Science.gov

Sample records for rot fungus pleurotus

  1. Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii.

    PubMed

    Hadibarata, Tony; Teh, Zee Chuang; Rubiyatno; Zubir, Meor Mohd Fikri Ahmad; Khudhair, Ameer Badr; Yusoff, Abdull Rahim Mohd; Salim, Mohd Razman; Hidayat, Topik

    2013-10-01

    The use of biomaterials or microorganisms in PAHs degradation had presented an eye-catching performance. Pleurotus eryngii is a white rot fungus, which is easily isolated from the decayed woods in the tropical rain forest, used to determine the capability to utilize naphthalene, a two-ring polycyclic aromatic hydrocarbon as source of carbon and energy. In the meantime, biotransformation of naphthalene to intermediates and other by-products during degradation was investigated in this study. Pleurotus eryngii had been incubated in liquid medium formulated with naphthalene for 14 days. The presence of metabolites of naphthalene suggests that Pleurotus eryngii begin the ring cleavage by dioxygenation on C1 and C4 position to give 1,4-naphthaquinone. 1,4-Naphthaquinone was further degraded to benzoic acid, where the proposed terepthalic acid is absent in the cultured extract. Further degradation of benzoic acid by Pleurotus eryngii shows the existence of catechol as a result of the combination of decarboxylation and hydroxylation process. Unfortunately, phthalic acid was not detected in this study. Several enzymes, including manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase are enzymes responsible for naphthalene degradation. Reduction of naphthalene and the presence of metabolites in liquid medium showed the ability of Pleurotus eryngii to utilize naphthalene as carbon source instead of a limited glucose amount. PMID:23334282

  2. Molecular Karyotype of the White Rot Fungus Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gumer; Peñas, María M.; Baars, Johan J. P.; Mikosch, Thomas S. P.; Pisabarro, Antonio G.; Ramírez, Lucía

    1999-01-01

    The white rot fungus Pleurotus ostreatus is an edible basidiomycete with increasing agricultural and biotechnological importance. Genetic manipulation and breeding of this organism are restricted because of the lack of knowledge about its genomic structure. In this study, we analyzed the genomic constitution of P. ostreatus by using pulsed-field gel electrophoresis optimized for the separation of its chromosomes. We have determined that it contains 11 pairs of chromosomes with sizes ranging from 1.4 to 4.7 Mbp. In addition to chromosome separation, the use of single-copy DNA probes allowed us to resolve the ambiguities caused by chromosome comigration. When the two nuclei present in the dikaryon were separated by protoplasting, analysis of their karyotypes revealed length polymorphisms affecting various chromosomes. This is, to our knowledge, the clearest chromosome separation available for this species. PMID:10427028

  3. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus.

    PubMed Central

    Bezalel, L; Hadar, Y; Fu, P P; Freeman, J P; Cerniglia, C E

    1996-01-01

    The white rot fungus Pleurotus ostreatus, grown for 11 days in basidiomycetes rich medium containing [14C] phenanthrene, metabolized 94% of the phenanthrene added. Of the total radioactivity, 3% was oxidized to CO2. Approximately 52% of phenanthrene was metabolized to trans-9,10-dihydroxy-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) (28%), 2,2'-diphenic acid (17%), and unidentified metabolites (7%). Nonextractable metabolites accounted for 35% of the total radioactivity. The metabolites were extracted with ethyl acetate, separated by reversed-phase high-performance liquid chromatography, and characterized by 1H nuclear magnetic resonance, mass spectrometry, and UV spectroscopy analyses. 18O2-labeling experiments indicated that one atom of oxygen was incorporated into the phenanthrene trans-9,10-dihydrodiol. Circular dichroism spectra of the phenanthrene trans-9,10-dihydrodiol indicated that the absolute configuration of the predominant enantiomer was 9R,10R, which is different from that of the principal enantiomer produced by Phanerochaete chrysosporium. Significantly less phenanthrene trans-9,10-dihydrodiol was observed in incubations with the cytochrome P-450 inhibitor SKF 525-A (77% decrease), 1-aminobenzotriazole (83% decrease), or fluoxetine (63% decrease). These experiments with cytochrome P-450 inhibitors and 18O2 labeling and the formation of phenanthrene trans-9R,10R-dihydrodiol as the predominant metabolite suggest that P. ostreatus initially oxidizes phenanthrene stereoselectively by a cytochrome P-450 monoxygenase and that this is followed by epoxide hydrolase-catalyzed hydration reactions. PMID:8779594

  4. Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus

    SciTech Connect

    Bezalel, L.; Hadar, Y.; Cerniglia, C.E.

    1996-01-01

    White rot fungi, including Pleurotus ostreatus, have the ability to efficiently degrade lignin, a naturally occurring aromatic polymer. Previous work has found these organisms were able to degrade PAHs and in some cases to mineralize them; most of the work was done with Phanerochaete chrysosporium. P. ostreatus differs from P. chrysosporium in its lignin degradation mechanism. In this study, enzymatic activities were monitored during P. ostreatus growth in the presence of PAHs and the fungus`s ability to mineralize catechol and various PAHs was demonstrated. 29 refs., 3 figs., 1 tab.

  5. Potential applications of the white rot fungus Pleurotus in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Manukovsky, N. S.; Kovalev, V. S.; Yu, Ch.; Gurevich, Yu. L.; Liu, H.

    Earlier we demonstrated the possibility of using soil-like substrate SLS for plant cultivation in bioregenerative life support systems BLSS We suggest dividing the process of SLS bioregeneration at BLSS conditions into two stages At the first stage plant residues should be used for growing of white rot fungus Pleurotus ostreatus Pleurotus florida etc The fruit bodies could be used as food Spent mushroom compost is carried in SLS and treated by microorganisms and worms at the second stage The possibility of extension of human food ration is only one of the reasons for realization of the suggested two-stage SLS regeneration scheme people s daily consumption of mushrooms is limited to 200 -250 g of wet weight or 20 -25 g of dry weight Multiple tests showed what is more important is that inclusion of mushrooms into the system cycle scheme contributes through various mechanisms to the more stable functioning of vegetative cenosis in general Taking into account the given experimental data we determined the scheme of mushroom module material balance The technological peculiarities of mushroom cultivation at BLSS conditions are being discussed

  6. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus.

    PubMed

    Fountoulakis, M S; Dokianakis, S N; Kornaros, M E; Aggelis, G G; Lyberatos, G

    2002-11-01

    Olive mill wastewaters (OMW) present a major environmental problem. The large amounts generated, combined with the high phenols and chemical oxygen demand concentrations, are the main difficulties in finding a solution for the management of these wastewaters, which are dangerous for the environment. The phenols, which are contained in the OMW have a structure similar to lignin, which makes them difficult to biodegrade. Lignin can be degraded only by a few microorganisms, such as "white-rot" basidiomycete, which produce manganese (MnPs) and lignin peroxidases (LiPs) and laccases that are responsible for the oxidisation of lignin compounds. The capability of Pleurotus ostreatus to degrade phenols of OMW in different conditions such as in sterilized and thermally processed (at 100 degrees C) wastewater, with and without dilution, is investigated in this work. According to the experimental results P. ostreatus removed phenols from the culture medium, under all different conditions that were examined. The degradation of phenols reached up to 78.3% for the sterilized and 50% diluted OMW, 66.7% and 64.7% for the thermally processed OMW, with and without dilution, respectively. The effect of pre-treatment of OMW on the performance of anaerobic digestion is also assessed, as methanogenic bacteria are seriously affected by the presence of phenol compounds. The pre-treated wastewater was shown to be more amenable to a subsequent anaerobic digestion. PMID:12448515

  7. Biosorption and biotransformation of fluoranthene by the white-rot fungus Pleurotus eryngii F032.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu; Hamdzah, Myzairah

    2014-01-01

    Major concern about the presence of fluoranthene, which consists of four fused benzene rings, in the environment has been raised in the past few years due to its toxic, mutagenic, and persistent organic pollutant properties. In this study, we investigated the removal of fluoranthene under static and agitated conditions. About 89% fluoranthene was removed within 30 days under the agitated condition, whereas under the static condition, only 54% fluoranthene was removed. We further investigated the behavior and mechanism of fluoranthene biosorption and biotransformation by Pleurotus eryngii F032 to accelerate the elimination of fluoranthene. The optimum conditions for the elimination of fluoranthene by P. eryngii F032 included a temperature of 35 °C, pH 3, 0.2% inoculum concentration, and a C/N ratio of 16. Under these conditions at the initial fluoranthene concentration of 10 mg/L, more than 95% of fluoranthene was successfully removed within 30 days. Of those factors influencing the biodegradation of fluoranthene, salinity, glucose, and rhamnolipid content were of the greatest importance. Degradation metabolites identified using gas chromatography-mass spectrometry were 1-naphthalenecarboxylic acid and salicylic acid, suggesting possible metabolic pathways. Finally, it can be presumed that the major mechanism of fluoranthene elimination by white-rot fungi is to mineralize polycyclic aromatic hydrocarbons via biotransformation enzymes like laccase. PMID:24033877

  8. Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-02-01

    The white-rot fungus Pleurotus eryngii F032 showed the capability to degrade a three fused-ring aromatic hydrocarbons fluorene. The elimination of fluorene through sorption was also investigated. Enzyme production is accompanied by an increase in biomass of P. eryngii F032 during degradation process. The fungus totally degraded fluorine within 23 d at 10-mg l(-1) solution. Fluorene degradation was affected with initial fluorene concentrations. The highest enzyme activity was shown by laccase in the 10-mg l(-1) culture after 30 d of incubation (1620 U l(-1)). Few activities of enzymes were observed in the fungal cell at the varying concentration of fluorene. Three metabolic were detected and separated in ethylacetate extract, after isolated by column chromatography. The metabolites, 9-fluorenone, phthalic acid, and benzoic acid were identified using UV-vis spectrophotometer and gas chromatography-mass spectrometry (GC-MS). The results show the presence of a complex mechanism for the regulation of fluorene-degrading enzymes. PMID:24528643

  9. Transformation Pathways of the Recalcitrant Pharmaceutical Compound Carbamazepine by the White-Rot Fungus Pleurotus ostreatus: Effects of Growth Conditions.

    PubMed

    Golan-Rozen, Naama; Seiwert, Bettina; Riemenschneider, Christina; Reemtsma, Thorsten; Chefetz, Benny; Hadar, Yitzhak

    2015-10-20

    The widely used anticonvulsant pharmaceutical carbamazepine is recalcitrant in many environmental niches and thus poses a challenge in wastewater treatment. We followed the decomposition of carbamazepine by the white-rot fungus Pleurotus ostreatus in liquid culture compared to solid-state fermentation on lignocellulosic substrate where different enzymatic systems are active. Carbamazepine metabolites were identified using liquid chromatography-high-resolution mass spectrometry (LC-Q-TOF-MS). In liquid culture, carbamazepine was only transformed to 10,11-epoxy carbamazepine and 10,11-dihydroxy carbamazepine as a dead-end product. During solid-state fermentation, carbamazepine metabolism resulted in the generation of an additional 22 transformation products, some of which are toxic. Under solid-state-fermentation conditions, 10,11-epoxy carbamazepine was further metabolized via acridine and 10,11-dihydroxy carbamazepine pathways. The latter was further metabolized via five subpathways. When (14)C-carbonyl-labeled carbamazepine was used as the substrate, (14)C-CO2 release amounted to 17.4% of the initial radioactivity after 63 days of incubation. The proposed pathways were validated using metabolites (10,11-epoxy carbamazepine, 10,11-dihydroxy carbamazepine, and acridine) as primary substrates and following their fate at different time points. This work highlights the effect of growth conditions on the transformation pathways of xenobiotics. A better understanding of the fate of pollutants during bioremediation treatments is important for establishment of such technologies. PMID:26418858

  10. Overproduction of Laccase by the White-Rot Fungus Pleurotus ostreatus Using Apple Pomace as Inducer.

    PubMed

    Park, Young-Jin; Yoon, Dae-Eun; Kim, Hong-Il; Kwon, O-Chul; Yoo, Young-Bok; Kong, Won-Sik; Lee, Chang-Soo

    2014-06-01

    Laccase activity of Pleurotus ostreatus is significantly increased by the addition of apple pomace. Among various conditions, the best concentration of apple pomace and cultivation time for the production of laccase by P. ostreatus was 2.5% and 9 days, respectively. Reverse transcription polymerase chain reaction analyses of laccase isoenzyme genes, including pox1, pox3, pox4, poxc, poxa3, and poxa1b, revealed a clear effect of apple pomace on transcription induction. Our findings reveal that the use of apple pomace can be a model for the valuable addition of similar wastes and for the development of a solid-state fermenter and commercial production of oyster mushroom P. ostreatus. PMID:25071391

  11. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substrate specificities.

    PubMed

    Mansur, Mariana; Arias, María E; Copa-Patiño, José L; Flärdh, María; González, Aldo E

    2003-01-01

    Four laccase isozymes (LCC1, LCC2, LCC3 and LCC4) synthesized by Pleurotus ostreatus strain V-184 were purified and characterized. LCC1 and LCC2 have molecular masses of about 60 and 65 kDa and exhibited the same pI value (3.0). Their N termini were sequenced, revealing the same amino acid sequence and homology with laccases from other microorganisms. Laccases LCC3 and LCC4 were characterized by SDS-PAGE, estimating their molecular masses around 80 and 82 kDa, respectively. By native isoelectrofocusing, their pI values were 4.7 and 4.5, respectively. When staining with ABTS and guaiacol in native polyacrilamide gels, different specificities were observed for LCC1/LCC2 and LCC3/LCC4 isozymes. PMID:21149010

  12. Overproduction of Laccase by the White-Rot Fungus Pleurotus ostreatus Using Apple Pomace as Inducer

    PubMed Central

    Park, Young-Jin; Yoon, Dae-Eun; Kim, Hong-Il; Kwon, O-Chul; Yoo, Young-Bok; Kong, Won-Sik

    2014-01-01

    Laccase activity of Pleurotus ostreatus is significantly increased by the addition of apple pomace. Among various conditions, the best concentration of apple pomace and cultivation time for the production of laccase by P. ostreatus was 2.5% and 9 days, respectively. Reverse transcription polymerase chain reaction analyses of laccase isoenzyme genes, including pox1, pox3, pox4, poxc, poxa3, and poxa1b, revealed a clear effect of apple pomace on transcription induction. Our findings reveal that the use of apple pomace can be a model for the valuable addition of similar wastes and for the development of a solid-state fermenter and commercial production of oyster mushroom P. ostreatus. PMID:25071391

  13. [Effects of microbial pretreatment of kenaf stalk by the white-rot fungus Pleurotus sajor-caju on bioconversion of fuel ethanol production].

    PubMed

    Ruan, Qicheng; Qi, Jianmin; Hu, Kaihui; Fang, Pingping; Lin, Haihong; Xu, Jiantang; Tao, Aifen; Lin, Guolong; Yi, Lifu

    2011-10-01

    Kenaf stalk was pretreated by the white-rot fungus Pleurotus sajor-caju incubated in solid-state kenaf stalk cultivation medium. Delignification and subsequent enzymatic saccharification and fermentation of kenaf stalk were investigated in order to evaluate effects of microbial pretreatment on bioconversion of kenaf lignocellulose to fuel ethanol production. The highest delignification rate of 50.20% was obtained after 25-35 days cultivation by P. sajor-caju, which could improve subsequent enzymatic hydrolysis efficiency of kenaf cellulose. And the saccharification rate of pretreated kenaf stalk reached 69.33 to 78.64%, 4.5-5.1 times higher than the control. Simultaneous saccharification and fermentation (SSF) with microbial-pretreatment kenaf stalk as substrate was performed. The highest overall ethanol yield of 68.31% with 18.35 to 18.90 mg/mL was achieved after 72 h of SSF. PMID:22260063

  14. Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity.

    PubMed Central

    Masaphy, S; Henis, Y; Levanon, D

    1996-01-01

    Manganese enhanced atrazine transformation by the fungus Pleurotus pulmonarius when added to a liquid culture medium at concentrations of up to 300 microM. Both N-dealkylated and propylhydroxylated metabolites accumulated in the culture medium, with the former accumulating to a greater extent than did the latter. Lipid peroxidation, oxygenase and peroxidase activities, and the cytochrome P-450 concentration increased. In addition, an increase in the spectral interactions between atrazine and components in the cell extract was observed. Antioxidants, mainly nordihydroguaiaretic acid, which inhibits lipoxygenase, peroxidase, and P-450 activities, and piperonyl butoxide, which inhibits P-450 activity, inhibited atrazine transformation by the mycelium. It is suggested that the stimulation of oxidative activity by Mn might be responsible for increasing the biotransformation of atrazine and for nonspecific transformations of other xenobiotic compounds. PMID:8967773

  15. Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites.

    PubMed

    Hadibarata, Tony; Teh, Zee Chuang

    2014-08-01

    Pleurotus pulmonarius F043, a fungus collected from tropical rain forest, was used to degrade pyrene, a four-rings polycyclic aromatic hydrocarbons (PAHs), in a mineral medium broth. A maximum degradation rate of pyrene (90 %) was occurred at pH 3 and the lowest degradation rate was found in the culture at pH 10 (2 %). More than 90 % pyrene degradation was achieved at pH ranged from 3 to 5, whereas the degradation rate significantly declined when the pH was >5. The degradation of pyrene increased from 2 to 96 % when the temperature rose from 4 to 25 °C. When the temperature was increased to 60 °C resulting the lowest degradation rate into 7 %. Among the agitation rates tested, 120 rpm was the best with 95 % degradation, followed by 100 rpm (90 %). The optimum agitation range for pyrene degradation by P. pulmonarius F043 was 100-120 rpm. Among all the concentrations tested, 0.5 % Tween 80 was the best with 98 % degradation, followed by 1 % Tween 80 (90 %). The optimum concentration of Tween 80 for pyrene degradation by P. pulmonarius F043 was 0.5-1 %. The degradation rate decreased, while the concentration of Tween 80 was increased. The metabolic product was found during degradation process through the identification of gentisic acid by TLC, UV-Spectrophotometer, and GC-MS. PMID:24554082

  16. Electrochemistry Combined with LC-HRMS: Elucidating Transformation Products of the Recalcitrant Pharmaceutical Compound Carbamazepine Generated by the White-Rot Fungus Pleurotus ostreatus.

    PubMed

    Seiwert, Bettina; Golan-Rozen, Naama; Weidauer, Cindy; Riemenschneider, Christina; Chefetz, Benny; Hadar, Yitzhak; Reemtsma, Thorsten

    2015-10-20

    Transformation products (TPs) of environmental pollutants must be identified to understand biodegradation processes and reaction mechanisms and to assess the efficiency of treatment processes. The combination of oxidation by an electrochemical cell (EC) with analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a rapid approach for the determination and identification of TPs generated by natural microbial processes. Electrochemically generated TPs of the recalcitrant pharmaceutical carbamazepine (CBZ) were used for a target screening for TPs formed by the white-rot fungus Pleurotus ostreatus. EC with LC-HRMS facilitates detection and identification of TPs because the product spectrum is not superimposed with biogenic metabolites and elevated substrate concentrations can be used. A group of 10 TPs formed in the microbial process were detected by target screening for molecular ions, and another 4 were detected by screening on the basis of characteristic fragment ions. Three of these TPs have never been reported before. For CBZ, EC with LC-HRMS was found to be more effective than software tools in defining targets for the screening and faster than nontarget screening alone in TP identification. EC with LC-HRMS may be used to feed MS databases with spectra of possible TPs of larger numbers of environmental contaminants for an efficient target screening. PMID:26348877

  17. Marker recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in the white-rot agaricomycete Pleurotus ostreatus.

    PubMed

    Nakazawa, Takehito; Tsuzuki, Masami; Irie, Toshikazu; Sakamoto, Masahiro; Honda, Yoichi

    2016-09-01

    Of all of the natural polymers, lignin, an aromatic heteropolymer in plant secondary cell walls, is the most resistant to biological degradation. White-rot fungi are the only known organisms that can depolymerize or modify wood lignin. Investigating the mechanisms underlying lignin biodegradation by white-rot fungi would contribute to the ecofriendly utilization of woody biomass as renewable resources in the future. Efficient gene disruption, which is generally very challenging in the white-rot fungi, was established in Pleurotus ostreatus (the oyster mushroom). Some of the genes encoding manganese peroxidases, enzymes that are considered to be involved in lignin biodegradation, were disrupted separately, and the phenotype of each single-gene disruptant was analysed. However, it remains difficult to generate multi-gene disruptants in this fungus. Here we developed a new genetic transformation marker in P. ostreatus and demonstrated two marker recycling methods that use counter-selection to generate a multigene disruptant. This study will enable future genetic studies of white-rot fungi, and it will increase our understanding of the complicated mechanisms, which involve various enzymes, including lignin-degrading enzymes, underlying lignin biodegradation by these fungi. PMID:27567720

  18. Disposable diapers biodegradation by the fungus Pleurotus ostreatus.

    PubMed

    Espinosa-Valdemar, Rosa María; Turpin-Marion, Sylvie; Delfín-Alcalá, Irma; Vázquez-Morillas, Alethia

    2011-08-01

    This research assesses the feasibility of degrading used disposable diapers, an important component (5-15% in weight) of urban solid waste in Mexico, by the activity of the fungus Pleurotus ostreatus, also known as oyster mushroom. Disposable diapers contain polyethylene, polypropylene and a super absorbent polymer. Nevertheless, its main component is cellulose, which degrades slowly. P. ostreatus has been utilized extensively to degrade cellulosic materials of agroindustrial sources, using in situ techniques. The practice has been extended to the commercial farming of the mushroom. This degradation capacity was assayed to reduce mass and volume of used disposable diapers. Pilot laboratory assays were performed to estimate the usefulness of the following variables on conditioning of used diapers before they act as substrate for P. ostreatus: (1) permanence vs removal of plastic cover; (2) shredding vs grinding; (3) addition of grape wastes to improve structure, nitrogen and trace elements content. Wheat straw was used as a positive control. After 68 days, decrease of the mass of diapers and productivity of fungus was measured. Weight and volume of degradable materials was reduced up to 90%. Cellulose content was diminished in 50% and lignine content in 47%. The highest efficiency for degradation of cellulosic materials corresponded to the substrates that showed highest biological efficiency, which varied from 0% to 34%. Harvested mushrooms had good appearance and protein content and were free of human disease pathogens. This research indicates that growing P. ostreatus on disposable diapers could be a good alternative for two current problems: reduction of urban solid waste and availability of high protein food sources. PMID:21474296

  19. OXIDATION OF PERSISTANT ENVIRONMENTAL POLLUTANTS BY A WHITE ROT FUNGUS

    EPA Science Inventory

    The white rot fungus Phanerochaete chrysosporium degraded DDT [1,1,-bis(4-chlorophenyl)-2,2,2-trichloroethane], 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',-4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin, lindane (1,2,3,4,5,6-hexachlorocylohexane), and benzo[a]pyrene t...

  20. Microsatellites from the charcoal rot fungus (Macrophomina phaseolina)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite loci were identified from the charcoal rot fungus Macrophomina phaseolina. Primer pairs for 46 loci were developed and of these 13 were optimized and screened using genomic DNA from 44 fungal isolates collected predominantly from two soybean fields in MS. All optimized loci were poly...

  1. [Bioremediation of oil-polluted soil with an association including the fungus Pleurotus ostreatus and soil microflora].

    PubMed

    Pozdniakova, N N; Nikitina, V E; Turkovskaia, O V

    2008-01-01

    The possibility of application of the Pleurotus ostreatus D1-soil microflora to bioremediation of oil-polluted soils was studied. The fungus degraded mainly the aromatic fraction, whereas soil microflora intensely degraded paraffin and naphthene oil fractions. Introduction of the fungus Pleurotus ostreatus D to soil induces degradation of a wider range of oil hydrocarbons. It is reasonable to further investigate the discovered phenomenon in order to improve procedures of remediation of oil-polluted soils. PMID:18491600

  2. Bioremediation of Direct Blue 14 and Extracellular Ligninolytic Enzyme Production by White Rot Fungi: Pleurotus Spp.

    PubMed Central

    Singh, M. P.; Vishwakarma, S. K.; Srivastava, A. K.

    2013-01-01

    In the present investigation, four species of white rot fungi (Pleurotus), that is, P. flabellatus, P. florida, P. ostreatus and P. sajor-caju were used for decolorization of direct blue 14 (DB14). Among all four species of Pleurotus, P. flabellatus showed the fastest decolorization in petri plates on different concentration, that is, 200 mg/L, 400 mg/L, and 600 mg/L. All these four species were also evaluated for extracellular ligninolytic enzymes (laccase and manganese peroxidase) production and it was observed that the twelve days old culture of P. flabellatus showed the maximum enzymatic activity, that is, 915.7 U/mL and 769.2 U/mL of laccase and manganese peroxidase, respectively. Other three Pleurotus species took more time for dye decolorization and exhibited less enzymatic activities. The rate of decolorization of DB14 dye solution (20 mg/L) by crude enzymes isolated from P. flabellatus was very fast, and it was observed that up to 90.39% dye solution was decolorized in 6 hrs of incubation. PMID:23841054

  3. Efficient xylose fermentation by the brown rot fungus Neolentinus lepideus.

    PubMed

    Okamoto, Kenji; Kanawaku, Ryuichi; Masumoto, Masaru; Yanase, Hideshi

    2012-02-10

    The efficient production of bioethanol on an industrial scale requires the use of renewable lignocellulosic biomass as a starting material. A limiting factor in developing efficient processes is identifying microorganisms that are able to effectively ferment xylose, the major pentose sugar found in hemicellulose, and break down carbohydrate polymers without pre-treatment steps. Here, a basidiomycete brown rot fungus was isolated as a new biocatalyst with unprecedented fermentability, as it was capable of converting not only the 6-carbon sugars constituting cellulose, but also the major 5-carbon sugar xylose in hemicelluloses, to ethanol. The fungus was identified as Neolentinus lepideus and was capable of assimilating and fermenting xylose to ethanol in yields of 0.30, 0.33, and 0.34 g of ethanol per g of xylose consumed under aerobic, oxygen-limited, and anaerobic conditions, respectively. A small amount of xylitol was detected as the major by-product of xylose metabolism. N. lepideus produced ethanol from glucose, mannose, galactose, cellobiose, maltose, and lactose with yields ranging from 0.34 to 0.38 g ethanol per g sugar consumed, and also exhibited relatively favorable conversion of non-pretreated starch, xylan, and wheat bran. These results suggest that N. lepideus is a promising candidate for cost-effective and environmentally friendly ethanol production from lignocellulosic biomass. To our knowledge, this is the first report on efficient ethanol fermentation from various carbohydrates, including xylose, by a naturally occurring brown rot fungus. PMID:22226194

  4. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    SciTech Connect

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.

  5. DEVELOPMENT OF WATER AND SOIL TREATMENT TECHNOLOGY BASED ON THE UTILIZATION OF A WHITE-ROT, WOOD ROTTING FUNGUS

    EPA Science Inventory

    The wood rotting fungus, Phanerochaete chrysosporium has been selected as a candidate species to be used as a degrader of hazardous waste organic constituents found in liquids and soils. The selection of the species is attributable to its rapid growth, its ability to degrade lign...

  6. Bioremediation with white rot fungus. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of white rot fungus to degrade a variety of hazardous materials. The citations examine the application of the fungus to the remediation of petroleum hydrocarbons, polychlorinated biphenyls, 2,4,6-trinitrotoluene (TNT), pentachlorophenol, herbicides, insecticides, and other environmentally persistent organic compounds. The results of laboratory and field studies are presented. The use of white rot fungus in biological pulping and delignification is also discussed. (Contains a minimum of 50 citations and includes a subject term index and title list.)

  7. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHATETE CHRYSOSPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    EPA Science Inventory

    The white-rot fungus Phanerochaete chrysosporium has the ability to degrade's wide variety of structurally diverse organic compounds, including a number of environmentall3 persistent organopollutants. he unique biodegradative abilities of this fungus appears to be dependent upon ...

  8. [Kinetics model for batch culture of white rot fungus].

    PubMed

    Xiong, Xiao-ping; Wen, Xiang-hua; Xu, Kang-ning; Bian, Bing-hui

    2008-02-01

    In order to understand ligninolytic enzymes production process during culture of white rot fungus, accordingly to direct the design of fermentation process, a kinetics model was built for the batch culture of Phanerochaete chrysosporium. The parameters in the model were calibrated based on the experimental data from free and immobilized culture separately. The difference between each variable's values calculated based on kinetics model and experimental data is within 15%. Comparing parameters for the free and the immobilized culture, it is found that maximum biomass concentrations are both 1.78 g/L; growth rate ratio of immobilized culture (0.6683 d(-1)) is larger than that of free culture (0.5144 d(-1)); very little glucose is consumed for biomass growth in free culture while in immobilized culture much glucose is used and ammonium nitrogen is consumed at a greater rate. Ligninolytic enzymes production process is non-growth related; fungal pellets can produce MnP (231 U/L) in free culture with a production rate of 115.8 U x (g x d)(-1) before peak and 26.1 U x (g x d)(-1) after peak, thus fed-batch is a possible mode to improve MnP production and fermentation efficiency. MnP (410 U/L) and LiP (721 U/L) can be produced in immobilized culture, but MnP and LiP production rate decrease from 80.1 U x (g x d)(-1) and 248.9 U x (g x d)(-1) to 6.04 U x (g x d)(-1) and 0 U x (g x d)(-1), respectively, indicating a proper feed moment is before the enzymes peak during fed-batch culture. PMID:18613526

  9. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses.

    PubMed

    Zhang, Shimin; Zhang, Xiaolin; Chang, Cheng; Yuan, Zhiyong; Wang, Ting; Zhao, Yong; Yang, Xitian; Zhang, Yuting; La, Guixiao; Wu, Kun; Zhang, Zhiming; Li, Xuanzhen

    2016-05-01

    Wastewater contaminated with heavy metals is a world-wide concern. One biological treatment strategy includes filamentous fungi capable of extracellular adsorption and intracellular bioaccumulation. Here we report that an acclimated strain of filamentous fungus Pleurotus ostreatus HAU-2 can withstand Pb up to 1500 mg L(-1) Pb, conditions in which the wildtype strain cannot grow. The acclimated strain grew in liquid culture under 500 mg L(-1) Pb without significant abnormity in biomass and morphology, and was able to remove significant amounts of heavy metals with rate of 99.1% at 200 mg L(-1) and 63.3% at 1500 mg L(-1). Intracellular bioaccumulation as well as extracellular adsorption both contributed the Pb reduction. Pb induced levels of H2O2, and its concentration reached 72.9-100.9 μmol g(-1) under 200-1000 mg L(-1) Pb. A relatively higher malonaldehyde (MDA) concentration (8.06-7.59 nmol g(-1)) was also observed at 500-1500 mg L(-1) Pb, indicating that Pb exposure resulted in oxidative damage. The fungal cells also defended against the attack of reactive oxygen species by producing antioxidants. Of the three antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), CAT was the most responsive and the maximal enzyme activity was 15.8 U mg(-1) protein. Additionally, glutathione (GSH) might also play a role (3.16-3.21 mg g(-1) protein) in detoxification under relatively low Pb concentration (100-200 mg L(-1)). Our findings suggested that filamentous fungus could be selected for increased tolerance to heavy metals and that CAT and GSH might be important components of this tolerance. PMID:26891354

  10. A novel stirrer design and its application in submerged fermentation of the edible fungus Pleurotus ostreatus.

    PubMed

    Zhu, Hu; Sun, Jiao; Tian, Baozhen; Wang, Honglin

    2015-03-01

    In this study, a straight diagonal-pitched blade stirrer was designed, built and characterized in a 5-L fermenter. Compared with the six straight blade Rushton turbine, the power consumption of the new stirrer is lower at a given speed under conditions of no ventilation. The oxygen transference is poorer at the same agitation speed in the cultivation conditions and scales investigated, which confirms that the shear stress of the new stirrer is lower and the gas dispersion is weaker. The new stirrer was installed in a 5-L bioreactor and evaluated in submerged fermentation of the edible fungus Pleurotus ostreatus. The results showed that the maximum dry weight of mycelium is increased by 47 % and reached 7.47 g/L, and the maximum laccase activity is increased by 15 % up to 2,277 U/L. Glucose consumption was also found to be relatively faster. The power consumption is 2.8 % lower than that of the Rushton turbine. PMID:25234512

  11. Polluting macrophytes Colombian lake Fúquene used as substrate by edible fungus Pleurotus ostreatus.

    PubMed

    Martínez-Nieto, Patricia; García-Gómez, Gustavo; Mora-Ortiz, Laura; Robles-Camargo, George

    2014-01-01

    Invasive aquatic plants from Lake Fúquene (Cundinamarca, Colombia), water hyacinth (Eichhornia crassipes C. Mart.) and Brazilian elodea (Egeria densa Planch.) have been removed mechanically from the lake and can be used for edible mushrooms production. The growth of the oyster mushroom (Pleurotus ostreatus) on these aquatic macrophytes was investigated in order to evaluate the possible use of fruiting bodies and spent biomass in food production for human and animal nutrition, respectively. Treatments included: water hyacinth, Brazilian elodea, sawdust, rice hulls and their combinations, inoculated with P. ostreatus at 3%. Water hyacinth mixed with sawdust stimulated significantly fruiting bodies production (P = 3.3 × 10(-7)) with 71% biological efficacy, followed by water hyacinth with rice husk (55%) and elodea with rice husk (48%), all of these have protein contents between 26 and 47%. Loss of lignin (0.9-21.6%), cellulose (3.7-58.3%) and hemicellulose (1.9-53.8%) and increment in vitro digestibility (16.7-139.3%) and reducing sugars (73.4-838.4%) were observed in most treatments. Treatments spent biomass presented Relative Forage Values (RFV) from 46.1 to 232.4%. The results demonstrated the fungus degrading ability and its potential use in aquatic macrophytes conversion biomass into digestible ruminant feed as added value to the fruiting bodies production for human nutrition. PMID:23900906

  12. BIOLOGICAL OXIDATIONS OF ORGANIC COMPOUNDS BY ENZYMES FROM A WHITE ROT FUNGUS

    EPA Science Inventory

    The ability of the white rot fungus Phanerochaete chrysosporium to degrade a wide variety of structurally diverse organopollutants is dependent upon the lignin-degrading system of this microorganism. n part, the lignin-degrading system-consists of a family of peroxidases, which a...

  13. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  14. BIODEGRADATION OF CRYSTAL VIOLET BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM

    EPA Science Inventory

    Biodegradation of crystal violet (N,N,N',N',N",N"-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,...

  15. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    The white rot fungus, Phanerochaete chrysosporium secretes a unique hydrogen peroxide-dependent oxidase capable of degrading lignin, a highly complex, chemically resistant, non-repeating heteropolymer. ue to its ability to generate carbon-centered radicals, this enzyme is able to...

  16. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium (1988)

    EPA Science Inventory

    Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble met...

  17. Short read sequencing for Genomic Analysis of the brown rot fungus Fibroporia radiculosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practical capability of short read sequencing for whole genome gene prediction was investigated for Fibroporia radiculosa, a copper-tolerant basidiomycete fungus that causes brown rot decay of wood. Illumina GAIIX reads from a single run of a paired-end library (75 nt read length, 300 bp insert...

  18. Degradation of tannins in spent coffee grounds by Pleurotus sajor-caju.

    PubMed

    Wong, Y S; Wang, X

    1991-09-01

    Pleurotus sajor-caju PL27, a white rot fungus, degraded up to 87% of the tannins in spent coffee grounds as a solid substrate over 32 days. Degradation of tannins was enhanced if potato and dextrose were included. The potential nutritive value of the substrate as animal feed may be improved by this process. PMID:24425201

  19. EVIDENCE FOR CLEAVAGE OF LIGNIN BY A BROWN ROT FUNGUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradation by brown-rot fungi is quantitatively one of the most important fates of lignocellulose in nature. It has long been thought that these fungi do not degrade lignin significantly, and that their activities on this abundant aromatic biopolymer are limited to minor oxidative modifications....

  20. Characterization of a Brown Rot Fungus Isolated from Dwarf Flowering Almond in Korea

    PubMed Central

    Shim, Myoung Yong; Jeon, Young Jae

    2007-01-01

    The fruits showing brown rot symptom on dwarf flowering almond were found in Gongju, Chungchungnam-Do in Korea in July 2005. Small water-soaked lesions on the fruits were initiated, and gradually developed to soft rot covered with gray conidia. Then the diseased fruits were shrunk and became grayish-black mummies. A fungus was isolated from the diseased fruit and its morphological, cultural and molecular genetic characteristics were investigated. Typical blastospores of Monilinia spp. were observed under a light microscope both from tissues of the diseased fruits and from PDA-grown cultures. The fungus grew well at 25℃ and on PDA. The ITS ribosomal DNA region (650 bp) of the fungus was amplified by PCR and analyzed. Comparative data on ITS sequence homology among Monilinia spp., ITS sequence-based phylogram and morphological characteristics showed that the fungus is Monilinia fructicola. This is the first report on Monilinia fructicola causing brown rot on fruits of dwarf flowering almond in Korea. PMID:24015065

  1. Bio-liquefaction/solubilization of lignitic humic acids by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Peksel, A.; Kuzu, H.

    2006-08-15

    Humic acid samples obtained from lignite were liquefied/solubilized by using white-rot fungus, and chemical characterization of the products was investigated by FTIR and GC-MS techniques. Prior to the microbial treatment, raw lignite was oxidized with hydrogen peroxide and nitric acid separately, and then humic acids were extracted by alkali solution. The prepared humic acid samples were placed on the agar surface of the fungus and liquid products formed by microbial affects were collected. The products were analyzed and the chemical properties were compared. The results show that oxidation agent and oxidation degree affect composition of the liquid products formed by microbial attack.

  2. Biological decolourisation of pulp mill effluent using white rot fungus Trametes versicolor.

    PubMed

    Srinivasan, S V; Murthy, D V S; Swaminathan, T

    2012-07-01

    The conventional biological treatment methods employed in the pulp and paper industries are not effective in reducing the colour and chemical oxygen demand (COD). The white-rot fungi are reported to have the ability to biodegrade the lignin and its derivatives. This paper is focused on the biological treatment of pulp mill effluent from a bagasse-based pulp and paper industry using fungal treatment. Experiments were conducted using the white rot fungus, Trametes versicolor in shake flasks operated in batch mode with different carbon sources. The decolourisation efficiencies of 82.5% and 80.3% were obtained in the presence of 15 g/L and 5 g/L of glucose and sucrose concentrations respectively with a considerable COD reduction. The possibility of reusing the grown fungus was examined for repeated treatment studies. PMID:24749195

  3. Biodegradation of ddt (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) by the white rot fungus phanerochaete chrysosporium

    SciTech Connect

    Bumpus, J.A.; Aust, S.D.

    1987-01-01

    Extensive biodegradation of 1,1,1-trichloro-2,2bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of (14C) DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane(DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl) ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that ((14)C) dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate that the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.

  4. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus.

    PubMed

    Inácio, Fabíola Dorneles; Ferreira, Roselene Oliveira; de Araujo, Caroline Aparecida Vaz; Brugnari, Tatiane; Castoldi, Rafael; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques

    2015-01-01

    Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine. PMID:26180792

  5. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus

    PubMed Central

    Inácio, Fabíola Dorneles; Ferreira, Roselene Oliveira; de Araujo, Caroline Aparecida Vaz; Brugnari, Tatiane; Castoldi, Rafael; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques

    2015-01-01

    Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine. PMID:26180792

  6. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    EPA Science Inventory

    The white-rot fungus Phanrochaete chrysosporium has the ability to degrade a wide variety of structurally diverse organic compounds, including a number of environmentally persistent organopollutants. The unique biodegradative abilities of this fungus appears to be depend...

  7. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.

    PubMed Central

    Bumpus, J A; Brock, B J

    1988-01-01

    Biodegradation of crystal violet (N,N,N',N',N'',N''-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N''-pentamethylpararosaniline, N,N,N',N''-tetramethylpararosaniline, and N,N',N''-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet. PMID:3389809

  8. Effect of plant extracts and systemic fungicide on the pineapple fruit-rotting fungus, Ceratocystis paradoxa.

    PubMed

    Damayanti, M; Susheela, K; Sharma, G J

    1996-01-01

    Antifungal activities of extracts of sixteen plants were tested against Ceratocystis paradoxa which causes soft rot of pineapples. Xanthium strumarium was the most effective followed by Allium sativum. The effectiveness of various extracts against C. paradoxa was in the decreasing order of Meriandra bengalensis, Mentha piperita, Curcuma longa, Phlogacanthus thyrsiflorus, Toona ciliata, Vitex negundo, Azadirachta indica, Eupatorium birmanicum, Ocimum sanctum and Leucas aspera. Extracts of Cassia tora, Gynura cusimba, Calotropis gigantea and Ocimum canum showed poor fungitoxicity. Ethanol was suitable for extraction of the inhibitory substance from X. strumarium. Acetonitrile was highly toxic to this fungus. Millipore filter-sterilized extracts had a more inhibitory effect on the fungus than the autoclaved samples. Treatment of pineapple fruits infested with C. paradoxa by X. strumarium extract reduced the severity of the disease. PMID:9022263

  9. Liquefaction/solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Kuzu, H.; Peksel, A.

    2006-08-15

    Microbial coal liquefaction/solubilization of three low-rank Turkish coals (Bursa-Kestelek, Kutahya-Seyitomer and Mugla-Yatagan lignite) was attempted by using a white-rot fungus (Phanerochaete chrysosporium DSM No. 6909); chemical compositions of the products were investigated. The lignite samples were oxidized by nitric acid under moderate conditions and then oxidized samples were placed on the agar medium of Phanerochaete chrysosporium. FTIR spectra of raw lignites, oxidized lignites and liquid products were recorded, and the acetone-soluble fractions of these samples were identified by GC-MS technique. Results show that the fungus affects the nitro and carboxyl/carbonyl groups in oxidized lignite sample, the liquid products obtained by microbial effects are the mixture of water-soluble compounds, and show limited organic solubility.

  10. Evidence of Subterranean Termite Feeding Deterrent Produced by Brown Rot Fungus Fibroporia radiculosa (Peck) Parmasto 1968 (Polyporales, Fomitopsidaceae).

    PubMed

    Kamaluddin, Nadia Nuraniya; Nakagawa-Izumi, Akiko; Nishizawa, Shota; Fukunaga, Ayuko; Doi, Shuichi; Yoshimura, Tsuyoshi; Horisawa, Sakae

    2016-01-01

    We found that decayed wood stakes with no termite damage collected from a termite-infested field exhibited a deterrent effect against the termite Reticulitermes speratus, Kolbe, 1885. The effect was observed to be lost or reduced by drying. After identification, it was found that the decayed stakes were infected by brown rot fungus Fibroporia radiculosa (Peck) Parmasto, 1968. In a no-choice feeding test, wood blocks decayed by this fungus under laboratory condition deterred R. speratus feeding and n-hexane extract from the decayed stake and blocks induced termite mortality. These data provided an insight into the interaction between wood-rot fungi and wood-feeding termites. PMID:27548231

  11. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    PubMed

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously. PMID:27103854

  12. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

    PubMed Central

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk

    2016-01-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously. PMID:27103854

  13. Biodegradation of crystal violet by the white rot fungus phanerochaete chrysosporium

    SciTech Connect

    Bumpus, J.A.; Brock, B.J.

    1988-01-01

    Biodegradation of crystal violet (N,N,N',N',N',N''- hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N'' -pentamethylpararosaniline, N,N,N',N'' -tetramethylpararosaniline, and N,N',N'' -trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus.

  14. Draft Genome Sequence of Methylobacterium sp. Strain ARG-1 Isolated from the White-Rot Fungus Armillaria gallica

    PubMed Central

    Collins, Caitlin; Kowalski, Caitlin; Zebrowski, Jessica; Tulchinskaya, Yevgeniya; Tai, Albert K.; James-Pederson, Magdalena

    2016-01-01

    Methylobacterium sp. strain ARG-1 was isolated from a cell culture of hyphal tips of the white-rot fungus Armillaria gallica. We describe here the sequencing, assembly, and annotation of its genome, confirming the presence of genes involved in methylotrophy. This is the first genome announcement of a strain of Methylobacterium associated with A. gallica. PMID:27257212

  15. Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624.

