will avoid unnecessary additional investigations. PMID:26365273

  3. Global analysis of transcriptome in dorsal root ganglia following peripheral nerve injury in rats.

    PubMed

    Gong, Leilei; Wu, Jiancheng; Zhou, Songlin; Wang, Yaxian; Qin, Jing; Yu, Bin; Gu, Xiaosong; Yao, Chun

    2016-09-01

    Peripheral nervous system has intrinsic regeneration ability after injury, accompanied with the coordination of numerous cells, molecules and signaling pathways. These post-injury biological changes are complex with insufficient understanding. Thus, to obtain a global perspective of changes following nerve injury and to elucidate the mechanisms underlying nerve regeneration are of great importance. By RNA sequencing, we detected transcriptional changes in dorsal root ganglia (DRG) neurons at 0 h, 3 h, 9 h, 1 d, 4 d and 7 d following sciatic nerve crush injury in rats. Differentially expressed genes were then selected and classified into major clusters according to their expression patterns. Cluster 2 (with genes high expressed before 9 h and then down expressed) and cluster 6 (combination of cluster 4 and 5 with genes low expressed before 1 d and then up expressed) were underwent GO annotation and KEGG pathway analysis. Gene act networks were then constructed for these two clusters and the expression of pivotal genes was validated by quantitative real-time PCR. This study provided valuable information regarding the transcriptome changes in DRG neurons following nerve injury, identified potential genes that could be used for improving axon regeneration after nerve injury, and facilitated to elucidate the biological process and molecular mechanisms underlying peripheral nerve injury. PMID:27450809

  4. Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment

    PubMed Central

    Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi; Takaso, Masashi; Aoki, Yasuchika; Toyone, Tomoaki; Suzuki, Takane; Takahashi, Kazuhisa

    2010-01-01

    Diffusion-weighted imaging (DWI) can provide valuable structural information about tissues that may be useful for clinical applications in evaluating lumbar foraminal nerve root entrapment. Our purpose was to visualize the lumbar nerve root and to analyze its morphology, and to measure its apparent diffusion coefficient (ADC) in healthy volunteers and patients with lumbar foraminal stenosis using 1.5-T magnetic resonance imaging. Fourteen patients with lumbar foraminal stenosis and 14 healthy volunteers were studied. Regions of interest were placed at the fourth and fifth lumbar root at dorsal root ganglia and distal spinal nerves (at L4 and L5) and the first sacral root and distal spinal nerve (S1) on DWI to quantify mean ADC values. The anatomic parameters of the spinal nerve roots can also be determined by neurography. In patients, mean ADC values were significantly higher in entrapped roots and distal spinal nerve than in intact ones. Neurography also showed abnormalities such as nerve indentation, swelling and running transversely in their course through the foramen. In all patients, leg pain was ameliorated after selective decompression (n = 9) or nerve block (n = 5). We demonstrated the first use of DWI and neurography of human lumbar nerves to visualize and quantitatively evaluate lumbar nerve entrapment with foraminal stenosis. We believe that DWI is a potential tool for diagnosis of lumbar nerve entrapment. PMID:20632042

  5. Secondary chronic cluster headache due to trigeminal nerve root compression.

    PubMed

    Mjåset, Christer; Russell, M B; Russell, M Bjørn

    2010-12-01

    A 50-year-old woman had a gradual onset of chronic headache located in the right temporal region and a burning sensation in the root of the tongue which over a year evolved into chronic cluster headache with a milder chronic headache in-between the severe cluster headache attacks. A cerebral magnetic resonance imaging (MRI) showed vascular compression of the trigeminal nerve root on the pain side. Neurosurgery microvascular decompression relieved the patient's chronic cluster headache, the chronic intermittent headache and the burning tongue sensation. The effect was persistent at a 1 year follow-up. Patients with atypical symptoms of cluster headache should be examined with cerebral MRI angiography of arteries and veins to exclude symptomatic causes. PMID:20384588

  6. Salt stress signals shape the plant root.

    PubMed

    Galvan-Ampudia, Carlos S; Testerink, Christa

    2011-06-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. PMID:21511515

  7. Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice.

    PubMed

    Rasminsky, M

    1980-08-01

    1. Ephaptic transmission was observed between spontaneously active single nerve fibres in the spinal nerve roots of dystrophic mice. 2. In the five ephaptically interacting pairs of fibres studied in detail, the conduction velocities in the exciting fibres were < 1 m/sec and the conduction velocities in the excited fibres were 2-10 m/sec in the immediate vicinity of the ephapses at 26-28 degrees C. 3. Membrane current analysis suggested that conduction was continuous in the exciting fibres. In some cases conduction away from the ephapse in the excited fibre was saltatory in at least one and possibly in both directions of transmission. 4. It is concluded that in at least some cases the direction of ephaptic transmission is from bare axon to myelinated axon. 5. Transmission time across the ephapses, measured as the interval between peaks of inward membrane current in exciting and excited fibres, was less than or equal to microseconds-240 microseconds. 6. Ephaptic transmission is not necessarily contingent upon the direction of propagation of the impulse in the exciting fibre. 7. Ephaptic transmission between two fibres can remain stable at frequencies of at least 70 Hz. 8. There may be multiple sites of spontaneous ectopic excitation in single dystrophic mouse spinal root axons. An impulse traversing a site of ectopic excitation may incite a subsequent burst of impulses to arise from that site following a delay of more than 100 msec. PMID:6255143

  8. Pediatric primitive intraneural synovial sarcoma of L-5 nerve root.

    PubMed

    Peia, Francesco; Gessi, Marco; Collini, Paola; Ferrari, Andrea; Erbetta, Alessandra; Valentini, Laura G

    2013-04-01

    Primitive intraneural synovial sarcomas are rare in children. The authors report the case of a 7-year-old girl affected by intraneural synovial sarcoma of a lumbar nerve root, the first such lesion in this location described in a child. The lesion mimicked a schwannoma clinically and radiologically. There was long-lasting leg pain in a radicular distribution, and a well-demarcated intraneural tumor was seen on MRI. On this basis, the first resection was conservative. However, histological examination documented a classic biphasic synovial sarcoma, which was confirmed by immunohistochemistry. After radical resection and adjuvant treatment, complete disease control was achieved and verified at 5-year follow-up. This case strongly suggests that early diagnosis and a multidisciplinary approach to this unusual spinal lesion are essential to achieving a better prognosis. PMID:23414131

  9. Ultrasonographic reference sizes of the median and ulnar nerves and the cervical nerve roots in healthy Japanese adults.

    PubMed

    Sugimoto, Takamichi; Ochi, Kazuhide; Hosomi, Naohisa; Mukai, Tomoya; Ueno, Hiroki; Takahashi, Tetsuya; Ohtsuki, Toshiho; Kohriyama, Tatsuo; Matsumoto, Masayasu

    2013-09-01

    The objective of this study was to identify, for practical use, ultrasonographic reference values for nerve sizes at multiple sites, including entrapment and non-entrapment sites along the median and ulnar nerves and among the cervical nerve roots. We verified reliable sites and site-based differences between the reference values. In addition, we found associations between the reference nerve sizes and several physical characteristics (gender, dominant hand, age, height, weight, body mass index [BMI] and wrist circumference). Nerves were measured bilaterally at 26 sites or levels in 60 healthy Japanese adults (29 males; age, 35.4 ± 9.7 y; BMI, 22.3 ± 3.6 kg/m(2); wrist circumference, 16.0 ± 1.3 cm on the right side and 15.9 ± 1.2 cm on the left side). The mean reference nerve sizes were 5.6-9.1 mm(2) along the median nerve, 4.1-6.7 mm(2) along the ulnar nerve and 2.14-3.39 mm among the cervical nerve roots. Multifactorial regression analyses revealed that the physical characteristics most strongly associated with nerve size were age, BMI and wrist circumference at the entrapment sites (F = 7.6, p < 0.01, at the pisiform bone level of the carpal tunnel; F = 15.1, p < 0.001, at the level of Guyon's canal), as well as wrist circumference and gender at the non-entrapment sites (F = 70.6, p < 0.001, along the median nerve; F = 24.7, p < 0.001, along the ulnar nerve). Our results suggest that the factors with the greatest influence on nerve size differed between entrapment and non-entrapment sites. Site-based differences in nerve size were determined using one-way analyses of variance (p < 0.001). Intra- and inter-observer reliability was highest for the median nerve, at both the distal wrist crease and mid-humerus; at the arterial split along the ulnar nerve; and at the fifth cervical nerve root level. No systematic error was indicated by Bland-Altman analysis; the coefficients of variation were 5.5%-9.2% for intra-observer reliability and 7.1%-8.7% for inter

  10. Brachial Plexopathy/Nerve Root Avulsion in a Football Player: The Role of Electrodiagnostics

    PubMed Central

    Radecki, Jeffrey; Wolfe, Scott W.; Strauss, Helene L.; Mintz, Douglas N.

    2008-01-01

    Electromyography (EMG) studies are a useful tool in anatomical localization of peripheral nerve and brachial plexus injuries. They are especially helpful in distinguishing between brachial plexopathy and nerve root injuries where surgical intervention may be indicated. EMG can also assist in providing prognostic information after nerve injury as well as after nerve repair. In this case report, a football player presented with weakness in his right upper limb after a traction/traumatic injury to the right brachial plexus. EMG studies revealed evidence of both pre- and postganglionic injury to multiple cervical roots. The injury was substantial enough to cause nerve root avulsions involving the C6 and C7 levels. Surgical referral led to nerve grafts targeted at regaining function in shoulder abduction and elbow flexion. After surgery, the patient’s progress was monitored utilizing EMG to assist in identifying true axonal regeneration. PMID:18751870

  11. Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits

    PubMed Central

    Yan, Peng; Yang, Xiaohong; Yang, Xiaoyu; Zheng, Weidong; Tan, Yunbing

    2014-01-01

    Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root remains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9–10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimulation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation. PMID:25206785

  12. Spinal nerve root haemangioblastoma associated with reactive polycythemia.

    PubMed

    Law, Eric K C; Lee, Ryan K L; Griffith, James F; Siu, Deyond Y W; Ng, Ho Keung

    2014-01-01

    Haemangioblastomas are uncommon tumours that usually occur in the cerebellum and, less commonly, in the intramedullary spinal cord. The extramedullary spinal canal is an uncommon location for these tumours. Also haemangioblastoma at this site is not known to be associated with polycythemia. We present the clinical, imaging, and histological findings of an adult patient with extramedullary spinal haemangioblastoma and reactive polycythemia. Radiography and computed tomography (CT) revealed a medium-sized tumour that most likely arose from an extramedullary spinal nerve root. This tumour appeared to be slow growing as evidenced by the accompanying well-defined bony resorption with a sclerotic rim and mild neural foraminal widening. Magnetic resonance imaging revealed prominent flow voids consistent with tumoural hypervascularity. CT-guided biopsy was performed. Although preoperative angiographic embolisation was technically successful, excessive intraoperative tumour bleeding necessitated tumour debulking rather than complete tumour resection. Histology of the resected specimen revealed haemangioblastoma. Seven months postoperatively, the patients back pain and polycythemia have resolved. PMID:25431722

  13. Inhibitory Injury Signaling Represses Axon Regeneration After Dorsal Root Injury.

    PubMed

    Mar, Fernando M; Simões, Anabel R; Rodrigo, Inês S; Sousa, Mónica M

    2016-09-01

    Following injury to peripheral axons, besides increased cyclic adenosine monophosphate (cAMP), the positive injury signals extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) are locally activated and retrogradely transported to the cell body, where they induce a pro-regenerative program. Here, to further understand the importance of injury signaling for successful axon regeneration, we used dorsal root ganglia (DRG) neurons that have a central branch without regenerative capacity and a peripheral branch that regrows after lesion. Although injury to the DRG central branch (dorsal root injury (DRI)) activated ERK, JNK, and STAT-3 and increased cAMP levels, it did not elicit gain of intrinsic growth capacity nor the ability to overcome myelin inhibition, as occurred after peripheral branch injury (sciatic nerve injury (SNI)). Besides, gain of growth capacity after SNI was independent of ERK and cAMP. Antibody microarrays of dynein-immunoprecipitated axoplasm from rats with either DRI or SNI revealed a broad differential activation and transport of signals after each injury type and further supported that ERK, JNK, STAT-3, and cAMP signaling pathways are minor contributors to the differential intrinsic axon growth capacity of both injury models. Increased levels of inhibitory injury signals including GSK3β and ROCKII were identified after DRI, not only in axons but also in DRG cell bodies. In summary, our work shows that activation and transport of positive injury signals are not sufficient to promote increased axon growth capacity and that differential modulation of inhibitory molecules may contribute to limited regenerative response. PMID:26298667

  14. [Clinical study of the relationship between the lateral recesses and the nerve roots].

    PubMed

    Lian, P; Sun, R; Jia, L

    1997-04-01

    To explicate the relationship and the clinical signification between the normal or narrow lateral recesses and the nerve roots, we measured the diameter of the entrans zone of the lateral recess, the interval between the upper articular processes and the interval between the nerve root and ab line on 50 normal cases, 43 narrow cases and 32 stenosis cases with VIDS image analysis system. The results showed that the nerve root was in the center side of the ab line in the normal station, with the degrees of the degeneration and cohesion ncreasing, the nerve root was in the lateral recess side of the ab line, and was compressed by the lateral recess. The authors considered that the real clinical signification of the entrance zone of the lateral recess was danger to the nerve root, but the deciding factors were the degrees of the degeneration and cohesion of the upper articular processes. The pathological conditions that resulted in the stenosis of the lateral recess and dangered the nerve root such as disc, flavum ligament and posterior port of the fibra ring were discussed in the article. PMID:10374545

  15. Implantable electrode for recording nerve signals in awake animals

    NASA Technical Reports Server (NTRS)

    Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.

    1976-01-01

    An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.

  16. The Relation Between Rotation Deformity and Nerve Root Stress in Lumbar Scoliosis

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Joong; Lee, Hwan-Mo; Moon, Seong-Hwan; Chun, Heoung-Jae; Kang, Kyoung-Tak

    Even though several finite element models of lumbar spine were introduced, there has been no model including the neural structure. Therefore, the authors made the novel lumbar spine finite element model including neural structure. Using this model, we investigated the relation between the deformity pattern and nerve root stress. Two lumbar models with different types of curve pattern (lateral bending and lateral bending with rotation curve) were made. In the model of lateral bending curves without rotation, the principal compressive nerve root stress on the concave side was greater than the principal tensile stress on the convex side at the apex vertebra. Contrarily, in the lateral bending curve with rotational deformity, the nerve stress on the convex side was higher than that on the concave side. Therefore, this study elicit that deformity pattern could have significantly influence on the nerve root stress in the lumbar spine.

  17. More nerve root injuries occur with minimally invasive lumbar surgery: Let's tell someone

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In a recent study entitled: “More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion (XLIF): A review”, Epstein documented that more nerve root injuries occurred utilizing minimally invasive surgery (MIS) versus open lumbar surgery for diskectomy, decompression of stenosis (laminectomy), and/or fusion for instability. Methods: In large multicenter Spine Patient Outcomes Research Trial reviews performed by Desai et al., nerve root injury with open diskectomy occurred in 0.13–0.25% of cases, occurred in 0% of laminectomy/stenosis with/without fusion cases, and just 2% for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion. Results: In another MIS series performed largely for disc disease (often contained nonsurgical disc herniations, therefore unnecessary procedures) or spondylolisthesis, the risk of root injury was 2% for transforaminal lumbar interbody fusion (TLIF) versus 7.8% for posterior lumbar interbody fusion (PLIF). Furthermore, the high frequencies of radiculitis/nerve root/plexus injuries incurring during anterior lumbar interbody fusions (ALIF: 15.8%) versus extreme lumbar interbody fusions (XLIF: 23.8%), addressing disc disease, failed back surgery, and spondylolisthesis, were far from acceptable. Conclusions: The incidence of nerve root injuries following any of the multiple MIS lumbar surgical techniques (TLIF/PLIF/ALIF/XLIF) resulted in more nerve root injuries when compared with open conventional lumbar surgical techniques. Considering the majority of these procedures are unnecessarily being performed for degenerative disc disease alone, spine surgeons should be increasingly asked why they are offering these operations to their patients? PMID:26904373

  18. New Treatments for Spinal Nerve Root Avulsion Injury

    PubMed Central

    Carlstedt, Thomas

    2016-01-01

    Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries. PMID:27602018

  19. New Treatments for Spinal Nerve Root Avulsion Injury.

    PubMed

    Carlstedt, Thomas

    2016-01-01

    Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries. PMID:27602018

  20. Expression and regulation of redoxins at nociceptive signaling sites after sciatic nerve injury in mice

    PubMed Central

    Valek, Lucie; Kanngießer, Maike; Tegeder, Irmgard

    2015-01-01

    Injury of the sciatic nerve results in regulations of pro- and anti-oxidative enzymes at sites of nociceptive signaling including the injured nerve, dorsal root ganglia (DRGs), dorsal horn of the spinal cord, thalamus and somatosensory cortex (Valek et al., 2015) [1]. The present DiB paper shows immunohistochemistry of redoxins including peroxiredoxins (Prdx1–6), glutaredoxins (Glrx1, 2, 3, 5), thioredoxins (Txn1, 2) and thioredoxin reductases (Txnrd1, 2) in the DRGs, spinal cord and sciatic nerve and thalamus in naïve mice and 7 days after Spared sciatic Nerve Injury (SNI) in control mice (Hif1α-flfl) and in mice with a specific deletion of hypoxia inducible factor 1 alpha (SNS-HIF1α−/−) in DRG neurons. The sciatic nerves were immunostained for the respective redoxins and counterstained with hematoxylin. The redoxin immunoreactivity was quantified with ImageJ. For the DRGs and spinal cord the data show the quantitative assessment of the intensity of redoxin immunoreactivity transformed to rainbow pseudocolors. In addition, some redoxin examples of the ipsi and contralateral dorsal and ventral horns of the lumbar spinal cord and some redoxin examples of the thalamus are presented. PMID:26693520

  1. A Case of Delusional Parasitosis Associated with Multiple Lesions at the Root of Trigeminal Nerve

    PubMed Central

    Azad, Alvi; Scholma, Randal S.; Joshi, Kaustubh G.

    2010-01-01

    The authors present a patient with multiple pontine lesions who exhibited symptoms consistent with delusional parasitosis. The trigeminal nerve nuclei are located throughout the brainstem. Pathology in either the nuclei or the branches of the fifth cranial nerve has been associated with both sensory and motor disturbances. Delusional parasitosis is a condition in which the patient has the firm belief that small, living organisms have infested his or her skin or other organs. To our knowledge, this is the first case report of delusional parasitosis associated with lesions at the root of the trigeminal nerve. PMID:20877531

  2. [Physiological approach to peripheral neuropathy. Conventional nerve conduction studies and magnetic motor root stimulation].

    PubMed

    Ugawa, Yoshikazu

    2004-11-01

    In this communication, I first show some points we should mind in the conventional peripheral nerve conduction studies and later present clinical usefulness of motor root stimulation for peripheral neuropathy. CONVENTIONAL NERVE CONDUCTION STUDIES (NCS): The most important point revealed by the conventional NCSs is whether neuropathy is due to axonal degeneration or demyelinating process. Precise clinical examination with this neurophysiological information leads us to a diagnosis and treatment. Poor clinical examination makes these findings useless. Long standing axonal degeneration sometimes induces secondary demyelination at the most distal part of involved nerves. On the other hand, severe segmental demyelination often provokes secondary axonal degeneration at distal parts to the site of demyelination. These secondary changes show the same abnormal neurophysiological findings as those of the primary involvement. We should be careful of this possibility when interpreting the results of NCS. NCS of sensory nerves is not good at revealing demyelinating process. Mild temporal dispersion of potentials often reduces an amplitude of SNAP or loss of responses, which usually suggests axonal degeneration, because of short duration of sensory nerve potentials. MOTOR ROOT STIMULATION IN PERIPHERAL NEUROPATHY: Magnetic stimulation with a coil placed over the spine activates motor roots and evokes EMG responses from upper and lower limb muscles. The site of activation with this method was determined to be where the motor roots exit from the spinal canal (intervertebral foramina) (J Neurol Neurosurg Psychiatry 52 (9): 1025-1032, 1989) because induced currents are very dense at such a foramen made by electric resistant bones. In several kinds of peripheral neuropathy, this method has been used to detect a lesion at a proximal part of the peripheral nerves which can not be detected by the conventional NCSs. I present a few cases in whom motor root stimulation had a clinical

  3. Lumbar nerve root avulsions with secondary ipsilateral hip dysplasia in a child.

    PubMed

    Polyzoidis, Konstandinos; Petropoulou, Calliope; Argyropoulou, Paraskevi I; Vranos, Georgios; Sarmas, Ioannis; Argyropoulou, Maria I

    2002-09-01

    We report on an 8-year-old child with avulsions of the left L3, L4 and L5 nerve roots and traumatic meningoceles that were not associated with lumbar spine or pelvic girdle fractures. The patient had a history of a road traffic accident. Plain radiographs of the pelvis revealed left hip dysplasia. The magnetic resonance imaging findings of the lumbar spine are illustrated. The pathogenesis of lumbar nerve root avulsions and their association with ipsilateral hip dysplasia are discussed. PMID:12221453

  4. A conduction block in sciatic nerves can be detected by magnetic motor root stimulation.

    PubMed

    Matsumoto, Hideyuki; Konoma, Yuko; Fujii, Kengo; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-08-15

    Useful diagnostic techniques for the acute phase of sciatic nerve palsy, an entrapment neuropathy, are not well established. The aim of this paper is to demonstrate the diagnostic utility of magnetic sacral motor root stimulation for sciatic nerve palsy. We analyzed the peripheral nerves innervating the abductor hallucis muscle using both electrical stimulations at the ankle and knee and magnetic stimulations at the neuro-foramina and conus medullaris levels in a patient with sciatic nerve palsy at the level of the piriformis muscle due to gluteal compression related to alcohol consumption. On the fourth day after onset, magnetic sacral motor root stimulation using a MATS coil (the MATS coil stimulation method) clearly revealed a conduction block between the knee and the sacral neuro-foramina. Two weeks after onset, needle electromyography supported the existence of the focal lesion. The MATS coil stimulation method clearly revealed a conduction block in the sciatic nerve and is therefore a useful diagnostic tool for the abnormal neurophysiological findings associated with sciatic nerve palsy even at the acute phase. PMID:23809191

  5. Dorsal root ganglion transcriptome analysis following peripheral nerve injury in mice

    PubMed Central

    Wu, Shaogen; Marie Lutz, Brianna; Miao, Xuerong; Liang, Lingli; Mo, Kai; Chang, Yun-Juan; Du, Peicheng; Soteropoulos, Patricia; Tian, Bin; Kaufman, Andrew G.; Bekker, Alex; Hu, Yali

    2016-01-01

    Background Peripheral nerve injury leads to changes in gene expression in primary sensory neurons of the injured dorsal root ganglia. These changes are believed to be involved in neuropathic pain genesis. Previously, these changes have been identified using gene microarrays or next generation RNA sequencing with poly-A tail selection, but these approaches cannot provide a more thorough analysis of gene expression alterations after nerve injury. Methods The present study chose to eliminate mRNA poly-A tail selection and perform strand-specific next generation RNA sequencing to analyze whole transcriptomes in the injured dorsal root ganglia following spinal nerve ligation. Quantitative real-time reverse transcriptase polymerase chain reaction assay was carried out to verify the changes of some differentially expressed RNAs in the injured dorsal root ganglia after spinal nerve ligation. Results Our results showed that more than 50 million (M) paired mapped sequences with strand information were yielded in each group (51.87 M–56.12 M in sham vs. 51.08 M–57.99 M in spinal nerve ligation). Six days after spinal nerve ligation, expression levels of 11,163 out of a total of 27,463 identified genes in the injured dorsal root ganglia significantly changed, of which 52.14% were upregulated and 47.86% downregulated. The largest transcriptional changes were observed in protein-coding genes (91.5%) followed by noncoding RNAs. Within 944 differentially expressed noncoding RNAs, the most significant changes were seen in long interspersed noncoding RNAs followed by antisense RNAs, processed transcripts, and pseudogenes. We observed a notable proportion of reads aligning to intronic regions in both groups (44.0% in sham vs. 49.6% in spinal nerve ligation). Using quantitative real-time polymerase chain reaction, we confirmed consistent differential expression of selected genes including Kcna2, Oprm1 as well as lncRNAs Gm21781 and 4732491K20Rik following spinal nerve

  6. Mechanical properties of nerve roots and rami radiculares isolated from fresh pig spinal cords

    PubMed Central

    Nishida, Norihiro; Kanchiku, Tsukasa; Ohgi, Junji; Ichihara, Kazuhiko; Chen, Xian; Taguchi, Toshihiko

    2015-01-01

    No reports have described experiments designed to determine the strength characteristics of spinal nerve roots and rami radiculares for the purpose of explaining the complexity of symptoms of medullary cone lesions and cauda equina syndrome. In this study, to explain the pathogenesis of cauda equina syndrome, monoaxial tensile tests were performed to determine the strength characteristics of spinal nerve roots and rami radiculares, and analysis was conducted to evaluate the stress-strain relationship and strength characteristics. Using the same tensile test device, the nerve root and ramus radiculares isolated from the spinal cords of pigs were subjected to the tensile test and stress relaxation test at load strain rates of 0.1, 1, 10, and 100 s-1 under identical settings. The tensile strength of the nerve root was not rate dependent, while the ramus radiculares tensile strength tended to decrease as the strain rate increased. These findings provide important insights into cauda equina symptoms, radiculopathy, and clinical symptoms of the medullary cone. PMID:26807127

  7. The Role of Selective Nerve Root Block in the Treatment of Lumbar Radicular Leg Pain.

    PubMed

    Jonayed, S A; Kamruzzaman, M; Saha, M K; Alam, S; Akter, S

    2016-01-01

    The objective of this retrospective study was to investigate the clinical effectiveness of nerve root blocks (i.e., periradicular injection of Lidocaine and triamcinolone) for lumbar monoradiculopathy in patients with a mild neurological deficit in National Institute of Traumatology & Orthopaedic Rehabilitation (NITOR), Dhaka, Bangladesh from March 2014 to December 2014. We Included 24 patients (32-74 years) with a minor sensory/motor deficit and an unequivocal MRI finding (18 disc herniations, 6 foraminal stenosis) treated with a selective nerve root block. Based on the clinical and imaging findings, surgery (decompression of the nerve root) was justifiable in all cases. Seventeen patients (87%) had rapid (1-4 days) and substantial regression of pain, four required a repeat injection. Sixty percent (60%) of the patients with disc herniation or foraminal stenosis had permanent resolution of pain, so that an operation was avoided over an average of 6 months (2-9 months) follow-up. Nerve root blocks are very effective in the non-operative treatment of minor monoradiculopathy and should be recommended as the initial treatment of choice for this condition. PMID:26931264

  8. An Nfic-hedgehog signaling cascade regulates tooth root development.

    PubMed

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-10-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  9. Strigolactone signaling in root development and phosphate starvation

    PubMed Central

    Kumar, Manoj; Pandya-Kumar, Nirali; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Strigolactones (SLs), have recently been recognized as phytohormone involve in orchestrating shoot and root architecture. In, roots SLs positively regulate root hair length and density, suppress lateral root formation and promote primary root meristem cell number. The biosynthesis and exudation of SLs increases under low phosphate level to regulate root responses. This hormonal response suggests an adaptation strategy of plant to optimize growth and development under nutrient limitations. However, little is known on signal-transduction pathways associated with SL activities. In this review, we outline the current knowledge on SL biology by describing their role in the regulation of root development. Also, we discuss the recent findings on the non-cell autonomous signaling of SLs, that involve PIN polarization, vesicle trafficking, changes in actin architecture and dynamic in response to phosphate starvation. PMID:26251884

  10. [Nerve root compression by gas containing lumbar disc herniation--case report].

