Science.gov

Sample records for roots vladimir zitko

  1. Vladimir Dmitrievich Krivchenkov.

    NASA Astrophysics Data System (ADS)

    Saraeva, I. M.; Romanovskii, Yurii Mikhailovich; Borisov, Anatoly Viktorovich

    The book concerns the life and activity of one of the lecturers in Quantum Mechanics from the Physics Department of the Moscow State University Vladimir Dmitrievich Krivchenkov during 60-th- 70-th years of the XX-th century. A detailed biography and a list of publications has been given. A number of photographs from the personal archive and the faculty's archive is included. Some of the recollections about V.D. Krivchenkov are written by his colleagues: Kvasnikov,V.B. Braginskij, S.S . Gershtein, L.I. Ponomarev, A.E.Yunovich, A.I. Osipov, M.V. Chetkin, B.N. Zahar'ev, I.F. Ginzburg, G.L. Kotkin, D.V. Belov, V.A. Gribov, P.V. Elyutin, S.A. Kirov, D.Yu Kuznetsov.

  2. Vladimir Vasil'evich Migulin

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. I.; Logginov, A. S.; Minakova, I. I.

    2006-12-01

    A bioghraphy and bibliography of one of the most important scientists from the Physics Department of the Moscow State University, professor of the Physics Department of the Moscow University (1948),Corresponding member of the Academy of Sciences of the USSR,a member of Russian Academy of Sciences (2001) Vladimir Vladimirovich Migulin (1911- 2002) has been given. A list of 227 publications by V.V.Migulin and coauthors has been given.

  3. Congratulations to Vladimir Igorevich Arnol'd

    NASA Astrophysics Data System (ADS)

    2007-06-01

    12 June 2007 was the seventieth birthday of a member of the editorial board of this journal, Academician Vladimir Igorevich Arnol'd. We warmly congratulate Vladimir Igorevich on his birthday and wish him good health, happiness and continuing success in his scientific activities.

  4. Life and death of Vladimir Mikhailovich Bekhterev.

    PubMed

    Maranhão Filho, Péricles; Maranhão, Eliana Teixeira; Engelhardt, Eliasz

    2015-11-01

    Vladimir Mikhailovich Bekhterev was a Russian innovative neuroscientist, extraordinary in the study, diagnosis, and research in the fields of neurology, psychology, morphology, physiology, and psychiatry. Considering the ample and multifaceted scientific feats, only some are touched in a very brief manner. However, it is necessary to highlight his contributions to neurology, with the description of structures, signs and syndromes, to physiology, including reflexology, which later underpinned behaviorism, to psychology, including objective psychology and suggestion. His accomplishments and legacy remained until the present days. Some comments about the scenery that involved his death are also presented. PMID:26517221

  5. Epidemiology of Primary Multidrug-Resistant Tuberculosis, Vladimir Region, Russia.

    PubMed

    Ershova, Julia V; Volchenkov, Grigory V; Kaminski, Dorothy A; Somova, Tatiana R; Kuznetsova, Tatiana A; Kaunetis, Natalia V; Cegielski, J Peter; Kurbatova, Ekaterina V

    2015-11-01

    We studied the epidemiology of drug-resistant tuberculosis (TB) in Vladimir Region, Russia, in 2012. Most cases of multidrug-resistant TB (MDR TB) were caused by transmission of drug-resistant strains, and >33% were in patients referred for testing after mass radiographic screening. Early diagnosis of drug resistance is essential for preventing transmission of MDR TB. PMID:26488585

  6. A surgeon to remember: notes about Vladimir Demikhov.

    PubMed

    Shumacker, H B

    1994-10-01

    Vladimir Demikhov, first to transplant an auxiliary heart into the chest of a warm-blooded animal, first to replace the heart with a homograft, first to carry out a pulmonary transplantation, first to perform a complete heart and lung replacement, and first to perform a successful internal mammary-coronary anastomosis, deserves a place among the great experimental surgeons of all times. He has not had the widespread recognition he earned. PMID:7944786

  7. Rapidity: The Special Relativity Work of Dr. Vladimir Karapetoff

    NASA Astrophysics Data System (ADS)

    Carter, Hamilton

    2014-03-01

    Between 1924 and 1944 Dr. Vladimir Karapetoff, a professor in the electrical engineering department of Cornell University, authored 11 papers on the topic of special relativity. While his initial papers focused on the then popular oblique angle treatment of special relativity, he soon became a vocal proponent of performing special relativistic calculations using rapidity, a technique that emphasizes the hyperbolic geometric nature of Minkowski space-time. While rapidity has fallen out of usage with the exception of a specialized dialect within particle physics, it offers interesting technical and pedagogical perspectives on the geometrical nature of space-time not evident in the present day relativistic parlance.

  8. On a celestial occurrence recorded in the hagiography of St. Vladimir

    NASA Astrophysics Data System (ADS)

    Banjević, Boris

    2002-04-01

    There were recorded a number of celestial occurrences in Serbian early history. Amongst them are a few appearances of comets. One except from Bible bearing on life of king David, relating to a phenomenon that might be interpreted as a comet, is in some way similar to the quotation from the hagiography of St. Vladimir. There is possibility that Halley's comet was observed at some time. This affects the chronology of the reign of St. Vladimir by about 11 years. This author thinks that it was in the summer 989 AD.

  9. [Vladimir Zederbaum" (1883-1942): Physician, journalist, contributor to the Russian "Jewish, Encyclopedia". A research report].

    PubMed

    Antipova, Anastasia

    2015-01-01

    Vol. 15 o f the "Jewish Encyclopedia" (St. Petersburg 1908-1913) contains an article on Freud, signed by Vladimir Zederbaum. The data for the article were provided by Max Eitingon. This paper addresses the question of whether Zederbaum himself was Eitingon's contact. Several archives produced a lot of information about Zederbaum's medical and journalistic activities in St. Petersburg. However, to date no connection between the two men could be established. PMID:26939252

  10. Vitold Ceraski and Vladimir Nikonov - founders of stellar photometry in Russia

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Pustylnik, I.

    2002-07-01

    This paper is dedicated to two ``godfathers'' of astrophotometry in Russia - Vitold Karlovich Ceraski (1849-1925) and Vladimir Borisovich Nikonov (1905-1987). We discuss their scientific legacy and its impact on the formation of the school of stellar photometry in Russia and the USSR. A graduate of Moscow University in 1871, V. Ceraski started his scientific career at the University Astronomical Observatory. Already at the dawn of the 20th century, he was universally regarded as an indisputable authority in Russian astrophotometry. Ceraski introduced essential improvements to K.-F. Zöllner's visual polarimetric photometer. In 1903-1905 he measured with the photometer the stellar magnitude of the Sun with an accuracy close to its modern value (within a 5\\ Venus with that of the speck of sunlight reflected from a convex glass surface (during daytime) and by comparing the brightness of Venus with that of the brightest stars (during the night). V. Nikonov, a graduate of Leningrad University, embarked in 1925 on scientific investigations in the Leningrad Astronomical Institute. In 1937, he constructed the first photoelectric photometer in the USSR. Experiments indicated that its attainable precision for 4fm 5 stars amounted to 0fm 003. It was obvious that therefore one should exercise extreme care in the reduction of stellar magnitudes beyond the earth's upper atmosphere. In 1944 he elaborated a method to account for atmospheric extinction which is now universally known as Nikonov's method. Its underlying idea lies in the observations of all non-variable stars available in the program for different air masses.

  11. Roots Revisited.

    ERIC Educational Resources Information Center

    Hughes, Barnabas

    1998-01-01

    Offers historical information about square roots. Presents three different methods--Hero's method, visual method, and remainder method--which can be used to teach the finding of square roots and one method for determining cube roots. (ASK)

  12. Square Root +

    ERIC Educational Resources Information Center

    Frederiksen, John G.

    1969-01-01

    A rational presentation of the so-called long division method for extracting the square root of a number. Diagrams are used to show relationship of this technique to the binomial theorem. Presentation exposes student to many facets of mathematics in addition to the mechanics of funding square root and cube root. Geometry, algebraic statements,…

  13. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  14. Roots and Root Function: Introduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A number of current issues related to water management, ecohydrology, and climate change are giving impetus to new research aimed at understanding roots and their functioning. Current areas of research include: use of advanced imaging technologies such as Magnetic Resonance Imaging to observe roots...

  15. Precipitation and dissolution of calcium carbonate: key processes bridging the bio- and geosciences (Vladimir Ivanovich Vernadsky Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gattuso, J.-P.

    2012-04-01

    In this Vladimir Ivanovich Vernadsky medal lecture, I will focus on the biogeochemical cycle of calcium carbonate (CaCO3) which is arguably one of the best example of a set processes that bridge the bio- and geosciences. The main reactions involved are calcification and dissolution that, respectively, manufacture and destroy calcium carbonate. Biology is intimately involved in these two processes which are key controls of the Earth's climate and leave remains that are of great use to human societies (as building materials) and geoscientists. I will illustrate the bridge between the bio- and geosciences by providing brief examples for each of the following four issues. (1) The marine cycle of CaCO3 and its relationship with climate. The release of CO2 by the precipitation of calcium carbonate and the uptake of CO2 by its dissolution are important controls of atmospheric CO2 and climate. The vertical distribution of Ψ, the ratio of CO2 released/used per CaCO3 precipitated/dissolved in the ocean will be shown to be consistent with the Högbom-Urey reactions. (2) The use of CaCO3 in paleooceanography. The remains of calcium carbonate shells and skeletons are wonderful archives of past environmental changes. Their isotopic composition and the concen-tration of trace elements are invaluable in the reconstruction of past climate. I will address the challenge of calibrating one of the proxies used to reconstruct past ocean pH. (3) The challenge of understanding calcification. Despite having been investigated for decades, many aspects of the physiological and molecular processes involved in calcification by marine organisms remain obscure. Recent breakthroughs, mostly on reef-building corals, will be briefly reviewed. (4) The response of calcification and dissolution to environmental change. The critical importance of CaCO3 precipitation and dissolution as climate controls makes it vital to understand their response to global environmental changes such as ocean warming and

  16. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  17. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  18. Root canal

    MedlinePlus

    Endodontic therapy ... the root of a tooth. Generally, there is pain and swelling in the area. The infection can ... You may have some pain or soreness after the procedure. An over-the-counter anti-inflammatory drug, such as ibuprofen or naproxen, can help relieve ...

  19. Vladimir Naumovich Gribov

    NASA Astrophysics Data System (ADS)

    Frenkel, A.

    2013-06-01

    V.N. Gribov was incapable of sparing himself. All his life he has acted as passionately, as intensely as he did in his youth when he worked with Landau and Pomeranchuk and led the Theoretical Physics Department of the Ioffe Institute, and later of the Nuclear Physics Institute in Leningrad. For him "leading" meant simply hiring the most talented students to join the institute and then engaging in merciless, endless but fruitful discussions with them on the problems they worked on. He did not care who was right, he cared only about the right answer. Incidentally, only in physics did he push tirelessly to reach a decision. In conversations about literature or politics as a rule he argued mildly and kindly. Not that he did not have thoughtful and firm opinions about many questions, but because he seemed to realize that in these matters different standpoints were arguable...

  20. "I think that the small peptides are the best for healthy ageing...", an interview with Vladimir Khavinson. Interview by Suresh I. S. Rattan.

    PubMed

    Khavinson, Vladimir

    2013-02-01

    Since its inception in 2000, Biogerontology has published interviews with some of the most renowned and intellectually influential biogerontologists, including Len Hayflick, Robin Holliday, Denham Harman, Vincent Cristofalo, Claudio Franceschi, Leslie Robert, Ken Kitani, Geroge Martin, Zhores Medvedev and John Maynard Smith. These interviews have explored the minds of these scientists in all aspects of their lives combining the private and the professional. Together, this series is a remarkable document providing an insight into the history of ideas in modern biogerontology. Here we present Vladimir Khavinson talking about his life and work in Russia during and after the Soviet times, his ideas on stress and health, his discoveries of the healthy ageing promoting small peptides, and other anti-ageing interventions. PMID:23377892

  1. Pythium Root Rot (and Feeder Root Necrosis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium species cause a number of diseases on corn. Among the Pythium diseases, root rot presents the least conspicuous aboveground symptoms. Broadly defined, root rot also includes feeder root necrosis. At least 16 species of Pythium are known to cause root rot of corn. These include P. acanthicu...

  2. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  3. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  4. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  5. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  6. Armillaria root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  7. BLACK ROOT ROT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black Root Rot Prepared by G. S. Abawi, Revised by L.E. Hanson Black root rot is caused by Thielaviopsis basicola (syn. Chalara elegans). The pathogen is widely distributed, can infect more than 130 plant species in 15 families, and causes severe black root rot diseases in ornamentals and crops suc...

  8. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  9. The Roots of Literacy.

    ERIC Educational Resources Information Center

    Goodman, Yetta M.

    This review of research with children aged two to six on their reading, writing, and oral language development speaks of five roots of a tree of literate life that require nourishment in the soil of a written language environment. The roots discussed are the development of print awareness in situational contexts, the development of print awareness…

  10. Cylindrocarpon root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cylindrocarpon root rot of alfalfa has been found sporadically in Canada and the northern United States. The etiology of this disease is not fully understood, but the priority for research has not been high because of its infrequent occurrence. The infected area of the root initially has a water-soa...

  11. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  12. Pythium Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium root rot is a disease that is found in agricultural and nursery soils throughout the United States and Canada. It is caused by several Pythium species, and the symptoms are typified by leaf or needle chlorosis, stunting, root rot, and plant death. The disease is favored by wet soils, overc...

  13. Root-knot nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although root-knot nematodes (Meloidogyne species) can reduce crop yields worldwide, methods for their identification are often difficult to implement. This review summarizes the diagnostic morphological and molecular features for distinguishing the ten major previously described root-knot nematode ...

  14. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family members with…

  15. Sugarbeet root aphid on postharvest root storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root aphid (SBRA), Pemphigus betae Doane, is a serious insect pest of sugarbeet in several North American sugarbeet production areas; however, it is rarely an economic pest in the Red River Valley (RRV). In 2012 and 2013, all RRV factory districts were impacted by SBRA outbreaks, and ...

  16. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  17. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  18. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  19. Roots in plant ecology.

    PubMed

    Cody, M L

    1986-09-01

    In 1727 the pioneer vegetation scientist Stephen Hales realized that I much that was of importance to his subject material took place below on ground. A good deal of descriptive work on plant roots and root systems was done in the subsequent two centuries; in crop plants especially, the gross morphology of root systems was well known by the early 20th century. These descriptive studies were extended to natural grasslands by Weaver and his associates and to deserts by Cannon by the second decade of this century, but since that time the study of subterranean growth form appears to have lapsed, as a recent review by Kummerow indicates. Nevertheless, growth form is an important aspect of plant ecology, and subterranean growth form is especially relevant to the study of vegetation in and areas (which is the main subject of this commentary). Moreover, there is a real need for more research to be directed towards understanding plant root systems in general. PMID:21227785

  20. Grass Rooting the System

    ERIC Educational Resources Information Center

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  1. Reading with Roots

    ERIC Educational Resources Information Center

    Gibson, Margaret I.

    1986-01-01

    Recommends a method of teaching Russian vocabulary that focuses on new words in context and on their structure: root, prefix, suffix, sound changes, and borrowings. Sources for teachers are given in the bibliography. (LMO)

  2. The phenomenology of rooting.

    PubMed

    Kerievsky, Bruce Stephen

    2010-09-01

    This paper examines the attractions of passionate involvement in wanting particular outcomes, which is popularly known as rooting. The author's lifelong personal experience is the source of his analysis, along with the insights provided by spiritual literature and especially the work of Dr. Thomas Hora, with whom the author studied for 30 years. The phrase "choiceless awareness," utilized by J. Krishnamurti, and attained via meditation, is seen as the means of transcending a rooting mode of being in the world. PMID:20165983

  3. Modeling root reinforcement using root-failure Weibull survival function

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Giadrossich, F.; Cohen, D.

    2013-03-01

    Root networks contribute to slope stability through complicated interactions that include mechanical compression and tension. Due to the spatial heterogeneity of root distribution and the dynamic of root turnover, the quantification of root reinforcement on steep slope is challenging and consequently the calculation of slope stability as well. Although the considerable advances in root reinforcement modeling, some important aspect remain neglected. In this study we address in particular to the role of root strength variability on the mechanical behaviors of a root bundle. Many factors may contribute to the variability of root mechanical properties even considering a single class of diameter. This work presents a new approach for quantifying root reinforcement that considers the variability of mechanical properties of each root diameter class. Using the data of laboratory tensile tests and field pullout tests, we calibrate the parameters of the Weibull survival function to implement the variability of root strength in a numerical model for the calculation of root reinforcement (RBMw). The results show that, for both laboratory and field datasets, the parameters of the Weibull distribution may be considered constant with the exponent equal to 2 and the normalized failure displacement equal to 1. Moreover, the results show that the variability of root strength in each root diameter class has a major influence on the behavior of a root bundle with important implications when considering different approaches in slope stability calculation. Sensitivity analysis shows that the calibration of the tensile force and the elasticity of the roots are the most important equations, as well as the root distribution. The new model allows the characterization of root reinforcement in terms of maximum pullout force, stiffness, and energy. Moreover, it simplifies the implementation of root reinforcement in slope stability models. The realistic quantification of root reinforcement for

  4. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  5. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  6. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems. PMID:24630073

  7. Stachbotrys Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stachybotrys root rot is caused by Stachybotrys chartarum, a cellulytic saprophytic hyphomycete fungus. The pathogen produces mycotoxins including a host of immunosupressant compounds for human and is one of the causes of the "sick building syndrome." Although S. chartarum is rarely known as a plan...

  8. Violet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus causing violet root rot, Helicobasidium brebissonii (anamorph Rhizoctonia crocorum), is widely distributed in Europe and North America but is rarely of much economic importance on alfalfa. The disease has also been reported in Australia, Argentina, and Iran. The disease is characterized b...

  9. "Roots": Medium and Message.

    ERIC Educational Resources Information Center

    Kinnamon, Keneth

    A national telephone survey indicated that audiences rated the television production of "Roots" positively in terms of the following: realistic portrayal of the people and the times; relevance for contemporary race relations; perceived emotional effect; and increased understanding of the psychology of black people. However, a comparison of the…

  10. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  11. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3) "Improving Secondary…

  12. Fine root turnover: a story of root production and root phenology

    NASA Astrophysics Data System (ADS)

    McCormack, M. L.; Adams, T. S.; Smithwick, E. A.; Eissenstat, D. M.

    2012-12-01

    Fine root turnover in terrestrial ecosystems partially controls carbon flow from plants into soils as well the amount of roots available for nutrient and water uptake. However, we have poor understanding of basic patterns and variability in fine root turnover. We address this shortfall through the use of a heuristic model and analysis of a multi-year minirhizotron dataset exploring the impacts of fine root phenology and production on fine root turnover rates across 12 temperate tree species in a common garden experiment. The heuristic model allowed us to calculate fine root turnover given different patterns of root production and different fine root lifespans. Using the model we found that patterns of phenology characterized by a single, concentrated peak resulted in slower calculated root turnover rates while broader and bi-modal production patterns resulted in faster turnover rates. For example, for roots with median lifespans of 91 days, estimates of root turnover increased from 1.5 yr-1 to 4.0 yr-1 between the pattern of concentrated root production and the pattern with root production spread equally throughout the year. Turnover rates observed in the common garden ranged from 0.75 yr-1 to 1.33 yr-1 and 0.93 yr-1 to 2.14 yr-1 when calculated as annual production divided by maximum standing root crop or average standing root crop, respectively. Turnover varied significantly across species and interannual variability in root production and turnover was high. Patterns of root phenology observed at the common garden included concentrated root production in late spring as well as several examples of bi-modal and broader patterns of root production with roots produced across spring, summer and fall. Overall, both phenology and total root production impacted estimates of root turnover, particularly for short-lived fine roots with median lifespans of less than one year. Our results suggest that better understanding fine root phenology and production will improve our

  13. The Physiology of Adventitious Roots.

    PubMed

    Steffens, Bianka; Rasmussen, Amanda

    2016-02-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  14. Hairy roots are more sensitive to auxin than normal roots

    PubMed Central

    Shen, Wen Hui; Petit, Annik; Guern, Jean; Tempé, Jacques

    1988-01-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  15. Hairy roots are more sensitive to auxin than normal roots.

    PubMed

    Shen, W H; Petit, A; Guern, J; Tempé, J

    1988-05-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  16. Root canal retained restorations: 3. Root-face attachments.

    PubMed

    Dummer, P M; Edmunds, D H; Gidden, J R

    1990-10-01

    It has been common practice for many years to use retained roots to provide support and stability for partial or full dentures. The retention of such overdentures is greatly enhanced if the remaining roots are modified and restored with posts and root-face attachments. The final article in this series on root canal retained restorations classifies and describes some of the root-face attachments currently available, and also describes a number of prefabricated post systems with integral overdenture attachments. Guidelines for clinical and laboratory procedures are given. PMID:2097234

  17. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  18. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  19. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  20. Springback in root gravitropism.

    PubMed

    Leopold, A C; Wettlaufer, S H

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation. PMID:11537456

  1. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  2. Control of Arabidopsis Root Development

    PubMed Central

    Petricka, Jalean J.; Winter, Cara M.; Benfey, Philip N.

    2013-01-01

    The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root. PMID:22404466

  3. The Roots of Beowulf

    NASA Technical Reports Server (NTRS)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  4. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  5. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  6. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  7. Perennial roots to immortality.

    PubMed

    Munné-Bosch, Sergi

    2014-10-01

    Maximum lifespan greatly varies among species, and it is not strictly determined; it can change with species evolution. Clonal growth is a major factor governing maximum lifespan. In the plant kingdom, the maximum lifespans described for clonal and nonclonal plants vary by an order of magnitude, with 43,600 and 5,062 years for Lomatia tasmanica and Pinus longaeva, respectively. Nonclonal perennial plants (those plants exclusively using sexual reproduction) also present a huge diversity in maximum lifespans (from a few to thousands of years) and even more interestingly, contrasting differences in aging patterns. Some plants show a clear physiological deterioration with aging, whereas others do not. Indeed, some plants can even improve their physiological performance as they age (a phenomenon called negative senescence). This diversity in aging patterns responds to species-specific life history traits and mechanisms evolved by each species to adapt to its habitat. Particularities of roots in perennial plants, such as meristem indeterminacy, modular growth, stress resistance, and patterns of senescence, are crucial in establishing perenniality and understanding adaptation of perennial plants to their habitats. Here, the key role of roots for perennial plant longevity will be discussed, taking into account current knowledge and highlighting additional aspects that still require investigation. PMID:24563283

  8. [Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation].

    PubMed

    Yan, Hui; Liu, Guang-quan; Li, Hong-sheng

    2010-11-01

    By using soil core method, the biomass, surface area, and length density of roots < or =2 mm and 2-5 mm in diameter in a 50-year-old Populus cathayana plantation on the northern slope of Qinling Mountains were determined during growth season. Among the roots <5 mm in diameter, those < or =2 mm and 2-5 mm in diameter accounted for 77.8% and 22.2% of the total root biomass, respectively. The surface area and length density of the roots < or =2 mm in diameter accounted for more than 97% of the total, and those of the roots 2-5 mm in diameter only occupied less than 3%. The biomass, surface area, and root length density of roots < or =2 mm in diameter decreased with soil depth, while those of the roots 2-5 mm in diameter were the least in 20-30 cm soil layer. The biomass, surface area, and length density of roots < or =2 mm in diameter were significantly correlated with soil organic matter and available nitrogen, but no significant correlations were found for the roots 2-5 mm in diameter. PMID:21360997

  9. Transgene expression in regenerated roots.

    PubMed

    Malamy, Jocelyn

    2007-01-01

    INTRODUCTIONThis procedure, which uses a root transformation protocol, provides a rapid method for assessing gene expression in Arabidopsis roots. It is useful for testing promoter:reporter gene constructs, for expressing genes, the overexpression of which is lethal in whole plants, and for transforming the roots of plants that are recalcitrant to conventional transformation techniques. The protocol has been used successfully with Ws, No-0, and RLD ecotypes. PMID:21357026

  10. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  11. [A case of appendicular supplementary root with external root resorption].

    PubMed

    González Bahillo, J; Martínez Insua, A; Varela Patiño, P; Rivas Lombardero, P; Paz Pumpido, F

    1991-01-01

    The case of a lateral maxillary incisor with a supplementary root fractured by external root resorption, is presented. The role played for the periodontal disease is shown in the clinical and radiographic achievements, and their implications in the pulpal disease. Endodontic therapy was performed and the diagnosis confirmed in the specimen histological research. PMID:1858059

  12. The roots of predictivism.

    PubMed

    Barnes, Eric Christian

    2014-03-01

    In The Paradox of Predictivism (2008, Cambridge University Press) I tried to demonstrate that there is an intimate relationship between predictivism (the thesis that novel predictions sometimes carry more weight than accommodations) and epistemic pluralism (the thesis that one important form of evidence in science is the judgments of other scientists). Here I respond to various published criticisms of some of the key points from Paradox from David Harker, Jarret Leplin, and Clark Glymour. Foci include my account of predictive novelty (endorsement novelty), the claim that predictivism has two roots, the prediction per se and predictive success, and my account of why Mendeleev's predictions carried special weight in confirming the Periodic Law of the Elements. PMID:24984449

  13. New roots for agriculture: exploiting the root phenome

    PubMed Central

    Lynch, Jonathan P.; Brown, Kathleen M.

    2012-01-01

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the ‘fitness landscape’ for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities. PMID:22527403

  14. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  15. Determinants and Polynomial Root Structure

    ERIC Educational Resources Information Center

    De Pillis, L. G.

    2005-01-01

    A little known property of determinants is developed in a manner accessible to beginning undergraduates in linear algebra. Using the language of matrix theory, a classical result by Sylvester that describes when two polynomials have a common root is recaptured. Among results concerning the structure of polynomial roots, polynomials with pairs of…

  16. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava. PMID:26547558

  17. Gravisensing in roots

    NASA Astrophysics Data System (ADS)

    Perbal, G.

    1999-01-01

    The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.

  18. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  19. Random root movements in weightlessness.

    PubMed

    Johnsson, A; Karlsson, C; Iversen, T H; Chapman, D K

    1996-02-01

    The dynamics of root growth was studied in weightlessness. In the absence of the gravitropic reference direction during weightlessness, root movements could be controlled by spontaneous growth processes, without any corrective growth induced by the gravitropic system. If truly random of nature, the bending behavior should follow so-called 'random walk' mathematics during weightlessness. Predictions from this hypothesis were critically tested. In a Spacelab ESA-experiment, denoted RANDOM and carried out during the IML-2 Shuttle flight in July 1994, the growth of garden cress (Lepidium sativum) roots was followed by time lapse photography at 1-h intervals. The growth pattern was recorded for about 20 h. Root growth was significantly smaller in weightlessness as compared to gravity (control) conditions. It was found that the roots performed spontaneous movements in weightlessness. The average direction of deviation of the plants consistently stayed equal to zero, despite these spontaneous movements. The average squared deviation increased linearly with time as predicted theoretically (but only for 8-10 h). Autocorrelation calculations showed that bendings of the roots, as determined from the 1-h photographs, were uncorrelated after about a 2-h interval. It is concluded that random processes play an important role in root growth. Predictions from a random walk hypothesis as to the growth dynamics could explain parts of the growth patterns recorded. This test of the hypothesis required microgravity conditions as provided for in a space experiment. PMID:11541141

  20. Nutritional regulation of root development.

    PubMed

    Ruiz Herrera, León Francisco; Shane, Michael W; López-Bucio, José

    2015-01-01

    Mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) are essential for plant growth, development, and reproduction. Adequate provision of nutrients via the root system impacts greatly on shoot biomass and plant productivity and is therefore of crucial importance for agriculture. Nutrients are taken up at the root surface in ionic form, which is mediated by specific transport proteins. Noteworthy, root tips are able to sense the local and internal concentrations of nutrients to adjust growth and developmental processes, and ultimately, to increase or decrease the exploratory capacity of the root system. Recently, important progress has been achieved in identifying the mechanisms of nutrient sensing in wild- and cultivated species, including Arabidopsis, bean, maize, rice, lupin as well as in members of the Proteaceae and Cyperaceae families, which develop highly sophisticated root clusters as adaptations to survive in soils with very low fertility. Major findings include identification of transporter proteins and transcription factors regulating nutrient sensing, miRNAs as mobile signals and peptides as repressors of lateral root development under heterogeneous nutrient supply. Understanding the roles played by N, P, and Fe in gene expression and biochemical characterization of proteins involved in root developmental responses to homogeneous or heterogeneous N and P sources has gained additional interest due to its potential for improving fertilizer acquisition efficiency in crops. PMID:25760021

  1. Hypocotyl adventitious root organogenesis differs from lateral root development

    PubMed Central

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  2. IAA transport in corn roots includes the root cap

    SciTech Connect

    Hasenstein, K.H. )

    1989-04-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing {sup 3}H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 {mu}1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 {mu}1 of sorbitol or the Ca{sup 2+} chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap.

  3. Towards a multidimensional root trait framework: a tree root review.

    PubMed

    Weemstra, Monique; Mommer, Liesje; Visser, Eric J W; van Ruijven, Jasper; Kuyper, Thomas W; Mohren, Godefridus M J; Sterck, Frank J

    2016-09-01

    Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework. PMID:27174359

  4. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength.

    PubMed

    Haling, Rebecca E; Brown, Lawrie K; Bengough, A Glyn; Young, Iain M; Hallett, Paul D; White, Philip J; George, Timothy S

    2013-09-01

    Root hairs are a key trait for improving the acquisition of phosphorus (P) by plants. However, it is not known whether root hairs provide significant advantage for plant growth under combined soil stresses, particularly under conditions that are known to restrict root hair initiation or elongation (e.g. compacted or high-strength soils). To investigate this, the root growth and P uptake of root hair genotypes of barley, Hordeum vulgare L. (i.e. genotypes with and without root hairs), were assessed under combinations of P deficiency and high soil strength. Genotypes with root hairs were found to have an advantage for root penetration into high-strength layers relative to root hairless genotypes. In P-deficient soils, despite a 20% reduction in root hair length under high-strength conditions, genotypes with root hairs were also found to have an advantage for P uptake. However, in fertilized soils, root hairs conferred an advantage for P uptake in low-strength soil but not in high-strength soil. Improved root-soil contact, coupled with an increased supply of P to the root, may decrease the value of root hairs for P acquisition in high-strength, high-P soils. Nevertheless, this work demonstrates that root hairs are a valuable trait for plant growth and nutrient acquisition under combined soil stresses. Selecting plants with superior root hair traits is important for improving P uptake efficiency and hence the sustainability of agricultural systems. PMID:23861547

  5. Power and Roots by Recursion.

    ERIC Educational Resources Information Center

    Aieta, Joseph F.

    1987-01-01

    This article illustrates how questions from elementary finance can serve as motivation for studying high order powers, roots, and exponential functions using Logo procedures. A second discussion addresses a relatively unknown algorithm for the trigonometric exponential and hyperbolic functions. (PK)

  6. Ultrasonic cleaning of root canals

    NASA Astrophysics Data System (ADS)

    Verhaagen, Bram; Boutsioukis, Christos; Jiang, Lei-Meng; Macedo, Ricardo; van der Sluis, Luc; Versluis, Michel

    2011-11-01

    A crucial step during a dental root canal treatment is irrigation, where an antimicrobial fluid is injected into the root canal system to eradicate all bacteria. Agitation of the fluid using an ultrasonically vibrating miniature file has shown significant improvement in cleaning efficacy over conventional syringe irrigation. However, the physical mechanisms underlying the cleaning process, being acoustic streaming, cavitation or chemical activity, and combinations thereof, are not fully understood. High-speed imaging allows us to visualize the flow pattern and cavitation in a root canal model at microscopic scales, at timescales relevant to the cleaning processes (microseconds). MicroPIV measurements of the induced acoustic streaming are coupled to the oscillation characteristics of the file as simulated numerically and measured with a laser vibrometer. The results give new insight into the role of acoustic streaming and the importance of the confinement for the cleaning of root canals.

  7. Root Patterns in Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Dara, A.; Moradi, A. B.; Carminati, A.; Oswald, S. E.