    PubMed Central

    Takada, S; Nakamura, M; Matsueda, T; Kondo, R; Sakai, K

    1996-01-01

    A method for the degradation of dioxins by white rot fungi was developed. Degradation of a mixture of 10 kinds of tetra- to octachlorodibenzo-p-dioxins (polychlorinated dibenzo-p-dioxins [PCDDs]) and tetra- to octachlorodibenzofurans (polychlorinated dibenzofurans [PCDFs]), which were chlorinated at 2-, 3-, 7-, and 8-positions of the molecules, by the white rot fungus Phanerochaete sordida YK-624 was studied in a stationary low-nitrogen medium. The percent degradation values of PCDDs and PCDFs were approximately 40 (tetra-chloro-) to 76% (hexachloro-) and 45 (tetrachloro-) to 70% (hexachloro-), respectively. Metabolites of 2,3,7,8-tetra- and octaCDD formed by P. sordida YK-624 included 4,5-dichlorocatechol and tetrachlorocatechol, respectively. These results suggest that white rot fungus is able to substantially degrade both PCDDs and PCDFs. This is the first report of the degradation of highly chlorinated PCDDs and PCDFs by a microorganism. PMID:8953705

  16. Biodegradation of polyvinyl alcohol by a brown-rot fungus, Fomitopsis pinicola.

    PubMed

    Tsujiyama, S; Okada, A

    2013-11-01

    A brown-rot fungus, Fomitopsis pinicola, degraded polyvinyl alcohol (PVA) in quartz sand but not in liquid culture. From gel permeation chromatography analysis, the high-molecular-weight fraction of PVA was decreased by the action of F. pinicola but the coloration of the culture filtrate with I2 solution increased. The reason for the increase in coloration was assumed to be the increase in the low-molecular-weight fraction in degraded PVA. Diffuse reflectance infrared Fourier transform spectral analysis showed that spectral changes of the fungally degraded PVA were similar to those of PVA treated with Fenton's reagent suggesting that PVA degradation by F. pinicola was via the Fenton reaction. F. pinicola can thus be used to degrade PVA in woody wastes. PMID:23881320

  17. Production of cellobiose dehydrogenase from a newly isolated white rot fungus Termitomyces sp. OE147.

    PubMed

    Gupta, Gupteshwar; Gangwar, Rishabh; Gautam, Ashwani; Kumar, Lalit; Dhariwal, Anuj; Sahai, Vikram; Mishra, Saroj

    2014-08-01

    Class I cellobiose dehydrogenases (CDHs) are extracellular hemoflavo enzymes produced at low levels by the Basidiomycetes (white rot fungi). In presence of suitable electron acceptors, e.g., cytochrome c, 2,6-dichlorophenol-indophenol, or metal ions, it oxidizes cellobiose to cellobionolactone. A stringent requirement for disaccharides makes CDH also useful for conversion of lactose to lactobionic acid, an important ingredient in pharma and detergent industry. In this work, class I CDH was produced using a newly identified white rot fungus Termitomyces sp. OE147. Four media were evaluated for CDH production, and maximum enzyme activity of 0.92 international unit (IU)/ml was obtained on Ludwig medium under submerged conditions. Statistical optimization of N source, which had significant effect on CDH production, using Box-Behnken design followed by optimization of inoculum size and age resulted in an increase in activity to 2.9 IU/ml and a productivity of ~25 IU/l/h. The nearly purified CDH exhibited high activity of 26.4 IU/mg protein on lactose indicating this enzyme to be useful for lactobionic acid synthesis. Some of the internal peptide sequences bore 100 % homology to the CDH produced in Myceliophthora thermophila. The fungal isolate was amenable to scale up, and an overall productivity of ~18 IU/l/h was obtained at 14-l level. PMID:24929309

  18. Antioxidant and antitumor effects of polysaccharides from the fungus Pleurotus abalonus.

    PubMed

    Ren, Daoyuan; Jiao, Yadong; Yang, Xingbin; Yuan, Li; Guo, Jianjun; Zhao, Yan

    2015-07-25

    Dietary supplement of edible Pleurotus abalonus (P. abalonus) rich in fungal polysaccharides is associated with anticancer health benefit. We here isolated the polysaccharides (PAP) from the fruiting bodies of P. abalonus, and evaluated the antiproliferative activity of the polysaccharides in human colorectal carcinoma LoVo cells. HPLC analysis showed that PAP consisted of D-mannose, D-ribose, l-rhamnose, D-glucuronic acid, D-glucose and D-galactose, and their corresponding mole percentages were 3.4%, 1.1%, 1.9%, 1.4%, 87.9% and 4.4%, respectively. PAP was shown to exert a high antioxidant activity in vitro and a dose-dependent antiproliferative effect against LoVo cancer cells. Flow cytometry analysis demonstrated that PAP exhibited a stimulatory effect on apoptosis of LoVo cells, and induced the cell-cycle arrest at the S phase. We also found that PAP could increase the generation of intracellular ROS which was a critical mediator in PAP-induced cell growth inhibition. These findings suggest that PAP may serve as a potential novel dietary agent for human colon cancer chemoprevention. PMID:26091901

  19. Transcriptomic analysis of the white rot fungus Polyporus brumalis provides insight into sesquiterpene biosynthesis.

    PubMed

    Lee, Su-Yeon; Kim, Myungkil; Kim, Seon-Hong; Hong, Chang-Young; Ryu, Sun-Hwa; Choi, In-Gyu

    2016-01-01

    Object of this study was to identify genes and enzymes that are involved in sesquiterpene biosynthesis in the wood rotting fungus, Polyporus brumalis. Sesquiterpenes, β-eudesmane and β-eudesmol, were produced by the mycelium of P. brumalis cultured in modified medium. However, theses final products were not observed when the fungus was grown in potato dextrose medium. We used next generation sequencing (NGS) to identify differentially expressed genes (DEGs) related to terpene metabolism. This approach generated 25,000 unigenes and 127 metabolic pathways that were assigned to Kyoto Encyclopedia Genes Groups (KEGG). Further analysis of samples from modified medium indicated significant upregulation of 8 unigenes involved in the mevalonate (MVA) and methylerythritol phosphate (MEP) biosynthetic pathways. These pathways generate isopentenyl pyrophosphate (IPP) and farnesyl pyrophosphate (FPP), which are precursors for the synthesis of sesquiterpenes. Furthermore, genes encoding germacrene A synthase, which facilitate the cyclization of FPP, were only differentially expressed in mycelium from fungi grown in modified medium. Our data provide a resource for studying the molecular mechanisms underpinning sesquiterpene biosynthesis and terpene metabolism. PMID:26686622

  20. Biodegradation of environmental pollutants by the white rot fungus phanerochaete chrysosporium

    SciTech Connect

    Bumpus, J.A.; Tien, M.; Wright, D.S.; Aust, S.D.

    1993-01-01

    The white rot fungus, Phanerochaete chrysosporium secretes a unique hydrogen peroxide-dependent oxidase capable of degrading lignin, a highly complex, chemically resistant, non-repeating heteropolymer. Due to its ability to generate carbon-centered radicals, this enzyme is able to non-specifically catalyze numerous cleavage reactions producing smaller lignin-derived compounds which may then be metabolized by more conventional enzyme systems. The authors have proposed that the lignin-degrading system of this fungus may also have the ability to degrade environmentally persistent organopollutants. In the study P. chrysosporium is shown to able to degrade carbon-14 labeled 1,1'-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT), 3,4,3',4'-tetrachlorobiphenyl, 2,4,5,2',4',5'-hexachlorobiphenyl, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the gamma isomer of 1,2,3,4,5,6-hexachlorocyclohexane (Lindane) as well as the non-halo-genated pollutant benzo(a)pyrene to (14)C-carbon dioxide.

  1. Removal of humic acid from composted hog waste by the white-rot fungus, Phanerochaete chrysosporium.

    PubMed

    Liu, Junying; Song, Yunmeng; Ruan, Roger; Liu, Yuhuan

    2015-01-01

    The potential hazards of humic acid (HA) associated with hog waste effluent, coupled with increasing awareness of environmental problems, have prompted many countries to control disposal of effluents into water bodies and to maximize removal of HA. Here we employed the white-rot fungus, Phanerochaete chrysosporium, to degrade the HA in composted hog waste effluent, evaluated by the response surface method. Preliminary experiments demonstrate that pH, temperature and quantity of inoculum are significant variables determining success of the fungus. In total, 13 experiments were conducted with three variables designated as A (pH), B (temperature) and C (inoculum amount). The optimal conditions for reduction of HA by P. chrysosporium are pH 6, 31.5°C and an inoculum quantity of 5.86 g. Predicted and experimental results exhibit strong agreement, indicating efficiency in the model obtained by response surface method. Therefore, P. chrysosporium is an effective micro-organism for removal of HA from composted hog waste effluent. PMID:26114276

  2. Characterization of pyrene biodegradation by white-rot fungus Polyporus sp. S133.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu; Fulazzaky, Mohamad Ali; Nugroho, Agung Endro

    2012-01-01

    A white-rot fungus of Polyporus sp. S133 was isolated from an oil-polluted soil. The metabolism of pyrene by this fungus was investigated in liquid medium with 5 mg of the compound. Depletion of pyrene was evident during the 30-day growth period and was 21% and 90%, respectively, in cometabolism and metabolism of pyrene alone. Pyrene was absorbed to fungal cells or biodegraded to form simpler structural compounds. Seventy-one percent of eliminated pyrene was transformed by Polyporus sp. S133 into other compounds, whereas only 18% was absorbed in the fungal cell. The effects of pH and temperature on biomass production of Polyporus sp. S133 for pyrene were examined; the properties of laccase and 1,2-dioxygenase produced by Polyporus sp. S133 during pyrene degradation were investigated. The optimal values of pH were 3, 5, and 4 for laccase, 1,2-dioxygenase, and biomass production, respectively, whereas the optimal values of temperature were 25 °C for laccase and 50 °C for 1,2-dioxygenase and biomass production. Under optimal conditions, pyrene was mainly metabolized to 1-hydroxypyrene and gentisic acid. The structure of 1-hydroxypyrene and gentisic acid was determined by gas chromatography-mass spectrometry after identification using thin-layer chromatography. PMID:23586956

  3. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products.

    PubMed

    Schwarze, Francis W M R; Schubert, Mark

    2011-11-01

    The credo of every scientist working in the field of applied science is to transfer knowledge "from science to market," a process that combines (1) science (fundamental discoveries and basic research) with (2) technology development (performance assessment and optimization) and (3) technology transfer (industrial application). Over the past 7 years, we have intensively investigated the potential of the white rot fungus, Physisporinus vitreus, for engineering value-added wood products. Because of its exceptional wood degradation pattern, i.e., selective lignification without significant wood strength losses and a preferential degradation of bordered pit membranes, it is possible to use this fungus under controlled conditions to improve the acoustic properties of tonewood (i.e., "mycowood") as well as to enhance the uptake of preservatives and wood modification substances in refractory wood species (e.g., Norway spruce), a process known as "bioincising." This minireview summarizes the research that we have performed with P. vitreus and critically discusses the challenges encountered during the development of two distinct processes for engineering value-added wood products. Finally, we peep into the future potential of the bioincising and mycowood processes for additional applications in the forest and wood industry. PMID:21901405

  4. Transcriptional profiles of laccase genes in the brown rot fungus Postia placenta MAD-R-698.

    PubMed

    An, Hongde; Wei, Dongsheng; Xiao, Tingting

    2015-09-01

    One of the laccase isoforms in the brown rot fungus Postia placenta is thought to contribute to the production of hydroxyl radicals, which play an important role in lignocellulose degradation. However, the presence of at least two laccase isoforms in this fungus makes it difficult to understand the details of this mechanism. In this study, we systematically investigated the transcriptional patterns of two laccase genes, Pplcc1 and Pplcc2, by quantitative PCR (qPCR) to better understand the mechanism. The qPCR results showed that neither of the two genes was expressed constitutively throughout growth in liquid culture or during the degradation of a woody substrate. Transcription of Pplcc1 was upregulated under nitrogen depletion and in response to a high concentration of copper in liquid culture, and during the initial colonization of intact aspen wafer. However, it was subject to catabolite repression by a high concentration of glucose. Transcription of Pplcc2 was upregulated by stresses caused by ferulic acid, 2, 6-dimethylbenzoic acid, and ethanol, and under osmotic stress in liquid culture. However, the transcription of Pplcc2 was downregulated upon contact with the woody substrate in solid culture. These results indicate that Pplcc1 and Pplcc2 are differentially regulated in liquid and solid cultures. Pplcc1 seems to play the major role in producing hydroxyl radicals and Pplcc2 in the stress response during the degradation of a woody substrate. PMID:26231371

  5. Initial Steps in the Degradation of Methoxychlor by the White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Grifoll, M.; Hammel, K. E.

    1997-01-01

    The white rot fungus Phanerochaete chrysosporium mineralized [ring-(sup14)C]methoxychlor [1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane] and metabolized it to a variety of products. The three most prominent of these were identified as the 1-dechloro derivative 1,1-dichloro-2,2-bis(4-methoxyphenyl)ethane, the 2-hydroxy derivative 2,2,2-trichloro-1,1-bis(4-methoxyphenyl)ethanol, and the 1-dechloro-2-hydroxy derivative 2,2-dichloro-1,1-bis(4-methoxyphenyl)ethanol by comparison of the derivatives with authentic standards in chromatographic and mass spectrometric experiments. In addition, the 1-dechloro-2-hydroxy derivative was identified from its (sup1)H nuclear magnetic resonance spectrum. The 1-dechloro and 2-hydroxy derivatives were both converted to the 1-dechloro-2-hydroxy derivative by the fungus; i.e., there was no requirement that dechlorination precede hydroxylation or vice versa. All three metabolites were mineralized and are therefore likely intermediates in the degradation of methoxychlor by P. chrysosporium. PMID:16535547

  6. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  7. Direct three-dimensional characterization and multiscale visualization of wheat straw deconstruction by white rot fungus.

    PubMed

    Liu, Li; Qian, Chen; Jiang, Lei; Yu, Han-Qing

    2014-08-19

    Microbial degradation of lignocellulose for resource and energy recovery has received increasing interest. Despite its obvious importance, the mechanism behind the biodegradation, especially the changes of morphological structure and surface characteristics, has not been fully understood. Here, we used three-dimensional (3D) characterization and multiscale visualization methods, in combination with chemical compositional analyses, to elucidate the degradation process of wheat straw by a white rot fungus, Phanerochaete chrysosporium. It was found that the fungal attack initiated from stomata. Lignin of the straw decayed in both size and quantity, and heterogeneity in the biodegradation was observed. After treatment with the fungus, the straw surface turned from hydrophobic to hydrophilic, and the adhesion of the straw surface increased in the fungal degradation. The morphology of the straw outer layer became heterogeneous and loose with the formation of many holes with various sizes. The wasp-tunnels-like structure of the collenchyma and parenchyma of the straw as well as the fungal hyphae interspersed inside the straw structure were clearly visualized in the 3D reconstruction structure. This work offers a new insight into the mechanism of lignocellulose biodegradation and demonstrates that multiscale visualization methods could be a useful tool to explore such complex processes. PMID:25072830

  8. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Mäkinen, Susanna; Vehmaanperä, Jari; Hatakka, Annele; Mäkelä, Miia R.

    2015-01-01

    White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification. PMID:26660105

  9. Saccharification of Lignocelluloses by Carbohydrate Active Enzymes of the White Rot Fungus Dichomitus squalens.

    PubMed

    Rytioja, Johanna; Hildén, Kristiina; Mäkinen, Susanna; Vehmaanperä, Jari; Hatakka, Annele; Mäkelä, Miia R

    2015-01-01

    White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification. PMID:26660105

  10. Bio-Treatment of Energetic Materials Using White-Rot Fungus

    SciTech Connect

    MM Shah

    1998-11-12

    The nitramine explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), is used by militaries around the world in high yield munitions and often in combination with hexahydro- 1,3,5-trirdtro- 1,3,5- triazine (RDX). Improper handling and disposal of manufacturing wastewater may lead to environmental contamination. In the past wastewater was collected in disposal lagoons where it evaporated, and deposited large amounts of explosives on the lagoon floor. Although lagoon disposal is no longer practiced, thousands of acres have been already contaminated. RDX and, to a lesser extent, HMX have leached through the soil subsurface and contaminated groundwater ( 1,2). Likewjse, burning of substandard material or demilitarization of out-of-date muriitions has also led to environmental contamination. The current stockpile of energetic materials at DOE sites requires resource recovery or disposition (RRD). A related challenge exists in the clean-up of the DOE sites where soil and ground water are contaminated with explosives. Current technologies such as incineration, molten salt process, supercritical water oxidation are expensive and have technical hurdles. Open burning and open detonation(OB/OD) is not encouraged by regulatory agencies for disposal of explosives. Hence, there is need for a safe . technology to degrade these contaminants. The fi.mgal process does not employ open burning or open detonation to destroy energetic materials. The fimgal process can be used by itself, or it can augment or support other technologies for the treatment of energetic materials. The proposed enzyme technology will not release any air pollutants and will meet the regulations of Clean Air Act amendments, the Resource Conservation and Recovery Act, and the Federal. Facilities Compliance Act. The goal for this project was to test the ability of white-rot fungus to degrade HMX. In our study, we investigated the biodegradation of HMX using white-rot fungus in liquid and solid cultures

  11. BIODEGRADATION OF 2,4,5-TRICHLOROPHENOXYACETIC ACID IN LIQUID CULTURE AND IN SOIL BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of [14 C]-2,4,5-trichlorophenoxyacetic acid ([14C]-2,4,5-T) by the white rot fungus Phanerochaete chrysosporium was demonstrated in nutrient nitrogen-limited aqueous cultures and in [14C]-2,4,5-T-contaminated soil inoculated with this fungus and supplemen...

  12. Role of apoptosis, proliferating cell nuclear antigen and p53 protein in chemically induced colon cancer in rats fed corncob fiber treated with the fungus Pleurotus ostreatus.

    PubMed

    Zusman, I; Reifen, R; Livni, O; Smirnoff, P; Gurevich, P; Sandler, B; Nyska, A; Gal, R; Tendler, Y; Madar, Z

    1997-01-01

    The role of apoptosis, proliferative cell nuclear antigen (PCNA) and p53 protein in the preventive effects of dietary fiber treated with the fungus Pleurotus ostreatus on rat-colon tumorigenesis was studied. Tumors were induced by five subcutaneous injections of 1,2-dimethylhydrazine (DMH), 20 mg/kg rat, once a week. Rats were fed a semi-synthetic fiberfree diet (control) or a high-fiber diet (15%) derived from corncob treated or non-treated with the fungus. The rats we sacrificed 24 weeks after the first carcinogenic injection. The fungus treated corn-cob significantly decreased tumor incidence (to 26%) as compared to 44% and 57% in the other dietary groups. The apoptotic index (AI) significantly decreased in malignant tissue as compared to non-tumorous tissue. PCNA and cytoplasmic content of p53 protein exhibited an increasing trend in malignant tissue as compared to benign tissue (at 15% and 18%, respectively). The fungus-treated corncob significantly increased the content of p53 in the cell cytoplasm (to 33%) and its serum levels in tumor-bearing rats (to 38%). The cellular concentration of PCNA decreased to 61% in tumors obtained from rats fed the fungus-treated corncob as compared to controls. A high positive correlation was found between tumor grade and p53 protein in the serum (r = 0.97) or in the cell cytoplasm (r = 0.77) and between tumor grade and PCNA (r = 0.81). An inverse relationship was found between tumor grade and AI (r = -0.63). We found that 15% of corncob fiber alone seems not to be enough to prevent chemically induced tumorigenesis. The corncob fiber (15%) treated with the fungus had a significant protective effect against DMH-induced rat colon cancer, even at 15% and this effect was accompanied by the activation of some cellular mechanisms such as apoptosis, PCNA and p53 protein activation. Incubation of corncob with the fungus Pleurotus os, increased the dietary fiber content up to 78%. Thus corncob inhibits colon cancer development, and

  13. Evolutionary history of the conifer root rot fungus Heterobasidion annosum sensu lato.

    PubMed

    Dalman, K; Olson, A; Stenlid, J

    2010-11-01

    We investigated two hypotheses for the origin of the root rot fungus Heterobasidion annosum species complex: (i) that geology has been an important factor for the speciation (ii) that co-evolutionary processes with the hosts drove the divergence of the pathogen species. The H. annosum species complex consists of five species: three occur in Europe, H. annosum s.s., Heterobasidion parviporum and Heterobasidion abietinum, and two in North America, Heterobasidion irregulare and Heterobasidion occidentale; all with different but partially overlapping host preferences. The evolution of the H. annosum species complex was studied using six partially sequenced genes, between 10 and 30 individuals of each species were analysed. Neighbour-joining trees were constructed for each gene, and a Bayesian tree was built for the combined data set. In addition, haplotype networks were constructed to illustrate the species relationships. For three of the genes, H. parviporum and H. abietinum share haplotypes supporting recent divergence and/or possible gene flow. We propose that the H. annosum species complex originated in Laurasia and that the H. annosum s.s./H. irregulare and H. parviporum/H. abietinum/H. occidentale ancestral species emerged between 45 and 60 Ma in the Palaearctic, well after the radiation of the host genera. Our data imply that H. irregulare and H. occidentale were colonizing North America via different routes. In conclusion, plate tectonics are likely to have been the main factor influencing Heterobasidion speciation and biogeography. PMID:20964759

  14. Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis.

    PubMed

    Ryu, Sun-Hwa; Kim, Boyeong; Kim, Myungkil; Seo, Jin-Ho

    2014-03-01

    The cDNAs of six manganese-dependent peroxidases (MnPs) were isolated from white-rot fungus Polyporus brumalis. The MnP proteins shared similar properties with each other in terms of size (approximately 360-365 amino acids) and primary structure, showing 62-96 % amino acid sequence identity. RT-PCR analysis indicated that these six genes were predominantly expressed in shallow stationary culture (SSC) in a liquid medium. Gene expression was induced by treatment with dibutyl phthalate (DBP) and wood chips. Expression of pbmnp4 was strongly induced by both treatments, whereas that of pbmnp5 was induced only by DBP, while pbmnp6 was induced by wood chips only. Then, we overexpressed pbmnp4 in P. brumalis under the control of the GPD promoter. Overexpression of pbmnp4 effectively increased MnP activity; the transformant that had the highest MnP activity also demonstrated the most effective decolorization of Remazol Brilliant Blue R dye. Identification of MnP cDNAs can contribute to the efficient production of lignin-degradation enzymes and may lead to utilization of basidiomycetous fungi for degradation of lignin and numerous recalcitrant xenobiotics. PMID:23828244

  15. P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-01-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system (LDS), mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosporium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed. PMID:22624627

  16. Molecular Differentiation and Detection of Ginseng-Adapted Isolates of the Root Rot Fungus Cylindrocarpon destructans.

    PubMed

    Seifert, K A; McMullen, C R; Yee, D; Reeleder, R D; Dobinson, K F

    2003-12-01

    ABSTRACT The soilborne fungus Cylindrocarpon destructans (teleomorph: Neonectria radicicola) causes root rot in a wide range of plant hosts; the disease is of particular concern in ginseng production, and in conifer and fruit tree nurseries. beta-Tubulin gene and rRNA gene internal transcribed spacer (ITS) sequence data and pathogenicity assays were used to characterize isolates of C. destructans from ginseng and other hosts. The results of these studies demonstrated a high amount of sequence divergence among strains identified as C. destructans or N. radicicola, suggesting the existence of several phylogenetic species in this complex. Accordingly, we propose that the two varieties of N. radicicola be raised to species status. Certain highly aggressive ginseng isolates from Ontario, Korea, and Japan have identical ITS and beta-tubulin sequences, and form a monophyletic clade (designated "clade a"); these strains are identified as C. destructans f. sp. panacis. Other ginseng strains clustered in monophyletic groups with strains from angiosperm and conifers. A subtractive hybridization method was used to isolate genomic DNA sequences with diagnostic potential from the aggressive C. destructans Ontario ginseng isolate 1640. One of these sequences was similar to the rRNA gene intergenic spacer from a Fusarium oxysporum isolate from Pinus ponderosa, and hybridized to DNA from F. oxysporum and all C. destructans isolates tested. Primers were designed that could be used to amplify this sequence specifically from the highly aggressive, ginsengadapted C. destructans isolates from Ontario and Korea and other members of clade a. PMID:18943617

  17. An extracellular laccase with potent dye decolorizing ability from white rot fungus Trametes sp. LAC-01.

    PubMed

    Ling, Zhuo-Ren; Wang, Shan-Shan; Zhu, Meng-Juan; Ning, Ying-Jie; Wang, Shou-Nan; Li, Bing; Yang, Ai-Zhen; Zhang, Guo-Qing; Zhao, Xiao-Meng

    2015-11-01

    A novel laccase was purified from fermentation broth of white rot fungus Trametes sp. LAC-01 using an isolation procedure involving three ion-exchange chromatography steps on DEAE-cellulose, SP-Sepharose, and Q-Sepharose, and one gel-filtration step. The purified enzyme (TSL) was proved as a monomeric protein with a Mr of 59kDa based on SDS-PAGE and FPLC. Partial amino acid sequences were obtained by LC-MS/MS sharing considerably high sequence similarity with that of other laccases. It possessed optimal pH of 2.6 and temperature of 60°C using ABTS as the substrate. The Km of the laccase toward ABTS was estimated to 30.28μM at pH 2.6 and 40°C. TSL manifested considerably high oxidizing activity toward ABTS, but was avoid of degradative activity toward benzidine, caftaric acid, etc. It was effective in the decolorization of phenolic dyes - Bromothymol Blue and Malachite Green with decolorization rate higher than 60% after 24h of incubation. Adjunction of Cu(2+) with the final concentration of 2.0mmol/L significantly activated laccase production with a steady high level of 275.8-282.2U/mL in 96-144h. The high yield and short production period makes Trametes sp. LAC-01 and TSL potentially useful for industrial and environmental application and commercialization. PMID:26361865

  18. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor.

    PubMed

    Mir-Tutusaus, Josep Anton; Masís-Mora, Mario; Corcellas, Cayo; Eljarrat, Ethel; Barceló, Damià; Sarrà, Montserrat; Caminal, Glòria; Vicent, Teresa; Rodríguez-Rodríguez, Carlos E

    2014-12-01

    Use of agrochemicals is a worldwide practice that exerts an important effect on the environment; therefore the search of approaches for the elimination of such pollutants should be encouraged. The degradation of the insecticides imiprothrin (IP) and cypermethrin (CP), the insecticide/nematicide carbofuran (CBF) and the antibiotic of agricultural use oxytetracycline (OTC) were assayed with the white rot fungus Trametes versicolor. Experiments with fungal pellets demonstrated extensive degradation of the four tested agrochemicals, at rates that followed the pattern IP>OTC>CP>CBF. In vitro assays with laccase-mediator systems showed that this extracellular enzyme participates in the transformation of IP but not in the cases of CBF and OTC. On the other hand, in vivo studies with inhibitors of cytochrome P450 revealed that this intracellular system plays an important role in the degradation of IP, OTC and CBF, but not for CP. The compounds 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA) and 3-phenoxybenzoic acid (PBA) were detected as transformation products of CP, as a result of the breakdown of the molecule. Meanwhile, 3-hydroxycarbofuran was detected as a transformation product of CBF; this metabolite tended to accumulate during the process, nonetheless, the toxicity of the system was effectively reduced. Simultaneous degradation of CBF and OTC showed a reduction in toxicity; similarly, when successive additions of OTC were done during the slower degradation of CBF, the fungal pellets were able to degrade both compounds. The simultaneous degradation of the four compounds successfully took place with minimal inhibition of fungal activity and resulted in the reduction of the global toxicity, thus supporting the potential use of T. versicolor for the treatment of diverse agrochemicals. PMID:25217998

  19. Short-read sequencing for genomic analysis of the brown rot fungus Fibroporia radiculosa.

    PubMed

    Tang, Juliet D; Perkins, Andy D; Sonstegard, Tad S; Schroeder, Steven G; Burgess, Shane C; Diehl, Susan V

    2012-04-01

    The feasibility of short-read sequencing for genomic analysis was demonstrated for Fibroporia radiculosa, a copper-tolerant fungus that causes brown rot decay of wood. The effect of read quality on genomic assembly was assessed by filtering Illumina GAIIx reads from a single run of a paired-end library (75-nucleotide read length and 300-bp fragment size) at three different stringency levels and then assembling each data set with Velvet. A simple approach was devised to determine which filter stringency was "best." Venn diagrams identified the regions containing reads that were used in an assembly but were of a low-enough quality to be removed by a filter. By plotting base quality histograms of reads in this region, we judged whether a filter was too stringent or not stringent enough. Our best assembly had a genome size of 33.6 Mb, an N50 of 65.8 kb for a k-mer of 51, and a maximum contig length of 347 kb. Using GeneMark, 9,262 genes were predicted. TargetP and SignalP analyses showed that among the 1,213 genes with secreted products, 986 had motifs for signal peptides and 227 had motifs for signal anchors. Blast2GO analysis provided functional annotation for 5,407 genes. We identified 29 genes with putative roles in copper tolerance and 73 genes for lignocellulose degradation. A search for homologs of these 102 genes showed that F. radiculosa exhibited more similarity to Postia placenta than Serpula lacrymans. Notable differences were found, however, and their involvements in copper tolerance and wood decay are discussed. PMID:22247176

  20. Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60.

    PubMed

    Kamei, Ichiro; Hirota, Yoshiyuki; Meguro, Sadatoshi

    2012-12-01

    We propose a new process of unified aerobic delignification and anaerobic saccharification and fermentation of wood by a single microorganism, the white-rot fungus Phlebia sp. MG-60. This fungus is able to selectively degrade lignin under aerobic solid state fermentation conditions, and to produce ethanol directly from delignified oak wood under semi-aerobic liquid culture conditions. After 56 d aerobic incubation, 40.7% of initial lignin and negligible glucan were degraded. Then under semi-aerobic conditions without the addition of cellulase, 43.9% of theoretical maximum ethanol was produced after 20 d. Changing from aerobic conditions (biological delignification pretreatment) to semi-aerobic conditions (saccharification and fermentation) enabled the fermentation of wood by solely biological processes. This is the first report of ethanol production from woody biomass using a single microorganism without addition of chemicals or enzymes. PMID:23073100

  1. Effect of biodegradation on thermogravimetric and chemical characteristics of hardwood and softwood by brown-rot fungus.

    PubMed

    Gao, Zhenzhong; Fan, Qi; He, Zesen; Wang, Zhinan; Wang, Xiaobo; Sun, Jin

    2016-07-01

    The thermogravimetric and chemical characterization of hardwood Eucalyptus urophylla (Ep) and softwood Pinus massoniana (Mp) pretreated by brown-rot fungus Gloeophyllum trabeum were investigated. The results indicated that the brown-rot fungus pretreatment can optimize the thermal decomposition and decrease the initiation temperatures (8-11°C lower) of both the Ep and Mp pyrolysis. The mean activation energy values of the bio-treated samples were 29.7kJ/mol (for Ep) and 42.3kJ/mol (for Mp) lower than that of the un-treated samples at the conversion rate from 0.1 to 0.7 based on Flynn-Wall-Ozawa (FWO) method. After the bio-pretreatment, the required temperatures were lower (4-7°C) for the pyrolysis rates of hemicellulose and cellulose in Mp reaching maximum and termination. However, the situation was just the opposite for Ep. The variations in chemical properties of hydrogen bonding, as well as the relative changes in lignin/carbohydrate composition of both wood species were also examined. PMID:27035476

  2. Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus Bjerkandera sp. Strain BOS55

    PubMed Central

    Kaal, Erwin E. J.; de Jong, Ed; Field, Jim A.

    1993-01-01

    Bjerkandera sp. strain BOS55, a newly isolated wild-type white rot fungus, produced lignin peroxidase (LiP) in nitrogen (N)-sufficient glucose-peptone medium, whereas no LiP was detectable in N-limited medium. The production of LiP was induced by the peptide-containing components of this medium and also by soy bean protein. Furthermore, the production of manganese-dependent peroxidase was stimulated by organic N sources, although lower production was also evident in N-limited medium. Further research showed that the induction of LiP depended on the combination of pH and the type of N source. An amino acid mixture and ammonium induced LiP only at either pH 6 or 7.3, respectively. Peptone induced LiP activity at all pH values tested; however, the highest activity was observed at pH 7.3. The results presented here indicate that Bjerkandera spp. are distinct from the model white rot fungus, Phanerochaete chrysosporium, which produces ligninolytic peroxidases in response to N limitation. PMID:16349104

  3. Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene.

    PubMed

    Arimoto, Misa; Yamagishi, Kenji; Wang, Jianqiao; Tanaka, Kanade; Miyoshi, Takanori; Kamei, Ichiro; Kondo, Ryuichiro; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2015-12-01

    The basidiomycete Gloeophyllum trabeum KU-41 can degrade Japanese cedar wood efficiently. To construct a strain better suited for biofuel production from Japanese cedar wood, we developed a gene transformation system for G. trabeum KU-41 using the hygromycin phosphotransferase-encoding gene (hpt) as a marker. The endogenous laccase candidate gene (Gtlcc3) was fused with the promoter of the G. trabeum glyceraldehyde-3-phosphate dehydrogenase-encoding gene and co-transformed with the hpt-bearing pAH marker plasmid. We obtained 44 co-transformants, and identified co-transformant L#61, which showed the highest laccase activity among all the transformants. Moreover, strain L#61 was able to degrade lignin in Japanese cedar wood-containing medium, in contrast to wild-type G. trabeum KU-41 and to a typical white-rot fungus Phanerochaete chrysosporium. By using strain L#61, direct ethanol production from Japanese cedar wood was improved compared to wild type. To our knowledge, this study is the first report of the molecular breeding of lignin-degrading brown-rot fungus and direct ethanol production from softwoods by co-transformation with laccase overproduction constructs. PMID:26695948

  4. Fungal biodegradation of lignopolystyrene graft copolymers. [Pleurotus ostreatus; Phanerochaete chrysosporium; Trametes versicolor; Gloeophyllum trabeum

    SciTech Connect

    Milstein, O.; Gersonde, R.; Huttermann, A. ); MengJiu Chen; Meister, J.J )

    1992-10-01

    White rot basidiomycetes were able to biodegrade styrene (1-phenylethene) graft copolymers of lignin containing different proportions of lignin and polystyrene (poly(1-phenylethylene)). The biodegradation tests were run on lignin-styrene copolymerization products which contained 10.3, 32.2, and 50.4{percent} (wt/wt) lignin. The polymer samples were incubated with the white rot fungi Pleurotus ostreatus, Phanerochaete chrysosporium, and Trametes versicolor and the brown rot fungus Gloeophyllum trabeum. White rot fungi degraded the plastic samples at a rate which increased with increasing lignin content in the copolymer sample. Both polystyrene and lignin components of the copolymer were readily degraded. Polystyrene pellets were not degradable in these tests. Degradation was verified for both incubated and control samples by weight loss, quantitative UV spectrophotometric analysis of both lignin and styrene residues, scanning electron microscopy of the plastic surface, and the presence of enzymes active in degradation during incubation. Brown rot fungus did not affect any of the plastics. White rot fungi produced and secreted oxidative enzymes associated with lignin degradation in liquid media during incubation with lignin-polystyrene copolymer.

  5. BIODEGRADATION OF DDT [1,1,1-TRICHLORO-2,2-BIS(4- CHLOROPHENYL) ETHANE] BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the form...

  6. BIODEGRADATION OF DDT [1,1,1-TRICHLORO-2,2-BIS)4-CHLOROPHENYL) ETHANE] BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of 1,1,1-trichloro-2,2bis(4-chlorophenyl) ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. ass balance studies demonstrated the forma...

  7. BIODEGRATION OF 2,4,5-TRICHLOROPHENOXYACETIC ACID IN LIQUID CULTURE AND IN SOIL BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of [14C]-2,4,5-trichlorophenoxyacetic acid ([[14C]-2,4,5-T) by the white rot fungus Phanerochaete chrysosporium was demonstrated in nutrient nitrogen-limited aqueous cultures and in [14C]-2,4,5-T-contaminated soil inoculat...

  8. Decolorization and biodegradation of congo red dye by a novel white rot fungus Alternaria alternata CMERI F6.

    PubMed

    Chakraborty, Samayita; Basak, Bikram; Dutta, Subhasish; Bhunia, Biswanath; Dey, Apurba

    2013-11-01

    A novel white rot fungus Alternaria alternata CMERI F6 decolorized 99.99% of 600 mg/L congo red within 48 h in yeast extract-glucose medium at 25 °C, pH 5 and 150 rpm. Physicochemical parameters like carbon and nitrogen sources, temperature, pH and aeration were optimized to develop faster decolorization process. Dye decolorization rate was maximal (20.21 mg/L h) at 25 °C, pH 5, 150 rpm and 800 mg/L dye, giving 78% final decolorization efficiency. Scanning electron microscopy and X-ray Diffraction analysis revealed that the fungus become amorphous after dye adsorption. HPLC and FTIR analysis of the extracted metabolites suggested that the decolorization occurred through biosorption and biodegradation. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and acid-alkali and 70% ethanol treatment revealed the efficient dye retention capability of the fungus. The foregoing results justify the applicability of the strain in removal of congo red from textile wastewaters and their safe disposal. PMID:24034987

  9. Evaluation of chicken manure, kenaf, and phanerochaete chrysosporium (white rot fungus) as enhancers of polychlorinated biphenyl biodegradation

    SciTech Connect

    Hurt, K.; Borazjani, A.; Diehl, S.V.

    1995-12-31

    In this 150-day study, chicken manure, kenaf, and white rot fungus were added to soil microcosms in an attempt to enhance the degradation of polychlorinated biphenyls. The soil was contaminated with commercial PCB mixtures. Dishes were ammended with 5% dry weight chicken manure, 1% dry weight kenaf, and 1% dry weight kenaf plus Phanerochaete chrysosporium inoculant. PCB concentrations were determined at 30 day intervals by soxhlet extraction and gas chromatography analyses. Preliminary results of microbial populations and PCB degradation are presented. At 90 days, the microcosms amended with chicken manure had significantly higher populations of bacteria, fungi, and actinomycetes. However, at 120 days, these soils underwent great reductions in actinomycete and bacterial populations. Through 60 days, the concentration of the PCBs Aroclor 1242 and 1248 had its greatest reduction in the kenaf amended soils. The concentration of Aroclor 1260 either increased or stayed at high levels for 30 days before stabilizing or decreasing by day 60.

  10. Morphological Characterization and Quantification of the Mycelial Growth of the Brown-Rot Fungus Postia placenta for Modeling Purposes.

    PubMed

    Du, Huan; Lv, Pin; Ayouz, Mehdi; Besserer, Arnaud; Perré, Patrick

    2016-01-01

    Continuous observation was performed using confocal laser scanning microscopy to visualize the three-dimensional microscopic growth of the brown-rot fungus, Postia placenta, for seventeen days. The morphological characterization of Postia placenta was quantitatively determined, including the tip extension rate, branch angle and branching length, (hyphal length between two adjacent branch sites). A voxel method has been developed to measure the growth of the biomass. Additionally, the tip extension rate distribution, the branch angle distribution and the branching length distribution, which quantified the hyphal growth characteristics, were evaluated. Statistical analysis revealed that the extension rate of tips was randomly distributed in space. The branch angle distribution did not change with the development of the colony, however, the branching length distribution did vary with the development of the colony. The experimental data will be incorporated into a lattice-based model simulating the growth of Postia placenta. PMID:27602575

  11. Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive.

    PubMed

    Wu, Jianguo; Zhang, Xin; Wan, Jilin; Ma, Fuying; Tang, Yong; Zhang, Xiaoyu

    2011-12-01

    Corn stalk pretreated with white-rot fungus Trametes hirsute was used to produce fiberboard by hot pressing without adhesive. The moduli of rupture and elasticity of the corn-stalk-based fiberboard were increased 3.40- and 8.87-fold when bio-pretreated rather than untreated corn stalk was used. Fourier transform infra-red spectroscopy, X-ray diffraction, and chemical analysis showed that bio-pretreated corn stalk increased the mechanical properties of the fiberboard because it had more than twice the number of hydroxyl group, an 18% higher crystallinity, and twice the polysaccharide content of untreated corn stalk. Its laccase content was 4.65 ± 0.38 U/g. Corn stalk-based fiberboard production did not require adhesives, thus eliminating a potential source of toxic emissions such as formaldehyde gas. PMID:22014702

  12. Gene expression analysis of copper tolerance and wood decay in the brown rot fungus Fibroporia radiculosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many brown rot fungi are capable of rapidly degrading wood and are copper-tolerant. To better understand the genes that control these processes, we examined gene expression of Fibroporia radiculosa growing on wood treated with a copper-based preservative that combined copper carbonate with dimethyld...

  13. Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...

  14. Monitoring of white-rot fungus during bioremediation of polychlorinated dioxin-contaminated fly ash.

    PubMed

    Suhara, H; Daikoku, C; Takata, H; Suzuki, S; Matsufuji, Y; Sakai, K; Kondo, R

    2003-10-01

    Bioremediation is a low-cost treatment alternative for the cleanup of polychlorinated-dioxin-contaminated soils and fly ash when pollution spread is wide-ranging. An interesting fungus, Ceriporia sp. MZ-340, with a high ability to degrade dioxin, was isolated from white rotten wood of a broadleaf tree from Kyushu Island in Japan. We have attempted to use the fungus for bioremediation of polychlorinated-dioxin-contaminated soil on site. However, we have to consider that this trial has the potential problem of introducing a biohazard to a natural ecosystem if this organism is naturalized. We have therefore developed a monitoring system for the introduced fungus as a part of the examination and evaluation of bioremediation in our laboratory. We have also developed a PCR-based assay to reliably detect the fungus at the bioremediation site. DNA isolated from the site was amplified by PCR using a specific primer derived from internal transcribed spacer region (ITS: ITS1, 5.8S rDNA and ITS2) sequences of Ceriporia sp. MZ-340. We successfully monitored Ceriporia sp. MZ-340 down to 100 fg/ micro l DNA and down to 2 mg/g mycelium. We also successfully monitored the fungus specifically at the bioremediation site. The polychlorinated dibenzo- p-dioxin and polychlorinated dibenzofuran content was observed to decrease in response to treatment with the fungus. The species-specific PCR technique developed in the present work is useful in evaluating the possibility of on-site bioremediation using the fungus Ceriporia sp. MZ-340. PMID:12827316

  15. Nutritional evaluation of the white-rot fungus Sporotrichum pulverulentum as a feedstuff to rats, pigs, and sheep

    SciTech Connect

    Thomke, S.; Rundgren, M.; Eriksson, S.

    1980-11-01

    The production of single-cell protein (SCP) based on cheap carbon sources such as spent liquor from paper mills is of interest for different reasons. The white-rot fungus (Sporotrichum pulverulentum) has earlier been shown to degrade cellulose and lignin. The nutritive value of this fungus was investigated with rats, pigs, and sheep. The effect of different drying processes was evaluated on rats. Experiments with piglets, growing pigs, and sheep were aimed at getting primary information on nutritive parameters with domestic animal species. Chemical analysis of S. pulverulentum showed that the sum of the amino acids corresponded to 70% and ammonia, GABA, and glucosamine to 20% of its crude protein content. Differences between drying treatments in their effect on protein digestibility were not noted. From a protein quality viewpoint, a tendency toward superiority was noted for two of the drying processes. The amino acid digestibility of S. pulverulentum was inferior to values for soybean oil meal given in textbooks. The piglet experiment confirmed the lower nutritive value of S. pulverulentum compared with soybean oil meal. In the piglet stage a content of metabolizable energy of S. pulverulentum was found which corresponded to 60% of that for soybean oil meal. With increasing age the ability of pigs to utilize the fungus increased. The limited nutritive value for monogastric animals is most certainly caused by the cell-wall structure of S. pulverulentum with poor digestibility of the carbohydrates. The experiment with sheep showed more satisfactory results than with monogastric species, with digestibility of crude protein of 82% and a content of metabolizable energy of 70% of soybean oil meal.

  16. Genome sequence of a white rot fungus Schizopora paradoxa KUC8140 for wood decay and mycoremediation.

    PubMed

    Min, Byoungnam; Park, Hongjae; Jang, Yeongseon; Kim, Jae-Jin; Kim, Kyoung Heon; Pangilinan, Jasmyn; Lipzen, Anna; Riley, Robert; Grigoriev, Igor V; Spatafora, Joseph W; Choi, In-Geol

    2015-10-10

    Schizopora paradoxa KUC8140 is a white rot wood degrader commonly found in Korea. Tolerance to heavy metals and polycyclic aromatic hydrocarbons and dye decolorization activity make this strain a potential candidate for mycoremediation. We report the genome sequence of S. paradoxa KUC8140 containing 44.4Mbp. Based on ab initio gene prediction, homology search and RNA-seq, total 17,098 gene models were annotated. We identified 17 lignin-modifying peroxidases and other 377 carbohydrate-active enzymes for modeling lignocellulose deconstruction and mycoremediation. PMID:26188242

  17. Three-dimensional outgrowth of a wood-rotting fungus added to a contaminated soil from a former gasworks site.

    PubMed

    Andersson, B E; Tornberg, K; Henrysson, T; Olsson, S

    2001-05-01

    The capability of wood-rotting fungi (WRF) to colonise contaminated soil is an important fungal characteristic in the development of WRF-based soil bioremediation, it is also important to have methods that monitor the presence of the WRF in the soil. In this lab-scale study, it was shown that it was possible to re-capture, localise and identify a brown-rot fungus, Antrodia vaillantii, after it has been inoculated into, and grown in, a contaminated soil from a former gasworks site. The three-dimensional outgrowth of A. vaillantii was monitored by allowing it to grow into fungicide-treated wood baits, temporarily placed in the soil. After two weeks, the baits were withdrawn from the soil and surface sterilised with hydrogen peroxide to favour fungi growing inside baits, i.e., A. vaillantii. After subsequent plating of baits on selective agar medium the presence of A. vaillantii was confirmed with PCR/RFLP. A. vaillantii was found to be viable throughout the 54 days long study and exhibited a surface growth pattern similar to other well-known cord-forming basidiomycetes. Firstly, the upper part of the soil closest to the place of inoculation was colonised, however, over a period of time, the area of colonisation spread deeper into the soil. The detection method employed in the current study gave a conservative estimate of the fungal proliferation and did not require extensive sampling. Its use could be applicable in both applied research, such as soil bioremediation, and in pure microbial ecology studies. PMID:11265786

  18. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola.

    PubMed

    Tang, Weihua; Coughlan, Sean; Crane, Edmund; Beatty, Mary; Duvick, Jon

    2006-11-01

    Laser microdissection (LM) offers a potential means for deep sampling of a fungal plant-pathogen transcriptome during the infection process using whole-genome DNA microarrays. The use of a fluorescent protein-expressing fungus can greatly facilitate the identification of fungal structures for LM sampling. However, fixation methods that preserve both tissue histology and protein fluorescence, and that also yield RNA of suitable quality for microarray applications, have not been reported. We developed a microwave-accelerated acetone fixation, paraffin-embedding method that fulfills these requirements and used it to prepare mature maize stalk tissues infected with an Anemonia majano cyan fluorescent protein-expressing isolate of the anthracnose stalk rot fungus Colletotrichum graminicola. We successfully used LM to isolate individual maize cells associated with C. graminicola hyphae at an early stage of infection. The LM-derived RNA, after two-round linear amplification, was of sufficient quality and quantity for global expression profiling using a fungal microarray. Comparing replicated LM samples representing an early stage of stalk cell infection with samples from in vitro-germinated conidia, we identified 437 and 370 C. graminicola genes showing significant up- or downregulation, respectively. We confirmed the differential expression of several representative transcripts by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and documented extensive overlap of this dataset with a PCR-subtraction library enriched for C. graminicola transcripts in planta. Our results demonstrate that LM is feasible for in planta pathogen expression profiling and can reveal clues about fungal genes involved in pathogenesis. The method in this report may be advantageous for visualizing a variety of cellular features that depend on a high degree of histochemical preservation and RNA integrity prior to LM. PMID:17073306

  19. White rot fungus bioremediation: Mother Nature`s Pollution Solution{reg_sign}

    SciTech Connect

    Keene, M.A.

    1996-12-01

    The white rot fungi (WRF) bioremediation system developed by Intech One-Eight Corp. (INTECH), which has evolved from both the decade of basic research work cited here and additional applied research efforts, may be easily and sharply differentiated from conventional bioremediation processes relying on the enzymatic activities of bacteria. The technology is an on-site, ex situ bioremediation process employing selected strains of WRF to degrade a wide spectrum of environmentally persistent organic compounds which may contaminate soils, sludges and sediments. Successful demonstrations of cost-effective soil decontamination using WRF technology, ranging in size up to 10,000 tons, have now been performed by licensed affiliates. The use of any WRF organisms or their enzymes for the bioremediation of most organic compounds is covered worldwide by issued and pending patents.

  20. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06.