    PubMed

    Yasuoka, Hiroki; Nemoto, Osamu; Kawaguchi, Masahisa; Naitou, Satoko; Yamamoto, Kouji; Ukegawa, You

    2009-06-01

    The radiographic appearance of gas collection in the intervertebral disc represents the so-called "vacuum phenomenon." Incidence of the vacuum phenomenon on plain radiographs is reported to be 1-20%, whereas gas-containing disc herniations are rarely observed. We present a case report involving a patient with L4/5 gas-containing disc herniation, which was demonstrated by CT and MRI scans and was also surgically documented. A 48-year-old man with no previous back trauma presented with a 14-day history of left leg pain. On neurologic examination, the straight leg raising test was positive at 60degrees. Leg muscle strength was weak on the extensor hallucis longus. Sensory disturbances and abnormalities in deep-tendon reflexes were not observed. Lumbar roentogenograms showed "vacuum phenomenon" at L2/3, L4/5 and the L5/S disc space. MRI indicated a herniated disc at L4/5 displacing the dural sac and a focal low intensity in the lesion. Administration of an epidural block relieved the patient's symptoms. Ten months later, the patient reported a gradual return of similar left leg pain. His symptoms did not respond to conservative management. Lumbar spine films indicated abnormalities identical to the original results. MRI showed an enlarged area of low intensity with compression of the left L5 nerve root. In addition to recurrent pain, discography with metrizamide injections confirmed the presence of intradiscal gas and compression of the left L5 nerve root. During surgery, a gray-bluish air mass compressing the L5 nerve root was identified. Manipulation of the mass resulted in rupture and the release of gas. The displaced nerve root immediately relaxed to its normal position. Seven months after the operation, the patient remains free of pain. PMID:19526837

  11. Synovial cyst--an unusual cause of nerve root compression. A case report.

    PubMed

    Hammer, A J

    1988-01-01

    An elderly woman presented with a tense, synovia-lined ganglion, associated with the left L3/L4 apophyseal joint, which protruded posteriorly and caudally through the joint capsule and extended anteriorly and cephally into the neural canal. The intraspinal extension produced a compression radiculopathy of the L3 nerve root. Removal of the cyst produced acute and dramatic alleviation of the symptoms. PMID:3340901

  12. Spinal Cord and Spinal Nerve Root Involvement (Myeloradiculopathy) in Tuberculous Meningitis

    PubMed Central

    Gupta, Rahul; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Verma, Rajesh; Sharma, Praveen Kumar

    2015-01-01

    Abstract Most of the information about spinal cord and nerve root involvement in tuberculous meningitis is available in the form of isolated case reports or case series. In this article, we evaluated the incidence, predictors, and prognostic impact of spinal cord and spinal nerve root involvement in tuberculous meningitis. In this prospective study, 71 consecutive patients of newly diagnosed tuberculous meningitis were enrolled. In addition to clinical evaluation, patients were subjected to magnetic resonance imaging (MRI) of brain and spine. Patients were followed up for at least 6 months. Out of 71 patients, 33 (46.4%) had symptoms/signs of spinal cord and spinal nerve root involvement, 22 (30.9%) of whom had symptoms/signs at enrolment. Eleven (15.4%) patients had paradoxical involvement. Paraparesis was present in 22 (31%) patients, which was of upper motor neuron type in 6 (8.4%) patients, lower motor neuron type in 10 (14%) patients, and mixed type in 6 (8.4%) patients. Quadriparesis was present in 3 (4.2%) patients. The most common finding on spinal MRI was meningeal enhancement, seen in 40 (56.3%) patients; in 22 (30.9%), enhancement was present in the lumbosacral region. Other MRI abnormalities included myelitis in 16 (22.5%), tuberculoma in 4 (5.6%), cerebrospinal fluid (CSF) loculations in 4 (5.6%), cord atrophy in 3 (4.2%), and syrinx in 2 (2.8%) patients. The significant predictor associated with myeloradiculopathy was raised CSF protein (>250 mg/dL). Myeloradiculopathy was significantly associated with poor outcome. In conclusion, spinal cord and spinal nerve root involvement in tuberculous meningitis is common. Markedly raised CSF protein is an important predictor. Patients with myeloradiculopathy have poor outcome. PMID:25621686

  13. Extramedullary Conus Ependymoma Involving a Lumbar Nerve Root with Filum Terminale Attachment

    PubMed Central

    Moriwaki, Takashi; Iwatsuki, Koichi; Ohnishi, Yu-ichiro; Ninomiya, Koshi; Yoshimine, Toshiki

    2015-01-01

    PURPOSE In the current report, we describe a case of an extramedullary ependymoma involving a lumbar nerve root near conus medullaris. Spinal ependymomas commonly present as intramedullary tumors in the cervical or thoracic cord or as tumors arising from the conus medullaris or the filum terminale. In this case, we showed an extramedullary conus ependymoma involving a lumbar nerve root with filum terminale attachment. CASE PRESENTATION A 69-year-old woman presented with lower back pain, but without sensory disturbance or motor weakness in her lower extremities. CLINICAL ASSESSMENT Magnetic resonance imaging revealed an intradural mass at T12–L1 at the conus medullaris, which was totally resected. Histopathology revealed a non-myxopapillary ependymoma (WHO grade 2). Postoperatively, the patient did well and displayed no neurological deficits. Moreover, no radiotherapy was required. CONCLUSIONS This report documented a rare case of intradural extramedullary ependymoma located at the conus medullaris, involving the lumbar nerve root, and attached to the filum terminale. Although extramedullary ependymomas at this region are more frequently classified as myxopapillary, histopathological examination revealed this tumor as a non-myxopapillary ependymoma. PMID:26648765

  14. Potential risk of thermal damage to cervical nerve roots by a high-speed drill.

    PubMed

    Hosono, N; Miwa, T; Mukai, Y; Takenaka, S; Makino, T; Fuji, T

    2009-11-01

    Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174 degrees C with a diamond burr and 77 degrees C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p < 0.001). Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner. PMID:19880905

  15. Root zone calcium can modulate GA induced tuberization signal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study was conducted to investigate the possible relationship between root zone calcium and GA3 concentration in tuberization signal. For this purpose, we developed a system utilizing in vitro propagated potato plantlets and pure silica sand that allows precise control of root zone chemic...

  16. Robot-assisted C7 nerve root transfer from the contralateral healthy side: A preliminary cadaver study.

    PubMed

    Jiang, Su; Ichihara, Satoshi; Prunières, Guillaume; Peterson, Brett; Facca, Sybille; Xu, Wen-Dong; Liverneaux, Philippe

    2016-04-01

    Patients with cerebral palsy and spastic hemiplegia may have extremely poor upper extremity function. Unfortunately, many current therapies and treatments for patients with spastic hemiplegia offer very limited improvements. One innovative technique for treating these patients is the use a contralateral C7 nerve root transfer to neurotize the C7 nerve root in the affected limb. This may result not only in less spasticity in the affected limb, but also improved control and motor function vis-a-vis the new connection to the normal cerebral hemisphere. However, contralateral C7 transfers can require large incisions and long nerve grafts. The aim of this study was to test the feasibility of a contralateral C7 nerve root transfer procedure with the use of a prevertebral minimally invasive robot-assisted technique. In a cadaver, both sides of the C7 root were dissected. The right recipient C7 root was resected as proximally as possible, while the left donor C7 root was resected as distally as possible. With the use of the da Vinci (®) SI surgical robot (Intuitive Surgical ™, Sunnyvale, CA, USA), we were able to eliminate the large incision and use a much shorter nerve graft when performing contralateral C7 nerve transfer. PMID:27117122

  17. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  18. Calcium-Mediated Abiotic Stress Signaling in Roots.

    PubMed

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  19. CLE peptide signaling and nitrogen interactions in plant root development.

    PubMed

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2016-08-01

    The CLAVATA signaling pathway is essential for the regulation of meristem activities in plants. This signaling pathway consists of small signaling peptides of the CLE family interacting with CLAVATA1 and leucine-rich repeat receptor-like kinases (LRR-RLKs). The peptide-receptor relationships determine the specificities of CLE-dependent signals controlling stem cell fate and differentiation that are critical for the establishment and maintenance of shoot and root apical meristems. Plants root systems are highly organized into three-dimensional structures for successful anchoring and uptake of water and mineral nutrients from the soil environment. Recent studies have provided evidence that CLE peptides and CLAVATA signaling pathways play pivotal roles in the regulation of lateral root development and systemic autoregulation of nodulation (AON) integrated with nitrogen (N) signaling mechanisms. Integrations of CLE and N signaling pathways through shoot-root vascular connections suggest that N demand modulates morphological control mechanisms and optimize N uptake as well as symbiotic N fixation in roots. PMID:26994997

  20. Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury.

    PubMed

    Pei, Bao-An; Zi, Jin-Hua; Wu, Li-Sheng; Zhang, Cun-Hua; Chen, Yun-Zhen

    2015-10-01

    Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 mA and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. PMID:26692864

  1. Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury

    PubMed Central

    Pei, Bao-an; Zi, Jin-hua; Wu, Li-sheng; Zhang, Cun-hua; Chen, Yun-zhen

    2015-01-01

    Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 mA and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers. PMID:26692864

  2. Experimental studies on the effect of chymopapain on nerve root compression caused by intervertebral disk material.

    PubMed

    Krempen, J F; Minnig, D I; Smith, B S

    1975-01-01

    Chymopapain degrades the nucleus pulposus portion of the intervertebral disk of rabbits. The degradation is not grossly visible until 15 days post-injection. Depolymerization of the chondromucoprotein and decreases in the ability of a disk to imbibe fluid, is, in effect, a "chemical decompression" of the nucleur pulposus. The enzyme must come into direct contact with the chondromucoprotein complex of the disk material, and to a significant extent also must reach the area of disk material adjacent to the herniated annulus. Rapid depolymerization of the chondromucoprotein complex on a biomechanical level, and "decompression" of disk material on a biomechanical level can be correlated with relief of pain in all types of disk herniation in human beings. A primary biochemical change in the disk material would lead to a secondary decrease in inflammation if the change led to a "decompression" of the chondromucoprotein. Since the primary effect of chymopapain is on the chondromucoprotein of the disk, beneficial results would not be expected if nerve root compression is due to bony impingement or scar tissue following previous surgery. Chymopapain did not seem to possess any anti-inflammatory properties when bone was used as an irritant under a nerve root. However, this was technically difficult to evaluate and the possibility that chymopapain may also interfere with a chemical mediator of pain or interfere directly with an inflammatory reaction secondary to root compression can not be excluded. PMID:1126086

  3. Correlation of Foraminal Area and Response to Cervical Nerve Root Injections

    PubMed Central

    Ray, Wilson Z; Akbari, Syed; Shah, Lubdha M

    2015-01-01

    Introduction: Patients with age-related degenerative changes in the cervical spine leading to cervical spondylosis may be symptomatic or asymptomatic. Older patients with radicular pain tend to have a better response to epidural steroid injections, but it is often difficult to predict which patients will have a positive response to selective nerve root block (SNRB). We analyzed whether the cervical neuroforaminal area measured on MRI predicts immediate therapeutic responses to SNRB in patients who have cervical radiculopathy. Methods: We retrospectively reviewed all patients who had cervical SNRBs treated at a single tertiary referral center. We recorded patient demographics, the neuroforaminal area of the symptomatic and contralateral sides, Visual Analog Scale (VAS) score pre- and post-injection, history of previous cervical surgery, comorbidities, and history of tobacco use. Results: Sixty-four patients with symptoms of cervical radiculopathy treated with neuroforaminal nerve root injections had appropriate imaging and VAS scores recorded. The average foraminal area of the symptomatic side before treatment was significantly smaller than the contralateral asymptomatic neuroforamen (p<0.0001). Those patients with the smallest neuroforamen had a positive response to SNRB. Diabetes and tobacco use did not influence patient response to treatment. Conclusions: Measurement of neuroforaminal areas on MRI may represent a useful pre-procedural technique to predict which patients with symptoms of cervical radiculopathy secondary to foraminal stenosis are likely to respond to selective nerve root injections. The predictive ability appears to be limited to those patients with severe stenosis and was less useful in those patients with moderate or mild stenosis. PMID:26203404

  4. Sector computed tomographic spine scanning in the diagnosis of lumbar nerve root entrapment

    SciTech Connect

    Risius, B.; Modic, M.T.; Hardy, R.W. Jr.; Duchesneau, P.M.; Weinstein, M.A.

    1982-04-01

    The diagnosis of lumbar nerve root entrapment was made by sector computed tomography (CT) scanning in 25 patients whose myelograms were normal at the site of the CT scan abnormalities. Sector CT scanning demonstrates preoperatively which neural foramina are narrow. This information, correlated with the patient's history and physical examination, indicates which foramina should be operated on and prevents unnecessary exploration of normal neutral foramina. CT findings were confirmed surgically in 14 patients. Eleven of these 14 patients had excellent postoperative results and remain pain free.

  5. Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma

    PubMed Central

    Liang, Lingli; Cao, Jing; Lutz, Brianna Marie; Bekker, Alex; Zhang, Wei; Tao, Yuan-Xiang

    2015-01-01

    Peripheral nerve injury-induced changes in gene transcription and translation in primary sensory neurons of the dorsal root ganglion (DRG) are considered to contribute to neuropathic pain genesis. Transcription factors control gene expression. Peripheral nerve injury increases the expression of myeloid zinc finger protein 1 (MZF1), a transcription factor, and promotes its binding to the voltage-gated potassium 1.2 (Kv1.2) antisense RNA gene in the injured DRG. However, whether DRG MZF1 participates in neuropathic pain is still unknown. Here, we report that blocking the nerve injury-induced increase of DRG MZF1 through microinjection of MZF1 siRNA into the injured DRG attenuated the initiation and maintenance of mechanical, cold, and thermal pain hypersensitivities in rats with chronic constriction injury (CCI) of the sciatic nerve, without affecting locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking the nerve injury-induced increase of DRG MZF1 through microinjection of recombinant adeno-associated virus 5 expressing full-length MZF1 into the DRG produced significant mechanical, cold, and thermal pain hypersensitivities in naïve rats. Mechanistically, MZF1 participated in CCI-induced reductions in Kv1.2 mRNA and protein and total Kv current and the CCI-induced increase in neuronal excitability through MZF1-triggered Kv1.2 antisense RNA expression in the injured DRG neurons. MZF1 is likely an endogenous trigger of neuropathic pain and might serve as a potential target for preventing and treating this disorder. PMID:25630025

  6. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture

    PubMed Central

    Ditengou, Franck A.; Müller, Anna; Rosenkranz, Maaria; Felten, Judith; Lasok, Hanna; van Doorn, Maja Miloradovic; Legué, Valerie; Palme, Klaus; Schnitzler, Jörg-Peter; Polle, Andrea

    2015-01-01

    The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (–)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates. PMID:25703994

  7. Early signalling pathways in rice roots under vanadate stress.

    PubMed

    Lin, Chung-Wen; Lin, Chung-Yi; Chang, Ching-Chun; Lee, Ruey-Hua; Tsai, Tsung-Mu; Chen, Po-Yu; Chi, Wen-Chang; Huang, Hao-Jen

    2009-05-01

    Vanadate is beneficial to plant growth at low concentration. However, plant exposure to high concentrations of vanadate has been shown to arrest cell growth and lead to cell death. We are interested in understanding the signalling pathways of rice roots in response to vanadate stress. In this study, we demonstrated that vanadate induced rice root cell death and suppressed root growth. In addition, we found that vanadate induced ROS accumulation, increased lipid peroxidation and elicited a remarkable increase of MAPKs and CDPKs activities in rice roots. In contrast, pre-treatment of rice roots with ROS scavenger (sodium benzoate), serine/threonine protein phosphatase inhibitor (endothall), and CDPK antagonist (W7), reduced the vanadate-induced MAPKs activation. Furthermore, the expression of a MAPK gene (OsMPK3) and four tyrosine phosphatase genes (OsDSP3, OsDSP5, OsDSP6, and OsDSP10) were regulated by vanadate in rice roots. Collectively, these results strongly suggest that ROS, protein phosphatase, and CDPK may function in the vanadate-triggered MAPK signalling pathway cause cell death and retarded growth in rice roots. PMID:19250836

  8. Headache in patients with cervical radiculopathy: a prospective study with selective nerve root blocks in 275 patients

    PubMed Central

    Carlsson, Jane Y.; Anderberg, Leif

    2006-01-01

    Since many years we routinely use diagnostic selective nerve root blocks (SNRB) at our department when evaluating patients with cervical radiculopathy. Frequently patients who also presented with headache reported that the headache disappeared when the nerve root responsible for the radicular pain was blocked with local anaesthetics. Headache has been described as a companioning symptom related to cervical radiculopathy but has never before been evaluated with SNRB performed in the lower cervical spine. For this reason we added to our routine an evaluation of the response from the SNRB on headache in patients with cervical radiculopathy. The aim was to describe the frequency of headache in patients with cervical radiculopathy and its response to a selective nerve root block of the nerve root/roots responsible for the radiculopathy. Can nerve root compression in the lower cervical spine produce headache? In this consecutive series of 275 patients with cervical radiculopathy, 161 patients reported that they also suffered from daily or recurrent headache located most often unilaterally on the same side as the radiculopathy. All patients underwent a careful clinical examination by a neurosurgeon and a MRI of the cervical spine. The significantly compressed root/roots, according to the MRI, underwent SNRB with a local anaesthetic. The effect of the nerve root block on the radiculopathy and the headache was carefully noted and evaluated by a physiotherapist using visual analogue scales (VAS) before and after the SNRB. All patients with headache had tender points in the neck/shoulder region on the affected side. Patients with headache graded significantly more limitations in daily activities and higher pain intensity in the neck/shoulder/arm than patients without headache. After selective nerve root block, 59% of the patients with headache reported 50% or more reduction of headache and of these 69% reported total relief. A significant correlation was seen between reduced

  9. Cervical nerve root decompression by lateral approach as salvage operation after failed anterior transdiscal surgery: technical case report

    PubMed Central

    George, Bernard

    2009-01-01

    Cervical nerve root compression caused by disco-osteophytic changes is classically operated by anterior transdiscal approach with disc replacement. If compression persists or recurs, reoperation via the same surgical route may be difficult, because of scar tissue and/or implants. An alternative approach may be necessary. We recommend the lateral cervical approach (retrojugular) as salvage operation in such cases. We report a patient with cervical nerve root compression operated by anterior transdiscal approach with plate and bone graft. As some compression persisted clinically and radiologically, the patient was re-operated via a lateral approach. The surgical access was free of scar tissue. The arthrodesis could be left intact and did not prevent effective nerve root decompression. The patient became asymptomatic. The lateral cervical approach (retrojugular) as reported here, is an excellent alternative pathway if reoperation after anterior transdiscal surgery with disc replacement becomes necessary. PMID:19449041

  10. [Repositioning injuries of nerve root L5 after surgical treatment of high degree spondylolistheses and spondyloptosis--in vitro studies].

    PubMed

    Albrecht, S; Kleihues, H; Gill, C; Reinhardt, A; Noack, W

    1998-01-01

    Temporary or persistent paralysis of the fifth lumbar nerve root have been frequently reported as complications following reposition of high degree spondylolisthesis. According to an outcome analysis of sixty-four patients, we found an increased incidence of motor damages after reduction of Meyerding degree four anterolisthesis or spondyloptosis. There were no signs of intradural root compression or nerve injury tracable. In order to detect extraforaminal strictures, the anatomic course of the lumbosacral plexus and its relation to neighbouring structures, especially pelvivertebral connective tissue junctions were recorded in cadavric measurements. Beside an number of variations in origin and course of the iliolumbar ligament complex, we observed a junction between os sacrum and the anterior part of the fifth lumbar vertebrae in 14/30 specimen, constantly running anterior to the fifth lumbar nerve root. In addition the nerve was fixed to the sacral periostium a few centimeters distal this crossing in about 20% of all cases. Pathophysiological effects were measured in reposition trials, using a continuous pressure monitoring system. A reposition of more than 20 mm resulted in a perineural pressure > 30 mmHg. This caused a nerve fiber deformation at the edge of the compressed nerve segment. Increased pressure leads to a nodular displacement of perineural fat as well as intraneural fascicles. PMID:9615983

  11. MicroRNA Signatures of Drought Signaling in Rice Root

    PubMed Central

    Nikpay, Nava; Ebrahimi, Mohammad Ali; Bihamta, Mohammad Reza; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2016-01-01

    Background Drought stress is one of the most important abiotic stresses and the main constraint to rice agriculture. MicroRNA-mediated post-transcriptional gene regulation is one of the ways to establish drought stress tolerance in plants. MiRNAs are 20–24-nt regulatory RNAs that play an important role in regulating plant gene expression upon exposure to biotic and abiotic stresses. Methodology/Principal Findings In this study, we applied a partial root drying system as well as a complete root drying system to identify miRNAs involved in conditions of drought stress, drought signaling and wet signaling using high-throughput sequencing. To this end, we produced four small RNA libraries: (1) fully-watered (WW), (2) fully-droughted (WD), and split-root systems where (3) one-half was well watered (SpWW) and (4) the other half was water-deprived (SpWD). Our analysis revealed 10,671 and 783 unique known and novel miRNA reads in all libraries, respectively. We identified, 65 (52 known + 13 novel), 72 (61 known + 11 novel) and 51 (38 known + 13 novel) miRNAs that showed differential expression under conditions of drought stress, drought signaling and wet signaling, respectively. The results of quantitative real-time PCR showed expression patterns similar to the high-throughput sequencing results. Furthermore, our target prediction led to the identification of 244, 341 and 239 unique target genes for drought-stress-, drought-signaling- and wet-signaling-responsive miRNAs, respectively. Conclusions/Significance Our results suggest that miRNAs that are responsive under different conditions could play different roles in the regulation of abscisic acid signaling, calcium signaling, detoxification and lateral root formation. PMID:27276090

  12. [Electrophysiologic analysis of the lumbosacral radiculopathy using nerve root conduction velocity (NRCV) and cauda equina action potentials (CEAP)].

    PubMed

    Kamitani, K; Baba, H; Shimada, T; Chiba, H

    1993-07-01

    Nerve root conduction velocity (NRCV) and cauda equina action potential (CEAP) have been measured to assess the severity of lumbosacral radiculopathy, the level-specific diagnosis of the symptomatic roots, and to predict the outcome. This study included 71 patients (40 males, 31 females, average age of 54 years at the time of surgery) who underwent decompressive surgery for lumbar radiculopathy. The NRCV and CEAP were directly measured during the operation. The NRCV decreased significantly with progression of radicular symptoms. The NRCV showed a marked reduction in the nerve roots of the patients with a two years or longer history of radicular symptoms; or those with compression of the nerve roots on the imaging examinations; or nerve roots that were considered to have been subjected to persistent compression over a prolonged period with severe inflammation and adhesions. Multivariative analyses suggested that the NRCV correlated closely to the postoperative neurologic recovery, and the outcome of the lumbosacral radiculopathy could be predicted to some extent by measurements of NRCV. The level-specific diagnosis of the radiculopathy could be determined when the CEAP showed a more than 30% left-right potentials difference. PMID:8409633

  13. Generation of New Neurons in Dorsal Root Ganglia in Adult Rats after Peripheral Nerve Crush Injury

    PubMed Central

    2015-01-01

    The evidence of neurons generated ex novo in sensory ganglia of adult animals is still debated. In the present study, we investigated, using high resolution light microscopy and stereological analysis, the changes in the number of neurons in dorsal root ganglia after 30 days from a crush lesion of the rat brachial plexus terminal branches. Results showed, as expected, a relevant hypertrophy of dorsal root ganglion neurons. In addition, we reported, for the first time in the literature, that neuronal hypertrophy was accompanied by massive neuronal hyperplasia leading to a 42% increase of the number of primary sensory neurons. Moreover, ultrastructural analyses on sensory neurons showed that there was not a relevant neuronal loss as a consequence of the nerve injury. The evidence of BrdU-immunopositive neurons and neural progenitors labeled with Ki67, nanog, nestin, and sox-2 confirmed the stereological evidence of posttraumatic neurogenesis in dorsal root ganglia. Analysis of morphological changes following axonal damage in addition to immunofluorescence characterization of cell phenotype suggested that the neuronal precursors which give rise to the newly generated neurons could be represented by satellite glial cells that actively proliferate after the lesion and are able to differentiate toward the neuronal lineage. PMID:25722894

  14. Macrophages related to leptomeninges and ventral nerve roots. An ultrastructural study.

    PubMed Central

    Fraher, J P; McDougall, R D

    1975-01-01

    In immature rats active macrophages were frequently seen projecting into the subarachnoid space from the surface of the leptomeninges. They also occurred between the layers of the pia and within the nerve roots. They were most frequent during the first two weeks after birth, which is a period of rapid neural growth and myelination in ventral roots. In contrast, they were much fewer at later stages. The ultrastructural characteristics of these cells are described. It is suggested that these cells take part in tissue growth and remodelling by the removal of material which degenerates or becomes redundant during development. For example, they may ingest effete leptomeningeal cells or fragments of them. Those within the ventral roots may phagocytose abnormal Schwann cells, or the myelin of sheaths which have failed to develop normally. It is also suggested that macrophages may be involved in the excavation of the subarachnoid space. Another possible function in which they may be involved is the ingestion of material, possibly of a protein nature, from the cerebrospinal fluid. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1213953

  15. Antral bony wall erosion, trigeminal nerve injury, and enophthalmos after root canal surgery

    PubMed Central

    Ferreira, Eduardo; Antunes, Luís; Dinis, Paulo Borges

    2016-01-01

    Introduction: The frequently used irrigant in dental surgery, sodium hypochlorite, is occasionally the cause of minor, usually circumscribed, adverse effects. Severe, extensive complications, with lasting sequelae, however, also can occur, as in the case we report herein. Case Report: A 55-year-old woman underwent an endodontic procedure on a maxillary molar, whose roots, unknown to the surgeon, were protruding into the maxillary sinus. After sodium hypochlorite root canal irrigation, the patient immediately developed intense facial pain, facial edema, and periorbital cellulitis. An emergency department evaluation diagnosed an intense inflammatory disease of the maxillary sinus, with significant destruction of its bony walls, accompanied by midface paraesthesia due to infraorbital nerve injury. In the following weeks, the patient slowly developed enophthalmos due to bone erosion of the orbit floor. Treatment, besides prolonged oral steroids, required the endoscopic endonasal opening of the maxillary sinus for profuse irrigation. Two years later, the patient maintained a complete loss of function of the maxillary sinus, anesthesia-paraesthesia of the midface, and inferior dystonia of the eye with an enophthalmos. Conclusion: Dentists, maxillofacial surgeons, and otorhinolaryngologists should all be aware of the whole spectrum of complications of even the simplest dental work. Sodium hypochlorite irrigations should be used cautiously in root canal surgery, with the full awareness of its potential for causing soft-tissue damage. PMID:27465790

  16. Confocal imaging reveals three-dimensional fine structure difference between ventral and dorsal nerve roots

    NASA Astrophysics Data System (ADS)

    Wu, Yuxiang; Sui, Tao; Cao, Xiaojian; Lv, Xiaohua; Zeng, Shaoqun; Sun, Peng

    2011-05-01

    Peripheral nerve injury repair is one of the most challenging problems in neurosurgery, partially due to lack of knowledge of three-dimensional (3-D) fine structure and organization of peripheral nerves. In this paper, we explored the structures of nerve fibers in ventral and dorsal nerves with a laser scanning confocal microscopy. Thick tissue staining results suggested that nerve fibers have a different 3-D structure in ventral and dorsal nerves, and reconstruction from serial sectioning images showed that in ventral nerves the nerve fibers travel in a winding form, while in dorsal nerves, the nerve fibers form in a parallel cable pattern. These structural differences could help surgeons to differentiate ventral and dorsal nerves in peripheral nerve injury repair, and also facilitate scientists to get a deeper understanding about nerve fiber organization.

  17. More nerve root injuries occur with minimally invasive lumbar surgery, especially extreme lateral interbody fusion: A review

    PubMed Central

    Epstein, Nancy E.

    2016-01-01

    Background: In the lumbar spine, do more nerve root injuries occur utilizing minimally invasive surgery (MIS) techniques versus open lumbar procedures? To answer this question, we compared the frequency of nerve root injuries for multiple open versus MIS operations including diskectomy, laminectomy with/without fusion addressing degenerative disc disease, stenosis, and/or degenerative spondylolisthesis. Methods: Several of Desai et al. large Spine Patient Outcomes Research Trial studies showed the frequency for nerve root injury following an open diskectomy ranged from 0.13% to 0.25%, for open laminectomy/stenosis with/without fusion it was 0%, and for open laminectomy/stenosis/degenerative spondylolisthesis with/without fusion it was 2%. Results: Alternatively, one study compared the incidence of root injuries utilizing MIS transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) techniques; 7.8% of PLIF versus 2% of TLIF patients sustained root injuries. Furthermore, even higher frequencies of radiculitis and nerve root injuries occurred during anterior lumbar interbody fusions (ALIFs) versus extreme lateral interbody fusions (XLIFs). These high frequencies were far from acceptable; 15.8% following ALIF experienced postoperative radiculitis, while 23.8% undergoing XLIF sustained root/plexus deficits. Conclusions: This review indicates that MIS (TLIF/PLIF/ALIF/XLIF) lumbar surgery resulted in a higher incidence of root injuries, radiculitis, or plexopathy versus open lumbar surgical techniques. Furthermore, even a cursory look at the XLIF data demonstrated the greater danger posed to neural tissue by this newest addition to the MIS lumbar surgical armamentariu. The latter should prompt us as spine surgeons to question why the XLIF procedure is still being offered to our patients? PMID:26904372

  18. The Accuracy of the Physical Examination for the Diagnosis of Midlumbar and Low Lumbar Nerve Root Impingement

    PubMed Central

    Suri, Pradeep; Rainville, James; Katz, Jeffrey N.; Jouve, Cristin; Hartigan, Carol; Limke, Janet; Pena, Enrique; Li, Ling; Swaim, Bryan; Hunter, David J

    2010-01-01

    Study Design Cross-sectional study with prospective recruitment. Objective To determine the accuracy of the physical examination for the diagnosis of midlumbar nerve root impingement (L2, L3, or L4), low lumbar nerve root impingement (L5 or S1) and level-specific lumbar nerve root impingement on magnetic resonance imaging (MRI), using individual tests and combinations of tests. Summary of Background Data The sensitivity and specificity of the physical examination for the localization of nerve root impingement has not been previously studied. Methods Sensitivities, specificities and LRs were calculated for the ability of individual tests and test combinations to predict the presence or absence of nerve root impingement at midlumbar, low lumbar, and specific nerve root levels. Results LRs ≥5.0 indicate moderate to large changes from pre-test probability of nerve root impingement to post-test probability. For the diagnosis of midlumbar impingement, the femoral stretch test (FST), crossed femoral stretch test (CFST), medial ankle pinprick sensation, and patellar reflex testing demonstrated LRs ≥5.0 (LR ∞). LRs ≥5.0 were seen with the combinations of FST and either patellar reflex testing (LR 7.0; 95% CI 2.3–21), or the sit-to-stand test (LR ∞). For the diagnosis of low lumbar impingement, the Achilles reflex test demonstrated a LR ≥5.0 (LR 7.1; CI 0.96–53); test combinations did not increase LRs. For the diagnosis of level-specific impingement, LRs ≥5.0 were seen for anterior thigh sensation at L2 (LR 13; 95% CI 1.8–87); FST at L3 (LR 5.7 ; 95% CI 2.3–4.4); patellar reflex testing (LR 7.7; 95% CI 1.7–35), medial ankle sensation (LR ∞), or CFST (LR 13; 95% CI 1.8–87) at L4; and hip abductor strength at L5(LR 11; 95% CI 1.3–84). Test combinations increased LRs for level-specific root impingement at the L4 level only. Conclusions Individual physical examination tests may provide clinical information which substantially alters the likelihood

  19. Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma.