    2010-12-01

    Heterogeneous water availability is a typical characteristic of soils in which plant roots grow. Despite the intrinsic heterogeneity of soil-plant water relations, we know little about the ways how plants respond to local environmental quality. Furthermore, increasing use of soil amendments as partial water reservoirs in agriculture calls for a better understanding of plant response to soil heterogeneity. Neutron radiography is a non-invasive imaging that is highly sensitive to water and root distribution and that has high capability for monitoring spatial and temporal soil-plant water relations in heterogeneous systems. Maize plants were grown in 25 x 30 x 1 cm aluminum slabs filled with sandy soil. On the right side of the compartments a commercial water absorbent (Geohumus) was mixed with the soil. Geohumus was distributed with two patterns: mixed homogeneously with the soil, and arranged as 1-cm diameter aggregates (Fig. 1). Two irrigation treatments were applied: sufficient water irrigation and moderate water stress. Neutron radiography started 10 days after planting and has been performed twice a day for one week. At the end of the experiment, the containers were opened, the root were removed and dry root weight in different soil segments were measured. Neutron radiography showed root growth tendency towards Geohumus treated parts and preferential water uptake from Geohumus aggregates. Number and length of fine lateral roots were lower in treated areas compared to the non-treated zone and to control soil. Although corn plants showed an overall high proliferation towards the soil water sources, they decreased production of branches and fine root when water was more available near the main root parts. However there was 50% higher C allocation in roots grown in Geohumus compartments, as derived by the relative dry weight of root. The preferential C allocation in treated regions was higher when plants grew under water stress. We conclude that in addition to the

  8. Root Caries in Older Adults.

    PubMed

    Gregory, Dick; Hyde, Susan

    2015-08-01

    Older adults are retaining an increasing number of natural teeth, and nearly half of all individuals aged 75 and older have experienced root caries. Root caries is a major cause of tooth loss in older adults, and tooth loss is the most significant negative impact on oral health-related quality of life for the elderly. The need for improved preventive efforts and treatment strategies for this population is acute. PMID:26357814

  9. Effect of parameter choice in root water uptake models - the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, M.; Schneider, C.; Carminati, A.; Vetterlein, D.; Attinger, S.; Hildebrandt, A.

    2014-10-01

    Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water potential and the efficiency of root water uptake. We first apply a simple model to illustrate the mechanisms at the scale of single roots. By using two efficiency indices based on (i) the collar xylem potential ("effort") and (ii) the integral amount of unstressed root water uptake ("water yield"), we show that an optimal root length emerges, depending on the ratio between roots axial and radial conductivity. Young roots with high capacity for radial uptake are only efficient when they are short. Branching, in combination with mature transport roots, enables soil exploration and substantially increases active young root length at low collar potentials. Second, we investigate how this shapes uptake dynamics at the plant scale using a comprehensive three-dimensional root water uptake model. Plant-scale dynamics, such as the average uptake depth of entire root systems, were only minimally influenced by the hydraulic parameterization. However, other factors such as hydraulic redistribution, collar potential, internal redistribution patterns and instantaneous uptake depth depended strongly on the arrangement on the arrangement of root hydraulic properties. Root systems were most efficient when assembled of different root types, allowing for separation of root function in uptake (numerous short apical young roots) and transport (longer mature roots). Modelling results became similar when this heterogeneity was accounted for to some degree (i.e. if the root systems contained between

  10. Plant root-microbe communication in shaping root microbiomes.

    PubMed

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production. PMID:26729479

  11. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  12. How Can Science Education Foster Students' Rooting?

    ERIC Educational Resources Information Center

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  13. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  14. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  15. Root traits for infertile soils

    PubMed Central

    White, Philip J.; George, Timothy S.; Dupuy, Lionel X.; Karley, Alison J.; Valentine, Tracy A.; Wiesel, Lea; Wishart, Jane

    2013-01-01

    Crop production is often restricted by the availability of essential mineral elements. For example, the availability of N, P, K, and S limits low-input agriculture, the phytoavailability of Fe, Zn, and Cu limits crop production on alkaline and calcareous soils, and P, Mo, Mg, Ca, and K deficiencies, together with proton, Al and Mn toxicities, limit crop production on acid soils. Since essential mineral elements are acquired by the root system, the development of crop genotypes with root traits increasing their acquisition should increase yields on infertile soils. This paper examines root traits likely to improve the acquisition of these elements and observes that, although the efficient acquisition of a particular element requires a specific set of root traits, suites of traits can be identified that benefit the acquisition of a group of mineral elements. Elements can be divided into three Groups based on common trait requirements. Group 1 comprises N, S, K, B, and P. Group 2 comprises Fe, Zn, Cu, Mn, and Ni. Group 3 contains mineral elements that rarely affect crop production. It is argued that breeding for a limited number of distinct root ideotypes, addressing particular combinations of mineral imbalances, should be pursued. PMID:23781228

  16. Electrotropism of Maize Roots 1

    PubMed Central

    Ishikawa, Hideo; Evans, Michael L.

    1990-01-01

    We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[β-ethylether]-N,N,N′,N′-tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism. PMID:11537481

  17. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  18. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    PubMed Central

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately. PMID

  19. Efficient hydraulic properties of root systems

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Schneider, Christoph; Carminati, Andrea; Hildebrandt, Anke

    2013-04-01

    Understanding the mechanisms of ecosystem root water uptake (RWU) is paramount for parameterizing hydrological models. With the increase in computational power it is possible to calculate RWU explicitly up to the single plant scale using physical models. However, application of these models for increasing our understanding of ecosystem root water uptake is hindered by the deficit in knowledge about the detailed hydraulic parameter distribution within root systems. However, those physical models may help us to identify efficient parameterizations and to describe the influence of these hydraulic parameters on RWU profiles. In this research, we investigated the combined influence of root hydraulic parameters and different root topologies on shaping efficient root water uptake. First, we use a conceptual model of simple branching structures to understand the influence of branching location and transitions in root hydraulic properties on the RWU patterns in typical sub root structures. Second, we apply a physical model called "aRoot" to test our conclusions on complex root system architectures of single plants. aRoot calculates the distribution of xylem potential within arbitrary root geometries to satisfy a given water demand depending on the available water in the soil. Redistribution of water within the bulk soil is calculated using the Richards equation. We analyzed results using a measure of uptake efficiency, which describes the effort necessary for transpiration. Simulations with the conceptual model showed that total transpiration in sub root structures is independent of root hydraulic properties over a wide range of hydraulic parameters. On the other hand efficiency of root water uptake depends crucially on distribution hydraulic parameters in line with root topology. At the same time, these parameters shape strongly the distribution of RWU along the roots, and its evolution in time, thus leading to variable individual root water uptake profiles. Calculating

  20. Sensitivity of the "Root Bundle Model" to root mechanical properties and root distribution: Implication for shallow landslide stability.

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Giadrossich, Filippo; Cohen, Denis

    2015-04-01

    Root reinforcement is recognized as an important factor for shallow landslides stability. Due to the complexity of root reinforcement mechanisms and the heterogeneity of the root-soil system, the estimation of parameters used in root reinforcement models is difficult, time consuming, and often highly uncertain. For practical applications, it is necessary to focus on the estimation of the most relevant parameters. The objective of the present contribution is to review the state of the art in the development of root reinforcement models and to discuss the sensitivity of the "Root Bundle Model" (RBM) when considering the variability of root mechanical properties and the heterogeneity of root distributions. The RBM is a strain-step loading fiber bundle model extended to include the mechanical and geometrical properties of roots. The model allows the calculation of the force-displacement behavior of a root bundle. In view of new results of field pullout tests performed on coarse roots of spruce (Picea abies) and considering a consistent dataset of root distribution of alpine tree species, we quantify the sensitivity of the RBM and the uncertainty associated with the most important input parameters. Preliminary results show that the extrapolation of force-diameter values from incomplete datasets (i.e., when only small roots are tested and values for coarse roots are extrapolated) may result in considerable errors. In particular, in the case of distributions with root diameters larger than 5 mm, root reinforcement tends to be dominated by coarse roots and their mechanical properties need to be quantified. In addition to the results of the model sensitivity, we present a possible best-practice method for the quantification of root reinforcement in view of its application to slope stability calculations and implementations in numerical models.

  1. Root branching: mechanisms, robustness, and plasticity.

    PubMed

    Dastidar, Mouli Ghosh; Jouannet, Virginie; Maizel, Alexis

    2012-01-01

    Plants are sessile organisms that must efficiently exploit their habitat for water and nutrients. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients, and anchorage. The root system of plants is a dynamic structure whose architecture is determined by modulation of primary root growth and root branching. This plasticity relies on the continuous integration of environmental inputs and endogenous developmental programs controlling root branching. This review focuses on the cellular and molecular mechanisms involved in the regulation of lateral root distribution, initiation, and organogenesis with the main focus on the root system of Arabidopsis thaliana. We also examine the mechanisms linking environmental changes to the developmental pathways controlling root branching. Recent progress that emphasizes the parallels to the formation of root branches in other species is discussed. PMID:23801487

  2. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  3. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  4. Four cuspal maxillary second premolar with single root and three root canals: Case report

    PubMed Central

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  5. Four cuspal maxillary second premolar with single root and three root canals: Case report.

    PubMed

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  6. Brown Root Rot of Alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This bulletin describes the disease of alfalfa called brown root rot (BRR) including: the disease symptoms, the fungal pathogen and its biology, its distribution, and disease management. Since the 1920s, BRR has been regarded as an important disease of forage legumes, including alfalfa, in northern ...

  7. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  8. Rhizoctonia root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot is a soilborne disease of lentil caused by the fungal pathogen Rhizoctonia solani, and is favored by cool (11-19 C or 52 - 66 F) and wet soil conditions. The disease starts as reddish or dark brown lesions on lentil plants near the soil line, and develops into sunken lesions an...

  9. [Root arthrosis of the thumb].

    PubMed

    Hautefeuille, P; Duquesnoy, B

    1991-12-15

    Root arthrosis of the thumb results from a degenerative lesion of the trapezometacarpal joint. It is particularly frequent in menopausal women. The often prolonged pain it produces sometimes raises therapeutic problems. Treatment is always medical at first, but when it fails several surgical operations will ensure permanent painlessness. PMID:1808686

  10. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  11. Cutting the Roots of Violence.

    ERIC Educational Resources Information Center

    Koziey, Paul W.

    1996-01-01

    Violence is rooted in obedience to authority and in comparisons--foundations of our institutions of parenting and schooling. Obedience brings reward and punishment, comparison perpetuates a cycle of competition and conflict. Television violence is especially harmful because children easily understand visual images. The Reality Research approach to…

  12. Excising the Root from STEM

    ERIC Educational Resources Information Center

    Lock, Roger

    2009-01-01

    There are a number of well-intentioned STEM initiatives, some designed to improve the recruitment and retention of science teachers. Sometimes it appears that the initiators are remote from direct contact with the "grass roots" issues that feed the "stem" on which the blossoms of young enthusiastic recruits to the science teaching profession are…

  13. Molecular regulatory mechanism of tooth root development

    PubMed Central

    Huang, Xiao-Feng; Chai, Yang

    2012-01-01

    The root is crucial for the physiological function of the tooth, and a healthy root allows an artificial crown to function as required clinically. Tooth crown development has been studied intensively during the last few decades, but root development remains not well understood. Here we review the root development processes, including cell fate determination, induction of odontoblast and cementoblast differentiation, interaction of root epithelium and mesenchyme, and other molecular mechanisms. This review summarizes our current understanding of the signaling cascades and mechanisms involved in root development. It also sets the stage for de novo tooth regeneration. PMID:23222990

  14. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  15. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  16. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops. PMID:23913002

  17. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.

    PubMed

    Saleem, Muhammad; Law, Audrey D; Moe, Luke A

    2016-02-01

    Root-associated microbes have a profound impact on plant health, yet little is known about the distribution of root-associated microbes among different root morphologies or between rhizosphere and root environments. We explore these issues here with two commercial varieties of burley tobacco (Nicotiana tabacum) using 16S rRNA gene amplicon sequencing from rhizosphere soil, as well as from primary, secondary, and fine roots. While rhizosphere soils exhibited a fairly rich and even distribution, root samples were dominated by Proteobacteria. A comparison of abundant operational taxonomic units (OTUs) between rhizosphere and root samples indicated that Nicotiana roots select for rare taxa (predominantly Proteobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Acidobacteria) from their corresponding rhizosphere environments. The majority of root-inhabiting OTUs (~80 %) exhibited habitat generalism across the different root morphological habitats, although habitat specialists were noted. These results suggest a specific process whereby roots select rare taxa from a larger community. PMID:26391804

  18. The role of strigolactones in root development

    PubMed Central

    Sun, Huwei; Tao, Jinyuan; Gu, Pengyuan; Xu, Guohua; Zhang, Yali

    2016-01-01

    Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions. PMID:26515106

  19. Environmental Control of Root System Biology.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Dinneny, José R

    2016-04-29

    The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs. PMID:26905656

  20. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  1. Single-rooted primary first mandibular molar

    PubMed Central

    Haridoss, SelvaKumar; Swaminathan, Kavitha; Rajendran, Vijayakumar; Rajendran, Bharathan

    2014-01-01

    Morphological variations like single-rooted molar in primary dentition are scarce. Understanding the root canal anatomy and variations is necessary for successful root canal therapy. The purpose of the present article is to report successful endodontic treatment of primary left mandibular first molar with an abnormal morphology of a single root. This case report highlights the importance of knowledge and its applications in the management of anomalous anatomic variants which play a crucial role in the success of endodontic treatment. PMID:25150245

  2. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  3. EFFECTS OF OZONE ON ROOT PROCESSES

    EPA Science Inventory

    Ozone alters root growth and root processes by first reducing photosynthesis and altering foliar metabolic pathways. The alteration in foliar metabolism is reflected in lowered carbohydrate levels in the roots. This can reduce key metabolic processes such as mineral uptake and sy...

  4. Cultivar selection for sugarbeet root rot resistance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  5. Effect of scapling on root respiration rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scalping improves root quality at harvest since impurities such as potassium, sodium, amino nitrogen and invert sugars that hinder sugarbeet processing are concentrated in the upper root crown. The effect of scalping on root storage properties, however, is less clear. A small study was conducted t...

  6. [Root caries--scanning electron microscopic observations].

    PubMed

    Heinrich, R; Hornová, J; Kneist, S; Künzel, W

    1990-01-01

    Sound and carious root surfaces of 24 extracted human teeth with extensive periodontal attachment loss were examined by SEM. The microflora covering the radicular surfaces was a complex flora consisting of filamentous and fusiform bacteria, short and long rods. Cocci and coccoid bacteria were observed on root surfaces. Bacterial invasion in the exposed peripheral root dentin was delayed by sclerotic dentin. PMID:2150459

  7. Springback in Root Gravitropism 1

    PubMed Central

    Leopold, A. Carl; Wettlaufer, Scott H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as `springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalmaic acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a `memory' effect carried over from a prior gravistimulation. PMID:11537456

  8. The rhizosphere revisited: root microbiomics

    PubMed Central

    Bakker, Peter A. H. M.; Berendsen, Roeland L.; Doornbos, Rogier F.; Wintermans, Paul C. A.; Pieterse, Corné M. J.

    2013-01-01

    The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge. PMID:23755059

  9. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  10. Modeling root reinforcement using a root-failure Weibull survival function

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Giadrossich, F.; Cohen, D.

    2013-11-01

    Root networks contribute to slope stability through complex interactions with soil that include mechanical compression and tension. Due to the spatial heterogeneity of root distribution and the dynamics of root turnover, the quantification of root reinforcement on steep slopes is challenging and consequently the calculation of slope stability also. Although considerable progress has been made, some important aspects of root mechanics remain neglected. In this study we address specifically the role of root-strength variability on the mechanical behavior of a root bundle. Many factors contribute to the variability of root mechanical properties even within a single class of diameter. This work presents a new approach for quantifying root reinforcement that considers the variability of mechanical properties of each root diameter class. Using the data of laboratory tensile tests and field pullout tests, we calibrate the parameters of the Weibull survival function to implement the variability of root strength in a numerical model for the calculation of root reinforcement (RBMw). The results show that, for both laboratory and field data sets, the parameters of the Weibull distribution may be considered constant with the exponent equal to 2 and the normalized failure displacement equal to 1. Moreover, the results show that the variability of root strength in each root diameter class has a major influence on the behavior of a root bundle with important implications when considering different approaches in slope stability calculation. Sensitivity analysis shows that the calibration of the equations of the tensile force, the elasticity of the roots, and the root distribution are the most important steps. The new model allows the characterization of root reinforcement in terms of maximum pullout force, stiffness, and energy. Moreover, it simplifies the implementation of root reinforcement in slope stability models. The realistic quantification of root reinforcement for tensile

  11. Root-cubing and general root-powering methods for finding the zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Mathematical analysis technique generalizes a root squaring and root cubing method into a general root powering method. The introduction of partitioned polynomials into this general root powering method simplifies the coding of the polynomial transformations into input data suitable for processing by computer. The method includes analytic functions.

  12. Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape

    PubMed Central

    Nakamura, Shin-ichi

    2013-01-01

    Glutathione is a tripeptide involved in various aspects of plant metabolism. This study investigated the effects of the reduced form of glutathione (GSH) applied to specific organs (source leaves, sink leaves, and roots) on cadmium (Cd) distribution and behaviour in the roots of oilseed rape plants (Brassica napus) cultured hydroponically. The translocation ratio of Cd from roots to shoots was significantly lower in plants that had root treatment of GSH than in control plants. GSH applied to roots reduced the Cd concentration in the symplast sap of root cells and inhibited root-to-shoot Cd translocation via xylem vessels significantly. GSH applied to roots also activated Cd efflux from root cells to the hydroponic solution. Inhibition of root-to-shoot translocation of Cd was visualized, and the activation of Cd efflux from root cells was also shown by using a positron-emitting tracer imaging system (PETIS). This study investigated a similar inhibitory effect on root-to-shoot translocation of Cd by the oxidized form of glutathione, GSSG. Inhibition of Cd accumulation by GSH was abolished by a low-temperature treatment. Root cells of plants exposed to GSH in the root zone had less Cd available for xylem loading by actively excluding Cd from the roots. Consequently, root-to-shoot translocation of Cd was suppressed and Cd accumulation in the shoot decreased. PMID:23364937

  13. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  14. The pattern of secondary root formation in curving roots of Arabidopsis thaliana (L.) Heynh

    NASA Technical Reports Server (NTRS)

    Fortin, M. C.; Pierce, F. J.; Poff, K. L.

    1989-01-01

    A gravitational stimulus was used to induce the curvature of the main root of Arabidopsis thaliana. The number of secondary roots increased on the convex side and decreased on the concave side of any curved main root axes in comparison with straight roots used as the control. The same phenomenon was observed with the curved main roots of plants grown on a clinostat and of mutant plants exhibiting random root orientation. The data suggest that the pattern of lateral root formation is associated with curvature but is independent of the environmental stimuli used to induce curvature.

  15. Optimal root arrangement of cereal crops

    NASA Astrophysics Data System (ADS)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  16. General complex polynomial root solver

    NASA Astrophysics Data System (ADS)

    Skowron, J.; Gould, A.

    2012-12-01

    This general complex polynomial root solver, implemented in Fortran and further optimized for binary microlenses, uses a new algorithm to solve polynomial equations and is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when compared to naive solvers, comes from a fail-safe procedure that permits skipping the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required.

  17. Xanthones from Garcinia propinqua Roots.

    PubMed

    Meesakul, Pornphimol; Pansanit, Acharavadee; Maneerat, Wisanu; Sripisut, Tawanun; Ritthiwigrom, Thunwadee; Machana, Theeraphan; Cheenpracha, Sarot; Laphookhieo, Surat

    2016-01-01

    Phytochemical investigation of Garcinia propinqua roots led to the isolation and identification of a new xanthone, doitunggarcinone D (1), together with 15 known compounds (2-16). Their structures were elucidated by intensive analysis of spectroscopic data. Compounds 3, 6, 7, 14, 15 and 16 exhibited strong antibacterial activity against Bacillus subtilis TISTR 088 with MIC values in the range of 1-4 µg/mL. Compounds 3, 7, 10 and 14 also showed good antibacterial activity against B. cereus TISTR 688 with MIC values ranging from 4-8 µg/mL. PMID:26996028

  18. Morphometric data of canine sacral nerve roots with reference to electrical sacral root stimulation.

    PubMed

    Rijkhoff, N J; Koldewijn, E L; d'Hollosy, W; Debruyne, F M; Wijkstra, H

    1996-01-01

    Experiments to investigate restoration of lower urinary tract control by electrical stimulation of the sacral nerve roots are mostly performed on dogs, yet little morphometric data (such as canine root and fiber diameter distributions) are available. The aim of this study was to acquire morphometric data of the intradural canine sacral dorsal and ventral roots (S1-S3). Cross-sections of sacral roots of two beagle dogs were analyzed using a light microscope and image processing software. The cross-sectional area of each root was measured. The diameters of the fibers and the axons in the cross-sections of the S2 and S3 roots were measured and used to construct nerve fiber diameter frequency distribution histograms. The results show a unimodal diameter distribution for the dorsal roots and a bimodal distribution for the ventral roots. In addition the average ratio g of the axon diameter to fiber diameter was calculated for each root. PMID:8732990

  19. Root canal treatment of a maxillary first premolar with three roots

    PubMed Central

    Mathew, Josey; Devadathan, Aravindan; Syriac, Gibi; Shamini, Sai

    2015-01-01

    Successful root canal treatment needs a thorough knowledge of both internal and external anatomy of a tooth. Variations in root canal anatomy constitute an impressive challenge to the successful completion of endodontic treatment. Undetected extra roots and canals are a major reason for failed root canal treatment. Three separate roots in a maxillary first premolar have a very low incidence of 0.5–6%. Three rooted premolars are anatomically similar to molars and are sometimes called “small molars or radiculous molars.” This article explains the diagnosis and endodontic management of a three rooted maxillary premolar with separate canals in each root highlighting that statistics may indicate a low incidence of abnormal variations in root canal morphology of a tooth, but aberrant anatomy is a possibility in any tooth. Hence, modern diagnostics like cone beam computed tomography, and endodontic operating microscope may have to be used more for predictable endodontic treatment. PMID:26538958

  20. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  1. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology. PMID:24128849

  2. PATTERNS IN SOIL FERTILITY AND ROOT HERBIVORY INTERACT TO INFLUENCE FINE-ROOT DYNAMICS.

    SciTech Connect

    Stevens, Glen, N.; Jones, Robert, H.

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8–9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (,1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P , 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P , 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  3. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  4. A statistical approach to root system classification.

    PubMed

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  5. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  6. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    PubMed

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  7. 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots and root tips and soybean cyst nematode (Heterodera glycines) colonized root pieces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It's fairly well established that a functional ethylene response path is important to root knot and cyst nematode colonization of plant roots. However, ethylene plays many roles in root development and the role of ethylene in nematode colonization of roots may be indirect, e.g. lateral root initiati...

  8. Roots at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  9. Roots at the percolation threshold.

    PubMed

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water? PMID:25974526

  10. Salt stress signals shape the plant root.

    PubMed

    Galvan-Ampudia, Carlos S; Testerink, Christa

    2011-06-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. PMID:21511515

  11. High resolution modeling of water and nutrient uptake by plant roots: at a scale from single root to root system

    NASA Astrophysics Data System (ADS)

    Abesha, Betiglu; Vanderborght, Jan; Javaux, Mathieu; Schnepf, Andrea; Vereecken, Harry

    2014-05-01

    The uptake of nutrients by plant roots is a multiscale problem. At the small scale, nutrient fluxes towards single roots lead to strong gradients in nutrient concentrations around single roots. At the scale of the root system and soil profile, nutrient fluxes are generated by water fluxes and variations in nutrient uptake due to spatially varying root density, nutrient concentrations and water contents. In this contribution, we present a numerical simulation model that describes the processes at the scale of a single root and the scale of the entire root system simultaneously. Water flow and nutrient transport in the soil are described by the 3-D Richards and advection-dispersion equations, respectively. Water uptake by a root segment is simulated based on the difference between the soil water potential at the soil root interface and in the xylem tissue. The xylem water potential is derived from solving a set of flow equations that describe flow in the root network (Javaux et al., 2008). Nutrient uptake by a segment is simulated as a function of the nutrient concentration at the soil-root interface using a nonlinear Michaelis-Menten equation. An accurate description of the nutrient concentrations gradients around single roots requires a spatial resolution in the sub mm scale and is therefore not feasible for simulations of the entire root system or soil profile. In order to address this problem, a 1-D axisymmetric model (Barber and Cushman, 1981) was used to describe nutrient transport towards a single root segment. The network of connected cylindrical models was coupled to a 3-D regular grid that was used to solve the flow and transport equations at the root system scale. The coupling was done by matching the fluxes across the interfaces of the voxels of the 3-D grid that contain root segments with the fluxes at the outer boundaries of the cylindrical domains and by matching the sink terms in these voxels with uptake by the root segments. To demonstrate the

  12. Root phenology in a changing climate.

    PubMed

    Radville, Laura; McCormack, M Luke; Post, Eric; Eissenstat, David M

    2016-06-01

    Plant phenology is one of the strongest indicators of ecological responses to climate change, and altered phenology can have pronounced effects on net primary production, species composition in local communities, greenhouse gas fluxes, and ecosystem processes. Although many studies have shown that aboveground plant phenology advances with warmer temperatures, demonstration of a comparable association for belowground phenology has been lacking because the factors that influence root phenology are poorly understood. Because roots can constitute a large fraction of plant biomass, and root phenology may not respond to warming in the same way as shoots, this represents an important knowledge gap in our understanding of how climate change will influence phenology and plant performance. We review studies of root phenology and provide suggestions to direct future research. Only 29% of examined studies approached root phenology quantitatively, strongly limiting interpretation of results across studies. Therefore, we suggest that researchers emphasize quantitative analyses in future phenological studies. We suggest that root initiation, peak growth, and root cessation may be under different controls. Root initiation and cessation may be more constrained by soil temperature and the timing of carbon availability, whereas the timing of peak root growth may represent trade-offs among competing plant sinks. Roots probably do not experience winter dormancy in the same way as shoots: 89% of the studies that examined winter phenology found evidence of growth during winter months. More research is needed to observe root phenology, and future studies should be careful to capture winter and early season phenology. This should be done quantitatively, with direct observations of root growth utilizing rhizotrons or minirhizotrons. PMID:26931171

  13. Root Doctors as Providers of Primary Care

    PubMed Central

    Stitt, Van J.

    1983-01-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two “root doctors.” These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care. PMID:6887277

  14. Root doctors as providers of primary care.

    PubMed

    Stitt, V J

    1983-07-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two "root doctors." These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care. PMID:6887277

  15. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  16. Advanced Techniques for Root Cause Analysis

    Energy Science and Technology Software Center (ESTSC)

    2000-09-19

    Five items make up this package, or can be used individually. The Chronological Safety Management Template utilizes a linear adaptation of the Integrated Safety Management System laid out in the form of a template that greatly enhances the ability of the analyst to perform the first step of any investigation which is to gather all pertinent facts and identify causal factors. The Problem Analysis Tree is a simple three (3) level problem analysis tree whichmore » is easier for organizations outside of WSRC to use. Another part is the Systemic Root Cause Tree. One of the most basic and unique features of Expanded Root Cause Analysis is the Systemic Root Cause portion of the Expanded Root Cause Pyramid. The Systemic Root Causes are even more basic than the Programmatic Root Causes and represent Root Causes that cut across multiple (if not all) programs in an organization. the Systemic Root Cause portion contains 51 causes embedded at the bottom level of a three level Systemic Root Cause Tree that is divided into logical, organizationally based categorie to assist the analyst. The Computer Aided Root Cause Analysis that allows the analyst at each level of the Pyramid to a) obtain a brief description of the cause that is being considered, b) record a decision that the item is applicable, c) proceed to the next level of the Pyramid to see only those items at the next level of the tree that are relevant to the particular cause that has been chosen, and d) at the end of the process automatically print out a summary report of the incident, the causal factors as they relate to the safety management system, the probable causes, apparent causes, Programmatic Root Causes and Systemic Root Causes for each causal factor and the associated corrective action.« less

  17. Springback and diagravitropism in Merit corn roots.

    PubMed Central

    Kelly, M O; Leopold, A C

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots. PMID:11537884

  18. Springback and diagravitropism in Merit corn roots

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots.

  19. Springback and diagravitropism in Merit corn roots.

    PubMed

    Kelly, M O; Leopold, A C

    1992-06-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots. PMID:11537884

  20. Temperature sensing by primary roots of maize

    SciTech Connect

    Fortin, M.C.A.; Poff, K.L. )

    1990-09-01

    Zea mays L. seedlings, grown on agar plates at 26{degree}C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  1. Behavioral response of grape root borer (Lepidoptera: Sesiidae) neonates to grape root volatiles.

    PubMed

    Rijal, J P; Zhang, A; Bergh, J C

    2013-12-01

    Grape root borer, Vitacea polistiformis (Harris), is an oligophagous and potentially destructive pest of grape in commercial vineyards throughout much of the eastern United States. Larvae feed on vine roots, although little is known about their below-ground interactions with host plants. The behavioral response of groups of grape root borer neonates to stimuli from host and nonhost roots was evaluated in single and paired stimuli bioassays in which stimuli were presented in opposing wells attached to the bottom of petri dish arenas. Stimulus sources included root pieces and root headspace volatiles from 3309 and 420-A grape rootstocks (host) and apple (nonhost) and ethanol-based extracts of 3309 and 420-A roots. In single stimulus assays, significantly more larvae were recovered from wells containing grape roots, apple roots, grape extracts, and grape root volatiles than from control wells, but there was no significant response to volatiles collected from the headspace of apple roots. In paired stimuli assays, significantly more larvae were recovered from wells containing grape than apple roots. There was no difference in larval distribution between wells when 420-A and 3309 roots were presented simultaneously, although a significantly greater response to 3309 than 420-A root extract was recorded. When soil was added to the assays, significantly more larvae were recovered from wells containing grape roots than from those containing only soil, but this response was not detected in assays using buried apple roots. These results are discussed in relation to the plant-insect interactions between grape root borer larvae and their Vitaceae hosts. PMID:24216488

  2. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  3. Root-to-Root Travel of the Beneficial Bacterium Azospirillum brasilense†

    PubMed Central

    Bashan, Yoav; Holguin, Gina

    1994-01-01

    The root-to-root travel of the beneficial bacterium Azospirillum brasilense on wheat and soybean roots in agar, sand, and light-textured soil was monitored. We used a motile wild-type (Mot+) strain and a motility-deficient (Mot-) strain which was derived from the wild-type strain. The colonization levels of inoculated roots were similar for the two strains. Mot+ cells moved from inoculated roots (either natural or artificial roots in agar, sand, or light-textured soil) to noninoculated roots, where they formed a band-type colonization composed of bacterial aggregates encircling a limited part of the root, regardless of the plant species. The Mot- strain did not move toward noninoculated roots of either plant species and usually stayed at the inoculation site and root tips. The effect of attractants and repellents was the primary factor governing the motility of Mot+ cells in the presence of adequate water. We propose that interroot travel of A. brasilense is an essential preliminary step in the root-bacterium recognition mechanism. Bacterial motility might have a general role in getting Azospirillum cells to the site where firmer attachment favors colonization of the root system. Azospirillum travel toward plants is a nonspecific active process which is not directly dependent on nutrient deficiency but is a consequence of a nonspecific bacterial chemotaxis, influenced by the balance between attractants and possibly repellents leaked by the root. PMID:16349297

  4. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots.

    PubMed

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc'h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A; Belko, Marème N; Bennett, Malcolm J; Gantet, Pascal; Wells, Darren M; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  5. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  6. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  7. Deriving the unit hydrograph by root selection

    NASA Astrophysics Data System (ADS)

    Turner, J. E.; Dooge, J. C. I.; Bree, T.

    1989-09-01

    De Laine's method of deriving the unit hydrograph from the common roots of polynomials corresponding to different storms is used as a basis for proposing a new procedure in which the unit hydrograph roots can be selected from among the polynomial roots for the runoff of a single storm. The selection is made on the basis that the complex unit hydrograph roots form a characteristic "skew circle" pattern when plotted on an Argand diagram. The application of the procedure to field data is illustrated for both a single-peaked and a double-peaked event.