    PubMed

    Asgher, Muhammad; Yasmeen, Qamar; Iqbal, Hafiz Muhammad Nasir

    2013-10-01

    An indigenously isolated white rot fungus, Schizophyllum commune IBL-06 was used to decolorize Solar brilliant red 80 direct dye in Kirk's basal salts medium. In initial screening study, the maximum decolorization (84.8%) of Solar brilliant red 80 was achieved in 7 days shaking incubation period at pH 4.5 and 30 °C. Different physical and nutritional factors including pH, temperature and fungal inoculum density were statistically optimized through Completely Randomized Design (CRD), to enhance the efficiency of S. commune IBL-06 for maximum decolorization of Solar brilliant red 80 dye. The effects of inexpensive carbon and nitrogen sources were also investigated. Percent dye decolorization was determined by a reduction in optical density at the wavelength of maximum absorbance (λ max, 590 nm). Under optimum conditions, the S. commune IBL-06 completely decolorized (100%) the Solar brilliant red 80 dye using maltose and ammonium sulfate as inexpensive carbon and nitrogen sources, respectively in 3 days. S. commune IBL-06 produced the three major ligninolytic enzymes lignin peroxidase (LiP), manganase peroxidase (MnP) and lacaase (Lac) during the decolorization of Solar brilliant red 80. LiP was the major enzyme (944 U/mL) secreted by S. commune IBL-06 along with comparatively lower activities of MnP and Laccase. PMID:24235871

  1. Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06

    PubMed Central

    Asgher, Muhammad; Yasmeen, Qamar; Iqbal, Hafiz Muhammad Nasir

    2013-01-01

    An indigenously isolated white rot fungus, Schizophyllum commune IBL-06 was used to decolorize Solar brilliant red 80 direct dye in Kirk’s basal salts medium. In initial screening study, the maximum decolorization (84.8%) of Solar brilliant red 80 was achieved in 7 days shaking incubation period at pH 4.5 and 30 °C. Different physical and nutritional factors including pH, temperature and fungal inoculum density were statistically optimized through Completely Randomized Design (CRD), to enhance the efficiency of S. commune IBL-06 for maximum decolorization of Solar brilliant red 80 dye. The effects of inexpensive carbon and nitrogen sources were also investigated. Percent dye decolorization was determined by a reduction in optical density at the wavelength of maximum absorbance (λmax, 590 nm). Under optimum conditions, the S. commune IBL-06 completely decolorized (100%) the Solar brilliant red 80 dye using maltose and ammonium sulfate as inexpensive carbon and nitrogen sources, respectively in 3 days. S. commune IBL-06 produced the three major ligninolytic enzymes lignin peroxidase (LiP), manganase peroxidase (MnP) and lacaase (Lac) during the decolorization of Solar brilliant red 80. LiP was the major enzyme (944 U/mL) secreted by S. commune IBL-06 along with comparatively lower activities of MnP and Laccase. PMID:24235871

  2. Enhancement of β-Glucosidase Activity from a Brown Rot Fungus Fomitopsis pinicola KCTC 6208 by Medium Optimization.

    PubMed

    Park, Ah Reum; Park, Jeong-Hoon; Ahn, Hye-Jin; Jang, Ji Yeon; Yu, Byung Jo; Um, Byung-Hwan; Yoon, Jeong-Jun

    2015-03-01

    β-Glucosidase, which hydrolyzes cellobiose into two glucoses, plays an important role in the process of saccharification of the lignocellulosic biomass. In this study, we optimized the activity of β-glucosidase of brown-rot fungus Fomitopsis pinicola KCTC 6208 using the response surface methodology (RSM) with various concentrations of glucose, yeast extract and ascorbic acid, which are the most significant nutrients for activity of β-glucosidase. The highest activity of β-glucosidase was achieved 3.02% of glucose, 4.35% of yeast extract, and 7.41% ascorbic acid where ascorbic acid was most effective. The maximum activity of β-glucosidase predicted by the RSM was 15.34 U/mg, which was similar to the experimental value 14.90 U/mg at the 16th day of incubation. This optimized activity of β-glucosidase was 23.6 times higher than the preliminary activity value, 0.63 U/mg, and was also much higher than previous values reported in other fungi strains. Therefore, a simplified medium supplemented with a cheap vitamin source, such as ascorbic acid, could be a cost effective mean of increasing β-glucosidase activity. PMID:25892916

  3. Effect of metal ions on autofluorescence of the dry rot fungus Serpula lacrymans grown on spruce wood.

    PubMed

    Gabriel, Jiří; Žižka, Zdeněk; Švec, Karel; Nasswettrová, Andrea; Šmíra, Pavel; Kofroňová, Olga; Benada, Oldřich

    2016-03-01

    This work describes autofluorescence of the mycelium of the dry rot fungus Serpula lacrymans grown on spruce wood blocks impregnated with various metals. Live mycelium, as opposed to dead mycelium, exhibited yellow autofluorescence upon blue excitation, blue fluorescence with ultraviolet (UV) excitation, orange-red and light-blue fluorescence with violet excitation, and red fluorescence with green excitation. Distinctive autofluorescence was observed in the fungal cell wall and in granula localized in the cytoplasm. In dead mycelium, the intensity of autofluorescence decreased and the signal was diffused throughout the cytoplasm. Metal treatment affected both the color and intensity of autofluorescence and also the morphology of the mycelium. The strongest yellow signal was observed with blue excitation in Cd-treated samples, in conjunction with increased branching and the formation of mycelial loops and protrusions. For the first time, we describe pink autofluorescence that was observed in Mn-, Zn-, and Cu-treated samples with UV, violet or. blue excitation. The lowest signals were obtained in Cu- and Fe-treated samples. Chitin, an important part of the fungal cell wall exhibited intensive primary fluorescence with UV, violet, blue, and green excitation. PMID:26873389

  4. Three Native Cellulose-Depolymerizing Endoglucanases from Solid-Substrate Cultures of the Brown Rot Fungus Meruliporia (Serpula) incrassata

    PubMed Central

    Kleman-Leyer, Karen M.; Kirk, T. Kent

    1994-01-01

    Three extracellular cellulose-depolymerizing enzymes from cotton undergoing decay by the brown rot fungus Meruliporia (Serpula) incrassata were isolated by anion-exchange and hydrophobic interaction chromatographies. Depolymerization was detected by analyzing the changes in the molecular size distribution of cotton cellulose by high-performance size-exclusion chromatography. The average degree of polymerization (DP; number of glucosyl residues per cellulose chain) was calculated from the size-exclusion chromatography data. The very acidic purified endoglucanases, Cel 25, Cel 49, and Cel 57, were glycosylated and had molecular weights of 25,200, 48,500, and 57,100, respectively. Two, Cel 25 and Cel 49, depolymerized cotton cellulose and were also very active on carboxymethyl cellulose (CMC). Cel 57, by contrast, significantly depolymerized cotton cellulose but did not release reducing sugars from CMC and only very slightly reduced the viscosity of CMC solutions. Molecular size distributions of cotton cellulose attacked by the three endoglucanases revealed single major peaks that shifted to lower DP positions. A second smaller peak (DP, 10 to 20) was also observed in the size-exclusion chromatograms of cotton attacked by Cel 49 and Cel 57. Under the reaction conditions used, Cel 25, the most active of the cellulases, reduced the weight average DP from 3,438 to 315, solubilizing approximately 20% of the cellulose. The weight average DP values of cotton attacked under the same conditions by Cel 49 and Cel 57 were 814 and 534; weight losses were 9 and 11% respectively. Images PMID:16349351

  5. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue. PMID:18496771

  6. [Extracellular polymeric substances (EPS) of white-rot fungus and their effects on Pb2+ adsorption by biomass].

    PubMed

    Wang, Liang; Chen, Gui-Qiu; Zeng, Guang-Ming; Zhang, Wen-Juan; Fan, Jia-Qi; Shen, Guo-Li

    2011-03-01

    The extracellular polymeric substances (EPS) of P. chrysosporium and their effects on Pb2+ biosorption were studied. The product, composition of EPS and the effects on Pb2+ biosorption capacity were investigated in lab via flask experiments. The surface changes of mycelium before and after EPS extraction, before and after Pb2+ adsorption were researched by environment scanning electron microscope with energy-dispersive X-ray analysis (ESEM-EDX). Results showed that at 113 h, the maximum yield of EPS was 125.5 mg/L, which contained 46.6% - 54.3% of sugar and 31.2% - 35.1% of protein. The results of control test after EPS extraction displayed a decrease of biosorption capacity of Pb2+ among 2.12 mg/g (113 h) - 7.73 mg/g (41 h). The results of environment scanning electron microscope (ESEM) showed that the EPS extraction affected the cell wall of white-rot fungus and the Pb-contained globular particle after Pb2+ uptake, which was very useful for further study on heavy metal biosorption mechanism. PMID:21634177

  7. A promising inert support for laccase production and decolouration of textile wastewater by the white-rot fungus Trametes pubescesns.

    PubMed

    Rodríguez-Couto, Susana

    2012-09-30

    Cubes of nylon sponge, cubes of polyurethane foam (PUF), cuttings of stainless steel sponges and the commercial carriers Kaldnes™ K1 were tested as inert supports for laccase production by the white-rot fungus Trametes pubescens under semi-solid-state fermentation conditions. The cultures operating with Kaldnes™ K1 led to the highest laccase activity (3667 U/l). In addition this support could be re-utilised, making the whole process more economical. Subsequently, the decolouration of simulated textile wastewater (STW) by T. pubescens grown on the different tested supports under semi-solid-state fermentation conditions was studied. Decolouration percentages around 66-80% were obtained in 96 h. It was found that STW decolouration was due to two mechanisms: laccase action (biodegradation) and adsorption onto fungal mycelium, save for the PUF cultures in which decolouration was mainly due to adsorption onto the support. Further, the decolouration of STW by Kaldnes™ K1 cultures in three successive batches of 96 h each was studied. Decolouration percentages of 51.3, 70.0 and 69.8%, were attained for each batch, respectively. PMID:22819474

  8. Regulation of cellulolytic activity in the white-rot fungus Ischonderma resinosum

    SciTech Connect

    Sutherland, J.B.

    1986-01-01

    The fungus, which can selectively remove lignin from wood, was grown on soluble media in stationary submerged cultures to investigate the effects of various carbohydrates on cellulolytic activity. The activities of extracellular cellulases (filter paper activity and carboxymethyl cellulase) were higher in cultures grown on carboxymethyl cellulose than in those on xylan or glucose. Carboxymethyl cellulase was induced in succinate-grown cultures after the addition of cellobiose or carboxymethyl cellulose; ..beta..-glucosidase was induced by cellobiose. Supplemental xylose, arabinose, fucose, glucuronic acid, and several other carbohydrates were catabolite repressors of cellulase activity. 21 references.

  9. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium.

    PubMed

    Espinosa-Ortiz, Erika J; Gonzalez-Gil, Graciela; Saikaly, Pascal E; van Hullebusch, Eric D; Lens, Piet N L

    2015-03-01

    The ability of Phanerochaete chrysosporium to reduce the oxidized forms of selenium, selenate and selenite, and their effects on the growth, substrate consumption rate, and pellet morphology of the fungus were assessed. The effect of different operational parameters (pH, glucose, and selenium concentration) on the response of P. chrysosporium to selenium oxyanions was explored as well. This fungal species showed a high sensitivity to selenium, particularly selenite, which inhibited the fungal growth and substrate consumption when supplied at 10 mg L(-1) in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency, whereas less than 10 % selenium removal was achieved for incubations with selenate. P. chrysosporium was found to be a selenium-reducing organism, capable of synthesizing elemental selenium from selenite but not from selenate. Analysis with transmission electron microscopy, electron energy loss spectroscopy, and a 3D reconstruction showed that elemental selenium was produced intracellularly as nanoparticles in the range of 30-400 nm. Furthermore, selenite influenced the pellet morphology of P. chrysosporium by reducing the size of the fungal pellets and inducing their compaction and smoothness. PMID:25341399

  10. Gene Silencing by RNA Interference in the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Matityahu, Avi; Hadar, Yitzhak; Dosoretz, Carlos G.; Belinky, Paula A.

    2008-01-01

    The effectiveness of RNA interference (RNAi) is demonstrated in the lignin-degrading fungus Phanerochaete chrysosporium. The manganese-containing superoxide dismutase gene (MnSOD1) was used as the target for RNAi. The plasmid constructed for gene silencing contained a transcriptional unit for hairpin RNA expression. Significantly lower MnSOD expression at both the mRNA and protein activity levels was detected in RNAi transformants. Furthermore, even though P. chrysosporium possesses three copies of the MnSOD gene, this RNAi construct was sufficient to decrease the enzymatic activity by as much as 70% relative to control levels. Implementation of the RNAi technique in P. chrysosporium provides an alternative genetic tool for studies of gene function, particularly of essential genes or gene families. PMID:18606804

  11. An aryl-alcohol oxidase of Pleurotus sapidus: heterologous expression, characterization, and application in a 2-enzyme system.

    PubMed

    Galperin, Ilya; Javeed, Aysha; Luig, Hanno; Lochnit, Günter; Rühl, Martin

    2016-09-01

    Aryl-alcohol oxidases (AAOs) are enzymes supporting the degradation of lignin by fungal derived class II peroxidases produced by white-rot fungi. AAOs are able to generate H2O2 as a by-product via oxidation of an aryl-alcohol into its correspondent aldehyde. In this study, an AAO was heterologously expressed in a basidiomycete host for the first time. The gene for an AAO of the white-rot fungus Pleurotus sapidus, a close relative to the oyster mushroom Pleurotus ostreatus, was cloned into an expression vector and put under control of the promotor of the glyceraldehyde-3-phosphate dehydrogenase gene 2 (gpdII) of the button mushroom Agaricus bisporus. The expression vector was transformed into the model basidiomycete Coprinopsis cinerea, and several positive transformants were obtained. The best producing transformants were grown in shake-flasks and in a stirred tank reactor reaching enzymatic activities of up to 125 U L(-1) using veratryl alcohol as a substrate. The purified AAO was biochemically characterized and compared to the previously described native and recombinant AAOs from other Pleurotus species. In addition, a two-enzyme system comprising a dye-decolorizing peroxidase (DyP) from Mycetinis scorodonius and the P. sapidus AAO was successfully employed to bleach the anthraquinone dye Reactive Blue 5. PMID:27138199

  12. Charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is reported occasionally on alfalfa in the U.S. and has also been found in Australia, Pakistan, Uganda, east Africa, and the former Soviet Union. The fungus causing the disease is widespread throughout tropical and subtropical countries. It causes disease on more than 500 crop and we...

  13. The root rot fungus Armillaria mellea introduced into South Africa by early Dutch settlers.

    PubMed

    Coetzee, M P; Wingfield, B D; Harrington, T C; Steimel, J; Coutinho, T A; Wingfield, M J

    2001-02-01

    Dead and dying oak (Quercus) and numerous other woody ornamental trees and shrubs showing signs and symptoms of Armillaria root rot were identified in the Company Gardens, Cape Town, South Africa, which were established in the mid-1600s by the Dutch East Indies Trading Company. Nineteen isolates from dying trees or from mushrooms were collected and analysed to identify and characterize the Armillaria sp. responsible for the disease. The AluI digestion of the amplified product of the first intergenic spacer region (IGS-1) of the rRNA operon of 19 isolates from the Company Gardens was identical to that of some of the European isolates of A. mellea s. s. The IGS-1 region and the internal transcribed spacers (ITS) were sequenced for some of the Cape Town isolates. Phylogenetic analyses placed the Cape Town isolates in the European clade of A. mellea, which is distinct from the Asian and North American clades of this species. Identification based on sexual compatibility was conducted using A. mellea tester strains in diploid-haploid pairings, which showed some compatibility between the Cape Town isolates and testers from Europe. Somatic compatibility tests (diploid-diploid pairings) and DNA fingerprinting with multilocus, microsatellite probes indicated that the Cape Town isolates were genetically identical and may have resulted from vegetative (clonal) spread from a single focus in the centre of the original Company Gardens (c. 1652). The colonized area is at least 345 m in diameter. Assuming a linear spread rate underground of 0.3 m/year to 1.6 m/year, the genet (clone) was estimated to be between 108 and 575 years old. These data suggest that A. mellea was introduced into Cape Town from Europe, perhaps on potted plants, such as grapes or citrus, planted in the Company Gardens more than 300 years ago. PMID:11298953

  14. Protective effect of vanilloids against chemical stress on the white-rot fungus Ganoderma lucidum.

    PubMed

    Kuhar, Francisco; Papinutti, Leandro

    2013-07-30

    Bioremediation of contaminated sites by biosorption of pollutants onto a wide range of materials has emerged as a promising treatment for recalcitrant aromatic compounds or heavy metals. When adsorption occurs on living white-rot fungi mycelia, the pollutants may be degraded by ligninolytic enzymes. However, the survival of mycelia in harsh conditions is one of the drawbacks of those methodologies. In this study, it was demonstrated that culture media supplemented with several guaiacol derivatives (vanilloids) increased the resistance of Ganoderma lucidum E47 cultures to chemical stress by enhancing the adsorptive capacity of the extracellular mucilaginous material (ECMM). The toxicity of the fungicides gentian violet (GV), malachite green (MG) and clotrimazole, and the heavy metal Cadmium was noticeably diminished in fungal cultures supplemented with the guaiacol derivative vanillic acid (VA). No degradation of the tested compounds was detected. The activity of the oxidative enzymatic systems like laccase, a well-known oxidase associated to dye degradation, was only detectable after complete growth on plates. Extremely low concentrations of VA caused a significant protective effect, radial extension of the growth halo in plates supplemented with 0.0001 mM of VA plus GV was up to 20% to that obtained in control plates (without addition of GV and VA). Therefore, the protective effect could not be attributable to VA per se. ECMM separated from the mycelium exhibited a much higher increase in the adsorptive capacity when isolated from liquid cultures containing VA, while that obtained from unsupplemented cultures showed an almost null adsorptive capacity. PMID:23583918

  15. A Novel Expansin Protein from the White-Rot Fungus Schizophyllum commune

    PubMed Central

    Sánchez-Carbente, María del Rayo; Iracheta-Cárdenas, María Magdalena; Arévalo-Niño, Katiushka; Folch-Mallol, Jorge Luis

    2015-01-01

    A novel expansin protein (ScExlx1) was found, cloned and expressed from the Basidiomycete fungus Schizophylum commune. This protein showed the canonical features of plant expansins. ScExlx1 showed the ability to form “bubbles” in cotton fibers, reduce the size of avicel particles and enhance reducing sugar liberation from cotton fibers pretreated with the protein and then treated with cellulases. ScExlx1 was able to bind cellulose, birchwood xylan and chitin and this property was not affected by different sodium chloride concentrations. A novel property of ScExlx1 is its capacity to enhance reducing sugars (N-acetyl glucosamine) liberation from pretreated chitin and further added with chitinase, which has not been reported for any expansin or expansin-like protein. To the best of our knowledge, this is the first report of a bona fide fungal expansin found in a basidiomycete and we could express the bioactive protein in Pichia pastoris. PMID:25803865

  16. Purification by Immunoaffinity Chromatography, Characterization, and Structural Analysis of a Thermostable Pyranose Oxidase from the White Rot Fungus Phlebiopsis gigantea

    PubMed Central

    Schafer, A.; Bieg, S.; Huwig, A.; Kohring, G.; Giffhorn, F.

    1996-01-01

    A moderately thermostable pyranose oxidase (PROD) was purified to apparent homogeneity with a yield of 71% from mycelium extracts of the white rot fungus Phlebiopsis gigantea by an efficient three-step procedure that included heat treatment, immunoaffinity chromatography, and gel filtration on Superdex 200. PROD of P. gigantea is a glycoprotein with a pI between pH 5.3 and 5.7. The relative molecular weight (M(infr)) of native PROD is 295,600 (plusmn) 5% as determined by four independent methods. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of PROD revealed two distinct but similar stained bands corresponding to polypeptides with M(infr)s of 77,000 and 70,000, suggesting a heterotetrameric enzyme structure. The tetrameric structure of PROD was confirmed by electron microscopic examinations, which additionally showed the ellipsoidal shape (4.6 by 10 nm) of each subunit. Spectral analyses and direct determinations showed the presence of covalently bound flavin adenine dinucleotide with a stoichiometry of 3.12 mol/mol of enzyme. A broad pH optimum was determined in the range pH 5.0 to 8.0 in 100 mM sodium phosphate, and the activation energy for d-glucose oxidation was 24.7 kJ/mol. The main substrates of PROD are d-glucose, l-sorbose, and d-xylose, for which K(infm) values 1.2, 16.5, and 22.2 mM were determined, respectively. PROD showed high stability during storage. In 100 mM sodium phosphate (pH 6.0 to 8.0), the half-life of PROD activity was >300 days at 40(deg)C, >110 days at 50(deg)C (pH 7.0), and 1 h at 65(deg)C. PMID:16535364

  17. A DNA based method to detect the grapevine root-rotting fungus Roesleria subterranea in soil and root samples

    PubMed Central

    Neuhauser, Sigrid; Huber, Lars; Kirchmair, Martin

    2011-01-01

    Summary Roesleria subterranea causes root rot in grapevine and fruit trees. The fungus has long been underestimated as a weak parasite, but during the last years it has been reported to cause severe damages in German vineyards. Direct, observation-based detection of the parasite is time consuming and destructive, as large parts of the rootstocks have to be uprooted and screened for the tiny, stipitate, hypogeous ascomata of R. subterranea. To facilitate rapid detection in vineyards, protocols to extract DNA from soil samples and grapevine roots, and R.-subterranea-specific PCR primers were designed. Twelve DNA–extraction protocols for soil samples were tested in small-scale experiments, and selected parameters were optimised. A protocol based on ball-mill homogenization, DNA extraction with SDS, skim milk, chloroform, and isopropanol, and subsequent purification of the raw extracts with PVPP-spin-columns was most effective. This DNA extraction protocol was found to be suitable for a wide range of soil-types including clay, loam and humic-rich soils. For DNA extraction from grapevine roots a CTAB-based protocol was more reliable for various grapevine rootstock varieties. Roesleria-subterranea-specific primers for the ITS1–5.8S–ITS2 rDNA-region were developed and tested for their specificity to DNA extracts from eleven R. subterranea strains isolated from grapevine and fruit trees. No cross reactions were detected with DNA extracts from 44 different species of fungi isolated from vineyard soils. The sensitivity of the species-specific primers in combination with the DNA extraction method for soil was high: as little as 100 fg μl−1 R.-subterranea-DNA was sufficient for a detection in soil samples and plant material. Given that specific primers are available, the presented method will also allow quick and large-scale testing for other root pathogens. PMID:21442023

  18. Gene Expression Analysis of Copper Tolerance and Wood Decay in the Brown Rot Fungus Fibroporia radiculosa

    PubMed Central

    Parker, Leslie A.; Perkins, Andy D.; Sonstegard, Tad S.; Schroeder, Steven G.; Nicholas, Darrel D.; Diehl, Susan V.

    2013-01-01

    High-throughput transcriptomics was used to identify Fibroporia radiculosa genes that were differentially regulated during colonization of wood treated with a copper-based preservative. The transcriptome was profiled at two time points while the fungus was growing on wood treated with micronized copper quat (MCQ). A total of 917 transcripts were differentially expressed. Fifty-eight of these genes were more highly expressed when the MCQ was protecting the wood from strength loss and had putative functions related to oxalate production/degradation, laccase activity, quinone biosynthesis, pectin degradation, ATP production, cytochrome P450 activity, signal transduction, and transcriptional regulation. Sixty-one genes were more highly expressed when the MCQ lost its effectiveness (>50% strength loss) and had functions related to oxalate degradation; cytochrome P450 activity; H2O2 production and degradation; degradation of cellulose, hemicellulose, and pectin; hexose transport; membrane glycerophospholipid metabolism; and cell wall chemistry. Ten of these differentially regulated genes were quantified by reverse transcriptase PCR for a more in-depth study (4 time points on wood with or without MCQ treatment). Our results showed that MCQ induced higher than normal levels of expression for four genes (putative annotations for isocitrate lyase, glyoxylate dehydrogenase, laccase, and oxalate decarboxylase 1), while four other genes (putative annotations for oxalate decarboxylase 2, aryl alcohol oxidase, glycoside hydrolase 5, and glycoside hydrolase 10) were repressed. The significance of these results is that we have identified several genes that appear to be coregulated, with putative functions related to copper tolerance and/or wood decay. PMID:23263965

  19. Gene expression analysis of copper tolerance and wood decay in the brown rot fungus Fibroporia radiculosa.

    PubMed

    Tang, Juliet D; Parker, Leslie A; Perkins, Andy D; Sonstegard, Tad S; Schroeder, Steven G; Nicholas, Darrel D; Diehl, Susan V

    2013-03-01

    High-throughput transcriptomics was used to identify Fibroporia radiculosa genes that were differentially regulated during colonization of wood treated with a copper-based preservative. The transcriptome was profiled at two time points while the fungus was growing on wood treated with micronized copper quat (MCQ). A total of 917 transcripts were differentially expressed. Fifty-eight of these genes were more highly expressed when the MCQ was protecting the wood from strength loss and had putative functions related to oxalate production/degradation, laccase activity, quinone biosynthesis, pectin degradation, ATP production, cytochrome P450 activity, signal transduction, and transcriptional regulation. Sixty-one genes were more highly expressed when the MCQ lost its effectiveness (>50% strength loss) and had functions related to oxalate degradation; cytochrome P450 activity; H(2)O(2) production and degradation; degradation of cellulose, hemicellulose, and pectin; hexose transport; membrane glycerophospholipid metabolism; and cell wall chemistry. Ten of these differentially regulated genes were quantified by reverse transcriptase PCR for a more in-depth study (4 time points on wood with or without MCQ treatment). Our results showed that MCQ induced higher than normal levels of expression for four genes (putative annotations for isocitrate lyase, glyoxylate dehydrogenase, laccase, and oxalate decarboxylase 1), while four other genes (putative annotations for oxalate decarboxylase 2, aryl alcohol oxidase, glycoside hydrolase 5, and glycoside hydrolase 10) were repressed. The significance of these results is that we have identified several genes that appear to be coregulated, with putative functions related to copper tolerance and/or wood decay. PMID:23263965

  20. Biotransformation of (-)-α-pinene and geraniol to α-terpineol and p-menthane-3,8-diol by the white rot fungus, Polyporus brumalis.

    PubMed

    Lee, Su-Yeon; Kim, Seon-Hong; Hong, Chang-Young; Park, Se-Yeong; Choi, In-Gyu

    2015-07-01

    In this study, the monoterpenes, α-pinene and geraniol, were biotransformed to synthesize monoterpene alcohol compounds. Polyporus brumalis which is classified as a white rot fungus was used as a biocatalyst. Consequently α-terpineol was synthesized from α-pinene by P. brumalis mycelium, after three days. Moreover, another substrate, the acyclic monoterpenoids geraniol was transformed into the cyclic compound, p-menthane-3, 8-diol (PMD). The main metabolites, i.e., α-terpineol and PMD, are known to be bioactive monoterpene alcohol compounds. This study highlights the potential of fungal biocatalysts for monoterpene transformation. PMID:26115995

  1. Effect of metal ions and redox mediators on decolorization of synthetic dyes by crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131).

    PubMed

    Shankar, Shiv; Shikha; Nill, Shikha

    2015-01-01

    The effect of different metal ions and two redox mediators on laccase activity and laccase-catalyzed decolorization of five synthetic dyes was investigated in vitro using crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131). The fungus effectively decolorized crystal violet and brilliant green on malt extract agar medium. Laccase activity was enhanced by metal ions such as Cd(2+), Mn(2+), Ni(2+), Co(2+), Na(+) Ca(2+), and Cu(2+). Among the different dyes tested, highest decolorization of crystal violet (96.30 %) was obtained in the presence of 1 mM ABTS followed by 86.01 % by HBT. The results conspicuously indicated that laccase from Peniophora sp. has the potential for color removal from textile dye effluent even in the presence of toxic metal ions. PMID:25293639

  2. Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Subramanian, Venkataramanan; Yadav, Jagjit S.

    2009-01-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (∼75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant. PMID:19542331

  3. The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications.

    PubMed

    Knop, Doriv; Yarden, Oded; Hadar, Yitzhak

    2015-02-01

    Mushrooms of the genus Pleurotus are comprised of cultivated edible ligninolytic fungi with medicinal properties and a wide array of biotechnological and environmental applications. Like other white-rot fungi (WRF), they are able to grow on a variety of lignocellulosic biomass substrates and degrade both natural and anthropogenic aromatic compounds. This is due to the presence of the non-specific oxidative enzymatic systems, which are mainly consisted of lacasses, versatile peroxidases (VPs), and short manganese peroxidases (short-MnPs). Additional, less studied, peroxidase are dye-decolorizing peroxidases (DyPs) and heme-thiolate peroxidases (HTPs). During the past two decades, substantial information has accumulated concerning the biochemistry, structure and function of the Pleurotus ligninolytic peroxidases, which are considered to play a key role in many biodegradation processes. The production of these enzymes is dependent on growth media composition, pH, and temperature as well as the growth phase of the fungus. Mn(2+) concentration differentially affects the expression of the different genes. It also severs as a preferred substrate for these preoxidases. Recently, sequencing of the Pleurotus ostreatus genome was completed, and a comprehensive picture of the ligninolytic peroxidase gene family, consisting of three VPs and six short-MnPs, has been established. Similar enzymes were also discovered and studied in other Pleurotus species. In addition, progress has been made in the development of molecular tools for targeted gene replacement, RNAi-based gene silencing and overexpression of genes of interest. These advances increase the fundamental understanding of the ligninolytic system and provide the opportunity for harnessing the unique attributes of these WRF for applied purposes. PMID:25503316

  4. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes.

    PubMed

    Faraco, V; Pezzella, C; Miele, A; Giardina, P; Sannia, G

    2009-04-01

    The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month. PMID:18758969

  5. Application of Asymetrical and Hoke Designs for Optimization of Laccase Production by the White-Rot Fungus Fomes fomentarius in Solid-State Fermentation

    PubMed Central

    Neifar, Mohamed; Kamoun, Amel; Jaouani, Atef; Ellouze-Ghorbel, Raoudha; Ellouze-Chaabouni, Semia

    2011-01-01

    Statistical approaches were employed for the optimization of different cultural parameters for the production of laccase by the white rot fungus Fomes fomentarius MUCL 35117 in wheat bran-based solid medium. first, screening of production parameters was performed using an asymmetrical design 2533//16, and the variables with statistically significant effects on laccase production were identified. Second, inoculum size, CaCl2 concentration, CuSO4 concentration, and incubation time were selected for further optimization studies using a Hoke design. The application of the response surface methodology allows us to determine a set of optimal conditions (CaCl2, 5.5 mg/gs, CuSO4, 2.5 mg/gs, inoculum size, 3 fungal discs (6 mm Ø), and 13 days of static cultivation). Experiments carried out under these conditions led to a laccase production yield of 150 U/g dry substrate. PMID:23008760

  6. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    PubMed Central

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-01-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289

  7. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.

    PubMed

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-06-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289

  8. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero

    2012-05-01

    The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles). PMID:22179541

  9. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose.

    PubMed

    Rytioja, Johanna; Hildén, Kristiina; Hatakka, Annele; Mäkelä, Miia R

    2014-11-01

    The recent discovery of oxidative cellulose degradation enhancing enzymes has considerably changed the traditional concept of hydrolytic cellulose degradation. The relative expression levels of ten cellulose-acting enzyme encoding genes of the white-rot fungus Dichomitus squalens were studied on solid-state spruce wood and in microcrystalline Avicel cellulose cultures. From the cellobiohydrolase encoding genes, cel7c was detected at the highest level and showed constitutive expression whereas variable transcript levels were detected for cel7a, cel7b and cel6 in the course of four-week spruce cultivation. The cellulolytic enzyme activities detected in the liquid cultures were consistent with the transcript levels. Interestingly, the selected lytic polysaccharide monooxygenase (LPMO) encoding genes were expressed in both cultures, but showed different transcription patterns on wood compared to those in submerged microcrystalline cellulose cultures. On spruce wood, higher transcript levels were detected for the lpmos carrying cellulose binding module (CBM) than for the lpmos without CBMs. In both cultures, the expression levels of the lpmo genes were generally higher than the levels of cellobiose dehydrogenase (CDH) encoding genes. Based on the results of this work, the oxidative cellulose cleaving enzymes of D. squalens have essential role in cellulose degrading machinery of the fungus. PMID:24394946

  10. Characterisation of the initial degradation stage of Scots pine (Pinus sylvestris L.) sapwood after attack by brown-rot fungus Coniophora puteana.

    PubMed

    Irbe, Ilze; Andersone, Ingeborga; Andersons, Bruno; Noldt, Guna; Dizhbite, Tatiana; Kurnosova, Nina; Nuopponen, Mari; Stewart, Derek

    2011-07-01

    In our study, early period degradation (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum.: Fr.) Karst. (BAM Ebw.15) was followed at the wood chemical composition and ultrastructure-level, and highlighted the generation of reactive oxygen species (ROS). An advanced decay period of 50 days was chosen for comparison of the degradation dynamics. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were already disrupted in the early period of fungal attack. An increase in the lignin absorption A(280) value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification which has been proposed to be generated by Fenton reaction derived ROS. The wood weight loss in the initial degradation period was 2%, whilst cellulose and lignin content decreased by 6.7% and 1%, respectively. Lignin methoxyl (-OCH3) content decreased from 15.1% (control) to 14.2% in decayed wood. Diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy corroborated the moderate loss in the hemicellulose and lignin degradation accompanying degradation. Electron paramagnetic resonance spectra and spin trapping confirmed the generation of ROS, such as hydroxyl radicals (HO∙), in the early wood degradation period. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae and the results generated here will assist in the understanding of the biochemical mechanisms of wood biodegradation by brown-rot fungi with the ultimate aim of developing novel wood protection methods. PMID:21327804

  11. Successive Mineralization and Detoxification of Benzo[a]pyrene by the White Rot Fungus Bjerkandera sp. Strain BOS55 and Indigenous Microflora

    PubMed Central

    Kotterman, Michiel J. J.; Vis, Eric H.; Field, Jim A.

    1998-01-01

    White rot fungi can oxidize high-molecular-weight polycyclic aromatic hydrocarbons (PAH) rapidly to polar metabolites, but only limited mineralization takes place. The objectives of this study were to determine if the polar metabolites can be readily mineralized by indigenous microflora from several inoculum sources, such as activated sludge, forest soils, and PAH-adapted sediment sludge, and to determine if such metabolites have decreased mutagenicity compared to the mutagenicity of the parent PAH. 14C-radiolabeled benzo[a]pyrene was subjected to oxidation by the white rot fungus Bjerkandera sp. strain BOS55. After 15 days, up to 8.5% of the [14C]benzo[a]pyrene was recovered as 14CO2 in fungal cultures, up to 73% was recovered as water-soluble metabolites, and only 4% remained soluble in dibutyl ether. Thin-layer chromatography analysis revealed that many polar fluorescent metabolites accumulated. Addition of indigenous microflora to fungal cultures with oxidized benzo[a]pyrene on day 15 resulted in an initially rapid increase in the level of 14CO2 recovery to a maximal value of 34% by the end of the experiments (>150 days), and the level of water-soluble label decreased to 16% of the initial level. In fungal cultures not inoculated with microflora, the level of 14CO2 recovery increased to 13.5%, while the level of recovery of water-soluble metabolites remained as high as 61%. No large differences in 14CO2 production were observed with several inocula, showing that some polar metabolites of fungal benzo[a]pyrene oxidation were readily degraded by indigenous microorganisms, while other metabolites were not. Of the inocula tested, only PAH-adapted sediment sludge was capable of directly mineralizing intact benzo[a]pyrene, albeit at a lower rate and to a lesser extent than the mineralization observed after combined treatment with white rot fungi and indigenous microflora. Fungal oxidation of benzo[a]pyrene resulted in rapid and almost complete elimination of its high

  12. Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62.

    PubMed

    González, Tania; Terrón, María Carmen; Yagüe, Susana; Junca, Howard; Carbajo, José María; Zapico, Ernesto Javier; Silva, Ricardo; Arana-Cuenca, Ainhoa; Téllez, Alejandro; González, Aldo Enrique

    2008-03-01

    Wastewaters generated from the production of ethanol from sugar cane molasses may have detrimental effects on the environment due to their high chemical oxygen demand and dark brown color. The color is mainly associated with the presence of melanoidins, which are highly recalcitrant to biodegradation. We report here the induction of laccases by molasses wastewaters and molasses melanoidins in the basidiomycetous fungus Trametes sp. I-62. The time course of effluent decolorization and laccase activity in the culture supernatant of the fungus were correlated. The expression of laccase genes lcc1 and lcc2 increased as a result of the addition of complete molasses wastewater and its high molecular weight fraction to fungal cultures. This is the first time differential laccase gene expression has been reported to occur upon exposure of fungal cultures to molasses wastewaters and their melanoidins. PMID:18248962

  13. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition.

    PubMed

    Zhang, Chengdong; Li, Mingzhu; Chen, Xiaoyan; Li, Mingchun

    2015-08-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical that is ubiquitous in the environment because of its broad industrial use. The authors report that the most widely cultivated mushroom in the world (i.e., white-rot fungus, Pleurotus ostreatus) efficiently degraded 10mg/L of BPA in 7 days. Extracellular laccase was identified as the enzyme responsible for this activity. LC-MS analysis of the metabolites revealed the presence of both low- and high-molecular-weight products obtained via oxidative cleavage and coupling reactions, respectively. In particular, an analysis of the fatty acid composition and chemical structure of the fungal mycelium demonstrated that exposure to BPA resulted in no harmful effects on this edible fungus. The results provide a better understanding of the environmental fate of BPA and its potential impact on food crops. PMID:25933259

  14. Manganese Is Not Required for Biobleaching of Oxygen-Delignified Kraft Pulp by the White Rot Fungus Bjerkandera sp. Strain BOS55

    PubMed Central

    Moreira, M. T.; Feijoo, G.; Sierra-Alvarez, R.; Lema, J.; Field, J. A.

    1997-01-01

    The white rot fungus Bjerkandera sp. strain BOS55 extensively delignified and bleached oxygen-delignified eucalyptus kraft pulp handsheets. Biologically mediated brightness gains of up to 14 ISO (International Standards Organization units) were obtained, providing high final brightness values of up to 80% ISO. In nitrogen-limited cultures (2.2 mM N), manganese (Mn) greatly improved manganese-dependent peroxidase (MnP) production. However, the biobleaching was not affected by the Mn nutrient regimen, ranging from 1,000 (mu)M added Mn to below the detection limit of 0.26 (mu)M Mn in EDTA-extracted pulp medium. The lowest Mn concentration tested was at least several orders of magnitude lower than the K(infm) known for MnP. Consequently, it was concluded that Mn is not required for biobleaching in Bjerkandera sp. strain BOS55. Nonetheless, fast protein liquid chromatography profiles indicated that MnP was the predominant oxidative enzyme produced even under culture conditions in the near absence of manganese. High nitrogen (22 mM N) and exogenous veratryl alcohol (2 mM) repressed biobleaching in Mn-deficient but not in Mn-sufficient culture medium. No correlation was observed between the titers of extracellular peroxidases and the biobleaching. However, the decolorization rate of the polyaromatic dye Poly R-478 was moderately correlated to the biobleaching under a wide range of Mn and N nutrient regimens. PMID:16535591

  15. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.

    PubMed

    Lu, Ruoying; Ma, Li; He, Feng; Yu, Dong; Fan, Ruozhi; Zhang, Yangming; Long, Zheping; Zhang, Xiaoyu; Yang, Yang

    2016-03-01

    The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green. PMID:26684007

  16. Influence of Cadmium and Mercury on Activities of Ligninolytic Enzymes and Degradation of Polycyclic Aromatic Hydrocarbons by Pleurotus ostreatus in Soil

    PubMed Central

    Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František

    2000-01-01

    The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426

  17. Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus.

    PubMed

    Kalpana, Duraisamy; Velmurugan, Natarajan; Shim, Jae Hong; Oh, Byung-Taek; Senthil, Kalaiselvi; Lee, Yang Soo

    2012-11-30

    The treatment of effluents from textile industry with microorganisms, especially bacteria and fungi, has recently gained attention. The present study was conducted using white rot fungi Irpex lacteus, Trametes hirsuta, Trametes sp., and Lentinula edodes for the decolorization of reactive textile Levafix Blue E-RA granulate dye. I. lacteus resulted in the best decolorization and degradation of the dye within four days. Therefore, more detailed studies were carried out using I. lacteus. The decolorization was evaluated at various concentration, pH values, and temperatures. The activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were estimated to reveal the roles of enzymes in decolorization. The colorless nature of the fungal cells revealed that decolorization occurred through degradation, and confirmed by analysis of the metabolites by UV-visible spectroscopy and High Performance Liquid Chromatography after decolorization. The metabolites were identified by Gas Chromatography-Mass Spectrometry, and functional group analysis was performed by Fourier Transform Infrared Spectroscopy. The degraded dye metabolites were assessed for phytotoxicity using Vigna radiata and Brassica juncea, which demonstrated nontoxic nature of the metabolites formed after degradation of dye. PMID:22846889

  18. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-07-01

    To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. PMID:26766784

  19. Pleurotus ostreatus manganese‐dependent peroxidase silencing impairs decolourization of Orange II

    PubMed Central

    Salame, Tomer M.; Yarden, Oded; Hadar, Yitzhak

    2010-01-01

    Summary Decolourization of azo dyes by Pleurotus ostreatus, a white‐rot fungus capable of lignin depolymerization and mineralization, is related to the ligninolytic activity of enzymes produced by this fungus. The capacity of P. ostreatus to decolourize the azo dye Orange II (OII) was dependent and positively co‐linear to Mn2+ concentration in the medium, and thus attributed to Mn2+‐dependent peroxidase (MnP) activity. Based on the ongoing P. ostreatus genome deciphering project we identified at least nine genes encoding for MnP gene family members (mnp1–9), of which only four (mnp1–4) were previously known. Relative real‐time PCR quantification analysis confirmed that all the nine genes are transcribed, and that Mn2+ amendment results in a drastic increase in the transcript levels of the predominantly expressed MnP genes (mnp3 and mnp9), while decreasing versatile peroxidase gene transcription (mnp4). A reverse genetics strategy based on silencing the P. ostreatus mnp3 gene by RNAi was implemented. Knock‐down of mnp3 resulted in the reduction of fungal OII decolourization capacity, which was co‐linear with marked silencing of the Mn2+‐dependent peroxidase genes mnp3 and mnp9. This is the first direct genetic proof of an association between MnP gene expression levels and azo dye decolourization capacity in P. ostreatus, which may have significant implication on understanding the mechanisms governing lignin biodegradation. Moreover, this study has proven the applicability of RNAi as a tool for gene function studies in Pleurotus research. PMID:21255310

  20. A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme.

    PubMed

    Piumi, François; Levasseur, Anthony; Navarro, David; Zhou, Simeng; Mathieu, Yann; Ropartz, David; Ludwig, Roland; Faulds, Craig B; Record, Eric

    2014-12-01

    Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425 bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5 kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640 mg L(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41 % recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130 kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60 °C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67 M(-1) s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical

  1. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta

    PubMed Central

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W. M. R.

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles. PMID:26554706

  2. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    PubMed

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W M R

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles. PMID:26554706

  3. Substrate-specific transcription of the enigmatic GH61 family of the pathogenic white-rot fungus Heterobasidion irregulare during growth on lignocellulose.

    PubMed

    Yakovlev, Igor; Vaaje-Kolstad, Gustav; Hietala, Ari M; Stefańczyk, Emil; Solheim, Halvor; Fossdal, Carl Gunnar

    2012-08-01

    The GH61 represents the most enigmatic Glycoside Hydrolase family (GH) regarding enzymatic activity and importance in cellulose degradation. Heterobasidion irregulare is a necrotizing pathogen and white-rot fungus that causes enormous damages in conifer forests. The genome of H. irregulare allowed identification of ten HiGH61 genes. qRT-PCR analysis separate the HiGH61 members into two groups; one that show up regulation on lignocellulosic substrates (HiGH61A, HiGH61B, HiGH61D, HiGH61G, HiGH61H, and HiGH61I) and a second showing either down-regulation or constitutive expression (HiGH61C, HiGH61E, HiGH61F, and HiGH61J). HiGH61H showed up to 17,000-fold increase on spruce heartwood suggesting a pivotal role in cellulose decomposition during saprotrophic growth. Sequence analysis of these genes reveals that all GH61s except HiGH61G possess the conserved metal-binding motif essential for activity. The sequences also divide into groups having either an insert near the N terminus or an insert near the second catalytic histidine, which may represent extensions of the substrate-binding surface. Three of the HiGH61s encode cellulose-binding modules (CBM1). Interestingly, HiGH61H and HiGH61I having CBM1s are up-regulated on pure cellulose. There was a common substrate-specific induction patterns of the HiGH61s with several reference cellulolytic and hemicellulolytic GHs, this taken together with their low transcript levels on media lacking lignocellulose, reflect the concerted nature of cell wall polymer degradation. PMID:22718248

  4. Transcriptomic Responses of the Softwood-Degrading White-Rot Fungus Phanerochaete carnosa during Growth on Coniferous and Deciduous Wood ▿ †

    PubMed Central

    MacDonald, Jacqueline; Doering, Matt; Canam, Thomas; Gong, Yunchen; Guttman, David S.; Campbell, Malcolm M.; Master, Emma R.

    2011-01-01

    To identify enzymes that could be developed to reduce the recalcitrance of softwood resources, the transcriptomes of the softwood-degrading white-rot fungus Phanerochaete carnosa were evaluated after growth on lodgepole pine, white spruce, balsam fir, and sugar maple and compared to the transcriptome of P. carnosa after growth on liquid nutrient medium. One hundred fifty-two million paired-end reads were obtained, and 63% of these reads were mapped to 10,257 gene models from P. carnosa. Five-hundred thirty-three of these genes had transcripts that were at least four times more abundant during growth on at least one wood medium than on nutrient medium. The 30 transcripts that were on average over 100 times more abundant during growth on wood than on nutrient medium included 6 manganese peroxidases, 5 cellulases, 2 hemicellulases, a lignin peroxidase, glyoxal oxidase, and a P450 monooxygenase. Notably, among the genes encoding putative cellulases, one encoding a glycosyl hydrolase family 61 protein had the highest relative transcript abundance during growth on wood. Overall, transcripts predicted to encode lignin-degrading activities were more abundant than those predicted to encode carbohydrate-active enzymes. Transcripts predicted to encode three MnPs represented the most highly abundant transcripts in wood-grown cultivations compared to nutrient medium cultivations. Gene set enrichment analyses did not distinguish transcriptomes resulting from softwood and hardwood cultivations, suggesting that similar sets of enzyme activities are elicited by P. carnosa grown on different wood substrates, albeit to different expression levels. PMID:21441342

  5. Treatment of wheat straw using tannase and white-rot fungus to improve feed utilization by ruminants

    PubMed Central

    2014-01-01

    Background Current research to enrich cattle feed has primarily focused on treatment using white rot fungi, while there are scarce reports using the enzyme tannase, which is discussed only in reviews or in the form of a hypothesis. In this context, the aim of the present study was to evaluate the effect of tannase on wheat straw (WS) and also the effect of lyophilized tannase at concentrations of 0.1%, 0.2%, and 0.3% (w/w) on WS followed by fermentation with Ganoderma sp. for 10 d and compared in relation to biochemical parameters, crude protein (CP) content, and nutritional value by calculating the C/N ratio in order to improve the nutritional value of cattle feed. Results Penicillium charlesii, a tannase-producing microorganism, produced 61.4 IU/mL of tannase in 54 h when 2% (w/v) tannic acid (TA) was initially used as a substrate in medium containing (% w/v) sucrose (1.0), NaNO3 (1.0), and MgSO4 (0.08 pH, 5.0) in a 300-L fermentor (working volume 220 L), and concomitantly fed with 1.0% (w/v) TA after 24 h. The yield of partially purified and lyophilized tannase was 5.8 IU/mg. The tannin-free myco-straw at 0.1% (w/w) tannase showed 37.8% (w/w) lignin degradation with only a 20.4% (w/w) decrease in cellulose content and the in vitro feed digestibility was 32.2%. An increase in CP content (up to 1.28-fold) along with a lower C/N ratio of 25.0%, as compared to myco-straw, was obtained. Conclusions The use of tannin-free myco-straw has potential to improve the nutritional content of cattle feed. This biological treatment process was safe, eco-friendly, easy to perform, and was less expensive as compared to other treatment methods. PMID:24555694

  6. Stachbotrys Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stachybotrys root rot is caused by Stachybotrys chartarum, a cellulytic saprophytic hyphomycete fungus. The pathogen produces mycotoxins including a host of immunosupressant compounds for human and is one of the causes of the "sick building syndrome." Although S. chartarum is rarely known as a plan...

  7. Violet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus causing violet root rot, Helicobasidium brebissonii (anamorph Rhizoctonia crocorum), is widely distributed in Europe and North America but is rarely of much economic importance on alfalfa. The disease has also been reported in Australia, Argentina, and Iran. The disease is characterized b...