    PubMed

    Chen, Zhiguo; Liu, Chiachi; Patel, Amish J; Liao, Chung-Ping; Wang, Yong; Le, Lu Q

    2014-11-10

    Neurofibromatosis type 1 is a tumor-predisposing genetic disorder. Plexiform neurofibromas are common NF1 tumors carrying a risk of malignant transformation, which is typically fatal. Little is known about mechanisms mediating initiation and identity of specific cell type that gives rise to neurofibromas. Using cell-lineage tracing, we identify a population of GAP43(+) PLP(+) precursors in embryonic nerve roots as the cells of origin for these tumors and report a non-germline neurofibroma model for preclinical drug screening to identify effective therapies. The identity of the tumor cell of origin and facility for isolation and expansion provides fertile ground for continued analysis to define factors critical for neurofibromagenesis. It also provides unique approaches to develop therapies to prevent neurofibroma formation in NF1 patients. PMID:25446898

  20. Ventral root re-implantation is better than peripheral nerve transplantation for motoneuron survival and regeneration after spinal root avulsion injury

    PubMed Central

    2013-01-01

    Background Peripheral nerve (PN) transplantation and ventral root implantation are the two common types of recovery operations to restore the connection between motoneurons and their target muscles after brachial plexus injury. Despite experience accumulated over the past decade, fundamental knowledge is still lacking concerning the efficacy of the two microsurgical interventions. Methods Thirty-eight adult female Sprague–Dawley rats were divided into 5 groups. Immediately following root avulsion, animals in the first group (n = 8) and the second group (n = 8) received PN graft and ventral root implantation respectively. The third group (n = 8) and the fourth group (n = 8) received PN graft and ventral root implantation respectively at one week after root avulsion. The fifth group received root avulsion only as control (n = 6). The survival and axonal regeneration of severed motoneurons were investigated at 6 weeks post-implantation. Results Re-implantation of ventral roots, both immediately after root avulsion and in delay, significantly increased the survival and regeneration of motoneurons in the avulsed segment of the spinal cord as compared with PN graft transplantation. Conclusions The ventral root re-implantation is a better surgical repairing procedure than PN graft transplantation for brachial plexus injury because of its easier manipulation for re-implanting avulsed ventral roots to the preferred site, less possibility of causing additional damage and better effects on motoneuron survival and axonal regeneration. PMID:23799915

  1. Thoracic Nerve Root Schwannoma Filling the Spinal Canal Almost Entirely Without any Neurological Deficits

    PubMed Central

    Godlewski, Bartosz; Klauz, Grzegorz; Czepko, Ryszard

    2016-01-01

    Introduction Spinal tumours may be classified in three groups: 1) extradural, 2) intradural extramedullary and 3) intramedullary spinal cord tumours. Intradural extramedullary tumours arise from the leptomeninges or nerve roots and include schwannomas. A schwannoma is usually a firm grey-whitish tumour growing near a nerve trunk or ramus. It can be separated from the nerve without damaging neural tissue. Schwannomas are usually solitary tumours. Case Presentation We present the case of a 37-year-old male who underwent surgery for a tumour in the upper thoracic segment of the spinal canal. Although the tumour filled the spinal canal almost entirely, the patient did not manifest any neurological deficits. During the surgery, the tumour was removed completely. A histological examination confirmed a benign schwannoma lesion (WHO G1). Conclusions The question whether doctors are keen to order more diagnostic investigations (including both laboratory and imaging studies) than are necessary is often asked in clinical practice. The cost factor is also important. Not every patient with back pain is referred for an MRI study in the absence of characteristic neurological signs. The case of our patient, however, speaks in favour of early referral for such diagnostic modalities. Appropriate imaging studies, even in patients presenting with no neurological deficits, may help detect pathologies than can lead to severe disability. A spinal canal tumour filling the spinal canal almost entirely and displacing the spinal cord could cause spinal cord damage at any time with all the dire consequences such as paraplegia and loss of the ability to walk. PMID:27110539

  2. Time Course of Substance P Expression in Dorsal Root Ganglia Following Complete Spinal Nerve Transection

    PubMed Central

    Weissner, Wendy; Winterson, Barbara J.; Stuart-Tilley, Alan; Devor, Marshall; Bove, Geoffrey M.

    2008-01-01

    Recent evidence suggests that substance P (SP) is upregulated in primary sensory neurons following axotomy, and that this change occurs in larger neurons that do not usually produce SP. If so, this upregulation may allow normally neighboring, uninjured, and non-nociceptive dorsal root ganglion (DRG) neurons to become effective in activating pain pathways. Using immunohistochemistry, we performed a unilateral L5 spinal nerve transection upon male Wistar rats, and measured SP expression in ipsilateral L4 and L5 DRGs and contralateral L5 DRGs, at 1 to 14 days postoperatively (dpo), and in control and sham operated rats. In normal and sham operated DRGs, SP was detectable almost exclusively in small neurons (≤ 800 μm2). Following surgery, the mean size of SP-positive neurons from the axotomized L5 ganglia was greater at 2, 4, 7 and 14 dpo. Among large neurons (> 800 μm2) from the axotomized L5, the percentage of SP-positive neurons increased at 2, 4, 7, and 14 dpo. Among small neurons from the axotomized L5, the percentage of SP-positive neurons was increased at 1 and 3 dpo, but was decreased at 7 and 14 dpo. Thus, SP expression is affected by axonal damage, and the time course of the expression is different between large and small DRG neurons. These data support a role of SP-producing, large DRG neurons in persistent sensory changes due to nerve injury. PMID:16680762

  3. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  4. Root signals that mediate mutualistic interactions in the rhizosphere.

    PubMed

    Rasmann, Sergio; Turlings, Ted Cj

    2016-08-01

    A recent boom in research on belowground ecology is rapidly revealing a multitude of fascinating interactions, in particular in the rhizosphere. Many of these interactions are mediated by photo-assimilates that are excreted by plant roots. Root exudates are not mere waste products, but serve numerous functions to control abiotic and biotic processes. These functions range from changing the chemical and physical properties of the soil, inhibiting the growth of competing plants, combatting herbivores, and regulating the microbial community. Particularly intriguing are root-released compounds that have evolved to serve mutualistic interactions with soil-dwelling organisms. These mutually beneficial plant-mediated signals are not only of fundamental ecological interest, but also exceedingly important from an agronomical perspective. Here, we attempt to provide an overview of the plant-produced compounds that have so far been implicated in mutualistic interactions. We propose that these mutualistic signals may have evolved from chemical defenses and we point out that they can be (mis)used by specialized pathogens and herbivores. We speculate that many more signals and interactions remain to be uncovered and that a good understanding of the mechanisms and ecological implications can be the basis for exploitation and manipulation of the signals for crop improvement and protection. PMID:27393937

  5. Spatial and Functional Selectivity of Peripheral Nerve Signal Recording With the Transversal Intrafascicular Multichannel Electrode (TIME).

    PubMed

    Badia, Jordi; Raspopovic, Stanisa; Carpaneto, Jacopo; Micera, Silvestro; Navarro, Xavier

    2016-01-01

    The selection of suitable peripheral nerve electrodes for biomedical applications implies a trade-off between invasiveness and selectivity. The optimal design should provide the highest selectivity for targeting a large number of nerve fascicles with the least invasiveness and potential damage to the nerve. The transverse intrafascicular multichannel electrode (TIME), transversally inserted in the peripheral nerve, has been shown to be useful for the selective activation of subsets of axons, both at inter- and intra-fascicular levels, in the small sciatic nerve of the rat. In this study we assessed the capabilities of TIME for the selective recording of neural activity, considering the topographical selectivity and the distinction of neural signals corresponding to different sensory types. Topographical recording selectivity was proved by the differential recording of CNAPs from different subsets of nerve fibers, such as those innervating toes 2 and 4 of the hindpaw of the rat. Neural signals elicited by sensory stimuli applied to the rat paw were successfully recorded. Signal processing allowed distinguishing three different types of sensory stimuli such as tactile, proprioceptive and nociceptive ones with high performance. These findings further support the suitability of TIMEs for neuroprosthetic applications, by exploiting the transversal topographical structure of the peripheral nerves. PMID:26087496

  6. Computerized tomography myelography with coronal and oblique coronal view for diagnosis of nerve root avulsion in brachial plexus injury

    PubMed Central

    2007-01-01

    Background The authors describe a new computerized tomography (CT) myelography technique with coronal and oblique coronal view to demonstrate the status of the cervical nerve rootlets involved in brachial plexus injury. They discuss the value of this technique for diagnosis of nerve root avulsion compared with CT myelography with axial view. Methods CT myelography was performed with penetration of the cervical subarachnoid space by the contrast medium. Then the coronal and oblique coronal reconstructions were created. The results of CT myelography were evaluated and classified with presence of pseudomeningocele, intradural ventral nerve rootlets, and intradural dorsal nerve rootlets. The diagnosis was by extraspinal surgical exploration with or without spinal evoked potential measurements and choline acetyl transferase activity measurement in 25 patients and recovery by a natural course in 3 patients. Its diagnostic accuracy was compared with that of CT myelography with axial view, correlated with surgical findings or a natural course in 57 cervical roots in 28 patients. Results Coronal and oblique coronal views were superior to axial views in visualization of the rootlets and orientation of the exact level of the root. Sensitivity and specificity for coronal and oblique coronal views of unrecognition of intradural ventral and dorsal nerve root shadow without pseudomeningocele in determining pre-ganglionic injury were 100% and 96%, respectively. There was no statistically significant difference between coronal and oblique coronal views and axial views. Conclusion The information by the coronal and oblique coronal slice CT myelography enabled the authors to assess the rootlets of the brachial plexus and provided valuable data for helping to decide whether to proceed with exploration, nerve repair, primary reconstruction. PMID:17651476

  7. Purinergic signaling mediated by P2X7 receptors controls myelination in sciatic nerves.

    PubMed

    Faroni, A; Smith, R J P; Procacci, P; Castelnovo, L F; Puccianti, E; Reid, A J; Magnaghi, V; Verkhratsky, A

    2014-10-01

    Adenosine-5'-triphosphate, the physiological ligand of P2X receptors, is an important factor in peripheral nerve development. P2X7 receptor is expressed in Schwann cells (SCs), but the specific effects of P2X7 purinergic signaling on peripheral nerve development, myelination, and function are largely unknown. In this study, sciatic nerves from P2X7 knockout mice were analyzed for altered expression of myelin-associated proteins and for alterations in nerve morphology. Immunohistochemical analyses revealed that, in the wild-type peripheral nerves, the P2X7 receptor was localized mainly in myelinating SCs, with only a few immunopositive nonmyelinating SCs. Complete absence of P2X7 receptor protein was confirmed in the sciatic nerves of the knockout mice by Western blot and immunohistochemistry. Western blot analysis revealed that expression levels of the myelin proteins protein zero and myelin-associated glycoprotein are reduced in P2X7 knockout nerves. In accordance with the molecular results, transmission electron microscopy analyses revealed that P2X7 knockout nerves possess significantly more unmyelinated axons, contained in a higher number of Remak bundles. The myelinating/nonmyelinating SC ratio was also decreased in knockout mice, and we found a significantly increased number of irregular fibers compared with control nerves. Nevertheless, the myelin thickness in the knockout was unaltered, suggesting a stronger role for P2X7 in determining SC maturation than in myelin formation. In conclusion, we present morphological and molecular evidence of the importance of P2X7 signaling in peripheral nerve maturation and in determining SC commitment to a myelinating phenotype. PMID:24903685

  8. Rapid shoot-to-root signalling regulates root hydraulic conductance via aquaporins.

    PubMed

    Vandeleur, Rebecca K; Sullivan, Wendy; Athman, Asmini; Jordans, Charlotte; Gilliham, Matthew; Kaiser, Brent N; Tyerman, Stephen D

    2014-02-01

    We investigated how root hydraulic conductance (normalized to root dry weight, Lo ) is regulated by the shoot. Shoot topping (about 30% reduction in leaf area) reduced Lo of grapevine (Vitis vinifera L.), soybean (Glycine max L.) and maize (Zea mays L.) by 50 to 60%. More detailed investigations with soybean and grapevine showed that the reduction in Lo was not correlated with the reduction in leaf area, and shading or cutting single leaves had a similar effect. Percentage reduction in Lo was largest when initial Lo was high in soybean. Inhibition of Lo by weak acid (low pH) was smaller after shoot damage or leaf shading. The half time of reduction in Lo was approximately 5 min after total shoot decapitation. These characteristics indicate involvement of aquaporins. We excluded phloem-borne signals and auxin-mediated signals. Xylem-mediated hydraulic signals are possible since turgor rapidly decreased within root cortex cells after shoot topping. There was a significant reduction in the expression of several aquaporins in the plasma membrane intrinsic protein (PIP) family of both grapevine and soybean. In soybean, there was a five- to 10-fold reduction in GmPIP1;6 expression over 0.5-1 h which was sustained over the period of reduced Lo . PMID:23926961

  9. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    Like most other plant organs, roots use gravity as a directional guide for growth. Specialized cells within the columella region of the root cap (the statocytes) sense the direction of gravity through the sedimentation of starch-filled plastids (amyloplasts). Amyloplast movement and/or pressure on sensitive membranes triggers a gravity signal transduction pathway within these cells, which leads to a fast transcytotic relocalization of plasma-membrane associated auxin-efflux carrier proteins of the PIN family (PIN3 and PIN7) toward the bottom membrane. This leads to a polar transport of auxin toward the bottom flank of the cap. The resulting lateral auxin gradient is then transmitted toward the elongation zones where it triggers a curvature that ultimately leads to a restoration of vertical downward growth. Our laboratory is using strategies derived from genetics and systems biology to elucidate the molecular mechanisms that modulate gravity sensing and signal transduction in the columella cells of the root cap. Our previous research uncovered two J-domain-containing proteins, ARG1 and ARL2, as contributing to this process. Mutations in the corresponding paralogous genes led to alterations of root and hypocotyl gravitropism accompanied by an inability for the statocytes to develop a cytoplasmic alkalinization, relocalize PIN3, and transport auxin laterally, in response to gravistimulation. Both proteins are associated peripherally to membranes belonging to various compartments of the vesicular trafficking pathway, potentially modulating the trafficking of defined proteins between plasma membrane and endosomes. MAR1 and MAR2, on the other end, are distinct proteins of the plastidic outer envelope protein import TOC complex (the transmembrane channel TOC75 and the receptor TOC132, respectively). Mutations in the corresponding genes enhance the gravitropic defects of arg1. Using transformation-rescue experiments with truncated versions of TOC132 (MAR2), we have shown

  10. Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling

    PubMed Central

    Meda, Francesca; Gauron, Carole; Rampon, Christine; Teillon, Jérémie; Volovitch, Michel

    2016-01-01

    Abstract Aims: Recent advances in redox biology have emphasized the role of hydrogen peroxide (H2O2) in the modulation of signaling pathways and revealed that H2O2 plays a role in cellular remodeling in adults. Thus, an understanding of the mechanisms that control H2O2 levels in mature tissue would be of great interest. Results: We used a denervation strategy to demonstrate that sensory neurons are responsible for controlling H2O2 levels under normal conditions and after being lesioned. Moreover, we demonstrate that severed nerves respond to appendage amputation via the induction of Hedgehog signaling and that this signaling is responsible for H2O2 production in the wounded epidermis. Finally, we show that H2O2 and nerve growth are regulated via reciprocal action in adults. Innovation and Conclusion: These data support a new paradigm for the regulation of tissue homeostasis: H2O2 attracts nerves and nerves control H2O2 levels in a positive feedback loop. This finding suggests that the peripheral nerve redox environment could be a target for manipulating cell plasticity in adults. Antioxid. Redox Signal. 24, 299–311. PMID:26442784

  11. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals.

    PubMed

    Fox, Michael A; Sanes, Joshua R; Borza, Dorin-Bogdan; Eswarakumar, Veraragavan P; Fässler, Reinhard; Hudson, Billy G; John, Simon W M; Ninomiya, Yoshifumi; Pedchenko, Vadim; Pfaff, Samuel L; Rheault, Michelle N; Sado, Yoshikazu; Segal, Yoav; Werle, Michael J; Umemori, Hisashi

    2007-04-01

    Target-derived factors organize synaptogenesis by promoting differentiation of nerve terminals at synaptic sites. Several candidate organizing molecules have been identified based on their bioactivities in vitro, but little is known about their roles in vivo. Here, we show that three sets of organizers act sequentially to pattern motor nerve terminals: FGFs, beta2 laminins, and collagen alpha(IV) chains. FGFs of the 7/10/22 subfamily and broadly distributed collagen IV chains (alpha1/2) promote clustering of synaptic vesicles as nerve terminals form. beta2 laminins concentrated at synaptic sites are dispensable for embryonic development of nerve terminals but are required for their postnatal maturation. Synapse-specific collagen IV chains (alpha3-6) accumulate only after synapses are mature and are required for synaptic maintenance. Thus, multiple target-derived signals permit discrete control of the formation, maturation, and maintenance of presynaptic specializations. PMID:17418794

  12. Charcot-Marie-Tooth syndrome and neurofibromatosis type 1 with multiple neurofibromas of the entire spinal nerve roots

    PubMed Central

    Onu, David O; Hunn, Andrew W; Peters-Willke, Jens

    2013-01-01

    The coexistence of polyneuropathy which has the definite clinical and electromyographical findings consistent with Charcot-Marie-Tooth (CMT) syndrome and neurofibromatosis type 1 (NF1) has infrequently been reported. We describe a patient with both CMT and NF1, who had multiple neurofibromas involving the entire spinal neural axis. In addition, he had multiple neurofibromas distributed within the ileopsoas and gluteus muscles and subcutaneous tissues. These lesions were detected readily by MRI and the patient underwent successful surgical resection of the largest tumours compressing bilateral C2 nerve roots. To our knowledge, this is the first reported case of CMT syndrome coexisting with NF1 in which multiple neurofibromas involved the entire spinal nerve roots. We discuss the diagnostic and therapeutic challenges, emphasising the role of MRI and electrophysiology in such cases and provide a literature review. PMID:23853192

  13. Charcot-Marie-Tooth syndrome and neurofibromatosis type 1 with multiple neurofibromas of the entire spinal nerve roots.

    PubMed

    Onu, David O; Hunn, Andrew W; Peters-Willke, Jens

    2013-01-01

    The coexistence of polyneuropathy which has the definite clinical and electromyographical findings consistent with Charcot-Marie-Tooth (CMT) syndrome and neurofibromatosis type 1 (NF1) has infrequently been reported. We describe a patient with both CMT and NF1, who had multiple neurofibromas involving the entire spinal neural axis. In addition, he had multiple neurofibromas distributed within the ileopsoas and gluteus muscles and subcutaneous tissues. These lesions were detected readily by MRI and the patient underwent successful surgical resection of the largest tumours compressing bilateral C2 nerve roots. To our knowledge, this is the first reported case of CMT syndrome coexisting with NF1 in which multiple neurofibromas involved the entire spinal nerve roots. We discuss the diagnostic and therapeutic challenges, emphasising the role of MRI and electrophysiology in such cases and provide a literature review. PMID:23853192

  14. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries

    PubMed Central

    Nausch, Lydia W. M.; Bonev, Adrian D.; Heppner, Thomas J.; Tallini, Yvonne; Kotlikoff, Michael I.

    2012-01-01

    It is generally accepted that the endothelium regulates vascular tone independent of the activity of the sympathetic nervous system. Here, we tested the hypothesis that the activation of sympathetic nerves engages the endothelium to oppose vasoconstriction. Local inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signals (“pulsars”) in or near endothelial projections to vascular smooth muscle (VSM) were measured in an en face mouse mesenteric artery preparation. Electrical field stimulation of sympathetic nerves induced an increase in endothelial cell (EC) Ca2+ pulsars, recruiting new pulsar sites without affecting activity at existing sites. This increase in Ca2+ pulsars was blocked by bath application of the α-adrenergic receptor antagonist prazosin or by TTX but was unaffected by directly picospritzing the α-adrenergic receptor agonist phenylephrine onto the vascular endothelium, indicating that nerve-derived norepinephrine acted through α-adrenergic receptors on smooth muscle cells. Moreover, EC Ca2+ signaling was not blocked by inhibitors of purinergic receptors, ryanodine receptors, or voltage-dependent Ca2+ channels, suggesting a role for IP3, rather than Ca2+, in VSM-to-endothelium communication. Block of intermediate-conductance Ca2+-sensitive K+ channels, which have been shown to colocalize with IP3 receptors in endothelial projections to VSM, enhanced nerve-evoked constriction. Collectively, our results support the concept of a transcellular negative feedback module whereby sympathetic nerve stimulation elevates EC Ca2+ signals to oppose vasoconstriction. PMID:22140050

  15. [Teflon granuloma after microvascular decompression of the trigeminal nerve root in a patient with recurrent trigeminal neuralgia].

    PubMed

    Rzaev, D A; Kulikova, E V; Moysak, G I; Voronina, E I; Ageeva, T A

    2016-01-01

    The use of a Teflon implant for Jannetta surgery in patients with trigeminal neuralgia is complicated in rare cases by the development of a Teflon granuloma and can cause recurrent facial pain. The article presents a clinical case of a Teflon granuloma developed after microvascular decompression of the trigeminal nerve root, describes the surgical findings and histological picture, and analyzes the literature, causes of granuloma development, and recommendations for treatment of these patients. PMID:27070261

  16. Microelectronic neural bridge for signal regeneration and function rebuilding over two separate nerves

    NASA Astrophysics Data System (ADS)

    Xiaoyan, Shen; Zhigong, Wang; Xiaoying, Lü; Shushan, Xie; Zonghao, Huang

    2011-06-01

    According to the feature of neural signals, a micro-electronic neural bridge (MENB) has been designed. It consists of two electrode arrays for neural signal detection and functional electrical stimulation (FES), and a microelectronic circuit for signal amplifying, processing, and FES driving. The core of the system is realized in 0.5-μm CMOS technology and used in animal experiments. A special experimental strategy has been designed to demonstrate the feasibility of the system. With the help of the MENB, the withdrawal reflex function of the left/right leg of one spinal toad has been rebuilt in the corresponding leg of another spinal toad. According to the coherence analysis between the source and regenerated neural signals, the controlled spinal toad's sciatic nerve signal is delayed by 0.72 ms in relation to the sciatic nerve signal of the source spinal toad and the cross-correlation function reaches a value of 0.73. This shows that the regenerated signal is correlated with the source sciatic signal significantly and the neural activities involved in reflex function have been regenerated. The experiment demonstrates that the MENB is useful in rebuilding the neural function between nerves of different bodies.

  17. Genetic analysis of gravity signal transduction in roots

    NASA Astrophysics Data System (ADS)

    Masson, Patrick; Strohm, Allison; Baldwin, Katherine

    To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate

  18. Oxygen-Ozone Therapy for Herniated Lumbar Disc in Patients with Subacute Partial Motor Weakness Due to Nerve Root Compression

    PubMed Central

    Dall'Olio, Massimo; Princiotta, Ciro; Cirillo, Luigi; Budai, Caterina; de Santis, Fabio; Bartolini, Stefano; Serchi, Elena; Leonardi, Marco

    2014-01-01

    Summary Intradiscal oxygen-ozone (O2-O3) chemonucleolysis is a well-known effective treatment for pain caused by protruding disc disease and nerve root compression due to bulging or herniated disc. The most widely used therapeutic combination is intradiscal injection of an O2-O3 mixture (chemonucleolysis), followed by periradicular injection of O2-O3, steroid and local anaesthetic to enhance the anti-inflammatory and analgesic effect. The treatment is designed to resolve pain and is administered to patients without motor weakness, whereas patients with acute paralysis caused by nerve root compression undergo surgery 24-48h after the onset of neurological deficit. This paper reports on the efficacy of O2-O3 chemonucleolysis associated with anti-inflammatory foraminal injection in 13 patients with low back pain and cruralgia, low back pain and sciatica and subacute partial motor weakness caused by nerve root compression unresponsive to medical treatment. All patients were managed in conjunction with our colleagues in the Neurosurgery Unit of Bellaria Hospital and the IRCCS Institute of Neurological Sciences, Bologna. The outcomes obtained are promising: 100% patients had a resolution of motor weakness, while 84.6% had complete pain relief. Our results demonstrate that O2-O3 therapy can be considered a valid treatment option for this category of patients. PMID:25363257

  19. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  20. Bayesian spatial filters for the extraction of source signals, a study in the peripheral nerve

    PubMed Central

    Tang, Yuang; Durand, Dominique M.

    2015-01-01

    The ability to extract physiological source signals to control various prosthetics offer tremendous therapeutic potential to improve the quality of life for patients suffering from motor disabilities. Regardless of the modality, recordings of physiological source signals are contaminated with noise and interference along with crosstalk between the sources. These impediments render the task of isolating potential physiological source signals for control difficult. In this paper, a novel Bayesian Source Filter for signal Extraction (BSFE) algorithm for extracting physiological source signals for control is presented. The BSFE algorithm is based on the source localization method Champagne and constructs spatial filters using Bayesian methods that simultaneously maximize the signal to noise ratio of the recovered source signal of interest while minimizing crosstalk interference between sources. When evaluated over peripheral nerve recordings obtained in-vivo, the algorithm achieved the highest signal to noise interference ratio (>7.00±3.45dB) amongst the group of methodologies compared with average correlation between the extracted source signal and the original source signal > 0.93. The results support the efficacy of the BSFE algorithm for extracting source signals from the peripheral nerve or as a pre-filtering stage for BCI methods. PMID:24608686

  1. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina of dorsal root ganglia.

    PubMed

    Bush, M S; Reid, A R; Allt, G

    1991-09-01

    Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves. PMID:1960538

  2. The Incidence of Lumbar Discectomy after Epidural Steroid Injections or Selective Nerve Root Blocks

    PubMed Central

    Mroz, Thomas; Lieberman, Isador

    2015-01-01

    Background The purpose of this study was to determine the use of Central Epidural Steroid Injections (ESI) and Selective Nerve Root Blocks (SNRB) along with the crossover rate to lumbar discectomy in patients with a lumbar disc herniation using retrospective records database search. Butterman et al found a crossover rate for patients with symptomatic disc herniations treated with ESI of 54% (27/50), while Riew similarly found a 53% (29/55) crossover patients receiving SNRB. Methods The database was searched in a sequential Boolean style for patients with the diagnosis of a lumbar disc herniation (Displaced Lumbar Disc - 722.1) and a SNRB (64483) or ESI (62311) who subsequently underwent a Lumbar Discectomy (63030) over a three year time period from January 2004 through December 2006. Statistical analysis was preformed examining the impact of injection type, age, location, gender, and year. Results Of 482,893 patients with the diagnosis of a disc herniation, 27,799(5.76%) underwent a lumbar discectomy. The 29,941 patients who received at least one SNRB for a disc herniation, 10.80% later underwent a lumbar discectomy. The 41,420 patients who received at least one ESI for a disc herniation 9.34% later underwent a lumbar discectomy. There was a noted increase in injection procedures, particularly SNRB during the study with a greater than 50% increase. Conclusions Our examination found a much smaller, but similar crossover rate to surgery between both injection methods, which argues against one method being more effective than another in avoiding surgery. It is likely that patients are receiving these procedures more frequently during the course of conservative treatment for a disc herniation. Level of Evidence This was a Level III study. PMID:26056627

  3. Transcriptional Changes of the Root-Knot Nematode Meloidogyne incognita in Response to Arabidopsis thaliana Root Signals

    PubMed Central

    Teillet, Alice; Dybal, Katarzyna; Kerry, Brian R.; Miller, Anthony J.; Curtis, Rosane H. C.; Hedden, Peter

    2013-01-01

    Root-knot nematodes are obligate parasites that invade roots and induce the formation of specialized feeding structures. Although physiological and molecular changes inside the root leading to feeding site formation have been studied, very little is known about the molecular events preceding root penetration by nematodes. In order to investigate the influence of root exudates on nematode gene expression before plant invasion and to identify new genes potentially involved in parasitism, sterile root exudates from the model plant Arabidopsis thaliana were produced and used to treat Meloidogyne incognita pre-parasitic second-stage juveniles. After confirming the activity of A. thaliana root exudates (ARE) on M. incognita stylet thrusting, six new candidate genes identified by cDNA-AFLP were confirmed by qRT-PCR as being differentially expressed after incubation for one hour with ARE. Using an in vitro inoculation method that focuses on the events preceding the root penetration, we show that five of these genes are differentially expressed within hours of nematode exposure to A. thaliana roots. We also show that these genes are up-regulated post nematode penetration during migration and feeding site initiation. This study demonstrates that preceding root invasion plant-parasitic nematodes are able to perceive root signals and to respond by changing their behaviour and gene expression. PMID:23593446

  4. S3 Dorsal Root Ganglion/Nerve Root Stimulation for Refractory Postsurgical Perineal Pain: Technical Aspects of Anchorless Sacral Transforaminal Lead Placement

    PubMed Central

    Zuidema, X.; Breel, J.; Wille, F.

    2016-01-01

    Chronic perineal pain limits patients in physical and sexual activities, leading to social and psychological distress. In most cases, this pain develops after surgery in the urogenital area or as a consequence of trauma. Neuromodulation is one of the options in chronic postsurgical perineal pain treatment. We present a case of refractory perineal pain after right sided surgical resection of a Bartholin's cyst which was treated with third sacral nerve root/dorsal root ganglion stimulation using the transforaminal approach. We describe a new anchorless lead placement technique using a unique curved lead delivery sheath. We postulate that this new posterior foraminal technique of lead placement is simple, safe, and reversible and may lower the occurrence of lead related complications. PMID:27123351

  5. S3 Dorsal Root Ganglion/Nerve Root Stimulation for Refractory Postsurgical Perineal Pain: Technical Aspects of Anchorless Sacral Transforaminal Lead Placement.