  8. New substitution models for rooting phylogenetic trees

    PubMed Central

    Williams, Tom A.; Heaps, Sarah E.; Cherlin, Svetlana; Nye, Tom M. W.; Boys, Richard J.; Embley, T. Martin

    2015-01-01

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. PMID:26323766

  9. Maxillary First Molar with Two Root Canals

    PubMed Central

    Rahimi, Saeed; Ghasemi, Negin

    2013-01-01

    Knowledge regarding the anatomic morphology of maxillary molars is absolutely essential for the success of endodontic treatment. The morphology of the permanent maxillary first molar has been reviewed extensively; however, the presence of two canals in a two-rooted maxillary first molar has rarely been reported in studies describing tooth and root canal anatomies. This case report presents a patient with a maxillary first molar with two roots and two root canals, who was referred to the Department of Endodontics, Tabriz University of Medical Sciences, Iran. PMID:23862051

  10. The nth root of sequential effect algebras

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wu, Junde

    2010-06-01

    In 2005, Gudder [Int. J. Theor. Phys. 44, 2219 (2005)] presented 25 problems of sequential effect algebras, the 20th problem asked: In a sequential effect algebra, if the square root of some element exists, is it unique? In this paper, we show that for each given positive integer n >1, there is a sequential effect algebra such that the nth root of its some element c is not unique, and the nth root of c is not the kth root of c (k

  11. New substitution models for rooting phylogenetic trees.

    PubMed

    Williams, Tom A; Heaps, Sarah E; Cherlin, Svetlana; Nye, Tom M W; Boys, Richard J; Embley, T Martin

    2015-09-26

    The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made. PMID:26323766

  12. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development.

    PubMed

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U

    2014-03-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. 'Karat' with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  13. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    PubMed Central

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S

    2014-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  14. OZONE DECREASES SPRING ROOT GROWTH AND ROOT CARBOHYDRATE CONTENT IN PONDEROSA PINE THE YEAR FOLLOWING EXPOSURE

    EPA Science Inventory

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. he hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. eedling...

  15. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  16. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  17. ROOT CAUSE ANALYSIS PROGRAM MANUAL

    SciTech Connect

    Gravois, Melanie C.

    2007-05-02

    Root Cause Analysis (RCA) identifies the cause of an adverse condition that, if corrected, will preclude recurrence or greatly reduce the probability of recurrence of the same or similar adverse conditions and thereby protect the health and safety of the public, the workers, and the environment. This procedure sets forth the requirements for management determination and the selection of RCA methods and implementation of RCAs that are a result of significant findings from Price-Anderson Amendments Act (PAAA) violations, occurrences/events, Significant Adverse Conditions, and external oversight Corrective Action Requests (CARs) generated by the Office of Enforcement (PAAA headquarters), the U.S. Environmental Protection Agency, and other oversight entities against Lawrence Berkeley National Laboratory (LBNL). Performance of an RCA may result in the identification of issues that should be reported in accordance with the Issues Management Program Manual.

  18. Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions.

    PubMed

    Nestler, Josefine; Keyes, Samuel David; Wissuwa, Matthias

    2016-06-01

    Root hairs are important sites for nutrient uptake, especially in P limiting conditions. Here we provide first insights into root hair development for the diverse root types of rice grown under different conditions, and show the first in situ images of rice root hairs in intact soil. Roots of plants grown in upland fields produced short root hairs that showed little responsiveness to P deficiency, and had a higher root hair density in the high P condition. These results were reproducible in rhizoboxes under greenhouse conditions. Synchrotron-based in situ analysis of root hairs in intact soil further confirmed this pattern of root hair formation. In contrast, plants grown in nutrient solution produced more and longer root hairs in low P conditions, but these were unequally distributed among the different root types. While nutrient solution-grown main roots had longer hairs compared to upland field-grown main roots, second order lateral roots did not form any root hairs in nutrient solution-grown plants. Furthermore, root hair formation for plants grown in flooded lowland fields revealed few similarities with those grown in nutrient solution, thus defining nutrient solution as a possible measure of maximal, but not natural root hair development. By combining root hair length and density as a measure for root hair impact on the whole soil-grown root system we show that lateral roots provided the majority of root hair surface. PMID:26976815

  19. Malformations of the tooth root in humans.

    PubMed

    Luder, Hans U

    2015-01-01

    The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation

  20. Malformations of the tooth root in humans

    PubMed Central

    Luder, Hans U.

    2015-01-01

    The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation

  1. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  2. Root reinforcement of soils under compression

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Rist, A.; Cohen, D.; Giadrossich, F.; Egorov, P.; Büttner, D.; Stolz, M.; Thormann, J.-J.

    2015-10-01

    It is well recognized that roots reinforce soils and that the distribution of roots within vegetated hillslopes strongly influences the spatial distribution of soil strength. Previous studies have focussed on the contribution of root reinforcement under conditions of tension or shear. However, no systematic investigation into the contribution of root reinforcement to soils experiencing compression, such as the passive Earth forces at the toe of a landslide, is found in the literature. An empirical-analytical model (CoRoS) for the quantification of root reinforcement in soils under compression is presented and tested against experimental data. The CoRoS model describes the force-displacement behavior of compressed, rooted soils and can be used to provide a framework for improving slope stability calculations. Laboratory results showed that the presence of 10 roots with diameters ranging from 6 to 28 mm in a rectangular soil profile 0.72 m by 0.25 m increased the compressive strength of the soil by about 40% (2.5 kN) at a displacement of 0.05 m, while the apparent stiffness of the rooted soil was 38% higher than for root-free soil. The CoRoS model yields good agreement with experimentally determined values of maximum reinforcement force and compression force as a function of displacement. These results indicate that root reinforcement under compression has a major influence on the mechanical behavior of soil and that the force-displacement behavior of roots should be included in analysis of the compressive regimes that commonly are present in the toe of landslides.

  3. Root susceptibility and inoculum production from roots of Eastern United States oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...

  4. RootScan: Software for high-throughput analysis of root anatomical traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...

  5. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  6. Root susceptibility and inoculum production from roots of eastern oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Oak radicles of several eastern oak species were exposed to zoospore suspensions of 1, 10, 100, or 1000 zoospores per ml at ...

  7. Root-Gel Interactions and the Root Waving Behavior of Arabidopsis1[w

    PubMed Central

    Thompson, Matthew V.; Holbrook, N. Michele

    2004-01-01

    Arabidopsis roots grown on inclined agarose gels exhibit a sinusoidal growth pattern known as root waving. While root waving has been attributed to both intrinsic factors (e.g. circumnutation) and growth responses to external signals such as gravity, the potential for physical interactions between the root and its substrate to influence the development of this complex phenotype has been generally ignored. Using a rotating stage microscope and time-lapse digital imaging, we show that (1) root tip mobility is impeded by the gel surface, (2) this impedance causes root tip deflections by amplifying curvature in the elongation zone in a way that is distinctly nontropic, and (3) root tip impedance is augmented by normal gravitropic pressure applied by the root tip against the gel surface. Thus, both lateral corrective bending near the root apex and root tip impedance could be due to different vector components of the same graviresponse. Furthermore, we speculate that coupling between root twisting and bending is a mechanical effect resulting from root tip impedance. PMID:15247406

  8. Kinetics of short-term root-carbon mineralization in roots of biofuel crops in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand and document the rates of root decomposition in biofuel cropping systems, we compared the evolution of CO2 from roots incubated with samples of two Iowa Mollisols. Root samples were collected from experimental plots for four cropping systems: a multispecies reconstructed prairie...

  9. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  10. Relations between Roots and Coefficients of Cubic Equations with One Root Negative the Reciprocal of Another

    ERIC Educational Resources Information Center

    Asiru, M. A.

    2007-01-01

    Under predetermined conditions on the roots and coefficients, necessary and sufficient conditions relating the coefficients of a given cubic equation x[cubed] + ax[squared] + bx + c = 0 can be established so that the roots possess desired properties. In this note, the condition for one root of a cubic equation to be "the negative reciprocal of…

  11. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  12. Effect of Root System Morphology on Root-sprouting and Shoot-rooting Abilities in 123 Plant Species from Eroded Lands in North-east Spain

    PubMed Central

    GUERRERO-CAMPO, JOAQUÍN; PALACIO, SARA; PÉREZ-RONTOMÉ, CARMEN; MONTSERRAT-MARTÍ, GABRIEL

    2006-01-01

    • Background and Aims The objective of this study was to test whether the mean values of several root morphological variables were related to the ability to develop root-borne shoots and/or shoot-borne roots in a wide range of vascular plants. • Methods A comparative study was carried out on the 123 most common plant species from eroded lands in north-east Spain. After careful excavations in the field, measurements were taken of the maximum root depth, absolute and relative basal root diameter, specific root length (SRL), and the root depth/root lateral spread ratio on at least three individuals per species. Shoot-rooting and root-sprouting were observed in a large number of individuals in many eroded and sedimentary environments. The effect of life history and phylogeny on shoot-rooting and root-sprouting abilities was also analysed. • Key Results The species with coarse and deep tap-roots tended to be root-sprouting and those with fine, fasciculate and long main roots (which generally spread laterally), tended to be shoot-rooting. Phylogeny had an important influence on root system morphology and shoot-rooting and root-sprouting capacities. However, the above relations stood after applying analyses based on phylogenetically independent contrasts (PICs). • Conclusions The main morphological features of the root system of the study species are related to their ability to sprout from their roots and form roots from their shoots. According to the results, such abilities might only be functionally viable in restricted root system morphologies and ecological strategies. PMID:16790468

  13. Meniscal Root Tears: Identification and Repair.

    PubMed

    Doherty, David B; Lowe, Walter R

    2016-01-01

    Intact menisci are capable of converting the axial load of tibiofemoral contact into hoop stress that protects the knee joint. Total meniscectomy leads to rapid degeneration of the knee. Strong clinical and biomechanical data show meniscal root tears and avulsions are the functional equivalent of total meniscectomy. Lateral root tears commonly occur with knee ligament sprains and tears. Medial root tears are generally more chronic, and can be caused by preexisting knee arthritis. Meniscal root repair is indicated when there is identification of a meniscal root tear in a knee with minimal to no arthritis. Chronic root tears in the setting of osteoarthritis are treated conservatively. Meniscal root tears can acutely occur with cruciate ligament tears, can exaggerate symptoms of instability, and will have negative ramifications on outcomes of anterior cruciate ligament reconstruction if not addressed concomitantly. In this review, we describe the importance of the menisci for knee joint longevity through anatomy and biomechanics, the diagnostic workup, and ultimately a transosseous technique for repair of meniscal root tears and avulsions. PMID:27004274

  14. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  15. Fate of HERS during Tooth Root Development

    PubMed Central

    Huang, Xiaofeng; Bringas, Pablo; Slavkin, Harold C.; Chai, Yang

    2009-01-01

    Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS cells are attached to the surface of the cementum, and others separate to become the epithelial rest of Malasez. HERS cells secrete extracellular matrix components onto the surface of the dentin before dental follicle cells penetrate the HERS network to contact dentin. HERS cells also participate in the cementum development and may differentiate into cementocytes. During root development, the HERS is not interrupted, and instead the HERS cells continue to communicate with each other through the network structure. Furthermore, HERS cells interact with cranial neural crest derived mesenchyme to guide root development. Taken together, the network of HERS cells is crucial for tooth root development. PMID:19576204

  16. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  17. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  18. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  19. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  20. Enhancing Students' Understanding of Square Roots

    ERIC Educational Resources Information Center

    Wiesman, Jeff L.

    2015-01-01

    Students enrolled in a middle school prealgebra or algebra course often struggle to conceptualize and understand the meaning of radical notation when it is introduced. For example, although it is important for students to approximate the decimal value of a number such as [square root of] 30 and estimate the value of a square root in the form of…

  1. Sporulation on plant roots by Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum has been shown to infect the roots of many of the pathogen’s foliar hosts. Methods of detecting inoculum in runoff and of quantifying root colonization were tested using Viburnum tinus, Camellia oleifera, Quercus prinus, Umbellularia californica, and Epilobium ciliatum. Plants...

  2. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  3. Growth and development of root system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth and development of root systems of cotton plants is under genetic control but may be modified by the environment. There are many factors that influence root development in cotton. These range from abiotic factors such as soil temperature, soil water, and soil aeration to biotic factors ...

  4. Field investigation of rooting potential in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differential influence of root systems on plant development under field conditions is very difficult. A field experiment was devised using three different row spacings (101,152 and 203 cm ) to screen sorghum germplasm for rooting potential based on the relative ability to explore additional soil...

  5. Affine root systems and dual numbers

    NASA Astrophysics Data System (ADS)

    Kostyakov, I. V.; Gromov, N. A.; Kuratov, V. V.

    The root systems in Carroll spaces with degenerate metric are defined. It is shown that their Cartan matrices and reflection groups are affine. Due to the geometric consideration the root system structure of affine algebras is determined by a sufficiently simple algorithm.

  6. Black streak root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black streak root rot of lentil is caused by the soil borne fungus Thielaviopsis basicola. The pathogen is widespread. The disease shows symptoms of black streaking on root, and stunted plants. The disease is favored by cool and moist weather. Management of the disease rely on avoiding fields wi...

  7. Root phenotypic characterization of lesquerella genetic resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root systems are crucial for optimizing plant growth and productivity. There has been a push to better understand root morphological and architectural traits and their plasticity because these traits determine the capacity of plants to effectively acquire available water and soil nutrients in the so...

  8. Maize root characteristis that enhance flooding tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant root systems have several cellular and molecular adaptations that are important in reducing stress caused by flooding. Of these, two physical properties of root systems provide an initial barrier toward the avoidance of stress. These are the presence of aerenchyma cells and rapid adventitious ...

  9. Sugarbeet Cultivar Evaluation for Bacterial Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugarbeet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, studies were conducted to establish an assa...

  10. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  11. Rapid phenotyping of alfalfa root system architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root system architecture (RSA) influences the capacity of an alfalfa plant for symbiotic nitrogen fixation, nutrient uptake and water use efficiency, resistance to frost heaving, winterhardiness, and some pest and pathogen resistance. However, we currently lack a basic understanding of root system d...

  12. Roots as a source of food.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous plant species produce edible roots that are an important source of calories and that contribute to human nutrition. This book chapter discusses the origin and domestication, production aspects and nutritional aspects of a number of root crops including; cassava (Manioc), sweetpotato (Ipomo...

  13. A new approach to root formation

    PubMed Central

    Vatanpour, Mehdi; Zarei, Mina; Javidi, Maryam; Shirazian, Shiva

    2008-01-01

    In endodontics, treatment of an open apex tooth with necrotic pulp is a problem. It seems that with promotion of remnants of Hertwig’s epithelial sheath or rest of malassez accompany with a good irrigation of root canal we can expect root formation. (Iranian Endodontic Journal 2008;3:42-43) PMID:24171018

  14. ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS

    EPA Science Inventory

    Seagrasses are adapted to being rooted in reduced, anoxic sediments with high rates of sulfate reduction. During the day, an oxygen gradient is generated around the roots, becoming anoxic at night. Thus, obligate anaerobic bacteria in the rhizosphere have to tolerate elevated oxy...

  15. Dehydration Accelerates Respiration in Postharvest Sugarbeet Roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarbeet (Beta vulgaris L.) roots lose water during storage and often become severely dehydrated after prolonged storage and at the outer regions of storage piles which have greater wind and sun exposure. Sucrose loss is known to be elevated in dehydrated roots, although the metabolic processes re...

  16. Method for Constructing Standardized Simulated Root Canals.

    ERIC Educational Resources Information Center

    Schulz-Bongert, Udo; Weine, Franklin S.

    1990-01-01

    The construction of visual and manipulative aids, clear resin blocks with root-canal-like spaces, for simulation of root canals is explained. Time, materials, and techniques are discussed. The method allows for comparison of canals, creation of any configuration of canals, and easy presentation during instruction. (MSE)

  17. Arabidopsis: An Adequate Model for Dicot Root Systems?

    PubMed

    Zobel, Richard W

    2016-01-01

    The Arabidopsis root system is frequently considered to have only three classes of root: primary, lateral, and adventitious. Research with other plant species has suggested up to eight different developmental/functional classes of root for a given plant root system. If Arabidopsis has only three classes of root, it may not be an adequate model for eudicot plant root systems. Recent research, however, can be interpreted to suggest that pre-flowering Arabidopsis does have at least five (5) of these classes of root. This then suggests that Arabidopsis root research can be considered an adequate model for dicot plant root systems. PMID:26904040

  18. GiA Roots: software for the high throughput analysis of plant root system architecture

    PubMed Central

    2012-01-01

    Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. Conclusions We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis. PMID:22834569

  19. Effect of lead on root growth

    PubMed Central

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  20. Systems approaches to study root architecture dynamics

    PubMed Central

    Cuesta, Candela; Wabnik, Krzysztof; Benková, Eva

    2013-01-01

    The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation. Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how LRs and thereby root system architecture is established and developed. PMID:24421783

  1. The origin and early evolution of roots.

    PubMed

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-10-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist. PMID:25187527

  2. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  3. Long-term control of root growth

    SciTech Connect

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin. 7 figs.

  4. Clinical management of infected root canal dentin.

    PubMed

    Love, R M

    1996-08-01

    Several hundred different species of bacteria are present in the human intraoral environment. Bacterial penetration of root canal dentin occurs when bacteria invade the root canal system. These bacteria may constitute a reservoir from which root canal reinfection may occur during or after endodontic treatment. The learning objective of this article is to review endodontic microbiology, update readers on the role of bacteria in pulp and periapical disease, and discuss the principles of management of infected root canal dentin. Complete debridement, removal of microorganisms and affected dentin, and chemomechanical cleansing of the root canal are suggested as being the cornerstones of successful endodontic therapy, followed by intracanal medication to remove residual bacteria, when required. PMID:9242125

  5. Management of Six Root Canals in Mandibular First Molar

    PubMed Central

    Gomes, Fabio de Almeida; Sousa, Bruno Carvalho

    2015-01-01

    Success in root canal treatment is achieved after thorough cleaning, shaping, and obturation of the root canal system. This clinical case describes conventional root canal treatment of an unusual mandibular first molar with six root canals. The prognosis for endodontic treatment in teeth with abnormal morphology is unfavorable if the clinician fails to recognize extra root canals. PMID:25685156

  6. Root Canal Treatment of a Maxillary Second Premolar with Two Palatal Root Canals: A Case Report

    PubMed Central

    Golmohammadi, Maryam; Jafarzadeh, Hamid

    2016-01-01

    Accurate diagnosis of the root canal morphology and anatomy is essential for thorough shaping and cleaning of the entire root canal system and consequent successful treatment. This report describes a case of maxillary second premolar with two roots and three root canals (two mesial and distal palatal canals). The case report underlines the importance of complete knowledge about root canal morphology and possible variations, coupled with clinical and radiographic examination in order to increase the ability of clinicians to treat difficult cases. PMID:27471538

  7. Root Canal Treatment of a Maxillary Second Premolar with Two Palatal Root Canals: A Case Report.

    PubMed

    Golmohammadi, Maryam; Jafarzadeh, Hamid

    2016-01-01

    Accurate diagnosis of the root canal morphology and anatomy is essential for thorough shaping and cleaning of the entire root canal system and consequent successful treatment. This report describes a case of maxillary second premolar with two roots and three root canals (two mesial and distal palatal canals). The case report underlines the importance of complete knowledge about root canal morphology and possible variations, coupled with clinical and radiographic examination in order to increase the ability of clinicians to treat difficult cases. PMID:27471538

  8. Variation in root density along stream banks.

    PubMed

    Wynn, Theresa M; Mostaghimi, Saied; Burger, James A; Harpold, Adrian A; Henderson, Marc B; Henry, Leigh-Anne

    2004-01-01

    While it is recognized that vegetation plays a significant role in stream bank stabilization, the effects are not fully quantified. The study goal was to determine the type and density of vegetation that provides the greatest protection against stream bank erosion by determining the density of roots in stream banks. To quantify the density of roots along alluvial stream banks, 25 field sites in the Appalachian Mountains were sampled. The riparian buffers varied from short turfgrass to mature riparian forests, representing a range of vegetation types. Root length density (RLD) with depth and aboveground vegetation density were measured. The sites were divided into forested and herbaceous groups and differences in root density were evaluated. At the herbaceous sites, very fine roots (diameter < 0.5 mm) were most common and more than 75% of all roots were concentrated in the upper 30 cm of the stream bank. Under forested vegetation, fine roots (0.5 mm < diameter < 2.0 mm) were more common throughout the bank profile, with 55% of all roots in the top 30 cm. In the top 30 cm of the bank, herbaceous sites had significantly greater overall RLD than forested sites (alpha = 0.01). While there were no significant differences in total RLD below 30 cm, forested sites had significantly greater concentrations of fine roots, as compared with herbaceous sites (alpha = 0.01). As research has shown that erosion resistance has a direct relationship with fine root density, forested vegetation may provide better protection against stream bank erosion. PMID:15537925

  9. Root conditioning in periodontology — Revisited

    PubMed Central

    Nanda, Tarun; Jain, Sanjeev; Kaur, Harjit; Kapoor, Daljit; Nanda, Sonia; Jain, Rohit

    2014-01-01

    Objective: Root surfaces of periodontitis-affected teeth are hypermineralized and contaminated with cytotoxic and other biologically active substances. To achieve complete decontamination of the tooth surfaces, various methods including root conditioning following scaling and root planning are present. The main objective of this article is to throw light on the different root conditioning agents used and the goals accomplished by root conditioning in the field of periodontology. Materials and Methods: 20 human maxillary anterior teeth indicated for extraction due to chronic periodontitis were collected and root planned. The teeth were sectioned and specimens were divided into two groups — Group I and II. Group I dentin specimens were treated with EDTA and group II specimens were treated with tetracycline HCl solution at concentration of 10% by active burnishing technique for 3 minutes. The root surface samples were then examined by scanning electron microscope (SEM). Results: The results of the study showed that EDTA and tetracycline HCl were equally effective in removing the smear layer. It was observed that the total and patent dentinal tubules were more in number in teeth treated with tetracycline as compared to EDTA group. However, EDTA was found to be much more effective as root conditioning agent because it enlarged the diameter of dentinal tubules more than that of tetracycline HCl. Conclusion: Results of in-vitro study showed that both the agents are good root conditioning agents if applied in addition to periodontal therapy. However, further studies are required to establish the in-vivo importance of EDTA and tetracycline HCL as root conditioners. PMID:25097414

  10. Accessory roots and root canals in human anterior teeth: a review and clinical considerations.

    PubMed

    Ahmed, H M A; Hashem, A A

    2016-08-01

    Anterior teeth may have aberrant anatomical variations in the number of roots and root canals. A review of the literature was conducted using appropriate key words in major endodontic journals to identify the available reported cases as well as experimental and clinical investigations on accessory roots and root canals in anterior teeth. After retrieving the full text of related articles, cross-citations were identified, and the pooled data were then discussed. Results revealed a higher prevalence in accessory root/root canal variations in mandibular anterior teeth than in maxillary counterparts. However, maxillary incisor teeth revealed the highest tendency for accessory root/root canal aberrations caused by anomalies such as dens invaginatus and palato-gingival groove. Primary anterior teeth may also exhibit external and internal anatomical variations in the root, especially maxillary canines. Therefore, dental practitioners should thoroughly assess all teeth scheduled for root canal treatment to prevent the undesirable consequences caused by inadequate debridement of accessory configurations of the root canal system. PMID:26174943

  11. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  12. Root hair-specific expansins modulate root hair elongation in rice.

    PubMed

    ZhiMing, Yu; Bo, Kang; XiaoWei, He; ShaoLei, Lv; YouHuang, Bai; WoNa, Ding; Ming, Chen; Hyung-Taeg, Cho; Ping, Wu

    2011-06-01

    Root hair growth requires intensive cell-wall modification. This study demonstrates that root hair-specific expansin As, a sub-clade of the cell wall-loosening expansin proteins, are required for root hair elongation in rice (Oryza sativa L.). We identified a gene encoding EXPA17 (OsEXPA17) from a rice mutant with short root hairs. Promoter::reporter transgenic lines exhibited exclusive OsEXPA17 expression in root hair cells. The OsEXPA17 mutant protein (OsexpA17) contained a point mutation, causing a change in the amino acid sequence (Gly104→Arg). This amino acid alteration is predicted to disrupt a highly conserved disulfide bond in the mutant. Suppression of OsEXPA17 by RNA interference further confirmed requirement for the gene in root hair elongation. Complementation of the OsEXPA17 mutant with other root hair EXPAs (OsEXPA30 and Arabidopsis EXPA7) can restore root hair elongation, indicating functional conservation of these root hair EXPAs in monocots and dicots. These results demonstrate that members of the root hair EXPA sub-clade play a crucial role in root hair cell elongation in Graminaceae. PMID:21309868

  13. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  14. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    PubMed Central

    ZOGHEIB, Lucas Villaça; SAAVEDRA, Guilherme de Siqueira Ferreira Anzaloni; CARDOSO, Paula Elaine; VALERA, Márcia Carneiro; de ARAÚJO, Maria Amélia Máximo

    2011-01-01

    Objective This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. Material and methods Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10), according to the root reconstruction protocol: Group I (control): non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05). Results Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. Conclusion The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol. PMID:22231002

  15. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.

    PubMed

    Humphris, Sonia N; Bengough, A Glyn; Griffiths, Bryan S; Kilham, Ken; Rodger, Sheena; Stubbs, Vicky; Valentine, Tracy A; Young, Iain M

    2005-09-01

    We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap. PMID:16329978

  16. Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.

  17. Root phenology at Harvard Forest and beyond

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, p<0.0001). This decline in offset with increasing temperature may reflect greater year-round coupling between air and soil temperature in warm biomes. Growth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April

  18. Variation of the Linkage of Root Function with Root Branch Order

    PubMed Central

    Chen, Zhengxia; Zeng, Hui

    2013-01-01

    Mounting evidence has shown strong linkage of root function with root branch order. However, it is not known whether this linkage is consistent in different species. Here, root anatomic traits of the first five branch order were examined in five species differing in plant phylogeny and growth form in tropical and subtropical forests of south China. In Paramichelia baillonii, one tree species in Magnoliaceae, the intact cortex as well as mycorrhizal colonization existed even in the fifth-order root suggesting the preservation of absorption function in the higher-order roots. In contrast, dramatic decreases of cortex thickness and mycorrhizal colonization were observed from lower- to higher-order roots in three other tree species, Cunninghamia lanceolata, Acacia auriculiformis and Gordonia axillaries, which indicate the loss of absorption function. In a fern, Dicranopteris dichotoma, there were several cortex layers with prominently thickened cell wall and no mycorrhizal colonization in the third- and fourth-order roots, also demonstrating the loss of absorptive function in higher-order roots. Cluster analysis using these anatomic traits showed a different classification of root branch order in P. baillonii from other four species. As for the conduit diameter-density relationship in higher-order roots, the mechanism underpinning this relationship in P. baillonii was different from that in other species. In lower-order roots, different patterns of coefficient of variance for conduit diameter and density provided further evidence for the two types of linkage of root function with root branch order. These linkages corresponding to two types of ephemeral root modules have important implication in the prediction of terrestrial carbon cycling, although we caution that this study was pseudo-replicated. Future studies by sampling more species can test the generality of these two types of linkage. PMID:23451168

  19. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type. PMID:25717334

  20. Scalable encryption using alpha rooting

    NASA Astrophysics Data System (ADS)

    Wharton, Eric J.; Panetta, Karen A.; Agaian, Sos S.

    2008-04-01

    Full and partial encryption methods are important for subscription based content providers, such as internet and cable TV pay channels. Providers need to be able to protect their products while at the same time being able to provide demonstrations to attract new customers without giving away the full value of the content. If an algorithm were introduced which could provide any level of full or partial encryption in a fast and cost effective manner, the applications to real-time commercial implementation would be numerous. In this paper, we present a novel application of alpha rooting, using it to achieve fast and straightforward scalable encryption with a single algorithm. We further present use of the measure of enhancement, the Logarithmic AME, to select optimal parameters for the partial encryption. When parameters are selected using the measure, the output image achieves a balance between protecting the important data in the image while still containing a good overall representation of the image. We will show results for this encryption method on a number of images, using histograms to evaluate the effectiveness of the encryption.

  1. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  2. How to bond to root canal dentin

    NASA Astrophysics Data System (ADS)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan

    2014-01-01

    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  3. 13. PHOTOCOPY OF ILLUSTRATED CIRCULAR OF 'ROOTS NEW IRON POSITIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PHOTOCOPY OF ILLUSTRATED CIRCULAR OF 'ROOTS NEW IRON POSITIVE BLAST BLOWER,' CA. JAN. 1880, FROM FILES OF ROOTS-CONNERSVILLE BLOWER CO., CONNERSVILLE, IND. - P. H. & F. M. Roots Company, Eastern Avenue, Connersville, Fayette County, IN

  4. Bitter Root Irrigation district canal, looking east, typical section (canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section (canal full) - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  5. Bitter Root Irrigation district canal, looking east, typical section and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section and crossing - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  6. 10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY MANUFACTURERS OF ROOTS BLOWERS' FROM INDIANAPOLIS STAR, June 13, 1926, Gravure Section, p. 2 - P. H. & F. M. Roots Company, Eastern Avenue, Connersville, Fayette County, IN

  7. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A.; Kleidon, A.; Bechmann, M.

    2015-12-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how the energetics involved in root water uptake can be quantified. The illustration is done using a simple, four-box model of the soil-root system to represent heterogeneity and a parameterization in which root water uptake is driven by the xylem potential of the plant with a fixed flux boundary condition. We use this approach to evaluate the effects of soil moisture heterogeneity and root system properties on the dissipative losses and export of energy involved in root water uptake. For this, we derive an expression that relates the energy export at the root collar to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We conclude that such a thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path and explicitly accounting not only for the resistances along the flow path and those imposed by soil drying but especially the role of heterogenous soil water distribution. The results show that least energy needs to be exported and dissipative losses are minimized by a root system if it extracts water uniformly from the soil. This has implications for plant water relations in forests where canopies generate heterogenous input patterns. Our diagnostic in the energy domain should be useful in future model applications for quantifying how plants can evolve towards greater efficiency in their structure and function, particularly in heterogenous soil environments. Generally, this approach may help to better describe heterogeneous processes in the soil in a simple, yet physically-based way.

  8. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  9. Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis.

    PubMed

    Verstraeten, Inge; Beeckman, Tom; Geelen, Danny

    2013-01-01

    Adventitious root formation, the development of roots on non-root tissue (e.g. leaves, hypocotyls and stems) is a critical step during micropropagation. Although root induction treatments are routinely used for a large number of species micropropagated in vitro as well as for in vivo cuttings, the mechanisms controlling adventitious rooting are still poorly understood. Researchers attempt to gain better insight into the molecular aspects by studying adventitious rooting in Arabidopsis thaliana. The existing assay involves etiolation of seedlings and measurements of de novo formed roots on the elongated hypocotyl. The etiolated hypocotyls express a novel auxin-controlled signal transduction pathway in which auxin response factors (ARFs), microRNAs and environmental conditions that drive adventitious rooting are integrated. An alternative assay makes use of so-called thin cell layers (TCL), excised strips of cells from the inflorescence stem of Arabidopsis thaliana. However, both the etiolated seedling system and the TCL assay are only distantly related to industrial rooting processes in which roots are induced on adult stem tissue. Here, we describe an adventitious root induction system that uses segments of the inflorescence stems of Arabidopsis thaliana, which have a histological structure similar to cuttings or in vitro micropropagated shoots. The system allows multiple treatments with chemicals as well as the evaluation of different environmental conditions on a large number of explants. It is therefore suitable for high throughput chemical screenings and experiments that require numerous data points for statistical analysis. Using this assay, the adventitious root induction capacity of classical auxins was evaluated and a differential response to the different auxins could be demonstrated. NAA, IBA and IAA stimulated adventitious rooting on the stem segment, whereas 2,4-D and picloram did not. Light conditions profoundly influenced the root induction capacity

  10. Clinical technique for invasive cervical root resorption

    PubMed Central

    Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; Martos, Josué; Piovesan, Edno Moacir; César Neto, João Batista

    2011-01-01

    This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis. PMID:22144822

  11. Complex root networks of Chinese characters

    NASA Astrophysics Data System (ADS)

    Lee, Po-Han; Chen, Jia-Ling; Wang, Po-Cheng; Chi, Ting-Ting; Xiao, Zhi-Ren; Jhang, Zih-Jian; Yeh, Yeong-Nan; Chen, Yih-Yuh; Hu, Chin-Kun

    There are several sets of Chinese characters still available today, including Oracle Bone Inscriptions (OBI) in Shang Dynasty, Chu characters (CC) used in Chu of Warring State Period, Small Seal Script in dictionary Shuowen Jiezi (SJ) in Eastern Han Dynasty, and Kangxi Dictionary (KD) in Qing Dynasty. Such as Chinese characters were all constructed via combinations of meaningful patterns, called roots. Our studies for the complex networks of all roots indicate that the roots of the characters in OBI, CC, SJ and KD have characteristics of small world networks and scale-free networks.