  8. Armillaria root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First described on grapevines in California in the 1880s, Armillaria root rot occurs in all major grape-growing regions of the state. The causal fungus, Armillaria mellea, infects woody grapevine roots and the base of the trunk (the root collar), resulting in a slow decline and eventual death of the...

  9. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation

    PubMed Central

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 “Bunker C” fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels. PMID:26111162

  10. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    PubMed

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels. PMID:26111162

  11. Selective natural induction of laccases in Pleurotus sajor-caju, suitable for application at a biofuel cell cathode at neutral pH.

    PubMed

    Fokina, Oleksandra; Eipper, Jens; Kerzenmacher, Sven; Fischer, Reinhard

    2016-10-01

    Laccases are multicopper oxidoreductases with broad substrate specificity and are applied in biofuel cells at the cathode to improve its oxygen reduction performance. However, the production of laccases by e.g. fungi is often accompanied by the need of synthetic growth supplements for increased enzyme production. In this study we present a strategy for the white-rot fungus Pleurotus sajor-caju for natural laccase activity induction using lignocellulose substrates and culture supernatant of Aspergillus nidulans. P. sajor-caju laccases were secreted into the supernatant, which was directly used at a carbon-nanotube buckypaper cathode in a biofuel cell. Maximal current densities of -148±3μAcm(-2) and -102±9μAcm(-2) at 400mV were achieved at pH 5 and 7, respectively. Variations in cathode performance were observed with culture supernatants produced under different conditions due to the induction of specific laccases. PMID:27393835

  12. Presence of Pleurotus ostreatus in Patagonia, Argentina.

    PubMed

    Lechner, Bernardo Ernesto; Petersen, Ronald; Rajchenberg, Mario; Albertó, Edgardo

    2002-06-01

    Specimens belonging to the genus Pleurotus were collected growing on fallen trunks of Araucaria araucana, a native tree with a poorly known mycoflora, which grows in Patagonia, Argentina. Fruitbodies were produced in culture on sawdust from an isolated strain. Interspecific pairing tests performed between mating types of Pleurotus from Patagonia and tester strains of P. pulmonarius and P. ostreatus showed the Patagonia strain to be 100% compatible with P. ostreatus and incompatible with P. pulmonarius. Dikaryons obtained on sawdust were fertile, since they were able to produce fruitbodies and viable spores. This is the first documented record of P. ostreatus from Argentina and the first gilled fungus found growing on Araucaria araucana. PMID:12828514

  13. A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Bhattacharya, Sukanta S.; Syed, Khajamohiddin; Shann, Jodi; Yadav, Jagjit S.

    2013-01-01

    High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) such as benzo[a]pyrene (BaP) are resistant to biodegradation in soil. Conventionally, white rot fungus Phanerochaete chrysosporium has been investigated for HMW-PAH degradation in soil primarily using nutrient-deficient (ligninolytic) conditions, albeit with limited and non-sustainable biodegradation outcomes. In this study, we report development of an alternative novel biphasic process initiated under nutrient-sufficient (non-ligninolytic) culture conditions, by employing an advanced experimental design strategy. During the initial nutrient-sufficient non-ligninolytic phase (16 days), the process showed upregulation (3.6-and 22.3-fold, respectively) of two key PAH-oxidizing P450 monooxygenases pc2 (CYP63A2) and pah4 (CYP5136A3) and formation of typical P450-hydroxylated metabolite. This along with abrogation (84.9%) of BaP degradation activity in response to a P450-specific inhibitor implied key role of these monooxygenases. The subsequent phase triggered on continued incubation (to 25 days) switched the process from non-ligninolytic to ligninolytic resulting in a significantly higher net degradation (91.6% as against 67.4% in the control nutrient-limited set) of BaP with concomitant de novo ligninolytic enzyme expression making it a biphasic process yielding improved sustainable bioremediation of PAH-contaminated soil. To our knowledge this is the first report on development of such biphasic process for bioremediation application of a white rot fungus. PMID:24051002

  14. Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium

    SciTech Connect

    Kerem, Z.; Friesem, D.; Hadar, Y. )

    1992-04-01

    Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparison two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of {sup 14}C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resulting in the release of 12% of the total radioactivity as {sup 14}CO{sub 2}. In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanism involved in lignocellulose degradation.

  15. Mutual interactions of Pleurotus ostreatus with bacteria of activated sludge in solid-bed bioreactors.

    PubMed

    Svobodová, Kateřina; Petráčková, Denisa; Kozická, Barbora; Halada, Petr; Novotný, Čeněk

    2016-06-01

    White rot fungi are well known for their ability to degrade xenobiotics in pure cultures but few studies focus on their performance under bacterial stress in real wastewaters. This study investigated mutual interactions in co-cultures of Pleurotus ostreatus and activated sludge microbes in batch reactors and different culture media. Under the bacterial stress an increase in the dye decolorization efficiency (95 vs. 77.1 %) and a 2-fold elevated laccase activity (156.7 vs. 78.4 Ul(-1)) were observed in fungal-bacterial cultures compared to pure P. ostreatus despite a limited growth of bacteria in mixed cultures. According to 16S-rDNA analyses, P. ostreatus was able to alter the structure of bacterial communities. In malt extract-glucose medium the fungus inhibited growth of planktonic bacteria and prevented shifts in bacterial utilization of potential C-sources. A model bacterium, Rhodococcus erythropolis responded to fungal metabolites by down regulation of uridylate kinase and acetyl-CoA synthetase. PMID:27116960

  16. DISEASES OF SOYBEAN: CHARCOAL ROT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean yield losses due to charcoal rot occur regularly. Yield losses of 20-30% due to root and stem infections of soybean caused by the soil-inhabiting fungus Macrophomina phaseolina have been reported in some fields in years highly favorable for disease development. This bulletin summarizes the...

  17. Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi.

    PubMed

    Kleman-Leyer, K; Agosin, E; Conner, A H; Kirk, T K

    1992-04-01

    The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion. PMID:16348694

  18. Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi

    PubMed Central

    Kleman-Leyer, Karen; Agosin, Eduardo; Conner, Anthony H.; Kirk, T. Kent

    1992-01-01

    The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion. PMID:16348694

  19. Laccase production by the aquatic ascomycete Phoma sp. UHH 5-1-03 and the white rot basidiomycete Pleurotus ostreatus DSM 1833 during submerged cultivation on banana peels and enzyme applicability for the removal of endocrine-disrupting chemicals.

    PubMed

    Libardi, Nelson; Gern, Regina Maria Miranda; Furlan, Sandra Aparecida; Schlosser, Dietmar

    2012-07-01

    This work aimed to study the production of laccase from Pleurotus ostreatus DSM 1833 and Phoma sp. UHH 5-1-03 using banana peels as alternative carbon source, the subsequent partial purification and characterization of the enzyme, as well the applicability to degrade endocrine disruptors. The laccase stability with pH and temperature, the optimum pH, the K (m) and V(max) parameters, and the molar mass were determined. Tests were conducted for assessing the ability of degradation of the endocrine disruptors t-nonylphenol, bisphenol A, and 17α-ethinylestradiol. Laccase production of 752 and 1,117 U L⁻¹ was obtained for Phoma sp. and P. ostreatus, respectively. Phoma sp. laccase showed higher stability with temperature and pH. The laccase from both species showed higher affinity by syringaldazine. The culture broth with banana peels induced the production of two isoforms of P. ostreatus (58.7 and 21 kDa) and one of Phoma sp. laccase (72 kDa). In the first day of incubation, the concentrations of bisphenol A and 17α-ethinylestradiol were reduced to values close to zero and after 3 days the concentration of t-nonylphenol was reduced in 90% by the P. ostreatus laccase, but there was no reduction in its concentration by the Phoma sp. laccase. PMID:22371062

  20. Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula.

    PubMed

    Purnomo, Adi Setyo; Putra, Surya Rosa; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2014-10-01

    The ability of certain white-rot fungi (WRF) inocula to transform heptachlor and heptachlor epoxide and its application in artificially contaminated soil were investigated. Fungal inoculum of Pleurotus ostreatus eliminated approximately 89 % of heptachlor after 28 days of incubation, and chlordene was detected as the primary metabolite. The fungal inoculum of Pleurotus ostreatus had the highest ability to degrade heptachlor epoxide; approximately 32 % were degraded after 28 days of incubation, and heptachlor diol was detected as the metabolite product. Because Pleurotus ostreatus transformed heptachlor into a less toxic metabolite and could also effectively degrade heptachlor epoxide, it was then selected to be applied to artificially contaminated soil. The spent mushroom waste (SMW) of Pleurotus ostreatus degraded heptachlor and heptachlor epoxide by approximately 91 and 26 %, respectively, over 28 days. This finding indicated that Pleurotus ostreatus SMW could be used to bioremediate heptachlor- and heptachlor epoxide-contaminated environments. PMID:24840358

  1. Biodegradation of carbamazepine and clarithromycin by Trichoderma harzianum and Pleurotus ostreatus investigated by liquid chromatography - high-resolution tandem mass spectrometry (FTICR MS-IRMPD).

    PubMed

    Buchicchio, Alessandro; Bianco, Giuliana; Sofo, Adriano; Masi, Salvatore; Caniani, Donatella

    2016-07-01

    In this study, the capability of pharmaceutical biodegradation of fungus Trichoderma harzianum was evaluated through the comparison with the well-known biodegradation capability of white-rot fungus Pleurotus ostreatus. The study was performed in aqueous phase under aerobic conditions, using two of the most frequently detected drugs in water bodies: carbamazepine and clarithromycin, with concentrations commonly found in treated wastewater (4μg/l and 0.03μg/l respectively). For the first time, we demonstrated that T. harzianum is able to remove carbamazepine and clarithromycin. The analyses were performed by reversed-phase liquid chromatography/mass spectrometry, using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry upon electrospray ionization in positive ion mode. The high selectivity and mass accuracy provided by high-resolution mass spectrometry, allowed us to identify some unknown metabolites. On the basis of our study, the major metabolites detected in liquid culture treated by T. harzianum were: 14-hydroxy-descladinosyl- and descladinosyl-clarithromycin, which are pharmacologically inactive products not dangerous for the environment. PMID:27039063

  2. Tetramethylpyrazine from Pleurotus geesteranus.

    PubMed

    Shen, Hengsheng; Liu, Huaizhi; Chen, Junchen; Shao, Suqin; Zhu, Honghui; Tsao, Rong; Zhou, Ting

    2015-09-01

    For the first time, the bioactive compound tetramethylpyrazine (TMP) was isolated and identified from the culture of Pleurotus geesteranus Singer. Its identification was confirmed unambiguously by identical retention time and mass spectrum to those of a TMP standard. The TMP content in P. geesteranus from solid culture was up to 8.04 g.kg(-1)ds. This finding provides a novel natural way to produce TMP and will lead to new value added mushroom products with nutraceutical functions. PMID:26594757

  3. An unstructured mathematical model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems

    SciTech Connect

    Sarikaya, A.; Ladisch, M.R.

    1997-01-01

    Inedible plant material, generated in a Controlled Ecological Life Support System (CELSS), should be recycled preferably by bioregenerative methods that utilize enzymes or micro-organisms. This material consists of hemicellulose, cellulose, and lignin with the lignin fraction representing a recalcitrant component that is not readily treated by enzymatic methods. Consequently, the white-rot fungus, Pleurotus ostreatus, is attractive since it effectively degrades lignin and produces edible mushrooms. This work describes an unstructured model for the growth of P. ostreatus in a solid-state fermentation system using lignocellulosic plant materials from Brassica napus (rapeseed) as a substrate at three different particle sizes. A logistic function model based on area was found to fit the surface growth of the mycelium on the solid substrate with respect to time, whereas a model based on diameter, alone, did not fit the data as well. The difference between the two measures of growth was also evident for mycelial growth in a bioreactor designed to facilitate a slow flowrate of air through the 1.5 cm thick mat of lignocellulosic biomass particles. The result is consistent with the concept of competition of the mycelium for the substrate that surrounds it, rather than just substrate that is immediately available to single cells. This approach provides a quantitative measure of P. ostreatus growth on lignocellulosic biomass in a solid-state fermentation system. The experimental data show that the best growth is obtained for the largest particles (1 cm) of the lignocellulosic substrate. 13 refs., 6 figs., 2 tabs.

  4. Biodegradation of aflatoxin B1 in contaminated rice straw by Pleurotus ostreatus MTCC 142 and Pleurotus ostreatus GHBBF10 in the presence of metal salts and surfactants.

    PubMed

    Das, Arijit; Bhattacharya, Sourav; Palaniswamy, Muthusamy; Angayarkanni, Jayaraman

    2014-08-01

    Aflatoxin B1 (AFB1) is a highly toxic fungal metabolite having carcinogenic, mutagenic and teratogenic effects on human and animal health. Accidental feeding of aflatoxin-contaminated rice straw may be detrimental for ruminant livestock and can lead to transmission of this toxin or its metabolites into the milk of dairy cattle. White-rot basidiomycetous fungus Pleurotus ostreatus produces ligninolytic enzymes like laccase and manganese peroxidase (MnP). These extracellular enzymes have been reported to degrade many environmentally hazardous compounds. The present study examines the ability of P. ostreatus strains to degrade AFB1 in rice straw in the presence of metal salts and surfactants. Laccase and MnP activities were determined spectrophotometrically. The efficiency of AFB1 degradation was evaluated by high performance liquid chromatography. Highest degradation was recorded for both P. ostreatus MTCC 142 (89.14 %) and P. ostreatus GHBBF10 (91.76 %) at 0.5 µg mL(-1) initial concentration of AFB1. Enhanced degradation was noted for P. ostreatus MTCC 142 in the presence of Cu(2+) and Triton X-100, at toxin concentration of 5 µg mL(-1). P. ostreatus GHBBF10 showed highest degradation in the presence of Zn(2+) and Tween 80. Liquid chromatography-mass spectrometric analysis revealed the formation of hydrated, decarbonylated and O-dealkylated products. The present findings suggested that supplementation of AFB1-contaminated rice straw by certain metal salts and surfactants can improve the enzymatic degradation of this mycotoxin by P. ostreatus strains. PMID:24770873

  5. Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products.

    PubMed

    Gros, Meritxell; Cruz-Morato, Carles; Marco-Urrea, Ernest; Longrée, Philipp; Singer, Heinz; Sarrà, Montserrat; Hollender, Juliane; Vicent, Teresa; Rodriguez-Mozaz, Sara; Barceló, Damià

    2014-09-01

    This paper describes the degradation of the X-ray contrast agent iopromide (IOP) and the antibiotic ofloxacin (OFLOX) by the white-rot-fungus Trametes versicolor. Batch studies in synthetic medium revealed that between 60 and 80% of IOP and OFLOX were removed when spiked at approximately 12 mg L(-1) and 10 mg L(-1), respectively. A significant number of transformation products (TPs) were identified for both pharmaceuticals, confirming their degradation. IOP TPs were attributed to two principal reactions: (i) sequential deiodination of the aromatic ring and (ii) N-dealkylation of the amide at the hydroxylated side chain of the molecule. On the other hand, OFLOX transformation products were attributed mainly to the oxidation, hydroxylation and cleavage of the piperazine ring. Experiments in 10 L-bioreactor with fungal biomass fluidized by air pulses operated in batch achieved high percentage of degradation of IOP and OFLOX when load with sterile (87% IOP, 98.5% OFLOX) and unsterile (65.4% IOP, 99% OFLOX) hospital wastewater (HWW) at their real concentration (μg L(-1) level). Some of the most relevant IOP and OFLOX TPs identified in synthetic medium were also detected in bioreactor samples. Acute toxicity tests indicated a reduction of the toxicity in the final culture broth from both experiments in synthetic medium and in batch bioreactor. PMID:24867600

  6. Management of Rhizoctonia root and crown rot of subarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root and crown rot is caused by the fungus Rhizoctonia solani and is one of the most severe soil-borne diseases of sugarbeet in Minnesota and North Dakota. Rhizoctonia root and crown rot may reduce yield significantly, and diseased beets may cause problems in storage piles. Fields with...

  7. Predominance of a Versatile-Peroxidase-Encoding Gene, mnp4, as Demonstrated by Gene Replacement via a Gene Targeting System for Pleurotus ostreatus

    PubMed Central

    Salame, Tomer M.; Knop, Doriv; Tal, Dana; Levinson, Dana; Yarden, Oded

    2012-01-01

    Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn2+-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn2+-dependent and Mn2+-independent peroxidase activity under Mn2+-deficient culture conditions. PMID:22636004

  8. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium.

    PubMed Central

    Spiker, J K; Crawford, D L; Crawford, R L

    1992-01-01

    The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed. PMID:1444437

  9. Expression of the Laccase Gene from a White Rot Fungus in Pichia pastoris Can Enhance the Resistance of This Yeast to H2O2-Mediated Oxidative Stress by Stimulating the Glutathione-Based Antioxidative System

    PubMed Central

    Fan, Fangfang; Zhuo, Rui; Ma, Fuying; Gong, Yangmin; Wan, Xia; Jiang, Mulan

    2012-01-01

    Laccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, we report that the expression of the laccase gene from white rot fungus in Pichia pastoris can significantly enhance the resistance of yeast to H2O2-mediated oxidative stress. The expression of laccase in yeast was found to confer a strong ability to scavenge intracellular H2O2 and to protect cells from lipid oxidative damage. The mechanism by which laccase gene expression increases resistance to oxidative stress was then investigated further. We found that laccase gene expression in Pichia pastoris could increase the level of glutathione-based antioxidative activity, including the intracellular glutathione levels and the enzymatic activity of glutathione peroxidase, glutathione reductase, and γ-glutamylcysteine synthetase. The transcription of the laccase gene in Pichia pastoris was found to be enhanced by the oxidative stress caused by exogenous H2O2. The stimulation of laccase gene expression in response to exogenous H2O2 stress further contributed to the transcriptional induction of the genes involved in the glutathione-dependent antioxidative system, including PpYAP1, PpGPX1, PpPMP20, PpGLR1, and PpGSH1. Taken together, these results suggest that the expression of the laccase gene in Pichia pastoris can enhance the resistance of yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system to protect the cell from oxidative damage. PMID:22706050

  10. Degradation of Green Polyethylene by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188

  11. Degradation of Green Polyethylene by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Ribeiro, Karla Veloso Gonçalves; Mendes, Igor Rodrigues; Kasuya, Maria Catarina Megumi

    2015-01-01

    We studied the biodegradation of green polyethylene (GP) by Pleurotus ostreatus. The GP was developed from renewable raw materials to help to reduce the emissions of greenhouse gases. However, little information regarding the biodegradation of GP discarded in the environment is available. P. ostreatus is a lignocellulolytic fungus that has been used in bioremediation processes for agroindustrial residues, pollutants, and recalcitrant compounds. Recently, we showed the potential of this fungus to degrade oxo-biodegradable polyethylene. GP plastic bags were exposed to sunlight for up to 120 days to induce the initial photodegradation of the polymers. After this period, no cracks, pits, or new functional groups in the structure of GP were observed. Fragments of these bags were used as the substrate for the growth of P. ostreatus. After 30 d of incubation, physical and chemical alterations in the structure of GP were observed. We conclude that the exposure of GP to sunlight and its subsequent incubation in the presence of P. ostreatus can decrease the half-life of GP and facilitate the mineralization of these polymers. PMID:26076188

  12. Black streak root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black streak root rot of lentil is caused by the soil borne fungus Thielaviopsis basicola. The pathogen is widespread. The disease shows symptoms of black streaking on root, and stunted plants. The disease is favored by cool and moist weather. Management of the disease rely on avoiding fields wi...

  13. Collar rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collar rot of lentil is an important seedling disease particularly under high moisture and high temperature conditions. It is caused by the fungal pathogen Sclerotium rolfsii. The pathogen has an extremely wide host range, and produces sclerotia, which can survive in the soil for many years. Infe...

  14. Redundancy among manganese peroxidases in Pleurotus ostreatus.

    PubMed

    Salame, Tomer M; Knop, Doriv; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2013-04-01

    Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn(2+) amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn(2+)-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn(2+)-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn(2+)-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn(2+)-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members. PMID:23377936

  15. Redundancy among Manganese Peroxidases in Pleurotus ostreatus

    PubMed Central

    Salame, Tomer M.; Knop, Doriv; Levinson, Dana; Yarden, Oded

    2013-01-01

    Manganese peroxidases (MnPs) are key players in the ligninolytic system of white rot fungi. In Pleurotus ostreatus (the oyster mushroom) these enzymes are encoded by a gene family comprising nine members, mnp1 to -9 (mnp genes). Mn2+ amendment to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds (such as the azo dye orange II) and lignin. In Mn2+-amended glucose-peptone medium, mnp3, mnp4, and mnp9 were the most highly expressed mnp genes. After 7 days of incubation, the time point at which the greatest capacity for orange II decolorization was observed, mnp3 expression and the presence of MnP3 in the extracellular culture fluids were predominant. To determine the significance of MnP3 for ligninolytic functionality in Mn2+-sufficient cultures, mnp3 was inactivated via the Δku80 strain-based P. ostreatus gene-targeting system. In Mn2+-sufficient medium, inactivation of mnp3 did not significantly affect expression of nontargeted MnPs or their genes, nor did it considerably diminish the fungal Mn2+-mediated orange II decolorization capacity, despite the significant reduction in total MnP activity. Similarly, inactivation of either mnp4 or mnp9 did not affect orange II decolorization ability. These results indicate functional redundancy within the P. ostreatus MnP gene family, enabling compensation upon deficiency of one of its members. PMID:23377936

  16. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    PubMed Central

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  17. Collection of Group Characteristics of Pleurotus Eryngii Using Machine Vision

    NASA Astrophysics Data System (ADS)

    Wang, Yunsheng; Wan, Changzhao; Yang, Juan; Chen, Jianlin; Yuan, Tao; Zhao, Jingyin

    An information collection system which was used to group characteristics of pleurotus eryngii was introduced. The group characteristics of pleurotus eryngii were quantified using machine vision in order to inspect and control the pleurotus eryngii house environment by an automated system. Its main contents include the following: collection of pleurotus eryngii image; image processing and pattern recognition. Finally, by analysing pleurotus eryngii image, the systems for group characteristics of pleurotus eryngii are proved to be greatly effective.

  18. Effect of fungus gnat Bradysia impatiens (Diptera: Sciaridae) feeding on subsequent Pythium aphanidermatum infection of geranium seedlings (Pelargonium x hortorum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dark-winged fungus gnats in the genus Bradysia (Diptera: Sciaridae) and root rot pathogens in the genus Pythium (Oomycetes) are important pests of greenhouse floriculture. Observations have pointed to a possible correlation between Pythium root rot disease and fungus gnat infestations; however, inte...

  19. Aggregation and feeding behavior of the formosan subterranean termite (Isoptera: Rhinotermitidae) on wood decayed by three species of wood rot fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aggregation and feeding behavior of the Formosan subterranean termite, Coptotermes formosanus Shiraki, was evaluated on wood decayed by three species of fungus that use different enzymatic pathways to degrade lignocellulose, the brown rot fungus, Gloeophyllum trabeum and two white rot fungi, Phanero...

  20. [Phylogenetic analysis of Pleurotus species].

    PubMed

    Shnyreva, A A; Shnyreva, A V

    2015-02-01

    We performed phylogenetic analysis for ten Pleurotus species, based on internal transcribed spacer (ITS) sequences of rDNA. A phylogenetic tree was constructed on the basis of 31 oyster fungi strains of different origin and 10 reference sequences from GenBank. Our analysis demonstrates that the tested Pleurotus species are of monophyletic origin. We evaluated the evolutionary distances between these species. Classic genetic analysis of sexual compatibility based on monocaryon (mon)-mon crosses showed no reproductive barriers within the P. cornucopiae-P. euosmus species complex. Thus, despite the divergence (subclustering) between commercial strains and natural isolates of P. ostreatus revealed by phylogenetic analysis, there is no reproductive isolation between these groups. A common allele of the matB locus was identified for the commercial strains Sommer and L/4, supporting the common origin of these strains. PMID:25966583

  1. Candidate genes associated with QTL controlling resistance to fusarium root rot in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot (FRR) of pea (Pisum sativum L.) is a serious pathogen in the USA and Europe and genetic resistance offers an effective and economical control for this pathogen. Fusarium root rot is caused by the fungus pathogen (Haematonectria haematococca (Berk. & Broome) (Anamorph): Fusarium sol...

  2. Soybean Seed Composition in Cultivars Differing in Resistance to Charcoal Rot (Macrophomina phaseolina)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L) Merr.] cultivars of maturity group (MG) IV were selected based on their susceptibility to charcoal rot disease caused by a soilborne fungus (Macrophomina phaseolina). Seed composition and nitrogen fixation in soybean has not been well investigated under charcoal rot infestat...

  3. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus, Phymatotrichum omnivorum, is a major cotton disease affecting cotton production in the southwestern and south central U.S. Accurate delineation of root rot infestations is necessary for cost-effective management of the disease. The objective of this s...

  4. First report of brown rot on apple fruit caused by Monilinia fructicola in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown rot, caused by Monilinia fructicola (G. Wint.) Honey, is the most devastating disease of stone fruits in North America resulting in significant economic losses. The fungus has been recently reported to cause pre and postharvest brown rot on apple fruit in Germany, Italy, and Serbia. However, M...

  5. Control of speck rot in apple fruit caused by Phacidiopycnis washingtonensis with pre- and postharvest fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Speck rot caused by Phacidiopycnis washingtonensis is a recently reported postharvest fruit rot disease of apple. Infection of apple fruit by the fungus occurs in the orchard, but symptoms develop during storage. In this study, selected pre- and postharvest fungicides were evaluated for control of s...

  6. Preharvest applications of fungicides for control of Sphaeropsis rot in stored apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sphaeropsis rot caused by Sphaeropsis pyriputrescens is a recently reported postharvest fruit rot disease of apple in Washington State and causes significant economic losses. Infection of apple fruit by the fungus occurs in the orchard, but decay symptoms develop during storage or in the market. The...

  7. Monitoring cotton root rot progression within a growing season using airborne multispectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the fungus Phymatotrichopsis omnivora, is a serious and destructive disease affecting cotton production in the southwestern United States. Accurate delineation of cotton root rot infections is important for cost-effective management of the disease. The objective of this st...

  8. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot caused by the soilborne fungus, Phymatotrichum omnivorum, is a major cotton disease affecting cotton production in the southwestern and south central U.S. Accurate delineation of root rot infestations is necessary for cost-effective management of the disease. The objective of this st...

  9. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm.

    PubMed

    Wu, Juan; Xiao, Ya-Zhong; Yu, Han-Qing

    2005-08-01

    An investigation was conducted to explore the lignin-degrading capacity of attached-growth white-rot fungi. Five white-rot fungi, Phanerochaete chrysosporium, Pleurotus ostreatus, Lentinus edodes, Trametes versicolor and S22, grown on a porous plastic media, were individually used to treat black liquor from a pulp and paper mill. Over 71% of lignin and 48% of chemical oxygen demand (COD) were removed from the wastewater. Several factors, including pH, concentrations of carbon, nitrogen and trace elements in wastewater, all had significant effects on the degradation of lignin and the removal of COD. Three white-rot fungi, P. chrysosporium, P. ostreatus and S22, showed high capacity for lignin degradation at pH 9.0-11.0. The addition of 1 g l-1 glucose and 0.2 g l-1 ammonium tartrate was beneficial for the degradation of lignin by the white-rot fungi studied. PMID:15792583

  10. BLACK ROOT ROT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black Root Rot Prepared by G. S. Abawi, Revised by L.E. Hanson Black root rot is caused by Thielaviopsis basicola (syn. Chalara elegans). The pathogen is widely distributed, can infect more than 130 plant species in 15 families, and causes severe black root rot diseases in ornamentals and crops suc...

  11. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes.

    PubMed

    Elisashvili, Vladimir; Kachlishvili, Eva; Penninckx, Michel

    2008-11-01

    The exploration of seven physiologically different white rot fungi potential to produce cellulase, xylanase, laccase, and manganese peroxidase (MnP) showed that the enzyme yield and their ratio in enzyme preparations significantly depends on the fungus species, lignocellulosic growth substrate, and cultivation method. The fruit residues were appropriate growth substrates for the production of hydrolytic enzymes and laccase. The highest endoglucanase (111 U ml(-1)) and xylanase (135 U ml(-1)) activities were revealed in submerged fermentation (SF) of banana peels by Pycnoporus coccineus. In the same cultivation conditions Cerrena maxima accumulated the highest level of laccase activity (7,620 U l(-1)). The lignified materials (wheat straw and tree leaves) appeared to be appropriate for the MnP secretion by majority basidiomycetes. With few exceptions, SF favored to hydrolases and laccase production by fungi tested whereas SSF was appropriate for the MnP accumulation. Thus, the Coriolopsis polyzona hydrolases activity increased more than threefold, while laccase yield increased 15-fold when tree leaves were undergone to SF instead SSF. The supplementation of nitrogen to the control medium seemed to have a negative effect on all enzyme production in SSF of wheat straw and tree leaves by Pleurotus ostreatus. In SF peptone and ammonium containing salts significantly increased C. polyzona and Trametes versicolor hydrolases and laccase yields. However, in most cases the supplementation of media with additional nitrogen lowered the fungi specific enzyme activities. Especially strong repression of T. versicolor MnP production was revealed. PMID:18716810

  12. Ground-based technologies for cotton root rot control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phymatotrichum, or cotton root rot (CRR), is a fungus currently affecting broadleaf crops including cotton in the southwestern U.S. and northern Mexico. The ability of CRR to lie dormant in the soil for several years tends to negate the effects of crop rotation, and it remains a problem for cotton...

  13. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe.

    PubMed

    Nakada, Yuji; Nakaba, Satoshi; Matsunaga, Hiroshi; Funada, Ryo; Yoshida, Makoto

    2013-01-01

    White rot fungus, Phanerochaete chrysosporium, and brown rot fungus, Postia placenta, grown on agar plates, were visualized by fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) probe. Mycelia grown on wood chips were also clearly detected by PNA-FISH following blocking treatment. To the best of our knowledge, this is the first report on the visualization of fungi in wood by FISH. PMID:23391931

  14. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    SciTech Connect

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A.

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.

  15. Nutrition Requirements of Pleurotus flabellatus

    PubMed Central

    Srivastava, H. C.; Bano, Zakia

    1970-01-01

    The mycelium of Pleurotus flabellatus was grown in a synthetic medium to obtain accurate information on its nutritional requirements. Among various carbon sources tried, the organism was found to utilize hexose sugars more readily than other sugars. Ammonium citrate was found to be the best source of nitrogen. The yield of dry matter increased as the concentration of nitrogen was increased up to a certain stage beyond which there was no increase in the yield, but the crude protein content of the mycelium increased. Detailed studies on the effect of varying the concentrations of other major nutrients, i.e., potassium, phosphorus, calcium, and magnesium, on the growth and crude protein content of the mycelium were also carried out. Optimal pH range was fairly broad, lying between 4.5 to 7.5. PMID:16349874

  16. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus

    PubMed Central

    Yehia, Ramy Sayed

    2014-01-01

    Manganese peroxidase (MnP) was produced from white rot edible mushroom Pleurotus ostreatus on the culture filtrate. The enzyme was purified to homogeneity using (NH4)2SO4 precipitation, DEAE-Sepharose and Sephadex G-100 column chromatography. The final enzyme activity achieved 81 U mL−1, specific activity 78 U mg−1 with purification fold of 130 and recovery 1.2% of the crude enzyme. SDS-PAGE indicated that the pure enzyme have a molecular mass of approximately 42 kDa. The optimum pH was between 4–5 and the optimum temperature was 25 °C. The pure MnP activity was enhanced by Mn2+, Cu2+, Ca2+ and K+ and inhibited by Hg+2 and Cd+2. H2O2 at 5 mM enhanced MnP activity while at 10 mM inhibited it significantly. The MnP-cDNA encoding gene was sequenced and determined (GenBank accession no. AB698450.1). The MnP-cDNA was found to consist of 497 bp in an Open Reading Frame (ORF) encoding 165 amino acids. MnP from P. ostreatus could detoxify aflatoxin B1 (AFB1) depending on enzyme concentration and incubation period. The highest detoxification power (90%) was observed after 48 h incubation at 1.5 U mL−1 enzyme activities. PMID:24948923

  17. Nutritional Analysis of Cultivated Mushrooms in Bangladesh - Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica

    PubMed Central

    Alam, Nuhu; Amin, Ruhul; Khan, Asaduzzaman; Ara, Ismot; Shim, Mi Ja; Lee, Min Woong

    2008-01-01

    Mushroom cultivation has been started recently in Bangladesh. Awareness of the nutritional and medicinal importance of mushrooms is not extensive. In this study, the nutritional values of dietary mushrooms- Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus florida and Calocybe indica that are very popular among the cultivated mushrooms in Bangladesh have been determined. These mushrooms were rich in proteins (20~25%) and fibers (13~24% in dry samples) and contained a lower amount of lipid (4 to 5%). The carbohydrate contents ranged from 37 to 48% (on the basis of dry weight). These were also rich in mineral contents (total ash content is 8~13%). The pileus and gills were protein and lipid rich and stripe was carbohydrate and fiber-rich. The moisture content of mushrooms ranged from 86 to 87.5%. Data of this study suggest that mushrooms are rich in nutritional value. PMID:23997631

  18. Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers.

    PubMed

    Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan; Ro, Hyeon-Su

    2013-12-01

    Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens. PMID:24493949

  19. Isolation of Fungal Pathogens to an Edible Mushroom, Pleurotus eryngii, and Development of Specific ITS Primers

    PubMed Central

    Kim, Sang-Woo; Kim, Sinil; Lee, Hyun-Jun; Park, Ju-Wan

    2013-01-01

    Fungal pathogens have caused severe damage to the commercial production of Pleurotus eryngii, the king oyster mushroom, by reducing production yield, causing deterioration of commercial value, and shortening shelf-life. Four strains of pathogenic fungi, including Trichoderma koningiopsis DC3, Phomopsis sp. MP4, Mucor circinelloides MP5, and Cladosporium bruhnei MP6, were isolated from the bottle culture of diseased P. eryngii. A species-specific primer set was designed for each fungus from the ITS1-5.8S rDNA-ITS2 sequences. PCR using the ITS primer set yielded a unique DNA band for each fungus without any cross-reaction, proving the validity of our method in detection of mushroom fungal pathogens. PMID:24493949

  20. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  1. Pythium Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium root rot is a disease that is found in agricultural and nursery soils throughout the United States and Canada. It is caused by several Pythium species, and the symptoms are typified by leaf or needle chlorosis, stunting, root rot, and plant death. The disease is favored by wet soils, overc...

  2. Identification of Calonectria colhounii Associated with Basal Stem Rot on Blueberry Seedlings Imported from the United States of America

    PubMed Central

    Jeon, Nak Beom; Kim, Wan Gyu; Park, Myung Soo; Hyun, Ik-Hwa; Heo, Noh-Youl

    2010-01-01

    Basal stem rot symptoms were found on blueberry seedlings imported from the United States of America in 2008. The fungus obtained from the diseased seedlings was identified as Calonectria colhounii based on morphological and molecular characteristics. The consignments of the blueberry seedlings infected with C. colhounii were destroyed to prevent introduction of the fungus to Korea. PMID:23956678

  3. Draft Genome Sequence of the Fungus Trametes hirsuta 072

    PubMed Central

    Tyazhelova, Tatiana V.; Moiseenko, Konstantin V.; Vasina, Daria V.; Mosunova, Olga V.; Fedorova, Tatiana V.; Maloshenok, Lilya G.; Landesman, Elena O.; Bruskin, Sergei A.; Psurtseva, Nadezhda V.; Slesarev, Alexei I.; Kozyavkin, Sergei A.; Koroleva, Olga V.

    2015-01-01

    A standard draft genome sequence of the white rot saprotrophic fungus Trametes hirsuta 072 (Basidiomycota, Polyporales) is presented. The genome sequence contains about 33.6 Mb assembled in 141 scaffolds with a G+C content of ~57.6%. The draft genome annotation predicts 14,598 putative protein-coding open reading frames (ORFs). PMID:26586872

  4. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    PubMed Central

    da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi

    2012-01-01

    The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. PMID:24031982

  5. An esterase from the basidiomycete Pleurotus sapidus hydrolyzes feruloylated saccharides.

    PubMed

    Linke, Diana; Matthes, Rene; Nimtz, Manfred; Zorn, Holger; Bunzel, Mirko; Berger, Ralf G

    2013-08-01

    Investigating the secretion of esterases by the basidiomycetous fungus Pleurotus sapidus in a Tween 80-rich nutrient medium, an enzyme was discovered that hydrolyzed the ester bond of feruloylated saccharides. The enzyme was purified by ion exchange and size exclusion chromatography. Polyacrylamide gel electrophoresis analysis showed a monomeric protein of about 55 kDa. The complete coding sequence with an open reading frame of 1,665 bp encoded a protein (Est1) consisting of 554 amino acids. The enzyme showed no significant homology to any published feruloyl esterase sequences, but possessed putative conserved domains of the lipase/esterase superfamily. Substrate specificity studies classified the new enzyme as type-A feruloyl esterase, hydrolyzing methyl ferulate, methyl sinapate, and methyl p-coumarate but no methyl caffeate. The enzyme had a pH optimum of 6 and a temperature optimum at 50 °C. Ferulic acid was efficiently released from ferulated saccharides, and the feruloyl esterase exhibited moderate stability in biphasic systems (50 % toluene or tert-butylmethyl ether). PMID:23203636

  6. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes.

    PubMed

    da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi

    2012-10-01

    The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes. PMID:24031982

  7. Feed intake, digestibility, nitrogen utilization, ruminal condition and blood metabolites in wethers fed ground bamboo pellets cultured with white-rot fungus (Ceriporiopsis subvermispora) and mixed with soybean curd residue and soy sauce cake.

    PubMed

    Oguri, Michimasa; Okano, Kanji; Ieki, Hajime; Kitagawa, Masayuki; Tadokoro, Osamu; Sano, Yoshinori; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2013-09-01

    Three types of bamboo pellets as a ruminant feed: P1 (ground bamboo (GB) cultured with the fungus Ceriporiopsis subvermispora (CGB) : soybean curd residue (T) : soy sauce cake (S) in a 5:4:1 ratio on a dry matter (DM) basis); P2 (GB : T : S = 5:4:1 on a DM basis); and P3 (CGB : T : S = 5.5:0.8:3.7 on a DM basis) were prepared. Four wethers were assigned in a 4 × 4 Latin square design experiment to evaluate the applicability of the bamboo pellets. The experimental treatments were C (control): fed alfalfa hay cubes (AC) only, and T1, T2 and T3: fed P1, P2, and P3 with AC by 1:1 on a DM basis, respectively. The digestibility of the DM, organic matter and acid detergent fiber of P1 were significantly higher than those of P2 and P3 (P < 0.05). The total digestible nutrient (TDN) contents of AC, P1, P2 and P3 were 56.5%, 60.2%, 53.2% and 47.0%, respectively. No significant differences in nitrogen retention or ruminal pH and NH₃ were observed among the treatment groups. The results indicate that bamboo pellets cultured with C. subvermispora and mainly mixed with soybean curd residue improved nutritional quality of ground bamboo because of its high digestibility and TDN content. PMID:23607929

  8. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  9. Production and Degradation of Oxalic Acid by Brown Rot Fungi

    PubMed Central

    Espejo, Eduardo; Agosin, Eduardo

    1991-01-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi. PMID:16348522

  10. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  11. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B.

    PubMed

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-06-01

    Nine new sesquiterpenoids, clitocybulol derivatives, clitocybulols G-O (1-9) and three known sesquiterpenoids, clitocybulols C-E (10-12), were isolated from the solid culture of the edible fungus Pleurotus cystidiosus. The structures of compounds 1-12 were determined by spectroscopic methods. The absolute configurations of compounds 1-9 were assigned via the circular dichroism (CD) data analysis. Compounds 1, 6 and 10 showed moderate inhibitory activity against protein tyrosine phosphatase-1B (PTP1B) with IC50 values of 49.5, 38.1 and 36.0μM, respectively. PMID:27085303

  12. Creating prescription maps from historical imagery for site-specific management of cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is a severe plant disease that has affected cotton production for over a century. Recent research found that a commercial fungicide, Topguard (flutriafol), was able to control this disease. As a result, Topguard Terra Fungic...

  13. Seed treatment with live or dead Fusarium verticillioides equivalently reduces the severity of subsequent stalk rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides is a widely distributed fungus that can associate with maize as a deleterious pathogen and an advantageous endophyte. Here, we show that seed treatment with live F.verticillioides enhances maize resistance to secondary stalk rot infection, and demonstrate that dead F.vertici...

  14. Monitoring cotton root rot progression within and across growing seasons using remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore Shear (Duggar), is one of the most destructive plant diseases occurring throughout the southwestern U.S. More recently, a fungicide, flutriafol, has been evaluated in Texas and was found to have the potential for controlling ...

  15. Influence of Nitrogen, Phosphorus, and Potassium on the Severity of Strawberry Anthracnose Crown Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of nitrogen, phosphorus, and potassium on the severity of anthracnose crown rot (causal fungus, Colletotrichum fragariae) was evaluated in three greenhouse studies. Strawberry plants were maintained under standard greenhouse conditions with one plant per 10 cm pot fertilized three tim...

  16. Evaluating spectral measures derived from airborne multispectral imagery for detecting cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for more than 100 years, but effective practices for its control are still lacki...

  17. Evaluating unsupervised and supervised image classification methods for mapping cotton root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivora, is one of the most destructive plant diseases occurring throughout the southwestern United States. This disease has plagued the cotton industry for over a century, but effective practices for its control are still lacking. R...

  18. Diallel analysis of resistance to fusarium ear rot and fumonisin contamination in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium verticillioides infects maize ears and kernels, resulting in Fusarium ear rot disease, reduced grain yields, and contamination of grain with the mycotoxin fumonisin. Typical hybrid maize breeding programs involve selection for both favorable inbred and hybrid performance, and the...

  19. Species Identification and Variation in the North American Cranberry Fruit Rot Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex mixtures of pathogenic fungi cause cranberry fruit rot, with the contribution by any given fungus to the disease varying from bed to bed, cultivar to cultivar, season to season, and across regions. Furthermore, population variability within the individual fungal species across growing region...

  20. A new postharvest fruit rot in apple and pear caused by Phacidium lacerum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During surveys for postharvest diseases of apples and pears, an unknown postharvest fruit rot was observed in Washington State. The disease appeared to originate from infection of the stem and calyx tissue of the fruit or wounds on the fruit. An unknown pycnidial fungus was consistently isolated fro...

  1. Biodegradation of 1,2,3,4-tetrachlorodibenzo-p-dioxin in liquid broth by brown-rot fungi.

    PubMed

    Perlatti, Bruno; da Silva, Maria Fátima das Graças Fernandes; Fernandes, João Batista; Forim, Moacir Rossi

    2013-11-01

    Dioxins are a class of extremely hazardous molecules that might pose a threat to the environment. This work evaluated the microbial degradation of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD), in liquid broth using three brown-rot fungi and one white-rot fungi as control. A fast and reliable extraction method with recoveries of over 98% together with a validated GC-MS method was developed, and applied to quantify 1,2,3,4-TCDD in liquid broth, mycelia and reaction flask, with detection limits of 10 ppb. Among the four strains tested, brown-rot fungus Aspergillus aculeatus showed best results, removing up to 21% of dioxin after 30-day incubation. The results open both a path for biotechnological interest in bioremediation purposes and environmental behavior studies by using brown-rot fungus. PMID:24080442

  2. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation.

    PubMed Central

    Muñoz, C; Guillén, F; Martínez, A T; Martínez, M J

    1997-01-01

    Two laccase isoenzymes produced by Pleurotus eryngii were purified to electrophoretic homogeneity (42- and 43-fold) with an overall yield of 56.3%. Laccases I and II from this fungus are monomeric glycoproteins with 7 and 1% carbohydrate content, molecular masses (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 65 and 61 kDa, and pIs of 4.1 and 4.2, respectively. The highest rate of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) oxidation for laccase I was reached at 65 degrees C and pH 4, and that for laccase II was reached at 55 degrees C and pH 3.5. Both isoenzymes are stable at high pH, retaining 60 to 70% activity after 24 h from pH 8 to 12. Their amino acid compositions and N-terminal sequences were determined, the latter strongly differing from those of laccases of other basidiomycetes. Antibodies against laccase I reacted with laccase II, as well as with laccases from Pleurotus ostreatus, Pleurotus pulmonarius, and Pleurotus floridanus. Different hydroxy- and methoxy-substituted phenols and aromatic amines were oxidized by the two laccase isoenzymes from P. eryngii, and the influence of the nature, number, and disposition of aromatic-ring substituents on kinetic constants is discussed. Although both isoenzymes presented similar substrate affinities, the maximum rates of reactions catalyzed by laccase I were higher than those of laccase II. In reactions with hydroquinones, semiquinones produced by laccase isoenzymes were in part converted into quinones via autoxidation. The superoxide anion radical produced in the latter reaction dismutated, producing hydrogen peroxide. In the presence of manganous ion, the superoxide union was reduced to hydrogen peroxide with the concomitant production of manganic ion. These results confirmed that laccase in the presence of hydroquinones can participate in the production of both reduced oxygen species and manganic ions. PMID:9172335

  3. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    NASA Astrophysics Data System (ADS)

    Shrestha, Prachand

    no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.

  4. Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.

    PubMed

    Koutrotsios, Georgios; Zervakis, Georgios I

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  5. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    PubMed Central

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  6. Ostreopexin: a hemopexin fold protein from the oyster mushroom, Pleurotus ostreatus.

    PubMed

    Ota, Katja; Mikelj, Miha; Papler, Tadeja; Leonardi, Adrijana; Križaj, Igor; Maček, Peter

    2013-08-01

    Proteins with hemopexin repeats are widespread in viruses, prokaryotes and eukaryotes. We report here for the first time the existence of a protein in fungi with the four-bladed β-propeller fold that is typical for hemopexin-like proteins. This protein was isolated from the edible basidiomycetous fungus Pleurotus ostreatus and is named ostreopexin. It binds to Ni(2+)-NTA-agarose, and is structurally and functionally very similar to PA2 albumins isolated from legume seeds and the hemopexin fold protein from rice. Like these plant proteins, ostreopexin shows reversible binding to hemin with moderate affinity, but does not bind to polyamines. We suggest that ostreopexin participates in intracellular management of metal (II or III)-chelates. PMID:23567905

  7. Identification of the nucleophile catalytic residue of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus

    DOE PAGESBeta

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; Faraco, Vincenza

    2015-12-21

    In this paper, the recombinant α-l-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involvedmore » in the retaining mechanism of this GH51 arabinofuranosidase. 1H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration.« less

  8. Enhanced green fluorescent protein expression in Pleurotus ostreatus for in vivo analysis of fungal laccase promoters.