    PubMed

    Zuidema, X; Breel, J; Wille, F

    2016-01-01

    Chronic perineal pain limits patients in physical and sexual activities, leading to social and psychological distress. In most cases, this pain develops after surgery in the urogenital area or as a consequence of trauma. Neuromodulation is one of the options in chronic postsurgical perineal pain treatment. We present a case of refractory perineal pain after right sided surgical resection of a Bartholin's cyst which was treated with third sacral nerve root/dorsal root ganglion stimulation using the transforaminal approach. We describe a new anchorless lead placement technique using a unique curved lead delivery sheath. We postulate that this new posterior foraminal technique of lead placement is simple, safe, and reversible and may lower the occurrence of lead related complications. PMID:27123351

  6. Upregulation of EMMPRIN (OX47) in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury

    PubMed Central

    Wang, Qun; Sun, Yanyuan; Ren, Yingna; Gao, Yandong; Tian, Li; Liu, Yang; Pu, Yanan; Gou, Xingchun; Chen, Yanke; Lu, Yan

    2015-01-01

    Matrix metalloproteinases (MMPs) are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG) after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL) model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury. PMID:26697232

  7. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.

    PubMed

    Farkas, Johanna E; Freitas, Polina D; Bryant, Donald M; Whited, Jessica L; Monaghan, James R

    2016-08-01

    The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration. PMID:27317805

  8. Nerve ending "signal" proteins GAP-43, MARCKS, and BASP1.

    PubMed

    Mosevitsky, Mark I

    2005-01-01

    Mechanisms of growth cone pathfinding in the course of neuronal net formation as well as mechanisms of learning and memory have been under intense investigation for the past 20 years, but many aspects of these phenomena remain unresolved and even mysterious. "Signal" proteins accumulated mainly in the axon endings (growth cones and the presynaptic area of synapses) participate in the main brain processes. These proteins are similar in several essential structural and functional properties. The most prominent similarities are N-terminal fatty acylation and the presence of an "effector domain" (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interactions. However, together with similarities, there are significant differences among the proteins, such as different conditions (Ca2+ contents) for calmodulin binding and different modes of interaction with the actin cytoskeleton. In light of these facts, we consider GAP-43, MARCKS, and BASP1 both separately and in conjunction. Special attention is devoted to a discussion of apparent inconsistencies in results and opinions of different authors concerning specific questions about the structure of proteins and their interactions. PMID:16125549

  9. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes

    PubMed Central

    Cheng, Hsinlin T.; Dauch, Jacqueline R.; Hayes, John M.; Yanik, Brandon M.; Feldman, Eva L

    2011-01-01

    Painful diabetic neuropathy (PDN) is a common, yet devastating complication of type 2 diabetes. At this time, there is no objective test for diagnosing PDN. In the current study, we measured the peptidergic intraepidermal nerve fiber densities (IENFD) from hind paws of the db/db mouse, an animal model for type 2 diabetes, during the period of mechanical allodynia from 6–12 wk of age. Intraepidermal nerve fibers (IENF) of the hind footpads were identified by protein gene product (PGP) 9.5 immunohistochemistry. The peptidergic IENF were determined by double immunofluorescence using anti-PGP9.5 and antibodies against tropomyosin-receptor-kinase (Trk) A. We observed a significant increase in PGP9.5-positive IENFD at 8 and 10 wk of age. Similarly, Trk A-positive peptidergic IENF, which also express substance P and calcitonin gene related peptide in db/db mice, were observed to be elevated from 1.5 to 2 fold over controls. This upregulation ended at 16 wk of age, in accordance with the reduction of mechanical allodynia. Anti-NGF treatment significantly inhibited the upregulation of peptidergic IENFD during the period of mechanical allodynia, suggesting increased neurotrophism may mediate this phenomenon. In addition, SB203580, an inhibitor of p38, blocked the increase in peptidergic IENFD in db/db mice. The current results suggest peptidergic IENFD could be a potential diagnostic indicator for PDN in type 2 diabetes. Furthermore, the inhibition of NGF-p38 signaling could be a potential therapeutic strategy for treating this painful condition. PMID:21872660

  10. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling.

    PubMed

    Bailly, Aurélien; Groenhagen, Ulrike; Schulz, Stefan; Geisler, Markus; Eberl, Leo; Weisskopf, Laure

    2014-12-01

    Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development. PMID:25227998

  11. Multiple signaling pathways control nitrogen-mediated root elongation in maize

    PubMed Central

    Chen, Fanjun; Zhang, Fusuo

    2008-01-01

    Response of root system architecture to nutrient availability is an essential way for plants to adapt to soil environments. Nitrogen can affect root development either as a result of changes in the external concentration, or through changes in the internal nutrient status of the plant. Low soil N stimulates root elongation in maize. Recent evidence suggests that plant hormones auxin and cytokinin, as well as NO signaling pathway, are involved in the regulation of root elongation by low nitrogen nutrition. PMID:19704443

  12. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    5-HT3 receptors that play a significant role in the neurotransmission of taste information from taste buds to nerves. In addition, we show that the anesthetic pentobarbital, widely used in taste nerve recordings, blocks 5-HT3 signaling. Therefore, many conclusions drawn from those data need to be reexamined in light of this anesthetic effect. PMID:26631478

  13. Nerve conduction

    MedlinePlus Videos and Cool Tools

    ... the spinal cord to muscles and sensory receptors. A peripheral nerve is composed of nerve bundles (fascicles) ... two neurons, it must first be converted to a chemical signal, which then crosses a space of ...

  14. Enhancement of peripheral nerve regeneration due to treadmill training and electrical stimulation is dependent on androgen receptor signaling.

    PubMed

    Thompson, Nicholas J; Sengelaub, Dale R; English, Arthur W

    2014-05-01

    Moderate exercise in the form of treadmill training and brief electrical nerve stimulation both enhance axon regeneration after peripheral nerve injury. Different regimens of exercise are required to enhance axon regeneration in male and female mice (Wood et al.: Dev Neurobiol 72 (2012) 688-698), and androgens are suspected to be involved. We treated mice with the androgen receptor blocker, flutamide, during either exercise or electrical stimulation, to evaluate the role of androgen receptor signaling in these activity-based methods of enhancing axon regeneration. The common fibular (CF) and tibial (TIB) nerves of thy-1-YFP-H mice, in which axons in peripheral nerves are marked by yellow fluorescent protein (YFP), were transected and repaired using CF and TIB nerve grafts harvested from non-fluorescent donor mice. Silastic capsules filled with flutamide were implanted subcutaneously to release the drug continuously. Exercised mice were treadmill trained 5 days/week for 2 weeks, starting on the third day post-transection. For electrical stimulation, the sciatic nerve was stimulated continuously for 1 h prior to nerve transection. After 2 weeks, lengths of YFP+ profiles of regenerating axons were measured from harvested nerves. Both exercise and electrical stimulation enhanced axon regeneration, but this enhancement was blocked completely by flutamide treatments. Signaling through androgen receptors is necessary for the enhancing effects of treadmill exercise or electrical stimulation on axon regeneration in cut peripheral nerves. PMID:24293191

  15. Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury.

    PubMed

    Lever, Isobel J; Robinson, Michelle; Cibelli, Mario; Paule, Cleoper; Santha, Peter; Yee, Louis; Hunt, Stephen P; Cravatt, Benjamin F; Elphick, Maurice R; Nagy, Istvan; Rice, Andrew S C

    2009-03-25

    Fatty acid amide hydrolase (FAAH) is a degradative enzyme for a group of endogenous signaling lipids that includes anandamide (AEA). AEA acts as an endocannabinoid and an endovanilloid by activating cannabinoid and vanilloid type 1 transient receptor potential (TRPV1) receptors, respectively, on dorsal root ganglion (DRG) sensory neurons. Inhibition of FAAH activity increases AEA concentrations in nervous tissue and reduces sensory hypersensitivity in animal pain models. Using immunohistochemistry, Western blotting, and reverse transcription-PCR, we demonstrate the location of the FAAH in adult rat DRG, sciatic nerve, and spinal cord. In naive rats, FAAH immunoreactivity localized to the soma of 32.7 +/- 0.8% of neurons in L4 and L5 DRG. These were small-sized (mean soma area, 395.96 +/- 5.6 mum(2)) and predominantly colabeled with peripherin and isolectin B4 markers of unmyelinated C-fiber neurons; 68% colabeled with antibodies to TRPV1 (marker of nociceptive DRG neurons), and <2% colabeled with NF200 (marker of large myelinated neurons). FAAH-IR was also present in small, NF200-negative cultured rat DRG neurons. Incubation of these cultures with the FAAH inhibitor URB597 increased AEA-evoked cobalt uptake in a capsazepine-sensitive manner. After sciatic nerve axotomy, there was a rightward shift in the cell-size distribution of FAAH-immunoreactive (IR) DRG neurons ipsilateral to injury: FAAH immunoreactivity was detected in larger-sized cells that colabeled with NF200. An ipsilateral versus contralateral increase in both the size and proportion of FAAH-IR DRG occurred after spinal nerve transection injury but not after chronic inflammation of the rat hindpaw 2 d after injection of complete Freund's adjuvant. This study reveals the location of FAAH in neural tissue involved in peripheral nociceptive transmission. PMID:19321773

  16. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons.

    PubMed

    Murayama, Chiaki; Watanabe, Shimpei; Nakamura, Motokazu; Norimoto, Hisayoshi

    2015-01-01

    Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine) is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH), a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF) in cultured rat dorsal root ganglion (DRG) neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control), a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in "itch-scratch" animal models is under investigation. PMID:26287150

  17. Reversal of neurochemical alterations in the spinal dorsal horn and dorsal root ganglia by Mas-related gene (Mrg) receptors in a rat model of spinal nerve injury.

    PubMed

    Wang, Dongmei; Xue, Yaping; Yan, Yanhua; Lin, Minjie; Yang, Jiajia; Huang, Jianzhong; Hong, Yanguo

    2016-07-01

    The rodent Mas-related gene (Mrg) receptor subtype C has been demonstrated to inhibit pathological pain. This study investigated the mechanisms underlying the reversal of pain hypersensitivity by the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) in a rat model of L5 spinal nerve ligation (SNL). Intrathecal (i.t.) administration of BAM8-22 (0.1-10nmol) attenuated mechanical allodynia in a dose-dependent manner on day 10 after SNL. The antiallodynia effect of BAM8-22 was abolished by MrgC receptor antibody, but not by naloxone. I.t. BAM8-22 (10nmol) inhibited SNL-induced upregulation of neuronal nitric oxide synthesis (nNOS) and phosphorylation of cyclic AMP response element-binding protein (p-CREB) in the spinal dorsal horn. The BAM8-22 treatment reversed the SNL-induced astrocyte activation, increase of interleukin-1β (IL-1β) expression and phosphorylation of extracellular signal-regulated kinase (p-ERK) in the spinal cord. BAM8-22 also reversed the upregulation of fractalkine and IL-1β in small- and medium-sized dorsal root ganglion (DRG) neurons. Furthermore, the BAM8-22 exposure suppressed the lipopolysaccharide (LPS)-induced increase of nNOS and IL-1β in the DRG explant cultures and the BAM8-22-induced suppression disappeared in the presence of MrgC receptor antibody. The present study provides evidence that activation of MrgC receptors inhibits nerve injury-induced increase of pronociceptive molecules in DRG neurons, suppressing astrocyte activation, the upregulation of excitatory mediators and phosphorylation of transcription factors in the spinal dorsal horn. As MrgC receptors are unequally expressed in the dorsal root and trigeminal ganglia, this study suggests that targeting MrgC receptors could be a new therapy for neuropathic pain with limited unwanted effects. PMID:27018398

  18. Monitoring of immune cell response to B cell depletion therapy and nerve root injury using SPIO enhanced MRI

    NASA Astrophysics Data System (ADS)

    Thorek, Daniel L.

    2009-12-01

    Magnetic resonance (MR) is a robust platform for non-invasive, high-resolution anatomical imaging. However, MR imaging lacks the requisite sensitivity and contrast for imaging at the cellular level. This represents a clinical impediment to greater diagnostic accuracy. Recent advances have allowed for the in vivo visualization of populations and even of individual cells using superparamagnetic iron oxide (SPIO) MR contrast agents. These nanoparticles, commonly manifested as a core of a single iron oxide crystal or cluster of crystals coated in a biocompatible shell, function to shorten proton relaxation times. In MR imaging these constructs locally dephase protons, resulting in a decrease in signal (hypointensity) localized to the region of accumulation of SPIO. In the context of immune cell imaging, SPIO can provide insight into the cellular migration patterns, trafficking, temporal dynamics and progression of diseases and their related pathological states. Furthermore, by visualizing the presence and activity of immune cells, SPIO-enabled cellular imaging can help evaluate the efficacy of therapy in immune disorders. This thesis examines the production, modification and application of SPIO in a range of in vitro and in vivo immune-response-relevant cellular systems. The role of different nanoparticle characteristics including diameter, surface charge and concentration are investigated in the labeling of T cells in culture. Following optimization of SPIO loading conditions for lymphocytes, the effect these particles have on the activation of primary B cells are elucidated. B cells are tracked using a variety of modalities, with and without the application of B cell depleting therapy. This is to evaluate the efficacy of SPIO as in vivo marker for B cell distribution. Unmodified SPIO were applied to monitor macrophage infiltration in a transient nerve root compression model, with implications for neck pain diagnosis and treatment. Nanoparticle accumulation and MR

  19. The Ulnar Nerve at Elbow Extension and Flexion: Assessment of Position and Signal Intensity on MR Images.

    PubMed

    Kawahara, Yasuhiro; Yamaguchi, Tetsuji; Honda, Yuzo; Tomita, Yumiko; Uetani, Masataka

    2016-08-01

    Purpose To assess the position and signal intensity of the ulnar nerve at elbow extension and flexion by using magnetic resonance imaging. Materials and Methods Institutional review board approval and written informed consent were obtained. Transverse T2-weighted images were obtained perpendicular to the upper arm in 100 healthy elbows of 50 volunteers (23 men, 27 women; age range, 21-57 years) and nine elbows with ulnar neuropathy (five men, four women; age range, 24-59 years) with extension and 130° of flexion. Ulnar nerve position was classified into three types: no dislocation, subluxation, or dislocation. One-way analysis of variance, paired t tests, Student t tests, and multiple regression analysis were used to analyze correlations between ulnar nerve movement angle during flexion and age, sex, presence of the anconeus epitrochlearis muscle, and ulnar neuropathy and to compare the contrast-to-noise ratio of nerve to muscle between extension and flexion. Results Nerve positions in healthy elbows were as follows: All had no dislocation at extension, and at flexion, 51 of 100 elbows (51.0%) had no dislocation, 30 of 100 elbows (30.0%) had subluxation, and 19 of 100 elbows (19.0%) had dislocation. Nerve movement angle was smaller in elbows with the anconeus epitrochlearis muscle than in those without the muscle (P = .045, .015). Presence of the muscle was the only significant factor associated with nerve movement angle (P = .047, .013). Only dominant elbows with nerve movement angle of less than 15° and nondominant elbows with nerve movement angle of less than 10° showed contrast-to-noise ratio increase at flexion (P = .021-.030). Conclusion Ulnar nerve movement during flexion was apparent in approximately half of healthy elbows and was similar between healthy elbows and elbows with ulnar neuropathy. Nerve signal intensity increased during flexion only in elbows without apparent nerve movement. (©) RSNA, 2016 Online supplemental material is available for this

  20. Intra-epidermal nerve fibres in human skin: back to the roots.

    PubMed

    Abels, Christoph

    2014-04-01

    Regarding the existence and the role of intra-epidermal nerve fibres, the literature is ambiguous. However, performing a literature search, a landmark paper turned up that even many dermatologists seem to have forgotten, or may not even know at all. This paper is entitled 'The innervation of human epidermis' written by Arthur and Shelley (J Invest Dermatol, 32, 1959, 397). The full text is available via http://www.nature.com/jid/journal/v32/n3/pdf/jid195969a.pdf. The authors present data on intra-epidermal nerves at 16 representative body areas. The existence of intra-epidermal nerve fibres is undisputable and does not only explain clinical symptoms but may even provide a promising target for drug development. PMID:24450967

  1. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. PMID:27019197

  2. [Mechanism of stomatal regulation by root sourced signaling and its agricultural signficance].

    PubMed

    Guo, Anhong; Li, Zhaoxiang; Liu, Gengshan; Yang, Yuanyan; An, Shunqing

    2004-06-01

    Under soil drought condition, root sourced signal abcisic acid (ABA) plays an important role in the long distance signaling process, and can be a measurement of soil water availability. ABA is also an effective stomatal closing agent, and acts to reduce transpiration and canopy water loss. This paper briefly introduced the physiological mechanism and theoretical model about the stomatal regulation by root sourced signaling, and indicated that the combination of this model with root water absorption model and stomatal conductance model could be more effective in depicting the response of plant to soil drying and atmospheric drought. In addition, some effective irrigation approaches, such as regulated deficit irrigation (RDI), partial root-zone drying (PRD) and controlled alternative irrigation (CAI) were profited from the mechanism of plant water use regulation by the root sourced signaling. These irrigation measures favored to reasonably distribute available soil water in root-zone. Root signaling system also played important role in regulating root growth and its development, retarding shoot growth to adjusting root shoot ratio, and optimizing assimilation allocation to favor to improve reproductive development. These processes hold substantial promise for enhancing crop water use efficiency. PMID:15362642

  3. Implications for Bidirectional Signaling Between Afferent Nerves and Urothelial Cells—ICI-RS 2014

    PubMed Central

    Kanai, Anthony; Fry, Christopher; Ikeda, Youko; Kullmann, Florenta Aura; Parsons, Brian; Birder, Lori

    2016-01-01

    Aims To present a synopsis of the presentations and discussions from Think Tank I, “Implications for afferent–urothelial bidirectional communication” of the 2014 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. Methods The participants presented what is new, currently understood or still unknown on afferent–urothelial signaling mechanisms. New avenues of research and experimental methodologies that are or could be employed were presented and discussed. Results It is clear that afferent–urothelial interactions are integral to the regulation of normal bladder function and that its disruption can have detrimental consequences. The urothelium is capable of releasing numerous signaling factors that can affect sensory neurons innervating the suburothelium. However, the understanding of how factors released from urothelial cells and afferent nerve terminals regulate one another is incomplete. Utilization of techniques such as viruses that genetically encode Ca2+ sensors, based on calmodulin and green fluorescent protein, has helped to address the cellular mechanisms involved. Additionally, the epithelial–neuronal interactions in the urethra may also play a significant role in lower urinary tract regulation and merit further investigation. Conclusion The signaling capabilities of the urothelium and afferent nerves are well documented, yet how these signals are integrated to regulate bladder function is unclear. There is unquestionably a need for expanded methodologies to further our understanding of lower urinary tract sensory mechanisms and their contribution to various pathologies. PMID:26872567

  4. Root gravitropism in response to a signal originating outside of the cap

    NASA Technical Reports Server (NTRS)

    Wolverton, Chris; Mullen, Jack L.; Ishikawa, Hideo; Evans, Michael L.

    2002-01-01

    We have developed image analysis software linked to a rotating stage, allowing constraint of any user-selected region of a root at a prescribed angle during root gravitropism. This device allows the cap of a graviresponding root to reach vertical while maintaining a selected region within the elongation zone at a gravistimulated angle. Under these conditions gravitropic curvature of roots of Zea mays L. continues long after the root cap reaches vertical, indicating that a signal from outside of the cap can contribute to the curvature response.

  5. Upregulation of Chemokine CXCL12 in the Dorsal Root Ganglia and Spinal Cord Contributes to the Development and Maintenance of Neuropathic Pain Following Spared Nerve Injury in Rats.

    PubMed

    Bai, Liying; Wang, Xinru; Li, Zhisong; Kong, Cunlong; Zhao, Yonghui; Qian, Jun-Liang; Kan, Quancheng; Zhang, Wei; Xu, Ji-Tian

    2016-02-01

    Emerging evidence indicates that CXCL12/CXCR4 signaling is involved in chronic pain. However, few studies have systemically assessed its role in direct nerve injury-induced neuropathic pain and the underlying mechanism. Here, we determined that spared nerve injury (SNI) increased the expression of CXCL12 and its cognate receptor CXCR4 in lumbar 5 dorsal root ganglia (DRG) neurons and satellite glial cells. SNI also induced long-lasting upregulation of CXCL12 and CXCR4 in the ipsilateral L4-5 spinal cord dorsal horn, characterized by CXCL12 expression in neurons and microglia, and CXCR4 expression in neurons and astrocytes. Moreover, SNI-induced a sustained increase in TNF-α expression in the DRG and spinal cord. Intraperitoneal injection (i.p.) of the TNF-α synthesis inhibitor thalidomide reduced the SNI-induced mechanical hypersensitivity and inhibited the expression of CXCL12 in the DRG and spinal cord. Intrathecal injection (i.t.) of the CXCR4 antagonist AMD3100, both 30 min before and 7 days after SNI, reduced the behavioral signs of allodynia. Rats given an i.t. or i.p. bolus of AMD3100 on day 8 of SNI exhibited attenuated abnormal pain behaviors. The neuropathic pain established following SNI was also impaired by i.t. administration of a CXCL12-neutralizing antibody. Moreover, repetitive i.t. AMD3100 administration prevented the activation of ERK in the spinal cord. The mechanical hypersensitivity induced in naïve rats by i.t. CXCL12 was alleviated by pretreatment with the MEK inhibitor PD98059. Collectively, our results revealed that TNF-α might mediate the upregulation of CXCL12 in the DRG and spinal cord following SNI, and that CXCL12/CXCR4 signaling via ERK activation contributes to the development and maintenance of neuropathic pain. PMID:26781879

  6. Jak/Stat Signaling Stimulates Zebrafish Optic Nerve Regeneration and Overcomes the Inhibitory Actions of Socs3 and Sfpq

    PubMed Central

    Elsaeidi, Fairouz; Bemben, Michael A.; Zhao, Xiao-Feng

    2014-01-01

    The regenerative failure of mammalian optic axons is partly mediated by Socs3-dependent inhibition of Jak/Stat signaling (Smith et al., 2009, 2011). Whether Jak/Stat signaling is part of the normal regenerative response observed in animals that exhibit an intrinsic capacity for optic nerve regeneration, such as zebrafish, remains unknown. Nor is it known whether the repression of regenerative inhibitors, such as Socs3, contributes to the robust regenerative response of zebrafish to optic nerve damage. Here we report that Jak/Stat signaling stimulates optic nerve regeneration in zebrafish. We found that IL-6 family cytokines, acting via Gp130-coupled receptors, stimulate Jak/Stat3 signaling in retinal ganglion cells after optic nerve injury. Among these cytokines, we found that CNTF, IL-11, and Clcf1/Crlf1a can stimulate optic axon regrowth. Surprisingly, optic nerve injury stimulated the expression of Socs3 and Sfpq (splicing factor, proline/glutamine rich) that attenuate optic nerve regeneration. These proteins were induced in a Jak/Stat-dependent manner, stimulated each other's expression and suppressed the expression of regeneration-associated genes. In vivo, the injury-dependent induction of Socs3 and Sfpq inhibits optic nerve regeneration but does not block it. We identified a robust induction of multiple cytokine genes in zebrafish retinal ganglion cells that may contribute to their ability to overcome these inhibitory factors. These studies not only identified mechanisms underlying optic nerve regeneration in fish but also suggest new molecular targets for enhancing optic nerve regeneration in mammals. PMID:24523552

  7. Atypic geniculate neuralgia: atypic anatomic correlation of cranial nerve roots and AICA.

    PubMed

    Ozer, Füsun Demirçivi; Duransoy, Yusuf Kurtuluş; Camlar, Mahmut

    2009-08-01

    Geniculate neuralgia is a rare cause of craniofacial pains. The anterior inferior cerebellar artery is the offending vessel which compress nervus intermedius in the patients with typical geniculate neuralgia. We report a patient whose pain was atypical for either geniculate neuralgia and trigeminal neuralgia. At operation the anterior inferior cerebellar artery was coursing with the nerves and was separated. After the decompression the pain resolved immediately. PMID:19404569

  8. Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury

    PubMed Central

    2013-01-01

    Background C-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection. Methods The inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains. Results Global expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury. Conclusions In summary, we demonstrate that a genetic variation

  9. Microsurgical procedures in the peripheral nerves and the dorsal root entry zone for the treatment of spasticity.

    PubMed

    Sindou, M; Keravel, Y

    1988-01-01

    When spasticity becomes severe and harmful, in spite of physical and medical therapy, neurosurgery can give functional improvement. This paper deals with the long term results of Selective Peripheral Neurotomies of the Tibial Nerve and Selective Posterior Rhizotomies in the Dorsal Root Entry Zone, in 123 patients with spastic disorders localized to the limbs. The micro-techniques and intra-operative electro-stimulation for identification of the nervous structures responsible for the spastic components, can give a substantial reduction of the harmful spasticity, without suppressing the useful muscle tone and impairing the residual motor and sensory functions. The results were effective, with a 1 to 13 year follow-up (5 on average), in 89% of 47 Selective Peripheral Neurotomies of the tibial nerve for spastic foot, in 92% of 53 Selective Posterior Rhizotomies for paraplegia and in 87% of 23 Selective Posterior Rhizotomies for hemiplegia. In the most severe situations ("comfort" indications), correction of the abnormal postures and relief of pain facilitated nursing and physiotherapy. Sometimes there was reappearance of some useful voluntary movements. In the less affected patients ("functional" indications), the suppression of the harmful spastic components made the persistant capacities more effective. PMID:3165206

  10. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation.

    PubMed

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M

    2016-01-01

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP-PPR system during root morphogenesis and tooth eruption. PMID:27068606

  11. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation

    PubMed Central

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M.

    2016-01-01

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP–PPR system during root morphogenesis and tooth eruption. PMID:27068606

  12. It's time to make changes: modulation of root system architecture by nutrient signals.

    PubMed

    Giehl, Ricardo F H; Gruber, Benjamin D; von Wirén, Nicolaus

    2014-03-01

    Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems. PMID:24353245

  13. H-reflex amplitude asymmetry is an earlier sign of nerve root involvement than latency in patients with S1 radiculopathy

    PubMed Central

    2011-01-01

    Background Based on our clinical experience, the H-reflex amplitude asymmetry might be an earlier sign of nerve root involvement than latency in patients with S1 radiculopathy. However, no data to support this assumption are available. The purpose of this study was to review and report the electrophysiological changes in H-reflex amplitude and latency in patients with radiculopathy in order to determine if there is any evidence to support the assumption that H-reflex amplitude is an earlier sign of nerve root involvement than latency. Results Patients with radiculopathy showed significant amplitude asymmetry when compared with healthy controls. However, latency was not always significantly different between patients and healthy controls. These findings suggest nerve root axonal compromise that reduced reflex amplitude earlier than the latency parameter (demyelination) during the pathologic processes. Conclusion Contrary to current clinical thought, H-reflex amplitude asymmetry is an earlier sign/parameter of nerve root involvement in patients with radiculopathy compared with latency. PMID:21466665

  14. Development of the Poplar-Laccaria bicolor Ectomycorrhiza Modifies Root Auxin Metabolism, Signaling, and Response.

    PubMed

    Vayssières, Alice; Pěnčík, Ales; Felten, Judith; Kohler, Annegret; Ljung, Karin; Martin, Francis; Legué, Valérie

    2015-09-01

    Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation. PMID:26084921

  15. Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy.

    PubMed

    Lin, Si-Fang; Yu, Xiao-Lu; Liu, Xiao-Ya; Wang, Bing; Li, Cheng-Hui; Sun, Yan-Gang; Liu, Xing-Jun

    2016-10-19

    Substantial evidence indicates that T-type Cav3.2 channel and insulin-like growth factor-1 (IGF-1) contribute to pain hypersensitivity within primary sensory nerves. A recent study suggested that activation of IGF-1 receptor (IGF-1R) could increase Cav3.2 channel currents and further contribute to inflammatory pain sensitivity. However, the expression patterns of Cav3.2 and IGF-1R and their colocalization in dorsal root ganglion (DRG) in chronic neuropathic pain condition remain unknown. In this study, we explored expression patterns of Cav3.2, IGF-1R and their colocalization, and whether phenotypic switch occurs in a subpopulation of Cav3.2 or IGF-1R neurons in mouse DRGs after sciatic nerve axotomy with immunofluorescence, real-time reverse transcription-PCR, and western blot assays. We found that expressions of Cav3.2 and IGF-1R, and their colocalization were not increased in DRGs of mice following axotomy. In addition, Cav3.2 or IGF-1R subpopulation neurons did not acquire significant switch in expression phenotype after sciatic nerve axotomy. Our findings argue for an upregulation of Cav3.2 and IGF-1R expression in lumbar DRGs post-sciatic nerve axotomy and provided an insight for understanding the functions of peripheral afferent Cav3.2 channel and IGF-1/IGF-1R signaling in chronic neuropathic pain. PMID:27571431

  16. The persistence of the gravity signal in flax roots

    NASA Astrophysics Data System (ADS)

    Hasenstein, Karl H.

    Although the presentation time of gravitropism has been studied, no data exist as to how long a reorientation stimulus affects the gravitropic response of a root. We tested the duration of gravitropic curvature in roots of Linum usitatissimum after reversing a one hour, 90 degree gravistimulus by increasing time intervals in vertical orientation before clinorotating the roots and acquiring infrared digital images. Clinorotation was performed either parallel or perpendicular to the gravity vector. Under either condition the gravistimulus affected curvature during clinorotation only between two to three minutes. Maximal curvature after one minute of vertical reorientation was 15 degrees within one hour. After three minutes in vertical orientation the observed curvature was not statistically different from vertically growing roots. In both orientations, maximum curvature occurred after 1hr. Perpendicular (horizontal) clinorotation showed decreasing curvature with increasing reorientation time. Parallel (vertical) clinorotation resulted in greater variability to the reorientation time. These data indicate that the gravity stimulus operates essentially memory free and that clinorotation affects the gravity response. Therefore all aspects of clinorotation need to be studied before an assessment of clinostats for the simulation of microgravity is possible and a time limit for memory effects of mechanostimulation can be determined.