  12. THttpServer class in ROOT

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, Joern; Linev, Sergey

    2015-12-01

    The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT applications. It is based on Civetweb embeddable HTTP server and provides direct access to all objects registered for the server. Objects data could be provided in different formats: binary, XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented with HTML/JavaScript based on JavaScript ROOT development. With any modern web browser one could list, display, and monitor objects available on the server. THttpServer is used in Go4 framework to provide HTTP interface to the online analysis.

  13. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Getting to the roots of it: Genetic and hormonal control of root architecture.

    PubMed

    Jung, Janelle K H; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) - the spatial configuration of a root system - is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  15. Light as stress factor to plant roots – case of root halotropism

    PubMed Central

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  16. Getting to the roots of it: Genetic and hormonal control of root architecture

    PubMed Central

    Jung, Janelle K. H.; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  17. Arthroscopic Repair of Posterior Meniscal Root Tears

    PubMed Central

    Matheny, Lauren; Moulton, Samuel G.; Dean, Chase S.; LaPrade, Robert F.

    2016-01-01

    Objectives: The purpose of this study was to compare subjective clinical outcomes in patients requiring arthroscopic transtibial pullout repair for posterior meniscus root tears of the medial and lateral menisci. We hypothesized that improvement in function and activity level would be similar among patients undergoing lateral and medial meniscal root repairs. Methods: This study was IRB approved. All patients who underwent posterior meniscal root repair by a single orthopaedic surgeon were included in this study. Detailed operative data were documented at surgery. Patients completed a subjective questionnaire, including Lysholm score, Tegner activity scale, WOMAC, SF-12 and patient satisfaction with outcome, which were collected preoperatively and at a minimum of two years postoperatively. Failure was defined as any patient who underwent revision meniscal root repair or partial meniscectomy following the index surgery. Results: There were 50 patients (16 females, 34 males) with a mean age of 37.8 years (range, 16.6-65.7) and a mean BMI of 27.3 (range, 20.5-49.2) included in this study. Fifteen patients underwent lateral meniscus root repair and 35 patients underwent medial meniscus root repair. Three patients who underwent lateral meniscus root repair required revision meniscus root repair surgery, while no patients who underwent medial meniscus root repair required revision surgery (p=0.26). There was a significant difference in preoperative and postoperative Lysholm score (53 vs. 78) (p<0.001), Tegner activity scale (2.0 vs. 4.0) (p=0.03), SF-12 physical component subscale (38 vs. 50) (p=0.001) and WOMAC (36 vs. 8) (p<0.001) for the total population. Median patient satisfaction with outcome was 9 (range, 1-10). There was no significant difference in mean age between lateral and medial root repair groups (32 vs. 40) (p=0.12) or gender (p=0.19). There was no significant difference in gender between lateral and medial root repair groups (p=0.95). There was a

  18. RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis.

    PubMed

    Ristova, Daniela; Rosas, Ulises; Krouk, Gabriel; Ruffel, Sandrine; Birnbaum, Kenneth D; Coruzzi, Gloria M

    2013-03-01

    The architecture of plant roots affects essential functions including nutrient and water uptake, soil anchorage, and symbiotic interactions. Root architecture comprises many features that arise from the growth of the primary and lateral roots. These root features are dictated by the genetic background but are also highly responsive to the environment. Thus, root system architecture (RSA) represents an important and complex trait that is highly variable, affected by genotype × environment interactions, and relevant to survival/performance. Quantification of RSA in Arabidopsis (Arabidopsis thaliana) using plate-based tissue culture is a very common and relatively rapid assay, but quantifying RSA represents an experimental bottleneck when it comes to medium- or high-throughput approaches used in mutant or genotype screens. Here, we present RootScape, a landmark-based allometric method for rapid phenotyping of RSA using Arabidopsis as a case study. Using the software AAMToolbox, we created a 20-point landmark model that captures RSA as one integrated trait and used this model to quantify changes in the RSA of Arabidopsis (Columbia) wild-type plants grown under different hormone treatments. Principal component analysis was used to compare RootScape with conventional methods designed to measure root architecture. This analysis showed that RootScape efficiently captured nearly all the variation in root architecture detected by measuring individual root traits and is 5 to 10 times faster than conventional scoring. We validated RootScape by quantifying the plasticity of RSA in several mutant lines affected in hormone signaling. The RootScape analysis recapitulated previous results that described complex phenotypes in the mutants and identified novel gene × environment interactions. PMID:23335624

  19. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have documented the existence of correlative mechanisms that control lateral root emergence in plants. To better understand root branching responses to nutrients, root growth in three range grasses [Whitmar cultivar of bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) Love), Hyc...

  20. Rooting depths of plants relative to biological and environmental factors

    SciTech Connect

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  1. Understanding plant root system influences on soil strength and stability

    NASA Astrophysics Data System (ADS)

    Bengough, A. Glyn; Brown, Jennifer L.; Loades, Kenneth W.; Knappett, Jonathan A.; Meijer, Gertjan; Nicoll, Bruce

    2016-04-01

    Keywords: root growth, soil reinforcement, tensile strength Plant roots modify and reinforce the soil matrix, stabilising it against erosion and shallow landslides. Roots mechanically bind the soil particles together and modify the soil hydrology via water uptake, creation of biopores, and modification of the soil water-release characteristic. Key to understanding the mechanical reinforcement of soil by roots is the relation between root strength and root diameter measured for roots in any given soil horizon. Thin roots have frequently been measured to have a greater tensile strength than thick roots, but their strength is also often much more variable. We consider the factors influencing this strength-diameter relationship, considering relations between root tensile strength and root dry density, root water content, root age, and root turnover in several woody and non-woody species. The role of possible experimental artefacts and measurement techniques will be considered. Tensile strength increased generally with root age and decreased with thermal time after excision as a result of root decomposition. Single factors alone do not appear to explain the strength-diameter relationship, and both strength/stiffness and dry density may vary between different layers of tissue within a single root. Results will be discussed to consider how we can achieve a more comprehensive understanding of the variation in root biomechanical properties, and its consequences for soil reinforcement. Acknowledgements: The James Hutton Institute receives funding from the Scottish Government. AGB and JAK acknowledge part funding from EPSRC (EP/M020355/1).

  2. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  3. DMA thermal analysis of yacon tuberous roots

    NASA Astrophysics Data System (ADS)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  4. "Roots" Touched Children: Planned or Not

    ERIC Educational Resources Information Center

    Greathouse, Betty

    1977-01-01

    Explores children's reactions to the televised version of Alex Haley's "Roots" through interviews with thirty 8-year-old third-graders (10 Black, 10 Mexican-American, 10 White) from two classrooms in South Phoenix, Arizona. (BF/JH)

  5. Irregular sesquiterpenoids from Ligusticum grayi roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root oil of Ligusticum grayi (Apiaceae) contains numerous irregular sesquiterpenoids. In addition to the known acyclic sesquilavandulol and a new sesquilavandulyl aldehyde, two thapsanes, one epithapsane, and fourteen sesquiterpenoids representing eight novel carbon skeletons were found. The new sk...

  6. Mapping gene activity of Arabidopsis root hairs

    PubMed Central

    2013-01-01

    Background Quantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants. Results Here, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct. In total, transcripts of 23,034 genes were detected in root hairs. High-resolution proteome analysis led to the reliable identification of 2,447 proteins, 129 of which were differentially expressed between root hairs and non-root hair tissue. Dissection of pre-mRNA splicing patterns showed that all types of alternative splicing were cell type-dependent, and less complex in EXP7-expressing cells when compared to non-root hair cells. Intron retention was repressed in several transcripts functionally related to root hair morphogenesis, indicative of a cell type-specific control of gene expression by alternative splicing of pre-mRNA. Concordance between mRNA and protein expression was generally high, but in many cases mRNA expression was not predictive for protein abundance. Conclusions The integrated analysis shows that gene activity in root hairs is dictated by orchestrated, multilayered regulatory mechanisms that allow for a cell type-specific composition of functional components. PMID:23800126

  7. Anatomical aspects of angiosperm root evolution

    PubMed Central

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  8. Capillary-Effect Root-Environment System

    NASA Technical Reports Server (NTRS)

    Wright, Bruce D.

    1991-01-01

    Capillary-effect root-environment system (CERES) is experimental apparatus for growing plants in nutrient solutions. Solution circulated at slight tension in cavity filled with plastic screen and covered by porous plastic membrane. By adsorptive attraction, root draws solution through membrane. Conceived for use in microgravity of space, also finds terrestrial application in germinating seedlings, because it protects them from extremes of temperature, moisture, and soil pH and from overexposure to fertilizers and herbicides.

  9. [Apical root pins of high-karat gold alloys for resected roots].

    PubMed

    Handtmann, S; Lindemann, W; Sculte, W

    1989-02-01

    Following earlier studies on corrosion of silver pins in the root canal experience will be presented with the use of high-karat gold pins for apical closure of root amputations. The commercially available standardized Ackermann silver pins were replaced by high-karat gold pins of similar Vicker hardness and inserted in 218 patients with 264 root amputations since 1986. A clinical and radiological follow-up demonstrated a success rate of over 90%. PMID:2598876

  10. Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb

    PubMed Central

    Ridge, R. W.; Rolfe, B. G.

    1986-01-01

    Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten β-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar β-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum. Images PMID:16346989

  11. ASTROCULTURE (TM) root metabolism and cytochemical analysis.

    PubMed

    Porterfield, D M; Barta, D J; Ming, D W; Morrow, R C; Musgrave, M E

    2000-01-01

    Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure. PMID:11543169

  12. Vertical root fractures and their management

    PubMed Central

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  13. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  14. ASTROCULTURE (TM) root metabolism and cytochemical analysis

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.

    2000-01-01

    Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.

  15. Competing neighbors: light perception and root function.

    PubMed

    Gundel, Pedro E; Pierik, Ronald; Mommer, Liesje; Ballaré, Carlos L

    2014-09-01

    Plant responses to competition have often been described as passive consequences of reduced resource availability. However, plants have mechanisms to forage for favorable conditions and anticipate competition scenarios. Despite the progresses made in understanding the role of light signaling in modulating plant-plant interactions, little is known about how plants use and integrate information gathered by their photoreceptors aboveground to regulate performance belowground. Given that the phytochrome family of photoreceptors plays a key role in the acquisition of information about the proximity of neighbors and canopy cover, it is tempting to speculate that changes in the red:far-red (R:FR) ratio perceived by aboveground plant parts have important implications shaping plant behavior belowground. Exploring data from published experiments, we assess the neglected role of light signaling in the control of root function. The available evidence indicates that plant exposure to low R:FR ratios affects root growth and morphology, root exudate profiles, and interactions with beneficial soil microorganisms. Although dependent on species identity, signals perceived aboveground are likely to affect root-to-root interactions. Root systems could also be guided to deploy new growth predominantly in open areas by light signals perceived by the shoots. Studying interactions between above- and belowground plant-plant signaling is expected to improve our understanding of the mechanisms of plant competition. PMID:24894371

  16. Adaptive significance of root grafting in trees

    SciTech Connect

    Loehle, C.; Jones, R.

    1988-12-31

    Root grafting has long been observed in forest trees but the adaptive significance of this trait has not been fully explained. Various authors have proposed that root grafting between trees contributes to mechanical support by linking adjacent root systems. Keeley proposes that this trait would be of greatest advantage in swamps where soils provide poor mechanical support. He provides as evidence a greenhouse study of Nyssa sylvatica Marsh in which seedlings of swamp provenance formed between-individual root grafts more frequently than upland provenance seedlings. In agreement with this within-species study, Keeley observed that arid zone species rarely exhibit grafts. Keeley also demonstrated that vines graft less commonly than trees, and herbs never do. Since the need for mechanical support coincides with this trend, these data seem to support his model. In this paper, the authors explore the mechanisms and ecological significance of root grafting, leading to predictions of root grafting incidence. Some observations support and some contradict the mechanical support hypothesis.

  17. Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity.

    PubMed

    Julkowska, Magdalena M; Hoefsloot, Huub C J; Mol, Selena; Feron, Richard; de Boer, Gert-Jan; Haring, Michel A; Testerink, Christa

    2014-11-01

    The plant root is the first organ to encounter salinity stress, but the effect of salinity on root system architecture (RSA) remains elusive. Both the reduction in main root (MR) elongation and the redistribution of the root mass between MRs and lateral roots (LRs) are likely to play crucial roles in water extraction efficiency and ion exclusion. To establish which RSA parameters are responsive to salt stress, we performed a detailed time course experiment in which Arabidopsis (Arabidopsis thaliana) seedlings were grown on agar plates under different salt stress conditions. We captured RSA dynamics with quadratic growth functions (root-fit) and summarized the salt-induced differences in RSA dynamics in three growth parameters: MR elongation, average LR elongation, and increase in number of LRs. In the ecotype Columbia-0 accession of Arabidopsis, salt stress affected MR elongation more severely than LR elongation and an increase in LRs, leading to a significantly altered RSA. By quantifying RSA dynamics of 31 different Arabidopsis accessions in control and mild salt stress conditions, different strategies for regulation of MR and LR meristems and root branching were revealed. Different RSA strategies partially correlated with natural variation in abscisic acid sensitivity and different Na(+)/K(+) ratios in shoots of seedlings grown under mild salt stress. Applying root-fit to describe the dynamics of RSA allowed us to uncover the natural diversity in root morphology and cluster it into four response types that otherwise would have been overlooked. PMID:25271266

  18. Comparative behavior of root pathogens in stems and roots of southeastern Pinus species.

    PubMed

    Matusick, George; Nadel, Ryan L; Walker, David M; Hossain, Mohammad J; Eckhardt, Lori G

    2016-04-01

    Root diseases are expected to become a greater threat to trees in the future due to accidental pathogen introductions and predicted climate changes, thus there is a need for accurate and efficient pathogenicity tests. For many root pathogens, these tests have been conducted in stems instead of roots. It, however, remains unclear whether stem and root inoculations are comparable for most fungal species. In this study we compared the growth and damage caused by five root pathogens (Grosmannia huntii, Grosmannia alacris, Leptographium procerum, Leptographium terebrantis, and Heterobasidion irregulare) in root and stem tissue of two Pinus species by inoculating mature trees and tissue amended agar in the laboratory. Most fungal species tested caused greater damage in roots of both pine hosts following inoculation. The relationship between root and stem damage was, however, similar when most combinations of pathogens were compared. These results suggest that although stem inoculations are not suitable for determining the actual damage potential of a given species, they may be viewed as a useful surrogate for root inoculations when comparing the relative pathogenicity of multiple species. When grown on amended agar, fungal species generally had greater growth in stem tissue, contrasting with the findings from tree inoculations. PMID:27020149

  19. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin. PMID:22640001

  20. Earliest rooting system and root : shoot ratio from a new Zosterophyllum plant.

    PubMed

    Hao, Shougang; Xue, Jinzhuang; Guo, Dali; Wang, Deming

    2010-01-01

    The enhanced chemical weathering by rooted vascular plants during the Silurian-Devonian period played a crucial role in altering global biogeochemical cycles and atmospheric environments; however, the documentation of early root morphology and physiology is scarce because the existing fossils are mostly incomplete. Here, we report an entire, uprooted specimen of a new Zosterophyllum Penhallow, named as Z. shengfengense, from the Early Devonian Xitun Formation (Lochkovian, c. 413 Myr old) of Yunnan, south China. This plant has the most ancient known record of a rooting system. The plant consists of aerial axes of 98 mm in height, showing a tufted habit, and a rhizome bearing a fibrous-like rooting system, c. 20 mm in length. The rhizome shows masses of branchings, which produce upwardly directed aerial axes and downwardly directed root-like axes. The completeness of Z. shengfengense made it possible to estimate the biomass allocation and root : shoot ratio. The root : shoot ratio of this early plant is estimated at a mean value of 0.028, and the root-like axes constitute only c. 3% of the total biomass. Zosterophyllum shengfengense was probably a semi-aquatic plant with efficient water use or a strong uptake capacity of the root-like axes. PMID:19825018

  1. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  2. RootNav: Navigating Images of Complex Root Architectures1[C][W

    PubMed Central

    Pound, Michael P.; French, Andrew P.; Atkinson, Jonathan A.; Wells, Darren M.; Bennett, Malcolm J.; Pridmore, Tony

    2013-01-01

    We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist’s satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav’s core representation. PMID:23766367

  3. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types

    PubMed Central

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  4. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  5. Modelling water uptake efficiency of root systems

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  6. Root Exudates from Grafted-Root Watermelon Showed a Certain Contribution in Inhibiting Fusarium oxysporum f. sp. niveum

    PubMed Central

    Wang, Dongsheng; Mao, Jiugeng; Huang, Qiwei; Guo, Shiwei; Shen, Qirong

    2013-01-01

    Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants. PMID:23700421

  7. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum.

    PubMed

    Ling, Ning; Zhang, Wenwen; Wang, Dongsheng; Mao, Jiugeng; Huang, Qiwei; Guo, Shiwei; Shen, Qirong

    2013-01-01

    Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants. PMID:23700421

  8. Disentangling root system responses to neighbours: identification of novel root behavioural strategies.

    PubMed

    Belter, Pamela R; Cahill, James F

    2015-01-01

    Plants live in a social environment, with interactions among neighbours a ubiquitous aspect of life. Though many of these interactions occur in the soil, our understanding of how plants alter root growth and the patterns of soil occupancy in response to neighbours is limited. This is in contrast to a rich literature on the animal behavioural responses to changes in the social environment. For plants, root behavioural changes that alter soil occupancy patterns can influence neighbourhood size and the frequency or intensity of competition for soil resources; issues of fundamental importance to understanding coexistence and community assembly. Here we report a large comparative study in which individuals of 20 species were grown with and without each of two neighbour species. Through repeated root visualization and analyses, we quantified many putative root behaviours, including the extent to which each species altered aspects of root system growth (e.g. rooting breadth, root length, etc.) in response to neighbours. Across all species, there was no consistent behavioural response to neighbours (i.e. no general tendencies towards root over-proliferation nor avoidance). However, there was a substantial interspecific variation showing a continuum of behavioural variation among the 20 species. Multivariate analyses revealed two novel and predominant root behavioural strategies: (i) size-sensitivity, in which focal plants reduced their overall root system size in response to the presence of neighbours, and (ii) location-sensitivity, where focal plants adjusted the horizontal and vertical placement of their roots in response to neighbours. Of these, size-sensitivity represents the commonly assumed response to competitive encounters-reduced growth. However, location sensitivity is not accounted for in classic models and concepts of plant competition, though it is supported from recent work in plant behavioural ecology. We suggest that these different strategies could have

  9. Disentangling root system responses to neighbours: identification of novel root behavioural strategies

    PubMed Central

    Belter, Pamela R.; Cahill, James F.

    2015-01-01

    Plants live in a social environment, with interactions among neighbours a ubiquitous aspect of life. Though many of these interactions occur in the soil, our understanding of how plants alter root growth and the patterns of soil occupancy in response to neighbours is limited. This is in contrast to a rich literature on the animal behavioural responses to changes in the social environment. For plants, root behavioural changes that alter soil occupancy patterns can influence neighbourhood size and the frequency or intensity of competition for soil resources; issues of fundamental importance to understanding coexistence and community assembly. Here we report a large comparative study in which individuals of 20 species were grown with and without each of two neighbour species. Through repeated root visualization and analyses, we quantified many putative root behaviours, including the extent to which each species altered aspects of root system growth (e.g. rooting breadth, root length, etc.) in response to neighbours. Across all species, there was no consistent behavioural response to neighbours (i.e. no general tendencies towards root over-proliferation nor avoidance). However, there was a substantial interspecific variation showing a continuum of behavioural variation among the 20 species. Multivariate analyses revealed two novel and predominant root behavioural strategies: (i) size-sensitivity, in which focal plants reduced their overall root system size in response to the presence of neighbours, and (ii) location-sensitivity, where focal plants adjusted the horizontal and vertical placement of their roots in response to neighbours. Of these, size-sensitivity represents the commonly assumed response to competitive encounters—reduced growth. However, location sensitivity is not accounted for in classic models and concepts of plant competition, though it is supported from recent work in plant behavioural ecology. We suggest that these different strategies could have

  10. How do roots elongate in a structured soil?

    PubMed

    Jin, Kemo; Shen, Jianbo; Ashton, Rhys W; Dodd, Ian C; Parry, Martin A J; Whalley, William R

    2013-11-01

    In this review, we examine how roots penetrate a structured soil. We first examine the relationship between soil water status and its mechanical strength, as well as the ability of the soil to supply water to the root. We identify these as critical soil factors, because it is primarily in drying soil that mechanical constraints limit root elongation. Water supply to the root is important because root water status affects growth pressures and root stiffness. To simplify the bewildering complexity of soil-root interactions, the discussion is focused around the special cases of root elongation in soil with pores much smaller than the root diameter and the penetration of roots at interfaces within the soil. While it is often assumed that the former case is well understood, many unanswered questions remain. While low soil-root friction is often viewed as a trait conferring better penetration of strong soils, it may also increase the axial pressure on the root tip and in so doing reduce the rate of cell division and/or expansion. The precise trade-off between various root traits involved in root elongation in homogeneous soil remains to be determined. There is consensus that the most important factors determining root penetration at an interface are the angle at which the root attempts to penetrate the soil, root stiffness, and the strength of the soil to be penetrated. The effect of growth angle on root penetration implicates gravitropic responses in improved root penetration ability. Although there is no work that has explored the effect of the strength of the gravitropic responses on penetration of hard layers, we attempt to outline possible interactions. Impacts of soil drying and strength on phytohormone concentrations in roots, and consequent root-to-shoot signalling, are also considered. PMID:24043852

  11. TSkim : A tool for skimming ROOT trees

    NASA Astrophysics Data System (ADS)

    Chamont, David

    2010-04-01

    Like many HEP researchers, the members of the Fermi collaboration have chosen to store their experiment data within ROOT trees. A frequent activity of such physicists is the tuning of selection criteria which define the events of interest, thus cutting and pruning the ROOT trees so to extract all the data linked to those specific physical events. It is rather straightforward to write a ROOT script to skim a single kind of data, for example the raw measurements of Fermi LAT detector. This proves to be trickier if one wants to process also some simulated or analysis data at the same time, because each kind of data is structured with its own rules for what concerns file names and sizes, tree names, identification of events, etc. TSkim has been designed to facilitate this task. Thanks to a user-defined configuration file which says where to find the run and event identifications in the different kind of trees, TSkim is able to collect all the tree elements which match a given ROOT cut. The tool will also help when loading the shared libraries which describe the experiment data, or when pruning the tree branches. Initially a pair of PERL and ROOT scripts, TSkim is today a fully compiled C++ application, enclosing our ROOT know-how and offering a panel of features going far beyond the original Fermi requirements. In this manuscript, we present TSkim concepts and key features, including a new kind of event list. Any collaboration using ROOT IO could profit from the use of this tool.

  12. The evolution of root hairs and rhizoids

    PubMed Central

    Jones, Victor A.S.; Dolan, Liam

    2012-01-01

    Background Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively. Scope Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts. Conclusions A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period. PMID:22730024

  13. Ecological Hypothesis of Dentin and Root Caries.

    PubMed

    Takahashi, Nobuhiro; Nyvad, Bente

    2016-01-01

    Recent advances regarding the caries process indicate that ecological phenomena induced by bacterial acid production tilt the de- and remineralization balance of the dental hard tissues towards demineralization through bacterial acid-induced adaptation and selection within the microbiota - from the dynamic stability stage to the aciduric stage via the acidogenic stage [Takahashi and Nyvad, 2008]. Dentin and root caries can also be partly explained by this hypothesis; however, the fact that these tissues contain a considerable amount of organic material suggests that protein degradation is involved in caries formation. In this review, we compiled relevant histological, biochemical, and microbiological information about dentin/root caries and refined the hypothesis by adding degradation of the organic matrix (the proteolytic stage) to the abovementioned stages. Bacterial acidification not only induces demineralization and exposure of the organic matrix in dentin/root surfaces but also activation of dentin-embedded and salivary matrix metalloproteinases and cathepsins. These phenomena initiate degradation of the demineralized organic matrix in dentin/root surfaces. While a bacterial involvement has never been confirmed in the initial degradation of organic material, the detection of proteolytic/amino acid-degrading bacteria and bacterial metabolites in dentin and root caries suggests a bacterial digestion and metabolism of partly degraded matrix. Moreover, bacterial metabolites might induce pulpitis as an inflammatory/immunomodulatory factor. Root and dentin surfaces are always at risk of becoming demineralized in the oral cavity, and exposed organic materials can be degraded by host-derived proteases contained in saliva and dentin itself. New approaches to the prevention and treatment of root/dentin caries are required. PMID:27458979

  14. How can science education foster students' rooting?

    NASA Astrophysics Data System (ADS)

    Østergaard, Edvin

    2015-06-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to prevent (further) uprooting and efforts to promote rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the earth as ground, and potential consequences for teaching science in a rooted manner. However, the argumentation raises a number of questions which I try to answer. My argumentation rests on Husserl's critique of science and the "ontological reversal", an ontological position where abstract models from science are considered as more real than the everyday reality itself, where abstract, often mathematical, models are taken to be the real causes behind everyday experiences. In this paper, measures towards an "ontological re-reversal" are discussed by drawing on experiences from phenomenon-based science education. I argue that perhaps the most direct and productive way of promoting rooting in science class is by intentionally cultivating the competencies of sensing and aesthetic experience. An aesthetic experience is defined as a precognitive, sensuous experience, an experience that is opened up for through sensuous perception. Conditions for rooting in science education is discussed against three challenges: Restoring the value of aesthetic experience, allowing time for open inquiry and coping with curriculum. Finally, I raise the question whether dimensions like "reality" or "nature" are self-evident for students. In the era of constructivism, with its focus on cognition and knowledge building, the inquiry process itself has become more important than the object of inquiry. I argue that as educators of science teachers we have to emphasize more explicitly "the nature of nature" as a field of exploration.

  15. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. PMID:26514625

  16. Rhizoctonia damping-off stem canker and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani has been reported to cause damping-off and root rot of rhododendrons and azaleas. Damping-off often includes groups of dying and dead seedlings. Decline of rooted plants in containers results from both root rot and stem necrosis below or above the soil line. Root rot is usually no...

  17. ROOTBOX FOR QUANTITATIVE OBSERVATIONS ON INTACT ENTIRE ROOT SYSTEMS

    EPA Science Inventory

    A rootbox is described which allows observation of an intact, entire root system. oots are sandwiched against a plexiglass surface by a nylon mesh that is impermeable to roots, but permeable to water and nutrients. o quantify root growth non-destructively, roots of different size...

  18. Cold temperature delays wound healing in postharvest sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  19. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  20. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  1. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  2. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  3. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  4. How up- or downslope anchoring affects root reinforcement

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Cohen, Denis; Niedda, Marcello

    2016-04-01

    Root reinforcement is important for slope stability. In addition to the important contribution of roots to shear strength along the slip surface, root networks are also recognized to impart stabilization through lateral (parallel to slope) redistribution of forces under tension. The most common method to measure lateral root reinforcement is a pullout test where one root or a bundle of root is pulled out of the soil matrix. This condition represents the case where roots within the mass of a landslide slip out from the upper stable part of the slope. There is also, however, the situation where roots anchored in the upper stable part of the slope slip out from the sliding mass. In the latter it is difficult to quantify root reinforcement and no study has discussed this mechanism. We carried out a new series of laboratory and field experiments using Douglas fir (Pseudotsuga menziesii) roots to quantify how up- or downslope anchoring affects root reinforcement. In addition, we carried out new field pullout tests on coarse roots (larger that 2 mm in diameter, up to 47 mm). Then, considering the state-of-the-art of root reinforcement modeling (the Root Bundle Model), we integrated results from our measurements into the model to verify the magnitude of this effect on overall root reinforcement at the stand scale. Results indicate that the ratio between pullout force and force transferred to the root during soil slip ranges between 0.5 and 1. This indicates that measured pullout force always overestimate the contribution of lateral slipping out roots in situations where the soil slide from anchored roots. This is general the case for root with diameter up to 3-4 mm. Root-size distribution is also a key factor influencing root reinforcement at the forest-stand scale. As most coarse roots break along tension cracks while fine roots slip out, the effect discussed in this study on root reinforcement modeling is negligible when coarse-root diameter classes are represented. Our

  5. Identification of coniferous fine roots to species using ribosomal PCR products of pooled root samples

    EPA Science Inventory

    Background/Question/Methods To inform an individual-based forest stand model emphasizing belowground competition, we explored the potential of using the relative abundances of ribosomal PCR products from pooled and milled roots, to allocate total root biomass to each of the thre...

  6. ROOT DENSITY AND ROOT SURFACE AREA OF SELECTED PACIFIC NORTHWEST CROPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root length density and root surface area were evaluated for soft white winter and spring wheat (Triticum aestivum L), spring peas (Pisum sativum) and winter canola (Brassica napus L.) for at least two years at two locations (Pendleton, OR and Pullman, WA). Spring wheat was sampled at 3-leaf, anthe...

  7. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    PubMed Central

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops.

  8. Root system markup language: toward a unified root architecture description language.

    PubMed

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. PMID:25614065

  9. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields.

    PubMed

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-01-01

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study. PMID:24988911

  10. The root as a drill: an ethylene-auxin interaction facilitates root penetration in soil.

    PubMed

    Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju; Ivanchenko, Maria; Sharma, Rameshwar

    2012-02-01

    Plant roots forage the soil for water and nutrients and overcome the soil's physical compactness. Roots are endowed with a mechanism that allows them to penetrate and grow in dense media such as soil. However, the molecular mechanisms underlying this process are still poorly understood. The nature of the media in which roots grow adds to the difficulty to in situ analyze the mechanisms underlying root penetration. Inhibition of ethylene perception by application of 1-methyl cyclopropene (1-MCP) to tomato seedlings nearly abolished the root penetration in Soilrite. The reversal of this process by auxin indicated operation of an auxin-ethylene signaling pathway in the regulation of root penetration. The tomato pct1-2 mutant that exhibits an enhanced polar transport of auxin required higher doses of 1-MCP to inhibit root penetration, indicating a pivotal role of auxin transport in this process. In this update we provide a brief review of our current understanding of molecular processes underlying root penetration in higher plants. PMID:22415043

  11. A PLANT ROOT SYSTEM ARCHITECTURAL TAXONOMY: A FRAMEWORK FOR ROOT NOMENCLATURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research into root system morphology over the last two centuries, has developed a diverse set of terminologies that are difficult to apply consistently across species and research specialties. In response to a need for better communication, a workshop held by the International Society for Root Rese...

  12. Root traits associated with Phytophthora root rot resistance in red raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot is a serious problem for commercial production of red raspberry. A study was initiated in 2009 to identify root traits in raspberry associated with little or no Phytophthora infection so that the traits can be selected and incorporated into breeding material to develop new cul...

  13. Investigating Whole Root Systems: Advances in Root Quantification Tools and Techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient quantification of root traits remains a critical factor in exploiting many genetic resources during the study of root function and development. This is particularly true for the high throughput phenotyping of large populations for acid soil tolerance, including aluminum (Al) tolerance...

  14. Response of grape root borer (lepidoptera: sesiidae) neonates to root extracts from vitaceae species and rootstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Observations at regular intervals of the location of newly hatched grape root borer larvae moving freely within Petri dish bioassays were used to measure and compare their response to filter paper discs treated with ethanol- and hexane-based extracts of roots from known and potential Vitaceae hosts ...