    PubMed

    Amore, Antonella; Honda, Yoichi; Faraco, Vincenza

    2012-10-01

    The laccase family of Pleurotus ostreatus has been widely characterized, and studies of the genes coding for laccase isoenzymes in P. ostreatus have so far led to the identification of four different genes and the corresponding cDNAs, poxc, pox1, poxa1b and poxa3. Analyses of P. ostreatus laccase promoters poxc, pox1, poxa1b and poxa3 have allowed identification of several putative response elements, and sequences of metal-responsive elements involved in the formation of complexes with fungal proteins have been identified in poxc and poxa1b promoters. In this work, development of a system for in vivo analysis of P. ostreatus laccase promoter poxc by enhanced green fluorescent protein expression is performed, based on a poly ethylene glycol-mediated procedure for fungal transformation. A quantitative measurement of fluorescence expressed in P. ostreatus transformants is hereby reported for the first time for this fungus. PMID:22893518

  9. Environmental conditions modulate the switch among different states of the hydrophobin Vmh2 from Pleurotus ostreatus.

    PubMed

    Longobardi, Sara; Picone, Delia; Ercole, Carmine; Spadaccini, Roberta; De Stefano, Luca; Rea, Ilaria; Giardina, Paola

    2012-03-12

    Fungal hydrophobins are amphipathic, highly surface-active, and self-assembling proteins. The class I hydrophobin Vmh2 from the basidiomycete fungus Pleurotus ostreatus seems to be the most hydrophobic hydrophobin characterized so far. Structural and functional properties of the protein as a function of the environmental conditions have been determined. At least three distinct phenomena can occur, being modulated by the environmental conditions: (1) when the pH increases or in the presence of Ca(2+) ions, an assembled state, β-sheet rich, is formed; (2) when the solvent polarity increases, the protein shows an increased tendency to reach hydrophobic/hydrophilic interfaces, with no detectable conformational change; and (3) when a reversible conformational change and reversible aggregation occur at high temperature. Modulation of the Vmh2 conformational/aggregation features by changing the environmental conditions can be very useful in view of the potential protein applications. PMID:22292968

  10. Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus

    NASA Astrophysics Data System (ADS)

    de Stefano, L.; Rea, I.; de Tommasi, E.; Rendina, I.; Rotiroti, L.; Giocondo, M.; Longobardi, S.; Armenante, A.; Giardina, P.

    2009-10-01

    A crystalline silicon surface can be made biocompatible and chemically stable by a self-assembled biofilm of proteins, the hydrophobins (HFBs) purified from the fungus Pleurotus ostreatus. The protein-modified silicon surface shows an improvement in wettability and is suitable for immobilization of other proteins. Two different proteins were successfully immobilized on the HFBs-coated chips: the bovine serum albumin and an enzyme, a laccase, which retains its catalytic activity even when bound on the chip. Variable-angle spectroscopic ellipsometry (VASE), water contact angle (WCA), and fluorescence measurements demonstrated that the proposed approach in silicon surface bioactivation is a feasible strategy for the fabrication of a new class of hybrid devices.

  11. An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters.

    PubMed

    Zorn, Holger; Bouws, Henning; Takenberg, Meike; Nimtz, Manfred; Getzlaff, Rita; Breithaupt, Dietmar E; Berger, Ralf G

    2005-05-01

    An extracellular enzyme capable of efficient hydrolysis of xanthophyll esters was purified from culture supernatants of the basidiomycete Pleurotus sapidus. Under native conditions, the enzyme exhibited a molecular mass of 430 kDa, and SDS-PAGE data suggested a composition of eight identical subunits. Biochemical characterisation of the purified protein showed an isoelectric point of 4.5, and ideal hydrolysis conditions were observed at pH 5.8 and 40 degrees C. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. An 1861-bp cDNA containing an open reading frame of 1641 bp was cloned from a cDNA library that showed ca. 40% homology to Candida rugosa lipases. The P. sapidus carboxylesterase represents the first enzyme of the lipase/esterase family from a basidiomycetous fungus that has been characterised at the molecular level. PMID:15927887

  12. Identification of the nucleophile catalytic residue of GH51 α-L-arabinofuranosidase from Pleurotus ostreatus.

    PubMed

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; Faraco, Vincenza

    2015-12-01

    In this study, the recombinant α-L-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involved in the retaining mechanism of this GH51 arabinofuranosidase. (1)H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration. PMID:26690659

  13. Cylindrocarpon root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cylindrocarpon root rot of alfalfa has been found sporadically in Canada and the northern United States. The etiology of this disease is not fully understood, but the priority for research has not been high because of its infrequent occurrence. The infected area of the root initially has a water-soa...

  14. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation.

    PubMed

    Salame, Tomer M; Knop, Doriv; Levinson, Dana; Mabjeesh, Sameer J; Yarden, Oded; Hadar, Yitzhak

    2014-01-01

    Lignin biodegradation by white-rot fungi is pivotal to the earth's carbon cycle. Manganese peroxidases (MnPs), the most common extracellular ligninolytic peroxidases produced by white-rot fungi, are considered key in ligninolysis. Pleurotus ostreatus, the oyster mushroom, is a preferential lignin degrader occupying niches rich in lignocellulose such as decaying trees. Here, we provide direct, genetically based proof for the functional significance of MnP to P. ostreatus ligninolytic capacity under conditions mimicking its natural habitat. When grown on a natural lignocellulosic substrate of cotton stalks under solid-state culture conditions, gene and isoenzyme expression profiles of its short MnP and versatile peroxidase (VP)-encoding gene family revealed that mnp2 was predominately expressed. mnp2, encoding the versatile short MnP isoenzyme 2 was disrupted. Inactivation of mnp2 resulted in three interrelated phenotypes, relative to the wild-type strain: (i) reduction of 14% and 36% in lignin mineralization of stalks non-amended and amended with Mn(2+), respectively; (ii) marked reduction of the bioconverted lignocellulose sensitivity to subsequent bacterial hydrolyses; and (iii) decrease in fungal respiration rate. These results may serve as the basis to clarify the roles of the various types of fungal MnPs and VPs in their contribution to white-rot decay of wood and lignocellulose in various ecosystems. PMID:24119015

  15. Soft Rot of Tomato Caused by Mucor racemosus in Korea.

    PubMed

    Kwon, Jin-Hyeuk; Hong, Seung-Beom

    2005-12-01

    A soft rot of fruits caused by Mucor racemosus occurred on cherry tomato collected in Agricultural Products Wholesale Market in Jinju, Korea. The disease infection usually occurred wounded areas after cracking of fruits. At first, the lesions started with water soaked and rapidly softened and diseased lesion gradually expanded. Colonies were white to brownish to gray in color. Sporangia were 32~54 µm in size and globose in shape. Sporangiophores were 8~14 µm in width. Sporangiospores were 5~12 × 4~8 µm in size, ellipsoidal to subglobose in shape. Columella was 27~42 µm in size, obovoid, ellipsoidal, cylindrical-ellipsoidal, slightly pyriform in shape. Chlamydospores were numerous in sporangiophores and barrelshaped when young, subglobose in old cultures. Optimum growth temperature was about 25℃. The fungus was identified as M. racemosus Fres. This is the first report of soft rot on cherry tomato caused by M. racemosus in Korea. PMID:24049508

  16. Microbial based pretreatment of corn stover by white rot fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment, as the first step towards conversion of lignocellulosic feedstocks to ethanol, makes up one-third of the total production costs and remains one of the main barriers to commercial success. Typically, harsh methods are used to pretreat lignocellulosic biomass prior to its breakdown to s...

  17. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  18. Relationship between Monokaryotic Growth Rate and Mating Type in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gúmer; Iribarren, Iñaki; Blanco, Juan A.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía

    2001-01-01

    The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at the matB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matB locus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matA alleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus. PMID:11472908

  19. Diffusional and transcriptional mechanisms involved in laccases production by Pleurotus ostreatus CP50.

    PubMed

    Fernández-Alejandre, Karen I; Flores, Noemí; Tinoco-Valencia, Raunel; Caro, Mario; Flores, Celia; Galindo, Enrique; Serrano-Carreón, Leobardo

    2016-04-10

    The independent effects of hydrodynamic stress (assessed as the Energy Dissipation/Circulation Function, EDCF) and dissolved oxygen tension (DOT) on the growth, morphology and laccase production by Pleurotus ostreatus CP50 were studied using a 3(2) factorial design in a 10L reactor. A bell-shape function for fungus growth between 8 and 22% DOT was observed, as well as a significant negative effect on laccase production and the expression of poxc, the gene encoding for the most abundant laccase produced by P. ostreatus CP50. Increasing EDCF from 1 to 21 kW/m(3)s, had a positive effect on fungus growth, whereas no effect on poxc gene expression was observed. However, the increase in EDCF favored the specific laccase production due to the generation of smaller pellets with less diffusional limitations and increased metabolically active biomass. The results show, for the first time, that hydrodynamic effects on growth and laccase production are mainly physical and diffusional, while the influence of the dissolved oxygen is at transcriptional level. PMID:26924241

  20. Hazardous waste treatment using fungus enters marketplace

    SciTech Connect

    Illman, D.L.

    1993-07-01

    When the announcement was made eight years ago that a common fungus had been found that could degrade a variety of environmental pollutants, the news stirred interest in the scientific community, the private sector, and the general public. Here was the promise of a new technology that might be effective and economical in treating hazardous waste, especially the most recalcitrant of toxic pollutants. Today, commercialization is beginning amid a mixture of optimism and skepticism. The organism in question is white rot fungus, or Phanerochaete chrysosporium, and it belongs to a family of woodrotting fungi common all over North America. The fungi secrete enzymes that break down lignin in wood to carbon dioxide and water--a process called mineralization. These lignin-degrading enzymes are not very discriminating, however. The white rot fungi have been shown to degrade such materials as DDT, the herbicide (2,4,5-trichlorophenoxy)acetic acid (2,4,5-T), 2,4,6-trinitrotoluene (TNT), pentachlorophenol (PCP), creosote, coal tars, and heavy fuels, in many cases mineralizing these pollutants to a significant extent.

  1. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot1[OPEN

    PubMed Central

    Collins, Thomas S.; Vicente, Ariel R.; Doyle, Carolyn L.; Ye, Zirou; Allen, Greg; Heymann, Hildegarde

    2015-01-01

    Noble rot results from exceptional infections of ripe grape (Vitis vinifera) berries by Botrytis cinerea. Unlike bunch rot, noble rot promotes favorable changes in grape berries and the accumulation of secondary metabolites that enhance wine grape composition. Noble rot-infected berries of cv Sémillon, a white-skinned variety, were collected over 3 years from a commercial vineyard at the same time that fruit were harvested for botrytized wine production. Using an integrated transcriptomics and metabolomics approach, we demonstrate that noble rot alters the metabolism of cv Sémillon berries by inducing biotic and abiotic stress responses as well as ripening processes. During noble rot, B. cinerea induced the expression of key regulators of ripening-associated pathways, some of which are distinctive to the normal ripening of red-skinned cultivars. Enhancement of phenylpropanoid metabolism, characterized by a restricted flux in white-skinned berries, was a common outcome of noble rot and red-skinned berry ripening. Transcript and metabolite analyses together with enzymatic assays determined that the biosynthesis of anthocyanins is a consistent hallmark of noble rot in cv Sémillon berries. The biosynthesis of terpenes and fatty acid aroma precursors also increased during noble rot. We finally characterized the impact of noble rot in botrytized wines. Altogether, the results of this work demonstrated that noble rot causes a major reprogramming of berry development and metabolism. This desirable interaction between a fruit and a fungus stimulates pathways otherwise inactive in white-skinned berries, leading to a greater accumulation of compounds involved in the unique flavor and aroma of botrytized wines. PMID:26450706

  2. Molecular polymorphism and phenotypic diversity in the generalist, wood-decay fungus Eutypa lata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen adaptation to different ecological niches can lead to host specialization and, when coupled with reproductive isolation, ecological speciation. We tested the hypothesis of host specialization in northern California populations of the fungus Eutypa lata, which causes a soft-rot wood decay in...

  3. Effects of host physiology on the development of core rot, caused by alternaria alternata, in Red Delicious apples.

    PubMed

    Shtienberg, D

    2012-08-01

    Alternaria alternata is the predominant fungus involved in moldy core and core rot of Red Delicious apples. The effects of environmental conditions during bloom on moldy core and core rot, and on the need for fungicide application, were examined in 10 experiments carried out in 2007. In untreated experimental plots, typical moldy core symptoms were very common, with relatively low variability (coefficient of variation: 22.2%) among experiments; core rot incidence ranged from 2 to 26% with large variability (coefficient of variation: 90.0%) among experiments. No evidence of prevailing environmental conditions during bloom affecting the development of moldy core or core rot was detected. No effect of fungicide application (a mixture of bromuconazole + captan three times a week at bloom) on moldy core or core rot was found. A random distribution of moldy core and an occasional aggregation of core rot in the orchards were indicated from Morisita's index of dispersion (I(δ)). The hypothesis that core rot incidence is governed by host physiology and that yield load can be used as an indicator of trees' susceptibility was examined in a set of eight observations and four experiments. No correlation was found between tree yield load and moldy core, but core rot incidence was inversely related to yield load. Furthermore, irrespective of tree yield load, core rot was more abundant on large compared with small fruits. It is concluded that host physiology, rather than pathogen occurrence or environmental conditions at bloom stage, governs the development of core rot in Red Delicious apples caused by A. alternata in Israel. PMID:22624774

  4. Evaluation of sugar-cane vinasse treated with Pleurotus sajor-caju utilizing aquatic organisms as toxicological indicators.

    PubMed

    Ferreira, Luiz F Romanholo; Aguiar, Mario M; Messias, Tamara G; Pompeu, Georgia B; Lopez, Ana M Queijeiro; Silva, Daniel P; Monteiro, Regina T

    2011-01-01

    Toxicity tests with aquatic organisms constitute an effective tool in the evaluation, prediction and detection of the potential effect of pollutants from environmental samples in living organisms. Vinasse, a highly colored effluent, is a sub-product rich in nutrients, mainly organic matter, with high pollutant potential when disposed in the environment. Assays for vinasse decolorization were performed using the fungus Pleurotus sajor-caju CCB020 in vinasse biodegradation study, were occurred reductions of 82.8% in COD, 75.3% in BOD, 99.2% in the coloration and 99.7% in turbidity. The vinasse toxicity reduction was determined by the exposition to the following organisms: Pseudokirchneriella subcapitata, Daphnia magna, Daphnia similis and Hydra attenuata. This work concluded that the systematic combination of P. sajor-caju and vinasse can be applied in the bioprocess of color reduction and degradation of complex vinasse compounds, with reduction in the toxicity and improving its physical-chemical properties. PMID:20843550

  5. Identification of the nucleophile catalytic residue of GH51 α-l-arabinofuranosidase from Pleurotus ostreatus

    SciTech Connect

    Amore, Antonella; Iadonisi, Alfonso; Vincent, Florence; Faraco, Vincenza

    2015-12-21

    In this paper, the recombinant α-l-arabinofuranosidase from the fungus Pleurotus ostreatus (rPoAbf) was subjected to site-directed mutagenesis in order to identify the catalytic nucleophile residue. Based on bioinformatics and homology modelling analyses, E449 was revealed to be the potential nucleophilic residue. Thus, the mutant E449G of PoAbf was recombinantly expressed in Pichia pastoris and its recombinant expression level and reactivity were investigated in comparison to the wild-type. The design of a suitable set of hydrolysis experiments in the presence or absence of alcoholic arabinosyl acceptors and/or formate salts allowed to unambiguously identify the residue E449 as the nucleophile residue involved in the retaining mechanism of this GH51 arabinofuranosidase. 1H NMR analysis was applied for the identification of the products and the assignement of their anomeric configuration.

  6. Solubilization and Mineralization of Lignin by White Rot Fungi

    PubMed Central

    Boyle, C. David; Kropp, Bradley R.; Reid, Ian D.

    1992-01-01

    The white rot fungi Lentinula edodes, Phanerochaete chrysosporium, Pleurotus sajor-caju, Flammulina velutipes, and Schizophyllum commune were grown in liquid media containing 14C-lignin-labelled wood, and the formation of water-soluble 14C-labelled products and 14CO2, the growth of the fungi, and the activities of extracellular lignin peroxidase, manganese peroxidase, and laccase were measured. Conditions that affect the rate of lignin degradation were imposed, and both long-term (0- to 16-day) and short-term (0- to 72-h) effects on the production of the two types of product and on the activities of the enzymes were monitored. The production of 14CO2-labelled products from the aqueous ones was also investigated. The short-term studies showed that the different conditions had different effects on the production of the two products and on the activities of the enzymes. Nitrogen sources inhibited the production of both products by all species when differences in growth could be discounted. Medium pH and manganese affected lignin degradation by the different species differently. With P. chrysosporium, the results were consistent, with lignin peroxidase playing a role in lignin solubilization and manganese peroxidase being important in subsequent CO2 production. PMID:16348781

  7. Production of ligninolytic enzymes by white rot fungi on lignocellulosic wastes using novel pretreatments.

    PubMed

    Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Agrawal, S; Singh, M P

    2014-01-01

    Production of extracellular ligninolytic enzymes (laccase and polyphenol oxidase) secreted by three species of white rot fungi (Pleurotus florida, P. flabellatus and P. sajor—caju) under in vivo condition was studied on two lignocellulosic substrates i.e., paddy straw and wheat straw. These lignocellulosic substrates were treated with neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract. Between the two lignocellulosic substrates, paddy straw pretreated with neem oil supported maximum activity of laccase and polyphenol oxidase (PPO). The activities of both the enzymes were low on the 5th day of cultivation which increased on the 10th day and reached at peak on the 15th day. Thereafter, there was continuous decrease in the enzymatic activity. Among the three species, P. flabellatus (P3) showed maximum ligninolytic enzymatic activity followed by P. florida (P2)and P. sajor—caju (P1). PMID:25535711

  8. Iron bioaccumulation in mycelium of Pleurotus ostreatus

    PubMed Central

    Almeida, Sandra M.; Umeo, Suzana H.; Marcante, Rafael C.; Yokota, Meire E.; Valle, Juliana S.; Dragunski, Douglas C.; Colauto, Nelson B.; Linde, Giani A.

    2015-01-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L −1 and glucose at 28.45 g L −1 . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L −1 or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg −1 produced with iron addition of 300 mg L −1 . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L −1 of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron. PMID:26221108

  9. Iron bioaccumulation in mycelium of Pleurotus ostreatus.

    PubMed

    Almeida, Sandra M; Umeo, Suzana H; Marcante, Rafael C; Yokota, Meire E; Valle, Juliana S; Dragunski, Douglas C; Colauto, Nelson B; Linde, Giani A

    2015-03-01

    Pleurotus ostreatus is able to bioaccumulate several metals in its cell structures; however, there are no reports on its capacity to bioaccumulate iron. The objective of this study was to evaluate cultivation variables to increase iron bioaccumulation in P. ostreatus mycelium. A full factorial design and a central composite design were utilized to evaluate the effect of the following variables: nitrogen and carbon sources, pH and iron concentration in the solid culture medium to produce iron bioaccumulated in mycelial biomass. The maximum production of P. ostreatus mycelial biomass was obtained with yeast extract at 2.96 g of nitrogen L (-1) and glucose at 28.45 g L (-1) . The most important variable to bioaccumulation was the iron concentration in the cultivation medium. Iron concentration at 175 mg L (-1) or higher in the culture medium strongly inhibits the mycelial growth. The highest iron concentration in the mycelium was 3500 mg kg (-1) produced with iron addition of 300 mg L (-1) . The highest iron bioaccumulation in the mycelium was obtained in culture medium with 150 mg L (-1) of iron. Iron bioaccumulation in P. ostreatus mycelium is a potential alternative to produce non-animal food sources of iron. PMID:26221108

  10. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  11. Pythium Root Rot (and Feeder Root Necrosis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pythium species cause a number of diseases on corn. Among the Pythium diseases, root rot presents the least conspicuous aboveground symptoms. Broadly defined, root rot also includes feeder root necrosis. At least 16 species of Pythium are known to cause root rot of corn. These include P. acanthicu...

  12. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  13. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  14. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  15. 7 CFR 29.6039 - Stem rot.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Stem rot. 29.6039 Section 29.6039 Agriculture... INSPECTION Standards Definitions § 29.6039 Stem rot. The deterioration of an uncured or frozen stem resulting from bacterial action. Although stem rot results from bacterial action, it is inactive in cured...

  16. Sclerotinia stem and crown rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White mold of chickpea is caused by three soil borne fungi Sclerotinia sclerotiorum, S. minor and S. trifoliorum, causing either stem rot and crown rot. Stem infection, usually above ground and initiated by ascospores through carpogenic germination of scleroia produces stem rot, whereas crown infe...

  17. Fungus gnat (Bradysia impatiens) feeding and mechanical wounding inhibit Pythium aphanidermatum infection of geranium seedlings (Pelargonium x hortorum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory tests were conducted to investigate potential effects of fungus gnat (Bradysia impatiens) feeding damage on susceptibility of geranium seedlings (Pelargonium x hortorum) to infection by the root rot pathogen Pythium aphanidermatum. Effects were compared to those from similar t...

  18. Biosorption of aquatic copper (II) by mushroom biomass Pleurotus eryngii: kinetic and isotherm studies.

    PubMed

    Kan, Shi-Hong; Sun, Bai-Ye; Xu, Fang; Song, Qi-Xue; Zhang, Sui-Fang

    2015-01-01

    Biosorption is an effective method for removing heavy metals from effluent. This work mainly aimed to evaluate the adsorption performance of the widely cultivated novel mushroom, Pleurotus eryngii, for the removal of Cu(II) from single aqueous solutions. Kinetics and equilibria were obtained using a batch technique. The sorption kinetics follows the pseudo-second-order model, whereas the adsorption equilibria are best described by the Langmuir model. The adsorption process is exothermic because both the Langmuir-estimated biosorption capacity and the heat of adsorption estimated from the Temkin model decreased with increasing tested temperature. Based on the adsorption intensity estimated by the Freundlich model and the mean adsorption free energy estimated by the Dubinin-Radushkevich model, the type of adsorption is defined as physical adsorption. The biomass of the macro-fungus P. eryngii has the potential to remove Cu(II) from a large-scale wastewater contaminated by heavy metals, because of its favorable adsorption, short biosorption equilibrium time of 20 min and remarkable biosorption capacity (15.19 mg g⁻¹ as calculated by the Langmuir model). The adsorbed metal-enriched mushroom is a high-quality bio-ore by the virtue of its high metal content of industrial mining grade and easy metal extractability. PMID:25633953

  19. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method.

    PubMed

    Chen, Zhengsuo; Deng, Hongbo; Chen, Can; Yang, Ying; Xu, Heng

    2014-01-01

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues.The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions. PMID:24620852

  20. Differentially Regulated, Vegetative-Mycelium-Specific Hydrophobins of the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Peñas, María M.; Rust, Brian; Larraya, Luis M.; Ramírez, Lucía; Pisabarro, Antonio G.

    2002-01-01

    Three different hydrophobins (Vmh1, Vmh2, and Vmh3) were isolated from monokaryotic and dikaryotic vegetative cultures of the edible fungus Pleurotus ostreatus. Their corresponding genes have a number of introns different from those of other P. ostreatus hydrophobins previously described. Two genes (vmh1 and vmh2) were expressed only at the vegetative stage, whereas vmh3 expression was also found in the fruit bodies. Furthermore, the expression of the three hydrophobins varied significantly with culture time and nutritional conditions. The three genes were mapped in the genomic linkage map of P. ostreatus, and evidence is presented for the allelic nature of vmh2 and POH3 and for the different locations of the genes coding for the glycosylated hydrophobins Vmh3 and POH2. The glycosylated nature of Vmh3 and its expression during vegetative growth and in fruit bodies suggest that it should play a role in development similar to that proposed for SC3 in Schizophyllum commune. PMID:12147487

  1. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method

    PubMed Central

    2014-01-01

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues. The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions. PMID:24620852

  2. Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice.

    PubMed

    Cui, Hai-Yan; Wang, Chang-Lu; Wang, Yu-Rong; Li, Zhen-Jing; Chen, Mian-Hua; Li, Feng-Juan; Sun, Yan-Ping

    2015-10-01

    In the present study, the effects of Pleurotus nebrodensis polysaccharide (PN-S) on the immune functions of immunosuppressed mice were determined. The immunosuppressed mouse model was established by treating the mice with cyclophosphamide (40 mg/kg/2d, CY) through intraperitoneal injection. The results showed that PN-S administration significantly reversed the CY-induced weight loss, increased the thymic and splenic indices, and promoted proliferation of T lymphocyte, B lymphocyte, and macrophages. PN-S also enhanced the activity of natural killer cells and increased the immunoglobulin M (IgM) and immunoglobulin G (IgG) levels in the serum. In addition, PN-S treatment significantly increased the phagocytic activity of mouse peritoneal macrophages. PN-S also increased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and nitric oxide (NOS) in splenocytes. qRT-PCR results also indicated that PN-S increased the mRNA expression of IL-6, TNF-α, INF-γ, and nitric oxide synthase (iNOS) in the splenocytes. These results suggest that PN-S treatment enhances the immune function of immunosuppressed mice. This study may provide a basis for the application of this fungus in adjacent immunopotentiating therapy against cancer and in the treatment of chemotherapy-induced immunosuppression. PMID:26481376

  3. Identification, characterization, and In situ detection of a fruit-body-specific hydrophobin of Pleurotus ostreatus.

    PubMed

    Peñas, M M; Asgeirsdóttir, S A; Lasa, I; Culiañez-Macià, F A; Pisabarro, A G; Wessels, J G; Ramírez, L

    1998-10-01

    Hydrophobins are small (length, about 100 +/- 25 amino acids), cysteine-rich, hydrophobic proteins that are present in large amounts in fungal cell walls, where they form part of the outermost layer (rodlet layer); sometimes, they can also be secreted into the medium. Different hydrophobins are associated with different developmental stages of a fungus, and their biological functions include protection of the hyphae against desiccation and attack by either bacterial or fungal parasites, hyphal adherence, and the lowering of surface tension of the culture medium to permit aerial growth of the hyphae. We identified and isolated a hydrophobin (fruit body hydrophobin 1 [Fbh1]) present in fruit bodies but absent in both monokaryotic and dikaryotic mycelia of the edible mushroom Pleurotus ostreatus. In order to study the temporal and spatial expression of the fbh1 gene, we determined the N-terminal amino acid sequence of Fbh1. We also synthesized and cloned the double-stranded cDNA corresponding to the full-length mRNA of Fbh1 to use it as a probe in both Northern blot and in situ hybridization experiments. Fbh1 mRNA is detectable in specific parts of the fruit body, and it is absent in other developmental stages. PMID:9758836

  4. A two-dimensional protein map of Pleurotus ostreatus microsomes-proteome dynamics.

    PubMed

    Petráčková, Denisa; Halada, Petr; Bezoušková, Silvia; Křesinová, Zdena; Svobodová, Kateřina

    2016-01-01

    Recent studies documented that several processes in filamentous fungi are connected with microsomal enzyme activities. In this work, microsomal subproteomes of Pleurotus ostreatus were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. To assess proteome dynamics, microsomal proteins were isolated from fungal cultures after 7 and 12 days of cultivation. Additionally, 10 mg/L of 17α-ethinylestradiol (EE2) was treated with the cultures during 2 days. Despite the EE2 degradation by the fungus reached 97 and 76.3 % in 7- and 12-day-old cultures, respectively, only a minor effect on the composition of microsomal proteins was observed. The changes in protein maps related to ageing prevailed over those induced by EE2. Epoxide hydrolase, known to metabolize EE2, was detected in 12-day-old cultures only which suggests differences in EE2 degradation pathways utilized by fungal cultures of different age. The majority (32 %) of identified microsomal proteins were parts of mitochondrial energy metabolism. PMID:26122365

  5. Genetic diversity of Kenyan native oyster mushroom (Pleurotus).

    PubMed

    Otieno, Ojwang D; Onyango, Calvin; Onguso, Justus Mungare; Matasyoh, Lexa G; Wanjala, Bramwel W; Wamalwa, Mark; Harvey, Jagger J W

    2015-01-01

    Members of the genus Pleurotus, also commonly known as oyster mushroom, are well known for their socioeconomic and biotechnological potentials. Despite being one of the most important edible fungi, the scarce information about the genetic diversity of the species in natural populations has limited their sustainable utilization. A total of 71 isolates of Pleurotus species were collected from three natural populations: 25 isolates were obtained from Kakamega forest, 34 isolates from Arabuko Sokoke forest and 12 isolates from Mount Kenya forest. Amplified fragment length polymorphism (AFLP) was applied to thirteen isolates of locally grown Pleurotus species obtained from laboratory samples using five primer pair combinations. AFLP markers and internal transcribed spacer (ITS) sequences of the ribosomal DNA were used to estimate the genetic diversity and evaluate phylogenetic relationships, respectively, among and within populations. The five primer pair combinations generated 293 polymorphic loci across the 84 isolates. The mean genetic diversity among the populations was 0.25 with the population from Arabuko Sokoke having higher (0.27) diversity estimates compared to Mount Kenya population (0.24). Diversity between the isolates from the natural population (0.25) and commercial cultivars (0.24) did not differ significantly. However, diversity was greater within (89%; P > 0.001) populations than among populations. Homology search analysis against the GenBank database using 16 rDNA ITS sequences randomly selected from the two clades of AFLP dendrogram revealed three mushroom species: P. djamor, P. floridanus and P. sapidus; the three mushrooms form part of the diversity of Pleurotus species in Kenya. The broad diversity within the Kenyan Pleurotus species suggests the possibility of obtaining native strains suitable for commercial cultivation. PMID:25344263

  6. Gibberella Ear Rot of Maize (Zea mays) in Nepal: Distribution of the Mycotoxins Nivalenol and Deoxynivalenol in Naturally and Experimentally Infected Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (NIV) or 4-deoxynivalenol (DON), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance ...

  7. Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds.

    PubMed

    de Souza, Cristina Giatti Marques; Tychanowicz, Giovana Kirst; de Souza, Daniela Farani; Peralta, Rosane Marina

    2004-01-01

    The effect of several phenolic and aromatic monomers structurally-related to lignin on production of laccase by the white rot fungus P. pulmonarius (Fr.) Quélet has been studied. In the absence of an inducer, laccase was maximally produced after depletion of carbon and nitrogen sources. Among 15 phenolic and aromatic compounds tested, ferulic acid and vanillin were the most efficient inducers, increasing the production of laccase activity up to 10 times. A mixture of ferulic acid and vanillin was more efficient to induce the production of laccase than the isolated phenolics. At least three laccase isoforms designated as lcc1, lcc2 and lcc3 were identified by eletrophoretic analysis of P. pulmonarius culture filtrates. The lcc1 and lcc2 isoforms were produced by non-induced cultures, while lcc3 was found only in induced-culture filtrates. PMID:15069672

  8. Brown Root Rot of Alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This bulletin describes the disease of alfalfa called brown root rot (BRR) including: the disease symptoms, the fungal pathogen and its biology, its distribution, and disease management. Since the 1920s, BRR has been regarded as an important disease of forage legumes, including alfalfa, in northern ...

  9. Dry root rot of chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dry root rot of chickpea is a serious disease under dry hot summer conditions, particularly in the semi-arid tropics of Ethiopia, and in central and southern India. It usually occurs at reproductive stages of the plant. Symptoms include drooping of petioles and leaflets of the tips, but not the low...

  10. Rhizoctonia root rot of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia root rot is a soilborne disease of lentil caused by the fungal pathogen Rhizoctonia solani, and is favored by cool (11-19 C or 52 - 66 F) and wet soil conditions. The disease starts as reddish or dark brown lesions on lentil plants near the soil line, and develops into sunken lesions an...

  11. Molecular systematics of the cotton root rot pathogen, Phymatotrichopsis omnivora.

    PubMed

    Marek, S M; Hansen, K; Romanish, M; Thorn, R G

    2009-06-01

    Cotton root rot is an important soilborne disease of cotton and numerous dicot plants in the south-western United States and Mexico. The causal organism, Phymatotrichopsis omnivora (= Phymatotrichum omnivorum), is known only as an asexual, holoanamorphic (mitosporic) fungus, and produces conidia resembling those of Botrytis. Although the corticoid basidiomycetes Phanerochaete omnivora (Polyporales) and Sistotrema brinkmannii (Cantharellales; both Agaricomycetes) have been suggested as teleomorphs of Phymatotrichopsis omnivora, phylogenetic analyses of nuclear small- and large-subunit ribosomal DNA and subunit 2 of RNA polymerase II from multiple isolates indicate that it is neither a basidiomycete nor closely related to other species of Botrytis (Sclerotiniaceae, Leotiomycetes). Phymatotrichopsis omnivora is a member of the family Rhizinaceae, Pezizales (Ascomycota: Pezizomycetes) allied to Psilopezia and Rhizina. PMID:20198139

  12. Enhancing the Production of Hydroxyl Radicals by Pleurotus eryngii via Quinone Redox Cycling for Pollutant Removal▿

    PubMed Central

    Gómez-Toribio, Víctor; García-Martín, Ana B.; Martínez, María J.; Martínez, Ángel T.; Guillén, Francisco

    2009-01-01

    The induction of hydroxyl radical (OH) production via quinone redox cycling in white-rot fungi was investigated to improve pollutant degradation. In particular, we examined the influence of 4-methoxybenzaldehyde (anisaldehyde), Mn2+, and oxalate on Pleurotus eryngii OH generation. Our standard quinone redox cycling conditions combined mycelium from laccase-producing cultures with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-EDTA. The main reactions involved in OH production under these conditions have been shown to be (i) DBQ reduction to hydroquinone (DBQH2) by cell-bound dehydrogenase activities; (ii) DBQH2 oxidation to semiquinone (DBQ−) by laccase; (iii) DBQ− autoxidation, catalyzed by Fe3+-EDTA, producing superoxide (O2−) and Fe2+-EDTA; (iv) O2− dismutation, generating H2O2; and (v) the Fenton reaction. Compared to standard quinone redox cycling conditions, OH production was increased 1.2- and 3.0-fold by the presence of anisaldehyde and Mn2+, respectively, and 3.1-fold by substituting Fe3+-EDTA with Fe3+-oxalate. A 6.3-fold increase was obtained by combining Mn2+ and Fe3+-oxalate. These increases were due to enhanced production of H2O2 via anisaldehyde redox cycling and O2− reduction by Mn2+. They were also caused by the acceleration of the DBQ redox cycle as a consequence of DBQH2 oxidation by both Fe3+-oxalate and the Mn3+ generated during O2− reduction. Finally, induction of OH production through quinone redox cycling enabled P. eryngii to oxidize phenol and the dye reactive black 5, obtaining a high correlation between the rates of OH production and pollutant oxidation. PMID:19376890

  13. Interaction of Pratylenchus penetrans and Rhizoctonia fragariae in Strawberry Black Root Rot

    PubMed Central

    LaMondia, J. A.

    2003-01-01

    A split-root technique was used to examine the interaction between Pratylenchus penetrans and the cortical root-rotting pathogen Rhizoctonia fragariae in strawberry black root rot. Plants inoculated with both pathogens on the same half of a split-root crown had greater levels of root rot than plants inoculated separately or with either pathogen alone. Isolation of R. fragariae from field-grown roots differed with root type and time of sampling. Fungal infection of structural roots was low until fruiting, whereas perennial root colonization was high. Isolation of R. fragariae from feeder roots was variable, but was greater from feeder roots on perennial than from structural roots. Isolation of the fungus was greater from structural roots with nematode lesions than from non-symptomatic roots. Rhizoctonia fragariae was a common resident on the sloughed cortex of healthy perennial roots. From this source, the fungus may infect additional roots. The direct effects of lesion nematode feeding and movement are cortical cell damage and death. Indirect effects include discoloration of the endodermis and early polyderm formation. Perhaps weakened or dying cells caused directly or indirectly by P. penetrans are more susceptible to R. fragariae, leading to increased disease. PMID:19265969

  14. Characterization of Basidiomycetes associated with wood rot of citrus in southern Italy.

    PubMed

    Roccotelli, Angela; Schena, Leonardo; Sanzani, Simona M; Cacciola, Santa O; Mosca, Saveria; Faedda, Roberto; Ippolito, Antonio; di San Lio, Gaetano Magnano

    2014-08-01

    The characterization of Basidiomycetes associated with wood rots in commercial citrus orchards in southern Italy revealed that both white and brown rot fungi are implicated in this disease. Fomitiporia mediterranea was the most prevalent species causing a white rot, followed by Fomitopsis sp. which, by contrast, was associated with brown rot wood decay. Furthermore, Phellinus spp. and other nonidentified basidiomycetous fungi showing genetic affinity with the genera Phellinus and Coniophora were occasionally isolated. Artificial inoculations on lemon (Citrus limon) branches showed a faster wood colonization by Fomitopsis sp. compared with F. mediterranea, indicating that the former species as a potentially serious pathogen of citrus trees. The analysis of F. mediterranea internal transcribed spacer (ITS) sequences revealed a high level of genetic variability, with 13 genotypes which were both homozygous (6 genotypes) and heterozygous (7 genotypes). The presence of heterozygous genomes based on ITS sequences has never been reported before for F. mediterranea. This, together with the high frequency of basidiomata on infected wood, unambiguously confirms the outcrossing nature of reproduction in F. mediterranea and the primary role of basidiospores in the dissemination of inoculum. Similarly, high genetic variability was observed analyzing Fomitopsis sp. Because basidiomata of this fungus have not been observed on citrus trees, it can be hypothesized that basidiospores are produced on alternative host plants. PMID:24502208

  15. Potential of Epicoccum purpurascens Strain 5615 AUMC as a Biocontrol Agent of Pythium irregulare Root Rot in Three Leguminous Plants

    PubMed Central

    Koutb, Mostafa

    2010-01-01

    Epicoccum purpurascens stain 5615 AUMC was investigated for its biocontrol activity against root rot disease caused by Pythium irregulare. E. purpurascens greenhouse pathogenicity tests using three leguminous plants indicated that the fungus was nonpathogenic under the test conditions. The germination rate of the three species of legume seeds treated with a E. purpurascens homogenate increased significantly compared with the seeds infested with P. irregulare. No root rot symptoms were observed on seeds treated with E. purpurascens, and seedlings appeared more vigorous when compared with the non-treated control. A significant increase in seedling growth parameters (seedling length and fresh and dry weights) was observed in seedlings treated with E. purpurascens compared to pathogen-treated seedlings. Pre-treating the seeds with the bioagent fungus was more efficient for protecting seeds against the root rot disease caused by P. irregulare than waiting for disease dispersal before intervention. To determine whether E. purpurascens produced known anti-fungal compounds, an acetone extract of the fungus was analyzed by gas chromatography mass spectrometry. The extract revealed a high percentage of the cinnamic acid derivative (trimethylsiloxy) cinnamic acid methyl ester. The E. purpurascens isolate grew more rapidly than the P. irregulare pathogen in a dual culture on potato dextrose agar nutrient medium, although the two fungi grew similarly when cultured separately. This result may indicate antagonism via antibiosis or competition. PMID:23956668

  16. [Comparative study on the productivity of strains of Pleurotus spp. in commercial cultivation].

    PubMed

    Vogel, F; Salmones, D

    2000-12-01

    This paper describes the commercial production of two strains of Pleurotus pulmonarius, selected in the laboratory for their rapid mycelial development and high production of basidiomata, and one commercial strain of Pleurotus ostreatus. Substrate preparation, impact of pathogens and environmental conditions necessary for the production and quality of the fruiting bodies required are discussed. PMID:15762809

  17. Characteristic odorants from bailingu oyster mushroom (Pleurotus eryngii var. tuoliensis) and summer oyster mushroom (Pleurotus cystidiosus).

    PubMed

    Usami, Atsushi; Motooka, Ryota; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2014-01-01

    In this study, the characteristic odorants of the volatile oils from Pleurotus species (P. eryngii var. tuoliensis and P. cystidiosus) were extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). A total of 52 and 54 components (P. eryngii var. tuoliensis and P. cystidiosus, respectively) were identified, representing about 98.8% and 85.1% of the volatile oils, respectively. The main components of the P. eryngii var. tuoliensis oil were palmitic acid (82, 38.0%), oleic acid (86, 25.0%) and linoleic acid (85, 9.7%). The main components of the P. cystidiosus oil, palmitic acid (82, 25.8%), indole (54, 9.1%) and myristic acid (77, 5.3%). Regarding the aroma components, 16 and 13 components were identified in the P. eryngii var. tuoliensis and P. cystidiosus oils respectively, by the GC-O analyses. The results of the sniffing test, odor activity value (OAV) and flavor dilution (FD) factor indicate that methional, 1-octen-3-ol and nonanal are the main aroma-active components of P. eryngii var. tuoliensis oil. On the other hands, dimethyl trisulfide and 1-octen-3-ol were estimated as the main aroma-active components of the P. cystidiosus oil. PMID:24919476

  18. Crosses between monokaryons of Pleurotus sapidus or Pleurotus florida show an improved biotransformation of (+)-valencene to (+)-nootkatone.

    PubMed

    Omarini, Alejandra B; Plagemann, Ina; Schimanski, Silke; Krings, Ulrich; Berger, Ralf G

    2014-11-01

    Several hundred monokaryotic and new dikaryotic strains derived thereof were established from (+)-valencene tolerant Pleurotus species. When grouped according to their growth rate on agar plates and compared to the parental of Pleurotus sapidus 69, the slowly growing monokaryons converted (+)-valencene more efficiently to the grapefruit flavour compound (+)-nootkatone. The fast growing monokaryons and the slow×slow and the fast×fast dikaryotic crosses showed similar or inferior yields. Some slow×fast dikaryons, however, exceeded the biotransformation capability of the parental dikaryon significantly. The activity of the responsible enzyme, lipoxygenase, showed a weak correlation with the yields of (+)-nootkatone indicating that the determination of enzyme activity using the primary substrate linoleic acid may be misleading in predicting the biotransformation efficiency. This exploratory study indicated that a classical genetics approach resulted in altered and partly improved terpene transformation capability (plus 60%) and lipoxygenase activity of the strains. PMID:25189516

  19. Bioremediation of vegetable and agrowastes by Pleurotus ostreatus: a novel strategy to produce edible mushroom with enhanced yield and nutrition.

    PubMed

    Singh, V K; Singh, M P

    2014-01-01

    Pleurotus ostreatus was grown on paddy straw as well as other vegetable and agricultural wastes i.e. pea pod shell, cauliflower leaves, radish leaves and brassica straw in various combinations with paddy straw. The mushroom did not grow on the vegetable wastes separately. The cumulative yield and biological efficiency of the edible oyster mushroom P. ostreatus grown on substrate containing paddy straw in various combinations with different vegetable wastes i.e. 20% and 30 % vegetable wastes mixed with 80% and 70% (w/w) of paddy straw was found to be better, when compared with yield and biological efficiency obtained on paddy straw (100%) alone. The protein content and six essential amino acid contents (Leu, Ile, Val, Thr, Met, Phe) showed a significant increase and total sugar and reducing sugar contents showed decrease in the mushroom fruit bodies grown at different combinations of vegetable wastes with paddy straw as compared to paddy straw alone. However, there was not any significant change in moisture content of mushroom cultivated on different groups of wastes. Hence, results of this investigation suggest that the vegetable wastes which are generally left to rot in situ in many cities and villages causing outbreak of diseases can be bioremediated by edible mushroom P. ostreatus. The added advantage is that we get edible mushroom fruit body with improved nutrition. PMID:25535705

  20. Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures

    PubMed Central

    Castanera, Raúl; Pérez, Gúmer; Omarini, Alejandra; Alfaro, Manuel; Pisabarro, Antonio G.; Faraco, Vincenza; Amore, Antonella

    2012-01-01

    The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors. PMID:22467498

  1. Microbial detoxification of waste rubber material by wood-rotting fungi.

    PubMed

    Bredberg, Katarina; Andersson, B Erik; Landfors, Eva; Holst, Olle

    2002-07-01

    The extensive use of rubber products, mainly tires, and the difficulties to recycle those products, has resulted in world wide environmental problems. Microbial devulcanisation is a promising way to increase the recycling of rubber materials. One obstacle is that several microorganisms tested for devulcanisation are sensitive to rubber additives. A way to overcome this might be to detoxify the rubber material with fungi prior to the devulcanisation. In this study, 15 species of white-rot and brown-rot fungi have been screened with regard to their capacity to degrade an aromatic model compound in the presence of ground waste tire rubber. The most effective fungus, Resinicium bicolor, was used for detoxification of rubber material. Increase in growth of the desulfurising bacterium Thiobacillus ferrooxidans in presence of the rubber treated with Resinicium bicolor compared to untreated rubber demonstrated that detoxification with fungi is possible. PMID:12094797

  2. Using a grass substrate to compare decay among two clades of brown rot fungi.

    PubMed

    Kaffenberger, Justin T; Schilling, Jonathan S

    2013-10-01

    Interest in the mechanisms of wood-degrading fungi has grown in tandem with lignocellulose bioconversion efforts, yet many potential biomass feedstocks are non-woody. Using corn stover (Zea mays) as a substrate, we tracked degradative capacities among brown rot fungi from the Antrodia clade, including Postia placenta, the first brown rot fungus to have its genome sequenced. Decay dynamics were compared against Gloeophyllum trabeum from the Gloeophyllum clade. Weight loss induced by P. placenta (6.2 %) and five other Antrodia clade isolates (average 7.4 %) on corn stalk after 12 weeks demonstrated inefficiency among these fungi, relative to decay induced by G. trabeum (44.4 %). Using aspen (Populus sp.) as a woody substrate resulted in, on average, a fourfold increase in weight loss induced by Antrodia clade fungi, while G. trabeum results matched those on stover. The sequence and trajectories of chemical constituent losses differed as a function of substrate but not fungal clade. Instead, chemical data suggest that characters unique to stover limit decay by the Antrodia clade, rather than disparities in growth rate or extractives toxicity. High p-coumaryl lignin content, lacking the methoxy groups characteristically cleaved during brown rot, is among potential rate-distinguishing characters in grasses. This ineptitude among Antrodia clade fungi on grasses was supported by meta-analysis of other unrelated studies using grass substrates. Concerning application, results expose a problem if adopting the strategy of the model decay fungus P. placenta to treat corn stover, a widely available plant feedstock. Overall, the results insinuate phylogenetically distinct modes of brown rot and demonstrate the benefit of using non-woody substrates to probe wood degradation mechanisms. PMID:23917637

  3. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    PubMed Central

    Weidmann, Verena; Schaffrath, Mathias; Zorn, Holger

    2013-01-01

    Summary Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site. PMID:24204436

  4. Response of Pleurotus ostreatus to cadmium exposure

    SciTech Connect

    Favero, N.; Bressa, G.; Costa, P. )

    1990-08-01

    The possibility of utilizing agroindustrial wastes in the production of edible, high-quality products (e.g., mushrooms) implies the risk of bringing toxic substances, such as heavy metals, into the human food chain. Thus, growth in the presence of cadmium and cadmium accumulation limits have been studied in the industrially cultivated fungus P. ostreatus. Fruit body production is substantially unaffected in the presence of 25, 139, and 285 mg Cd/kg of dried substrate. Cadmium concentration in fruit bodies is related to cadmium substrate level, the metal being present at higher levels in caps (22-56 mg/kg dry wt) than in stems (13-36 mg/kg dry wt). Concentration factor (CF), very low in the controls (about 2), further decreases in treated specimens. The presence of a cadmium control mechanism in this fungi species is suggested. Fruit body cadmium levels could, however, represent a risk for P. ostreatus consumers, according to FAO/WHO limits related to weekly cadmium intake.