  17. Neural-Dural Transition at the Thoracic and Lumbar Spinal Nerve Roots: A Histological Study of Human Late-Stage Fetuses

    PubMed Central

    Cho, Kwang Ho; Jin, Zhe Wu; Abe, Hiroshi; Shibata, Shunichi; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco

    2016-01-01

    Epidural blocks have been used extensively in infants. However, little histological information is available on the immature neural-dural transition. The neural-dural transition was histologically investigated in 12 late-stage (28–30 weeks) fetuses. The dural sheath of the spinal cord was observed to always continue along the nerve roots with varying thicknesses between specimens and segments, while the dorsal root ganglion sheath was usually very thin or unclear. Immature neural-dural transitions were associated with effective anesthesia. The posterior radicular artery was near the dorsal root ganglion and/or embedded in the nerve root, whereas the anterior radicular artery was separated from the nearest nerve root. The anterior radicular artery was not associated with the dural sheath but with thin mesenchymal tissue. The numbers of radicular arteries tended to become smaller in larger specimens. Likewise, larger specimens of the upper thoracic and lower lumbar segments did not show the artery. Therefore, elimination of the radicular arteries to form a single artery of Adamkiewicz was occurring in late-stage fetuses. The epidural space was filled with veins, and the loose tissue space extended ventrolaterally to the subpleural tissue between the ribs. Consequently, epidural blocks in infants require special attention although immature neural-dural transitions seemed to increase the effect. PMID:27069926

  18. Neural-Dural Transition at the Thoracic and Lumbar Spinal Nerve Roots: A Histological Study of Human Late-Stage Fetuses.

    PubMed

    Cho, Kwang Ho; Jin, Zhe Wu; Abe, Hiroshi; Shibata, Shunichi; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco

    2016-01-01

    Epidural blocks have been used extensively in infants. However, little histological information is available on the immature neural-dural transition. The neural-dural transition was histologically investigated in 12 late-stage (28-30 weeks) fetuses. The dural sheath of the spinal cord was observed to always continue along the nerve roots with varying thicknesses between specimens and segments, while the dorsal root ganglion sheath was usually very thin or unclear. Immature neural-dural transitions were associated with effective anesthesia. The posterior radicular artery was near the dorsal root ganglion and/or embedded in the nerve root, whereas the anterior radicular artery was separated from the nearest nerve root. The anterior radicular artery was not associated with the dural sheath but with thin mesenchymal tissue. The numbers of radicular arteries tended to become smaller in larger specimens. Likewise, larger specimens of the upper thoracic and lower lumbar segments did not show the artery. Therefore, elimination of the radicular arteries to form a single artery of Adamkiewicz was occurring in late-stage fetuses. The epidural space was filled with veins, and the loose tissue space extended ventrolaterally to the subpleural tissue between the ribs. Consequently, epidural blocks in infants require special attention although immature neural-dural transitions seemed to increase the effect. PMID:27069926

  19. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance.

    PubMed

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-03-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  20. Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance1

    PubMed Central

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-01-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  1. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    PubMed

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress. PMID:27061745

  2. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules

    PubMed Central

    Mohd-Radzman, Nadiatul A.; Djordjevic, Michael A.; Imin, Nijat

    2013-01-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules. PMID:24098303

  3. A molecular mechanism of optic nerve regeneration in fish: the retinoid signaling pathway.

    PubMed

    Kato, Satoru; Matsukawa, Toru; Koriyama, Yoshiki; Sugitani, Kayo; Ogai, Kazuhiro

    2013-11-01

    The fish optic nerve regeneration process takes more than 100 days after axotomy and comprises four stages: neurite sprouting (1-4 days), axonal elongation (5-30 days), synaptic refinement (35-80 days) and functional recovery (100-120 days). We screened genes specifically upregulated in each stage from axotomized fish retina. The mRNAs for heat shock protein 70 and insulin-like growth factor-1 rapidly increased in the retinal ganglion cells soon after axotomy and function as cell-survival factors. Purpurin mRNA rapidly and transiently increased in the photoreceptors and purpurin protein diffusely increased in all nuclear layers at 1-4 days after injury. The purpurin gene has an active retinol-binding site and a signal peptide. Purpurin with retinol functions as a sprouting factor for thin neurites. This neurite-sprouting effect was closely mimicked by retinoic acid and blocked by its inhibitor. We propose that purpurin works as a retinol transporter to supply retinoic acid to damaged RGCs which in turn activates target genes. We also searched for genes involved in the second stage of regeneration. The mRNA of retinoid-signaling molecules increased in retinal ganglion cells at 7-14 days after injury and tissue transglutaminase and neuronal nitric oxide synthase mRNAs, RA-target genes, increased in retinal ganglion cells at 10-30 days after injury. They function as factors for the outgrowth of thick, long neurites. Here we present a retinoid-signaling hypothesis to explain molecular events during the early stages of optic nerve regeneration in fish. PMID:23994437

  4. Nitric Oxide Signaling and Neural Stem Cell Differentiation in Peripheral Nerve Regeneration

    PubMed Central

    Tao Li, Jessica; Somasundaram, Chandra; Bian, Ka; Xiong, Weijun; Mahmooduddin, Faiz; Nath, Rahul K.; Murad, Ferid

    2010-01-01

    Objective: The objective was to examine whether nitric oxide signaling plays a role in human embryonic stem cell differentiation into neural cells. This article reviews current literature on nitric oxide signaling and neural stem cell differentiation for potential therapeutic application to peripheral nerve regeneration. Methods: Human embryonic H9-stem cells were grown, maintained on mitomycin C–treated mouse embryonic fibroblast feeder layer, cultured on Matrigel to be feeder-free, and used for all the experiments. Fluorescent dual-immunolabeling and confocal image analysis were used to detect the presence of the neural precursor cell markers nestin and nitric oxide synthase-1. Fluorescence-activated cell sorting analysis was used to determine the percentage of expression. Results: We have shown the confocal image of stage 1 human embryonic stem cells coexpressing nestin and nitric oxide synthase-1. Fluorescence-activated cell sorting analysis indicated 24.3% positive labeling of nitric oxide synthase-1. Adding retinoic acid (10−6 M) to the culture medium increased the percent of nitric oxide synthase-1 positive cells to 33.9%. Combining retinoic acid (10−6 M) with 8-brom cyclic guanosine monophosphate (10−5 M), the fluorescence-activated cell sorting analysis demonstrated a further increase of nitric oxide synthase-1 positive cells to 45.4%. Our current results demonstrate a prodifferentiation potency of nitric oxide synthase-1, stimulated by retinoic acid with and without cyclic guanosine monophosphate. Conclusion: We demonstrated for the first time how nitric oxide/cyclic guanosine monophosphate signaling contributes to the development of neural precursors derived from human embryonic stem cells and enhances the differentiation of precursors toward functional neurons for peripheral nerve regeneration. PMID:20563304

  5. Translaminar Microendoscopic Herniotomy for Cranially Migrated Lumbar Disc Herniations Encroaching on the Exiting Nerve Root in the Preforaminal and Foraminal Zones

    PubMed Central

    Tono, Osamu; Senba, Hideyuki; Kitamura, Takahiro; Komiya, Norihiro; Oga, Masayoshi; Shidahara, Satoshi

    2013-01-01

    Study Design Case series. Purpose The aim of this study was to describe translaminar microendoscopic herniotomy (TL-MEH) for cranially migrated lumbar disc herniations encroaching on the exiting nerve root in the preforaminal and foraminal zones and to report preliminary results of the procedure. Overview of Literature Conventional interlaminar approaches for preforaminal and foraminal lumbar disc herniations result in extensive removal of the lamina and facet joint to remove disc fragments safely. More destructive approaches increase the risk of postoperative segmental instability. Methods TL-MEH is a minimally invasive procedure for herniotomy via the translaminar approach using a microendoscopic technique. TL-MEH was performed in seven patients with a cranially migrated lumbar disc herniation encroaching on the exiting nerve root. The disc fragments were located in the preforaminal zone in four patients, and in the preforaminal and foraminal zones in three. Results All patients experienced immediate relief from symptoms after surgery and satisfactory results at the final follow-up. Surgical complications, such as a dural tear, nerve injury, and surgical site infection, were not investigated. Conclusions TL-MEH seemed to be an effective and safe alternative minimally invasive surgical option for patients with a cranially migrated lumbar disc herniation encroaching the exiting nerve root in the preforaminal and foraminal zones. PMID:24066214

  6. Implementation of linear sensory signaling via multiple coordinated mechanisms at central vestibular nerve synapses

    PubMed Central

    McElvain, Lauren E.; Faulstich, Michael; Jeanne, James M.; Moore, Jeffrey D.; du Lac, Sascha

    2015-01-01

    Summary Signal transfer in neural circuits is dynamically modified by the recent history of neuronal activity. Short-term plasticity endows synapses with nonlinear transmission properties, yet synapses in sensory and motor circuits are capable of signaling linearly over a wide range of presynaptic firing rates. How do such synapses achieve rate-invariant transmission despite history-dependent nonlinearities? Here, ultrastructural, biophysical, and computational analyses demonstrate that concerted molecular, anatomical, and physiological refinements are required for central vestibular nerve synapses to linearly transmit rate-coded sensory signals. Vestibular synapses operate in a physiological regime of steady-state depression imposed by tonic firing. Rate-invariant transmission relies on brief presynaptic action potentials that delimit calcium influx, large pools of rapidly mobilized vesicles, multiple low-probability release sites, robust postsynaptic receptor sensitivity, and efficient transmitter clearance. Broadband linear synaptic filtering of head motion signals is thus achieved by coordinately tuned synaptic machinery that maintains physiological operation within inherent cell biological limitations. PMID:25704949

  7. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals.

    PubMed

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-11-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth. PMID:25122697

  8. MADS-Box Transcription Factor AGL21 Regulates Lateral Root Development and Responds to Multiple External and Physiological Signals

    PubMed Central

    Yu, Lin-Hui; Miao, Zi-Qing; Qi, Guo-Feng; Wu, Jie; Cai, Xiao-Teng; Mao, Jie-Li; Xiang, Cheng-Bin

    2014-01-01

    Plant root system morphology is dramatically influenced by various environmental cues. The adaptation of root system architecture to environmental constraints, which mostly depends on the formation and growth of lateral roots, is an important agronomic trait. Lateral root development is regulated by the external signals coordinating closely with intrinsic signaling pathways. MADS-box transcription factors are known key regulators of the transition to flowering and flower development. However, their functions in root development are still poorly understood. Here we report that AGL21, an AGL17-clade MADS-box gene, plays a crucial role in lateral root development. AGL21 was highly expressed in root, particularly in the root central cylinder and lateral root primordia. AGL21 overexpression plants produced more and longer lateral roots while agl21 mutants showed impaired lateral root development, especially under nitrogen-deficient conditions. AGL21 was induced by many plant hormones and environmental stresses, suggesting a function of this gene in root system plasticity in response to various signals. Furthermore, AGL21 was found positively regulating auxin accumulation in lateral root primordia and lateral roots by enhancing local auxin biosynthesis, thus stimulating lateral root initiation and growth. We propose that AGL21 may be involved in various environmental and physiological signals-mediated lateral root development and growth. PMID:25122697

  9. Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings.

    PubMed

    Song, Tao; Cui, Li; Gaa, Kathleen; Feffer, Lori; Taulu, Samu; Lee, Roland R; Huang, Mingxiong

    2009-12-01

    Magnetoencephalography (MEG) has been successfully applied to presurgical epilepsy foci localization and brain functional mapping. Because the neuronal magnetic signals from the brain are extremely weak, MEG measurement requires both low environment noise and the subject/patient being free of artifact-generating metal objects. This strict requirement makes it hard for patients with vagus nerve stimulator, or other similar medical devices, to benefit from the presurgical MEG examinations. Therefore, an approach that can effectively reduce the environmental noise and faithfully recover the brain signals is highly desirable. We applied spatiotemporal signal space separation method, an advanced signal processing approach that can recover bio-magnetic signal from inside the MEG sensor helmet and suppress external disturbance from outside the helmet in empirical MEG measurements, on MEG recordings from normal control subjects and patients who has vagus nerve stimulator. The original MEG recordings were heavily contaminated, and the data could not be assessed. After applying temporal signal space separation, the strong external artifacts from outside the brain were successfully removed, and the neuronal signal from the human brain was faithfully recovered. Both of the goodness-of-fit and 95% confident limit volume confirmed the significant improvement after temporal signal space separation. Hence, temporal signal space separation makes presurgical MEG examinations possible for patients with implanted vagus nerve stimulator or similar medical devices. PMID:19952563

  10. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  11. Stump nerve signals during transcranial magnetic motor cortex stimulation recorded in an amputee via longitudinal intrafascicular electrodes.

    PubMed

    Rossini, P M; Rigosa, Jacopo; Micera, Silvestro; Assenza, Giovanni; Rossini, Luca; Ferreri, Florinda

    2011-04-01

    Do central and peripheral motor pathways associated with an amputated limb retain at least some functions over periods of years? This problem could be addressed by evaluating the response patterns of nerve signals from peripheral motor fibers during transcranial magnetic stimulation (TMS) of corticospinal tracts. The aim of this study was to record for the first time TMS-related responses from the nerves of a left arm stump of an amputee via intrafascicular longitudinal flexible multi-electrodes (tfLIFE4) implanted for a prosthetic hand control. After tfLIFE4 implant in the stump median and ulnar nerves, TMS impulses of increasing intensity were delivered to the contralateral motor cortex while tfLIFE4 recordings were carried out. Combining TMS of increasing intensity and tfLIFE4 electrodes recordings, motor nerve activity possibly related to the missing limb motor control and selectively triggered by brain stimulation without significant electromyographic contamination was identified. These findings are entirely original and indicate that tfLIFE4 signals are clearly driven from M1 stimulation, therefore witnessing the presence in the stump nerves of viable motor signals from the CNS possibly useful for artificial prosthesis control. PMID:21390489

  12. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors

    PubMed Central

    Wu, Jianqiang; Patmore, Deanna M.; Jousma, Edwin; Eaves, David W.; Breving, Kimberly; Patel, Ami V.; Schwartz, Eric B.; Fuchs, James R.; Cripe, Timothy P.; Stemmer-Rachamimov, Anat O.; Ratner, Nancy

    2014-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) develop sporadically or in the context of neurofibromatosis type 1 (NF1). EGFR overexpression has been implicated in MPNST formation, but its precise role and relevant signaling pathways remain unknown. We found that EGFR overexpression promotes mouse neurofibroma transformation to aggressive MPNST (GEM-PNST). Immunohistochemistry demonstrated phosphorylated STAT3 (Tyr705) in both human MPNST and mouse GEM-PNST. A specific JAK2/STAT3 inhibitor FLLL32 delayed MPNST formation in an MPNST xenograft nude mouse model. STAT3 knockdown by shRNA prevented MPNST formation in vivo. Finally, reducing EGFR activity strongly reduced pSTAT3 in vivo. Thus, an EGFR-STAT3 pathway is necessary for MPNST transformation and establishment of MPNST xenografts growth but not for tumor maintenance. Efficacy of the FLLL32 pharmacological inhibitor in delaying MPNST growth suggests that combination therapies targeting JAK/STAT3 might be useful therapeutics. PMID:23318430

  13. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors.

    PubMed

    Wu, J; Patmore, D M; Jousma, E; Eaves, D W; Breving, K; Patel, A V; Schwartz, E B; Fuchs, J R; Cripe, T P; Stemmer-Rachamimov, A O; Ratner, N

    2014-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) develop sporadically or in the context of neurofibromatosis type 1. Epidermal growth factor receptor (EGFR) overexpression has been implicated in MPNST formation, but its precise role and relevant signaling pathways remain unknown. We found that EGFR overexpression promotes mouse neurofibroma transformation to aggressive MPNST (GEM-PNST). Immunohistochemistry demonstrated phosphorylated STAT3 (Tyr705) in both human MPNST and mouse GEM-PNST. A specific JAK2/STAT3 inhibitor FLLL32 delayed MPNST formation in an MPNST xenograft nude mouse model. STAT3 knockdown by shRNA prevented MPNST formation in vivo. Finally, reducing EGFR activity strongly reduced pSTAT3 in vivo. Thus, an EGFR-STAT3 pathway is necessary for MPNST transformation and establishment of MPNST xenografts growth but not for tumor maintenance. Efficacy of the FLLL32 pharmacological inhibitor in delaying MPNST growth suggests that combination therapies targeting JAK/STAT3 might be useful therapeutics. PMID:23318430

  14. Increased TNFR1 expression and signaling in injured peripheral nerves of mice with reduced BACE1 activity.

    PubMed

    Liu, Lijuan; Fissel, John A; Tasnim, Aniqa; Borzan, Jasenka; Gocke, Anne; Calabresi, Peter A; Farah, Mohamed H

    2016-09-01

    Hematogenous macrophages remove myelin debris from injured peripheral nerves to provide a micro-environment conducive to axonal regeneration. Previously, we observed that injured peripheral nerves from Beta-site APP Cleaving Enzyme 1 (BACE1) knockout (KO) mice displayed earlier influx of and enhanced phagocytosis by macrophages when compared to wild-type (WT) mice. These observations suggest that BACE1 might regulate macrophage influx into distal stumps of injured nerves. To determine through which pathway BACE1 influences macrophage influx, we used a mouse inflammation antibody array to assay the expression of inflammation-related proteins in injured nerves of BACE1 KO and WT mice. The most significant change was in expression of tumor necrosis factor receptor 1 (TNFR1) in the distal stump of injured BACE1 KO nerves. Western blotting of protein extracts confirmed increased expression of TNFR1 and its downstream transcriptional factor NFκB in the BACE1 KO distal stumps. Additionally, treatment of WT mice with a BACE1 inhibitor resulted in increased TNFR1 expression and signaling in the distal stump of injured nerves. Exogenous TNFα increased nuclear translocation of p65 NFκB in BACE1 KO tissue and cultured fibroblasts compared with control WT. BACE1 regulates TNFR1 expression at the level of gene expression and not through proteolytic processing. The accelerated macrophage influx in injured nerves of BACE1 KO mice correlates with increased expression and signaling via TNFR1, indicating a link between BACE1 activity and TNFR1 expression/signaling that might contribute to repair of the injured nervous system. PMID:27080468

  15. Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats

    PubMed Central

    Zhao, Li; Qu, Wei; Wu, Yuxuan; Ma, Hao; Jiang, Huajun

    2014-01-01

    Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and purification of Schwann cells are complicated by contamination with fibroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly purified Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (> 95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chitosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were significantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental findings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects. PMID:25598778

  16. Nerve conduction velocity

    MedlinePlus

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... normal body temperature. Being too cold slows nerve conduction. Tell your doctor if you have a cardiac ...

  17. Hypothalamic Nesfatin-1 Stimulates Sympathetic Nerve Activity via Hypothalamic ERK Signaling.

    PubMed

    Tanida, Mamoru; Gotoh, Hitoshi; Yamamoto, Naoki; Wang, Mofei; Kuda, Yuhichi; Kurata, Yasutaka; Mori, Masatomo; Shibamoto, Toshishige

    2015-11-01

    Nesfatin-1 acts on the hypothalamus and regulates the autonomic nervous system. However, the hypothalamic mechanisms of nesfatin-1 on the autonomic nervous system are not well understood. In this study, we found that intracerebroventricular (ICV) administration of nesfatin-1 increased the extracellular signal-regulated kinase (ERK) activity in rats. Furthermore, the activity of sympathetic nerves, in the kidneys, liver, and white adipose tissue (WAT), and blood pressure was stimulated by the ICV injection of nesfatin-1, and these effects were abolished owing to pharmacological inhibition of ERK. Renal sympathoexcitatory and hypertensive effects were also observed with nesfatin-1 microinjection into the paraventricular hypothalamic nucleus (PVN). Moreover, nesfatin-1 increased the number of phospho (p)-ERK1/2-positive neurons in the PVN and coexpression of the protein in neurons expressing corticotropin-releasing hormone (CRH). Pharmacological blockade of CRH signaling inhibited renal sympathetic and hypertensive responses to nesfatin-1. Finally, sympathetic stimulation of WAT and increased p-ERK1/2 levels in response to nesfatin-1 were preserved in obese animals such as rats that were fed a high-fat diet and leptin receptor-deficient Zucker fatty rats. These findings indicate that nesfatin-1 regulates the autonomic nervous system through ERK signaling in PVN-CRH neurons to maintain cardiovascular function and that the antiobesity effect of nesfatin-1 is mediated by hypothalamic ERK-dependent sympathoexcitation in obese animals. PMID:26310564

  18. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling

    PubMed Central

    Easlon, Hsien Ming; Bloom, Arnold J.

    2013-01-01

    Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root–shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source–sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot–root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot–root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source–sink interactions. PMID:23983674

  19. Chronic recording of hand prosthesis control signals via a regenerative peripheral nerve interface in a rhesus macaque

    NASA Astrophysics Data System (ADS)

    Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Tat, D. M.; Bullard, A. J.; Woo, S. L.; Sando, I. C.; Urbanchek, M. G.; Cederna, P. S.; Chestek, C. A.

    2016-08-01

    Objective. Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. Approach. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. Main results. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey’s finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. Significance. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.

  20. Calcium and protein phosphorylation in the transduction of gravity signal in corn roots

    NASA Technical Reports Server (NTRS)

    Friedmann, M.; Poovaiah, B. W.

    1991-01-01

    The involvement of calcium and protein phosphorylation in the transduction of gravity signal was studied using corn roots of a light-insensitive variety (Zea mays L., cv. Patriot). The gravitropic response was calcium-dependent. Horizontal placement of roots preloaded with 32P for three minutes resulted in changes in protein phosphorylation of polypeptides of 32 and 35 kD. Calcium depletion resulted in decreased phosphorylation of these phosphoproteins and replenishment of calcium restored the phosphorylation.

  1. TREATMENT OUTCOMES OF INTRADISCAL STEROID INJECTION/SELECTIVE NERVE ROOT BLOCK FOR 161 PATIENTS WITH CERVICAL RADICULOPATHY

    PubMed Central

    ITO, KEIGO; YUKAWA, YASUTSUGU; MACHINO, MASAAKI; INOUE, TARO; OUCHIDA, JUN; TOMITA, KEISUKE; KATO, FUMIHIKO

    2015-01-01

    ABSTRACT Patients with cervical radiculopathy (CR) were treated with intradiscal injection of steroids (IDIS) and/or selective nerve root block (SNRB) at our hospital. We retrospectively report the outcomes of these nonsurgical treatments for CR. 161 patients who were followed up for >2months were enrolled in this study. Patients’ clinical manifestations were classified as arm pain, arm numbness, neck and/or scapular pain, and arm paralysis. Improvement in each manifestation was classified as "disappeared," "improved," "poor," or "worsened." Responses of "disappeared" or "improved" manifestations suggested treatment effectiveness. Final clinical outcomes were evaluated using the Odom criteria. Changes in herniated disc size were evaluated by comparing the initial and final MRI scans. On the basis of these changes, the patients were divided into regression, no-change, or progression groups. We investigated the relationship between the Odom criteria and changes observed on MRI. Effectiveness rates were 89% for arm pain, 77% for arm numbness, 82% for neck and/or scapular pain, and 76% for arm paralysis. In total, 91 patients underwent repeated MRI. In 56 patients (62%), the size of the herniated disc decreased, but 31 patients (34%) exhibited no change in disc size. The regression group showed significantly better Odom criteria results than the no-change group. In conclusion, IDIS and SNRB for CR are not widely performed. However, other extremely effective therapies that can rapidly improve neuralgia should be considered before surgery. PMID:25797986

  2. Multi-scale simulations predict responses to non-invasive nerve root stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Matsumoto, Hideyuki; Hirata, Akimasa; Terao, Yasuo; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2014-10-01

    Objective. Established biophysical neurone models have achieved limited success in reproducing electrophysiological responses to non-invasive stimulation of the human nervous system. This is related to our insufficient knowledge of the induced electric currents inside the human body. Despite the numerous research and clinical applications of non-invasive stimulation, it is still unclear which internal sites are actually affected by it. Approach. We performed multi-scale computer simulations that, by making use of advances in computing power and numerical algorithms, combine a microscopic model of electrical excitation of neurones with a macroscopic electromagnetic model of the realistic whole-body anatomy. Main results. The simulations yield responses consistent with those experimentally recorded following magnetic and electrical motor root stimulation in human subjects, and reproduce the observed amplitudes and latencies for a wide variety of stimulation parameters. Significance. Our findings demonstrate that modern computational techniques can produce detailed predictions about which and where neurones are activated, leading to improved understanding of the physics and basic mechanisms of non-invasive stimulation and enabling potential new applications that make use of improved targeting of stimulation.

  3. Characterization of Thoracic Motor and Sensory Neurons and Spinal Nerve Roots in Canine Degenerative Myelopathy, a Potential Disease Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Morgan, Brandie R.; Coates, Joan R.; Johnson, Gayle C.; Shelton, G. Diane; Katz, Martin L.

    2014-01-01

    Canine Degenerative Myelopathy (DM) is a progressive adult-onset multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced stage DM. To determine if other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MN) and dorsal root ganglia (DRG), and in motor and sensory nerve root axons from DM-affected Boxers and Pembroke Welsh Corgis (PWCs). No alterations in MNs, or motor root axons were observed in either breed. However, advanced stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, or of their axons. Axonal loss in thoracic sensory roots and sensory nerve death suggest sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS. PMID:24375814

  4. Root-Shoot Signaling crosstalk involved in the shoot growth promoting action of rhizospheric humic acids

    PubMed Central

    Olaetxea, Maite; Mora, Verónica; García, Andrés Calderin; Santos, Leandro Azevedo; Baigorri, Roberto; Fuentes, Marta; Garnica, María; Berbara, Ricardo Luis Louro; Zamarreño, Angel Maria; Garcia-Mina, Jose M.

    2016-01-01

    ABSTRACT Numerous studies have shown the ability of humic substances to improve plant development. This action is normally reflected in an enhancement of crop yields and quality. However, the mechanisms responsible for this action of humic substances remain rather unknown. Our studies have shown that the shoot promoting action of sedimentary humic acids is dependent of its ability to increase root hydraulic conductivity through signaling pathways related to ABA, which in turn is affected in roots by humic acids in an IAA-NO dependent way. Furthermore, these studies also indicate that the primary action of humic acids in roots might also be physical, resulting from a transient mild stress caused by humic acids associated with a fouling-cleaning cycle of wall cell pores. Finally the role of alternative signal molecules, such as ROS, and corresponding signaling pathways are also discussed and modeled in the context of the above-mentioned framework. PMID:26966789

  5. Rehabilitation Considerations of a Brachial Plexus Injury with Complete Avulsion of C5 and C6 Nerve Roots in a College Football Player

    PubMed Central

    Saliba, Susan; Saliba, Ethan N.; Pugh, Kelli F.; Chhabra, Abhinav; Diduch, David

    2009-01-01

    Severe brachial plexus injuries are rare in sports, but they have catastrophic results with a significant loss of function in the involved upper extremity. Nerve root avulsions must be timely managed with prompt evaluation, accurate diagnosis, and surgical treatment to optimize the potential for a functional outcome. This case report describes the mechanism of injury, diagnostic evolution, surgical management, and rehabilitation of a college football player who sustained a traumatic complete nerve root avulsion of C5 and C6 (upper trunk of the brachial plexus). Diagnostics included clinical evaluation, magnetic resonance imaging, computed tomography myelogram, and electromyogram. Surgical planning included nerve grafting and neurotization (nerve transfer). Rehabilitation goals were to bring the hand to the face (active biceps function), to stabilize the shoulder for abduction and flexion, and to reduce neuropathic pain. Direct current stimulation, bracing, therapeutic exercise, and biofeedback were used to maximize the use of the athlete’s upper extremity. Although the athlete could not return to sport or normal function by most standards, his results were satisfactory in that he regained an ability to perform many activities of daily living. PMID:23015895

  6. Clinical significance of nerve growth factor and tropomyosin-receptor-kinase signaling pathway in intrahepatic cholangiocarcinoma

    PubMed Central

    Yang, Xiao-Qing; Xu, Yun-Fei; Guo, Sen; Liu, Yi; Ning, Shang-Lei; Lu, Xiao-Fei; Yang, Hui; Chen, Yu-Xin

    2014-01-01

    AIM: To investigate the correlation between nerve growth factor-tropomyosin-receptor-kinase (NGF-TrkA) signaling pathway and prognosis in intrahepatic cholangiocarcinoma (IHCC). METHODS: NGF and TrkA expression in 83 samples of IHCC was assessed by immunohistochemistry. Correlations between NGF-TrkA expression and clinicopathological features were analyzed by χ2 test. Moreover, we evaluated the association between NGF-TrkA and overall survival by univariate and multivariate analysis. With experiments in vitro, we investigated the crucial role of NGF-TrkA on proliferation and invasion of IHCC cells with recombinant NGF-β stimulation. RESULTS: We found that NGF and TrkA expression was significantly related with differentiation (P = 0.024) and intraneural invasion (P = 0.003), respectively. Additionally, double higher expression of NGF and TrkA was identified as an independent prognostic factor in IHCC (P = 0.003). Moreover, we demonstrated that NGF-TrkA signaling pathway can promote IHCC proliferation and invasion. CONCLUSION: NGF-TrkA double higher expression is an independent prognostic factor in IHCC. NGF-TrkA pathway can promote IHCC progression, indicating that NGF-TrkA may become a potential drug target. PMID:24744599

  7. Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft.