  15. Root System Markup Language: Toward a Unified Root Architecture Description Language1[OPEN

    PubMed Central

    Pound, Michael P.; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Leitner, Daniel; Meunier, Félicien; Pridmore, Tony P.; Schnepf, Andrea

    2015-01-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. PMID:25614065

  16. [Coronal repositioning of root fragment by root elongation with a titanium endodontic implant].

    PubMed

    Bühler, H

    1990-12-01

    Teeth with deep transverse or oblique root fractures can nowadays be preserved by intra-alveolar transplantation. This method, however, has its limitation: The apical root fragment must not be too short in proportion to the crown length. This report describes a method to retain even very short roots. 14 roots have been carefully extracted. Then, the following treatment has been performed extraorally: Apectomy, lengthening of the root with a common titanium root screw and replantation of the root in an extruded position which allowed to carry out correct root filling and crown reconstruction. After an average observation period of 19 months 11 cases out of 14, i.e. 79%, were successful according to the criteria stated by Kristersson and Kvint. If the long-term results turn out as promising as the short-term findings, the concept might well be extended to other indications. One example is to stimulate the growth of a genuine periodontal "re-attachment" in intrabony pockets by extruding viable periodontal membrane areas to a more coronal level. PMID:2097808

  17. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White lupin (Lupinus albus L.) is a phosphate (Pi) deficiency tolerant legume which develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and...

  18. Effect of root canal preparation, type of endodontic post and mechanical cycling on root fracture strength

    PubMed Central

    RIPPE, Marília Pivetta; SANTINI, Manuela Favarin; BIER, Carlos Alexandre Souza; BALDISSARA, Paolo; VALANDRO, Luiz Felipe

    2014-01-01

    Objective To evaluate the impact of the type of root canal preparation, intraradicular post and mechanical cycling on the fracture strength of roots. Material and Methods eighty human single rooted teeth were divided into 8 groups according to the instruments used for root canal preparation (manual or rotary instruments), the type of intraradicular post (fiber posts- FRC and cast post and core- CPC) and the use of mechanical cycling (MC) as follows: Manual and FRC; Manual, FRC and MC; Manual and CPC; Manual, CPC and MC; Rotary and FRC; Rotary, FRC and MC; Rotary and CPC; Rotary, CPC and MC. The filling was performed by lateral compactation. All root canals were prepared for a post with a 10 mm length, using the custom #2 bur of the glass fiber post system. For mechanical cycling, the protocol was applied as follows: an angle of incidence of 45°, 37°C, 88 N, 4 Hz, 2 million pulses. All groups were submitted to fracture strength test in a 45° device with 1 mm/ min cross-head speed until failure occurred. Results The 3-way ANOVA showed that the root canal preparation strategy (p<0.03) and post type (p<0.0001) affected the fracture strength results, while mechanical cycling (p=0.29) did not. Conclusion The root canal preparation strategy only influenced the root fracture strength when restoring with a fiber post and mechanical cycling, so it does not seem to be an important factor in this scenario. PMID:25025556

  19. Organochlorine (chlordecone) uptake by root vegetables.

    PubMed

    Florence, Clostre; Philippe, Letourmy; Magalie, Lesueur-Jannoyer

    2015-01-01

    Chlordecone, an organochlorine insecticide, continues to pollute soils in the French West Indies. The main source of human exposure to this pollutant is food. Root vegetables, which are staple foods in tropical regions, can be highly contaminated and are thus a very effective lever for action to reduce consumer exposure. We analyzed chlordecone contamination in three root vegetables, yam, dasheen and sweet potato, which are among the main sources of chlordecone exposure in food in the French West Indies. All soil types do not have the same potential for the contamination of root vegetables, allophanic andosols being two to ten times less contaminating than non-allophanic nitisols and ferralsols. This difference was only partially explained by the higher OC content in allophanic soils. Dasheen corms were shown to accumulate more chlordecone than yam and sweet potato tubers. The physiological nature of the root vegetable may explain this difference. Our results are in good agreement with the hypothesis that chlordecone uptake by root vegetables is based on passive and diffusive processes and limited by transport and dilution during growth. PMID:25043888

  20. How tree roots respond to drought

    PubMed Central

    Brunner, Ivano; Herzog, Claude; Dawes, Melissa A.; Arend, Matthias; Sperisen, Christoph

    2015-01-01

    The ongoing climate change is characterized by increased temperatures and altered precipitation patterns. In addition, there has been an increase in both the frequency and intensity of extreme climatic events such as drought. Episodes of drought induce a series of interconnected effects, all of which have the potential to alter the carbon balance of forest ecosystems profoundly at different scales of plant organization and ecosystem functioning. During recent years, considerable progress has been made in the understanding of how aboveground parts of trees respond to drought and how these responses affect carbon assimilation. In contrast, processes of belowground parts are relatively underrepresented in research on climate change. In this review, we describe current knowledge about responses of tree roots to drought. Tree roots are capable of responding to drought through a variety of strategies that enable them to avoid and tolerate stress. Responses include root biomass adjustments, anatomical alterations, and physiological acclimations. The molecular mechanisms underlying these responses are characterized to some extent, and involve stress signaling and the induction of numerous genes, leading to the activation of tolerance pathways. In addition, mycorrhizas seem to play important protective roles. The current knowledge compiled in this review supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible. Further, the reviewed literature demonstrates the important role of tree roots in the functioning of forest ecosystems and highlights the need for more research in this emerging field. PMID:26284083

  1. Visualizing Rhizosphere Soil Structure Around Living Roots

    NASA Astrophysics Data System (ADS)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2008-12-01

    The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  2. Distribution of expansins in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    To test if expansins, wall loosening proteins that disrupt binding between microfibrils and cell wall matrix, participate in the differential elongation of graviresponding roots, Zea mays L. cv. Merit roots were gravistimulated and used for immunolocalization with anti-expansin. Western blots showed cross-reaction with two proteins of maize, one of the same mass as cucumber expansin (29 kDa), the second slightly larger (32 kDa). Maize roots contained mainly the larger protein, but both were found in coleoptiles. The expansin distribution in cucumber roots and hypocotyls was similar to the distribution in maize. Roots showed stronger expansin signals on the expanding convex side than the concave flank as early as 30 min after gravistimulation. Treatment with brefeldin A, a vesicle transport inhibitor, or the auxin transport inhibitor, naphthylphthalamic acid, showed delayed graviresponse and the appearance of differential staining. Our results indicate that expansins may be transported and secreted to cell walls via vesicles and function in wall expansion.

  3. Cadmium induces acidosis in maize root cells.

    PubMed

    Nocito, Fabio Francesco; Espen, Luca; Crema, Barbara; Cocucci, Maurizio; Sacchi, Gian Attilio

    2008-01-01

    * Cadmium (Cd) stress increases cell metabolic demand for sulfur, reducing equivalents, and carbon skeletons, to sustain phytochelatin biosynthesis for Cd detoxification. In this condition the induction of potentially acidifying anaplerotic metabolism in root tissues may be expected. For these reasons the effects of Cd accumulation on anaplerotic metabolism, glycolysis, and cell pH control mechanisms were investigated in maize (Zea mays) roots. * The study compared root apical segments, excised from plants grown for 24 h in a nutrient solution supplemented, or not, with 10 microM CdCl(2), using physiological, biochemical and (31)P-nuclear magnetic resonance (NMR) approaches. * Cadmium exposure resulted in a significant decrease in both cytosolic and vacuolar pH of root cells and in a concomitant increase in the carbon fluxes through anaplerotic metabolism leading to malate biosynthesis, as suggested by changes in dark CO2 fixation, metabolite levels and enzyme activities along glycolysis, and mitochondrial alternative respiration capacity. This scenario was accompanied by a decrease in the net H(+) efflux from the roots, probably related to changes in plasma membrane permeability. * It is concluded that anaplerotic metabolism triggered by Cd detoxification processes might lead to an imbalance in H(+) production and consumption, and then to cell acidosis. PMID:18537888

  4. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  5. an evaluation of techniques for root observations

    NASA Astrophysics Data System (ADS)

    Mohamed, Awaz; Monnier, Yogan; Stokes, Alexia

    2015-04-01

    An evaluation of techniques for root observations Below-ground processes play an essential role in ecosystem nutrient cycling and the global carbon budget (C) cycle because they regulate storage of large quantities of carbon. Quantifying root dynamics, that is, production, longevity, mortality and decomposition, is crucial to the understanding of ecosystem structure and function, and in predicting how ecosystems respond to climate variability. The necessity for accumulating information about root system growth is thus clear. However, we have a relatively poor understanding of the best method of observation, especially in the natural soil environment. The objective of this study is to compare four techniques of root observation, that is, manual scanner, smartphone scanner, flatbed scanner and classical observations, for determining the best technique. Root growth dynamics were measured in Rhizotrons. The project involves several field-sites situated in agroforests comprising hybrid walnut trees and pasture/crops along a climatic gradient in France. The results of this project will provide data allowing researchers to facilitate the choice of the most suitable observation method for their research.

  6. Variations in the Root Form and Root Canal Morphology of Permanent Mandibular First Molars in a Sri Lankan Population

    PubMed Central

    Peiris, Roshan; Malwatte, Uthpala; Abayakoon, Janak; Wettasinghe, Anuradha

    2015-01-01

    The present study was conducted to determine the number of roots and morphology of the root canal system of permanent mandibular first molars (M1) in a Sri Lankan population. Sample of 529 M1 teeth was used. The number of roots was examined and the lengths of the mesial and distal roots were measured to the nearest 0.01 mm. Vacuum injection protocol was used to inject China ink into the root canal system, making it transparent. Root canal morphology was recorded using Vertucci's classification. Presence of furcation canals, position of lateral canals, intercanal communications, level of bifurcation, and convergence of the root canal system were recorded. M1 showed three roots in 4.1% of the sample. Commonest root canal morphology of the mesial root was type IV and the distal root was type I. The level of bifurcation of the root canals was commonly observed in the cervical one-third of the root while convergence was observed in the apical one-third in both roots. Prevalence of three rooted mandibular first molars is less than 5%. Mesial root showed the most variable canal morphology. Prevalence of furcation canals was 1.5% while that of middle mesial canals was 0.2%. PMID:26351583

  7. Roots of polynomials by ratio of successive derivatives

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.; Putt, C. W.

    1972-01-01

    An order of magnitude study of the ratios of successive polynomial derivatives yields information about the number of roots at an approached root point and the approximate location of a root point from a nearby point. The location approximation improves as a root is approached, so a powerful convergence procedure becomes available. These principles are developed into a computer program which finds the roots of polynomials with real number coefficients.

  8. Variability of Root Traits in Spring Wheat Germplasm

    PubMed Central

    Narayanan, Sruthi; Mohan, Amita; Gill, Kulvinder S.; Prasad, P. V. Vara

    2014-01-01

    Root traits influence the amount of water and nutrient absorption, and are important for maintaining crop yield under drought conditions. The objectives of this research were to characterize variability of root traits among spring wheat genotypes and determine whether root traits are related to shoot traits (plant height, tiller number per plant, shoot dry weight, and coleoptile length), regions of origin, and market classes. Plants were grown in 150-cm columns for 61 days in a greenhouse under optimal growth conditions. Rooting depth, root dry weight, root: shoot ratio, and shoot traits were determined for 297 genotypes of the germplasm, Cultivated Wheat Collection (CWC). The remaining root traits such as total root length and surface area were measured for a subset of 30 genotypes selected based on rooting depth. Significant genetic variability was observed for root traits among spring wheat genotypes in CWC germplasm or its subset. Genotypes Sonora and Currawa were ranked high, and genotype Vandal was ranked low for most root traits. A positive relationship (R2≥0.35) was found between root and shoot dry weights within the CWC germplasm and between total root surface area and tiller number; total root surface area and shoot dry weight; and total root length and coleoptile length within the subset. No correlations were found between plant height and most root traits within the CWC germplasm or its subset. Region of origin had significant impact on rooting depth in the CWC germplasm. Wheat genotypes collected from Australia, Mediterranean, and west Asia had greater rooting depth than those from south Asia, Latin America, Mexico, and Canada. Soft wheat had greater rooting depth than hard wheat in the CWC germplasm. The genetic variability identified in this research for root traits can be exploited to improve drought tolerance and/or resource capture in wheat. PMID:24945438

  9. Root tip-dependent, active riboflavin secretion by Hyoscyamus albus hairy roots under iron deficiency.

    PubMed

    Higa, Ataru; Miyamoto, Erika; ur Rahman, Laiq; Kitamura, Yoshie

    2008-04-01

    Hyoscyamus albus hairy roots with/without an exogenous gene (11 clones) were established by inoculation of Agrobacterium rhizogenes. All clones cultured under iron-deficient condition secreted riboflavin from the root tips into the culture medium and the productivity depended on the number and size of root tips among the clones. A decline of pH was observed before riboflavin production and root development. By studying effects of proton-pump inhibitors, medium acidification with external organic acid, and riboflavin addition upon pH change and riboflavin productivity, we indicate that riboflavin efflux is not directly connected to active pH reduction, and more significantly active riboflavin secretion occurs as a response to an internal requirement in H. albus hairy roots under iron deficiency. PMID:18367404

  10. Endodontic Microsurgical Treatment of a Three-rooted Mandibular First Molar with Separate Distolingual Root: Report of One Case.

    PubMed

    Wang, Han Guo; Xu, Ning; Yu, Qing

    2016-01-01

    The separate distolingual (DL) roots of three-rooted mandibular first molars are thought to be too difficult for performing apical surgery. This article represents microsurgical treatment of a three-rooted mandibular first molar with a separate DL root. The procedure includes incision and flap retraction, osteotomy, apicoectomy, retropreparation and retrofilling of the root canal, using micro instruments, ultrasonic retrotips and mineral trioxide aggregate (MTA) under a dental operating microscope. Two mm in length of apical root resection, 2 mm in depth of root canal retropreparation with a personalised ultrasonic retrotip, and 2 mm in length of retrofilling with MTA are the key points for accomplishment of apical surgery on separate DL roots. The case was followed up for 15 months after surgery. Clinical and radiographic examinations revealed complete healing of periapical tissue. Separate DL roots of three-rooted mandibular first molars can be treated by endodontic microsurgery with modifications from standard protocol. PMID:27622221

  11. Root Canal Treatment of a Two-Rooted C-Shaped Maxillary First Molar: A Case Report

    PubMed Central

    Paksefat, Sara; Rahimi, Saeed

    2014-01-01

    The most difficult maxillary teeth for endodontic treatment are the maxillary first molars (MFM) due to their complex root canal anatomy. The presence of two roots and C-shaped canals in MFMs has been reported in rare cases. The present case reports root canal treatment of MFM with two roots, where the palatal and buccal roots were joined together in a C-shaped configuration. PMID:25386214

  12. Relationship between Shoot-rooting and Root-sprouting Abilities and the Carbohydrate and Nitrogen Reserves of Mediterranean Dwarf Shrubs

    PubMed Central

    Palacio, Sara; Maestro, Melchor; Montserrat-Martí, Gabriel

    2007-01-01

    Background and Aims This study analysed the differences in nitrogen (N), non-structural carbohydrates (NSC) and biomass allocation to the roots and shoots of 18 species of Mediterranean dwarf shrubs with different shoot-rooting and resprouting abilities. Root N and NSC concentrations of strict root-sprouters and species resprouting from the base of the stems were also compared. Methods Soluble sugars (SS), starch and N concentrations were assessed in roots and shoots. The root : shoot ratio of each species was obtained by thorough root excavations. Cross-species analyses were complemented by phylogenetically independent contrasts (PICs). Key Results Shoot-rooting species showed a preferential allocation of starch to shoots rather than roots as compared with non-shoot-rooting species. Resprouters displayed greater starch concentrations than non-sprouters in both shoots and roots. Trends were maintained after PICs analyses, but differences became weak when root-sprouters versus non-root-sprouters were compared. Within resprouters, strict root-sprouters showed greater root concentrations and a preferential allocation of starch to the roots than stem-sprouters. No differences were found in the root : shoot ratio of species with different rooting and resprouting abilities. Conclusions The shoot-rooting ability of Mediterranean dwarf shrubs seems to depend on the preferential allocation of starch and SS to shoots, though alternative C-sources such as current photosynthates may also be involved. In contrast to plants from other mediterranean areas of the world, the resprouting ability of Mediterranean dwarf shrubs is not related to a preferential allocation of N, NSC and biomass to roots. PMID:17728338

  13. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  14. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development

    PubMed Central

    Ilina, Elena L.; Logachov, Anton A.; Laplaze, Laurent; Demchenko, Nikolay P.; Pawlowski, Katharina; Demchenko, Kirill N.

    2012-01-01

    Background and Aims In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. Methods The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Key Results Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. Conclusions The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem

  15. Amyloplast Sedimentation Kinetics in Corn Roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Sack, F.

    1985-01-01

    Knowledge of the parameters of amyloplast sedimentation is crucial for an evaluation of proposed mechanisms of root graviperception. Early estimates of the rate of root amyloplast sedimentation were as low as 1.2 micron/min which may be too slow for many amyloplasts to reach the vicinity of the new lower wall within the presentation time. On this basis, Haberlandt's classical statolith hypothesis involving amyloplast stimulation of a sensitive surface near the new lower wall was questioned. The aim was to determine the kinetics of amyloplast sedimentation with reference to the presentation time in living and fixed corn rootcap cells as compared with coleoptiles of the same variety.

  16. Analysis of root reinforcement of vegetated riprap

    NASA Astrophysics Data System (ADS)

    Tron, Stefania; Raymond, Pierre

    2014-05-01

    Riprap is a traditional engineering solution used to protect riverbanks against erosion on developed riparian corridors. However, the traditional riprap does not provide adequate fish and wildlife habitat within the riparian zone, which is normally provided by naturally vegetated stream banks. An innovative approach, which mitigates this issue and at the same time provides stream bank erosion control, is the vegetated riprap technique. This solution, which combines rocks and native vegetation in the form of live cuttings, has been designed and implemented by Terra Erosion Control Ltd for the past 7 years. The aim of this work was to study the effect of the vegetation, in particular the root system, on the stability of the riprap. This analysis was carried out in the late spring of 2013 on the vegetated riprap installation located along the Columbia River riverbank, adjacent to the Teck Metals Ltd. smelter in Trail, British Columbia, Canada. An excavation perpendicular to the river was performed in order to investigate the root system development within the vegetated riprap structure. This excavation exposed one of the Salix bebbiana cuttings installed in 2006. The cutting was 2.3 m long and was set with an inclination of 35° with respect to the horizontal plane: the first 0.3 m was exposed, 1 m was buried within the riprap rocks (which had an average diameter of 30 cm) and the remaining 1.0 m was in the soil matrix below the rocks. The diameter of the roots growing along the cutting were measured in order to obtain the root density at various depths and tensile strength tests were carried out on the Salix bebbiana roots with diameters of up to 9 mm. The aim was to quantitatively estimate the additional cohesion given by the roots. The additional root cohesion was more effective in the deeper soil layer where the soil matrix predominates. In the upper soil layer, where the particle size is significantly higher, roots do not increase the cohesion but act as a

  17. The design of propeller blade roots

    NASA Technical Reports Server (NTRS)

    Cordes, G

    1942-01-01

    Predicated on the assumption of certain normal conditions for engine and propeller, simple expressions for the static and dynamic stresses of propeller blade roots are evolved. They, in combination with the fatigue strength diagram of the employed material, afford for each engine power one certain operating point by which the state of stress serving as a basis for the design of the root is defined. Different stress cases must be analyzed, depending on the vibration tendency of engine and use of propeller. The solution affords an insight into the possible introduction of different size classes of propeller.

  18. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal.

    PubMed

    Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui

    2012-01-17

    Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species. PMID:22126585

  19. Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction

    NASA Astrophysics Data System (ADS)

    Dechant, Pierre-Philippe

    2015-04-01

    In this paper, we show that via a novel construction every rank-3 root system induces a root system of rank 4. Via the Cartan-Dieudonné theorem, an even number of successive Coxeter reflections yields rotations that in a Clifford algebra framework are described by spinors. In three dimensions these spinors themselves have a natural four-dimensional Euclidean structure, and discrete spinor groups can therefore be interpreted as 4D polytopes. In fact, we show that these polytopes have to be root systems, thereby inducing Coxeter groups of rank 4, and that their automorphism groups include two factors of the respective discrete spinor groups trivially acting on the left and on the right by spinor multiplication. Special cases of this general theorem include the exceptional 4D groups D4, F4 and H4, which therefore opens up a new understanding of applications of these structures in terms of spinorial geometry. In particular, 4D groups are ubiquitous in high energy physics. For the corresponding case in two dimensions, the groups I2(n) are shown to be self-dual, whilst via a similar construction in terms of octonions each rank-3 root system induces a root system in dimension 8; this root system is in fact the direct sum of two copies of the corresponding induced 4D root system.

  20. Summer drought alters dynamics of carbon allocation to roots and root respiration in mountain grassland

    NASA Astrophysics Data System (ADS)

    Hasibeder, Roland; Fuchslueger, Lucia; Fritz, Karina; Richter, Andreas; Bahn, Michael

    2014-05-01

    Meteorological extreme events like summer droughts are expected to occur more frequently in a future climate and exert a major impact on the carbon (C) balance of terrestrial ecosystems. Drought impairs the activity of C source (photosynthesis) and sinks (growth, respiration, storage) as well as C partitioning between aboveground and belowground plant organs. To date, little is known about effects of drought on the allocation dynamics of recently assimilated C in intact ecosystems. Combining experimental rain exclusion with 13CO2 pulse labelling in a mountain meadow in the Austrian Central Alps, we investigated how summer drought impacts the translocation of fresh photosynthates to roots and the partitioning of this C input among root carbohydrate pools and respiration. Severe soil drying slowed down and decreased the amount of recent C allocated to the root system by ca. 50%, reflecting similar reductions in C uptake. However, interestingly, the proportion of 13C translocated belowground (relative to the amount of 13C assimilated by the plants) increased under drought, reflecting a change in C allocation patterns. Overall, relatively more C was allocated to root starch and to osmotically active compounds (sugars), whose concentrations were doubled under drought. In contrast, drought reduced the proportional allocation of recent assimilates to root respiration, whose rates were diminished by ca. 26%. These results suggest that while summer drought reduced the supply of recently assimilated C to roots, it increased its proportional allocation to osmotically active sugars and to storage while decreasing its allocation to root respiration.

  1. ROOT.NET: Using ROOT from .NET languages like C# and F#

    NASA Astrophysics Data System (ADS)

    Watts, G.

    2012-12-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F# (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  2. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  3. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  4. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  5. Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection.

    PubMed

    Noda, T; Tanaka, N; Mano, Y; Nabeshima, S; Ohkawa, H; Matsui, C

    1987-07-01

    Surface-sterilized leaf disks of horse-radish (Armoracia lapathifolia) were immersed in a suspension of Agrobacterium rhizogenes harboring the root-inducing plasmid (pRi) and cultured on a solid medium. Within about 10 days after inoculation, adventitious roots (hairy roots) emerged from the leaf disks. No roots emerged from the uninoculated leaf disks. The excised hairy roots grew vigorously in the dark and exhibited extensive lateral branches in the absence of phytohormones. When the hairy roots were moved into the light, numerous adventitious buds thrust out of the roots within about 10 days, and they developed into complete plants (R0 generation). R0 plants revealed leaf wrinkle. Root masses of cultured R0 plants were of two types. One had fibrous roots only and the other had both fibrous and tuberous roots Leaf disks of the R0 plants proliferated adventitious roots (R1 generation) on a solid medium after 1-2 weeks of culture. Phenotypical characters of the R1 roots were the same as those observed with the initial hairy roots. The T-DNA sequences of pRi were detected within DNA isolated from the hairy roots and their regenerants. PMID:24248760

  6. Mycorrhiza alters the profile of root hairs in trifoliate orange.

    PubMed

    Wu, Qiang-Sheng; Liu, Chun-Yan; Zhang, De-Jian; Zou, Ying-Ning; He, Xin-Hua; Wu, Qing-Hua

    2016-04-01

    Root hairs and arbuscular mycorrhiza (AM) coexist in root systems for nutrient and water absorption, but the relation between AM and root hairs is poorly known. A pot study was performed to evaluate the effects of four different AM fungi (AMF), namely, Claroideoglomus etunicatum, Diversispora versiformis, Funneliformis mosseae, and Rhizophagus intraradices on root hair development in trifoliate orange (Poncirus trifoliata) seedlings grown in sand. Mycorrhizal seedlings showed significantly higher root hair density than non-mycorrhizal seedlings, irrespective of AMF species. AMF inoculation generally significantly decreased root hair length in the first- and second-order lateral roots but increased it in the third- and fourth-order lateral roots. AMF colonization induced diverse responses in root hair diameter of different order lateral roots. Considerably greater concentrations of phosphorus (P), nitric oxide (NO), glucose, sucrose, indole-3-acetic acid (IAA), and methyl jasmonate (MeJA) were found in roots of AM seedlings than in non-AM seedlings. Levels of P, NO, carbohydrates, IAA, and MeJA in roots were correlated with AM formation and root hair development. These results suggest that AMF could alter the profile of root hairs in trifoliate orange through modulation of physiological activities. F. mosseae, which had the greatest positive effects, could represent an efficient AM fungus for increasing fruit yields or decreasing fertilizer inputs in citrus production. PMID:26499883

  7. Disturbances during minirhizotron installation can affect root observation data

    SciTech Connect

    Joslin, J.D.; Wolfe, M.H.

    1999-01-01

    Use of minirhizotrons in forested ecosystems has produced considerable information on production, mortality, distribution, and the phenology of root growth. But installation of minirhizotrons severs roots and disturbs soil, which can cause root proliferation in perennial plants. The authors compared the magnitude and vertical distribution of root growth observations in a mature hardwood forest during the growing season immediately after minirhizotron installation with observations more than two years later. They also compared the vertical root growth distribution during these two different years with the preinstallation distribution of fine root biomass. Before minirhizotron installation and again two years later, about 74% of fine root biomass was in the upper 30 cm of soil, but immediately after installation, 98% of the root elongation was in the upper 30 cm. Large differences in the quantity of root elongation were observed across different slope positions in the minirhizotron data from the first growing season (approximately four times greater on the upper slope as the lower slope). Such differences with slope position were not sen in the later minirhizotron data, nor in the preinstallation fine root biomass data. The evidence suggests that the minirhizotron data collected immediately after installation can be biased by disturbance of roots and soil during installation, which result in excessive root proliferation, particularly near the soil surface. Root proliferation appears to be the result of a response to both root pruning and to nutrient release in microsites near the newly installed minirhizotron.

  8. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils.

    PubMed

    Gaitnieks, Talis; Klavina, Darta; Muiznieks, Indrikis; Pennanen, Taina; Velmala, Sannakajsa; Vasaitis, Rimvydas; Menkis, Audrius

    2016-07-01

    We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils. PMID:26861482

  9. Functional traits and root morphology of alpine plants

    PubMed Central

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-01-01

    Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278

  10. Rooting greenwood tip cuttings of several Populus clones hydroponically (hydroponic rooting of Populus cuttings)

    SciTech Connect

    Phipps, H.M.; Hansen, E.A.; Tolsted, D.N.

    1980-01-01

    Greenwood cuttings of several Populus clones were successfully rooted with a relatively simple hydroponic method. Indolebutyric acid and naphthaleneacetic acid at concentrations of 500 to 5000 ppM applied as a quick dip to the cutting bases, a complete nutrient solution at 20 to 40% of full strength, and a solution temperature between 27 and 30/sup 0/C generally produced the best rooting performance of most clones. Cuttings propagated by the hydroponic procedure rooted faster and generally outgrew those produced by a standard method after being transplanted to pots and grown in the greenhouse.

  11. Project GRADS (Grass Roots Alternative Diploma Study).

    ERIC Educational Resources Information Center

    Kimmel, Harold S.; Lucas, Geoffrey S.

    A project to develop grass roots alternative diploma study (Project GRADS) was undertaken for the purpose of formulating and implementing a multimodal, systems approach to preparing rural adults to pass the General Educational Development (GED) Tests. During the year-long, countywide program, GED programming was developed and delivered via the…

  12. Christian Families, Educative Lenses, and Incarnational Roots

    ERIC Educational Resources Information Center

    Parmach, Robert J.

    2008-01-01

    The Christian family is a deeply rooted theological way of being in the world with others. It is a functional domain from where initial and life-long lessons emerge. In rich ways, it helps foster human identity, development, ethical formation, autonomy, and communal responsibility amid a greater understanding of Christ's actualizing presence in…

  13. Rhizoctonia seed, seedling, and wet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wet root rot caused by Rhizoctonia solani Kühn can cause seed and seedling rot of both lentil and chickpea as well as many other agricultural crops worldwide. The pathogen is favored in cool, sandy soil with high organic matter under no-till or reduced-till soil management practices. Survival spor...

  14. Root region airfoil for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1995-01-01

    A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

  15. Roots: Back to Our First Generations.

    ERIC Educational Resources Information Center

    Sechrest, Lee

    1992-01-01

    The future of program evaluation is bright if evaluators do not ignore their roots in quantitative research. The current interest in qualitative approaches and the call for a "fourth generation" in evaluation should not override training in quantitative research. Qualitative research should complement, rather than replace, traditional methods.…

  16. Empty Consonants in Root-Medial Position.

    ERIC Educational Resources Information Center

    Marlett, Stephen A.

    This analysis of verb morphology in Seri finds evidence that empty consonants occur in root-medial position. Analysis focuses on the parallel conjugation patterns of the verbs for "know" and "give," finding an empty consonant slot in the middle of each. This position is never preceded by a consonant, so it never appears as a geminated consonant,…

  17. Quest for Continual Growth Takes Root

    ERIC Educational Resources Information Center

    Surdey, Mary M.; Hashey, Jane M.

    2006-01-01

    In this article, the authors describe how the quest for continual growth has taken its root at Vestal Central School district. Located at the heart of upstate New York, educators at Vestal Central School district have created a spirit of "kaizen," a Japanese word meaning the relentless quest for continual improvement and higher-quality…

  18. The Pythagorean Roots of Introductory Physics

    ERIC Educational Resources Information Center

    Clarage, James B.

    2013-01-01

    Much of the mathematical reasoning employed in the typical introductory physics course can be traced to Pythagorean roots planted over two thousand years ago. Besides obvious examples involving the Pythagorean theorem, I draw attention to standard physics problems and derivations which often unknowingly rely upon the Pythagoreans' work on…

  19. Idiopathic Aortic Root to Right Atrial Fistula.

    PubMed

    Campisi, Salvatore; Cluzel, Armand; Vola, Marco; Fuzellier, Jean Francois

    2016-06-01

    An aorta to right atrium fistula is rare. We report a case of idiopathic aortic root to right atrial fistula with right heart failure and review the literature. doi: 10.1111/jocs.12751 (J Card Surg 2016;31:373-375). PMID:27109166

  20. Chapter 16. Fine-root Growth Response

    SciTech Connect

    J. Devereux Joslin; Mark H. Wolfe

    2002-07-31

    As part of a multiyear study to evaluate the affects of altered water inputs to an upland forest many aspects of tree growth physiology were studied. Chapter 16 of this book deals with fine root growth as studied over a 7 year period using a variety of methods. This chapter summarizes the results and conclusions from those efforts.

  1. Pectate hydrolases of parsley (Petroselinum crispum) roots.

    PubMed

    Flodrová, Dana; Dzúrovä, Mária; Lisková, Desana; Mohand, Fairouz Ait; Mislovicová, Danica; Malovícová, Anna; Voburka, Zdenek; Omelková, Jirina; Stratilová, Eva

    2007-01-01

    The presence of various enzyme forms with terminal action pattern on pectate was evaluated in a protein mixture obtained from parsley roots. Enzymes found in the soluble fraction of roots (juice) were purified to homogeneity according to SDS-PAGE, partially separated by preparative isoelectric focusing and characterized. Three forms with pH optima 3.6, 4.2 and 4.6 clearly preferred substrates with a lower degree of polymerization (oligogalacturonates) while the form with pH optimum 5.2 was a typical exopolygalacturonase [EC 3. 2.1.67] with relatively fast cleavage of polymeric substrate. The forms with pH optima 3.6, 4.2 and 5.2 were released from the pulp, too. The form from the pulp with pH optimum 4.6 preferred higher oligogalacturonates and was not described in plants previously. The production of individual forms in roots was compared with that produced by root cells cultivated on solid medium and in liquid one. PMID:17708444

  2. Neuroprotective bibenzyl glycosides of Stemona tuberosa roots.

    PubMed

    Lee, Ki Yong; Sung, Sang Hyun; Kim, Young Choong

    2006-04-01

    Three new bibenzyl glycosides characterized as stilbostemin B 3'-beta-D-glucopyranoside (1), stilbostemin H 3'-beta-D-glucopyranoside (2), and stilbostemin I 2"-beta-D-glucopyranoside (3) were isolated from the roots of Stemona tuberosa. All three bibenzyl glycosides significantly protected human neuroblastoma SH-SY5Y cells from 6-hydroxydopamine-induced neurotoxicity. PMID:16643052

  3. Challenging Cancer at the Grass Roots.

    ERIC Educational Resources Information Center

    Casto, James E.