  5. Effect of Spent Mushroom Compost of Pleurotus pulmonarius on Growth Performance of Four Nigerian Vegetables

    PubMed Central

    Lawal, Muritala Mobolaji; Oyetunji, Olusola Jacob

    2011-01-01

    Spent mushroom compost (SMC) of Pleurotus pulmonarius (an edible fungus) was used as soil conditioner for the improvement of growth of four common Nigerian vegetables (Abelmoschus esculentus, Lycopersicum esculentum, Capsicum annum and Capsicum chinense). The results of these investigations showed that the vegetables responded well to the SMC treatment. Each of them attained its best growth and gave the highest number of flowers and fruits when planted on 6 kg of depleted garden soil supplemented with 600 g of SMC. The control experiment that has the seedlings of the vegetables planted on 6 kg of depleted garden soil only, without the application of SMC, showed stunted and poor growth, with few or no flower and fruit production. A. esculentus was the best utilizer of iron utilizing 118.0 mg/kg in the SMC used. Similarly; this vegetable utilized 1.48 mg/kg of nitrogen in the SMC. The highest height in each vegetable was attained with 6 kg of depleted garden soil supplemented with 600 g of SMC. At 9 wk, A. esculentus has the mean height of 85.0 cm while these values significantly increased to 100.00 cm at 14 wk (p ≤ 0.05). At 9 wk, L. esculentum has the highest mean height of 65.00 cm which increased to 71.00 cm after 14 wk. It was also observed that A. esculentus has the highest mean number of fruits (9.00), followed in order by C. chinense (8.00) and L. esculentus (7.00) (p ≤ 0.05) while, C. annum produced the least mean number of fruits (5.00). No fruits production was seen in the control experiments. The results of these findings were discussed in relation to the usage of SMC as possible organic fertilizer for the improvement of growth of vegetables in Nigeria. PMID:22783098

  6. Genetic Variability and Population Structure of the Mushroom Pleurotus eryngii var. tuoliensis

    PubMed Central

    Zhao, Mengran; Huang, Chenyang; Chen, Qiang; Wu, Xiangli; Qu, Jibin; Zhang, Jinxia

    2013-01-01

    The genetic diversity of 123 wild strains of Pleurotus eryngii var. tuoliensis, which were collected from nine geographical locations in Yumin, Tuoli, and Qinghe counties in the Xinjiang Autonomous Region of China, was analysed using two molecular marker systems (inter-simple sequence repeat and start codon targeted). At the variety level, the percentage of polymorphic loci and Nei’s gene diversity index for P. eryngii var. tuoliensis was 96.32% and 0.238, respectively. At the population level, Nei’s gene diversity index ranged from 0.149 to 0.218 with an average of 0.186, and Shannon's information index ranged from 0.213 to 0.339 with an average of 0.284. These results revealed the abundant genetic variability in the wild resources of P. eryngii var. tuoliensis. Nei’s gene diversity analysis indicated that the genetic variance was mainly found within individual geographical populations, and the analysis of molecular variance revealed low but significant genetic differentiation among local and regional populations. The limited gene flow (Nm = 1.794) was inferred as a major reason for the extent of genetic differentiation of P. eryngii var. tuoliensis. The results of Mantel tests showed that the genetic distance among geographical populations of P. eryngii var. tuoliensis was positively correlated with the geographical distance and the longitudinal distances (rGo = 0.789 and rLn = 0.873, respectively), which indicates that geographical isolation is an important factor for the observed genetic differentiation. Nine geographical populations of P. eryngii var. tuoliensis were divided into three groups according to their geographical origins, which revealed that the genetic diversity was closely related to the geographical distribution of this wild fungus. PMID:24349475

  7. Rhizoctonia seed, seedling, and wet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wet root rot caused by Rhizoctonia solani Kühn can cause seed and seedling rot of both lentil and chickpea as well as many other agricultural crops worldwide. The pathogen is favored in cool, sandy soil with high organic matter under no-till or reduced-till soil management practices. Survival spor...

  8. Cultivar selection for sugarbeet root rot resistance.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  9. Sugarbeet Cultivar Evaluation for Bacterial Root Rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugarbeet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States. To ameliorate the impact of bacterial root rot on sucrose loss in the field, storage piles, and factories, studies were conducted to establish an assa...

  10. Antioxidant and electrochemical properties of cultivated Pleurotus spp. and their sporeless/low sporing mutants.

    PubMed

    Babu, Dandamudi Rajesh; Pandey, Meera; Rao, G Nageswara

    2014-11-01

    Methanolic extracts of four cultivated edible mushrooms of Pleurotus spp. namely Pleurotus florida, Pleurotus sajor-caju, Pleurotus cystidiosus and Pleurotus djamor along with the sporeless/low sporing mutants of Pleurotus florida, and Pleurotus sajor-caju were analyzed for their antioxidant activity using different chemical assays. The electrochemical behaviors of these extracts were also analyzed using cyclic voltammetry and differential pulse voltammetry. Results showed that scavenging effects on 2,2-diphenyl-1-picrylhydrazyl radicals were good (73.3-42.4 %) at 1.5 mg/ml. At 12 mg/ml, the reducing powers (2.54-1.71) and chelating effects on ferrous ions (56.0-78.5 %) were excellent. H2O2 scavenging abilities at 1.5 mg/ml showed a wide range (20.0-85.4 %). Scavenging of superoxide radicals were excellent and were found to be in the range of 61.1-90.0 % at 16 mg/ml concentration. FRAP results were in the range of 1.20 - 0.98 at 16 mg/ml. Total phenolic and total flavonoid contents of the methanolic extracts ranged from 22.67 to 36.03 mg/g and 1.19-2.94 μg/g respectively. The study assessed the amount of variation in antioxidant activities exhibited by different cultivated species and their sporeless/low sporing mutants. PMID:26396326

  11. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  12. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  13. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  14. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  15. Breeding for fruit rot resistance in Vaccinium macrocarpon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cranberry fruit rot complex can cause severe crop loss and requires multiple fungicide applications each year. To identify sources of fruit rot resistance, fungicides were withheld from our germplasm collection in 2003 and 2004 and the collection was rated for fruit rot (1-5 scale, 1=no rot, 5=...

  16. Root rot in sugar beet piles at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet root rots are not only a concern because of reduced yields, but can also be associated with losses in storage. Our primary sugar beet root rot disease problem in the Amalgamated production area is Rhizoctonia root rot. However, this rot frequently only penetrates a short distance past t...

  17. Culture media statistical optimization for biomass production of a ligninolytic fungus for future rice straw degradation.

    PubMed

    Sarria-Alfonso, Viviana; Sánchez-Sierra, John; Aguirre-Morales, Mauricio; Gutiérrez-Rojas, Ivonne; Moreno-Sarmiento, Nubia; Poutou-Piñales, Raúl A

    2013-06-01

    The main objective of this study was to optimize a culture media for low scale biomass production of Pleurotus spp. Future applications of this optimization will be implemented for "in situ" rice straw degradation, increase soil nutrients availability, and lower residue and rice culture management costs. Soil samples were taken from different points in six important rice production cities in Colombia. For carbon and nitrogen source selection a factorial 4(2) design was carried out. The Plackett-Burman design permitted to detect carbon, nitrogen and inducer effects on fungus growth (response variable for all designs). This optimization was carried out by a Box-Behnken design. Finally a re-optimization assay for glucose concentration was performed by means of a One Factor design. Only 4/33 (12 %) isolates showed and important laccase or manganese peroxidase activity compared to Pleurotus ostreatus (HPB/P3). We obtained an increased biomass production in Pleurotus spp. (T1.1.) with glucose, followed by rice husk. Rice straw was considered an inducing agent for lignin degradation. Glucose was a significant component with positive effects, whereas Tween 80 and pH had negative effects. On the contrary, rice husk, yeast extract and CaCl2 were not significant components for increase the biomass production. Final media composition consisted of glucose 25 g L(-1), yeast extract 5 g L(-1), Tween 80 0.38 % (v/v), Rice husk 10 g L(-1), CaCl2 1 g L(-1), and pH 4.88 ± 0.2. The Box-Behnken polynomial prediction resulted to be lower than the experimental validation of the model (6.59 vs. 6.91 Log10 CFU ml(-1) respectively). PMID:24426109

  18. Mapping of Genomic Regions (Quantitative Trait Loci) Controlling Production and Quality in Industrial Cultures of the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía

    2003-01-01

    Industrial production of the edible basidiomycete Pleurotus ostreatus (oyster mushroom) is based on a solid fermentation process in which a limited number of selected strains are used. Optimization of industrial mushroom production depends on improving the culture process and breeding new strains with higher yields and productivities. Traditionally, fungal breeding has been carried out by an empirical trial and error process. In this study, we used a different approach by mapping quantitative trait loci (QTLs) controlling culture production and quality within the framework of the genetic linkage map of P. ostreatus. Ten production traits and four quality traits were studied and mapped. The production QTLs identified explain nearly one-half of the production variation. More interestingly, a single QTL mapping to the highly polymorphic chromosome VII appears to be involved in control of all the productivity traits studied. Quality QTLs appear to be scattered across the genome and to have less effect on the variation of the corresponding traits. Moreover, some of the new hybrid strains constructed in the course of our experiments had production or quality values higher than those of the parents or other commercial strains. This approach opens the possibility of marker-assisted selection and breeding of new industrial strains of this fungus. PMID:12788770

  19. Identification of putative candidate genes for red rot resistance in sugarcane (Saccharum species hybrid) using LD-based association mapping.

    PubMed

    Singh, Ram K; Banerjee, Nandita; Khan, M S; Yadav, Sonia; Kumar, Sanjeev; Duttamajumder, S K; Lal, Ram Ji; Patel, Jinesh D; Guo, H; Zhang, Dong; Paterson, Andrew H

    2016-06-01

    Red rot is a serious disease of sugarcane caused by the fungus Colletotrichum falcatum that has a colossal damage potential. The fungus, prevalent mainly in the Indian sub-continent, keeps on producing new pathogenic strains leading to breakdown of resistance in newly released varieties and hence the deployment of linked markers for marker-assisted selection for resistance to this disease can fine tune the breeding programme. This study based on a panel of 119 sugarcane genotypes fingerprinted for 944 SSR alleles was undertaken with an aim to identify marker-trait associations (MTAs) for resistance to red rot. Mixed linear model containing population structure and kinship as co-factor detected four MTAs that were able to explain 10-16 % of the trait variation, individually. Among the four MTAs, EST sequences diagnostic of three could be BLAST searched to the sorghum genome with significant sequence homology. Several genes encoding important plant defence related proteins, viz., cytochrome P450, Glycerol-3-phosphate transporter-1, MAP Kinase-4, Serine/threonine-protein kinase, Ring finger domain protein and others were localized to the vicinity of these MTAs. These positional candidate genes are worth of further investigation and possibly these could contribute directly to red rot resistance, and may find a potential application in marker-assisted sugarcane breeding. PMID:26961118

  20. Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions.

    PubMed

    Patil, Sandeep; Paradeshi, Jayasinh; Chaudhari, Bhushan

    2016-08-01

    Charcoal rot severely limits the soybean crop yield under saline conditions. The present studies focus on biocontrol and plant growth promoting potential of phenazine producing moderately halotolerant Pseudomonas aeruginosa (GS-33) in soybean under saline soil conditions. A marine isolate; GS-33 was identified as P. aeruginosa based on polyphasic characterization. This strain showed potent in vitro biocontrol activity against charcoal rot causing fungus Macrophomina phaseolina. It was capable of producing phenazine-1-carboxylic acid even at elevated salt concentrations. Moreover, GS-33 possessed other biocontrol traits like production of siderophores, HCN and protease under saline conditions. Multiple traits for plant growth promotion such as synthesis of IAA, NH3 , and solubilization of phosphate were also exhibited by GS-33. Plant growth promoting and biocontrol control potentials of GS-33 were evaluated by pot assay under saline soil conditions. Higher biomass and chlorophyll content were observed in GS-33 treated seedlings. A greater reduction in charcoal rot caused by fungal pathogens under both normal and saline soil conditions in GS-33 treated seedlings was observed. In a nut shell, phenazine producing halotolerant strain GS-33 could mitigate saline soil conditions (abiotic stress) and infestation of M. phaseolina (biotic stress) in soybean. PMID:27213894

  1. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus)

    PubMed Central

    Hoa, Ha Thi

    2015-01-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms. PMID:25892910

  2. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus).

    PubMed

    Hoa, Ha Thi; Wang, Chun-Li

    2015-03-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms. PMID:25892910

  3. Pseudomonads associated with midrib rot and soft rot of butterhead lettuce and endive.

    PubMed

    Cottyn, B; Vanhouteghem, K; Heyrman, J; Bleyaert, P; Van Vaerenbergh, J; De Vos, P; Höfte, M; Maes, M

    2005-01-01

    During the past ten years, bacterial soft rot and midrib rot of glasshouse-grown butterhead lettuce (Lactuca sativa L. var. capitata) and field-grown endive (Cichorium endivia L.) has become increasingly common in the region of Flanders, Belgium. Severe losses and reduced market quality caused by bacterial rot represent an important economical threat for the production sector. Symptoms of midrib rot are a brownish rot along the midrib of one or more inner leaves, often accompanied by soft rot of the leaf blade. Twenty-five symptomatic lettuce and endive samples were collected from commercial growers at different locations in Flanders. Isolations of dominant bacterial colony types on dilution plates from macerated diseased tissue extracts yielded 282 isolates. All isolates were characterized by colony morphology and fluorescence on pseudomonas agar F medium, oxidase reaction, and soft rot ability on detached chicory leaves. Whole-cell fatty acid methyl esters profile analyses identified the majority of isolates (85%) as belonging to the Gammaproteobacteria, which included members of the family Enterobacteriaceae (14%) and of the genera Pseudomonas (73%), Stenotrophomonas (9%), and Acinetobacter (3%). Predominant bacteria were a diverse group of fluorescent Pseudomonas species. They were further differentiated based on the non-host hypersensitive reaction on tobacco and the ability to rot potato slices into 4 phenotypic groups: HR-/P- (57 isolates), HR-/P+ (54 isolates), HR+/P (16 isolates) and HR+/P+ (35 isolates). Artificial inoculation of suspensions of HR-, pectolytic fluorescent pseudomonads in the leaf midrib of lettuce plants produced various symptoms of soft rot, but they did not readily cause symptoms upon spray inoculation. Fluorescent pseudomonads with phenotype HR+ were consistently isolated from typical dark midrib rot symptoms, and selected isolates reproduced the typical midrib rot symptoms when spray-inoculated onto healthy lettuce plants. PMID

  4. Gliotoxin-producing endophytic Acremonium sp. from Zingiber officinale found antagonistic to soft rot pathogen Pythium myriotylum.

    PubMed

    Anisha, C; Radhakrishnan, E K

    2015-04-01

    Soft rot caused by Pythium sp. is a major cause of economic loss in ginger cultivation. Endophytic fungi isolated from Zingiber officinale were screened for its activity against the soft rot pathogen Pythium myriotylum. Among the isolates screened, an endophytic fungus which was identified as Acremonium sp. showed promising activity against the phytopathogen in dual culture. The selected fungus was cultured in large scale on solid rice media and was extracted with ethyl acetate. The crude extract was subjected to column chromatography and preparative HPLC to obtain the fraction with the antifungal activity. LC-QTOF-MS/MS analysis of this fraction done using water-acetonitrile gradient identified a mass of m/z 327 (M + H) corresponding to gliotoxin with specific fragments m/z 263, 245, 227, and 111. The result was reconfirmed in negative mode ionization. Gliotoxin is the major antagonistic peptide produced by the commercially used biocontrol agent, Trichoderma sp., which shows high antagonism against Pythium sp. The gliotoxin production by the isolated endophytic Acremonium sp. of Z. officinale shows the possible natural biocontrol potential of this endophytic fungus. PMID:25820297

  5. Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi.

    PubMed

    Rubilar, O; Tortella, G; Cea, M; Acevedo, F; Bustamante, M; Gianfreda, L; Diez, M C

    2011-02-01

    This study provides a first attempt investigation of a serie of studies on the ability of Anthracophyllum discolor, a recently isolated white-rot fungus from forest of southern Chile, for the treatment of soil contaminated with pentachlorophenol (PCP) to future research on potential applications in bioremediation process. Bioremediation of soil contaminated with PCP (250 and 350 mg kg⁻¹ soil) was investigated with A. discolor and compared with the reference strain Phanerochaete chrysosporium. Both strains were incorporated as free and immobilized in wheat grains, a lignocellulosic material previously selected among wheat straw, wheat grains and wood chips through the growth and colonization of A. discolor. Wheat grains showed a higher growth and colonization of A. discolor, increasing the production of manganese peroxidase (MnP) activity. Moreover, the application of white-rot fungi immobilized in wheat grains to the contaminated soil favored the fungus spread. In turn, with both fungal strains and at the two PCP concentrations a high PCP removal (70-85%) occurred as respect to that measured with the fungus as free mycelium (30-45%). Additionally, the use of wheat grains in soil allowed the proliferation of microorganisms PCP decomposers, showing a synergistic effect with A. discolor and P. chrysosporium and increasing the PCP removal in the soil. PMID:20512655

  6. Degradation of Three Aromatic Dyes by White Rot Fungi and the Production of Ligninolytic Enzymes

    PubMed Central

    Jayasinghe, Chandana; Imtiaj, Ahmed; Lee, Geon Woo; Im, Kyung Hoan; Hur, Hyun; Lee, Min Woong; Yang, Hee-Sun

    2008-01-01

    This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G. lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supplemented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene. PMID:23990745

  7. Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Pozdnyakova, Natalia N.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the capacity of PAH degradation. The enzymes involved in the degradation of PAHs are ligninolytic and include lignin peroxidase, versatile peroxidase, Mn-peroxidase, and laccase. This paper summarizes the data available on PAH degradation by fungi belonging to different ecophysiological groups (white-rot and litter-decomposing fungi) under submerged cultivation and during mycoremediation of PAH-contaminated soils. The role of the ligninolytic enzymes of these fungi in PAH degradation is discussed. PMID:22830035

  8. Cultivation of Pleurotus ostreatus and other edible mushrooms.

    PubMed

    Sánchez, Carmen

    2010-02-01

    Pleurotus ostreatus is the second most cultivated edible mushroom worldwide after Agaricus bisporus. It has economic and ecological values and medicinal properties. Mushroom culture has moved toward diversification with the production of other mushrooms. Edible mushrooms are able to colonize and degrade a large variety of lignocellulosic substrates and other wastes which are produced primarily through the activities of the agricultural, forest, and food-processing industries. Particularly, P. ostreatus requires a shorter growth time in comparison to other edible mushrooms. The substrate used for their cultivation does not require sterilization, only pasteurization, which is less expensive. Growing oyster mushrooms convert a high percentage of the substrate to fruiting bodies, increasing profitability. P. ostreatus demands few environmental controls, and their fruiting bodies are not often attacked by diseases and pests, and they can be cultivated in a simple and cheap way. All this makes P. ostreatus cultivation an excellent alternative for production of mushrooms when compared to other mushrooms. PMID:19956947

  9. Effects of processing on carbendazim residue in Pleurotus ostreatus.

    PubMed

    Xia, Erdong; Tao, Wuqun; Yao, Xi; Wang, Jin; Tang, Feng

    2016-07-01

    Samples of Pleurotus ostreatus were exposed to fungicide carbendazim to study the effect of processing on the residues. In most cases, processing operations led to a significant decrease in residue levels in the finished products, particularly through washing, drying, and cooking processes. The results indicated that rinsing under running tap water led to more than 70.30% loss in carbendazim residues. When dried under sunlight could remove more than 70.30% residues. There was a 63.90-97.14% reduction after steaming, with processing time extending, the removal rates increased especially for lower initial residue level samples. The residue was almost completely removed by frying combined with microwave heating. Furthermore, boiling the mushrooms reduced the residue in the mushroom and no carbendazim residues were determined in the broth. PMID:27386113

  10. Carbohydrate changes during growth and fruiting in Pleurotus ostreatus.

    PubMed

    Zhou, Shuai; Ma, Fuying; Zhang, Xiaoyu; Zhang, Jingsong

    2016-01-01

    The carbohydrate distribution in mushrooms is reported changing greatly in its different regions during growth and fruiting. In this study, the carbohydrate distribution in the compost and fruiting bodies of Pleurotus ostreatus was analysed. Sugar, polyol, polysaccharide, and chitin content during different growth phases and in different regions of the mushroom were determined. Results indicate that trehalose, mannitol, and glucose were first accumulated in the compost and then decreased during differentiation and growth of fruiting bodies. Meanwhile, trehalose, mannitol, and glucose also accumulated in the fruiting bodies and primarily distributed in the stipe, base, and pileus region, respectively. Polysaccharides mainly accumulated within the pileus and stipe regions, and chitin was mainly observed in the base region. These findings provide insights into carbohydrate function and utilisation during mushroom growth. PMID:27268245

  11. A simple procedure for preparing substrate for Pleurotus ostreatus cultivation.

    PubMed

    Hernández, Daniel; Sánchez, José E; Yamasaki, Keiko

    2003-11-01

    The use of wooden crates for composting a mixture of 70% grass, (Digitaria decumbens), and 30% coffee pulp, combined with 2% Ca(OH)(2), was studied as a method for preparing substrate for the cultivation of Pleurotus ostreatus. Crate composting considerably modified the temperature pattern of the substrate in process, as compared to pile composting, where lower temperatures and less homogeneous distributions were observed. Biological efficiencies varied between 59.79% and 93% in the two harvests. Based on statistical analysis significant differences were observed between the treatments, composting times and in the interactions between these two factors. We concluded that it is possible to produce P. ostreatus on a lignocellulosic, non-composted, non-pasteurized substrate with an initial pH of 8.7, and that composting for two to three days improves the biological efficiency. PMID:12895557

  12. Pleurotus eryngii Polysaccharide Promotes Pluripotent Reprogramming via Facilitating Epigenetic Modification.

    PubMed

    Deng, Wenwen; Cao, Xia; Wang, Yan; Yu, Qingtong; Zhang, Zhijian; Qu, Rui; Chen, Jingjing; Shao, Genbao; Gao, Xiangdong; Xu, Ximing; Yu, Jiangnan

    2016-02-17

    Pleurotus eryngii is a medicinal/edible mushroom with great nutritional value and bioactivity. Its polysaccharide has recently been developed into an effective gene vector via cationic modification. In the present study, cationized P. eryngii polysaccharide (CPS), hybridized with calcium phosphate (CP), was used to codeliver plasmids (Oct4, Sox2, Klf4, c-Myc) for generating induced pluripotent stem cells (iPSCs). The results revealed that the hybrid nanoparticles could significantly enhance the process and efficiency of reprogramming (1.6-fold increase) compared with the CP nanoparticles. The hybrid CPS also facilitated epigenetic modification during the reprogramming. Moreover, these hybrid nanoparticles exhibited multiple pathways (both caveolae- and clathrin-mediated endocytosis) in their cellular internalization, which accounted for the improved iPSCs generation. These findings therefore present a novel application of P. eryngii polysaccharide in pluripotent reprogramming via active epigenetic modification. PMID:26809505

  13. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    PubMed Central

    Andoh, Tsugunobu; Ouchi, Kenji; Inatomi, Satoshi

    2014-01-01

    Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10 μg/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection. PMID:24799939

  14. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180

    PubMed Central

    Borges, Gisele Martini; De Barba, Fabiana Figueredo Molin; Schiebelbein, Ana Paula; Pereira, Bruna Parmezzani; Chaves, Mariane Bonatti; Silveira, Marcia Luciane Lange; Pinho, Mauro Souza Leite; Furlan, Sandra Aparecida; Wisbeck, Elisabeth

    2013-01-01

    Polysaccharides with medicinal properties can be obtained from fruiting bodies, mycelium and culture broth of several fungus species. This work was carried out in batch culture using a stirred tank reactor with two different initial glucose concentrations (40–50 g/L) and pH values (3.0–4.0) to enhance extracellular polysaccharides production by Pleurotus djamor UNIVILLE 001 and evaluate antitumor effect of intraperitonial administration of Pleurotus djamor extract on sarcoma 180 animal model. According to factorial design, the low pH value (pH 3.0) led to a gain of 1.6 g/L on the extracellular polysaccharide concentration, while glucose concentration in the tested range had no significant effect on the concentration of polysaccharide. With 40 g/L initial glucose concentration and pH 3.0, it was observed that yield factor of extracellular polysaccharide on substrate (YP/S = 0.072) and maximum extracellular polysaccharide productivity (QPmax = 11.26 mg/L.h) were about 188% and 321% respectively higher than those obtained in the experiment performed at pH 4.0. Under these conditions, the highest values of the yield factor of biomass on substrate (YX/S = 0.24) and maximal biomass productivity (QXmax = 32.2 mg/L.h) were also reached. In tumor response study, mean tumor volume on the 21th day was 35.3 cm3 in untreated group and 1.6 cm3 in treated group (p = 0.05) with a tumor inhibition rate of 94%. These impressive results suggests an inhibitory effect of P.djamor extract on cancer cells. PMID:24688493

  15. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  16. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  17. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  18. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  19. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  20. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  1. Rhizoctonia damping-off stem canker and root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani has been reported to cause damping-off and root rot of rhododendrons and azaleas. Damping-off often includes groups of dying and dead seedlings. Decline of rooted plants in containers results from both root rot and stem necrosis below or above the soil line. Root rot is usually no...

  2. Identification of sources of resistance to sugarcane red rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rot, caused by Colletotrichum falcatum, adversely affects sugarcane stand establishment in Louisiana by rotting planted stalks. Since cultivar resistance is the most effective control method, a study was conducted to identify sources of resistance to red rot and evaluate variability within Sacc...

  3. Cultivar selection for bacterial root rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot of sugar beet caused by Leuconostoc mesenteroides subsp. dextranicum is a disease problem recently described in the United States, which has frequently been found in association with Rhizoctonia root rot. To reduce the impact of bacterial root rot on sucrose loss in the field, st...

  4. Response of the Andean diversity panel to root rot in a root rot nursery in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Andean Diversity Panel (ADP) was evaluated under low-fertility and root rot conditions in two trials conducted in 2013 and 2015 in Isabela, Puerto Rico. About 246 ADP lines were evaluated in the root rot nursery with root rot and stem diseases caused predominantly by Fusarium solani, which cause...

  5. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/brown rot paradigm for wood decay fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade ...

  6. Pyramiding Sclerotinia head rot and stalk rot resistances into elite sunflower breeding lines with the aid of DNA markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Work was conducted in 2008 to determine the stalk rot resistance of RILs from the RHA 280 x RHA 801 population, as well as to begin introgression of previously identified QTL for head rot resistance into elite sunflower germplasm lines. The stalk rot RILs and their testcrosses with cms HA 89 were t...

  7. Genome, transcriptome, and secretome analysis of wood decay fungus postia placenta supports unique mechanisms of lignocellulose conversion

    SciTech Connect

    Martinez, Diego; Challacombe, Jean F; Misra, Monica; Xie, Gary; Brettin, Thomas; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P; Ferreira, Patricia; Ruiz - Duenase, Francisco J; Martinez, Angel T; Kersten, Phil; Hammel, Kenneth E; Vanden Wymelenberg, Amber; Gaskell, Jill; Lindquist, Erika; Sabati, Grzegorz; Bondurant, Sandra S; Larrondo, Luis F; Canessa, Paulo; Vicunna, Rafael; Yadavk, Jagiit; Doddapaneni, Harshavardhan; Subramaniank, Venkataramanan; Pisabarro, Antonio G; Lavin, Jose L; Oguiza, Jose A; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M; Harris, Paul; Magnuson, Jon K; Baker, Scott; Bruno, Kenneth; Kenealy, William; Hoegger, Patrik J; Kues, Ursula; Ramaiva, Preethi; Lucas, Susan; Salamov, Asaf; Shapiro, Harris; Tuh, Hank; Chee, Christine L; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor; Rokhsar, Dan; Berka, Randy; Cullen, Dan

    2008-01-01

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative {beta}-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC{center_dot}MSIMS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H202. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H202 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons to the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.

  8. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion

    SciTech Connect

    Martinez, Diego; Challacombe, Jean; Morgenstern, Ingo; Hibbett, David; Schmoll, Monika; Kubicek, Christian P.; Ferreira, Patricia; Ruiz-Duenas, Francisco; Martinez, Angel T.; Kersten, Phil; Hammel, Ken; Vanden Wymelenberg, Amber; Gaskell, Jill; Lindquist, Erika; Sabat, Gregorz; Splinter Bondurant, Sandra; Larrondo, Luis F.; Canessa, Paulo; Vicuna, Rafael; Yadev, Jagjit; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Pisabarro, Antonio; Lavin, Jose L.; Oguiza, Jose A.; Master, Emma; Henrissat, Bernard; Coutinho, Pedro M.; Harris, Paul; Magnuson, Jon K.; Baker, Scott E.; Bruno, Kenneth S.; Kenealy, William; Hoegger, Patrik; Kues, Ursula; Ramaiya, Preethi; Lucas, Susan; Salamov, Asaf; Shapiro, Harris; Tu, Hank; Chee, Christine L.; Misra, Monica; Xie, Gary; Teter, Sarah; Yaver, Debbie; James, Tim; Mokrejs, Martin; Pospisek, Martin; Grigoriev, Igor V.; Brettin, T.; Rokhsar, Daniel S.; Berka, Randy; Cullen, Dan

    2009-02-10

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in media containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative β-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also upregulated under cellulolytic culture conditions were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H2O2. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H2O2 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. In particular, comparisons between P. placenta and the closely related white-rot fungus, Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which efficient depolymerization of lignin was lost.

  9. Preliminary investigations into the bioconversion of gamma irradiated agricultural waste by Pleurotus spp.

    NASA Astrophysics Data System (ADS)

    Gbedemah, C. M.; Obodai, M.; Sawyerr, L. C.

    1998-06-01

    The application of gamma irradiation for pretreatment of lignocellulosic materials for their hydrolysis and to increase their digestibility for rumen animal have been reported in the literature. Gamma irradiation of corn stover in combination with sodium hydroxide for bioconversion of polysaccharide into protein by Pleurotus spp has also been reported. In this study experiments were designed to find out whether gamma radiation could serve both as a decontaminating agent as well as hydrolytic agent of sawdust for the bioconversion of four varieties of Pleurotus spp. Preliminary results indicate that a dose of 20kGy of gamma irradiation increase the yield of Pleurotus eous var ET-8 whilst decreasing the yield of other varieties.

  10. Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages

    PubMed Central

    González-Palma, Ivette; Escalona-Buendía, Héctor B.; Ponce-Alquicira, Edith; Téllez-Téllez, Maura; Gupta, Vijai K.; Díaz-Godínez, Gerardo; Soriano-Santos, Jorge

    2016-01-01

    Total polyphenols and flavonoids contents, as well as ferric reducing antioxidant power (FRAP), metal ions chelating activity, reducing power assay and scavenging activity of DPPH and ABTS radicals in aqueous and methanolic extracts obtained from mycelium, primordium, and fruiting body of Pleurotus ostreatus in both fresh as dry, were evaluated. The total polyphenol content of dried samples was higher in aqueous extracts obtained both in room temperature and boiling. The total polyphenol content of the fresh samples obtained at room temperature and boiling was higher in aqueous extract of mycelium and in the methanolic extract of the fruiting body. In general, flavonoids represented a very small percentage of the total polyphenol content. The antioxidant activity measured by the FRAP method of extracts from fresh samples were higher with respect to the dried samples. The results of the metal ion chelating activity indicate that all extracts tested had acted. The reducing power of all samples was concentration dependent. In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. It was observed that the DPPH and ABTS radical scavenging activities were positively correlated to the concentration of the extract. The results suggested that antioxidant activity could be due to polyphenols, but mainly by different molecules or substances present in the extracts. Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened. This is the first report where the antioxidant activity of P. ostreatus in different growth stage was reported. PMID:27462314

  11. Heating-induced conformational change of a novel beta-(1-->3)-D-glucan from Pleurotus geestanus.

    PubMed

    Zhang, Mei

    2010-02-01

    Recently, we isolated and purified a neutral polysaccharide (PGN) from edible fungus Pleurotus geestanus. Its structure was characterized by a range of physical-chemical methods, including high performance anion exchange chromatography, uronic acid, and protein analyses, size exclusion chromatography with ultraviolet, refractive index and light scattering detectors, and nuclear magnetic resonance. Our results revealed that PGN is a novel beta-(1-->3)-D-glucan with glucose attached to every other sugar residues at Position 6 in the backbone. It has a degree of branching of 1/2. Such structure is different from typical beta-(1-->3)-D-glucans schizophyllan and lentinan in which DB is 1/3 and 2/5, respectively. Rheological study showed a very interesting melting behavior of PGN in water solution: heating PGN in water leads to two transitions, in the range of 8-12.5 degrees C and 25-60 degrees C, respectively. The melting behavior and conformational changes were characterized by rheometry, micro-differential scan calorimetry, atomic force microscopy, static and dynamic light scattering at different temperatures. The first heating-induced transition corresponds to the disintegration of polymer bundles into small helical clusters, resembling the heating-induced dissociation of SPG in water at 7 degrees C; the second one might correspond to the dissociation of helical strands to individual chains. The ability of PGN to undergo a conformation/viscosity transition in water upon heating is very valuable to immobilize cells or enzymes or therapeutic DNA/RNA, which makes PGN a potentially useful biomaterial. PMID:19768780

  12. Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages.

    PubMed

    González-Palma, Ivette; Escalona-Buendía, Héctor B; Ponce-Alquicira, Edith; Téllez-Téllez, Maura; Gupta, Vijai K; Díaz-Godínez, Gerardo; Soriano-Santos, Jorge

    2016-01-01

    Total polyphenols and flavonoids contents, as well as ferric reducing antioxidant power (FRAP), metal ions chelating activity, reducing power assay and scavenging activity of DPPH and ABTS radicals in aqueous and methanolic extracts obtained from mycelium, primordium, and fruiting body of Pleurotus ostreatus in both fresh as dry, were evaluated. The total polyphenol content of dried samples was higher in aqueous extracts obtained both in room temperature and boiling. The total polyphenol content of the fresh samples obtained at room temperature and boiling was higher in aqueous extract of mycelium and in the methanolic extract of the fruiting body. In general, flavonoids represented a very small percentage of the total polyphenol content. The antioxidant activity measured by the FRAP method of extracts from fresh samples were higher with respect to the dried samples. The results of the metal ion chelating activity indicate that all extracts tested had acted. The reducing power of all samples was concentration dependent. In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. It was observed that the DPPH and ABTS radical scavenging activities were positively correlated to the concentration of the extract. The results suggested that antioxidant activity could be due to polyphenols, but mainly by different molecules or substances present in the extracts. Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened. This is the first report where the antioxidant activity of P. ostreatus in different growth stage was reported. PMID:27462314

  13. Factors Influencing Development of Root Rot on Ginseng Caused by Cylindrocarpon destructans.

    PubMed

    Rahman, Mahfuzur; Punja, Zamir K

    2005-12-01

    ABSTRACT The fungus Cylindrocarpon destructans (Zins) Scholten is the cause of root rot (disappearing root rot) in many ginseng production areas in Canada. A total of 80 isolates of C. destructans were recovered from diseased roots in a survey of ginseng gardens in British Columbia from 2002-2004. Among these isolates, 49% were classified as highly virulent (causing lesions on unwounded mature roots) and 51% were weakly virulent (causing lesions only on previously wounded roots). Pectinase and polyphenoloxidase enzymes were produced in vitro by C. destructans isolates when they were grown on pectin and phenol as a substrate, respectively. However, highly virulent isolates produced significantly (P < 0.001) higher enzyme levels compared with weakly virulent isolates. Histopathological studies of ginseng roots inoculated with a highly virulent isolate revealed direct hyphal penetration through the epidermis, followed by intracellular hyphal growth in the cortex. Subsequent cell disintegration and accumulation of phenolic compounds was observed. Radial growth of highly and weakly virulent isolates on potato dextrose agar was highest at 18 and 21 degrees C, respectively and there was no growth at 35 degrees C. Mycelial mass production was significantly (P rot among all root ages tested (1 to 4 years) when evaluated using a combined scale of disease incidence and severity. Root rot severity was significantly (P < 0.002) enhanced by increasing the inoculum density from 3.45 x 10(2) CFU/g of soil to 1.86 x 10(3) CFU/g of soil. Disease

  14. Antibacterial activity of Mediterranean Oyster mushrooms, species of genus Pleurotus (higher Basidiomycetes).

    PubMed

    Schillaci, Domenico; Arizza, Vincenzo; Gargano, Maria Letizia; Venturella, Giuseppe

    2013-01-01

    Extracts of the Mediterranean culinary-medicinal Oyster mushrooms Pleurotus eryngii var. eryngii, P. eryngii var. ferulae, P. eryngii var. elaeoselini, and P. nebrodensis were tested for their in vitro growth inhibitory activity against a group of bacterial reference strains of medical relevance: Staphylococcus aureus ATCC 25923, S. epidermidis RP62A, Pseudomonas aeruginosa ATCC 15442, and Escherichia coli ATCC10536. All of the Pleurotus species analyzed inhibited the tested microorganisms in varying degrees. The data included in this paper for P. nebrodensis and P. eryngii var. elaeoselinii are new reports. PMID:24266382

  15. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    SciTech Connect

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  16. Development of a ROT22 - DATAMAP interface

    NASA Technical Reports Server (NTRS)

    Shenoy, K. R.; Waak, T.; Brieger, J. T.

    1986-01-01

    This report (Contract NAS2-10331- Mod 10), outlines the development and validation of an interface between the three-dimensional transonic analysis program ROT22 and the Data from Aeromechanics Test and Analytics-Management and Analysis Package (DATAMAP). After development of the interface, the validation is carried out as follows. First, the DATAMAP program is used to analyze a portion of the Tip Aerodynamics and Acoustics Test (TAAT) data. Specifically, records 2872 and 2873 are analyzed at an azimuth of 90 deg, and record 2806 is analyzed at 60 deg. Trim conditions for these flight conditions are then calculated using the Bell performance prediction program ARAM45. Equivalent shaft, pitch, and twist angles are calculated from ARAM45 results and used as input to the ROT22 program. The interface uses the ROT22 results and creates DATAMAP information files from which the surface pressure contours and sectional pressure coefficients are plotted. Twist angles input to ROT22 program are then iteratively modified in the tip region until the computed pressure coefficients closely match the measurements. In all cases studied, the location of the shock is well predicted. However, the negative pressure coefficients were underpredicted. This could be accounted for by blade vortex interaction effects.

  17. Postharvest Rhizopus rot on sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus species have been reported as a minor post-harvest rot on sugar beet, particularly under temperatures above 5 deg C. In 2010, Rhizopus was isolated from beets collected from Michigan storage piles in February at a low frequency. However, recent evidence from Michigan has found a high incide...

  18. Hands-On Whole Science. What Rots?

    ERIC Educational Resources Information Center

    Markle, Sandra

    1991-01-01

    Presents activities on the science of garbage to help elementary students learn to save the earth. A rotting experiment teaches students what happens to apple slices sealed in plastic or buried in damp soil. Other activities include reading stories on the subject and conducting classroom composting or toxic materials projects. (SM)

  19. De novo genome assembly of the soil-borne fungus and tomato pathogen Pyrenochaeta lycopersici

    PubMed Central

    2014-01-01

    Background Pyrenochaeta lycopersici is a soil-dwelling ascomycete pathogen that causes corky root rot disease in tomato (Solanum lycopersicum) and other Solanaceous crops, reducing fruit yields by up to 75%. Fungal pathogens that infect roots receive less attention than those infecting the aerial parts of crops despite their significant impact on plant growth and fruit production. Results We assembled a 54.9Mb P. lycopersici draft genome sequence based on Illumina short reads, and annotated approximately 17,000 genes. The P. lycopersici genome is closely related to hemibiotrophs and necrotrophs, in agreement with the phenotypic characteristics of the fungus and its lifestyle. Several gene families related to host–pathogen interactions are strongly represented, including those responsible for nutrient absorption, the detoxification of fungicides and plant cell wall degradation, the latter confirming that much of the genome is devoted to the pathogenic activity of the fungus. We did not find a MAT gene, which is consistent with the classification of P. lycopersici as an imperfect fungus, but we observed a significant expansion of the gene families associated with heterokaryon incompatibility (HI). Conclusions The P. lycopersici draft genome sequence provided insight into the molecular and genetic basis of the fungal lifestyle, characterizing previously unknown pathogenic behaviors and defining strategies that allow this asexual fungus to increase genetic diversity and to acquire new pathogenic traits. PMID:24767544

  20. Decolourisation of mushroom farm wastewater by Pleurotus ostreatus.

    PubMed

    Rodríguez Pérez, Suyén; García Oduardo, Nora; Bermúdez Savón, Rosa C; Fernández Boizán, Maikel; Augur, Christopher

    2008-07-01

    Mushroom production on coffee pulp as substrate generates an intense black residual liquid, which requires suitable treatment. In the present study, Pleurotus ostreatus growth in wastewater from mushroom farm was evaluated as a potential biological treatment process for decolourisation as well as to obtain biomass (liquid inoculum). Culture medium components affecting mycelial growth were determined, evaluating colour removal. Laccase activity was monitored during the process. P. ostreatus was able to grow in non diluted WCP. Highest biomass yield was obtained when glucose (10 g/l) was added. The addition of this carbon source was necessary for efficient decolourisation. Agitation of the culture improved biodegradation of WCP as well as fungal biomass production. Laccase and manganese-independent peroxidase activities were detected during fungal treatment of the WCP by P. ostreatus CCEBI 3024. The laccase enzyme showed good correlation with colour loss. Both wastewater colour and pollution load (as chemical oxygen demand) decreased more than 50% after 10 days of culture. Phenols were reduced by 92%. PMID:17957486

  1. Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus.

    PubMed

    Hu, Shu Hui; Liang, Zeng Chin; Chia, Yi Chen; Lien, Juang Lin; Chen, Ker Shaw; Lee, Min Yen; Wang, Jinn Chyi

    2006-03-22

    Pleurotus citrinopileatus is a popular edible mushroom which is physiologically active in both humans and animals. In the study we investigate the effects of this mushroom on hyperlipidemic hamster rats. Four dietary forms of the mushroom were created as follows. The powdered dry fruiting body, hot-water extract, and two kinds of elutes were obtained, from ethyl acetate extract and methanol extract, respectively, in different mixed proportion solvents over silica gel column chromatography (referred to as EAE and MOE, respectively). They were tested at different dosages as a supplement to a high-fat diet in hyperlipidemic rats. Serum triglycerides and total cholesterol levels were significantly lower in groups supplemented with the highest dosages of EAE and MOE (0.5 g/kg, body weight daily) as compared with the control groups that received no mushroom additive. High-density lipoprotein levels in these same two experimental groups were also significantly higher than those in the negative control group. The tested rats that were fed with EAE had the highest serum glutathione peroxidase and superoxide dismutase activity, and those with the MOE and EAE had the highest DPPH free radical scavenging activities and ferric-reducing abilities, tested in vitro. The major constituents of MOE and EAE were identified as ergosterol and nicotinic acid, respectively. P. citrinopileatus extracts may have a significant antihyperlipidemia effect. Furthermore, antioxidant activities and antihyperlipidemic effects of MOE and EAE seemed to display similar tendencies. PMID:16536582

  2. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    SciTech Connect

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  3. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes.

    PubMed

    Akpinar, Merve; Urek, Raziye Ozturk

    2014-01-01

    Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ligninolytic ability to produce laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) enzymes through solid-state fermentation using apricot and pomegranate agroindustrial wastes. The reducing sugar, protein, lignin, and cellulose levels in these were studied. Also, the production of these ligninolytic enzymes was researched over the growth of the microorganism throughout 20 days, and the reducing sugar, protein, and nitrogen levels were recorded during the stationary cultivation at 28 ± 0.5°C. The highest Lac activity was obtained as 1618.5 ± 25 U/L on day 12 of cultivation using apricot. The highest MnP activity was attained as 570.82 ± 15 U/L on day 17 in pomegranate culture and about the same as apricot culture. There were low LiP activities in both cultures. The maximum LiP value detected was 16.13 ± 0.8 U/L in apricot cultures. In addition, AAO activities in both cultures showed similar trends up to day 17 of cultivation, with the highest AAO activity determined as 105.99 ± 6.3 U/L on day 10 in apricot cultures. Decolorization of the azo dye methyl orange was also achieved with produced ligninolytic enzymes by P. eryngii using apricot and pomegranate wastes. PMID:24279903

  4. Isolation, Purification, and Characterization of Fungal Laccase from Pleurotus sp.

    PubMed

    More, Sunil S; P S, Renuka; K, Pruthvi; M, Swetha; Malini, S; S M, Veena

    2011-01-01

    Laccases are blue copper oxidases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O(2) to H(2)O. They are currently seen as highly interesting industrial enzymes because of their broad substrate specificity. A positive strain was isolated and characterized as nonspore forming Basidiomycetes Pleurotus sp. Laccase activity was determined using ABTS as substrate. Laccase was purified by ionexchange and gel filtration chromatography. The purified laccase was a monomer showed a molecular mass of 40 ± 1 kDa as estimated by SDS-PAGE and a 72-fold purification with a 22% yield. The optimal pH and temperature were 4.5 and 65(°)C, respectively. The K(m) and V(max) values are 250 (mM) and 0.33 (μmol/min), respectively, for ABTS as substrate. Metal ions like CuSO(4), BaCl(2), MgCl(2), FeCl(2), ZnCl(2) have no effect on purified laccase whereas HgCl(2) and MnCl(2) moderately decrease enzyme activity. SDS and sodium azide inhibited enzyme activity, whereas Urea, PCMB, DTT, and mercaptoethanol have no effect on enzyme activity. The isolated laccase can be used in development of biosensor for detecting the phenolic compounds from the effluents of paper industries. PMID:21977312

  5. A halotolerant type A feruloyl esterase from Pleurotus eryngii.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Linke, Diana; Nimtz, Manfred; Berger, Ralf G

    2014-03-01

    An extracellular feruloyl esterase (PeFaeA) from the culture supernatant of Pleurotus eryngii was purified to homogeneity using cation exchange, hydrophobic interaction, and size exclusion chromatography. The length of the complete coding sequence of PeFaeA was determined to 1668 bp corresponding to a protein of 555 amino acids. The catalytic triad of Ser-Glu-His demonstrated the uniqueness of the enzyme compared to previously published FAEs. The purified PeFaeA was a monomer with an estimated molecular mass of 67 kDa. Maximum feruloyl esterase (FAE) activity was observed at pH 5.0 and 50 °C, respectively. Metal ions (5 mM), except Hg(2+), had no significant influence on the enzyme activity. Substrate specificity profiling characterized the enzyme as a type A FAE preferring bulky natural substrates, such as feruloylated saccharides, rather than small synthetic ones. Km and kcat of the purified enzyme for methyl ferulate were 0.15 mM and 0.85 s(-1). In the presence of 3 M NaCl activity of the enzyme increased by 28 %. PeFaeA alone released only little ferulic acid from destarched wheat bran (DSWB), whereas after addition of Trichoderma viride xylanase the concentration increased more than 20 fold. PMID:24607359

  6. Degradation of Oxo-Biodegradable Plastic by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  7. Isolation, Purification, and Characterization of Fungal Laccase from Pleurotus sp.