    PubMed

    Yuan, Q; Knöpfel, T

    2006-04-01

    Olfactory receptor neuron axons form the olfactory nerve (ON) and project to the glomerular layer of the olfactory bulb, where they form excitatory synapses with terminal arborizations of the mitral cell (MC) tufted primary dendrite. Clusters of MC dendritic tufts define olfactory glomeruli, where they involve in complex synaptic interactions. The computational function of these cellular interactions is not clear. We used patch-clamp electrophysiology combined with whole field or two-photon Ca2+ imaging to study ON stimulation-induced Ca2+ signaling at the level of individual terminal branches of the MC primary dendrite in mice. ON-evoked subthreshold excitatory postsnaptic potentials induced Ca2+ transients in the MC tuft dendrites that were spatially inhomogeneous, exhibiting discrete "hot spots." In contrast, Ca2+ transients induced by backpropagating action potentials occurred throughout the dendritic tuft, being larger in the thin terminal dendrites than in the base of the tuft. Single ON stimulation-induced Ca2+ transients were depressed by the NMDA receptor antagonist D-aminophosphonovaleric acid (D-APV), increased with increasing stimulation intensity, and typically showed a prolonged rising phase. The synaptically induced Ca2+ signals reflect, at least in part, dendrodendritic interactions that support intraglomerular coupling of MCs and generation of an output that is common to all MCs associated with one glomerulus. PMID:16319202

  8. Phylogenetic signal dissection identifies the root of starfishes.

    PubMed

    Feuda, Roberto; Smith, Andrew B

    2015-01-01

    Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors--Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution--have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented. PMID:25955729

  9. Phylogenetic Signal Dissection Identifies the Root of Starfishes

    PubMed Central

    Feuda, Roberto; Smith, Andrew B.

    2015-01-01

    Relationships within the class Asteroidea have remained controversial for almost 100 years and, despite many attempts to resolve this problem using molecular data, no consensus has yet emerged. Using two nuclear genes and a taxon sampling covering the major asteroid clades we show that non-phylogenetic signal created by three factors - Long Branch Attraction, compositional heterogeneity and the use of poorly fitting models of evolution – have confounded accurate estimation of phylogenetic relationships. To overcome the effect of this non-phylogenetic signal we analyse the data using non-homogeneous models, site stripping and the creation of subpartitions aimed to reduce or amplify the systematic error, and calculate Bayes Factor support for a selection of previously suggested topological arrangements of asteroid orders. We show that most of the previous alternative hypotheses are not supported in the most reliable data partitions, including the previously suggested placement of either Forcipulatida or Paxillosida as sister group to the other major branches. The best-supported solution places Velatida as the sister group to other asteroids, and the implications of this finding for the morphological evolution of asteroids are presented. PMID:25955729

  10. Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings[C][W

    PubMed Central

    Duan, Lina; Dietrich, Daniela; Ng, Chong Han; Chan, Penny Mei Yeen; Bhalerao, Rishikesh; Bennett, Malcolm J.; Dinneny, José R.

    2013-01-01

    The endodermal tissue layer is found in the roots of vascular plants and functions as a semipermeable barrier, regulating the transport of solutes from the soil into the vascular stream. As a gateway for solutes, the endodermis may also serve as an important site for sensing and responding to useful or toxic substances in the environment. Here, we show that high salinity, an environmental stress widely impacting agricultural land, regulates growth of the seedling root system through a signaling network operating primarily in the endodermis. We report that salt stress induces an extended quiescent phase in postemergence lateral roots (LRs) whereby the rate of growth is suppressed for several days before recovery begins. Quiescence is correlated with sustained abscisic acid (ABA) response in LRs and is dependent upon genes necessary for ABA biosynthesis, signaling, and transcriptional regulation. We use a tissue-specific strategy to identify the key cell layers where ABA signaling acts to regulate growth. In the endodermis, misexpression of the ABA insensitive1-1 mutant protein, which dominantly inhibits ABA signaling, leads to a substantial recovery in LR growth under salt stress conditions. Gibberellic acid signaling, which antagonizes the ABA pathway, also acts primarily in the endodermis, and we define the crosstalk between these two hormones. Our results identify the endodermis as a gateway with an ABA-dependent guard, which prevents root growth into saline environments. PMID:23341337

  11. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants

    PubMed Central

    Else, Mark A.; Janowiak, Franciszek; Atkinson, Christopher J.; Jackson, Michael B.

    2009-01-01

    -aerated adventitious roots, implying that loss of function of root signalling contributes to closing of stomata during flooding. The possibility that this involves inhibition of cytokinin or gibberellin export was not well supported. PMID:19001430

  12. [Exploration Research of Treatment Effect Improvement of Transcutaneous Electrical Nerve Stimulation Using Parameter-changing Chaotic Signal].

    PubMed

    Zheng, Jincun; Zhang, Hui; Qin, Binyi; Wang, Hai; Nie, Guochao; Chen, Tiejun

    2015-10-01

    This article presents a transcutaneous electric stimulator that is based on chaotic signal. Firstly, we in the study used the MATLAB platform in the PC to generate chaotic signal through the chaos equation, and then we transferred the signal out by data acquisition equipment of USB-6251 manufactured by NI Company. In order to obtain high-power signal for transcutaneous electric stimulator, we used the chip of LM3886 to amplify the signal. Finally, we used the power-amplified chaotic signal to stimulate the internal nerve of human through the electrodes fixed on the skin. We obtained different stimulation effects of transcutaneous electric stimulator by changing the parameters of chaotic model. The preliminary test showed that the randomness of chaotic signals improved the applicability of electrical stimulation and the rules of chaos ensured that the stimulation was comfort. The method reported in this paper provides a new way for the design of transcutaneous electric stimulator. PMID:26964307

  13. The Impact of Spinal Cord Nerve Roots and Denticulate Ligaments on Cerebrospinal Fluid Dynamics in the Cervical Spine

    PubMed Central

    Heidari Pahlavian, Soroush; Yiallourou, Theresia; Tubbs, R. Shane; Bunck, Alexander C.; Loth, Francis; Goodin, Mark; Raisee, Mehrdad; Martin, Bryn A.

    2014-01-01

    Cerebrospinal fluid (CSF) dynamics in the spinal subarachnoid space (SSS) have been thought to play an important pathophysiological role in syringomyelia, Chiari I malformation (CM), and a role in intrathecal drug delivery. Yet, the impact that fine anatomical structures, including nerve roots and denticulate ligaments (NRDL), have on SSS CSF dynamics is not clear. In the present study we assessed the impact of NRDL on CSF dynamics in the cervical SSS. The 3D geometry of the cervical SSS was reconstructed based on manual segmentation of MRI images of a healthy volunteer and a patient with CM. Idealized NRDL were designed and added to each of the geometries based on in vivo measurments in the literature and confirmation by a neuroanatomist. CFD simulations were performed for the healthy and patient case with and without NRDL included. Our results showed that the NRDL had an important impact on CSF dynamics in terms of velocity field and flow patterns. However, pressure distribution was not altered greatly although the NRDL cases required a larger pressure gradient to maintain the same flow. Also, the NRDL did not alter CSF dynamics to a great degree in the SSS from the foramen magnum to the C1 level for the healthy subject and CM patient with mild tonsillar herniation (∼6 mm). Overall, the NRDL increased fluid mixing phenomena and resulted in a more complex flow field. Comparison of the streamlines of CSF flow revealed that the presence of NRDL lead to the formation of vortical structures and remarkably increased the local mixing of the CSF throughout the SSS. PMID:24710111

  14. Effects of Myoga on Memory and Synaptic Plasticity by Regulating Nerve Growth Factor-Mediated Signaling.

    PubMed

    Kim, Hyo Geun; Lim, Soonmin; Hong, Jongki; Kim, Ae-Jung; Oh, Myung Sook

    2016-02-01

    The flower bud of Zingiber mioga Roscoe, known as 'myoga' or Japanese ginger, has a pungent aroma and is commonly consumed as a spice, with pickles, or as a health supplement in Eastern Asia. Here, we evaluated the activity of myoga in the brain, focusing especially on nerve growth factor (NGF), which is believed to mediate synaptic plasticity, supporting learning and memory. In a rat primary hippocampal astrocyte culture system, treatment with myoga extract for 24 h significantly stimulated the production of NGF. In mice administered myoga extract for 14 days, 200 and 400 mg/kg/day treatment resulted in increased NGF levels in the hippocampus. Myoga extract treatment also regulated the phosphorylation of extracellular signal-regulated kinases and cAMP response element-binding protein in the mouse hippocampus, leading to increased synaptic plasticity. In addition, it significantly increased novel object recognition time and spontaneous alternation, indicating improvement in learning and memory. These results suggest that myoga helps regulate NGF and synaptic plasticity, increasing memory ability. PMID:26563629

  15. Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth

    PubMed Central

    Gasperini, Debora; Chételat, Aurore; Acosta, Ivan F.; Goossens, Jonas; Pauwels, Laurens; Goossens, Alain; Dreos, René; Alfonso, Esteban; Farmer, Edward E.

    2015-01-01

    Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific

  16. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  17. Small-peptide signals that control root nodule number, development, and symbiosis.

    PubMed

    Djordjevic, Michael A; Mohd-Radzman, Nadiatul A; Imin, Nijat

    2015-08-01

    Many legumes have the capacity to enter into a symbiotic association with soil bacteria generically called 'rhizobia' that results in the formation of new lateral organs on roots called nodules within which the rhizobia fix atmospheric nitrogen (N). Up to 200 million tonnes of N per annum is fixed by this association. Therefore, this symbiosis plays an integral role in the N cycle and is exploited in agriculture to support the sustainable fixation of N for cropping and animal production in developing and developed nations. Root nodulation is an expendable developmental process and competency for nodulation is coupled to low-N conditions. Both nodule initiation and development is suppressed under high-N conditions. Although root nodule formation enables sufficient N to be fixed for legumes to grow under N-deficient conditions, the carbon cost is high and nodule number is tightly regulated by local and systemic mechanisms. How legumes co-ordinate nodule formation with the other main organs of nutrient acquisition, lateral roots, is not fully understood. Independent mechanisms appear to regulate lateral roots and nodules under low- and high-N regimes. Recently, several signalling peptides have been implicated in the local and systemic regulation of nodule and lateral root formation. Other peptide classes control the symbiotic interaction of rhizobia with the host. This review focuses on the roles played by signalling peptides during the early stages of root nodule formation, in the control of nodule number, and in the establishment of symbiosis. Here, we highlight the latest findings and the gaps in our understanding of these processes. PMID:26249310

  18. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest

    PubMed Central

    Degenhardt, Jörg; Hiltpold, Ivan; Köllner, Tobias G.; Frey, Monika; Gierl, Alfons; Gershenzon, Jonathan; Hibbard, Bruce E.; Ellersieck, Mark R.; Turlings, Ted C. J.

    2009-01-01

    When attacked by herbivorous insects, plants emit volatile compounds that attract natural enemies of the insects. It has been proposed that these volatile signals can be manipulated to improve crop protection. Here, we demonstrate the full potential of this strategy by restoring the emission of a specific belowground signal emitted by insect-damaged maize roots. The western corn rootworm induces the roots of many maize varieties to emit (E)-β-caryophyllene, which attracts entomopathogenic nematodes that infect and kill the voracious root pest. However, most North American maize varieties have lost the ability to emit (E)-β-caryophyllene and may therefore receive little protection from the nematodes. To restore the signal, a nonemitting maize line was transformed with a (E)-β-caryophyllene synthase gene from oregano, resulting in constitutive emissions of this sesquiterpene. In rootworm-infested field plots in which nematodes were released, the (E)-β-caryophyllene-emitting plants suffered significantly less root damage and had 60% fewer adult beetles emerge than untransformed, nonemitting lines. This demonstration that plant volatile emissions can be manipulated to enhance the effectiveness of biological control agents opens the way for novel and ecologically sound strategies to fight a variety of insect pests. PMID:19666594

  19. Edema formation in spinal nerve roots induced by experimental, graded compression. An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression.

    PubMed

    Olmarker, K; Rydevik, B; Holm, S

    1989-06-01

    Edema formation in spinal nerve roots of the pig cauda equina was studied following experimental compression at various pressure levels, durations, and rates of onset, using a fluorescence microscopic technique. The time-pressure thresholds for the occurrence of edema in the nerve roots were: following rapid onset of compression (0.05-0.1 seconds), 2 minutes at both 50 mm Hg and 200 mm Hg, and following slow onset of compression (the pressure was slowly increased during 15-20 seconds), 2 hours at 50 mm Hg and 2 minutes at 200 mm Hg. Generally, the edema formation was more pronounced after rapid than after slow onset of compression. The data in this study also indicate that intraneural edema might be more easily formed in nerve roots than in peripheral nerves after compression injury. PMID:2546258

  20. Extending the Convergence of Canonical WNT Signaling and Classic Cancer Pathways for Treatment of Malignant Peripheral Nerve Sheath Tumors

    PubMed Central

    Reilly, Karlyne M.

    2016-01-01

    Summary Malignant peripheral nerve sheath tumors (MPNSTs) are incurable tumors of the Schwann cell lineage that progress unpredictably from benign plexiform neurofibromas (PNFs). In this issue of Cancer Discovery Watson and colleagues (1) use an insertional mutagenesis screen combined with network analysis to identify the canonical Wnt signaling pathway as an important potential biomarker of tumor progression and target for combination therapy in MPNSTs. PMID:23749527

  1. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development

    PubMed Central

    Nan, Wenbin; Wang, Xiaomin; Bi, Yurong

    2014-01-01

    The second messenger cyclic guanosine 3′,5′-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCFTIR1 ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation. PMID:24591051

  2. Development of marker genes for jasmonic acid signaling in shoots and roots of wheat.

    PubMed

    Liu, Hongwei; Carvalhais, Lilia Costa; Kazan, Kemal; Schenk, Peer M

    2016-05-01

    The jasmonic acid (JA) signaling pathway plays key roles in a diverse array of plant development, reproduction, and responses to biotic and abiotic stresses. Most of our understanding of the JA signaling pathway derives from the dicot model plant Arabidopsis thaliana, while corresponding knowledge in wheat is somewhat limited. In this study, the expression of 41 genes implicated in the JA signaling pathway has been assessed on 10 day-old bread wheat seedlings, 24 h, 48 h, and 72 h after methyl-jasmonate (MeJA) treatment using quantitative real-time PCR. The examined genes have been previously reported to be involved in JA biosynthesis and catabolism, JA perception and signaling, and pathogen defense in wheat shoots and roots. This study provides evidence to suggest that the effect of MeJA treatment is more prominent in shoots than roots of wheat seedlings, and substantial regulation of the JA pathway-dependent defense genes occurs at 72 h after MeJA treatment. Results show that the expression of 22 genes was significantly affected by MeJA treatment in wheat shoots. However, only PR1.1 and PR3 were significantly differentially expressed in wheat roots, both at 24 h post-MeJA treatment, with other genes showing large variation in their gene expression in roots. While providing marker genes on JA signaling in wheat, future work may focus on elucidating the regulatory function of JA-modulated transcription factors, some of which have well-studied potential orthologs in Arabidopsis. PMID:27115051

  3. Characterization of thoracic motor and sensory neurons and spinal nerve roots in canine degenerative myelopathy, a potential disease model of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Brandie R; Coates, Joan R; Johnson, Gayle C; Shelton, G Diane; Katz, Martin L

    2014-04-01

    Canine degenerative myelopathy (DM) is a progressive, adult-onset, multisystem degenerative disease with many features in common with amyotrophic lateral sclerosis (ALS). As with some forms of ALS, DM is associated with mutations in superoxide dismutase 1 (SOD1). Clinical signs include general proprioceptive ataxia and spastic upper motor neuron paresis in pelvic limbs, which progress to flaccid tetraplegia and dysphagia. The purpose of this study was to characterize DM as a potential disease model for ALS. We previously reported that intercostal muscle atrophy develops in dogs with advanced-stage DM. To determine whether other components of the thoracic motor unit (MU) also demonstrated morphological changes consistent with dysfunction, histopathologic and morphometric analyses were conducted on thoracic spinal motor neurons (MNs) and dorsal root ganglia (DRG) and in motor and sensory nerve root axons from DM-affected boxers and Pembroke Welsh corgis (PWCs). No alterations in MNs or motor root axons were observed in either breed. However, advanced-stage PWCs exhibited significant losses of sensory root axons, and numerous DRG sensory neurons displayed evidence of degeneration. These results indicate that intercostal muscle atrophy in DM is not preceded by physical loss of the motor neurons innervating these muscles, nor of their axons. Axonal loss in thoracic sensory roots and sensory neuron death suggest that sensory involvement may play an important role in DM disease progression. Further analysis of the mechanisms responsible for these morphological findings would aid in the development of therapeutic intervention for DM and some forms of ALS. PMID:24375814

  4. L5 spinal nerve axotomy induces sensitization of cutaneous L4 Aβ-nociceptive dorsal root ganglion neurons in the rat in vivo.

    PubMed

    Djouhri, Laiche

    2016-06-15

    Partial nerve injury often leads to peripheral neuropathic pain (PNP), a major health problem that lacks effective drug treatment. PNP is characterized by ongoing/spontaneous pain, and hypersensitivity to noxious (hyperalgesia) and innocuous (allodynia) stimuli. Preclinical studies using the L5 spinal nerve ligation/axotomy (SNL/SNA) model of PNP suggest that this type of chronic pain results partly from sensitization of ipsilateral L4C-and Aδ-fiber nociceptive dorsal root ganglion (DRG) neurons, but whether L4 β-nociceptors, which constitute a substantial group of DRG neurons, also become sensitized remains unanswered. To address this issue, intracellular recordings from somata of cutaneous Aβ-nociceptors (classified according to their dorsal root conduction velocities (>6.5m/s), and physiologically based on their responses to noxious (but not innocuous) mechanical stimuli) were made from L4-DRGs in normal (control) rats and in rats seven days after L5 SNA in vivo. Compared with control, cutaneous L4 Aβ-nociceptive DRG neurons in SNA rats (that developed mechanical hypersensitivity) exhibited sensitization indicated by: a) decreased mean mechanical threshold (from 57.8±7.1 to 10.3±1.7mN), b) decreased mean dorsal root electrical threshold (from 11.4±0.7 to 4.3±0.4V), c) increased mean response to a suprathreshold mechanical stimulus (from 18.5±1.8 to 34±3.7spikes/sec) and d) an obvious, but non-significant, increase in the incidence of ongoing/spontaneous activity (from 3% to 18%). These findings suggest that cutaneous L4 Aβ-nociceptors also become sensitized after L5 SNA, and that sensitization of this subclass of A-fiber nociceptors may contribute both directly and indirectly to nerve injury-induced PNP. PMID:27173166

  5. Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism.

    PubMed

    Löfke, Christian; Zwiewka, Marta; Heilmann, Ingo; Van Montagu, Marc C E; Teichmann, Thomas; Friml, Jirí

    2013-02-26

    Gravitropic bending of plant organs is mediated by an asymmetric signaling of the plant hormone auxin between the upper and lower side of the respective organ. Here, we show that also another plant hormone, gibberellic acid (GA), shows asymmetric action during gravitropic responses. Immunodetection using an antibody against GA and monitoring GA signaling output by downstream degradation of DELLA proteins revealed an asymmetric GA distribution and response with the maximum at the lower side of gravistimulated roots. Genetic or pharmacological manipulation of GA levels or response affects gravity-mediated auxin redistribution and root bending response. The higher GA levels at the lower side of the root correlate with increased amounts of PIN-FORMED2 (PIN2) auxin transporter at the plasma membrane. The observed increase in PIN2 stability is caused by a specific GA effect on trafficking of PIN proteins to lytic vacuoles that presumably occurs downstream of brefeldin A-sensitive endosomes. Our results suggest that asymmetric auxin distribution instructive for gravity-induced differential growth is consolidated by the asymmetric action of GA that stabilizes the PIN-dependent auxin stream along the lower side of gravistimulated roots. PMID:23391733

  6. Impacts of Rho kinase inhibitor Fasudil on Rho/ROCK signaling pathway in rabbits with optic nerve injury

    PubMed Central

    Yu, Jianglong; Lin, Lin; Luan, Xinping; Jing, Xiepan; Maierab

    2015-01-01

    Objective: The aim of this study was to study the impacts of Rho kinase inhibitor Fasudil on expressions of Rho/ROCK signaling pathway associated genes in rabbits with optic nerve injury (ONI), and to explore the therapeutic mechanisms towards ONI. Methods: The rabbit ONI model was established, then the rabbits were divided into model group (treated with saline), control group (treated with dexamethasone, Dex), and intervention group (treated with Fasudil, Fas). The eyeball and optic nerve were sampled at 3, 7, 14 and 21 days after injury. The morphological changes of retina and optic nerve were observed. The expressions of RhoA, Caspase-3, Rock 2 and Nogo-A gene were determined by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Results: At different time after injury, there were significant differences of RhoA, Caspase-3, Rock 2 and Nogo-A gene expression among three groups (P < 0.05). Conclusions: After ONI, Fas can decrease the expression of Caspase-3 gene, and down-regulate the expressions of Nogo-A and Rock 2 gene. Therefore, it can treat ONI through affecting the Rho/ROCK signaling pathway. PMID:26823796

  7. Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation.

    PubMed

    Vragović, Kristina; Sela, Ayala; Friedlander-Shani, Lilach; Fridman, Yulia; Hacham, Yael; Holland, Neta; Bartom, Elizabeth; Mockler, Todd C; Savaldi-Goldstein, Sigal

    2015-01-20

    The mechanisms ensuring balanced growth remain a critical question in developmental biology. In plants, this balance relies on spatiotemporal integration of hormonal signaling pathways, but the understanding of the precise contribution of each hormone is just beginning to take form. Brassinosteroid (BR) hormone is shown here to have opposing effects on root meristem size, depending on its site of action. BR is demonstrated to both delay and promote onset of stem cell daughter differentiation, when acting in the outer tissue of the root meristem, the epidermis, and the innermost tissue, the stele, respectively. To understand the molecular basis of this phenomenon, a comprehensive spatiotemporal translatome mapping of Arabidopsis roots was performed. Analyses of wild type and mutants featuring different distributions of BR revealed autonomous, tissue-specific gene responses to BR, implying its contrasting tissue-dependent impact on growth. BR-induced genes were primarily detected in epidermal cells of the basal meristem zone and were enriched by auxin-related genes. In contrast, repressed BR genes prevailed in the stele of the apical meristem zone. Furthermore, auxin was found to mediate the growth-promoting impact of BR signaling originating in the epidermis, whereas BR signaling in the stele buffered this effect. We propose that context-specific BR activity and responses are oppositely interpreted at the organ level, ensuring coherent growth. PMID:25561530

  8. Odontoblast β-catenin signaling regulates fenestration of mouse Hertwig's epithelial root sheath.

    PubMed

    Zhang, Ran; Teng, Yan; Zhu, Liang; Lin, JingTing; Yang, Xiao; Yang, Guan; Li, TieJun

    2015-09-01

    The interaction between Hertwig's epithelial root sheath (HERS) and the adjacent mesenchyme is vitally important in mouse tooth root development. We previously generated odontoblast-specific Ctnnb1 (encoding β-catenin) deletion mice, and demonstrated that odontoblast β-catenin signaling regulates odontoblast proliferation and differentiation. However, the role of odontoblast β-catenin signaling in regulation of HERS behavior has not been fully investigated. Here, using the same odontoblast- specific Ctnnb1 deletion mice, we found that ablation of β-catenin signaling in odontoblasts led to aberrant HERS formation. Mechanistically, odontoblast-specific Ctnnb1 deletion resulted in elevated bone morphogenetic protein 7 (Bmp7) expression and reduced expression of noggin and follistatin, both of which encode extracellular inhibitors of BMPs. Furthermore, the levels of phosphorylated Smad1/5/8 were increased in HERS cells. In vitro tissue culture confirmed that BMP7 treatment disrupted the HERS structure. Taken together, we demonstrated that odontoblast β-catenin signaling may act through regulation of BMP signaling to maintain the integrity of HERS cells. PMID:26208822

  9. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip

    PubMed Central

    Medici, Anna; Marshall-Colon, Amy; Ronzier, Elsa; Szponarski, Wojciech; Wang, Rongchen; Gojon, Alain; Crawford, Nigel M; Ruffel, Sandrine; Coruzzi, Gloria M; Krouk, Gabriel

    2015-01-01

    Nitrogen and phosphorus are among the most widely used fertilizers worldwide. Nitrate (NO3−) and phosphate (PO43−) are also signaling molecules whose respective transduction pathways are being intensively studied. However, plants are continuously challenged with combined nutritional deficiencies, yet very little is known about how these signaling pathways are integrated. Here we report the identification of a highly NO3−-inducible NRT1.1-controlled GARP transcription factor, HRS1, document its genome-wide transcriptional targets, and validate its cis-regulatory-elements. We demonstrate that this transcription factor and a close homolog repress primary root growth in response to P deficiency conditions, but only when NO3− is present. This system defines a molecular logic gate integrating P and N signals. We propose that NO3− and P signaling converge via double transcriptional and post-transcriptional control of the same protein, HRS1 PMID:25723764

  10. Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis.

    PubMed

    Ortiz-Castro, Randy; Pelagio-Flores, Ramón; Méndez-Bravo, Alfonso; Ruiz-Herrera, León Francisco; Campos-García, Jesús; López-Bucio, José

    2014-04-01

    Pyocyanin acts as a virulence factor in Pseudomonas aeruginosa, a plant and animal pathogen. In this study, we evaluated the effect of pyocyanin on growth and development of Arabidopsis seedlings. Root inoculation with P. aeruginosa PAO1 strain inhibited primary root growth in wild-type (WT) Arabidopsis seedlings. In contrast, single lasI- and double rhlI-/lasI- mutants of P. aeruginosa defective in pyocyanin production showed decreased root growth inhibition concomitant with an increased phytostimulation. Treatment with pyocyanin modulates root system architecture, inhibiting primary root growth and promoting lateral root and root hair formation without affecting meristem viability or causing cell death. These effects correlated with altered proportions of hydrogen peroxide and superoxide in root tips and with an inhibition of cell division and elongation. Mutant analyses showed that pyocyanin modulation of root growth was likely independent of auxin, cytokinin, and abscisic acid but required ethylene signaling because the Arabidopsis etr1-1, ein2-1, and ein3-1 ethylene-related mutants were less sensitive to pyocyanin-induced root stoppage and reactive oxygen species (ROS) distribution. Our findings suggest that pyocyanin is an important factor modulating the interplay between ROS production and root system architecture by an ethylene-dependent signaling. PMID:24224532

  11. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

    PubMed

    Kobayashi, Takanori; Itai, Reiko Nakanishi; Senoura, Takeshi; Oikawa, Takaya; Ishimaru, Yasuhiro; Ueda, Minoru; Nakanishi, Hiromi; Nishizawa, Naoko K

    2016-07-01

    Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs. PMID:27143046

  12. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. PMID:26631478

  13. Navigated Transtubular Extraforaminal Decompression of the L5 Nerve Root at the Lumbosacral Junction: Clinical Data, Radiographic Features, and Outcome Analysis.

    PubMed

    Stavrinou, P; Härtl, R; Krischek, B; Kabbasch, C; Mpotsaris, A; Goldbrunner, R

    2016-01-01

    Purpose. Extraforaminal decompression of the L5 nerve root remains a challenge due to anatomic constraints, severe level-degeneration, and variable anatomy. The purpose of this study is to introduce the use of navigation for transmuscular transtubular decompression at the L5/S1 level and report on radiological features and clinical outcome. Methods. Ten patients who underwent a navigation-assisted extraforaminal decompression of the L5 nerve root were retrospectively analyzed. Results. Six patients had an extraforaminal herniated disc and four had a foraminal stenosis. The distance between the L5 transverse process and the para-articular notch of the sacrum was 12.1 mm in patients with a herniated disc and 8.1 mm in those with a foraminal stenosis. One patient had an early recurrence and another developed dysesthesia that resolved after 3 months. There was a significant improvement from preoperative to postoperative NRS with the results being sustainable at follow-up. ODI was also significantly improved after surgery. According to the Macnab grading scale, excellent or good outcomes were obtained in 8 patients and fair ones in 2. Conclusions. The navigated transmuscular transtubular approach to the lumbosacral junction allows for optimal placement of the retractor and excellent orientation particularly for foraminal stenosis or in cases of complex anatomy. PMID:27127783

  14. Navigated Transtubular Extraforaminal Decompression of the L5 Nerve Root at the Lumbosacral Junction: Clinical Data, Radiographic Features, and Outcome Analysis

    PubMed Central

    Stavrinou, P.; Härtl, R.; Krischek, B.; Kabbasch, C.; Mpotsaris, A.; Goldbrunner, R.