    1997-01-01

    The National Cancer Institute created the Appalachia Leadership Initiative on Cancer, composed of four similar projects that focus on increasing screening for cervical and breast cancer among low-income, older women. The program relies on community coalitions that develop innovative grass roots methods to spread the message about the importance of…

  4. Pull Out Negativity by Its Roots.

    ERIC Educational Resources Information Center

    DuFour, Rick; Burnette, Becky

    2002-01-01

    Principals are well-positioned to cultivate their schools' cultures. They must remain vigilant in rooting out the beginnings of negative culture, including such teacher attitudes and behaviors as not feeling responsible for student learning, preferring to work alone, wanting to protect their territory, and focusing on activity rather than results.…

  5. Pharmacognostic studies on Pergularia daemia roots.

    PubMed

    Bhaskar, V H; Balakrishnan, N

    2010-04-01

    Pergularia daemia (Forsk.) Chiov. (Asclepiadaceae) is used traditionally as an anthelmintic, laxative, antipyretic, and expectorant, and also used to treat malarial intermittent fever. But the scientific parameters are not yet available to identify the true plant material. In the present investigation, various pharmacognostic standards for P. daemia have been established. Microscopically, thick root and thick taproot of P. daemia showed the presence of periderm, secondary phloem and secondary xylem. Abundant starch grains and calcium oxalate crystals are present in the cortical parenchyma masses included within the xylem. Powdered roots of the plant showed vessel elements, tracheids, fibers and xylem parenchyma. Total ash of the root of P. daemia was not more than 5% and water-soluble extractive value was two times higher than alcohol soluble extractive value. Phytochemically, the ethanol and aqueous extracts of the root of P. daemia showed maximum phytochemicals such as alkaloids, glycosides, steroids, flavonoids, saponin, tannin and phenolic compounds, terpenoids, carbohydrates, gums and mucilage. The results of this study should provide a standard for identification and preparation of monograph of this drug. PMID:20645722

  6. UPTAKE OF BROMACIL BY ISOLATED BARLEY ROOTS

    EPA Science Inventory

    A study of bromacil uptake by excised barley (Hordeum Vulgare) roots was used to evaluate this procedure as a tool to learn the uptake characteristics of toxic organic chemicals. Bromacil uptake was shown to be a passive process with an uptake rate (at 0.8 mg/l) of 0.64 microgram...

  7. Bullying in nursing: roots, rationales, and remedies.

    PubMed

    Szutenbach, Mary Pat

    2013-01-01

    Bullying and incivility are sadly, far too common in today's healthcare workplaces. This article reviews early to current literature, identifies types of bullying, offers four root causes, and suggests responses to impact these causes using Gibbs' Reflective Cycle, biblical Scripture, and an allegory "How to Swim with Sharks." PMID:23495431

  8. Grass roots of soil carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils rooted with perennial grasses have high organic matter content, and therefore, can contribute to an agricultural future with high soil quality; a condition that can help to mitigate greenhouse gas emissions through soil carbon sequestration and improve a multitude of other ecosystem responses,...

  9. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  10. Endosomal Interactions during Root Hair Growth.

    PubMed

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2015-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  11. The Philosophical Roots of Lifelong Learning.

    ERIC Educational Resources Information Center

    Lewis, Rosa B.

    The philosophical roots of the concept of lifelong learning are considered in relation to the views of Socrates, Plato, and Aristotle. They pioneered in their analyses of intellectual development and in the importance of the use of the mind throughout the life span. Plato and Aristotle added metaphysical arguments to support their systems of…

  12. Microsurgery for root coverage: A systematic review

    PubMed Central

    Kang, Jian; Meng, Shu; Li, Chunjie; Luo, Zhenhua; Guo, Shujuan; Wu, Yafei

    2015-01-01

    Objective: To evaluate whether microsurgery gains better result in root coverage compared to conventional surgical techniques. Methods: A number of databases were searched to identify eligible studies from January 1992 to January 2015. The following outcomes were evaluated: number of sites exhibiting complete root coverage and patients’ esthetic satisfaction. Results: Four Randomized Clinical Trials (RCTs) fulfilled the inclusion criteria. A pooled estimate from the two RCTs regarding sub-epithelial connective tissue grafts (SCTG) showed significant achievement in complete root coverage in the microsurgical group [relative risk (RR):1.63; 95% confidence interval (CI): 1.12 to 2.36; P=0.01] with acceptable heterogeneity. The other two studies were about coronal advanced flap (CAF) with enamel matrix derivative or free rotated papilla autograft and did not qualify for meta-analysis. Patients’ esthetic satisfaction was analyzed only by one study. Conclusions: Using microsurgical technique for treating gingival recessions may be effective in achieving complete root coverage for SCTG. PMID:26649026

  13. Getting to the Root of Things

    ERIC Educational Resources Information Center

    Lott, Debra

    2008-01-01

    This article introduces a new "perspective" on the typical landscape painting. It is an opportunity for art students to study the local ecosystem and native trees in their community. Other aspects of this assignment are the study of Symbolism and a new focus on the natural designs created by exposed tree roots. (Contains 1 web link.)

  14. Learning, Judgment, and the Rooted Particular

    ERIC Educational Resources Information Center

    McCabe, David

    2012-01-01

    This article begins by acknowledging the general worry that scholarship in the humanities lacks the rigor and objectivity of other scholarly fields. In considering the validity of that criticism, I distinguish two models of learning: the covering law model exemplified by the natural sciences, and the model of rooted particularity that…

  15. New experimental techniques for studying root herbivores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relatively less is known about belowground ground herbivores than their aboveground counterparts . This is largely because root-feeding herbivores live in the soil, an opaque, tri-phasic medium, which makes them harder to study and perhaps less perceptible as key components of many terrestrial ecosy...

  16. Plant Hormones: How They Affect Root Formation.

    ERIC Educational Resources Information Center

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  17. Alex Haley's Tips for "Roots" Projects

    ERIC Educational Resources Information Center

    Reed, Sally

    1977-01-01

    The author of "Roots" gives some tips for launching family history projects with elementary students. He also tells why they are important. Included here is a tear-out-and-duplicate family tree chart which students can use in their own efforts. (Editor/RK)

  18. "Roots," A Stimulus for Community Involvement.

    ERIC Educational Resources Information Center

    Greathouse, Betty; Young, Barbara Goldman

    1979-01-01

    Presents a rationale for introducing multiethnic studies into elementary and secondary social studies classrooms and explains how community resources can help students understand themselves and others. Learning activities based on the televised version of Alex Haley's "Roots" are suggested. (Author/DB)

  19. Tapping Ancient Roots: Plaited Paper Baskets

    ERIC Educational Resources Information Center

    Patrick, Jane

    2011-01-01

    With ancient roots, basket making has been practiced since the earliest civilizations, and according to textile experts, probably pre-dates pottery. This is partly conjecture since few baskets remain. It is through evidence found in clay impressions that the earliest baskets reveal themselves. Basically, basketry construction is like flat weaving.…

  20. Learning Experience: The Root of Sustainable Change

    ERIC Educational Resources Information Center

    Beretta, Lorna M.

    2007-01-01

    Within a difficult social setting the starting point for change is the personal learning experiences of those struggling for the change. The learning experiences of people belonging to a community of underprivileged in Brazil are presented in this article in order to recognise how sustainable change is rooted in personal learning experiences. The…

  1. Middle America: Its Historic and Cultural Roots.

    ERIC Educational Resources Information Center

    Palmer, J. Jesse; And Others

    1988-01-01

    The second in a three-part geographical education series, this article focuses on human-environmental relations in the geographical area including Central America, Mexico, and the Caribbean Sea. The article examines how the historical and cultural roots of the people of Middle America have influenced their interaction with and modification of…

  2. Food reserves in mountain longleaf pine roots during shoot elongation.

    SciTech Connect

    Walkinshaw, C.H.; W.J. Otrosina

    2001-03-20

    Roots of saplings appear to be models for healthy tissues in longleaf pines. Results show that roots of mountain longleaf pine have a normal anatomy, but also have unusual amounts of starch when compared to loblolly pine roots growing during phenologiexecy equal time periods. Roots appear large in diameter and grow much nearer the soil surface than roots observed from Coastal Plain longleaf pine. Starch grains are large in size and uniformly filled root cells. These results yield methodology potentially useful in assessment of health and productivity of longleaf pine.

  3. Stimulation of adventitious rooting of Taxus species by thiamine.

    PubMed

    Chee, P P

    1995-10-01

    Results obtained from using root inducing compounds on Taxus species cuttings suggested that rooting could be significantly enhanced by the presence of thiamine. This observation was verified using a root inducing solution containing a set concentration of IBA (0.2%), NAA (0.1%), and supplemented with various concentrations of thiamine. The best rooting response for Taxus cuspidata stem cuttings was found using this solution supplemented with 0.08% thiamine. Rooted cuttings were easily established and developed into vigorous plants. In addition, Taxus brevifolia shoots obtained from tissue cultures via in vitro organogenesis also responded favorably to this 0.08% thiamine supplemented rooting solution. PMID:24186706

  4. Electrical Imaging of Roots and Trunks

    NASA Astrophysics Data System (ADS)

    Al Hagrey, S.; Werban, U.; Meissner, R.; Ismaeil, A.; Rabbel, W.

    2005-05-01

    We applied geoelectric and GPR techniques to analyze problems of botanical structures and even processes, e.g., mapping root zones, internal structure of trunks, and water uptake by roots. The dielectric nature of root zones and trunks is generally a consequence of relatively high moisture content. The electric method, applied to root zones, can discriminate between old, thick, isolated roots (high resistivity) and the network of young, active, and hydraulically conductive zones (low resistivity). Both types of roots show low radar velocity and a strong attenuation caused by the dominant effect of moisture (high dielectric constant) on the electromagnetic wave propagation. Single root branches could be observed in radargrams by their reflection and diffraction parabolas. We have perfected the inversion method for perfect and imperfect cylindrical objects, such as trunks, and developed a new multielectrodes (needle or gel) ring array for fast applications on living trees and discs. Using synthetic models we tested the technique successfully and analyzed it as a function of total electrode number and configuration. Measurements at a trunk show a well established inverse relationship between the imaged resistivity and the moisture content determined from cores. The central resistivity maximum of healthy trees strongly decreases toward the rim. This agrees with the moisture decrease to the outside where active sap flow processes take place. Branching, growth anomalies (new or old shoots) and meteorological effects (sunshine and wind direction) lead to deviations of the concentric electric structure. The strongest anomalies are related to infections causing wet, rotting spots or cavities. The heartwood resistivity is highest in olive and oak trunks, intermediate in young fruit trees and lowest in cork oak trunks that are considered to be anomalously wet. Compared to acoustic tomography our electric technique shows a better resolution in imaging internal ring structures

  5. On the origins of dorsal root potentials.

    PubMed

    LLOYD, D P C; McINTYRE, A K

    1949-03-20

    The "dorsal root potential" consists of five successive deflections designated for convenience, D.R.I, II, III, IV, and V. Of these, D.R.V alone constitutes the dorsal root potential of prior description. A study has been made of the general properties of those deflections not previously described. Dorsal root potentials are electrotonic extensions into the extramedullary root segment, the result of electrical interactions within the cord comparable to those that have been studied in peripheral nerve. Although the anatomical and electrical conditions of interaction are infinitely more complex in the cord than in nerve, it is seen that the fact of parallel distribution of primary afferent fibers pertaining to neighboring dorsal roots provides a sufficient anatomical basis for qualitative analysis in the first approximation of dorsal root potentials. An extension of the theory of interaction between neighboring nerve fibers has been made to include an especial case of interaction between fibers orientated at right angles to one another. The predictions have been tested in a nerve model and found correct. Given this elaboration, and the stated anatomical propositions, existing knowledge of interaction provides an adequate theoretical basis for an elementary understanding of dorsal root potentials. The study of general properties and the analysis of dorsal root potentials have led to the formulation of certain conclusions that follow. D.R.I, II, and III record the electrotonic spread of polarization resulting from the external field of impulses conducted in the intramedullary segment and longitudinal trajects of primary afferent fibers. D.R.IV arises in part as the result of activity in primary afferent fibers, and in part as the result of activity in secondary neurons. In either case the mode of production is the same, and the responsible agent is residual negativity in the active collaterals, or, more precisely, the external field of current flow about the

  6. WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development

    PubMed Central

    Cheng, Saifeng; Zhou, Dao-Xiu; Zhao, Yu

    2016-01-01

    ABSTRACT Roots are essential organs for anchoring plants, exploring and exploiting soil resources, and establishing plant-microorganisms communities in vascular plants. Rice has a complex root system architecture consisting of several root types, including primary roots, lateral roots, and crown roots. Crown roots constitute the major part of the rice root system and play important roles during the growing period. Recently, we have refined a mechanism that involves ERF3/WOX11 interaction is required to regulate the expression of genes in the cytokinin signaling pathway during the different stages of crown roots development in rice. In this study, we further analyzed the root phenotypes of WOX11 transgenic plants and revealed that WOX11 also acts in controlling root hair development and enhancing rice drought resistance, in addition to its roles in regulating crown root and lateral root development. Based on this new finding, we proposed the mechanism of that WOX11 is involved in drought resistance by modulating rice root system development. PMID:26689769

  7. Inhibition of Auxin Movement from the Shoot into the Root Inhibits Lateral Root Development in Arabidopsis1

    PubMed Central

    Reed, Robyn C.; Brady, Shari R.; Muday, Gloria K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development. PMID:9847111

  8. Genetic variation in rooting ability of loblolly pine cuttings: effects of auxin and family on rooting by hypocotyl cuttings.

    PubMed

    Greenwood, M S; Weir, R J

    1995-01-01

    After about 20 days, hypocotyl cuttings from 20-day-old loblolly pine (Pinus taeda L.) seedlings rooted easily in the presence of the auxin indole-3-butyric acid (IBA), with roots forming directly from xylem parenchyma. In contrast, woody cuttings from 1-2-year-old hedged seedlings formed roots indirectly from callus tissue in 60-90 days, but IBA had little effect on rooting. Variation in rooting among hypocotyls from both half- and full-sib families was highly significant in response to IBA, and rooting did not occur within 20 days unless IBA was applied. Hypocotyls from poor rooting families tended to produce fewer roots per cutting than hypocotyls from good rooting families. Rooting by woody cuttings and hypocotyl cuttings from the same nine full-sib families was weakly correlated, raising the possibility that at least some common genetically controlled processes were affecting rooting by both types of cutting. The phytotropin N-1-naphthylphthalamic acid (NPA), supplied at 1 micro M with 10 micro M IBA, significantly inhibited rooting by hypocotyl cuttings from both good and poor rooting families, but there was no significant family x treatment interaction. Family variation in rooting ability may be a function of the frequency of occurrence of auxin-responsive cells in the hypocotyls. PMID:14966010

  9. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Bo; Chen, Li-Hua; Jiang, Jing

    2014-02-01

    Plant roots help to reinforce the soil, increase slope stability and decrease water erosion. Root tensile strength plays an important role in soil reinforcement and slope stabilization. The relationship between tensile strength and internal chemical composition of roots is unknown due to limited studies. Thus, it is difficult to determine why root tensile strength tends to decrease with increasing root diameter. In this study, biomechanical and biochemical tests were performed on the roots of Chinese pine (Pinus tabulaeformis) to determine the relationships among tensile strength and the contents of the main chemical composition: cellulose, alpha-cellulose and lignin in the roots with different diameters. Our results confirmed that the tensile strength of Chinese pine roots decreased with increasing root diameter, and this relationship might be a power function. The chemical contents of the roots and root diameter were also related to each other with significant power regression. With increasing root diameter, the cellulose content and alpha-cellulose content increased, but the lignin content decreased. In addition, the lignin content exhibited a significantly positive relationship with tensile strength. Furthermore, the ratios of lignin/cellulose and lignin/alpha-cellulose decreased with increasing root diameter following significant power regressions, and they also demonstrated a positive relationship with tensile strength. Taken together, these results may be useful for studies on root tensile strength, soil reinforcement and slope stability.

  10. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex.

    PubMed

    Suzuki, Hiromi; Yokawa, Ken; Nakano, Sayuri; Yoshida, Yuriko; Fabrissin, Isabelle; Okamoto, Takashi; Baluška, František; Koshiba, Tomokazu

    2016-08-01

    Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1-2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1-3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0-1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0-1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn. PMID:27307546

  11. Root cap-dependent gravitropic U-turn of maize root requires light-induced auxin biosynthesis via the YUC pathway in the root apex

    PubMed Central

    Suzuki, Hiromi; Yokawa, Ken; Nakano, Sayuri; Yoshida, Yuriko; Fabrissin, Isabelle; Okamoto, Takashi; Baluška, František; Koshiba, Tomokazu

    2016-01-01

    Gravitropism refers to the growth or movement of plants that is influenced by gravity. Roots exhibit positive gravitropism, and the root cap is thought to be the gravity-sensing site. In some plants, the root cap requires light irradiation for positive gravitropic responses. However, the mechanisms regulating this phenomenon are unknown. We herein report that maize roots exposed to white light continuously for ≥1–2h show increased indole-3-acetic acid (IAA) levels in the root tips, especially in the transition zone (1–3mm from the tip). Treatment with IAA biosynthesis inhibitors yucasin and l-kynurenine prevented any increases in IAA content and root curvature under light conditions. Analyses of the incorporation of a stable isotope label from tryptophan into IAA revealed that some of the IAA in roots was synthesized in the root apex. Furthermore, Zmvt2 and Zmyuc gene transcripts were detected in the root apex. One of the Zmyuc genes (ZM2G141383) was up-regulated by light irradiation in the 0–1mm tip region. Our findings suggest that IAA accumulation in the transition zone is due to light-induced activation of Zmyuc gene expression in the 0–1mm root apex region. Light-induced changes in IAA levels and distributions mediate the maize root gravitropic U-turn. PMID:27307546

  12. Numerical and Experimental Investigation on Root Anchorage

    NASA Astrophysics Data System (ADS)

    Ali, F.; Osman, N.; Hashim, R.; Khalilnejad, A.

    2012-04-01

    In more recent times, the roles played by vegetation in some specific geotechnical processes have been recognized. Vegetation may affect slope stability in many ways. The stability of slopes is governed by the load, which is the driving force that causes failure, and the resistance, which is the strength of the soil-root system. The weight of trees growing on a slope adds to the load but the roots of trees serve as a soil reinforcement and increase the resistance. In order to ensure that the weight of the trees on the slope help to enhance its stability it is required that they are planted down-slope of the neutral point. Maximum contribution is produced if the trees are located at the slope toe. Considering a typical slip circle, at this location the direction of shear force acting on the trees may be considered as close-to-vertical for the purpose of analysis. In this study, 3D numerical simulations of root anchorage have been performed to study the mechanism and the factors influencing the pull out capacity of tree roots. The investigation was performed using ABACUS finite element program. Field pull-out tests were also carried out on Melastoma malabathricum which been shown to be very suitable to be grown on slope, and the results are compared with numerical simulations. Parametric studies were also done to study the effects of factors such as root pattern, angle of inclination as well as soil properties. The results show that the 3D finite element analyses are able to approximately simulate the experimental tests. The results of the field tests, simulations and the parametric studies will be presented and discussed in more details in this paper.

  13. Metabolic transition in mycorrhizal tomato roots

    PubMed Central

    Rivero, Javier; Gamir, Jordi; Aroca, Ricardo; Pozo, María J.; Flors, Víctor

    2015-01-01

    Beneficial plant–microorganism interactions are widespread in nature. Among them, the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major importance, commonly improving host nutrition and tolerance against environmental and biotic challenges. Metabolic changes were observed in a well-established symbiosis between tomato and two common AMF: Rhizophagus irregularis and Funneliformis mosseae. Principal component analysis of metabolites, determined by non-targeted liquid chromatography–mass spectrometry, showed a strong metabolic rearrangement in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids. On the other hand, many intermediaries in amino acid and sugar metabolism and the oxylipin pathway were among the compounds accumulating more in mycorrhizal roots. The metabolic reprogramming also affected other pathways in the secondary metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results showed that source metabolites of these pathways decreased in mycorrhizal roots, whilst the products derived from α-linolenic and amino acids presented higher concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux into those pathways. Venn-diagram analysis showed that there are many induced signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints were also found, suggesting that specific molecular alterations may underlie the reported functional diversity of the symbiosis. Since most positively regulated pathways were related to stress response mechanisms, their potential contribution to improved host stress tolerance is discussed. PMID:26157423

  14. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  15. Metabolic transition in mycorrhizal tomato roots.

    PubMed

    Rivero, Javier; Gamir, Jordi; Aroca, Ricardo; Pozo, María J; Flors, Víctor

    2015-01-01

    Beneficial plant-microorganism interactions are widespread in nature. Among them, the symbiosis between plant roots and arbuscular mycorrhizal fungi (AMF) is of major importance, commonly improving host nutrition and tolerance against environmental and biotic challenges. Metabolic changes were observed in a well-established symbiosis between tomato and two common AMF: Rhizophagus irregularis and Funneliformis mosseae. Principal component analysis of metabolites, determined by non-targeted liquid chromatography-mass spectrometry, showed a strong metabolic rearrangement in mycorrhizal roots. There was generally a negative impact of mycorrhizal symbiosis on amino acid content, mainly on those involved in the biosynthesis of phenylpropanoids. On the other hand, many intermediaries in amino acid and sugar metabolism and the oxylipin pathway were among the compounds accumulating more in mycorrhizal roots. The metabolic reprogramming also affected other pathways in the secondary metabolism, mainly phenyl alcohols (lignins and lignans) and vitamins. The results showed that source metabolites of these pathways decreased in mycorrhizal roots, whilst the products derived from α-linolenic and amino acids presented higher concentrations in AMF-colonized roots. Mycorrhization therefore increased the flux into those pathways. Venn-diagram analysis showed that there are many induced signals shared by both mycorrhizal interactions, pointing to general mycorrhiza-associated changes in the tomato metabolome. Moreover, fungus-specific fingerprints were also found, suggesting that specific molecular alterations may underlie the reported functional diversity of the symbiosis. Since most positively regulated pathways were related to stress response mechanisms, their potential contribution to improved host stress tolerance is discussed. PMID:26157423

  16. Effects of root isoquinoline alkaloids from Hydrastis canadensis on Fusarium oxysporum isolated from Hydrastis root tissue.

    PubMed

    Tims, Michael c; Batista, Charisma

    2007-07-01

    Goldenseal (Hydrastis canadensis L.) is a popular medicinal plant distributed widely in North America. The rhizome, rootlets, and root hairs produce medicinally active alkaloids. Berberine, one of the Hydrastis alkaloids, has shown antifungal activity. The influence of a combination of the major Hydrastis alkaloids on the plant rhizosphere fungal ecology has not been investigated. A bioassay was developed to study the effect of goldenseal isoquinoline alkaloids on three Fusarium isolates, including the two species isolated from Hydrastis rhizosphere. The findings suggest that the Hydrastis root extract influences macroconidia germination, but that only the combined alkaloids--berberine, canadine, and hydrastine--appear to synergistically stimulate production of the mycotoxin zearalenone in the Fusarium oxysporum isolate. The Hydrastis root rhizosphere effect provided a selective advantage to the Fusarium isolates closely associated with the root tissue in comparison with the Fusarium isolate that had never been exposed to Hydrastis. PMID:17549565

  17. Root traits contributing to plant productivity under drought

    PubMed Central

    Comas, Louise H.; Becker, Steven R.; Cruz, Von Mark V.; Byrne, Patrick F.; Dierig, David A.

    2013-01-01

    Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less “leaky” and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding

  18. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots.

    PubMed

    Kim, Hye-Jeong; Kobayashi, Akie; Fujii, Nobuharu; Miyazawa, Yutaka; Takahashi, Hideyuki

    2016-05-01

    Plant circumnutation is a helical movement of growing organs such as shoots and roots. Gravitropic response is hypothesized to act as an external oscillator in shoot circumnutation, although this is subject to debate. The relationship between circumnutational movement and gravitropic response in roots remains unknown. In this study, we analyzed circumnutation of agravitropic roots using the ageotropum pea (Pisum sativum) mutant, and compared it with that of wild-type (cv. Alaska) pea roots. We further examined the relationship of gravitropic response to circumnutation of Alaska seedling roots by removing the gravisensing tissue (the root cap) and by treating the roots with auxin transport inhibitors. Alaska roots displayed circumnutational movements with a period of approximately 150 min, whereas ageotropum roots did not exhibit distinct circumnutational movement. Removal of the root cap in Alaska roots reduced gravitropic response and circumnutational movements. Treatment of Alaska roots with auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and N-(1-naphthyl)phthalamic acid (NPA), dramatically reduced gravitropic response and circumnutational movements. These results suggest that a gravity-regulated auxin transport is involved in circumnutation of pea seedling roots. PMID:26565659

  19. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance.

    PubMed

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra 'NTAS' and A. stolonifera 'Penncross' plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2(-)) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2(-) and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2(-) accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress. PMID:26382960

  20. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance

    PubMed Central

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra ‘NTAS’ and A. stolonifera ‘Penncross’ plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2-) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2- and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2- accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress. PMID:26382960

  1. Amyloplast Distribution Directs a Root Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth

    Immobile higher plants are oriented in the gravitational field due to gravitropim that is a physiological growth reaction and consists of three phases: reception of a gravitational signal by statocytes, its transduction to the elongation zone, and finally the organ bending. As it is known, roots are characterized with positive gravitropism, i. e. they grow in the direction of a gravitational vector, stems - with negative gravitropism, i. e. they grow in the direction opposite to a gravitational vector. According to the Nemec’s and Haberlandt’s starch-statolith hypothesis, amyloplasts in diameter of 1.5 - 3 μ in average, which appear to act as gravity sensors and fulfill a statolythic function in the specialized graviperceptive cells - statocytes, sediment in the direction of a gravitational vector in the distal part of a cell, while a nucleus is in the proximal one. There are reasonable data that confirm the amyloplasts-statoliths participation in gravity perception: 1) correlation between the statoliths localization and the site of gravity sensing, 2) significant redistribution (sedimentation) of amyloplasts in statocytes under gravistimulation in comparison with other cell organelles, 3) root decreased ability to react on gravity under starch removal from amyloplasts, 4) starchless Arabidopsis thaliana mutants are agravitropic, 5) amyloplasts-statoliths do not sediment in the absence of the gravitational vector and are in different parts or more concentrated in the center of statocytes. Plant tropisms have been intensively studied for many decades and continue to be investigated. Nevertheless, the mechanisms by which plants do so is still not clearly explained and many questions on gravisensing and graviresponse remain unanswered. Even accepted hypotheses are now being questioned and recent data are critically evaluated. Although the available data show the Ca2+ and cytoskeleton participation in graviperception and signal transduction, the clear evidence

  2. Amyloplast Distribution Directs a Root Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth

    Immobile higher plants are oriented in the gravitational field due to gravitropim that is a physiological growth reaction and consists of three phases: reception of a gravitational signal by statocytes, its transduction to the elongation zone, and finally the organ bending. As it is known, roots are characterized with positive gravitropism, i. e. they grow in the direction of a gravitational vector, stems - with negative gravitropism, i. e. they grow in the direction opposite to a gravitational vector. According to the Nemec’s and Haberlandt’s starch-statolith hypothesis, amyloplasts in diameter of 1.5 - 3 μ in average, which appear to act as gravity sensors and fulfill a statolythic function in the specialized graviperceptive cells - statocytes, sediment in the direction of a gravitational vector in the distal part of a cell, while a nucleus is in the proximal one. There are reasonable data that confirm the amyloplasts-statoliths participation in gravity perception: 1) correlation between the statoliths localization and the site of gravity sensing, 2) significant redistribution (sedimentation) of amyloplasts in statocytes under gravistimulation in comparison with other cell organelles, 3) root decreased ability to react on gravity under starch removal from amyloplasts, 4) starchless Arabidopsis thaliana mutants are agravitropic, 5) amyloplasts-statoliths do not sediment in the absence of the gravitational vector and are in different parts or more concentrated in the center of statocytes. Plant tropisms have been intensively studied for many decades and continue to be investigated. Nevertheless, the mechanisms by which plants do so is still not clearly explained and many questions on gravisensing and graviresponse remain unanswered. Even accepted hypotheses are now being questioned and recent data are critically evaluated. Although the available data show the Ca2+ and cytoskeleton participation in graviperception and signal transduction, the clear evidence

  3. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis.

    PubMed

    Lin, Changfa; Choi, Hee-Seung; Cho, Hyung-Taeg

    2011-04-01

    Expansins are non-hydrolytic cell wall-loosening proteins that are involved in the cell wall modifications that underlie many plant developmental processes. Root hair growth requires the accumulation of cell wall materials and dynamic cell wall modification at the tip region. Although several lines of indirect evidence support the idea that expansin-mediated wall modification occurs during root hair growth, the involvement of these proteins remains to be demonstrated in vivo. In this study, we used RNA interference (RNAi) to examine the biological function of Arabidopsis thaliana EXPANSIN A7 (AtEXPA7), which is expressed specifically in the root hair cell. The root hairspecific AtEXPA7 promoter was used to drive RNAi expression, which targeted two independent regions in the AtEXPA7 transcript. Quantitative reverse transcriptase-PCR analyses were used to examine AtEXPA7 transcript levels. In four independent RNAi transformant lines, RNAi expression reduced AtEXPA7 transcript levels by 25-58% compared to controls. Accordingly, the root hairs of RNAi transformant lines were 25-48% shorter than control plants and exhibited a broader range of lengths than the controls. Our results provide in vivo evidence that expansins are required for root hair tip growth. PMID:21359675

  4. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.

    PubMed

    Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando

    2015-09-01

    Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. PMID:26473454

  5. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1993-01-01

    Roots of Pisum sativum L. and Zea mays L. were exposed to different moisture gradients established by placing both wet cheesecloth (hydrostimulant) and saturated aqueous solutions of various salts in a closed chamber. Atmospheric conditions with different relative humidity (RH) in a range between 98 and 86% RH were obtained at root level, 2 to 3mm from the water-saturated hydrostimulant. Roots of Silver Queen corn placed vertically with the tips down curved sideways toward the hydrostimulant in response to approximately 94% RH but did not respond positively to RH higher than approximately 95%. The positive hydrotropic response increased linearly as RH was lowered from 95 to 90%. A maximum response was observed at RH between 90 and 86%. However, RH required for the induction of hydrotropism as well as the responsiveness differed among plant species used; gravitropically sensitive roots appeared to require a somewhat greater moisture gradient for the induction of hydrotropism. Decapped roots of corn failed to curve hydrotropically, suggesting the root cap as a major site of hydrosensing.

  6. The Common History and Popular Uses of Roots

    ERIC Educational Resources Information Center

    Rost, Thomas L.; Sandler, Maureen L.

    1978-01-01

    Describes the historical uses of popular plant roots such as mandrake, ginseng, chicory, belladonna, and blood root. Besides the text, information is organized into a table presenting use, application, and constituents. (MA)

  7. Role of calcium in gravity perception of plant roots

    NASA Astrophysics Data System (ADS)

    Evans, Michael L.