    PubMed Central

    More, Sunil S.; P. S., Renuka; K., Pruthvi; M., Swetha; Malini, S.; S. M., Veena

    2011-01-01

    Laccases are blue copper oxidases (E.C. 1.10.3.2 benzenediol: oxygen oxidoreductase) that catalyze the one-electron oxidation of phenolics, aromatic amines, and other electron-rich substrates with the concomitant reduction of O2 to H2O. They are currently seen as highly interesting industrial enzymes because of their broad substrate specificity. A positive strain was isolated and characterized as nonspore forming Basidiomycetes Pleurotus sp. Laccase activity was determined using ABTS as substrate. Laccase was purified by ionexchange and gel filtration chromatography. The purified laccase was a monomer showed a molecular mass of 40 ± 1 kDa as estimated by SDS-PAGE and a 72-fold purification with a 22% yield. The optimal pH and temperature were 4.5 and 65°C, respectively. The Km and Vmax values are 250 (mM) and 0.33 (μmol/min), respectively, for ABTS as substrate. Metal ions like CuSO4, BaCl2, MgCl2, FeCl2, ZnCl2 have no effect on purified laccase whereas HgCl2 and MnCl2 moderately decrease enzyme activity. SDS and sodium azide inhibited enzyme activity, whereas Urea, PCMB, DTT, and mercaptoethanol have no effect on enzyme activity. The isolated laccase can be used in development of biosensor for detecting the phenolic compounds from the effluents of paper industries. PMID:21977312

  8. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Nunes, Mateus Dias; da Silva, Marliane de Cássia Soares; Kasuya, Maria Catarina Megumi

    2013-01-01

    Growing concerns regarding the impact of the accumulation of plastic waste over several decades on the environmental have led to the development of biodegradable plastic. These plastics can be degraded by microorganisms and absorbed by the environment and are therefore gaining public support as a possible alternative to petroleum-derived plastics. Among the developed biodegradable plastics, oxo-biodegradable polymers have been used to produce plastic bags. Exposure of this waste plastic to ultraviolet light (UV) or heat can lead to breakage of the polymer chains in the plastic, and the resulting compounds are easily degraded by microorganisms. However, few studies have characterized the microbial degradation of oxo-biodegradable plastics. In this study, we tested the capability of Pleurotus ostreatus to degrade oxo-biodegradable (D2W) plastic without prior physical treatment, such as exposure to UV or thermal heating. After 45 d of incubation in substrate-containing plastic bags, the oxo-biodegradable plastic, which is commonly used in supermarkets, developed cracks and small holes in the plastic surface as a result of the formation of hydroxyl groups and carbon-oxygen bonds. These alterations may be due to laccase activity. Furthermore, we observed the degradation of the dye found in these bags as well as mushroom formation. Thus, P. ostreatus degrades oxo-biodegradable plastics and produces mushrooms using this plastic as substrate. PMID:23967057

  9. Antioxidant properties of different edible mushroom species and increased bioconversion efficiency of Pleurotus eryngii using locally available casing materials.

    PubMed

    Mishra, K K; Pal, R S; Arunkumar, R; Chandrashekara, C; Jain, S K; Bhatt, J C

    2013-06-01

    Total phenolics, radical scavenging activity (RSA) on DPPH, ascorbic acid content and chelating activity on Fe(2+) of Pleurotus citrinopileatus, Pleurotus djamor, Pleurotus eryngii, Pleurotus flabellatus, Pleurotus florida, Pleurotus ostreatus, Pleurotus sajor-caju and Hypsizygus ulmarius have been evaluated. The assayed mushrooms contained 3.94-21.67 mg TAE of phenolics, 13.63-69.67% DPPH scavenging activity, 3.76-6.76 mg ascorbic acid and 60.25-82.7% chelating activity. Principal Component Analysis (PCA) revealed that significantly higher total phenolics, RSA on DPPH and growth/day was present in P. eryngii whereas P. citrinopileatus showed higher ascorbic acid and chelating activity. Agglomerative hierarchical clustering analysis revealed that studied mushroom species fall into two clusters; Cluster I included P. djamor, P. eryngii and P. flabellatus, while Cluster II included H. ulmarius, P. sajor-caju, P. citrinopileatus, P. ostreatus and P. florida. Enhanced yield of P. eryngii was achieved on spent compost casing material. Use of casing materials enhanced yield by 21-107% over non-cased substrate. PMID:23411281

  10. Removal of trace organic contaminants by an MBR comprising a mixed culture of bacteria and white-rot fungi.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Yang, Shufan; Kang, Jinguo; Leusch, Frederic D L; Roddick, Felicity; Price, William E; Nghiem, Long D

    2013-11-01

    The degradation of 30 trace organic contaminants (TrOC) by a white-rot fungus-augmented membrane bioreactor (MBR) was investigated. The results show that white-rot fungal enzyme (laccase), coupled with a redox mediator (1-hydroxy benzotriazole, HBT), could degrade TrOC that are resistant to bacterial degradation (e.g. diclofenac, triclosan, naproxen and atrazine) but achieved low removal of compounds (e.g. ibuprofen, gemfibrozil and amitriptyline) that are well removed by conventional activated sludge treatment. Overall, the fungus-augmented MBR showed better TrOC removal compared to a system containing conventional activated sludge. The major role of biodegradation in removal by the MBR was noted. Continuous mediator dosing to MBR may potentially enhance its performance, although not as effectively as for mediator-enhanced batch laccase systems. A ToxScreen3 assay revealed no significant increase in the toxicity of the effluent during MBR treatment of the synthetic wastewater comprising TrOC, confirming that no toxic by-products were produced. PMID:24050925

  11. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum

    SciTech Connect

    D Merritt, C.S.; Reddy, C.A.

    1999-12-01

    Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen shaken cultures were much greater than those seen in low-nitrogen, malt extract, or wool-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HM cultures showed two laccase activity bands, where as isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, and 5.1. Low levels of MnP activity were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.

  12. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    PubMed

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. PMID:23506976

  13. Biological pretreatment of corn stover with white-rot fungus for enzymatic hydrolysis and bioethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pretreatment, as the first step towards conversion of lignocellulosic feedstocks to biofuels and/or chemicals remains one of the main barriers to commercial success. Typically, harsh methods are used to pretreat lignocellulosic biomass prior to its breakdown to sugars by enzymes, which also result ...

  14. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens

    SciTech Connect

    Perie, F.; Gold, M.H. )

    1991-08-01

    Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of {sup 14}C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were dependent on the presence of Mn(II), suggesting that manganese peroxidase is an important component of this organism's lignin degradation system. The expression of laccase activity was independent of manganese. In contrast to previous findings with Phanero-chaete chrysosporium, lignin degradation by D. squalens proceeded in the cultures containing excess carbon and nitrogen.

  15. Diversity study on Sclerotinia trifoliorum Erikks., the causal agent of clover rot in red clover crops (Trifolium pratense L.).

    PubMed

    Vleugels, T; Baert, J; De Riek, J; Heungens, K; Malengier, M; Cnops, G; Van Bockstaele, E

    2010-01-01

    Since the 16th century, red clover has been an important crop in Europe. Since the 1940s, the European areal of red clover has been severely reduced, due to the availability of chemical fertilizers and the growing interest in maize. Nowadays there is a growing interest in red clover again, although some setbacks still remain. An important setback is the low persistence of red clover crops. Clover rot, caused by the ascomycete fungus Sclerotinia trifoliorum Erikss., is a major disease in Europe and reduces the persistence of red clover crops severely. The fungus infects clover plants through ascospores in the autumn, the disease develops during the winter and early spring and can kill many plants in this period. In early spring, black sclerotia, serving as surviving bodies, are formed on infected plants. Sclerotia can survive up to 7 years in the soil (Ohberg, 2006). The development of clover rot is highly dependent on the weather conditions: a humid fall, necessary for the germination of the ascospores and an overall warm winter with short periods of frost are favourable for the disease. Cold and dry winters slow the mycelial growth down too much and prevent the disease from spreading. Clover rot is difficult to control and completely resistant red clover varieties have yet to be developed. Because of the great annual variation in disease severity, plant breeders cannot use natural infection as an effective means to screen for resistant material. Breeding for resistant cultivars is being slowed down by the lack of a bio-test usable in breeding programs. When applying artificial infections, it is necessary to have an idea of the diversity of the pathogen. A diverse population will require resistance screening with multiple isolates. The objective of this research is to investigate the genetic diversity among isolates from the pathogen S. trifoliorum from various European countries. We assessed diversity using a species identification test based on the sequence of

  16. [Studies on genus Pleurotus. VIII. Interaction between mycelial growth and yield].

    PubMed

    Salmones, D; Gaitán-Hernández, R; Pérez, R; Guzmán, G

    1997-12-01

    This project studies the relationship between mycelial growth rate and production of basidiomata of 19 Pleurotus strains. Firstly, monosporic cultures were isolated of five strains from the following species: Pleurotus djamor (3), Pleurotus ostreatus (1) and Pleurotus pulmonarius (1). These were self-crossed in order to obtain 25 infraspecific dikaryons from which their mycelial growth rate was estimated. The parent strains and the 14 fastest growing crosses were cultivated in the pilot plant on barley straw with the following data recorded: days of incubation, primordia initiation, number of harvests, biological efficiency (BE), production rates (PR) and size of the basidiomes. The BE's fluctuated between 16.8 to 75.6% and the PR's between 0.34 to 1.68%. Most of the basidiomata presented a pileus diameter of 5-15 cm. With the exception of one cross with P. djamor, no increase was observed in the productivity and size of the carphophores of the crosses with respect to the parent strains, suggesting that the rapid mycelial growth rate of the strains was not reflected in the development of the fruiting bodies. PMID:15538821

  17. Absorption spectral analysis of proteins and free amino acids in Pleurotus ostreatus fruiting body extracts

    NASA Astrophysics Data System (ADS)

    Kostyshyn, S.; Gorshynska, I.; Guminetsky, S. G.

    2002-02-01

    The paper deals with the results of spectrophotometric studies of the extracts of Pleurotus ostreatus fruiting bodies, grown in natural conditions in different habitats of Chernivtsy region, in the spectral interval of 215 - 340 nm. It is shown that the samples reveal considerable difference both in free amino acid content and reserved protein content of albumins, globulins, prolamins, glutelins.

  18. Potential of Pleurotus ostreatus Mycelium for Selenium Absorption

    PubMed Central

    Milovanović, Ivan; Brčeski, Ilija; Stajić, Mirjana; Korać, Aleksandra; Vukojević, Jelena; Knežević, Aleksandar

    2014-01-01

    The aim of this study was to evaluate the effect of high selenium (Se) concentrations on morphophysiological and ultrastructural properties of Pleurotus ostreatus. Mycelium growth was good in media enriched with 5.0, 10.0, and 20.0 mg L−1 of Se, concentration of 500.0 mg L−1 strongly inhibited growth, and 1000.0 mg L−1 was the minimum inhibitory concentration. Contrary to thin-walled, hyaline, branched, and anastomized hyphae with clamp-connections in the control, at Se concentrations of 100.0 and 500.0 mg L−1, they were noticeably short, frequently septed and branched, with a more intensive extracellular matrix, and without clamp-connections. At high Se concentrations, hyphae with intact membrane, without cellular contents, with a high level of vacuolization, and with numerous proteinaceous bodies were observed. Biomass yield ranged between 11.8 g L−1, in the control, and 6.8 g L−1, at an Se concentration of 100.0 mg L−1, while no production was detected at a concentration of 500.0 mg L−1. Se content in the mycelia reached a peak (938.9 μg g−1) after cultivation in the medium enriched with Se at the concentration of 20.0 mg L−1, while the highest absorption level (53.25%) was found in the medium enriched with 5.0 mg L−1 Se. PMID:25003145

  19. The Amoebicidal Effect of Ergosterol Peroxide Isolated from Pleurotus ostreatus.

    PubMed

    Meza-Menchaca, Thuluz; Suárez-Medellín, Jorge; Del Ángel-Piña, Christian; Trigos, Ángel

    2015-12-01

    Dysentery is an inflammation of the intestine caused by the protozoan parasite Entamoeba histolytica and is a recurrent health problem affecting millions of people worldwide. Because of the magnitude of this disease, finding novel strategies for treatment that does not affect human cells is necessary. Ergosterol peroxide is a sterol particularly known as a major cytotoxic agent with a wide spectrum of biological activities produced by edible and medicinal mushrooms. The aim of this report is to evaluate the amoebicidal activity of ergosterol peroxide (5α, 8α-epidioxy-22E-ergosta-6,22-dien-3β-ol isolated from 5α, 8α-epidioxy-22E-ergosta-6,22-dien-3β-ol) (Jacq.) P. Kumm. f. sp. Florida. Our results show that ergosterol peroxide produced a strong cytotoxic effect against amoebic growth. The inhibitory concentration IC50 of ergosterol peroxide was evaluated. The interaction between E. histolytica and ergosterol peroxide in vitro resulted in strong amoebicidal activity (IC50  = 4.23 nM) that may be due to the oxidatory effect on the parasitic membrane. We also tested selective toxicity of ergosterol peroxide using a cell line CCL-241, a human epithelial cell line isolated from normal human fetal intestinal tissue. To the best of our knowledge, this is the first report on the cytotoxicity of ergosterol peroxide against E. histolytica, which uncovers a new biological property of the lipidic compound isolated from Pleurotus ostreatus (Jacq.) P. Kumm. f. sp. Florida. PMID:26392373

  20. The origin of the attine ant-fungus mutualism.

    PubMed

    Mueller, U G; Schultz, T R; Currie, C R; Adams, R M; Malloch, D

    2001-06-01

    Cultivation of fungus for food originated about 45-65 million years ago in the ancestor of fungus-growing ants (Formicidae, tribe Attini), representing an evolutionary transition from the life of a hunter-gatherer of arthropod prey, nectar, and other plant juices, to the life of a farmer subsisting on cultivated fungi. Seven hypotheses have been suggested for the origin of attine fungiculture, each differing with respect to the substrate used by the ancestral attine ants for fungal cultivation. Phylogenetic information on the cultivated fungi, in conjunction with information on the nesting biology of extant attine ants and their presumed closest relatives, reveal that the attine ancestors probably did not encounter their cultivars-to-be in seed stores (von Ihering 1894), in rotting wood (Forel 1902), as mycorrhizae (Garling 1979), on arthropod corpses (von Ihering 1894) or ant faeces in nest middens (Wheeler 1907). Rather, the attine ant-fungus mutualism probably arose from adventitious interactions with fungi that grew on walls of nests built in leaf litter (Emery 1899), or from a system of fungal myrmecochory in which specialized fungi relied on ants for dispersal (Bailey 1920) and in which the ants fortuitously vectored these fungi from parent to offspring nests prior to a true fungicultural stage. Reliance on fungi as a dominant food source has evolved only twice in ants: first in the attine ants, and second in some ant species in the solenopsidine genus Megalomyrmex that either coexist as trophic parasites in gardens of attine hosts or aggressively usurp gardens from them. All other known ant-fungus associations are either adventitious or have nonnutritional functions (e.g., strengthening of carton-walls in ant nests). There exist no unambiguous reports of facultative mycophagy in ants, but such trophic ant-fungus interactions would most likely occur underground or in leaf litter and thus escape easy observation. Indirect evidence of fungivory can be deduced

  1. Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2+ Repression Enhances Anthropogenic and Natural Substrate Degradation

    PubMed Central

    Salame, Tomer M.; Knop, Doriv; Levinson, Dana; Mabjeesh, Sameer J.; Yarden, Oded; Hadar, Yitzhak

    2012-01-01

    The versatile-peroxidase (VP) encoded by mnp4 is one of the nine members of the manganese-peroxidase (MnP) gene family that constitutes part of the ligninolytic system of the white-rot basidiomycete Pleurotus ostreatus (oyster mushroom). VP enzymes exhibit dual activity on a wide range of substrates. As Mn2+ supplement to P. ostreatus cultures results in enhanced degradation of recalcitrant compounds and lignin, we examined the effect of Mn2+ on the expression profile of the MnP gene family. In P. ostreatus (monokaryon PC9), mnp4 was found to be the predominantly expressed mnp in Mn2+-deficient media, whereas strongly repressed (to approximately 1%) in Mn2+-supplemented media. Accordingly, in-vitro Mn2+-independent activity was found to be negligible. We tested whether release of mnp4 from Mn2+ repression alters the activity of the ligninolytic system. A transformant over-expressing mnp4 (designated OEmnp4) under the control of the β-tubulin promoter was produced. Now, despite the presence of Mn2+ in the medium, OEmnp4 produced mnp4 transcript as well as VP activity as early as 4 days after inoculation. The level of expression was constant throughout 10 days of incubation (about 0.4-fold relative to β-tubulin) and the activity was comparable to the typical activity of PC9 in Mn2+-deficient media. In-vivo decolorization of the azo dyes Orange II, Reactive Black 5, and Amaranth by OEmnp4 preceded that of PC9. OEmnp4 and PC9 were grown for 2 weeks under solid-state fermentation conditions on cotton stalks as a lignocellulosic substrate. [14C]-lignin mineralization, in-vitro dry matter digestibility, and neutral detergent fiber digestibility were found to be significantly higher (about 25%) in OEmnp4-fermented substrate, relative to PC9. We conclude that releasing Mn2+ suppression of VP4 by over-expression of the mnp4 gene in P. ostreatus improved its ligninolytic functionality. PMID:23285046

  2. Sheath rot of rice in Iran.

    PubMed

    Naeimi, S; Okhovvat, S M; Hedjaroude, G A; Khosravi, V

    2003-01-01

    Sheath rot of rice occurs in most rice-growing regions of the world. It usually causes yield losses from 20 to 85%. Sheath rot was reported from Iran in 1993. Year after year, the number of diseased plants increased in the Northern Iran. In summer of 2001, these symptoms were observed in most fields: lesions occur on the upper leaf sheaths, especially the flag leaf sheath. As the disease progresses, lesions enlarge and coalesce and may cover most of the leaf sheath. Panicle may fail to completely or at all. Brown or partially brown not filled or partially filled grain is also associated with infection of the panicle. A whitish powdery growth may be found inside affected sheaths. Infected plants were collected and trasferred to laboratory. Small pieces of diseased tissues were washed under tap water for one hour. Then tissues were placed on WA and incubated at 25 degrees C. These isolates were purified and identified as: Sarocladium oryzae, Fusarium udum, F. semitectum, F. avenaceum, F. flocciferum, F. graminearum, Bipolaris oryzae, Alternaria padwickii, Rhizoctonia solani, Paecilomyces sp., Nigrospora sp. and Trichoderma sp. This is the first report of F. udum in Iran. Also this is the first report that rice is the host for F. semitectum, F. avenaceum and F. flocciferum in Iran. Pathogenicity tests were conducted in glass house. Following species were found to be associated with sheath rot of rice: S. oryzae, F. graminearum, F. udum, F. avenaceum, B. oryzae, A. padwickii. This is the first report in the world that F. udum and A. padwickii are the causal agents of the sheath rot on rice plants. PMID:15151303

  3. Wood-rotting fungi of North America

    SciTech Connect

    Gilbertson, R.L.

    1980-01-01

    The biology of wood-rotting fungi is reviewed. Discussions are presented in taxonomy, species diversity, North American distribution, developmental response to environmental factors, edibility and toxicity, medical uses, relationships of fungi with insects and birds, the role of fungi as mycorrhiza, pathological relationships with trees, role in wood decay, and ecology. Threats to the continuing existence of these fungi as a result of increased utilization of wood as fuel are also discussed. (ACR)

  4. Pathogenicity of some Rhizoctonia solaniz isolates associated with root/collar rots on the cultivars of bean in greenhouse.

    PubMed

    Bohlooli, A; Okhovvat, S M; Javan-Nikkhah, M

    2006-01-01

    One hundred and eighteen isolates of Rhizoctonia solani were gathered from infected roots and hypocotyls of bean (Phaseolus vulgaris L.) grown in the fields of Tehran Province, Iran. Two isolates of the collected samples belonged to binucleate and 81 isolates to multinucleate of R. solani. The multinucleate isolates showed different anastomosis groups as AG-4 (subg. AG-4 HGI, AG-4HGII), AG-6 and AG-2. In greenhouse, pathogenicity tests carried out on bean cv. Naz in randomized design with 4 replications and each replication (pots) with 5 seeds of bean. Infection was done with seeds of wheat which were infected to the fungus with pasteurized soil. Results showed that the highest disease severity was caused by AG-4 (Rs21) isolates, whereas AG-4 (Rs74) isolates were weakly pathogenic with 90% and 21% infection, respectively. In this test the major pathogenic isolates belonged to AG-4 and they caused seed rot and damping-off of bean and AG-6 isolates were non-pathogenic. Five isolates of the fungus with major pathogenicity (Rs7, Rs18, Rs21, Rs62 and Rs71) selected and used for the reaction with different cultivars of bean. In this test, the cultivars and lines of bean (Pinto, red, white, green) studied in factorial experiment as randomized block design with 4 replications (pots). Results showed that none of the cultivars was completely resistant, however green bean cv. Sanry and pinto cv. Shad with number 4.8 disease severities had the highest susceptibility to seed rot and damping-off and red bean cv. Goli with 2.58 had the lowest susceptibility to the infection. Reaction of the cultivars and lines to the isolates of R. solani was significantly different at 1% level. Isolates of the fungus, Rs7, Rs21 with 84%, 90% pathogenicity was more virulent than the others. PMID:17390878

  5. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.

    PubMed

    Riley, Robert; Salamov, Asaf A; Brown, Daren W; Nagy, Laszlo G; Floudas, Dimitrios; Held, Benjamin W; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A; Sun, Hui; LaButti, Kurt M; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E; Pisabarro, Antonio G; Walton, Jonathan D; Blanchette, Robert A; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S; Grigoriev, Igor V

    2014-07-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869

  6. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitris; Held, Benjamin; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika; Sun, Hui; LaButti, Kurt; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio; Walton, Jonathan D.; Blanchette, Robert; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David; Grigoriev, Igor V.

    2014-03-14

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rot classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

  7. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    PubMed Central

    Riley, Robert; Salamov, Asaf A.; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitrios; Held, Benjamin W.; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika A.; Sun, Hui; LaButti, Kurt M.; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio G.; Walton, Jonathan D.; Blanchette, Robert A.; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David S.; Grigoriev, Igor V.

    2014-01-01

    Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay. PMID:24958869

  8. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    SciTech Connect

    Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin; Salamov, Asaf; Hori, Chiaki; Aerts, Andrea; Henrissat, Bernard; Wiebenga, Ad; vanKuyk, Patricia A.; Barry, Kerrie; Lindquist, Erika; LaButti, Kurt; Lapidus, Alla; Lucas, Susan; Coutinho, Pedro; Gong, Yunchen; Samejima, Masahiro; Mahadevan, Radhakrishnan; Abou-Zaid, Mamdouh; de Vries, Ronald P.; Igarashi, Kiyohiko; Yadav, Jagit S.; Grigoriev, Igor V.; Master, Emma R.

    2012-02-17

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.

  9. Genetic Differentiation and Spatial Structure of Phellinus noxius, the Causal Agent of Brown Root Rot of Woody Plants in Japan.

    PubMed

    Akiba, Mitsuteru; Ota, Yuko; Tsai, Isheng J; Hattori, Tsutomu; Sahashi, Norio; Kikuchi, Taisei

    2015-01-01

    Phellinus noxius is a pathogenic fungus that causes brown root rot disease in a variety of tree species. This fungus is distributed in tropical and sub-tropical regions of Southeast and East Asia, Oceania, Australia, Central America and Africa. In Japan, it was first discovered on Ishigaki Island in Okinawa Prefecture in 1988; since then, it has been found on several of the Ryukyu Islands. Recently, this fungus was identified from the Ogasawara (Bonin) Islands, where it has killed trees, including rare endemic tree species. For effective control or quarantine methods, it is important to clarify whether the Japanese populations of P. noxius are indigenous to the area or if they have been introduced from other areas. We developed 20 microsatellite markers from genome assembly of P. noxius and genotyped 128 isolates from 12 of the Ryukyu Islands and 3 of the Ogasawara Islands. All isolates had unique genotypes, indicating that basidiospore infection is a primary dissemination method for the formation of new disease foci. Genetic structure analyses strongly supported genetic differentiation between the Ryukyu populations and the Ogasawara populations of P. noxius. High polymorphism of microsatellite loci suggests that Japanese populations are indigenous or were introduced a very long time ago. We discuss differences in invasion patterns between the Ryukyu Islands and the Ogasawara Islands. PMID:26513585

  10. Genetic Differentiation and Spatial Structure of Phellinus noxius, the Causal Agent of Brown Root Rot of Woody Plants in Japan

    PubMed Central

    Akiba, Mitsuteru; Ota, Yuko; Tsai, Isheng J.; Hattori, Tsutomu; Sahashi, Norio; Kikuchi, Taisei

    2015-01-01

    Phellinus noxius is a pathogenic fungus that causes brown root rot disease in a variety of tree species. This fungus is distributed in tropical and sub-tropical regions of Southeast and East Asia, Oceania, Australia, Central America and Africa. In Japan, it was first discovered on Ishigaki Island in Okinawa Prefecture in 1988; since then, it has been found on several of the Ryukyu Islands. Recently, this fungus was identified from the Ogasawara (Bonin) Islands, where it has killed trees, including rare endemic tree species. For effective control or quarantine methods, it is important to clarify whether the Japanese populations of P. noxius are indigenous to the area or if they have been introduced from other areas. We developed 20 microsatellite markers from genome assembly of P. noxius and genotyped 128 isolates from 12 of the Ryukyu Islands and 3 of the Ogasawara Islands. All isolates had unique genotypes, indicating that basidiospore infection is a primary dissemination method for the formation of new disease foci. Genetic structure analyses strongly supported genetic differentiation between the Ryukyu populations and the Ogasawara populations of P. noxius. High polymorphism of microsatellite loci suggests that Japanese populations are indigenous or were introduced a very long time ago. We discuss differences in invasion patterns between the Ryukyu Islands and the Ogasawara Islands. PMID:26513585

  11. Evaluation of soybean genotypes for resistance to charcoal rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot caused by Macrophomina phaseolina causes more yield loss in soybean than most other diseases in the southern U.S.A. There are no commercial genotypes marketed as resistant to charcoal rot of soybean. Reactions of 27 maturity group (MG) III, 29 Early MG IV, 34 Late MG IV, and 59 MG V gen...

  12. A diagnostic guide for Fusarium Root Rot of pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot, caused by Fusarium solani f. sp. pisi, is a major root rot pathogen in pea production areas worldwide. Here we provide a diagnostic guide that describes: the taxonomy of the pathogen, signs and symptoms of the pathogen, host range, geographic distribution, methods used to isolate ...

  13. DNA Based Genetic Variation for Red Rot Resistance in Sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic difference between twelve red rot resistant and five susceptible genotypes of sugarcane cultivated in Pakistan were studied using Random Amplified Polymorphic DNA (RAPD) markers. Initial screening was done using 300 markers and four genotypes (two resistant and two susceptible for red rot). ...

  14. Tolerance to Phytophthora Fruit Rot in Watermelon Plant Introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora capsici is distributed worldwide, and is an aggressive pathogen with a broad host range infecting solanaceous, leguminaceous, and cucurbitaceous crops. Fruit rot, caused by P. capsici is an emerging disease in most watermelon producing regions of Southeast US. Resistance to fruit rot o...

  15. Dig Alfalfa Plants to Assess Root Rots and Yield Potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digging alfalfa plants and inspecting their crowns and roots for rot is critical to assess stand health and production potential. Brown root rot (BRR) has been a significant plant disease on alfalfa for decades but until recently was thought to only cause significant damage in western Canada. With i...

  16. Resistance to charcoal rot identified in ancestral soybean germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Charcoal rot, caused by the fungal pathogen Macrophomina phaseolina, is an economically important disease on soybean and other crops including maize, sorghum, and sunflowers. Without effective cultural or chemical options to control charcoal rot in soybean, finding sources of genetic resistance is o...

  17. Cultivar Selection for Sugar Beet Root Rot Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal and bacterial root rots in sugar beet caused by Rhizoctonia solani (Rs) and Leuconostoc mesenteroides subsp. dextranicum (Lm) can lead to root yield losses greater than 50%. To reduce the impact of these root rots on sucrose loss in the field, storage, and factories, studies were conducted t...

  18. New Fungicides for Managing Phytophthora Fruit Rot of Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the past several years, Phytophthora fruit rot of watermelon (causal agent: Phytophthora capsici) has been considered an important problem and a top research priority by the National Watermelon Association. Management of Phytophthora fruit rot is particularly difficult because of the long durati...

  19. RotCFD Software Validation - Computational and Experimental Data Comparison

    NASA Technical Reports Server (NTRS)

    Fernandez, Ovidio Montalvo

    2014-01-01

    RotCFD is a software intended to ease the design of NextGen rotorcraft. Since RotCFD is a new software still in the development process, the results need to be validated to determine the software's accuracy. The purpose of the present document is to explain one of the approaches to accomplish that goal.

  20. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin.

    PubMed

    Yang, Y S; Zhou, J T; Lu, H; Yuan, Y L; Zhao, L H

    2011-09-01

    A fungus strain F-3 was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp. stain F-3 with its morphologic, cultural characteristics and high homology to the genus of rDNA sequence. The budges or thickened node-like structures are peculiar structures of hyphae of the strain. The fungus degraded 65% of alkali lignin (2,000 mg l(-1)) after day 8 of incubation at 30°C at pH 7. The removal of colority was up to 100% at 8 days. The biodegradation of lignin by Aspergillus sp. F-3 favored initial pH 7.0. Excess acid or alkali conditions were not propitious to lignin decomposing. Addition of ammonium L: -tartrate or glucose delayed or repressed biodegradation activities. During lignin degradation, manganese peroxidase (28.2 U l(-1)) and laccase (3.5 U l(-1))activities were detected after day 7 of incubation. GC-MS analysis of biodegraded products showed strain F-3 could convert alkali lignin into small molecules or other utilizable products. Strain F-3 may co-culture with white rot fungus and decompose alkali lignin effectively. PMID:21350882

  1. Advances in the development of sunflower germplasm with resistance to both Sclerotinia stalk rot and head rot - 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia diseases remain the most significant of all diseases on both oilseed and confection sunflower production in the U.S. In 2007 Sclerotinia stalk rot and head rot affected 30% and 26%, respectively, of fields surveyed in North Dakota, South Dakota, Minnesota, Kansas, Colorado and Texas. S...

  2. Experimental evaluation of analgesic and anti-inflammatory potential of Oyster mushroom Pleurotus florida

    PubMed Central

    Ganeshpurkar, Aditya; Rai, Gopal

    2013-01-01

    Background: Edible mushrooms have been used as flavorful foods and as health nutritional supplements for several centuries. A number of bioactive molecules have been identified in numerous mushroom species Objective: To evaluate the analgesic and anti-inflammatory potential of Oyster Mushroom Pleurotus florida using various experimental models in Wistar rats. Materials and Methods: Acute toxicity studies were performed whereby dose of 250 mg/ kg and 500 mg/kg was selected for present study, Analgesic activity was determined using hot plate method, tail flick method, acetic acid induced writhing and formalin induced pain in rats, while carrageenan was used to induce inflammation and anti-inflammatory studies were performed. Results: HEE showed significant (P < 0.01) analgesic and anti-inflammatory response against all experimental models. Conclusion: These studies conclude that Pleurotus florida possesses analgesic and anti- inflammatory potential which might be due to presence of myochemicals like flavonoids, phenolics and polysaccharides. PMID:23543896

  3. Lipid constituents of the edible mushroom, Pleurotus giganteus demonstrate anti-Candida activity.

    PubMed

    Phan, Chia-Wei; Lee, Guan-Serm; Macreadie, Ian G; Malek, Sri Nurestri Abd; Pamela, David; Sabaratnam, Vikineswary

    2013-12-01

    Different solvent extracts of Pleurotus giganteus fruiting bodies were tested for antifungal activities against Candida species responsible for human infections. The lipids extracted from the ethyl acetate fraction significantly inhibited the growth of all the Candida species tested. Analysis by GC/MS revealed lipid components such as fatty acids, fatty acid methyl esters, ergosterol, and ergosterol derivatives. The sample with high amounts of fatty acid methyl esters was the most effective antifungal agent. The samples were not cytotoxic to a mammalian cell line, mouse embryonic fibroblasts BALB/c 3T3 clone A31. To our knowledge, this is the first report of antifungal activity of the lipid components of Pleurotus giganteus against Candida species. PMID:24555294

  4. Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor.

    PubMed

    Wu, Xiangli; Zheng, Suyue; Cui, Li; Wang, Hexiang; Ng, Tzi Bun

    2010-06-01

    A 15-kDa RNase was purified from Pleurotus djamor using ion exchange chromatography and gel filtration. Its N-terminal amino acid sequence was different from previously reported RNase sequences of mushrooms belonging to the genus of Pleurotus and other genera. The RNase exhibited maximal RNase activity at pH 4.6 and 60 degrees C. Its activity toward polyhomoribonucleotides was poly(U) > poly(C) > poly(A) > poly(G). It inhibited proliferation of hepatoma cells and breast cancer cells. The ranking of inhibitory potencies of metal ions on RNase activity was Fe(3+)> Al(3+)> Ca(2+)> Hg(2+). The isolated RNase had a distinctive N-terminal sequence and optimum pH. It exhibited antiproliferative activity on tumor cells. PMID:20647680

  5. Production of cellulolytic enzymes by Pleurotus species on lignocellulosic wastes using novel pretreatments.

    PubMed

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Singh, V K

    2014-01-01

    In the present investigation three species of Pleurotus i.e. P. sajor—caju (P1), P. florida (P2) and P. flabellatus (P3) along with two lignocellulosic substrates namely paddy straw and wheat straw were selected for evaluation of production of extracellular cellulolytic enzymes. During the cultivation of three species of Pleurotus under in vivo condition, the two lignocellulosic substrates were treated with plants extracts (aqueous extracts of ashoka leaves (A) and neem oil (B)), hot water (H) and chemicals (C).Among all treatments, neem oil treated substrates supported better enzyme production followed by aqueous extract of ashoka leaves, hot water and chemical treatment. Between the two substrates paddy straw supported better enzyme production than wheat straw. P. flabellatus showed maximum activity of exoglucanase, endoglucanase and β—glucosidase followed by P. florida and P. sajor—caju. PMID:25535714

  6. Extracellular xylanase production by Pleurotus species on lignocellulosic wastes under in vivo condition using novel pretreatment.

    PubMed

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K

    2012-01-01

    The production of extracellular xylanase by three species of Pleurotus species i.e. P. florida, P. flabellatus and P. sajor caju was studied under in vivo condition during their cultivation on pretreated lignocellulosic wastes. Neem (Azadirachta indica) oil and ashoka (Saraca indica) leaves extract were used for pretreatment of paddy straw and wheat straw. Between these two wastes, paddy straw pretreated with neem oil, supported better xylanase production than wheat straw. Initially, xylanase production was low but it increased in subsequent days and reached at peak on 25th day of cultivation of Pleurotus species. Thereafter, there was decrease in the activity of the enzyme. On 25th day of incubation P. florida produced maximum xylanase on neem oil pretreated paddy straw i.e. 10.59 Uh—1ml—1. Among the three species, P. florida showed maximum enzyme activity followed by P. flabellatus and P. sajor caju. PMID:23273208

  7. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study.

    PubMed

    Byss, Marius; Elhottová, Dana; Tříska, Jan; Baldrian, Petr

    2008-11-01

    The aim of this study was to determine the efficacy of selected basidiomycetes in the removing of polycyclic aromatic hydrocarbons (PAH) from the creosote-contaminated soil. Fungi Pleurotus ostreatus and Irpex lacteus were supplemented with creosote-contaminated (50-200 mg kg(-1) PAH) soil originating from a wood-preserving plant and incubated at 15 °C for 120 d. Either fungus degraded PAH with 4-6 aromatic rings more efficiently than the microbial community present initially in the soil. PAH removal was higher in P. ostreatus treatments (55-67%) than in I. lacteus treatments (27-36%) in general. P. ostreatus (respectively, I. lacteus) removed 86-96% (47-59%) of 2-rings PAH, 63-72% (33-45%) of 3-rings PAH, 32-49% (9-14%) of 4-rings PAH and 31-38% (11-13%) of 5-6-rings PAH. MIS (Microbial Identification System) Sherlock analysis of the bacterial community determined the presence of dominant Gram-negative bacteria (G-) Pseudomonas in the inoculated soil before the application of fungi. Complex soil microbial community was characterized by phospholipid fatty acids analysis followed by GC-MS/MS. Either fungus induced the decrease of bacterial biomass (G- bacteria in particular), but the soil microbial community was influenced by P. ostreatus in a different way than by I. lacteus. The bacterial community was stressed more by the presence of I. lacteus than P. ostreatus (as proved by the ratio of the fungal/bacterial markers and by the ratio of trans/cis mono-unsaturated fatty acids). Moreover, P. ostreatus stimulated the growth of Gram-positive bacteria (G+), especially actinobacteria and these results indicate the potential of the positive synergistic interaction of this fungus and actinobacteria in creosote biodegradation. PMID:18782639

  8. A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius.

    PubMed

    Ye, X Y; Ng, T B

    2002-05-01

    A ribonuclease (RNase), with an N-terminal sequence different from those of ribonucleases from the mushrooms Irpex lacteus, Lentinus edodes, Pleurotus ostreatus, Pleurotus tuber-regium, and Volvariella volvacea, was purified from fruiting bodies of the edible mushroom Pleurotus pulmonarius. The N-terminal sequence of P. pulmonarius RNase manifested homology to a portion of the sequences of ribosome inactivating protein abrin-b, abrin-c, and abrin-d, and Bacillus subtilis transcriptional regulator. The ribonuclease was adsorbed on Affi-gel blue gel, CM-Sepharose, and Mono S. It displayed a molecular mass of 14.4 kDa in both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration on Superdex 75. The ribonuclease exhibited an activity of 25 114 U/mg on yeast tRNA. The highest ribonucleolytic activity was demonstrated toward poly C, followed by poly A, and then by poly G. There was no activity toward poly U. The optimal pH for its activity was 7 and the optimal temperature was 55 degrees C. It inhibited cell-free translation in a rabbit reticulocyte lysate with an IC50 of 0.33 nM. PMID:12054550

  9. Characterization of an Anti-gout Xanthine Oxidase Inhibitor from Pleurotus ostreatus.

    PubMed

    Jang, In-Taek; Hyun, Se-Hee; Shin, Ja-Won; Lee, Yun-Hae; Ji, Jeong-Hyun; Lee, Jong-Soo

    2014-09-01

    We selected Pleurotus ostreatus from among several edible mushrooms because it has high anti-gout xanthine oxidase (XOD) inhibitory activity. The maximal amount of XOD inhibitor was extracted when the Pleurotus ostreatus fruiting body was treated with distilled water at 40℃ for 48 hr. The XOD inhibitor thus obtained was purified by Sephadex G-50 gel permeation chromatography, ultrafiltration, C18 solid phase extraction chromatography and reverse-phase high-performance liquid chromatography with 3% of solid yield, and its XOD inhibitory activity was 0.9 mg/mL of IC50. The purified XOD inhibitor was a tripeptide with the amino acid sequence phenylalanine-cysteine-histidine and a molecular weight of 441.3 Da. The XOD inhibitor-containing ultrafiltrates from Pleurotus ostreatus demonstrated dose-dependent anti-gout effects in a Sprague-Dawley rat model of potassium oxonate-induced gout, as shown by decreased serum urated levels at doses of 500 and 1,000 mg/kg, although the effect was not as great as that achieved with the commercial anti-gout agent, allopurinol when administered at a dose of 50 mg/kg. PMID:25346610

  10. Direct red decolorization and ligninolytic enzymes production by improved strains of Pleurotus using basidiospore derived monokaryons.

    PubMed

    Srivastava, A K; Vishwakarma, S K; Pandey, V K; Singh, M P

    2014-01-01

    In the present investigation the efficiency of three species of Pleurotus and their improved dikaryons (heterokaryons) was assessed for decolorization of direct red and production of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase enzymes. All the species of Pleurotus i.e. P. flabellatus, P. ostreatus, and P. citrinopileatus decolorized the dye Direct Red well. However, Pfo 6X9 and Poc 9X6 decolorized the dye more effectively than three species of Pleurotus. The improved dikaryons also showed higher ligninolytic activity than the parental species. Poc 9X6 showed higher LiP (76.27U), MnP (623.24U) and laccase activity (594.80U). In the present work different pH, age and concentration of inoculum and effect of surfactant i.e. sodium dodecyl sulphate (SDS) and Tween—80 were analyzed in order to determine the optimum ones to decolorize maximum concentration of dye. 5 ml of 10 days old culture on pH 5.5 and 0.1% Tween—80 supported maximum decolorization of direct red dye. PMID:25535707

  11. Characterization of an Anti-gout Xanthine Oxidase Inhibitor from Pleurotus ostreatus

    PubMed Central

    Jang, In-Taek; Hyun, Se-Hee; Shin, Ja-Won; Lee, Yun-Hae; Ji, Jeong-Hyun

    2014-01-01

    We selected Pleurotus ostreatus from among several edible mushrooms because it has high anti-gout xanthine oxidase (XOD) inhibitory activity. The maximal amount of XOD inhibitor was extracted when the Pleurotus ostreatus fruiting body was treated with distilled water at 40℃ for 48 hr. The XOD inhibitor thus obtained was purified by Sephadex G-50 gel permeation chromatography, ultrafiltration, C18 solid phase extraction chromatography and reverse-phase high-performance liquid chromatography with 3% of solid yield, and its XOD inhibitory activity was 0.9 mg/mL of IC50. The purified XOD inhibitor was a tripeptide with the amino acid sequence phenylalanine-cysteine-histidine and a molecular weight of 441.3 Da. The XOD inhibitor-containing ultrafiltrates from Pleurotus ostreatus demonstrated dose-dependent anti-gout effects in a Sprague-Dawley rat model of potassium oxonate-induced gout, as shown by decreased serum urated levels at doses of 500 and 1,000 mg/kg, although the effect was not as great as that achieved with the commercial anti-gout agent, allopurinol when administered at a dose of 50 mg/kg. PMID:25346610

  12. Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment

    PubMed Central

    2013-01-01

    Background Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involved in lignocellulose decay, and its secretome was compared to those from Phanerochaete chrysosporium and Pleurotus ostreatus which produced different degradation patterns when growing on wheat straw. Extracellular enzymes were analyzed through 2D-PAGE, nanoLC/MS-MS, and homology searches against public databases. Results In wheat straw, I. lacteus secreted proteases, dye-decolorizing and manganese-oxidizing peroxidases, and H2O2 producing-enzymes but also a battery of cellulases and xylanases, excluding those implicated in cellulose and hemicellulose degradation to their monosaccharides, making these sugars poorly available for fungal consumption. In contrast, a significant increase of β-glucosidase production was observed when I. lacteus grew in liquid cultures. P. chrysosporium secreted more enzymes implicated in the total hydrolysis of the polysaccharides and P. ostreatus produced, in proportion, more oxidoreductases. Conclusion The protein pattern secreted during I. lacteus growth in wheat straw plus the differences observed among the different secretomes, justify the fitness of I. lacteus for biopretreatment processes in 2G-ethanol production. Furthermore, all these data give insight into the biological degradation of lignocellulose and suggest new enzyme mixtures interesting for its efficient hydrolysis. PMID:23937687

  13. Yeasts associated with plums and their potential for controlling brown rot after harvest.

    PubMed

    Janisiewicz, Wojciech J; Jurick, Wayne M; Peter, Kari A; Kurtzman, Cletus P; Buyer, Jeffrey S

    2014-06-01

    Bacterial and yeast antagonists isolated from fruit surfaces have been effective in controlling various post-harvest diseases, and several microbial antagonists have been developed into commercial products. Our knowledge of the fruit microbial community, with the exception of grapes, apples and some citrus fruit, is rudimentary and the potential of the resident yeasts for biocontrol remains largely unknown. We determined the occurrence of yeasts on plum surfaces during fruit development from the pre-hardening stage until harvest for 2 years. A total of 16 species from 13 genera were isolated. Species from three genera, basidiomycetes Rhodotorula (29.5%) and Sporidiobolus (24.7%) and the dimorphic ascomycete genus Aureobasidium (24.7%), constituted 78.7% of all isolations and were recovered throughout fruit development, while Cryptococcus spp. constituted only 6.2% of the total plum isolates. The yeast community in the final sampling was significantly different from the first three samplings, reflecting a rapidly changing fruit habitat during the maturation of fruit. For example, Hanseniaspora, Pichia, Zygosaccharomyces and Wickerhamomyces occurred only on the most mature fruit. Screening of the yeasts for antagonistic activity against Monilinia fructicola, a fungus that causes brown rot, revealed a range of biocontrol activities. Several isolates provided complete control of the decay on plums, challenged with a pathogen suspension of 10(3) conidia/ml and > 90% of control on fruit inoculated with the pathogen at a concentration 10 times higher. Some of the best antagonists included A. pullulans and R. phylloplana. Populations of both of these antagonists increased rapidly by several orders of magnitude in wounds of plums incubated at 24ºC and 4ºC. Our results indicate that plum surfaces harbour several yeast species, with excellent potential for use in biological control of brown rot of stone fruits. PMID:24687564

  14. Diplonine, a neurotoxin isolated from cultures of the fungus Stenocarpella maydis (Berk.) Sacc. that induces diplodiosis.

    PubMed

    Snyman, Leendert D; Kellerman, T Stephanus; Vleggaar, Robert; Flett, Bradley C; Basson, Karin M; Schultz, R Anitra

    2011-08-24

    Diplodiosis is a neuromycotoxicosis of cattle and sheep caused by ingestion of maize infected with the ear-rot fungus Stenocarpella (= Diplodia ) maydis . Apart from ataxia, paresis, and paralysis, the toxin is responsible for stillbirths and neonatal losses characterized by the presence of spongiform degeneration in the white matter of the brain in the offspring of dams exposed to infected maize cobs. In the present study a toxin, named diplonine, which induced neurological signs in guinea pigs resembling some of those occurring in cattle and sheep, was isolated from S. maydis cultures. Purification of diplonine was achieved by methanol extraction followed by chromatographic separation on silica gel and RP-18 stationary phases. The structure and relative configuration of diplonine were defined by analysis of NMR and MS data as (S)-2-amino-2-[(1R,2S)-1-hydroxy-2-methylcyclopropyl]acetic acid or the (S)-2-amino-2-[(1S,2R)-diastereomer. PMID:21780820

  15. Effect of six species of white-rot basidiomycetes on the chemical composition and rumen degradability of wheat straw.

    PubMed

    Jalc, Dusan; Siroka, Peter; Ceresnáková Zb, Zuzana (breve)

    1997-06-01

    This study was conducted to investigate changes in in vitro dry matter digestibility (IVDMD), volatile fatty acids (VFA) production and cell-wall constituent degradation in wheat straw treated with six white-rot fungi: Daedalea quercina, Hericium clathroides, Phelinus laevigatus, Inonotus andersonii, Inonotus obliquus, and Inonotus dryophilus. The incubation of wheat straw for 30 days at 28 C improved IVDMD from 41.4 (control) to 59.2% for D. quercina, 56.3% for H. clathroides, 50.2% for P. laevigatus, 51.4% for I. andersonii, 52% for I. obliquus, and 55.9% for I. dryophilus. In contrast, the growth of fungi was accompanied by the dry matter loss of wheat straw: 43% for D. quercina, 12% for H. clathroides, and 22-25% for the other fungi. It is evident that the increase in digestibility by D. quercina was not offset by a loss of dry matter. The total VFA production during the rumen fermentation of fungus-treated straw was slightly increased by H. clathroides and I. dryophilus only. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were reduced in fungus-treated straw. Out of the three fractions (hemicellulose, cellulose, and lignin), hemicellulose and lignin showed the largest proportionate loss after inoculation with the fungi D. quercina, H. clathroides, P. laevigatus, and I. obliquus. The other two fungi showed the largest proportionate loss in cellulose and hemicellulose contents. The results of this study suggest that the digestion enhancement of wheat straw colonized by white-rot fungi is regulated by complex factors including the degradation of structural carbohydrates and lignin. PMID:12501327

  16. [Cutaneous mold fungus granuloma from Ulocladium chartarum].