    2016-01-01

    Purpose. Extraforaminal decompression of the L5 nerve root remains a challenge due to anatomic constraints, severe level-degeneration, and variable anatomy. The purpose of this study is to introduce the use of navigation for transmuscular transtubular decompression at the L5/S1 level and report on radiological features and clinical outcome. Methods. Ten patients who underwent a navigation-assisted extraforaminal decompression of the L5 nerve root were retrospectively analyzed. Results. Six patients had an extraforaminal herniated disc and four had a foraminal stenosis. The distance between the L5 transverse process and the para-articular notch of the sacrum was 12.1 mm in patients with a herniated disc and 8.1 mm in those with a foraminal stenosis. One patient had an early recurrence and another developed dysesthesia that resolved after 3 months. There was a significant improvement from preoperative to postoperative NRS with the results being sustainable at follow-up. ODI was also significantly improved after surgery. According to the Macnab grading scale, excellent or good outcomes were obtained in 8 patients and fair ones in 2. Conclusions. The navigated transmuscular transtubular approach to the lumbosacral junction allows for optimal placement of the retractor and excellent orientation particularly for foraminal stenosis or in cases of complex anatomy. PMID:27127783

  15. Smad4-Shh-Nfic Signaling Cascade–Mediated Epithelial-Mesenchymal Interaction Is Crucial in Regulating Tooth Root Development

    PubMed Central

    Huang, Xiaofeng; Xu, Xun; Bringas, Pablo; Hung, Yee Ping; Chai, Yang

    2010-01-01

    Transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) signaling is crucial for regulating epithelial-mesenchymal interaction during organogenesis, and the canonical Smad pathway–mediated TGF-β/BMP signaling plays important roles during development and disease. During tooth development, dental epithelial cells, known as Hertwig's epithelial root sheath (HERS), participate in root formation following crown development. However, the functional significance of HERS in regulating root development remains unknown. In this study we investigated the signaling mechanism of Smad4, the common Smad for TGF-β/BMP signaling, in HERS in regulating root development. Tissue-specific inactivation of Smad4 in HERS results in abnormal enamel and dentin formation in K14-Cre;Smad4fl/fl mice. HERS enlarges but cannot elongate to guide root development without Smad4. At the molecular level, Smad4-mediated TGF-β/BMP signaling is required for Shh expression in HERS and Nfic (nuclear factor Ic) expression in the cranial neural crest (CNC)-derived dental mesenchyme. Nfic is crucial for root development, and loss of Nfic results in a CNC-derived dentin defect similar to the one of K14-Cre;Smad4fl/fl mice. Significantly, we show that ectopic Shh induces Nfic expression in dental mesenchyme and partially rescues root development in K14-Cre;Smad4fl/fl mice. Taken together, our study has revealed an important signaling mechanism in which TGF-β/BMP signaling relies on a Smad-dependent mechanism in regulating Nfic expression via Shh signaling to control root development. The interaction between HERS and the CNC-derived dental mesenchyme may guide the size, shape, and number of tooth roots. © 2010 American Society for Bone and Mineral Research. PMID:19888897

  16. The kinetics of root gravitropism in PIN mutants suggest redundancy in the signal transduction pathway

    NASA Astrophysics Data System (ADS)

    Wolverton, Chris

    plays a role in efflux to the columella. Pin4 mutants showed no deficiencies in gravitropism, in fact responding at a greater rate than wild-type roots over the first hour (22 deg h-1 ). PIN7 has been localized to the vascular tissue of the elongation zone and to the central columella. Like pin4 mutants, pin7 mutants did not show a significantly reduced gravitropic response relative to wild-type roots. Interestingly, roots of pin3pin7 double mutants showed curvature and growth rates similar to pin7 single mutants and wild-type roots, suggesting a genetic interaction between PIN3 and PIN7 in this pathway. These results suggest a significant degree of redundancy in the regulation of directional auxin transport and perhaps in the gravity signaling pathway in roots in general.

  17. Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury

    PubMed Central

    2009-01-01

    Background Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth. Since infants are capable of nociception from before birth and display both acute and chronic inflammatory pain behaviour from an early neonatal age, it appears that the mechanisms underlying neuropathic pain are differentially regulated over a prolonged postnatal period. Results We have performed a microarray analysis of the rat L4/L5 dorsal root ganglia (DRG), 7 days post spared nerve injury, a model of neuropathic pain. Genes that are regulated in adult rats displaying neuropathic behaviour were compared to those regulated in young rats (10 days old) that did not show the same neuropathic behaviour. The results show a set of genes, differentially regulated in the adult DRG, that are principally involved in immune system modulation. A functional consequence of this different immune response to injury is that resident macrophages cluster around the large A sensory neuron bodies in the adult DRG seven days post injury, whereas the macrophages in young DRG remain scattered evenly throughout the ganglion, as in controls. Conclusions The results show, for the first time, a major difference in the neuroimmune response to nerve injury in the dorsal root ganglion of young and adult rats. Differential analysis reveals a new set of immune related genes in the ganglia, that are differentially regulated in adult neuropathic pain, and that are consistent with the selective activation of macrophages around adult, but not young large A sensory neurons post injury. These

  18. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism

    PubMed Central

    Baster, Paweł; Robert, Stéphanie; Kleine-Vehn, Jürgen; Vanneste, Steffen; Kania, Urszula; Grunewald, Wim; De Rybel, Bert; Beeckman, Tom; Friml, Jiří

    2013-01-01

    The distribution of the phytohormone auxin regulates many aspects of plant development including growth response to gravity. Gravitropic root curvature involves coordinated and asymmetric cell elongation between the lower and upper side of the root, mediated by differential cellular auxin levels. The asymmetry in the auxin distribution is established and maintained by a spatio-temporal regulation of the PIN-FORMED (PIN) auxin transporter activity. We provide novel insights into the complex regulation of PIN abundance and activity during root gravitropism. We show that PIN2 turnover is differentially regulated on the upper and lower side of gravistimulated roots by distinct but partially overlapping auxin feedback mechanisms. In addition to regulating transcription and clathrin-mediated internalization, auxin also controls PIN abundance at the plasma membrane by promoting their vacuolar targeting and degradation. This effect of elevated auxin levels requires the activity of SKP-Cullin-F-boxTIR1/AFB (SCFTIR1/AFB)-dependent pathway. Importantly, also suboptimal auxin levels mediate PIN degradation utilizing the same signalling pathway. These feedback mechanisms are functionally important during gravitropic response and ensure fine-tuning of auxin fluxes for maintaining as well as terminating asymmetric growth. PMID:23211744

  19. The contribution of SERF1 to root-to-shoot signaling during salinity stress in rice

    PubMed Central

    Schmidt, Romy; Caldana, Camila; Mueller-Roeber, Bernd; Schippers, Jos HM

    2014-01-01

    Stress perception and communication play important roles in the adaptation of plants to changing environmental conditions. Plant roots are the first organs to detect changes in the soil water potential induced by salt stress. In the presence of salinity stress, root-to-shoot communication occurs to adjust the growth of the whole plant. So far, the phytohormone abscisic acid (ABA), hydraulic signals and reactive oxygen species (ROS) have been proposed to mediate this communication under salt stress. Recently, we identified the rice transcription factor SALT-RESPONSIVE ERF1 (SERF1), which regulates a ROS-dependent transcriptional cascade in roots required for salinity tolerance. Upon salt stress, SERF1 knockout mutant plants show an increased leaf temperature as compared with wild type. As this occurs within the first 20 min of salt stress, we here evaluated the involvement of SERF1 in the perception of salt stress in the shoot. By metabolic profiling and expression analysis we show that the action of SERF1 in signal communication to the shoot is independent from ABA, but does affect the accumulation of ROS-related metabolites and transcripts under short-term salt stress. PMID:24451326

  20. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord.

    PubMed

    McCarthy, Carly J; Tomasella, Eugenia; Malet, Mariana; Seroogy, Kim B; Hökfelt, Tomas; Villar, Marcelo J; Gebhart, G F; Brumovsky, Pablo R

    2016-05-01

    Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity. PMID:25749859

  1. Three important components in the regeneration of the cavernous nerve: brain-derived neurotrophic factor, vascular endothelial growth factor and the JAK/STAT signaling pathway.

    PubMed

    Zhang, Hai-Yang; Jin, Xun-Bo; Lue, Tom F

    2011-03-01

    Retroperitoneal operations, such as radical prostatectomy, often damage the cavernous nerve, resulting in a high incidence of erectile dysfunction. Although improved nerve-sparing techniques have reduced the incidence of nerve injury, and the administration of phosphodiesterase type 5 inhibitors has revolutionized the treatment of erectile dysfunction, this problem remains a considerable challenge. In recent years, scientists have focused on brain-derived neurotrophic factor and vascular endothelial growth factor in the treatment of cavernous nerve injury in rat models. Results showed that both compounds were capable of enhancing the regeneration of the cavernous nerve and that activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway played a major role in the process. PMID:21170078

  2. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers. PMID:21410712

  3. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  4. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of

  5. Nerve injury-induced changes in Homer/glutamate receptor signaling contribute to the development and maintenance of neuropathic pain.

    PubMed

    Obara, Ilona; Goulding, Scott P; Hu, Jia-Hua; Klugmann, Matthias; Worley, Paul F; Szumlinski, Karen K

    2013-10-01

    While group 1 metabotropic glutamate receptors (mGluRs) and ionotropic N-methyl-d-aspartate (NMDA) receptors regulate nociception, the precise molecular mechanism(s) contributing to glutamate signaling in chronic pain remain unclear. Here we not only confirmed the key involvement of Homer proteins in neuropathic pain, but also distinguished between the functional roles for different Homer family members and isoforms. Chronic constriction injury (CCI) of the sciatic nerve induced long-lasting, time-dependent increases in the postsynaptic density expression of the constitutively expressed (CC) isoforms Homer1b/c and/or Homer2a/b in the spinal dorsal horn and supraspinal structures involved in nociception (prefrontal cortex, thalamus), that co-occurred with increases in their associated mGluRs, NR2 subunits of the NMDA receptor, and the activation of downstream kinases. Virus-mediated overexpression of Homer1c and Homer2b after spinal (intrathecal) virus injection exacerbated CCI-induced mechanical and cold hypersensitivity, however, Homer1 and Homer2 gene knockout (KO) mice displayed no changes in their neuropathic phenotype. In contrast, overexpression of the immediate early gene (IEG) Homer1a isoform reduced, while KO of Homer1a gene potentiated neuropathic pain hypersensitivity. Thus, nerve injury-induced increases in CC-Homers expression promote pain in pathological states, but IEG-Homer induction protects against both the development and maintenance of neuropathy. Additionally, exacerbated pain hypersensitivity in transgenic mice with reduced Homer binding to mGluR5 supports also an inhibitory role for Homer interactions with mGluR5 in mediating neuropathy. Such data indicate that nerve injury-induced changes in glutamate receptor/Homer signaling contribute in dynamic but distinct ways to neuropathic pain processing, which has relevance for the etiology of chronic pain symptoms and its treatment. PMID:23685007

  6. Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve

    PubMed Central

    2013-01-01

    Background Current research implicates interleukin (IL)-6 as a key component of the nervous-system response to injury with various effects. Methods We used unilateral chronic constriction injury (CCI) of rat sciatic nerve as a model for neuropathic pain. Immunofluorescence, ELISA, western blotting and in situ hybridization were used to investigate bilateral changes in IL-6 protein and mRNA in both lumbar (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) following CCI. The operated (CCI) and sham-operated (sham) rats were assessed after 1, 3, 7, and 14 days. Withdrawal thresholds for mechanical hyperalgesia and latencies for thermal hyperalgesia were measured in both ipsilateral and contralateral hind and fore paws. Results The ipsilateral hind paws of all CCI rats displayed a decreased threshold of mechanical hyperalgesia and withdrawal latency of thermal hyperalgesia, while the contralateral hind and fore paws of both sides exhibited no significant changes in mechanical or thermal sensitivity. No significant behavioral changes were found in the hind and fore paws on either side of the sham rats, except for thermal hypersensitivity, which was present bilaterally at 3 days. Unilateral CCI of the sciatic nerve induced a bilateral increase in IL-6 immunostaining in the neuronal bodies and satellite glial cells (SGC) surrounding neurons of both lumbar and cervical DRG, compared with those of naive control rats. This bilateral increase in IL-6 protein levels was confirmed by ELISA and western blotting. More intense staining for IL-6 mRNA was detected in lumbar and cervical DRG from both sides of rats following CCI. The DRG removed from sham rats displayed a similar pattern of staining for IL-6 protein and mRNA as found in naive DRG, but there was a higher staining intensity in SGC. Conclusions Bilateral elevation of IL-6 protein and mRNA is not limited to DRG homonymous to the injured nerve, but also extended to DRG that are heteronymous to the injured nerve. The

  7. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification.

    PubMed

    Kramer, Ina; Sigrist, Markus; de Nooij, Joriene C; Taniuchi, Ichiro; Jessell, Thomas M; Arber, Silvia

    2006-02-01

    Subpopulations of sensory neurons in the dorsal root ganglion (DRG) can be characterized on the basis of sensory modalities that convey distinct peripheral stimuli, but the molecular mechanisms that underlie sensory neuronal diversification remain unclear. Here, we have used genetic manipulations in the mouse embryo to examine how Runx transcription factor signaling controls the acquisition of distinct DRG neuronal subtype identities. Runx3 acts to diversify an Ngn1-independent neuronal cohort by promoting the differentiation of proprioceptive sensory neurons through erosion of TrkB expression in prospective TrkC+ sensory neurons. In contrast, Runx1 controls neuronal diversification within Ngn1-dependent TrkA+ neurons by repression of neuropeptide CGRP expression and controlling the fine pattern of laminar termination in the dorsal spinal cord. Together, our findings suggest that Runx transcription factor signaling plays a key role in sensory neuron diversification. PMID:16446142

  8. GENETIC MODIFICATION OF GIBBERELLIC ACID SIGNALING TO PROMOTE CARBON SEQUESTRATION IN TREE ROOTS AND STEMS

    SciTech Connect

    Busov, Victor

    2013-03-05

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula - Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations. We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology

  9. Auxin and the integration of environmental signals into plant root development

    PubMed Central

    Kazan, Kemal

    2013-01-01

    Background Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. Scope This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. Conclusions The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments. PMID:24136877

  10. Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh.

    PubMed

    Rock, Christopher D; Sun, Xin

    2005-09-01

    Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (beta-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-D: , but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-D: , but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed. PMID:15889272

  11. Validity of the vertical tube-shift method in determining the relationship between the mandibular third molar roots and the inferior alveolar nerve canal

    PubMed Central

    2015-01-01

    Objectives To assess the validity of the vertical tube-shift method using intraoral periapical radiography (IOPAR) for determining the relationship between the mandibular third molar roots and the inferior alveolar nerve (IAN) canal in comparison with cone-beam computed tomography (CBCT). Materials and Methods Fifty impacted mandibular third molars were analyzed using the IOPAR vertical tube-shift method and CBCT. The relationship of the IAN canal to the impacted mandibular third molar was recorded as buccal, lingual or in line with the apex and was compared with CBCT findings. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the vertical tube-shift method in depicting the relationship (buccal/lingual/in line with the apex) of the IAN canal to the third molar root apex was calculated. Results The sensitivity and specificity PPV and NPV of the IOPAR vertical tube-shift technique was found to be highest for a lingual relationship (100%) followed by buccal (94.4%, 92.3%, 97.1%, and 85.7%) and in line with the apex relationship (88.9%, 95.0%, 80.0%, and 97.4%) of the IAN canal with the third molar root apex, respectively. A statistically significant association was observed between the IOPAR vertical tube-shift method and the CBCT with a P-value <0.01. Conclusion The vertical tube-shift method can be used as an effective diagnostic tool in assessing the relationship of the IAN canal to the third molar root apex with high sensitivity, specificity, PPV, and NPV. PMID:25922817

  12. Expression and transport of Angiotensin II AT1 receptors in spinal cord, dorsal root ganglia and sciatic nerve of the rat

    PubMed Central

    Pavel, Jaroslav; Tang, Hui; Brimijoin, Stephen; Moughamian, Armen; Nishioku, Tsuyoshi; Benicky, Julius; Saavedra, Juan M

    2009-01-01

    To clarify the role of Angiotensin II in the regulation of peripheral sensory and motor systems, we initiated a study of the expression, localization and transport of Angiotensin II receptor types in the rat sciatic nerve pathway, including L4–L5 spinal cord segments, the corresponding dorsal root ganglia (DRGs) and the sciatic nerve. We used quantitative autoradiography for AT1 and AT2 receptors, and in situ hybridization to detect AT1A, AT1B and AT2 mRNAs. We found substantial expression and discrete localization of Angiotensin II AT1 receptors, with much higher numbers in the grey than in the white matter. A very high AT1 receptor expression was detected in the superficial dorsal horns and in neuronal clusters of the DRGs. Expression of AT1A mRNA was significantly higher than that of AT1B. AT1 receptor binding and AT1A and AT1B mRNAs were especially prominent in ventral horn motor neurons, and in the DRG neuronal cells. Unilateral dorsal rhizotomy significantly reduced AT1 receptor binding in the ipsilateral side of the superficial dorsal horn, indicating that a substantial number of dorsal horn AT1 receptors have their origin in the DRGs. After ligation of the sciatic nerve, there was a high accumulation of AT1 receptors proximal to the ligature, a demonstration of anterograde receptor transport. We found inconsistent levels of AT2 receptor binding and mRNA. Our results suggest multiple roles of Angiotensin II AT1 receptors in the regulation of sensory and motor functions. PMID:18976642

  13. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.

    PubMed

    Zhang, Yunhong; Yin, Heng; Zhao, Xiaoming; Wang, Wenxia; Du, Yuguang; He, Ailing; Sun, Kegang

    2014-11-26

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg/L) induced the expression of auxin-related gene (OsYUCCA1, OsYUCCA5, OsIAA11 and OsPIN1) in rice (Oryza sativa L.) tissues to accelerate auxin biosynthesis and transport, and reduced indole-3-acetic acid (IAA) oxidase activity in rice roots. These changes resulted in the increase of 37.8% in IAA concentration in rice roots, thereby inducing the expression of root development-related genes, promoting root growth in a dose-dependent manner, which were inhibited by auxin transport inhibitor 2,3,5-triiodo benzoic acid (TIBA) and calcium-chelating agent ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA). AOS also induced calcium signaling generation in rice roots. Those results indicated that auxin mediated AOS regulation of root development, and calcium signaling may act mainly in the upstream of auxin in the regulation of AOS on rice root development. PMID:25256506

  14. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches

    PubMed Central

    Remans, Tony; Nacry, Philippe; Pervent, Marjorie; Filleur, Sophie; Diatloff, Eugene; Mounier, Emmanuelle; Tillard, Pascal; Forde, Brian G.; Gojon, Alain

    2006-01-01

    Localized proliferation of lateral roots in NO3−-rich patches is a striking example of the nutrient-induced plasticity of root development. In Arabidopsis, NO3− stimulation of lateral root elongation is apparently under the control of a NO3−-signaling pathway involving the ANR1 transcription factor. ANR1 is thought to transduce the NO3− signal internally, but the upstream NO3− sensing system is unknown. Here, we show that mutants of the NRT1.1 nitrate transporter display a strongly decreased root colonization of NO3−-rich patches, resulting from reduced lateral root elongation. This phenotype is not due to lower specific NO3− uptake activity in the mutants and is not suppressed when the NO3−-rich patch is supplemented with an alternative N source but is associated with dramatically decreased ANR1 expression. These results show that NRT1.1 promotes localized root proliferation independently of any nutritional effect and indicate a role in the ANR1-dependent NO3− signaling pathway, either as a NO3− sensor or as a facilitator of NO3− influx into NO3−-sensing cells. Consistent with this model, the NRT1.1 and ANR1 promoters both directed reporter gene expression in root primordia and root tips. The inability of NRT1.1-deficient mutants to promote increased lateral root proliferation in the NO3−-rich zone impairs the efficient acquisition of NO3− and leads to slower plant growth. We conclude that NRT1.1, which is localized at the forefront of soil exploration by the roots, is a key component of the NO3−-sensing system that enables the plant to detect and exploit NO3−-rich soil patches. PMID:17148611

  15. Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling.

    PubMed

    Pelagio-Flores, Ramón; Ruiz-Herrera, León Francisco; López-Bucio, José

    2016-09-01

    Serotonin (5-hydroxytryptamine) is a bioactive indoleamine with neurotransmitter function in vertebrates, which represents an emerging signaling molecule in plants, playing key roles in the development and defense. In this study, the role of reactive oxygen species (ROS) and jasmonic acid (JA)-ethylene (Et) signaling in root developmental alterations induced by serotonin was investigated. An Arabidopsis thaliana mutant defective at the RADICAL-INDUCED CELL DEATH1 (RCD1) locus was resistant to paraquat-induced ROS accumulation in primary roots and showed decreased inhibition or root growth in response to serotonin. A suite of JA- and Et-related mutants including coronatine insensitive1, jasmonic acid resistant1 (jar1), etr1, ein2 and ein3 showed tolerance to serotonin in the inhibition of primary root growth and ROS redistribution within the root tip when compared with wild-type (WT) seedlings. Competence assays between serotonin and AgNO3 , a well-known blocker of Et action, showed that primary root growth in medium supplemented with serotonin was normalized by AgNO3 , whereas roots of eto3, an Et overproducer mutant, were oversensitive to serotonin. Comparison of ROS levels in WT, etr1, jar1 and rcd1 primary root tips using the ROS-specific probe 2',7'-dichlorofluorescein diacetate and confocal imaging showed that serotonin inhibition of primary root growth likely occurs independently of its conversion into melatonin. Our results provide compelling evidence that serotonin affects ROS distribution in roots, involving RCD1 and components of the JA-Et signaling pathways. PMID:26864878

  16. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons.

    PubMed

    Cohen, Matthew R; Johnson, William M; Pilat, Jennifer M; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E; Moiseenkova-Bell, Vera Y

    2015-12-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca(2+) signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca(2+) signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  17. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons

    PubMed Central

    Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.

    2015-01-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  18. Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T

    PubMed Central

    Ludewig, Uwe

    2013-01-01

    The bacterial endophyte Herbaspirillum frisingense GSF30T is a colonizer of several grasses grown in temperate climates, including the highly nitrogen-efficient perennial energy grass Miscanthus. Inoculation of Miscanthus sinensis seedlings with H. frisingense promoted root and shoot growth but had only a minor impact on nutrient concentrations. The bacterium affected the root architecture and increased fine-root structures. Although H. frisingense has the genetic requirements to fix nitrogen, only minor changes in nitrogen concentrations were observed. Herbaspirillum agglomerates were identified primarily in the root apoplast but also in the shoots. The short-term (3h) and long-term (3 weeks) transcriptomic responses of the plant to bacterial inoculation revealed that H. frisingense induced rapid changes in plant hormone signalling, most prominent in jasmonate signalling. Ethylene signalling pathways were also affected and persisted after 3 weeks in the root. Growth stimulation of the root by the ethylene precursor 1-aminocyclopropane 1-carboxylic acid was dose dependent and was affected by H. frisingense inoculation. Minor changes in the proteome were identified after 3 weeks. This study suggests that H. frisingense improves plant growth by modulating plant hormone signalling pathways and provides a framework to understand the beneficial effects of diazotrophic plant-growth-promoting bacteria, such as H. frisingense, on the biomass grass Miscanthus. PMID:24043849

  19. Nerve Growth Factor Mediates a Switch in Intracellular Signaling for PGE2-Induced Sensitization of Sensory Neurons from Protein Kinase A to Epac

    PubMed Central

    Vasko, Michael R.; Habashy Malty, Ramy; Guo, Chunlu; Duarte, Djane B.; Zhang, Yihong; Nicol, Grant D.

    2014-01-01

    We examined whether nerve growth factor (NGF), an inflammatory mediator that contributes to chronic hypersensitivity, alters the intracellular signaling that mediates the sensitizing actions of PGE2 from activation of protein kinase A (PKA) to exchange proteins directly activated by cAMP (Epacs). When isolated sensory neurons are grown in the absence of added NGF, but not in cultures grown with 30 ng/ml NGF, inhibiting protein kinase A (PKA) activity blocks the ability of PGE2 to augment capsaicin-evoked release of the neuropeptide CGRP and to increase the number of action potentials (APs) evoked by a ramp of current. Growing sensory neurons in culture in the presence of increasing concentrations of NGF increases the expression of Epac2, but not Epac1. An intradermal injection of complete Freund's adjuvant into the rat hindpaw also increases the expression of Epac2, but not Epac1 in the dorsal root ganglia and spinal cord: an effect blocked by intraplantar administration of NGF antibodies. Treating cultures grown in the presence of 30 ng/ml NGF with Epac1siRNA significantly reduced the expression of Epac1, but not Epac2, and did not block the ability of PGE2 to augment capsaicin-evoked release of CGRP from sensory neurons. Exposing neuronal cultures grown in NGF to Epac2siRNAreduced the expression of Epac2, but not Epac1 and prevented the PGE2-induced augmentation of capsaicin and potassium-evoked CGRP release in sensory neurons and the PGE2-induced increase in the number of APs generated by a ramp of current. In neurons grown with no added NGF, Epac siRNAs did not attenuate PGE2-induced sensitization. These results demonstrate that NGF, through increasing Epac2 expression, alters the signaling cascade that mediates PGE2-induced sensitization of sensory neurons, thus providing a novel mechanism for maintaining PGE2-induced hypersensitivity during inflammation. PMID:25126967

  20. Nerve growth factor signaling following unilateral pelvic ganglionectomy in the rat ventral prostate is age dependent.

    PubMed

    Podlasek, Carol A; Ghosh, Rudrani; Onur Cakir, Omer; Bond, Christopher; McKenna, Kevin E; McVary, Kevin T

    2013-11-01

    Benign prostatic hyperplasia (BPH) is a serious health concern and is an underlying cause of lower urinary tract symptoms (LUTS) in many men. In affected men, LUTS/BPH is believed to result from benign proliferation of the prostate resulting in bladder outlet obstruction. Postnatal growth of the prostate is controlled via growth factor and endocrine mechanisms. However, little attention had been given to the function of the autonomic nervous system in prostate growth and differentiation. Nerve growth factor (NGF) is a prostatic mitogen that has a trophic role in autonomic sensory end organ interaction. In this study, we examine how the autonomic nervous system influences prostate growth as a function of age by quantifying NGF in the rat ventral prostate (VP) after pelvic ganglionectomy. Unilateral pelvic ganglionectomy was performed on postnatal days 30 (P30), 60 and 120 Sprague-Dawley rats in comparison to sham controls (n=39). Semiquantitative RT-PCR, Western blotting and immunohistochemical analysis for NGF were performed on denervated, intact (contralateral side) and sham control VP 7 days after surgery. Ngf RNA expression was significantly increased in the denervated and intact hyperplastic VP. Western blotting showed age-dependent increases in NGF protein at P60 in the contralateral intact VP. NGF was localized in the nerves, basal cells and columnar epithelium of the prostatic ducts. Denervation causes age-dependent increases in NGF in the VP, which is a potential mechanism by which the autonomic nervous system may regulate prostate growth and lead to BPH/LUTS. PMID:23872662

  1. Ageing-induced changes in the redox status of peripheral motor nerves imply an effect on redox signalling rather than oxidative damage

    PubMed Central

    McDonagh, Brian; Scullion, Siobhan M.; Vasilaki, Aphrodite; Pollock, Natalie; McArdle, Anne; Jackson, Malcolm J.

    2016-01-01

    Ageing is associated with loss of skeletal muscle fibres, atrophy of the remaining fibres and weakness. These changes in muscle are accompanied by disruption of motor neurons and neuromuscular junctions although the direct relationship between the nerve and muscle degeneration is not understood. Oxidative changes have been implicated in the mechanisms leading to age-related loss of muscle mass and in degeneration of the central nervous system, but little is known about age-related changes in oxidation in specific peripheral nerves that supply muscles that are affected by ageing. We have therefore examined the sciatic nerve of old mice at an age when loss of tibialis anterior muscle mass and function is apparent. Sciatic nerve from old mice did not show a gross increase in oxidative damage, but electron paramagnetic resonance (EPR) studies indicated an increase in the activity of superoxide and/or peroxynitrite in the nerves of old mice at rest that was further exacerbated by electrical stimulation of the nerve to activate muscle contractions. Proteomic analyses indicated that specific redox-sensitive proteins are increased in content in the nerves of old mice that may reflect an adaptation to regulate the increased superoxide/peroxynitrite and maintain redox homoeostasis. Analysis of redox active cysteines showed some increase in reversible oxidation in specific proteins in nerves of old mice, but this was not universally seen across all redox-active cysteines. Detailed analysis of the redox-active cysteine in one protein in the nerve of old mice that is key to redox signalling (Peroxiredoxin 6, Cys 47) showed a minor increase in reversible oxidation that would be compatible with a change in its redox signalling function. In conclusion, the data presented indicate that sciatic nerve from old mice does not show a gross increase in oxidative damage similar to that seen in the TA and other muscles that it innervates. Our results indicate an adaptation to increased

  2. Ageing-induced changes in the redox status of peripheral motor nerves imply an effect on redox signalling rather than oxidative damage.

    PubMed

    McDonagh, Brian; Scullion, Siobhan M; Vasilaki, Aphrodite; Pollock, Natalie; McArdle, Anne; Jackson, Malcolm J

    2016-05-01

    Ageing is associated with loss of skeletal muscle fibres, atrophy of the remaining fibres and weakness. These changes in muscle are accompanied by disruption of motor neurons and neuromuscular junctions although the direct relationship between the nerve and muscle degeneration is not understood. Oxidative changes have been implicated in the mechanisms leading to age-related loss of muscle mass and in degeneration of the central nervous system, but little is known about age-related changes in oxidation in specific peripheral nerves that supply muscles that are affected by ageing. We have therefore examined the sciatic nerve of old mice at an age when loss of tibialis anterior muscle mass and function is apparent. Sciatic nerve from old mice did not show a gross increase in oxidative damage, but electron paramagnetic resonance (EPR) studies indicated an increase in the activity of superoxide and/or peroxynitrite in the nerves of old mice at rest that was further exacerbated by electrical stimulation of the nerve to activate muscle contractions. Proteomic analyses indicated that specific redox-sensitive proteins are increased in content in the nerves of old mice that may reflect an adaptation to regulate the increased superoxide/peroxynitrite and maintain redox homoeostasis. Analysis of redox active cysteines showed some increase in reversible oxidation in specific proteins in nerves of old mice, but this was not universally seen across all redox-active cysteines. Detailed analysis of the redox-active cysteine in one protein in the nerve of old mice that is key to redox signalling (Peroxiredoxin 6, Cys 47) showed a minor increase in reversible oxidation that would be compatible with a change in its redox signalling function. In conclusion, the data presented indicate that sciatic nerve from old mice does not show a gross increase in oxidative damage similar to that seen in the TA and other muscles that it innervates. Our results indicate an adaptation to increased

  3. Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury.

    PubMed

    Brumovsky, P; Watanabe, M; Hökfelt, T

    2007-06-29

    The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and

  4. Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats.