    Calcium ions may play a key role in linking graviperception by the root cap to the asymmetric growth which occurs in the elongation zone of gravistimulated roots. Application of calcium-chelating agents to the root cap inhibits gravitropic curvature without affecting growth. Asymmetric application of calcium to one side of the root cap induces curvature toward the calcium source, and gravistimulation induces polar movement of applied 45Ca2+ across the root cap toward the lower side. The action of calcium may be linked to auxin movement in roots since 1) auxin transport inhibitors interfere both with gravitropic curvature and gravi-induced polar calcium movement and 2) asymmetric application of calcium enhances auxin movement across the elongation zone of gravistimulated roots. Indirect evidence indicates that the calcium-modulated regulator protein, calmodulin, may be involved in either the transport or action of calcium in the gravitropic response mechanism of roots.

  8. Nemesia Root Hair Response to Paper Pulp Substrate for Micropropagation

    PubMed Central

    Labrousse, Pascal; Delmail, David; Decou, Raphaël; Carlué, Michel; Lhernould, Sabine; Krausz, Pierre

    2012-01-01

    Agar substrates for in vitro culture are well adapted to plant micropropagation, but not to plant rooting and acclimatization. Conversely, paper-pulp-based substrates appear as potentially well adapted for in vitro culture and functional root production. To reinforce this hypothesis, this study compares in vitro development of nemesia on several substrates. Strong differences between nemesia roots growing in agar or in paper-pulp substrates were evidenced through scanning electron microscopy. Roots developed in agar have shorter hairs, larger rhizodermal cells, and less organized root caps than those growing on paper pulp. In conclusion, it should be noted that in this study, in vitro microporous substrates such as paper pulp lead to the production of similar root hairs to those found in greenhouse peat substrates. Consequently, if agar could be used for micropropagation, rooting, and plant acclimatization, enhancement could be achieved if rooting stage was performed on micro-porous substrates such as paper pulp. PMID:22312323

  9. Root lengths of plants on Los Alamos National Laboratory lands

    SciTech Connect

    Tierney, G.D.; Foxx, T.S.

    1987-01-01

    Maximum root lengths of 22 plant species occurring on Los Alamos National Laboratory lands were measured. An average of two longest roots from each species were dug up and their lengths, typical shapes, and qualitative morphologics were noted along with the overstory dimensions of the plant individual with which the roots were associated. Maximum root lengths were compared with overstory (height times width) dimensions. Among the life forms studied, the shrubs tend to show the longest roots in relation to overstory size. Forbs show the shortest roots in relation to overstory size. Measurements of tree roots suggest only that immature trees on the Pajarito Plateau may have root-length to overstory-size ratios near one. 30 refs., 14 figs., 2 tabs.

  10. Phototropism and gravitropism in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  11. 11. PHOTOCOPY OF P. H. & F. M. ROOTS CO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. PHOTOCOPY OF P. H. & F. M. ROOTS CO. ILLUSTRATED LETTERHEAD STATEMENT, OCT. 1, 1907, FROM COLLECTION OF KENNETH MILLS, CONNERSVILLE, IND. - P. H. & F. M. Roots Company, Eastern Avenue, Connersville, Fayette County, IN

  12. Neutron radiography of a root growing in soil with vanadium

    NASA Astrophysics Data System (ADS)

    Furukawa, J.; Nakanishi, T. M.; Matsubayashi, M.

    1999-11-01

    We show how the root activity of water uptake is inhibited by the presence of vanadium in soil. A soybean seedling was grown in an aluminum container where water absorbing polymer with V was imbedded with soil. The sample was irradiated with thermal neutrons to get the radiograph on an X-ray film. Through image analysis, the water uptake manner both around the main root and side root was studied. When the water uptake along the main root was measured, the effect of V was observed as early as two days whilst no observable change in morphological development of main root as well as side root was detected. Since the microscopic research of water movement around the root is not well studied, this result is expected to be applied further, especially in constructing water absorbing model of the root.

  13. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    PubMed

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. PMID:25189533

  14. A role for the root cap in root branching revealed by the non-auxin probe naxillin

    PubMed Central

    De Rybel, Bert; Audenaert, Dominique; Xuan, Wei; Overvoorde, Paul; Strader, Lucia C; Kepinski, Stefan; Hoye, Rebecca; Brisbois, Ronald; Parizot, Boris; Vanneste, Steffen; Liu, Xing; Gilday, Alison; Graham, Ian A; Nguyen, Long; Jansen, Leentje; Njo, Maria Fransiska; Inzé, Dirk; Bartel, Bonnie; Beeckman, Tom

    2013-01-01

    The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture. PMID:22885787

  15. Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots

    SciTech Connect

    Lynch, Douglas J; Matamala-Paradeda, Roser; Iversen, Colleen M; Norby, Richard J; Gonzalez-Meler, Miguel A

    2013-01-01

    The relative use of new photosynthate compared to stored C for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a 13C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO2 enrichment experiment. Goals included quantifying the relative fractions of new photosynthate versus stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO2] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; less than 10% of root C had a residence time < 3 months, while a majority of root C had a residence time > 2 years. Compared to a 1-pool model, a 2-pool model for C turnover in fine roots (with 5 and 0.37 yr-1 turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models.

  16. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns.

    PubMed

    Yu, Peng; Baldauf, Jutta A; Lithio, Andrew; Marcon, Caroline; Nettleton, Dan; Li, Chunjian; Hochholdinger, Frank

    2016-03-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  17. Five Canalled and Three-Rooted Primary Second Mandibular Molar

    PubMed Central

    Selvakumar, Haridoss; Kavitha, Swaminathan; Bharathan, Rajendran; Varghese, Jacob Sam

    2014-01-01

    A thorough knowledge of root canal anatomy and its variation is necessary for successful completion of root canal procedures. Morphological variations such as additional root canals in human deciduous dentition are rare. A mandibular second primary molar with more than four canals is an interesting example of anatomic variations, especially when three of these canals are located in the distal root. This case shows a rare anatomic configuration and points out the importance of looking for additional canals. PMID:25147744

  18. Root Disease, Longleaf Pine Mortality, and Prescribed Burning

    SciTech Connect

    Otrosina, W.J; C.H. Walkinshaw; S.J. Zarnoch; S-J. Sung; B.T. Sullivan

    2001-01-01

    Study to determine factors involved in decline of longleaf pine associated with prescribed burning. Trees having symptoms were recorded by crown rating system based upon symptom severity-corresponded to tree physiological status-increased in hot burn plots. Root pathogenic fungi widespread throughout the study site. Histological studies show high fine root mortality rate in the hot burn treatment. Decline syndrome is complexed by root pathogens, soil factors, root damage and dysfunction.

  19. Five canalled and three-rooted primary second mandibular molar.

    PubMed

    Selvakumar, Haridoss; Kavitha, Swaminathan; Bharathan, Rajendran; Varghese, Jacob Sam

    2014-01-01

    A thorough knowledge of root canal anatomy and its variation is necessary for successful completion of root canal procedures. Morphological variations such as additional root canals in human deciduous dentition are rare. A mandibular second primary molar with more than four canals is an interesting example of anatomic variations, especially when three of these canals are located in the distal root. This case shows a rare anatomic configuration and points out the importance of looking for additional canals. PMID:25147744

  20. A plausible mechanism for auxin patterning along the developing root

    PubMed Central

    2010-01-01

    Background In plant roots, auxin is critical for patterning and morphogenesis. It regulates cell elongation and division, the development and maintenance of root apical meristems, and other processes. In Arabidopsis, auxin distribution along the central root axis has several maxima: in the root tip, in the basal meristem and at the shoot/root junction. The distal maximum in the root tip maintains the stem cell niche. Proximal maxima may trigger lateral or adventitious root initiation. Results We propose a reflected flow mechanism for the formation of the auxin maximum in the root apical meristem. The mechanism is based on auxin's known activation and inhibition of expressed PIN family auxin carriers at low and high auxin levels, respectively. Simulations showed that these regulatory interactions are sufficient for self-organization of the auxin distribution pattern along the central root axis under varying conditions. The mathematical model was extended with rules for discontinuous cell dynamics so that cell divisions were also governed by auxin, and by another morphogen Division Factor which combines the actions of cytokinin and ethylene on cell division in the root. The positional information specified by the gradients of these two morphogens is able to explain root patterning along the central root axis. Conclusion We present here a plausible mechanism for auxin patterning along the developing root, that may provide for self-organization of the distal auxin maximum when the reverse fountain has not yet been formed or has been disrupted. In addition, the proximal maxima are formed under the reflected flow mechanism in response to periods of increasing auxin flow from the growing shoot. These events may predetermine lateral root initiation in a rhyzotactic pattern. Another outcome of the reflected flow mechanism - the predominance of lateral or adventitious roots in different plant species - may be based on the different efficiencies with which auxin inhibits its

  1. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  2. Artificial Root Exudate System (ARES): a field approach to simulate tree root exudation in soils

    NASA Astrophysics Data System (ADS)

    Lopez-Sangil, Luis; Estradera-Gumbau, Eduard; George, Charles; Sayer, Emma

    2016-04-01

    The exudation of labile solutes by fine roots represents an important strategy for plants to promote soil nutrient availability in terrestrial ecosystems. Compounds exuded by roots (mainly sugars, carboxylic and amino acids) provide energy to soil microbes, thus priming the mineralization of soil organic matter (SOM) and the consequent release of inorganic nutrients into the rhizosphere. Studies in several forest ecosystems suggest that tree root exudates represent 1 to 10% of the total photoassimilated C, with exudation rates increasing markedly under elevated CO2 scenarios. Despite their importance in ecosystem functioning, we know little about how tree root exudation affect soil carbon dynamics in situ. This is mainly because there has been no viable method to experimentally control inputs of root exudates at field scale. Here, I present a method to apply artificial root exudates below the soil surface in small field plots. The artificial root exudate system (ARES) consists of a water container with a mixture of labile carbon solutes (mimicking tree root exudate rates and composition), which feeds a system of drip-tips covering an area of 1 m2. The tips are evenly distributed every 20 cm and inserted 4-cm into the soil with minimal disturbance. The system is regulated by a mechanical timer, such that artificial root exudate solution can be applied at frequent, regular daily intervals. We tested ARES from April to September 2015 (growing season) within a leaf-litter manipulation experiment ongoing in temperate deciduous woodland in the UK. Soil respiration was measured monthly, and soil samples were taken at the end of the growing season for PLFA, enzymatic activity and nutrient analyses. First results show a very rapid mineralization of the root exudate compounds and, interestingly, long-term increases in SOM respiration, with negligible effects on soil moisture levels. Large positive priming effects (2.5-fold increase in soil respiration during the growing

  3. The vestigial root of dodder (Cuscuta pentagona) seedlings.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedlings of dodder have no leaves nor cotyledons and the terminal root-like structure lasts only a few days before death. Structural and biochemical studies indicate that the terminal appendage of the dodder, although differentiated from the shoot, has few characteristics of root tissue. The root...

  4. Rooting out Defense Mechanisms in Wheat against Plant Parasitic Nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root-lesion nematodes (Pratylenchus spp.) are soil borne pathogens of many important agricultural crops including wheat. Pratylenchus invade root cells and feed using a stylet, resulting in cell death. Common signs of Pratylenchus damage are root lesions, girdling, and lack of lateral branching. ...

  5. GENE STACKING FOR DURABLE PEST RESISTANCE IN SUGARBEET ROOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are exploring novel approaches for managing sugar beet root pests. Our goal is to gain new knowledge of root defense response mechanisms that could be more broadly applied for control of plant pests and pathogens. Using the sugar beet root maggot (SBRM, Tetanops myopaeformis) and sugarbeet as a...

  6. MAGNETIC RESONANCE IMAGING OF TEMPERATURE STRESSED COTTON ROOTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major factor impacting the growth and function of plant root systems. Changes in root development in response to changes in soil temperature are difficult to assess on a dynamic basis since destructive sampling and disturbance of roots is necessary for any evaluation. This stud...

  7. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  8. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  9. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  10. How the spatial variation of tree roots affects slope stability

    NASA Astrophysics Data System (ADS)

    Mao, Zhun; Stokes, A.; Jourdan, C.; Rey, H.; Courbaud, B.; Saint-André, L.

    2010-05-01

    It is now widely recognized that plant roots can reinforce soil against shallow mass movement. Although studies on the interactions between vegetation and slope stability have significantly augmented in recent years, a clear understanding of the spatial dynamics of root reinforcement (through additional cohesion by roots) in subalpine forest is still limited, especially with regard to the roles of different forest management strategies or ecological landscapes. The architecture of root systems is important for soil cohesion, but in reality it is not possible to measure the orientation of each root in a system. Therefore, knowledge on the effect of root orientation and anisotropy on root cohesion on the basis of in situ data is scanty. To determine the effect of root orientation in root cohesion models, we investigated root anisotropy in two mixed, mature, naturally regenerated, subalpine forests of Norway spruce (Picea abies), and Silver fir (Abies alba). Trees were clustered into islands, with open spaces between each group, resulting in strong mosaic heterogeneity within the forest stand. Trenches within and between clusters of trees were dug and root distribution was measured in three dimensions. We then simulated the influence of different values for a root anisotropy correction factor in forests with different ecological structures and soil depths. Using these data, we have carried out simulations of slope stability by calculating the slope factor of safety depending on stand structure. Results should enable us to better estimate the risk of shallow slope failure depending on the type of forest and species.

  11. Root rot in sugar beet piles at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  12. Sibling Curves and Complex Roots 1: Looking Back

    ERIC Educational Resources Information Center

    Harding, Ansie; Engelbrecht, Johann

    2007-01-01

    This paper, the first of a two-part article, follows the trail in history of the development of a graphical representation of the complex roots of a function. Root calculation and root representation are traced through millennia, including the development of the notion of complex numbers and subsequent graphical representation thereof. The…

  13. Cultivar selection for bacterial root rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States, which has frequently been found in association with Rhizoctonia root rot. To reduce the impact of bacterial root rot on sucrose loss in the field, st...

  14. Cultivar Selection for Sugar Beet Root Rot Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  15. Scaling root processes based on plant functional traits (Invited)

    NASA Astrophysics Data System (ADS)

    Eissenstat, D. M.; McCormack, M. L.; Gaines, K.; Adams, T.

    2013-12-01

    There are great challenges to scaling root processes as variation across species and variation of a particular species over different spatial and temporal scales is poorly understood. We have examined tree species variation using multispecies plantings, often referred to by ecologists as 'common gardens'. Choosing species with wide variation in growth rate, root morphology (diameter, branching intensity) and root chemistry (root N and Ca concentration), we found that variation in root lifespan was well correlated with plant functional traits across 12 species. There was also evidence that localized liquid N addition could increase root lifespan and localized water addition diminished root lifespan over untreated controls, with effects strongest in the species of finest root diameter. In an adjacent forest, we have also seen tree species variation in apparent depth of rooting using water isotopes. In particular species of wood anatomy that was ring porous (e.g. oaks) typically had the deepest rooting depth, whereas those that had either diffuse-porous sapwood (maples) or tracheid sapwood (pines) were shallower rooted. These differences in rooting depth were related to sap flux of trees during and immediately after periods of drought. The extent that the patterns observed in central Pennsylvania are modulated by environment or indicative of other plant species will be discussed.

  16. The roots of future rice harvests.

    PubMed

    Ahmadi, Nourollah; Audebert, Alain; Bennett, Malcolm J; Bishopp, Anthony; de Oliveira, Antonio Costa; Courtois, Brigitte; Diedhiou, Abdala; Diévart, Anne; Gantet, Pascal; Ghesquière, Alain; Guiderdoni, Emmanuel; Henry, Amelia; Inukai, Yoshiaki; Kochian, Leon; Laplaze, Laurent; Lucas, Mikael; Luu, Doan Trung; Manneh, Baboucarr; Mo, Xiaorong; Muthurajan, Raveendran; Périn, Christophe; Price, Adam; Robin, Sabariappan; Sentenac, Hervé; Sine, Bassirou; Uga, Yusaku; Véry, Anne Aliénor; Wissuwa, Matthias; Wu, Ping; Xu, Jian

    2014-12-01

    Rice production faces the challenge to be enhanced by 50% by year 2030 to meet the growth of the population in rice-eating countries. Whereas yield of cereal crops tend to reach plateaus and a yield is likely to be deeply affected by climate instability and resource scarcity in the coming decades, building rice cultivars harboring root systems that can maintain performance by capturing water and nutrient resources unevenly distributed is a major breeding target. Taking advantage of gathering a community of rice root biologists in a Global Rice Science Partnership workshop held in Montpellier, France, we present here the recent progresses accomplished in this area and focal points where an international network of laboratories should direct their efforts. PMID:26224558

  17. Antihistaminic activity of Clitoria ternatea L. roots

    PubMed Central

    Taur, Dnyaneshwar J; Patil, Ravindra Y

    2010-01-01

    Clonidine, a α2 adrenoreceptor agonist induces dose dependent catalepsy in mice, which was inhibited by histamine H1 receptor antagonists but not by H2 receptor antagonist. Clonidine releases histamine from mast cells which is responsible for different asthmatic conditions. Clitoria ternatea L. (Family: Fabaceae) is a perimial twing herb. The roots have anti-inflammatory properties and are useful in severe bronchitis, asthma. In present study ethanol extract of Clitoria ternatea root (ECTR) at doses 100, 125 and 150 mg/kg i.p were evaluated for antihistaminic activity using clonidine and haloperidol induced catalepsy in mice. Finding of investigation showed that chlorpheniramine maleate (CPM) and ECTR inhibit clonidine induced catalepsy significantly P < 0.001 when compare to control group, while CPM and ECTR fail to inhibit haloperidol induced catalepsy. Present study concludes that ECTR possesses antihistaminic activity PMID:24826001

  18. Antihistaminic activity of Clitoria ternatea L. roots.

    PubMed

    Taur, Dnyaneshwar J; Patil, Ravindra Y

    2010-12-01

    Clonidine, a α2 adrenoreceptor agonist induces dose dependent catalepsy in mice, which was inhibited by histamine H1 receptor antagonists but not by H2 receptor antagonist. Clonidine releases histamine from mast cells which is responsible for different asthmatic conditions. Clitoria ternatea L. (Family: Fabaceae) is a perimial twing herb. The roots have anti-inflammatory properties and are useful in severe bronchitis, asthma. In present study ethanol extract of Clitoria ternatea root (ECTR) at doses 100, 125 and 150 mg/kg i.p were evaluated for antihistaminic activity using clonidine and haloperidol induced catalepsy in mice. Finding of investigation showed that chlorpheniramine maleate (CPM) and ECTR inhibit clonidine induced catalepsy significantly P < 0.001 when compare to control group, while CPM and ECTR fail to inhibit haloperidol induced catalepsy. Present study concludes that ECTR possesses antihistaminic activity. PMID:24826001

  19. Prevention of nerve root adhesions after laminectomy.

    PubMed

    Yong-Hing, K; Reilly, J; de Korompay, V; Kirkaldy-Willis, W H

    1980-01-01

    In repeat lumbar surgery for failure of the original operation to provide lasting relief, well-organized fibrous tissue is often noted binding together the dura, nerve roots, and erector spinae muscles. Lumbar laminectomy was carried out in 46 dogs and seven groups of animals studied. Gelfoam failed to prevent fibrosis. Free fat grafts prevented fibrosis whether the graft was placed at the laminectomy site or around the nerve roots. Vascularization of the grafts was demonstrated by injection of India ink before sacrifice. Ligamentum nuchae, which is similar to ligamentum flavum in its high elastic content, was also effective in preventing scar formation. The operative biopsy findings at reexploration in four patients who had free fat grafts following laminectomy are presented. PMID:7361199

  20. ROOT6: a Quest for Performance

    NASA Astrophysics Data System (ADS)

    Piparo, Danilo

    2015-12-01

    The sixth release cycle of ROOT is characterised by a radical modernisation in the core software technologies the too kit relies on: language standard, interpreter, hardware exploitation mechanisms. If on the one hand, the change offered the opportunity of consolidating the existing code base, in presence of such innovations, maintaining the balance between full backward compatibility and software performance was not easy. In this contribution we review the challenges and the solutions identified and implemented in the area of CPU and memory consumption as well as I/O capabilities in terms of patterns. Moreover, we present some of the new ROOT components which are offered to the users to improve the performance of third party applications.

  1. Linking roots and rhizospheres to hydrological processes

    NASA Astrophysics Data System (ADS)

    Dawson, T. E.

    2007-12-01

    There is ample evidence that shows how plants can exert very significant and often dominant -controls" over the manner and magnitude by which water and other soil-borne resources cycle through diverse ecosystems on Earth. The use and redistribution of soil water resources by root systems has been a particularly important addition to our understanding of how the movement of soil water resources can impact hydrological processes at a range of scales. When soil and plant water relations data are coupled with land-use and climatic change data and predictive models for seasonally-dry ecosystems they have revealed new insights into how the water cycle is also changing and the role that plant root functions plays in shaping fundamental aspects of the hydrological cycle. I will highlight the ways my research group as well as the work of others have used a range of methods to explore the links between roots and rhizospheres and hydrological processes. The detailed analyses of the stable isotope composition of plant and soil water and precipitation and the temporal and spatial patterns of water use by diverse trees in temperate and tropical biomes when coupled with ongoing modeling research has revealed new insights into how belowground and aboveground plant water use behaviors can impact the manned and magnitude of water cycling on local and regional scales. Further, new results clearly show the impacts that plant water uptake and use have on ecosystem carbon fixation and both temperature and precipitation patterns over vast regions like the Amazon as well as other parts of the globe covered by trees and deeply rooted woody vegetation. The combination of empirical and theoretical research results shows that plants can help sustain water recycling, can significantly impact carbon and nutrient cycles, and impact regional climate, drought and its seasonality thereby establishing a direct link between plant functioning, resource movement and the climate system across the globe.

  2. Melanotic schwannoma of the L5 root.

    PubMed

    Güzel, Ebru; Er, Uygur; Güzel, Aslan; Toktaş, Zafer; Yapıcıer, Özlem

    2016-06-01

    Melanotic neoplasm of the central nervous system is rare and the majority of them are metastatic. Melanotic schwannoma (MS) is an unusual variant of nerve sheath neoplasm accounting for less than 1% of primary nerve sheath tumors. A case involving a 36-year-old man with MS at the L5 root is presented. Surgery, differential diagnosis, radiology, histology, and treatment of this rare entity are discussed. PMID:26969197

  3. Etiology and sequelae of root resorption.

    PubMed

    Vlaskalic, V; Boyd, R L; Baumrind, S

    1998-06-01

    This article reviews the current status of investigation into apical root resorption within the context of orthodontic treatment. Treatment and patient factors that have traditionally been investigated are discussed, along with the results of current research in this area. The need for rethinking traditional research strategies in the quest for identifying both control and causative mechanisms is explored. Finally, proposals for key areas of future interest are highlighted. PMID:9680910

  4. Rotenoids from roots of Clitoria Fairchildiana.

    PubMed

    Silva, Bernadete P.; Bernardo, Robson R.; Parente, José P.

    1998-11-20

    A new rotenoid, named 9-demethylclitoriacetal, together with the known compounds, 11-deoxyclitoriacetal, 6-deoxyclitoriacetal, clitoriacetal and stemonal, was isolated from roots of Clitoria fairchildiana. Its structure was elucidated as 6a,12a-dihydro-6,9,11,12a-tetrahydroxy-2,3-dimethoxy-[1]benzopyrano[3,4-b] [1]benzopyran-12(6H)-one (1), on the basis of spectroscopic and chemical evidence. PMID:11711102

  5. A Predictive Model for Root Caries Incidence.

    PubMed

    Ritter, André V; Preisser, John S; Puranik, Chaitanya P; Chung, Yunro; Bader, James D; Shugars, Daniel A; Makhija, Sonia; Vollmer, William M

    2016-01-01

    This study aimed to find the set of risk indicators best able to predict root caries (RC) incidence in caries-active adults utilizing data from the Xylitol for Adult Caries Trial (X-ACT). Five logistic regression models were compared with respect to their predictive performance for incident RC using data from placebo-control participants with exposed root surfaces at baseline and from two study centers with ancillary data collection (n = 155). Prediction performance was assessed from baseline variables and after including ancillary variables [smoking, diet, use of removable partial dentures (RPD), toothbrush use, income, education, and dental insurance]. A sensitivity analysis added treatment to the models for both the control and treatment participants (n = 301) to predict RC for the control participants. Forty-nine percent of the control participants had incident RC. The model including the number of follow-up years at risk, the number of root surfaces at risk, RC index, gender, race, age, and smoking resulted in the best prediction performance, having the highest AUC and lowest Brier score. The sensitivity analysis supported the primary analysis and gave slightly better performance summary measures. The set of risk indicators best able to predict RC incidence included an increased number of root surfaces at risk and increased RC index at baseline, followed by white race and nonsmoking, which were strong nonsignificant predictors. Gender, age, and increased number of follow-up years at risk, while included in the model, were also not statistically significant. The inclusion of health, diet, RPD use, toothbrush use, income, education, and dental insurance variables did not improve the prediction performance. PMID:27160516

  6. Detecting Prime Numbers via Roots of Polynomials

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2012-01-01

    It is proved that an integer n [greater than or equal] 2 is a prime (resp., composite) number if and only if there exists exactly one (resp., more than one) nth-degree monic polynomial f with coefficients in Z[subscript n], the ring of integers modulo n, such that each element of Z[subscript n] is a root of f. This classroom note could find use in…

  7. Antidiabetic activity of Helicteres angustifolia root.

    PubMed

    Hu, Xuansheng; Cheng, Delin; Zhang, Zhenya

    2016-06-01

    Context The root of Helicteres angustifolia L. (Sterculiaceae) has been used as folk herbal drug to treat cancer, bacterial infections, inflammatory, and flu in China. However, there is no report on its antidiabetic activity. Objective This study evaluates the antidiabetic activity of ethanol extract from H. angustifolia root. Materials and methods The promoting effect of H. angustifolia root ethanol extract (25, 50, and 100 μg/mL) on glucose uptake was evaluated using HepG2 cell, differentiated C2C12 myotubes, and differentiated 3T3-L1 adipocytes. The antidiabetic activity of the extract was assessed in vivo using STZ-induced diabetic rats by orally administration of the extract (200 and 400 mg/kg b.w.) once per day for 28 d. Blood glucose, TG, TC, TP, HDL-C, UA, BUN, AST, ALT, insulin, and HOMA-IR were analyzed. Results The results showed that the extract increased glucose uptake in C2C12 myotubes and 3T3-L1 adipocytes with an IC50 value of 79.95 and 135.96 μg/mL, respectively. And about 12%, 19%, and 10% (p < 0.05) in HepG2 cells when compared with the control at the concentration of 25, 50, and 100 μg/mL, respectively. After 28 days' treatment with the extract, significant reduction was observed in blood glucose, HOMA-IR, TC, TG, UA, BUN, AST, and ALT levels, while the levels of TP and HDL cholesterol increased. Discussion and conclusion These results suggest that H. angustifolia root ethanol extract possess potent antidiabetic activity, which is the first report on antidiabetic activity of this plant. PMID:26866383

  8. Detecting prime numbers via roots of polynomials

    NASA Astrophysics Data System (ADS)

    Dobbs, David E.

    2012-04-01

    It is proved that an integer n ≥ 2 is a prime (resp., composite) number if and only if there exists exactly one (resp., more than one) nth-degree monic polynomial f with coefficients in Z n , the ring of integers modulo n, such that each element of Z n is a root of f. This classroom note could find use in any introductory course on abstract algebra or elementary number theory.

  9. Root region airfoil for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1995-05-23

    A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

  10. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica.

    PubMed

    Jia, Shuxia; Wang, Zhengquan; Li, Xingpeng; Zhang, Xiaoping; McLaughlin, Neil B

    2011-07-01

    Root respiration is closely related to root morphology, yet it is unclear precisely how to distinguish respiration-related root physiological functions within the branching fine root system. Root respiration and tissue N concentration were examined for different N fertilization treatments, sampling dates, branch orders and temperatures of larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) using the excised roots method. The results showed that N fertilization enhanced both root respiration and tissue N concentration for all five branch orders. The greatest increases in average root respiration for N fertilization treatment were 13.30% in larch and 18.25% in ash at 6°C. However, N fertilization did not change the seasonal dynamics of root respiration. Both root respiration and root tissue N concentration decreased with increase in root branch order. First-order (finest) roots exhibited the highest respiration rates and tissue N concentrations out of the five root branch orders examined. There was a highly significant linear relationship between fine root N concentration and root respiration rate. Root N concentration explained >60% of the variation in respiration rate at any given combination of root order and temperature. Root respiration showed a classical exponential relationship with temperature, with the Q(10) for root respiration in roots of different branching orders ranging from 1.62 to 2.20. The variation in root respiration by order illustrates that first-order roots are more metabolically active, suggesting that roots at different branch order positions have different physiological functions. The highly significant relationship between root respiration at different branch orders and root tissue N concentration suggests that root tissue N concentration may be used as a surrogate for root respiration, simplifying future research into the C dynamics of rooting systems. PMID:21849591

  11. Effects of partial root-zone irrigation on hydraulic conductivity in the soil-root system of maize plants.

    PubMed

    Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua

    2011-08-01

    Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil-root system (L(sr)) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with L(sr) in both the whole and irrigated root zones for all three irrigation methods but not with L(sr) in the non-irrigated root zone of FPRI. The total L(sr) in the irrigated root zone of two PRIs was increased by 49.0-92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of L(sr) in a half root zone to L(sr) in the whole root zone was ∼50%. For FPRI, the L(sr) in the irrigated root zone was close to that of the whole root zone. As for APRI, the L(sr) in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the L(sr) in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The L(sr) in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency. PMID:21527627

  12. Effects of partial root-zone irrigation on hydraulic conductivity in the soil–root system of maize plants

    PubMed Central

    Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua

    2011-01-01

    Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil–root system (Lsr) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with Lsr in both the whole and irrigated root zones for all three irrigation methods but not with Lsr in the non-irrigated root zone of FPRI. The total Lsr in the irrigated root zone of two PRIs was increased by 49.0–92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of Lsr in a half root zone to Lsr in the whole root zone was ∼50%. For FPRI, the Lsr in the irrigated root zone was close to that of the whole root zone. As for APRI, the Lsr in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the Lsr in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The Lsr in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency. PMID:21527627

  13. Response of grape root borer (Lepidoptera: Sesiidae) neonates to root extracts from Vitaceae species and rootstocks.

    PubMed

    Bergh, J C; Zhang, A; Meyer, J R; Kim, D

    2011-08-01

    Observations at regular intervals of the location of newly hatched grape root borer, Vitacea polistiformis (Harris), larvae moving freely within circular petri dish bioassays were used to measure and compare their response to dry filter paper discs treated with ethanol- or hexane-based extracts of roots from known and potential Vitaceae hosts and a nonhost. Larvae responded most strongly to discs treated with ethanol extracts, suggesting the presence of behaviorally active, polar compounds associated with roots. In single extract bioassays comparing extract versus solvent treated discs, larvae responded positively to ethanol extracts from all Vitis species and rootstocks and Virginia creeper [Parthenocissus quinquefolia (L.) Planch.], but not to apple (Malus domestica Borkh). Paired extract bioassays, in which an extract from the commercially important 3309 rootstock was used as the standard and presented simultaneously with extracts from other root sources, revealed examples of equal, significantly weaker and significantly stronger responses to the 3309 extract. Extracts of the 420 A and V. riparia 'Gloire' rootstocks appeared to possess qualities that elicited a consistently greater response than to 3309 extract in these pair-wise comparisons. The active compounds were eluted in ethanol during a 30-min extraction; larvae responded equally to 30- and 60-min 3309 root extracts in paired extract bioassays. Larvae responded equally to extracts of 3309 roots from three spatially separate vineyards in northern Virginia. These results are discussed in relation to the subterranean, plant-insect interactions of grape root borer neonates with the numerous native and non-native Vitis species that may serve as hosts in the eastern United States. PMID:22251689

  14. The divining root: moisture-driven responses of roots at the micro- and macro-scale

    PubMed Central

    Robbins, Neil E.; Dinneny, José R.

    2015-01-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. PMID:25617469

  15. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation

    PubMed Central

    Moura, Daniel S.