    PubMed

    Smith, T; Al Otaibi, M; Sathish, J; Djouhri, L

    2015-06-01

    A hallmark of peripheral neuropathic pain (PNP) is chronic spontaneous pain and/or hypersensitivity to normally painful stimuli (hyperalgesia) or normally nonpainful stimuli (allodynia).This pain results partly from abnormal hyperexcitability of dorsal root ganglion (DRG) neurons. We have previously shown, using a modified version of the lumbar 5 (L5)-spinal nerve ligation model of PNP (mSNA model involving L5-spinal nerve axotomy plus loose ligation of the lumbar 4 (L4)-spinal nerve with neuroinflammation-inducing chromic-gut), that L4 DRG neurons exhibit increased spontaneous activity, the key characteristic of neuronal hyperexcitability. The underlying ionic and molecular mechanisms of the hyperexcitability of L4 DRG neurons are incompletely understood, but could result from changes in expression and/or function of ion channels including hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are active near the neuron's resting membrane potential, and which produce an excitatory inward current that depolarizes the membrane potential toward the threshold of action potential generation. Therefore, in the present study we used the mSNA model to investigate whether: (a) expression of HCN1-HCN3 channels is altered in L4 DRG neurons which, in the mSNA model, are essential for transmission of the evoked pain, and which contribute to chronic spontaneous pain, and (b) local (intraplantar) blockade of these HCN channels, with a specific blocker, ZD7288, attenuates chronic spontaneous pain and/or evoked pain in mSNA rats. We found 7days after mSNA: (1) a significant increase in HCN2-immunoreactivity in small (<30μm) DRG neurons (predominantly IB4-negative neurons), and in the proportion of small neurons expressing HCN2 (putative nociceptors); (2) no significant change in HCN1- or HCN3-immunoreactivity in all cell types; and (3) attenuation, with ZD7288 (100μM intraplantar), of chronic spontaneous pain behavior (spontaneous foot lifting) and mechanical

  5. Cytosolic Ca(2+) Signals Enhance the Vacuolar Ion Conductivity of Bulging Arabidopsis Root Hair Cells.

    PubMed

    Wang, Yi; Dindas, Julian; Rienmüller, Florian; Krebs, Melanie; Waadt, Rainer; Schumacher, Karin; Wu, Wei-Hua; Hedrich, Rainer; Roelfsema, M Rob G

    2015-11-01

    Plant cell expansion depends on the uptake of solutes across the plasma membrane and their storage within the vacuole. In contrast to the well-studied plasma membrane, little is known about the regulation of ion transport at the vacuolar membrane. We therefore established an experimental approach to study vacuolar ion transport in intact Arabidopsis root cells, with multi-barreled microelectrodes. The subcellular position of electrodes was detected by imaging current-injected fluorescent dyes. Comparison of measurements with electrodes in the cytosol and vacuole revealed an average vacuolar membrane potential of -31 mV. Voltage clamp recordings of single vacuoles resolved the activity of voltage-independent and slowly deactivating channels. In bulging root hairs that express the Ca(2+) sensor R-GECO1, rapid elevation of the cytosolic Ca(2+) concentration was observed, after impalement with microelectrodes, or injection of the Ca(2+) chelator BAPTA. Elevation of the cytosolic Ca(2+) level stimulated the activity of voltage-independent channels in the vacuolar membrane. Likewise, the vacuolar ion conductance was enhanced during a sudden increase of the cytosolic Ca(2+) level in cells injected with fluorescent Ca(2+) indicator FURA-2. These data thus show that cytosolic Ca(2+) signals can rapidly activate vacuolar ion channels, which may prevent rupture of the vacuolar membrane, when facing mechanical forces. PMID:26232520

  6. Decreased thyroid hormone signaling accelerates the reinnervation of the optic tectum following optic nerve crush in adult zebrafish.

    PubMed

    Bhumika, Stitipragyan; Lemmens, Kim; Vancamp, Pieter; Moons, Lieve; Darras, Veerle M

    2015-09-01

    The regenerative capacity of the adult mammalian central nervous system (CNS) is poor and finding ways to stimulate long distance axonal regeneration in humans remains a challenge for neuroscientists. Thyroid hormones, well known for their key function in CNS development and maturation, more recently also emerged as molecules influencing regeneration. While several studies investigated their influence on peripheral nerve regeneration, in vivo studies on their role in adult CNS regeneration remain scarce. We therefore investigated the effect of lowering T3 signaling on the regeneration of the optic nerve (ON) following crush in zebrafish, a species where full recovery occurs spontaneously. Adult zebrafish were exposed to iopanoic acid (IOP), which lowered intracellular 3,5,3'-triiodothyronine (T3) availability, or to the thyroid hormone receptor β antagonist methylsulfonylnitrobenzoate (C1). Both treatments accelerated optic tectum (OT) reinnervation. At 7days post injury (7dpi) there was a clear increase in the biocytin labeled area in the OT following anterograde tracing as well as an increased immunostaining of Gap43, a protein expressed in outgrowing axons. This effect was attenuated by T3 supplementation to IOP-treated fish. ON crush induced very limited cell death and proliferation at the level of the retina in control, IOP- and C1-treated fish. The treatments also had no effect on the mRNA upregulation of the regeneration markers gap43, tub1a, and socs3b at the level of the retina at 4 and 7dpi. We did, however, find a correlation between the accelerated OT reinnervation and a more rapid resolution of microglia/macrophages in the ON and the OT of IOP-treated fish. Taken together these data indicate that lowering T3 signaling accelerates OT reinnervation following ON crush in zebrafish and that this is accompanied by a more rapid resolution of the inflammatory response. PMID:25913150

  7. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    PubMed

    Duprey-Díaz, Mildred V; Blagburn, Jonathan M; Blanco, Rosa E

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  8. Strigolactones spatially influence lateral root development through the cytokinin signaling network

    PubMed Central

    Jiang, Lingxiang; Matthys, Cedrick; Marquez-Garcia, Belen; De Cuyper, Carolien; Smet, Lien; De Keyser, Annick; Boyer, François-Didier; Beeckman, Tom; Depuydt, Stephen; Goormachtig, Sofie

    2016-01-01

    Strigolactones are important rhizosphere signals that act as phytohormones and have multiple functions, including modulation of lateral root (LR) development. Here, we show that treatment with the strigolactone analog GR24 did not affect LR initiation, but negatively influenced LR priming and emergence, the latter especially near the root–shoot junction. The cytokinin module ARABIDOPSIS HISTIDINE KINASE3 (AHK3)/ARABIDOPSIS RESPONSE REGULATOR1 (ARR1)/ARR12 was found to interact with the GR24-dependent reduction in LR development, because mutants in this pathway rendered LR development insensitive to GR24. Additionally, pharmacological analyses, mutant analyses, and gene expression analyses indicated that the affected polar auxin transport stream in mutants of the AHK3/ARR1/ARR12 module could be the underlying cause. Altogether, the data reveal that the GR24 effect on LR development depends on the hormonal landscape that results from the intimate connection with auxins and cytokinins, two main players in LR development. PMID:26519957

  9. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation?

    PubMed

    Svistoonoff, Sergio; Hocher, Valérie; Gherbi, Hassen

    2014-08-01

    Two groups of bacteria are able to induce the formation of nitrogen-fixing nodules: proteobacteria called rhizobia, which associate with Legumes or Parasponia and actinobateria from the genus Frankia which are able to interact with ∼220 species belonging to eight families called actinorhizal plants. Legumes and different lineages of actinorhizal plants differ in bacterial partners, nodule organogenesis and infection patterns and have independent evolutionary origins. However, recent technical achievements are revealing a variety of conserved signalling molecules and gene networks. Actinorhizal interactions display several primitive features and thus provide the ideal opportunity to determine the minimal molecular toolkit needed to build a nodule and to understand the evolution of root nodule symbioses. PMID:24691197

  10. Chemical signals from plants previously infected with root knot nematodes affect behavior of infective juvenile root knot nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nematodes are a worldwide problem in agriculture, with losses estimated to $100 billion per year in the US. Damage caused by root-knot nematodes (Meloidogyne spp.) (RKN) disrupts the flow of water and nutrients to the plant and increases the plant’s vulnerability to other pathogens. While studies ...

  11. A diagnosis challenge-L4 nerve root compression as the initial presentation of chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Cojocaru, Inimioara Mihaela; Alexianu, Marilena; Bastian, Alexandra; Sapira, Violeta; Herţea, Cristina; Cojocaru, M

    2012-01-01

    The authors present the case of a 65-year-old woman who was admitted for paraparesis and paresthesias in the inferior limbs. The neurological examination revealed the difficulty in extension of the right foot and of the right toe, accompanied by paresthesias located in the anterolateral area of the right leg, dorsum and plantar area of the foot, the reduction of the right knee jerk, and of the ankle tendon jerk both sides. The vertebro-spinal MRI showed lumbar canal stenosis with L4 intraforaminal compression on the right, and L2-L3 on the left. CSF examination revealed mild increase in protein concentration. The morphological picture of the sural nerve biopsy was compatible with a chronic inflammatory neuropathy and severe muscular lesions of neurogenic origin were observed on right gastrocnemius muscle biopsy. The diagnosis of chronic inflammatory demyelinating polyneuropathy (CIDP) was established. Solu-medrol (0.5 g/d)-5 days, then medrol (prednisolone) was done, followed by improving of the symptomatology. For the relapse of the disease intravenous immunoglobulins (IVIG)-0.4 g/kg/d-5 days was the elective treatment. Six months later she presented a new relapse. IVIG were administered with the remission of the sensitive symptoms. A chronic treatment with medrol was recommended. The diagnosis of L4 disc herniation was obvious in the studied case, but the electroneurographic examination brought extra data for the associated diagnosis of CIDP whose onset was asymmetrical and initially paucisymptomatic. Neither the electroneurographic examination nor the CSF examination were total relevant for CIDP, imposing the sural nerve biopsy. The diagnosis of CIDP involves a team-work composed of neurologist, electroneurophysiologist and neuropathologist. PMID:23610977

  12. Dual Regulation of the Arabidopsis High-Affinity Root Iron Uptake System by Local and Long-Distance Signals1

    PubMed Central

    Vert, Grégory A.; Briat, Jean-François; Curie, Catherine

    2003-01-01

    Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis. PMID:12805609

  13. Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals.

    PubMed

    Vert, Grégory A; Briat, Jean-François; Curie, Catherine

    2003-06-01

    Regulation of the root high-affinity iron uptake system by whole-plant signals was investigated at the molecular level in Arabidopsis, through monitoring FRO2 and IRT1 gene expression. These two genes encode the root ferric-chelate reductase and the high-affinity iron transporter, respectively, involved in the iron deficiency-induced uptake system. Recovery from iron-deficient conditions and modulation of apoplastic iron pools indicate that iron itself plays a major role in the regulation of root iron deficiency responses at the mRNA and protein levels. Split-root experiments show that the expression of IRT1 and FRO2 is controlled both by a local induction from the root iron pool and through a systemic pathway involving a shoot-borne signal, both signals being integrated to tightly control production of the root iron uptake proteins. We also show that IRT1 and FRO2 are expressed during the day and down-regulated at night and that this additional control is overruled by iron starvation, indicating that the nutritional status prevails on the diurnal regulation. Our work suggests, for the first time to our knowledge, that like in grasses, the root iron acquisition in strategy I plants may also be under diurnal regulation. On the basis of the new molecular insights provided in this study and given the strict coregulation of IRT1 and FRO2 observed, we present a model of local and long-distance regulation of the root iron uptake system in Arabidopsis. PMID:12805609

  14. Impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain

    PubMed Central

    Ding, Yuanyuan; Wang, Zhibin; Ma, Jiaming; Hong, Tao; Zhu, Yongqiang; Li, Hongxi; Pan, Shinong

    2016-01-01

    Objective To investigate the impacts of anti-nerve growth factor antibody on pain-related behaviors and expressions of μ-opioid receptor in spinal dorsal horn and dorsal root ganglia of rats with cancer-induced bone pain. Methods The rats were randomly grouped and then injected with 10 μl of phosphate buffer saline or Walker256 tumor cells into the upper segment of left tibia. Thirteen days after the injection, the intrathecal catheterization was performed, followed by the injection of saline, anti-nerve growth factor, nerve growth factor, and naloxone twice a day. The pain ethological changes were measured at the set time points; the expression changes of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia were detected on the 18th day. Results After the tumor cells were injected into the tibia, hyperalgesia appeared and the expression of μ-opioid receptor protein and mRNA in spinal dorsal horn and dorsal root ganglia was increased, compared with the sham group; after intrathecally injected anti-nerve growth factor, the significant antinociceptive effects appeared, and the μ-opioid receptor expression was increased, compared with the cancer pain group; the μ-opioid receptor expressions in the other groups showed no statistical significance. The naloxone pretreatment could mostly inverse the antinociception effects of anti-nerve growth factor. Conclusions Anti-nerve growth factor could reduce hyperalgesia in the cancer-induced bone pain rats, and the antinociceptive effects were related with the upregulation of μ-opioid receptor. PMID:27118770

  15. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord.

    PubMed

    Rigon, F; Horst, A; Kucharski, L C; Silva, R S M; Faccioni-Heuser, M C; Partata, W A

    2014-08-01

    Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT), which mimics the clinical symptoms of "phantom limb", a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG) after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG) uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG) uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT. PMID:25627385

  16. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    SciTech Connect

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  17. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  18. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development

    NASA Technical Reports Server (NTRS)

    Cervantes, Emilio; Tocino, Angel

    2005-01-01

    Structurally, ethylene is the simplest phytohormone and regulates multiple aspects of plant growth and development. Its effects are mediated by a signal transduction cascade involving receptors, MAP kinases and transcription factors. Many morphological effects of ethylene in plant development, including root size, have been previously described. In this article a combined geometric and algebraic approach has been used to analyse the shape and the curvature in the root apex of Arabidopsis seedlings. The process requires the fitting of Bezier curves that reproduce the root apex shape, and the calculation of the corresponding curvatures. The application of the method has allowed us to identify significant differences in the root curvatures of ethylene insensitive mutants (ein2-1 and etr1-1) with respect to the wild-type Columbia.

  19. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants

    NASA Technical Reports Server (NTRS)

    Boonsirichai, K.; Guan, C.; Chen, R.; Masson, P. H.

    2002-01-01

    The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.

  20. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying.

    PubMed

    Dodd, Ian C; Egea, Gregorio; Watts, Chris W; Whalley, W Richard

    2010-08-01

    To investigate the influence of different growing substrates (two mineral, two organic) on root xylem ABA concentration ([ABA](root)) and the contribution of the drying root system to total sap flow during partial rootzone drying (PRD), sunflower (Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots. Sap flow through each hypocotyl was measured below the graft union when one pot ('wet') was watered and other ('dry') was not. Each substrate gave unique relationships between dry pot matric potential (Psi(soil)), volumetric water content ((v)) or penetrometer resistance (Q) and either the fraction of photoperiod sap flow from roots in drying soil or [ABA](root). However, decreased relative sap flow, and increased [ABA](root), from roots in drying soil varied with root water potential (Psi(root)) more similarly across a range of substrates. The gradient between Psi(soil) and Psi(root) was greater in substrates with high sand or peat proportions, which may have contributed to a more sensitive response of [ABA](root) to Psi(soil) in these substrates. Whole plant transpiration was most closely correlated with the mean Psi(soil) of both pots, and then with detached leaf xylem ABA concentration. Although Psi(root) best predicted decreased relative sap flow, and increased [ABA](root), from roots in drying soil across a range of substrates, the inaccessibility of this variable in field studies requires a better understanding of how measurable soil variables (Psi(soil), (v), Q) affect Psi(root). PMID:20591896

  1. The Ectomycorrhizal Fungus Laccaria bicolor Stimulates Lateral Root Formation in Poplar and Arabidopsis through Auxin Transport and Signaling1[W

    PubMed Central

    Felten, Judith; Kohler, Annegret; Morin, Emmanuelle; Bhalerao, Rishikesh P.; Palme, Klaus; Martin, Francis; Ditengou, Franck A.; Legué, Valérie

    2009-01-01

    The early phase of the interaction between tree roots and ectomycorrhizal fungi, prior to symbiosis establishment, is accompanied by a stimulation of lateral root (LR) development. We aimed to identify gene networks that regulate LR development during the early signal exchanges between poplar (Populus tremula × Populus alba) and the ectomycorrhizal fungus Laccaria bicolor with a focus on auxin transport and signaling pathways. Our data demonstrated that increased LR development in poplar and Arabidopsis (Arabidopsis thaliana) interacting with L. bicolor is not dependent on the ability of the plant to form ectomycorrhizae. LR stimulation paralleled an increase in auxin accumulation at root apices. Blocking plant polar auxin transport with 1-naphthylphthalamic acid inhibited LR development and auxin accumulation. An oligoarray-based transcript profile of poplar roots exposed to molecules released by L. bicolor revealed the differential expression of 2,945 genes, including several components of polar auxin transport (PtaPIN and PtaAUX genes), auxin conjugation (PtaGH3 genes), and auxin signaling (PtaIAA genes). Transcripts of PtaPIN9, the homolog of Arabidopsis AtPIN2, and several PtaIAAs accumulated specifically during the early interaction phase. Expression of these rapidly induced genes was repressed by 1-naphthylphthalamic acid. Accordingly, LR stimulation upon contact with L. bicolor in Arabidopsis transgenic plants defective in homologs of these genes was decreased or absent. Furthermore, in Arabidopsis pin2, the root apical auxin increase during contact with the fungus was modified. We propose a model in which fungus-induced auxin accumulation at the root apex stimulates LR formation through a mechanism involving PtaPIN9-dependent auxin redistribution together with PtaIAA-based auxin signaling. PMID:19854859

  2. Investigation of MR signal modulation due to magnetic fields from neuronal currents in the adult human optic nerve and visual cortex.

    PubMed

    Chow, Li Sze; Cook, Greg G; Whitby, Elspeth; Paley, Martyn N J

    2006-07-01

    Neuronal currents produce weak transient magnetic fields, and the hypothesis being investigated here is that the components of these parallel to the B0 field can potentially modulate the MR signal, thus providing a means of direct detection of nerve impulses. A theory for the phase and amplitude changes of the MR signal over time due to an external magnetic field has been developed to predict this modulation. Experimentally, a fast gradient-echo EPI sequence (TR = 158 ms, TE = 32.4 ms) was employed in an attempt to directly detect these neuronal currents in the adult human optic nerve and visual cortex using a 280-mm quadrature head coil at 1.5 T. A symmetrical intravoxel field distribution, which can be plausibly hypothesized for the axonal fields in the optic nerve and visual cortex, would result in phase cancellation within a voxel, and hence, only amplitude changes would be expected. On the other hand, an asymmetrical intravoxel field distribution would produce both phase and amplitude changes. The in vivo magnitude image data sets show a significant nerve firing detection rate of 56%, with zero detection using the phase image data sets. The percentage magnitude signal changes relative to the fully relaxed equilibrium signal fall within a predicted RMS field range of 1.2-2.1 nT in the optic nerve and 0.4-0.6 nT in the visual cortex, according to the hypothesis that the axonal fields create a symmetrical Lorentzian field distribution within the voxel. PMID:16824962

  3. The effect of single-pulse transcranial magnetic stimulation and peripheral nerve stimulation on complexity of EMG signal: fractal analysis.

    PubMed

    Cukic, M; Oommen, J; Mutavdzic, D; Jorgovanovic, N; Ljubisavljevic, M

    2013-07-01

    The aim of this study was to examine whether single-pulse transcranial magnetic stimulation (spTMS) affects the pattern of corticospinal activity once voluntary drive has been restored after spTMS-induced EMG silence. We used fractal dimension (FD) to explore the 'complexity' of the electromyography (EMG) signal, and median frequency of the spectra (MDF) to examine changes in EMG spectral characteristics. FD and MDF of the raw EMG epochs immediately before were compared with those obtained from epochs after the EMG silence. Changes in FD and MDF after spTMS were examined with three levels of muscle contraction corresponding to weak (20-40%), moderate (40-60%) and strong (60-80% of maximal voluntary contraction) and three intensities of stimulation set at 10, 20 and 30% above the resting motor threshold. FD was calculated using the Higuchi fractal dimension algorithm. Finally, to discern the origin of FD changes between the CNS and muscle, we compared the effects of spTMS with the effects of peripheral nerve stimulation (PNS) on FD and MDF. The results show that spTMS induced significant decrease in both FD and MDF of EMG signal after stimulation. PNS did not have any significant effects on FD nor MDF. Changes in TMS intensity did not have any significant effect on FD or MDF after stimulation nor had the strength of muscle contraction. However, increase in contraction strength decreased FD before stimulation but only between weak and moderate contraction. The results suggest that the effects of spTMS on corticospinal activity, underlying voluntary motor output, outlast the TMS stimulus. It appears that the complexity of the EMG signal is reduced after spTMS, suggesting that TMS alters the dynamics of the ongoing corticospinal activity most likely temporarily synchronizing the neural network activity. Further studies are needed to confirm whether observed changes after TMS occur at the cortical level. PMID:23652725

  4. Caspase-2 Is Upregulated after Sciatic Nerve Transection and Its Inhibition Protects Dorsal Root Ganglion Neurons from Apoptosis after Serum Withdrawal

    PubMed Central

    Vigneswara, Vasanthy; Berry, Martin

    2013-01-01

    Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2 (CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNA-mediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery. PMID:23451279

  5. Deficits in foot skin sensation are related to alterations in balance control in chronic low back patients experiencing clinical signs of lumbar nerve root impingement.

    PubMed

    Frost, Lydia R; Bijman, Marc; Strzalkowski, Nicholas D J; Bent, Leah R; Brown, Stephen H M

    2015-05-01

    Chronic low back pain (LBP) patients with radiculopathy, or sciatica, experience pain, tingling or numbness radiating down their leg due to compression of the lumbar nerve root. The resulting reduction in somatosensory information from the foot sole may contribute to deficits in standing balance control. This work was designed to investigate the relationship between foot skin sensitivity and standing balance control in chronic LBP patients with associated radiculopathy. Patients (n=9) and matched healthy controls (n=9) were recruited to the study, and were tested for balance control in both quiet standing as well as during rapid arm raise perturbation trials on a force plate. Foot skin sensitivity was tested bilaterally for vibratory threshold (3, 40 and 250 Hz) and touch (monofilament) threshold. Results demonstrate that patients had reduced sensitivity to 250 Hz vibration in their affected compared to unaffected foot (at the great toe and heel), as well as compared to controls (at the great toe), but there were no differences with lower frequency vibratory testing or with monofilament testing. While there were no significant between-group differences in balance measures, moderate statistically significant correlations between 250 Hz sensitivity and quiet standing balance parameters were uncovered. Thus, patients demonstrate reduced high-frequency vibratory sensitivity at the foot sole, and correlations with quiet standing balance measures indicate a connection between these foot skin sensitivity deficits and alterations in balance control. Clinically, this identifies high frequency vibration testing as an important measure of skin sensitivity in patients with radiculopathy. PMID:25887249

  6. Auxin, the organizer of the hormonal/environmental signals for root hair growth.

    PubMed

    Lee, Richard D-W; Cho, Hyung-Taeg

    2013-01-01

    The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth. PMID:24273547

  7. Altered Purinergic Signaling in Colorectal Dorsal Root Ganglion Neurons Contributes to Colorectal Hypersensitivity

    PubMed Central

    La, Jun-Ho; Bielefeldt, Klaus; Gebhart, G. F.

    2010-01-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by pain and hypersensitivity in the relative absence of colon inflammation or structural changes. To assess the role of P2X receptors expressed in colorectal dorsal root ganglion (c-DRG) neurons and colon hypersensitivity, we studied excitability and purinergic signaling of retrogradely labeled mouse thoracolumbar (TL) and lumbosacral (LS) c-DRG neurons after intracolonic treatment with saline or zymosan (which reproduces 2 major features of IBS—persistent colorectal hypersensitivity without inflammation) using patch-clamp, immunohistochemical, and RT-PCR techniques. Although whole cell capacitances did not differ between LS and TL c-DRG neurons and were not changed after zymosan treatment, membrane excitability was increased in LS and TL c-DRG neurons from zymosan-treated mice. Purinergic agonist adenosine-5′-triphosphate (ATP) and α,β-methylene ATP [α,β-meATP] produced inward currents in TL c-DRG neurons were predominantly P2X3-like fast (∼70% of responsive neurons); P2X2/3-like slow currents were more common in LS c-DRG neurons (∼35% of responsive neurons). Transient currents were not produced by either agonist in c-DRG neurons from P2X3−/− mice. Neither total whole cell Kv current density nor the sustained or transient Kv components was changed in c-DRG neurons after zymosan treatment. The number of cells expressing P2X3 protein and its mRNA and the kinetic properties of ATP- and α,β-meATP-evoked currents in c-DRG neurons were not changed by zymosan treatment. However, the EC50 of α,β-meATP for the fast current decreased significantly in TL c-DRG neurons. These findings suggest that colorectal hypersensitivity produced by intracolonic zymosan increases excitability and enhances purinergic signaling in c-DRG neurons. PMID:20861433

  8. Altered purinergic signaling in colorectal dorsal root ganglion neurons contributes to colorectal hypersensitivity.

    PubMed

    Shinoda, Masamichi; La, Jun-Ho; Bielefeldt, Klaus; Gebhart, G F

    2010-12-01

    Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by pain and hypersensitivity in the relative absence of colon inflammation or structural changes. To assess the role of P2X receptors expressed in colorectal dorsal root ganglion (c-DRG) neurons and colon hypersensitivity, we studied excitability and purinergic signaling of retrogradely labeled mouse thoracolumbar (TL) and lumbosacral (LS) c-DRG neurons after intracolonic treatment with saline or zymosan (which reproduces 2 major features of IBS-persistent colorectal hypersensitivity without inflammation) using patch-clamp, immunohistochemical, and RT-PCR techniques. Although whole cell capacitances did not differ between LS and TL c-DRG neurons and were not changed after zymosan treatment, membrane excitability was increased in LS and TL c-DRG neurons from zymosan-treated mice. Purinergic agonist adenosine-5'-triphosphate (ATP) and α,β-methylene ATP [α,β-meATP] produced inward currents in TL c-DRG neurons were predominantly P2X(3)-like fast (∼70% of responsive neurons); P2X(2/3)-like slow currents were more common in LS c-DRG neurons (∼35% of responsive neurons). Transient currents were not produced by either agonist in c-DRG neurons from P2X(3)(-/-) mice. Neither total whole cell Kv current density nor the sustained or transient Kv components was changed in c-DRG neurons after zymosan treatment. The number of cells expressing P2X(3) protein and its mRNA and the kinetic properties of ATP- and α,β-meATP-evoked currents in c-DRG neurons were not changed by zymosan treatment. However, the EC(50) of α,β-meATP for the fast current decreased significantly in TL c-DRG neurons. These findings suggest that colorectal hypersensitivity produced by intracolonic zymosan increases excitability and enhances purinergic signaling in c-DRG neurons. PMID:20861433

  9. Leptin Receptor Signaling in the Hypothalamus Regulates Hepatic Autonomic Nerve Activity via Phosphatidylinositol 3-Kinase and AMP-Activated Protein Kinase

    PubMed Central

    Yamamoto, Naoki; Morgan, Donald A.; Kurata, Yasutaka; Shibamoto, Toshishige

    2015-01-01

    Leptin action in the brain has emerged as an important regulator of liver function independently from its effects on food intake and body weight. The autonomic nervous system plays a key role in the regulation of physiological processes by leptin. Here, we used direct recording of nerve activity from sympathetic or vagal nerves subserving the liver to investigate how brain action of leptin controls hepatic autonomic nerve activity. Intracerebroventricular (ICV) administration of leptin activated hepatic sympathetic traffic in rats and mice in dose- and receptor-dependent manners. The hepatic sympatho-excitatory effects of leptin were also observed when leptin was microinjected directly into the arcuate nucleus (ARC), but not into the ventromedial hypothalamus (VMH). Moreover, using pharmacological and genetic approaches, we show that leptin-induced increase in hepatic sympathetic outflow depends on PI3K but not AMP-activated protein kinase (AMPK), STAT3, or ERK1/2. Interestingly, ICV leptin also increased hepatic vagal nerve activity in rats. We show that this response is reproduced by intra-ARC, but not intra-VMH, leptin administration and requires PI3K and AMPK. We conclude that central leptin signaling conveys the information to the liver through the sympathetic and parasympathetic branches of the autonomic nervous system. Our data also provide important insight into the molecular events underlying leptin's control of hepatic autonomic nerve activity by implicating PI3K and AMPK pathways. PMID:25589743

  10. Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root.

    PubMed

    Valenzuela, Camilo E; Acevedo-Acevedo, Orlando; Miranda, Giovanna S; Vergara-Barros, Pablo; Holuigue, Loreto; Figueroa, Carlos R; Figueroa, Pablo M

    2016-07-01

    Salinity is a severe abiotic stress that affects irrigated croplands. Jasmonate (JA) is an essential hormone involved in plant defense against herbivory and in responses to abiotic stress. However, the relationship between the salt stress response and the JA pathway in Arabidopsis thaliana is not well understood at molecular and cellular levels. In this work we investigated the activation of JA signaling by NaCl and its effect on primary root growth. We found that JA-responsive JAZ genes were up-regulated by salt stress in a COI1-dependent manner in the roots. Using a JA-Ile sensor we demonstrated that activation of JA signaling by salt stress occurs in the meristematic zone and stele of the differentiation zone and that this activation was dependent on JAR1 and proteasome functions. Another finding is that the elongation zone (EZ) and its cortical cells were significantly longer in JA-related mutants (AOS, COI1, JAZ3 and MYC2/3/4 genes) compared with wild-type plants under salt stress, revealing the participation of the canonical JA signaling pathway. Noteworthy, osmotic stress - a component of salt stress - inhibited cell elongation in the EZ in a COI1-dependent manner. We propose that salt stress triggers activation of the JA signaling pathway followed by inhibition of cell elongation in the EZ. We have shown that salt-inhibited root growth partially involves the jasmonate signaling pathway in Arabidopsis. PMID:27217545