    2014-01-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000

  16. Arabidopsis root growth movements and their symmetry

    PubMed Central

    Fortunati, Alessio; Tassone, Paola

    2009-01-01

    Over the last fifteen years, an increasing number of plant scientists have become interested in the Arabidopsis root growth pattern, that is produced on the surface of an agar plate, inclined from the vertical. In this situation, the roots wave intensely and slant preferentially towards one side, showing torsions in the epidermal cell files alternately right-and left handed. In addition, the pattern switches to the formation of large or strict coils when the plate is set horizontally. After this finding, different hypotheses were advanced attempting to explain the forces that shape these patterns. These basically appear to be gravitropism, circumnutation and negative thigmotropism. With regard to the symmetry, the coils and the slanting in the wild-type are essentially right-handed, but mutants were also reported which show a left-handed symmetry, while some do not show a regular growth pattern at all. This review article discusses the earlier as well as the most recent findings on the topic, and investigates the possibility of describing the different mechanisms shaping the root growth patterns via unifying hypothesis. PMID:19721745

  17. Hyperforin production in Hypericum perforatum root cultures.

    PubMed

    Gaid, Mariam; Haas, Paul; Beuerle, Till; Scholl, Stephan; Beerhues, Ludger

    2016-03-20

    Extracts of the medicinal plant Hypericum perforatum are used to treat depression and skin irritation. A major API is hyperforin, characterized by sensitivity to light, oxygen and temperature. Total synthesis of hyperforin is challenging and its content in field-grown plants is variable. We have established in vitro cultures of auxin-induced roots, which are capable of producing hyperforin, as indicated by HPLC-DAD and ESI-MS analyses. The extraction yield and the productivity upon use of petroleum ether after solvent screening were ∼5 mg/g DW and ∼50 mg/L culture after six weeks of cultivation. The root cultures also contained secohyperforin and lupulones, which were not yet detected in intact plants. In contrast, they lacked another class of typical H. perforatum constituents, hypericins, as indicated by the analysis of methanolic extracts. Hyperforins and lupulones were stabilized and enriched as dicyclohexylammonium salts. Upon up-scaling of biomass production and downstream processing, H. perforatum root cultures may provide an alternative platform for the preparation of medicinal extracts and the isolation of APIs. PMID:26876610

  18. Developmental anatomy and branching of roots of four Zeylanidium species (podostemaceae), with implications for evolution of foliose roots.

    PubMed

    Hiyama, Y; Tsukamoto, I; Imaichi, R; Kato, M

    2002-12-01

    Podostemaceae have markedly specialized and diverse roots that are adapted to extreme habitats, such as seasonally submerged or exposed rocks in waterfalls and rapids. This paper describes the developmental anatomy of roots of four species of Zeylanidium, with emphasis on the unusual association between root branching and root-borne adventitious shoots. In Z. subulatum and Z. lichenoides with subcylindrical or ribbon-like roots, the apical meristem distal (exterior) to a shoot that is initiated within the meristem area reduces and loses meristematic activity. This results in a splitting into two meristems that separate the parental root and lateral root (anisotomous dichotomy). In Z. olivaceum with lobed foliose roots, shoots are initiated in the innermost zone of the marginal meristem, and similar, but delayed, meristem reduction usually occurs, producing a parenchyma exterior to shoots located between root lobes. In some extreme cases, due to meristem recovery, root lobing does not occur, so the margin is entire. In Z. maheshwarii with foliose roots, shoots are initiated proximal to the marginal meristem and there is no shoot-root lobe association. Results suggest that during evolution from subcylindrical or ribbon-like roots to foliose roots, reduction of meristem exterior to a shoot was delayed and then arrested as a result of inward shifting of the sites of shoot initiation. The evolutionary reappearance of a protective tissue or root cap in Z. olivaceum and Z. maheshwarii in the Zeylanidium clade is implied, taking into account the reported molecular phylogeny and root-cap development in Hydrobryum. PMID:12451029

  19. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon.

    PubMed

    Kim, Chul Min; Dolan, Liam

    2016-08-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development. PMID:27494519

  20. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon

    PubMed Central

    Kim, Chul Min

    2016-01-01

    Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6) Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms—monocots and eudicots—despite the dramatically different patterns of root hair cell development. PMID:27494519

  1. Stimulation of root elongation and curvature by calcium

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.; Suge, H.

    1992-01-01

    Ca2+ has been proposed to mediate inhibition of root elongation. However, exogenous Ca2+ at 10 or 20 millimolar, applied directly to the root cap, significantly stimulated root elongation in pea (Pisum sativum L.) and corn (Zea mays L.) seedlings. Furthermore, Ca2+ at 1 to 20 millimolar, applied unilaterally to the caps of Alaska pea roots, caused root curvature away from the Ca2+ source, which was caused by an acceleration of elongation growth on the convex side (Ca2+ side) of the roots. Roots of an agravitropic pea mutant, ageotropum, responded to a greater extent. Roots of Merit and Silver Queen corn also responded to Ca2+ in similar ways but required a higher Ca2+ concentration than that of pea roots. Roots of all other cultivars tested (additional four cultivars of pea and one of corn) curved away from the unilateral Ca2+ source as well. The Ca(2+)-stimulated curvature was substantially enhanced by light. A Ca2+ ionophore, A23187, at 20 micromolar or abscisic acid at 0.1 to 100 micromolar partially substituted for the light effect and enhanced the Ca(2+)-stimulated curvature in the dark. Unilateral application of Ca2+ to the elongation zone of intact roots or to the cut end of detipped roots caused either no curvature or very slight curvature toward the Ca2+. Thus, Ca2+ action on root elongation differs depending on its site of application. The stimulatory action of Ca2+ may involve an elevation of cytoplasmic Ca2+ in root cap cells and may partipate in root tropisms.

  2. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    SciTech Connect

    Nedelkoska, T.V.; Doran, P.M.

    2000-03-05

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy roots of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.

  3. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  4. High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyz...

  5. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy.

    PubMed

    Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia

    2016-05-01

    Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling. PMID:26765311

  6. Spatial distribution of nematodes in three banana ( Musa AAA) root parts considering two root thickness in three farm management systems

    NASA Astrophysics Data System (ADS)

    Araya, M.; De Waele, D.

    2004-10-01

    The spatial location of the banana ( Musa AAA) root parasitic nematodes within three root parts considering two root thickness was determined in three commercial farm management systems, which differ in weed and nematode management. Roots in each farm management system were classified in thick (>5 mm-d) and thin (1 ≤ 5 mm-d) roots. From each root type, the epidermis, the cortical parenchyma (CP) and the vascular cylinder (VC) were separated by fingernail, and nematodes were extracted by maceration of each root part. Independent of the farm management system, and for either root thickness, highest numbers of Radopholus similis per gram of root was found in the CP, followed by the epidermis and VC. The highest number of Helicotylencus spp., Pratylenchus spp. and the total nematode population per gram of root was found in the epidermis. Considering the number of nematodes per root part, the highest number of R. similis and total nematodes was located in the CP, while Helicotylenchus spp. and Pratylenchus spp. were concentrated in the epidermis. These patterns were approximately reproduced in the two root thickness and in the three farm management systems. This behavior suggests that injection of systemic nematicides into the plant pseudostem to replace the granular applications on surface soil might be promissory.

  7. The possible involvement of root-cap mucilage in gravitropism and calcium movement across root tips of Allium cepa L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1986-01-01

    Roots of Allium cepa L. grown in aerated water elongate rapidly, but are not graviresponsive. These roots (1) possess extensive columella tissues comprised of cells containing numerous sedimented amyloplasts, (2) lack mucilage on their tips, and (3) are characterized by a weakly polar movement of calcium (Ca) across their tips. Placing roots in humid air correlates positively with the (1) onset of gravicurvature, (2) appearance of mucilage on tips of the roots, and (3) onset of the ability to transport Ca polarly to the lower side of the root tip. Gravicurvature of roots previously submerged in aerated water is more rapid when roots are oriented vertically for 1-2 h in humid air prior to being oriented horizontally. The more rapid gravicurvature of these roots correlates positively with the accumulation of mucilage at the tips of roots during the time the roots are oriented vertically. Therefore, the onset of gravicurvature and the ability of roots to transport Ca to the lower sides of their tips correlate positively with the presence of mucilage at their tips. These results suggest that mucilage may be important for the transport of Ca across root caps.

  8. Host resistance and soil treatments for managing Pythium root rot and southern root-knot nematode in pepper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five pepper (Capsicum annuum) genotypes differing in reactions to Phytophthora capsici and southern root-knot nematode (Meloidogyne incognita) were studied in combination with four soil treatments for managing Pythium root rot and southern root-knot nematode in field trials in Charleston, SC and Cit...

  9. Biocompatibility of root-end filling materials: recent update

    PubMed Central

    Gupta, Saurabh Kumar; Newaskar, Vilas

    2013-01-01

    The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077

  10. Periosteal Pedicle Flap Harvested during Vestibular Extension for Root Coverage

    PubMed Central

    Kumar, Shubham; Gupta, Krishna Kumar; Agrawal, Rahul; Srivastava, Pratima; Soni, Shalabh

    2015-01-01

    Root exposure along with inadequate vestibular depth is a common clinical finding. Treatment option includes many techniques to treat such defects for obtaining predictable root coverage. Normally, the vestibular depth is increased first followed by a second surgery for root coverage. The present case report describes a single-stage technique for vestibular extension and root coverage in a single tooth by using the Periosteal Pedicle Flap (PPF). This technique involves no donor site morbidity and allows for reflection of sufficient amount of periosteal flap tissue with its own blood supply at the surgical site, thus increasing the chances of success of root coverage with simultaneous increase in vestibular depth. PMID:26788377

  11. ROOT 6 and beyond: TObject, C++14 and many cores

    DOE PAGESBeta

    Bellenot, B.; Canal, Ph; Couet, O.; Ganis, G.; Mato, P.; Moneta, L.; Naumann, A.; Piparo, D.

    2015-12-23

    Following the release of version 6, ROOT has entered a new area of development. It will leverage the industrial strength compiler library shipping in ROOT 6 and its support of the C++11/14 standard, to significantly simplify and harden ROOT's interfaces and to clarify and substantially improve ROOT's support for multi-threaded environments. Furthermore, this talk will also recap the most important new features and enhancements in ROOT in general, focusing on those allowed by the improved interpreter and better compiler support, including I/O for smart pointers, easier type safe access to the content of TTrees and enhanced multi processor support.

  12. [Calcitonin as an alternative treatment for root resorption].

    PubMed

    Pierce, A; Berg, J O; Lindskog, S

    1989-01-01

    Inflammatory root resorption is a common finding following trauma and will cause eventual destruction of the tooth root if left untreated. This study examined the effects of intrapulpal application of calcitonin, a hormone known to inhibit osteoclastic bone resorption, on experimental inflammatory root resorption induced in monkeys. Results were histologically evaluated using a morphometric technique and revealed that calcitonin was an effective medicament for the treatment of inflammatory root resorption. It was concluded that this hormone could be a useful therapeutic adjunct in difficult cases of external root resorption. PMID:2576918

  13. Modelling increased soil cohesion by plant roots with EUROSEM

    NASA Astrophysics Data System (ADS)

    de Baets, S.; Poesen, J.; Torri, D.; Salvador, M. P.

    2009-04-01

    Soil cohesion is an important variable to model soil detachment by runoff (Morgan et al., 1998a). As soil particles are not loose, soil detachment by runoff will be limited by the cohesion of the soil material. It is generally recognized that plant roots contribute to the overall cohesion of the soil. Determination of this increased cohesion and soil roughness however is complicated and measurements of shear strength and soil reinforcement by plant roots are very time- and labour consuming. A model approach offers an alternative for the assessment of soil cohesion provided by plant roots However, few erosion models account for the effects of the below-ground biomass in their calculation of erosion rates. Therefore, the main objectives of this study is to develop an approach to improve an existing soil erosion model (EUROSEM) accounting for the erosion-reducing effects of roots. The approach for incorporating the root effects into this model is based on a comparison of measured soil detachment rates for bare and for root-permeated topsoil samples with predicted erosion rates under the same flow conditions using the erosion equation of EUROSEM. Through backwards calculation, transport capacity efficiencies and corresponding soil cohesion values can be assessed for bare and root-permeated topsoils respectively. The results are promising and show that grass roots provide a larger increase in soil cohesion as compared with tap-rooted species and that the increase in soil cohesion is not significantly different under wet and dry soil conditions, either for fibrous root systems or for tap root systems. Relationships are established between measured root density values and the corresponding calculated soil cohesion values, reflecting the effects of roots on the resistance of the topsoil to concentrated flow incision. These relationships enable one to incorporate the root effect into the soil erosion model EUROSEM, through adapting the soil cohesion input value. A scenario

  14. Biocompatibility of root-end filling materials: recent update.

    PubMed

    Saxena, Payal; Gupta, Saurabh Kumar; Newaskar, Vilas

    2013-08-01

    The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials. PMID:24010077

  15. Corn-in-chip: Mesofluidic Device for Corn Root

    NASA Astrophysics Data System (ADS)

    Kreis, Kevin; Ryu, Sangjin

    2015-03-01

    Plants have a collection of beneficial microorganisms in a region surrounding their roots called the rhizosphere. Although rhizosphere management could increase crop yield, little is known about the interaction between plant roots and their associated microorganisms. Thus we aim to simulate the rhizosphere and monitor root-microbe interactions in the lab environment, and have chosen corn as a model plant because of its economic significance. Here we present our preliminary study to develop a transparent mesofluidic device accommodating the root of corn seedlings into its channel and allowing further growth of the root.

  16. ROOT 6 and beyond: TObject, C++14 and many cores.

    NASA Astrophysics Data System (ADS)

    Bellenot, B.; Canal, Ph; Couet, O.; Ganis, G.; Mato, P.; Moneta, L.; Naumann, A.; Piparo, D.

    2015-12-01

    Following the release of version 6, ROOT has entered a new area of development. It will leverage the industrial strength compiler library shipping in ROOT 6 and its support of the C++11/14 standard, to significantly simplify and harden ROOT's interfaces and to clarify and substantially improve ROOT's support for multi-threaded environments. This talk will also recap the most important new features and enhancements in ROOT in general, focusing on those allowed by the improved interpreter and better compiler support, including I/O for smart pointers, easier type safe access to the content of TTrees and enhanced multi processor support.

  17. MCNP Output Data Analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-06-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. Program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 155 373 No. of bytes in distributed program, including test data, etc.: 14 815 461 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PC Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two-dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Nature of problem: The output of an MCNP simulation is an ASCII file. The data processing is usually performed by copying and pasting the relevant parts of the ASCII file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time

  18. MCNP output data analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-12-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. New version program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 927 No. of bytes in distributed program, including test data, etc.: 4 981 633 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PCs Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 Catalogue identifier of previous version: AEGA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1161 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: The output of a MCNP simulation is an ascii file. The data processing is usually performed by copying and pasting the relevant parts of the ascii

  19. Electrotropism of maize roots. Role of the root cap and relationship to gravitropism

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[beta-ethylether]-N,N,N',N' -tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism.

  20. Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche cumana.

    PubMed

    Joel, Daniel M; Chaudhuri, Swapan K; Plakhine, Dina; Ziadna, Hammam; Steffens, John C

    2011-05-01

    The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower. Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone. We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms. PMID:21353686

  1. Time, Individualisation, and Ethics: Relating Vladimir Nabokov and Education

    ERIC Educational Resources Information Center

    Saeverot, Herner

    2014-01-01

    This article states that the concept of time we generally hold is a spatial version of time. However, a spatial time concept creates a series of problems, with unfortunate consequences for education.The problems become particularly obvious when the spatial time concept is used as a basis for the education function that is connected to the…

  2. Dynamic Root Distribution in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.

    2015-12-01

    Roots are responsible for water and nutrient uptake for plant needs, functioning to couple the above and belowground ecosystems as a photosynthesis driver. Roots respond to their environment with foraging strategies to maximize nutrient acquisition. However, roots have one of the simplest representations in Earth System Models (ESMs). Most root algorithms in ESMs consist of a fixed rooting depth and distribution, which varies only with plant functional type (PFT). Although this method works in general for many ecosystems, there are several regions (e.g., arid, boreal) where root distribution is either overestimated or underestimated resulting in plant stress induced lost productivity. In order to allow ecosystems to respond to changes in environment such as from climate change, roots require a time varying structure to adapt to heterogeneity of water and nitrogen in the soil. This work presents a new approach to representing roots in the Community Land Model. The methodology is designed to optimize root distribution for both water and nitrogen uptake, with a priority given to plant water needs. The roots can respond to the soil vertical profile of nutrients, influencing the plant extractable resources and therefore the above ground vegetation dynamics. The dynamic root profile results in an increase in gross primary productivity and crop yield.

  3. Resistance to fracture of dental roots obturated with different materials.

    PubMed

    Celikten, Berkan; Uzuntas, Ceren Feriha; Gulsahi, Kamran

    2015-01-01

    The aim of this study was to compare the vertical fracture resistance of roots obturated with different root canal filling materials and sealers. Crowns of 55 extracted mandibular premolar teeth were removed to provide root lengths of 13 mm. Five roots were saved as negative control group (canals unprepared and unfilled). Fifty root canals were instrumented and then five roots were saved as positive control group (canals prepared but unfilled). The remaining 45 roots were randomly divided into three experimental groups (n = 15 root/group) and obturated with the following procedures: in group 1, glass ionomer-based sealer and cone (ActiV GP obturation system); in group 2, bioceramic sealer and cone (EndoSequence BC obturation system); and in group 3, roots were filled with bioceramic sealer and cone (Smartpaste bio obturation system). All specimens were tested in a universal testing machine for measuring fracture resistance. For each root, the force at the time of fracture was recorded in Newtons. The statistical analysis was performed by using Kruskal-Wallis and post hoc test. There were no significant differences between the three experimental groups. The fracture values of three experimental and negative control groups were significantly higher than the positive control group. Within the limitations of this study, all materials increased the fracture resistance of instrumented roots. PMID:25756048

  4. Root Infection and Systemic Colonization of Maize by Colletotrichum graminicola▿

    PubMed Central

    Sukno, Serenella A.; García, Verónica M.; Shaw, Brian D.; Thon, Michael R.

    2008-01-01

    Colletotrichum graminicola is a filamentous ascomycete that causes anthracnose disease of maize. While the fungus can cause devastating foliar leaf blight and stalk rot diseases, little is known about its ability to infect roots. Previously published reports suggest that C. graminicola may infect maize roots and that root infections may contribute to the colonization of aboveground plant tissues, leading to disease. To determine whether C. graminicola can infect maize roots and whether root infections can result in the colonization of aboveground plant tissues, we developed a green fluorescent protein-tagged strain and used it to study the plant root colonization and infection process in vivo. We observed structures produced by other root pathogenic fungi, including runner hyphae, hyphopodia, and microsclerotia. A mosaic pattern of infection resulted from specific epidermal and cortical cells becoming infected by intercellular hyphae while surrounding cells were uninfected, a pattern that is distinctly different from that described for leaves. Interestingly, falcate conidia, normally restricted to acervuli, were also found filling epidermal cells and root hairs. Twenty-eight percent of plants challenged with soilborne inoculum became infected in aboveground plant parts (stem and/or leaves), indicating that root infection can lead to asymptomatic systemic colonization of the plants. Many of the traits observed for C. graminicola have been previously reported for other root-pathogenic fungi, suggesting that these traits are evolutionally conserved in multiple fungal lineages. These observations suggest that root infection may be an important component of the maize anthracnose disease cycle. PMID:18065625

  5. Root water compensation sustains transpiration rates in an Australian woodland

    NASA Astrophysics Data System (ADS)

    Verma, Parikshit; Loheide, Steven P.; Eamus, Derek; Daly, Edoardo

    2014-12-01

    We apply a model of root-water uptake to a woodland in Australia to examine the regulation of transpiration by root water compensation (i.e., the ability of roots to regulate root water uptake from different parts of the soil profile depending on local moisture availability). We model soil water movement using the Richards equation and water flow in the xylem with Darcy's equation. These two equations are coupled by a term that governs the exchange of water between soil and root xylem as a function of the difference in water potential between the two. The model is able to reproduce measured diurnal patterns of sap flux and results in leaf water potentials that are consistent with field observations. The model shows that root water compensation is a key process to allow for sustained rates of transpiration across several months. Scenarios with different root depths showed the importance of having a root system deeper than about 2 m to achieve the measured transpiration rates without reducing the leaf water potential to levels inconsistent with field measurements. The model suggests that the presence of more than 5 % of the root system below 0.6 m allows trees to maintain sustained transpiration rates keeping leaf water potential levels within the range observed in the field. According to the model, a large contribution to transpiration in dry periods was provided by the roots below 0.3 m, even though the percentage of roots at these depths was less than 40 % in all scenarios.

  6. Strigolactones suppress adventitious rooting in Arabidopsis and pea.

    PubMed

    Rasmussen, Amanda; Mason, Michael Glenn; De Cuyper, Carolien; Brewer, Philip B; Herold, Silvia; Agusti, Javier; Geelen, Danny; Greb, Thomas; Goormachtig, Sofie; Beeckman, Tom; Beveridge, Christine Anne

    2012-04-01

    Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation. PMID:22323776

  7. Variable effects of mucilage on root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen

    2013-04-01

    Plants are big water movers. Without an adequate supply of water from the soil, water transpired from leaves cannot be compensated by root water uptake. Such a water shortage is a worldwide constraint to yield and food production. By exuding mucilage, roots keep the soil in their vicinity, the rhizosphere, wet and take up water more easily. However, mucilage turns hydrophobic after drying and it hinders the rewetting of the rhizosphere upon irrigation. Here we show that the temporarily water repellency of the rhizosphere decreases root water uptake after irrigation. We used neutron radiography to trace the transport of deuterated water in soil and roots of transpiring plants. We let one soil region dry for 2 days. Then, we irrigated it. We found that root water uptake in this location did not recover after irrigation. We conclude that, after drying, the rhizosphere became a significant resistance to water flow to roots. Mucilage has therefore dual effects on plant water relations: freshly exuded mucilage facilitates root water uptake until it dries out and it becomes a barrier to water flow. The profits of exuding mucilage depend on root traits and environmental conditions. In soils with water stored in deep regions, plants would benefit from fresh mucilage covering the deep roots segments, while dry mucilage would isolate the roots from the dry upper soil layers. Understanding the relations between mucilage, root traits and environmental conditions will help to increase water use efficiency and yield production in arid areas.

  8. Unique Cellular Organization in the Oldest Root Meristem.

    PubMed

    Hetherington, Alexander J; Dubrovsky, Joseph G; Dolan, Liam

    2016-06-20

    Roots and shoots of plant bodies develop from meristems-cell populations that self-renew and produce cells that undergo differentiation-located at the apices of axes [1].The oldest preserved root apices in which cellular anatomy can be imaged are found in nodules of permineralized fossil soils called coal balls [2], which formed in the Carboniferous coal swamp forests over 300 million years ago [3-9]. However, no fossil root apices described to date were actively growing at the time of preservation [3-10]. Because the cellular organization of meristems changes when root growth stops, it has been impossible to compare cellular dynamics as stem cells transition to differentiated cells in extinct and extant taxa [11]. We predicted that meristems of actively growing roots would be preserved in coal balls. Here we report the discovery of the first fossilized remains of an actively growing root meristem from permineralized Carboniferous soil with detail of the stem cells and differentiating cells preserved. The cellular organization of the meristem is unique. The position of the Körper-Kappe boundary, discrete root cap, and presence of many anticlinal cell divisions within a broad promeristem distinguish it from all other known root meristems. This discovery is important because it demonstrates that the same general cellular dynamics are conserved between the oldest extinct and extant root meristems. However, its unique cellular organization demonstrates that extant root meristem organization and development represents only a subset of the diversity that has existed since roots first evolved. PMID:27265396

  9. The root cap: a short story of life and death.

    PubMed

    Kumpf, Robert P; Nowack, Moritz K

    2015-09-01

    Over 130 years ago, Charles Darwin recognized that sensory functions in the root tip influence directional root growth. Modern plant biology has unravelled that many of the functions that Darwin attributed to the root tip are actually accomplished by a particular organ-the root cap. The root cap surrounds and protects the meristematic stem cells at the growing root tip. Due to this vanguard position, the root cap is predisposed to receive and transmit environmental information to the root proper. In contrast to other plant organs, the root cap shows a rapid turnover of short-lived cells regulated by an intricate balance of cell generation, differentiation, and degeneration. Thanks to these particular features, the root cap is an excellent developmental model system, in which generation, differentiation, and degeneration of cells can be investigated in a conveniently compact spatial and temporal frame. In this review, we give an overview of the current knowledge and concepts of root cap biology, focusing on the model plant Arabidopsis thaliana. PMID:26068468

  10. [Effect of Root Iron Plaque on Norfloxacin Uptake by Rice].

    PubMed

    Ma, Wei; Bao, Yan-yu

    2015-06-01

    In anaerobic condition, release of oxygen by roots to rhyzosphere caused the formation of red plaque of iron oxides or hydroxides on the root surface of rice. The effect of iron plaque on norfloxacin uptake was investigated with solution culture in greenhouse, and the results are showed in the following. The content of iron plaque increased with the increase of Fe2+ concentration in medium. After the addition of norfloxacin in nutrient solution, the content of iron plaques on the root surface decreased to different degree, and the reduction of iron plaques was increasing with the increase of norfloxacin mass concentration. Significant relationships were found between the iron plaques and norfloxacin on the root surface, and the correlation coefficients were 0.959 (norfloxacin mass concentration was 10 mg x L(-1)) and 0.987 (norfloxacin mass concentration was 50 mg x L(-1)), respectively, however, the norfloxacin contents in roots and shoots had no significant correlation with the iron plaques. After addition of different mass concentrations of norfloxacin, the quality distribution percentages of norfloxacin on the root surface and in roots and shoots were 87.7%-97.6%, 0.8%-4.8%, 1.5%-7.5%, respectively, the norfloxacin content on the root surface was far greater than those in roots and shoots. It was therefore concluded that iron plaque on roots was a norfloxacin reservoir for rice plant but had no significant effect on the transfer of norfloxacin to roots and shoots of the rice plant. PMID:26387334

  11. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize.

    PubMed

    Zhan, Ai; Schneider, Hannah; Lynch, Jonathan P

    2015-08-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops. PMID:26077764

  12. Mechanical induction of lateral root initiation in Arabidopsis thaliana

    PubMed Central

    Ditengou, Franck Anicet; Teale, William D.; Kochersperger, Philip; Flittner, Karl Andreas; Kneuper, Irina; van der Graaff, Eric; Nziengui, Hugues; Pinosa, Francesco; Li, Xugang; Nitschke, Roland; Laux, Thomas; Palme, Klaus

    2008-01-01

    Lateral roots are initiated postembryonically in response to environmental cues, enabling plants to explore efficiently their underground environment. However, the mechanisms by which the environment determines the position of lateral root formation are unknown. In this study, we demonstrate that in Arabidopsis thaliana lateral root initiation can be induced mechanically by either gravitropic curvature or by the transient bending of a root by hand. The plant hormone auxin accumulates at the site of lateral root induction before a primordium starts to form. Here we describe a subcellular relocalization of PIN1, an auxin transport protein, in a single protoxylem cell in response to gravitropic curvature. This relocalization precedes auxin-dependent gene transcription at the site of a new primordium. Auxin-dependent nuclear signaling is necessary for lateral root formation; arf7/19 double knock-out mutants normally form no lateral roots but do so upon bending when the root tip is removed. Signaling through arf7/19 can therefore be bypassed by root bending. These data support a model in which a root-tip-derived signal acts on downstream signaling molecules that specify lateral root identity. PMID:19033199

  13. Invertebrate colonization of leaves and roots within sediments of intermittent coastal plain streams across hydrologic phases

    EPA Science Inventory

    We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots and plastic roots) among three intermittent Coastal Plain streams over a one year period. Invertebrate density was significantly lower in root litterbags than in plastic root l...

  14. Modeling root water uptake in soils: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Javaux, Mathieu; Couvreur, Valentin; Huber, Katrin; Meunier, Félicien; Vanderborght, Jan; Vereecken, Harry

    2016-04-01

    Root water uptake modeling concepts have evolved over time. On one hand, mesoscopic models have been developed, which explicitly represent the fluxes at the soil root interfaces. On the other hand macroscopic approaches were proposed, which embedded root water uptake into a sink term in the macroscopic mass balance equation. Today, new techniques for imaging root architecture, water fluxes and soil properties open new possibilities to the understanding of water depletion in planted soils. Amongst others, architectural hydraulic root and soil models can be used to bridge the scale gap between single root and plant scales. In this talk, several new promising experimental approaches will be presented together with new models and upscaling procedures, possibly paving the way for the future models of root water uptake. Furthermore, open challenges will also be presented.

  15. Root gravitropism: a complex response to a simple stimulus?

    NASA Technical Reports Server (NTRS)

    Rosen, E.; Chen, R.; Masson, P. H.

    1999-01-01

    Roots avoid depleting their immediate environment of essential nutrients by continuous growth. Root growth is directed by environmental cues, including gravity. Gravity sensing occurs mainly in the columella cells of the root cap. Upon reorientation within the gravity field, the root-cap amyloplasts sediment, generating a physiological signal that promotes the development of a curvature at the root elongation zones. Recent molecular genetic studies in Arabidopsis have allowed the identification of genes that play important roles in root gravitropism. Among them, the ARG1 gene encodes a DnaJ-like protein involved in gravity signal transduction, whereas the AUX1 and AGR1 genes encode proteins involved in polar auxin transport. These studies have important implications for understanding the intra- and inter-cellular signaling processes that underlie root gravitropism.

  16. ROOT I/O in JavaScript

    NASA Astrophysics Data System (ADS)

    Bellenot, Bertrand; Linev, Sergey

    2014-06-01

    In order to be able to browse (inspect) ROOT files in a platform independent way, a JavaScript version of the ROOT I/O subsystem has been developed. This allows the content of ROOT files to be displayed in most available web browsers, without having to install ROOT or any other software on the server or on the client. This gives a direct access to ROOT files from any new device in a lightweight way. It is possible to display simple graphical objects such as histograms and graphs (TH1, TH2, TH3, TProfile, and TGraph). The rendering of 1D/2D histograms and graphs is done with an external JavaScript library (D3.js), and another library (Three.js) is used for 2D and 3D histograms. We will describe the techniques used to display the content of a ROOT file, with a rendering being now very close to the one provided by ROOT.

  17. Root system architecture: insights from Arabidopsis and cereal crops

    PubMed Central

    Smith, Stephanie; De Smet, Ive

    2012-01-01

    Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the importance of investigating specific aspects of root architecture in both the model plant Arabidopsis thaliana and (cereal) crops, presents novel insights into elements that are currently hardly addressed and provides new tools and technologies to study various aspects of root system architecture. This introduction gives a broad overview of the importance of the root system and provides a snapshot of the molecular control mechanisms associated with root branching and responses to the environment in A. thaliana and cereal crops. PMID:22527386

  18. Plant development in space: Observations on root formation and growth

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  19. Aberration in the palatal root of the maxillary first molar

    PubMed Central

    Rajalbandi, Sandeep; Shingte, Sandhya Narayan; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-01-01

    Thorough knowledge of root canal morphology is essential for the endodontic therapy. Variations in the root and root canal morphology, especially in multirooted teeth, are a constant challenge for diagnosis and management. The dentist needs to be familiar with the various root canal configurations and their variations for successful endodontic therapy. There are rare variations in canal number and configuration in maxillary molars, which could affect treatment outcome. Two lingual root structures are occasionally found on human permanent maxillary molars. One of these is the normal lingual root, which is always present, the other is a supernumerary structure which can be located either mesiolingually (radix mesiolingualis) or distolingually (radix distolingualis). The purpose of this paper is to review the literature and to demonstrate a case report which describes the successful non-surgical endodontic management of an unusual maxillary first molar with four separate roots and four canals. PMID:23632609

  20. Strigolactone signaling in root development and phosphate starvation

    PubMed Central

    Kumar, Manoj; Pandya-Kumar, Nirali; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Strigolactones (SLs), have recently been recognized as phytohormone involve in orchestrating shoot and root architecture. In, roots SLs positively regulate root hair length and density, suppress lateral root formation and promote primary root meristem cell number. The biosynthesis and exudation of SLs increases under low phosphate level to regulate root responses. This hormonal response suggests an adaptation strategy of plant to optimize growth and development under nutrient limitations. However, little is known on signal-transduction pathways associated with SL activities. In this review, we outline the current knowledge on SL biology by describing their role in the regulation of root development. Also, we discuss the recent findings on the non-cell autonomous signaling of SLs, that involve PIN polarization, vesicle trafficking, changes in actin architecture and dynamic in response to phosphate starvation. PMID:26251884