    PubMed

    Altmeyer, P; Schon, K

    1981-01-01

    Cutaneous granulomas due to the mold fungus Ulocladium chartarum (Preuss) are described in a 58 year old woman. This fungus is usually harmless for mammalian. It is thought that a consisting immunosuppression (Brill-Symmer's disease, therapy with corticosteroids) was a priming condition for the infection. The route of infection in this patient described is unknown. PMID:7194869

  17. Dibenzyl Sulfide Metabolism by White Rot Fungi

    PubMed Central

    Van Hamme, Jonathan D.; Wong, Eddie T.; Dettman, Heather; Gray, Murray R.; Pickard, Michael A.

    2003-01-01

    Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated. PMID:12571066

  18. Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani.

    PubMed

    Vijayan, S; Kirti, P B

    2012-02-01

    Mungbean, Vigna radiata (L.) Wilczek is an important pulse crop that is widely cultivated in semi- arid tropics. The crop is attacked by various soil-borne pathogens like Rhizoctonia solani, which causes dry rot disease and seriously affects its productivity. Earlier we characterized the non-expressor of pathogenesis related gene-1(BjNPR1) of mustard, Brassica juncea, the counterpart of AtNPR1 of Arabidopsis thaliana. Here, we transformed mungbean with BjNPR1 via Agrobacterium tumefaciens. Because of the recalcitrant nature of mungbean, the effect of some factors like Agrobacterium tumefaciens strains (GV2260 and LBA4404), pH, L: -cysteine and tobacco leaf extract was tested in transformation. The transgenic status of 15 plants was confirmed by PCR using primers for nptII. The independent integration of T-DNA in transgenic plants was analyzed by Southern hybridization with an nptII probe and the expression of BjNPR1 was confirmed by RT-PCR. Some of the T(0) plants were selected for detached leaf anti-fungal bioassay using the fungus Rhizoctonia solani, which showed moderate to high level of resistance depending on the level of expression of BjNPR1. The seedling bioassay of transgenic T(2) plants indicated resistance against dry rot disease caused by R. solani. PMID:21584838

  19. Enhanced biodegradation of antibiotic combinations via the sequential treatment of the sludge resulting from pharmaceutical wastewater treatment using white-rot fungi Trametes versicolor and Bjerkandera adusta.

    PubMed

    Aydin, Sevcan

    2016-07-01

    While anaerobic treatment is capable of treating pharmaceutical wastewater and removing antibiotics in liquid phases, solid phases may still contain significant amounts of antibiotics following this treatment. The main goal of this study was to evaluate the use of white-rot fungi to remove erythromycin, sulfamethoxazole, and tetracycline combinations from biosolids. The degradation potential of Trametes versicolor and Bjerkandera adusta was evaluated via the sequential treatment of anaerobic sludge. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were used to identify competition between the autochthonous microbial communities and white-rot fungi. Solid-phase treatment using white-rot fungi substantially reduced antibiotic concentrations and toxicity in sludge. According to PCR-DGGE results, there is an association between species of fungus and antibiotic type as a result of the different transformation pathways of fungal strains. Fungal post-treatment of sludge represents a promising method of removing antibiotic combinations, therefore holding a significant promise as an environmentally friendly means of degrading the antibiotics present in sludge. PMID:27033714

  20. Comparative biosorption of mercuric ions from aquatic systems by immobilized live and heat-inactivated Trametes versicolor and Pleurotus sajur-caju.

    PubMed

    Arica, M Y; Arpa, C; Kaya, B; Bektaş, S; Denizli, A; Genç, O

    2003-09-01

    Trametes versicolor and Pleurotus sajur-caju mycelia immobilized in Ca-alginate beads were used for the removal of mercuric ions from aqueous solutions. The sorption of Hg(II) ions by alginate beads and both immobilized live and heat-killed fungal mycelia of T. versicolor and P. sajur-caju was studied in the concentration range of 0.150-3.00 mmol dm(-3). The biosorption of Hg(II) increased as the initial concentration of Hg(II) ions increased in the medium. Maximum biosorption capacities for plain alginate beads were 0.144+/-0.005 mmol Hg(II)/g; for immobilized live and heat-killed fungal mycelia of T. versicolor were 0.171+/-0.007 mmol Hg(II)/g and 0.383+/-0.012 mmol Hg(II)/g respectively; whereas for live and heat-killed P. sajur-caju, the values were 0.450+/-0.014 mmol Hg(II)/g and 0.660+/-0.019 mmol Hg(II)/g respectively. Biosorption equilibrium was established in about 1 h and the equilibrium adsorption was well described by Langmuir and Freundlich adsorption isotherms. Between 15 and 45 degrees C the biosorption capacity was not affected and maximum adsorption was observed between pH 4.0 and 6.0. The alginate-fungus beads could be regenerated using 10 mmol dm(-3) HCl solution, with up to 97% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Heat-killed T. versicolor and P. sajur-caju removed 73% and 81% of the Hg(II) ions, respectively, from synthetic wastewater samples. PMID:12699933

  1. Systems of HESS-APPEL'ROT Type and Zhukovskii Property

    NASA Astrophysics Data System (ADS)

    Dragović, Vladimir; Gajić, Borislav; Jovanović, Božidar

    We start with a review of a class of systems with invariant relations, so called {\\it systems of Hess--Appel'rot type} that generalizes the classical Hess--Appel'rot rigid body case. The systems of Hess-Appel'rot type carry an interesting combination of both integrable and non-integrable properties. Further, following integrable line, we study partial reductions and systems having what we call the {\\it Zhukovskii property}: these are Hamiltonian systems with invariant relations, such that partially reduced systems are completely integrable. We prove that the Zhukovskii property is a quite general characteristic of systems of Hess-Appel'rote type. The partial reduction neglects the most interesting and challenging part of the dynamics of the systems of Hess-Appel'rot type - the non-integrable part, some analysis of which may be seen as a reconstruction problem. We show that an integrable system, the magnetic pendulum on the oriented Grassmannian $Gr^+(4,2)$ has natural interpretation within Zhukovskii property and it is equivalent to a partial reduction of certain system of Hess-Appel'rot type. We perform a classical and an algebro-geometric integration of the system, as an example of an isoholomorphic system. The paper presents a lot of examples of systems of Hess-Appel'rot type, giving an additional argument in favor of further study of this class of systems.

  2. Global regulation of Staphylococcus aureus genes by Rot.

    PubMed

    Saïd-Salim, B; Dunman, P M; McAleese, F M; Macapagal, D; Murphy, E; McNamara, P J; Arvidson, S; Foster, T J; Projan, S J; Kreiswirth, B N

    2003-01-01

    Staphylococcus aureus produces a wide array of cell surface and extracellular proteins involved in virulence. Expression of these virulence factors is tightly controlled by numerous regulatory loci, including agr, sar, sigB, sae, and arl, as well as by a number of proteins with homology to SarA. Rot (repressor of toxins), a SarA homologue, was previously identified in a library of transposon-induced mutants created in an agr-negative strain by screening for restored protease and alpha-toxin. To date, all of the SarA homologues have been shown to act as global regulators of virulence genes. Therefore, we investigated the extent of transcriptional regulation of staphylococcal genes by Rot. We compared the transcriptional profile of a rot agr double mutant to that of its agr parental strain by using custom-made Affymetrix GeneChips. Our findings indicate that Rot is not only a repressor but a global regulator with both positive and negative effects on the expression of S. aureus genes. Our data also indicate that Rot and agr have opposing effects on select target genes. These results provide further insight into the role of Rot in the regulatory cascade of S. aureus virulence gene expression. PMID:12511508

  3. Olive mill wastewater biodegradation potential of white-rot fungi--Mode of action of fungal culture extracts and effects of ligninolytic enzymes.

    PubMed

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Merhautová, Věra; Zervakis, Georgios I

    2015-01-01

    Forty-nine white-rot strains belonging to 38 species of Basidiomycota were evaluated for olive-mill wastewater (OMW) degradation. Almost all fungi caused high total phenolics (>60%) and color (⩽ 70%) reduction, while COD and phytotoxicity decreased to a lesser extent. Culture extracts from selected Agrocybe cylindracea, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor strains showed non-altered physicochemical and enzymatic activity profiles when applied to raw OMW in the presence or absence of commercial catalase, indicating no interaction of the latter with fungal enzymes and no competition for H2O2. Hydrogen peroxide's addition resulted in drastic OMW's decolorization, with no effect on phenolic content, suggesting that oxidation affects colored components, but not necessarily phenolics. When fungal extracts were heat-treated, no phenolics decrease was observed demonstrating thus their enzymatic rather than physicochemical oxidation. Laccases added to OMW were reversibly inhibited by the effluent's high phenolic load, while peroxidases were stable and active during the entire process. PMID:25879179

  4. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs. PMID:27178300

  5. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus)

    PubMed Central

    Hoa, Ha Thi; Wang, Chong-Ho

    2015-01-01

    The study was conducted to compare the effects of different agro-wastes on the growth, yield, and nutritional composition of oyster mushrooms Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC). Seven substrate formulas including sawdust (SD), corncob (CC), sugarcane bagasse (SB) alone and in combination of 80 : 20, 50 : 50 ratio between SD and CC, SD and SB were investigated. The results indicated that different substrate formulas gave a significant difference in total colonization period, characteristics of fruiting bodies, yield, biological efficiency (BE), nutritional composition and mineral contents of two oyster mushrooms PO and PC. The results showed that increasing CC and SB reduced C/N ratio, and enhanced some mineral contents (Ca, P, and Mg) of substrate formulas. The increased amount of CC and SB of substrate formulas enhanced protein, ash, mineral contents (Ca, K, Mg, Mn, and Zn) of fruiting bodies of both mushrooms. Substrates with 100% CC and 100% SB were the most suitable substrate formulas for cultivation of oyster mushrooms PO and PC in which they gave the highest values of cap diameter, stipe thickness, mushroom weight, yield, BE, protein, fiber, ash, mineral content (Ca, K, and Mg) and short stipe length. However, substrate formula 100% CC gave the slowest time for the first harvest of both mushrooms PO and PC (46.02 days and 64.24 days, respectively). It is also found that the C/N ratio of substrate formulas has close correlation with total colonization period, mushroom weight, yield, BE and protein content of mushroom PO and PC. PMID:26839502

  6. The Effects of Different Substrates on the Growth, Yield, and Nutritional Composition of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus).

    PubMed

    Hoa, Ha Thi; Wang, Chun-Li; Wang, Chong-Ho

    2015-12-01

    The study was conducted to compare the effects of different agro-wastes on the growth, yield, and nutritional composition of oyster mushrooms Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC). Seven substrate formulas including sawdust (SD), corncob (CC), sugarcane bagasse (SB) alone and in combination of 80 : 20, 50 : 50 ratio between SD and CC, SD and SB were investigated. The results indicated that different substrate formulas gave a significant difference in total colonization period, characteristics of fruiting bodies, yield, biological efficiency (BE), nutritional composition and mineral contents of two oyster mushrooms PO and PC. The results showed that increasing CC and SB reduced C/N ratio, and enhanced some mineral contents (Ca, P, and Mg) of substrate formulas. The increased amount of CC and SB of substrate formulas enhanced protein, ash, mineral contents (Ca, K, Mg, Mn, and Zn) of fruiting bodies of both mushrooms. Substrates with 100% CC and 100% SB were the most suitable substrate formulas for cultivation of oyster mushrooms PO and PC in which they gave the highest values of cap diameter, stipe thickness, mushroom weight, yield, BE, protein, fiber, ash, mineral content (Ca, K, and Mg) and short stipe length. However, substrate formula 100% CC gave the slowest time for the first harvest of both mushrooms PO and PC (46.02 days and 64.24 days, respectively). It is also found that the C/N ratio of substrate formulas has close correlation with total colonization period, mushroom weight, yield, BE and protein content of mushroom PO and PC. PMID:26839502

  7. Study of Antimicrobial and Cytotoxic Potential of the Oyster Mushroom Pleurotus ostreatus cv. Florida (Agaricomycetes).

    PubMed

    Ganeshpurkar, Aditya; Bhadoriya, Santosh Singh; Pardhi, Priya; Jain, Alok Pal; Rai, Gopal

    2016-01-01

    This work was undertaken to evaluate in vitro antimicrobial and cytotoxic potential of Pleurotus ostreatus cv. Florida. Mushroom basidiocarps were extracted in water:ethanol (1:1, v/v), and the resulting extract was subjected to antimicrobial studies against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella oxytoca, Bacillus subtilis, and Candida albicans. Cytotoxic potential on viable human leukocytes was studied. In vitro results showed excellent antimicrobial and cytotoxic potentials of the mushroom extract. Thus, functional properties of P. ostreatus cv. Florida could be used in the search for novel therapeutics. PMID:27481298

  8. [Use of coffee grounds for production of Pleurotus ostreatus (Jacq.:Fr.) Kummer].

    PubMed

    Job, Daniel

    2004-12-01

    Studies were carried out to screen the industrial strain HK35 of Pleurotus ostreatus for its ability to develop fruiting bodies in solid state cultivation using several substrates containing 17.8 to 55% coffee grounds. Our results showed that only 55% of coffee grounds was used in the substrate without detecting changes in fruiting body or on its biological efficiency of production. The chemical analysis of the caffeine in the substrate showed that this compound decreased about 59% of the mycelium activity, and no caffeine was found in fruiting bodies indicating its degradation by the fungal strain tested. PMID:15709800

  9. Biological Activities of the Polysaccharides Produced in Submerged Culture of Two Edible Pleurotus ostreatus Mushrooms

    PubMed Central

    Vamanu, Emanuel

    2012-01-01

    Exopolysaccharides (EPS) and internal (intracellular) polysaccharides (IPS) obtained from the Pleurotus ostreatus M2191 and PBS281009 cultivated using the batch system revealed an average of between 0.1–2 (EPS) and 0.07–1.5 g/L/day (IPS). The carbohydrate analysis revealed that the polysaccharides comprised 87–89% EPS and 68–74% IPS. The investigation of antioxidant activity in vitro revealed a good antioxidant potential, particularly for the IPS and EPS isolated from PBS281009, as proved by the EC50 value for DPPH, ABTS scavenging activity, reducing power, and iron chelating activity. PMID:22778553

  10. Effect of Pleurotus ostreatus and Erwinia carotovora on wheat straw digestibility

    SciTech Connect

    Streeter, C.L.; Conway, K.E.; Horn, G.W.

    1981-11-01

    The objectives of this study were to determine whether growing Pleurotus ostreatus and Erwinia carotovora on wheat straw would synergistically improve the digestibility of straw and whether there was a necessity of sterilizing the straw by autoclaving prior to inoculation. Dry matter decomposition of autoclaved and non-autoclaved straw was similar when both organisms were used in the system after 28 days incubation. However, in vitro ruminal dry matter digestibility of straw was significantly improved (P less than 10) only when the straw was autoclaved prior to inoculation with both organisms. (Refs. 21).

  11. [Evaluation of the effect of cryopreservation of Pleurotus spp. strains on carpophore production.].

    PubMed

    Lara-Herrera, I; Mata, G; Gaitán-Hernández, R

    1998-03-01

    The effect of the cryopreservation of six Pleurotus strains was evaluated. Primordia initiation, number of flushes, biological efficiency and fruiting body size obtained with respect to pileus diameter was recorded. These strains were previously evaluated before storage in liquid nitrogen. Variation in the number of flushes (3-4), the fruiting body size (< 5 cm at > 15 cm) and biological efficiency was observed. This varied according to the strain used, ranging from 55-105.6%. The fruiting bodies of the cryopreserved strains did not differ with respect to the untreated strains. PMID:17655405

  12. Nitrogen cycling by wood decomposing soft-rot fungi in the “King Midas tomb,” Gordion, Turkey

    PubMed Central

    Filley, Timothy R.; Blanchette, Robert A.; Simpson, Elizabeth; Fogel, Marilyn L.

    2001-01-01

    Archaeological wood in ancient tombs is found usually with extensive degradation, limiting what can be learned about the diet, environment, health, and cultural practices of the tomb builders and occupants. Within Tumulus Midas Mound at Gordion, Turkey, thought to be the tomb of the Phrygian King Midas of the 8th century B.C., we applied a stable nitrogen isotope test to infer the paleodiet of the king and determine the nitrogen sources for the fungal community that decomposed the wooden tomb, cultural objects, and human remains. Here we show through analysis of the coffin, furniture, and wooden tomb structure that the principal degrader, a soft-rot fungus, mobilized the king's highly 15N-enriched nutrients, values indicative of a diet rich in meat, to decay wood throughout the tomb. It is also evident from the δ15N values of the degraded wood that the nitrogen needed for the decay of many of the artifacts in the tomb came from multiple sources, mobilized at potentially different episodes of decay. The redistribution of nutrients by the fungus was restricted by constraints imposed by the cellular structure of the different wood materials that apparently were used intentionally in the construction to minimize decay. PMID:11606731

  13. [Induction and measurement of cytochrome P450 in white rot fungi].

    PubMed

    Ning, Da-liang; Wang, Hui; Li, Dong

    2009-08-15

    The induction and measurement of cytochrome P450 in white rot fungus Phanerochaete chrysosporium were studied in this work. The spectrophotometric results demonstrated that n-hexane was able to induce the fungal P450 to high level, which facilitated isolation and measurement of microsomal P450. The highest concentration of microsomal P450 could reach 140-160 pmol/mg after 6-h-induction by addition of 2 microL/mL hexane each hour, and the concentration of hexane and incubation time had significant effect on the induction of P450s. After effective induction, the method for isolation and measurement of microsomal P450 with CO difference spectrum was studied and the optimized method was obtained as followed. High-speed disperser and glass homogenizer were used to disrupt cells, which obtained higher amount of microsomal P450 than those from cells disrupted by glass homogenizer, ultrasonicator and bead-beater respectively. To record CO difference spectrum,the sample was bubbled with CO for 40 s at a rate of 3 mL/min (300 microL sample), and the reference cuvette was bubbled with N2 to the same extent. Then, the reducer sodium dithionite was added to a concentration 0.4 mol/L. PMID:19799321

  14. Population genetics of the wood-rotting basidiomycete Armillaria cepistipes in a fragmented forest landscape.

    PubMed

    Heinzelmann, Renate; Rigling, Daniel; Prospero, Simone

    2012-09-01

    Armillaria cepistipes is a common wood-rotting basidiomycete fungus found in most forests in Central Europe. In Switzerland, the habitat of A. cepistipes is fragmented because of the presence of major geographical barriers, in particular the Alps, and past deforestation. We analysed the impact of habitat fragmentation on the current spatial genetic structure of the Swiss A. cepistipes population. A total of 167 isolates were sampled across an area of 41 000 km(2) and genotyped at seven microsatellite and four single nucleotide polymorphism (SNP) loci. All isolates belonged to different genotypes which, according to the Bayesian clustering algorithm implemented in Tess, originated from a single gene pool. Our analyses indicate that the overall A. cepistipes population shows little, but significant (F(ST)=0.02), genetic differentiation. Such a situation suggests gene flow is strong, possibly due to long-distance dispersal of airborne basidiospores. This hypothesis is supported by the fact that we could not detect a pattern of isolation by distance. Gene flow is partially restricted by the high mountain ranges of the Alps, as indicated by a signal of spatial autocorrelation detected among genotypes separated by less than about 80-130 km. In contrast, past deforestation seems to have no significant effect on the current spatial population structure of A. cepistipes. This might indicate the existence of a time lag between the current spatial genetic structure and the processes that have induced this specific structure. PMID:22954341

  15. Pathways for Extracellular Fenton Chemistry in the Brown Rot Basidiomycete Gloeophyllum trabeum

    PubMed Central

    Jensen, Kenneth A.; Houtman, Carl J.; Ryan, Zachary C.; Hammel, Kenneth E.

    2001-01-01

    The brown rot fungus Gloeophyllum trabeum uses an extracellular hydroquinone-quinone redox cycle to reduce Fe3+ and produce H2O2. These reactions generate extracellular Fenton reagent, which enables G. trabeum to degrade a wide variety of organic compounds. We found that G. trabeum secreted two quinones, 2,5-dimethoxy-1,4-benzoquinone (2,5-DMBQ) and 4,5-dimethoxy-1,2-benzoquinone (4,5-DMBQ), that underwent iron-dependent redox cycling. Experiments that monitored the iron- and quinone-dependent cleavage of polyethylene glycol by G. trabeum showed that 2,5-DMBQ was more effective than 4,5-DMBQ in supporting extracellular Fenton chemistry. Two factors contributed to this result. First, G. trabeum reduced 2,5-DMBQ to 2,5-dimethoxyhydroquinone (2,5-DMHQ) much more rapidly than it reduced 4,5-DMBQ to 4,5-dimethoxycatechol (4,5-DMC). Second, although both hydroquinones reduced ferric oxalate complexes, the predominant form of Fe3+ in G. trabeum cultures, the 2,5-DMHQ-dependent reaction reduced O2 more rapidly than the 4,5-DMC-dependent reaction. Nevertheless, both hydroquinones probably contribute to the extracellular Fenton chemistry of G. trabeum, because 2,5-DMHQ by itself is an efficient reductant of 4,5-DMBQ. PMID:11375184

  16. Allium White Rot Suppression with Composts and Trichoderma viride in Relation to Sclerotia Viability.

    PubMed

    Coventry, E; Noble, R; Mead, A; Marin, F R; Perez, J A; Whipps, J M

    2006-09-01

    ABSTRACT Allium white rot (AWR) is a serious disease of Allium spp. caused by the sclerotium-forming fungus Sclerotium cepivorum. This work has examined the effects of onion waste compost (OWC) and spent mushroom compost (SMC), with and without Trichoderma viride S17A, on sclerotia viability and AWR in glasshouse and field experiments. Incorporation of OWC into soil reduced the viability of sclerotia and the incidence of AWR on onion plants in glasshouse pot bioassays, whereas SMC or T. viride S17A only reduced incidence of AWR. In two field trials, OWC reduced sclerotia viability and was as effective in reducing AWR as a fungicide (Folicur, a.i. tebuconazole). Field application of SMC had no effect on sclerotia viability and did not control AWR. However, the addition of T. viride S17A to SMC facilitated proliferation of T. viride S17A in the soil and increased the healthy onion bulb yield. The results indicate two mechanisms for the suppression of AWR: (i) reduction in the soil population of viable sclerotia, which may be due to volatile sulfur compounds detected in OWC but absent in SMC, and (ii) prevention of infection of onion plants from sclerotia following amendment of soil with OWC, SMC, or T. viride S17A. PMID:18944057

  17. Chaetochromones A and B, two new polyketides from the fungus Chaetomium indicum (CBS.860.68).

    PubMed

    Lu, Keyang; Zhang, Yisheng; Li, Li; Wang, Xuewei; Ding, Gang

    2013-01-01

    Chaetochromones A (1) and B (2), two novel polyketides, were isolated from the crude extract of fungus Chaetomium indicum (CBS.860.68) together with three known analogues PI-3(3), PI-4 (4) and SB236050 (5). The structures of these compounds were determined by HRESI-MS and NMR experiments. Chaetochromones A (1) and B (2) are a member of the polyketides family, which might originate from a similar biogenetic pathway as the known compounds PI-3 (3), PI-4 (4) and SB236050 (5). The biological activities of these secondary metabolites were evaluated against eight plant pathogens, including Alternaria alternata, Ilyonectria radicicola, Trichoderma viride pers, Aspergillus niger, Fusarium verticillioide, Irpex lacteus (Fr.), Poria placenta (Fr.) Cooke and Coriolus versicolor (L.) Quél. Compound 1 displayed moderate inhibitory rate (>60%) against the brown rot fungus Poria placenta (Fr.) Cooke, which causes significant wood decay. In addition, the cytotoxic activities against three cancer cell lines A549, MDA-MB-231, PANC-1 were also tested, without any inhibitory activities being detected. PMID:24013408

  18. Heterologous Expression of Pleurotus eryngii Peroxidase Confirms Its Ability To Oxidize Mn2+ and Different Aromatic Substrates

    PubMed Central

    Ruiz-Dueñas, Francisco Javier; Martínez, María Jesús; Martínez, Ángel T.

    1999-01-01

    A versatile ligninolytic peroxidase has been cloned from Pleurotus eryngii and its allelic variant MnPL2 expressed in Aspergillus nidulans, with properties similar to those of the mature enzyme from P. eryngii. These include the ability to oxidize Mn2+ and aromatic substrates, confirming that this is a new peroxidase type sharing catalytic properties of lignin peroxidase and manganese peroxidase. PMID:10508113

  19. The GREGOR Fabry-Pérot Interferometer

    NASA Astrophysics Data System (ADS)

    Puschmann, K. G.; Denker, C.; Kneer, F.; Al Erdogan, N.; Balthasar, H.; Bauer, S. M.; Beck, C.; Bello González, N.; Collados, M.; Hahn, T.; Hirzberger, J.; Hofmann, A.; Louis, R. E.; Nicklas, H.; Okunev, O.; Martínez Pillet, V.; Popow, E.; Seelemann, T.; Volkmer, R.; Wittmann, A. D.; Woche, M.

    2012-11-01

    The GREGOR Fabry-Pérot Interferometer (GFPI) is one of three first-light instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large-format, high-cadence CCD detectors with sophisticated computer hard- and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field-of-view (FOV) of 50 arcsec × 38 arcsec is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25 arcsec × 38 arcsec. The spectral coverage in the spectroscopic mode extends from 530-860 nm with a theoretical spectral resolution of R ≈ 250,000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580-660 nm. The combination of fast narrow-band imaging and post-factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ˜50 km on the solar surface.

  20. Jasmonic acid and salicylic acid inhibit growth of three sugarbeet storage rot pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage rots contribute to postharvest losses by consuming sucrose and increasing carbohydrate impurities that increase sugar loss to molasses during processing. They also increase root respiration rate, which causes additional sucrose loss and contributes to pile warming. Currently, storage rots ...

  1. Control of storage rot by induction of plant defense mechanisms using jasmonic acid and salicylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage rots contribute to sugarbeet postharvest losses by consuming sucrose and producing carbohydrate impurities that increase sugar loss to molasses. Presently, storage rots are controlled by cooling storage piles. This method of control, however, requires favorable weather conditions for stora...

  2. Reaction of Cauliflower Genotypes to Black Rot of Crucifers

    PubMed Central

    da Silva, Lincon Rafael; da Silva, Renan César Dias; Cardoso, Atalita Francis; de Mello Pelá, Gláucia; Carvalho, Daniel Diego Costa

    2015-01-01

    This study aimed to evaluate six cauliflower genotypes regarding their resistance to black rot and their production performance. To do so, it was conducted two field experiments in Ipameri, Goiás, Brazil, in 2012 and 2013. It was used a randomized block design, with four replications (total of 24 plots). Each plot consisted of three planting lines 2.5 m long (six plants/line), spaced 1.0 m apart, for a total area of 7.5 m2. Evaluations of black rot severity were performed at 45 days after transplanting, this is, 75 days after sowing (DAS), and yield evaluations at 90 to 105 DAS. The Verona 184 genotype was the most resistant to black rot, showing 1.87 and 2.25% of leaf area covered by black rot symptom (LACBRS) in 2012 and 2013. However, it was not among the most productive materials. The yield of the genotypes varied between 15.14 and 25.83 t/ha in both years, Lisvera F1 (21.78 and 24.60 t/ha) and Cindy (19.95 and 23.56 t/ha) being the most productive. However, Lisvera F1 showed 6.37 and 9.37% of LACBRS and Cindy showed 14.25 and 14.87% of LACBRS in 2012 and 2013, being both considered as tolerant to black rot. PMID:26060437

  3. Pleurotus biomass production on vinasse and its potential use for aquaculture feed

    PubMed Central

    Sartori, S.B.; Ferreira, L.F.R.; Messias, T.G.; Souza, G.; Pompeu, G.B.; Monteiro, R.T.R.

    2015-01-01

    The vinasse is a by-product generated during the manufacture of alcohol from sugarcane fermentation. Rich in organic matter, it is known that the vinasse has the potential to be used as a source of nutrients for plants as well as microorganisms. In this study, the fungi Pleurotus sajor-caju, P. ostreatus, P. albidus and P. flabellatus were cultivated in vinasse and utilised as a complementary diet for Danio rerio fish. The fungi mycelia cultured in vinasse for 15 days were lyophilised and offered to the fishes at a rate of 2% (medium/body weight) for 28 days. P. albidus produced the highest biomass (16.27 g L−1). Bromatological analysis of mycelia showed similar values to commercial rations. Toxicity tests showed that fish survival was 100% and no significant biomass loss was observed, indicating that the tested fungi grown in vinasse showed no toxicity. Our results showed that vinasse is a promising by-product for fungal growth and the mycelia of Pleurotus sp. fungi can be included in the diets of fish as a nutritional supplement. PMID:26000196

  4. Evaluation of biomass of some invasive weed species as substrate for oyster mushroom (Pleurotus spp.) cultivation.

    PubMed

    Mintesnot, Birara; Ayalew, Amare; Kebede, Ameha

    2014-01-15

    This study assessed the bioconversion of Agriculture wastes like invasive weeds species (Lantana camara, Prosopis juliflora, Parthenium hysterophorus) as a substrate for oyster mushroom (Pleurotus species) cultivation together with wheat straw as a control. The experiment was laid out in factorial combination of substrates and three edible oyster mushroom species in a Completely Randomized Design (CRD) with three replications. Pleurotus ostreatus gave significantly (p < 0.01) total yield of 840 g kg(-1) on P. hysterophorus, Significantly (p < 0.01) biological efficiency (83.87%) and production rate of 3.13 was recorded for P. ostreatus grown on P. hysterophorus. The highest total ash content (13.90%) was recorded for P. florida grown on L. camara. while the lowest (6.92%) was for P. sajor-caju grown on the P. juliflora. Crude protein ranged from 40.51-41.48% for P. florida grown on P. hysterophorus and L. camara. Lowest crude protein content (30.11%) was recorded for P. ostreatus grown on wheat straw. The crude fiber content (12.73%) of P. sajor-caju grown on wheat straw was the highest. The lowest crude fiber (5.19%) was recorded for P. ostreatus on P. juliflora. Total yield had a positive and significant correlation with biological efficiency and production. Utilization of the plant biomass for mushroom cultivation could contribute to alleviating ecological impact of invasive weed species while offering practical option to mitigating hunger and malnutrition in areas where the invasive weeds became dominant. PMID:24783804

  5. Therapeutic effect of Pleurotus eryngii cellulose on experimental fatty liver in rats.

    PubMed

    Huang, J F; Zhan, T; Yu, X L; He, Q A; Huang, W J; Lin, L Z; Du, Y T; Pan, Y T

    2016-01-01

    The aim of this study was to explore the therapeutic effect of Pleurotus eryngii cellulose on experimental fatty liver in rats. Rats were fed high-fat fodder to establish a rat fatty liver model, and were then fed different concentrations of Pleurotus eryngii cellulose for six weeks. Lipitor was used as a positive control. Measured levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and total triglyceride (TG); the activity of malondialdehyde (MDA), superoxide dismutase (SOD), hepatic lipase (HL), and lipoprotein lipase; and liver histopathological changes. Successfully established rat fatty liver model after feeding high-fat fodder for one week. A diet of P. eryngii cellulose for six weeks significantly reduced ALT, AST, TC, and TG levels in rat serum (P < 0.01); TC and AST levels in P. eryngii cellulose high-dose group and Lipitor group were not significantly different from those of the control (P > 0.05). SOD activity increased significantly, while MDA and HL activity decreased (P < 0.05); fatty degeneration and fat accumulation both decreased in hepatic tissue. Hepatic protection of P. eryngii cellulose showed dose-related effect. P. eryngii cellulose can affect lipid metabolism, having therapeutic effects on fatty liver in rats. PMID:26985922

  6. Morphological and molecular characterization of yellow oyster mushroom, Pleurotus citrinopileatus, hybrids obtained by interspecies mating.

    PubMed

    Rosnina, A G; Tan, Yee Shin; Abdullah, Noorlidah; Vikineswary, S

    2016-02-01

    Pleurotus citrinopileatus (yellow oyster mushroom) has an attractive shape and yellow colour but the fragile texture complicates packaging, and its strong aroma is unappealing to consumers. This study aimed to improve the characteristics and yield of P. citrinopileatus by interspecies mating between monokaryotic cultures of P. citrinopileatus and P. pulmonarius. Ten monokaryon cultures of the parental lines were crossed in all combinations to obtain hybrids. Eleven compatible mating pairs were obtained and cultivated to observe their sporophore morphology and yield. The selected hybrid, i.e. P1xC9, was beige in colour while hybrid P3xC8 was yellow in colour. Their sporophores had less offensive aroma, improved texture and higher yield. The DNA sequences of these hybrids were found to be in the same clade as the P. citrinopileatus parent with a bootstrap value of 99%. High bootstrap values indicate high genetic homology between hybrids and the P. citrinopileatus parent. The biological efficiencies of these hybrids P1xC9 (70.97%) and P3xC8 (52.14%) were also higher than the P. citrinopileatus parent (35.63%). Interspecies hybrids obtained by this mating technique can lead to better strains of mushrooms for genetic improvement of the Pleurotus species. PMID:26745978

  7. Study of action of cyclophosphamide and extract of mycelium of Pleurotus ostreatus in vivo on mice, bearing melanoma B16-F0-GFP

    NASA Astrophysics Data System (ADS)

    Meerovich, Irina G.; Yang, Meng; Jiang, Ping; Hoffman, Robert M.; Gerasimenya, Valery P.; Orlov, Alexander E.; Savitsky, Alexander P.; Popov, Vladimir O.

    2005-04-01

    In this work we studied in vivo the combined action of cyclophosphamide and the extract of mycelium of Pleurotus ostreatus on mice bearing melanoma B16-F0, expressing green fluorescent protein (GFP). This model allows to recognize small-size tumors and metastases, unrecognizable by other methods. It was found that combined administration of cyclophosphamide (300 mg/kg) and the extract of mycelium of Pleurotus ostreatus (100 mg/kg), administered for 10 days after cyclophosphamide injection, as well administration of cyclophosphamide alone, cause inhibition of tumor growth about 97%. It was shown that administration of the extract of mycelium of Pleurotus ostreatus alone leads to inhibition of tumor growth of 61%. It was found that in case of combined administration of cyclophosphamide and the extract of mycelium of Pleurotus ostreatus, leucopenia was less expressed than in case of administration of cyclophosphamide alone.

  8. Persistence of Gliocephalotrichum spp. causing fruit rot of rambutan (Nephelium lappaceum L.) in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Worldwide, fruit rot of rambutan is an important problem that limits the storage, marketing and long-distance transportation of the fruit. A complex of pathogens has been reported to cause fruit rot of rambutan and significant post-harvest economic losses. During 2009 and 2011 rambutan fruit rot was...

  9. Biological Control of Phacidiopycnis Rot in ‘d’Anjou’ Pears

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phacidiopycnis rot, caused by Phacidiopycnis piri, is a recently reported postharvest fruit rot disease of pears (Pyrus) in the U.S. and a major disease of ‘d’Anjou’ pears grown in Washington State. Phacidiopycnis rot can originate from infection of wounds on the fruit. In this study, two biocontrol...

  10. Fusarium spp. causing dry rot of seed potato tubers in Michigan and their sensitivity to fungicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease that can be caused by several Fusarium spp. A survey was conducted to establish the composition of Fusarium species causing dry rot of seed tubers in Michigan. A total of 370 dry rot symptomatic tubers were collected in 2009 ...

  11. First report of Fusarium proliferatum causing dry rot in Michigan commercial potato (Solanum tuberosum) production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium dry rot of potato is a postharvest disease caused by several Fusarium spp. and is of worldwide importance. Thirteen Fusarium spp. have been implicated in fungal dry rots of potatoes worldwide. Among them, 11 species have been reported causing potato dry rot of seed tubers in the northern Un...

  12. Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs).

    PubMed

    Wibberg, Daniel; Jelonek, Lukas; Rupp, Oliver; Kröber, Magdalena; Goesmann, Alexander; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2014-01-01

    Rhizoctonia solani is a soil-borne plant pathogenic fungus of the phylum Basidiomycota. It affects a wide range of agriculturally important crops and hence is responsible for economically relevant crop losses. Transcriptome analysis of the bottom rot pathogen R. solani AG1-1B (isolate 7/3/14) by applying high-throughput sequencing and bioinformatics methods addressing Expressed Sequence Tag (EST) data interpretation provided new insights in expressed genes of this fungus. Two normalized cDNA libraries representing different cultivation conditions of the fungus were sequenced on the 454 FLX (Roche) system. Subsequent to cDNA sequence assembly and quality control, ESTs were analysed applying advanced bioinformatics methods. More than 14 000 transcript isoforms originating from approximately 10 000 predictable R. solani AG1-IB 7/3/14 genes are represented in each dataset. Comparative analyses revealed several differentially expressed genes depending on the growth conditions applied. Determinants with predicted functions in recognition processes between the fungus and the host plant were identified. Moreover, many R. solani AG1-IB ESTs were predicted to encode putative cellulose, pectin, and lignin degrading enzymes. Furthermore, genes playing a possible role in mitogen-activated protein (MAP) kinase cascades, 4-aminobutyric acid (GABA) metabolism, melanin synthesis, plant defence antagonism, phytotoxin, and mycotoxin synthesis were detected. PMID:25209639

  13. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.

    PubMed

    Scruggs, A C; Quesada-Ocampo, L M

    2016-08-01

    Sweetpotato production in the United States is limited by several postharvest diseases, and one of the most common is Fusarium root rot. Although Fusarium solani is believed to be the primary causal agent of disease, numerous other Fusarium spp. have been reported to infect sweetpotato. However, the diversity of Fusarium spp. infecting sweetpotato in North Carolina is unknown. In addition, the lack of labeled and effective fungicides for control of Fusarium root rot in sweetpotato creates the need for integrated strategies to control disease. Nonetheless, epidemiological factors that promote Fusarium root rot in sweetpotato remain unexplored. A survey of Fusarium spp. infecting sweetpotato in North Carolina identified six species contributing to disease, with F. solani as the primary causal agent. The effects of storage temperature (13, 18, 23, 29, and 35°C), relative humidity (80, 90, and 100%), and initial inoculum level (3-, 5-, and 7-mm-diameter mycelia plug) were examined for progression of Fusarium root rot caused by F. solani and F. proliferatum on 'Covington' sweetpotato. Fusarium root rot was significantly reduced (P < 0.05) at lower temperatures (13°C), low relative humidity levels (80%), and low initial inoculum levels for both pathogens. Sporulation of F. proliferatum was also reduced under the same conditions. Qualitative mycotoxin analysis of roots infected with one of five Fusarium spp. revealed the production of fumonisin B1 by F. proliferatum when infecting sweetpotato. This study is a step toward characterizing the etiology and epidemiology of Fusarium root rot in sweetpotato, which allows for improved disease management recommendations to limit postharvest losses to this disease. PMID:27050570

  14. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. PMID:25344264

  15. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    PubMed

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation. PMID:26117363

  16. Spatiotemporal characterization of Sclerotinia crown rot epidemics in pyrethrum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia crown rot, caused by Sclerotinia minor and S. sclerotiorum is a disease of pyrethrum in Australia that may cause substantial decline in plant density. The spatiotemporal characteristics of the disease were quantified in 14 fields spread across three growing seasons. Fitting the binary ...

  17. Aphanomyces root rot of alfalfa: widespread distribution of race 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The early spring of 2012 with prolonged wet soil conditions in many parts of the country resulted in reports of poor performance of alfalfa due to Aphanomyces root rot (ARR). Varieties with resistance to ARR are available, although fewer varieties have resistance to both race 1 and race 2 of the pat...

  18. Genome Sequence of Mushroom Soft-Rot Pathogen Janthinobacterium agaricidamnosum

    PubMed Central

    Graupner, Katharina; Lackner, Gerald

    2015-01-01

    Janthinobacterium agaricidamnosum causes soft-rot disease of the cultured button mushroom Agaricus bisporus and is thus responsible for agricultural losses. Here, we present the genome sequence of J. agaricidamnosum DSM 9628. The 5.9-Mb genome harbors several secondary metabolite biosynthesis gene clusters, which renders this neglected bacterium a promising source for genome mining approaches. PMID:25883287

  19. Genome Sequence of Mushroom Soft-Rot Pathogen Janthinobacterium agaricidamnosum.

    PubMed

    Graupner, Katharina; Lackner, Gerald; Hertweck, Christian

    2015-01-01

    Janthinobacterium agaricidamnosum causes soft-rot disease of the cultured button mushroom Agaricus bisporus and is thus responsible for agricultural losses. Here, we present the genome sequence of J. agaricidamnosum DSM 9628. The 5.9-Mb genome harbors several secondary metabolite biosynthesis gene clusters, which renders this neglected bacterium a promising source for genome mining approaches. PMID:25883287

  20. Detecting cotton boll rot with an electronic nose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    South Carolina Boll Rot is an emerging disease of cotton, Gossypium hirsutum L., caused by the opportunistic bacteria, Pantoea agglomerans (Ewing and Fife). Unlike typical fungal diseases, bolls infected with P. agglomerans continue to appear normal externally, complicating early and rapid detectio...

  1. Reducing Alfalfa Brown Root Rot with Crop Rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stand injury resulting from brown root rot (BRR) of alfalfa, caused by Phoma sclerotioides, may be noted this spring as warmer temperatures promote stand emergence. BRR development occurs primarily over the winter and is favored when stands are covered with snow for an extended period of time. It is...

  2. Population Structure of the North American Cranberry Fruit Rot Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberry fruit rot is caused by a complex of pathogenic fungi. Variation in the populations within this complex from region to region could delay identification of the causal agents(s) and complicate management strategies. Our objective was to assess genetic variation within the four major fruit ro...

  3. Root rots of common and tepary beans in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root rots are a disease complex affecting common bean and can be severe in bean growing areas in the tropics and subtropics. The presence of several pathogens makes it difficult to breed for resistance because of the synergistic effect of the pathogens in the host and the interaction of soil factors...

  4. Trichoderma rot on ‘Fallglo’ Tangerine Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2009, Trichoderma rot symptoms were observed on ‘Fallglo’ fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreening with 5...

  5. Trichoderma rot on ‘Fallglo’ Tangerine Fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2009, brown rot symptoms were observed on ‘Fallglo’ fruit after 7 weeks of storage. Fourteen days prior to harvest, fruit were treated by dipping into one of four different fungicide solutions. Control fruit were dipped in tap water. After harvest, the fruit were degreened with 5 ppm et...

  6. Huanglongbing increases Diplodia Stem End Rot in Citrus sinensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB), one of the most devastating diseases of citrus is caused by the a-Proteobacteria Candidatus Liberibacter. Diplodia natalensis Pole-Evans is a fungal pathogen which has been known to cause a postharvest stem-end rot of citrus, the pathogen infects citrus fruit under the calyx, an...

  7. Heritability of fruit rot resistance in American cranberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit rot is the primary threat to cranberry production in the northeastern U.S., and increasingly in other growing regions. Efficacy of chemical control is variable since the disease is caused by a complex of pathogenic fungi. In addition, cranberries are often grown in environmentally sensitive ar...

  8. Factors contributing to bacterial bulb rots of onion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence of bacterial rots of onion bulbs is increasing and has become a serious problem for growers. This increase is likely due to a combination of factors, such as high bacterial populations in soils and irrigation water, heavy rains flooding production fields, higher temperatures, etc. It m...

  9. Calibrating echelle spectrographs with Fabry-Pérot etalons

    NASA Astrophysics Data System (ADS)

    Bauer, F. F.; Zechmeister, M.; Reiners, A.

    2015-09-01

    Context. Over the past decades hollow-cathode lamps have been calibration standards for spectroscopic measurements. Advancing to cm/s radial velocity precisions with the next generation of instruments requires more suitable calibration sources with more lines and fewer dynamic range problems. Fabry-Pérot interferometers provide a regular and dense grid of lines and homogeneous amplitudes, which makes them good candidates for next-generation calibrators. Aims: We investigate the usefulness of Fabry-Pérot etalons in wavelength calibration, present an algorithm to incorporate the etalon spectrum in the wavelength solution, and examine potential problems. Methods: The quasi-periodic pattern of Fabry-Pérot lines was used along with a hollow-cathode lamp to anchor the numerous spectral features on an absolute scale. We tested our method with the HARPS spectrograph and compared our wavelength solution to the one derived from a laser frequency comb. Results: The combined hollow-cathode lamp/etalon calibration overcomes large distortion (50 m/s) in the wavelength solution of the HARPS data reduction software. The direct comparison to the laser frequency comb shows differences of only 10 m/s at most. Conclusions: Combining hollow-cathode lamps with Fabry-Pérot interferometers can lead to substantial improvements in the wavelength calibration of echelle spectrographs. Etalons can provide economical alternatives to the laser frequency comb, especially for smaller projects.

  10. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex

    PubMed Central

    Bigirimana, Vincent de P.; Hua, Gia K. H.; Nyamangyoku, Obedi I.; Höfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031

  11. Botanicals to control soft rot bacteria of potato.

    PubMed

    Rahman, M M; Khan, A A; Ali, M E; Mian, I H; Akanda, A M; Abd Hamid, S B

    2012-01-01

    Extracts from eleven different plant species such as jute (Corchorus capsularis L.), cheerota (Swertia chiraita Ham.), chatim (Alstonia scholaris L.), mander (Erythrina variegata), bael (Aegle marmelos L.), marigold (Tagetes erecta), onion (Allium cepa), garlic (Allium sativum L.), neem (Azadiracta indica), lime (Citrus aurantifolia), and turmeric (Curcuma longa L.) were tested for antibacterial activity against potato soft rot bacteria, E. carotovora subsp. carotovora (Ecc) P-138, under in vitro and storage conditions. Previously, Ecc P-138 was identified as the most aggressive soft rot bacterium in Bangladeshi potatoes. Of the 11 different plant extracts, only extracts from dried jute leaves and cheerota significantly inhibited growth of Ecc P-138 in vitro. Finally, both plant extracts were tested to control the soft rot disease of potato tuber under storage conditions. In a 22-week storage condition, the treated potatoes were significantly more protected against the soft rot infection than those of untreated samples in terms of infection rate and weight loss. The jute leaf extracts showed more pronounced inhibitory effects on Ecc-138 growth both in in vitro and storage experiments. PMID:22701096

  12. Fusarium stalk blight and rot in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium stalk blight of sugar beet can cause reductions or complete loss of seed production. The causal agent is Fusarium oxysporum. In addition, Fusarium solani has been demonstrated to cause a rot of sugar beet seed stalk, and other species have been reported associated with sugar beet fruit, but...

  13. Phytophthora root rot resistance in soybean E00003

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora root rot (PRR), caused by the oomycete Phytophthora sojae, is a devastating disease in soybean production. Using resistant cultivars has been suggested as the best solution for disease management. Michigan elite soybean E00003 is resistant to P. sojae and has been used as a PRR resist...

  14. An unusual niche for an opportunistic fungus.

    PubMed

    Rodríguez-del Valle, N; Quigdley, L; Silva-Ruíz, S A

    1991-02-01

    An acrylic on canvas painting from the collection of the Institute of Puerto Rico Culture was found to be stained with light brown spots. Under ultraviolet light it was evident that these spots covered the entire painting. Scotch tape samples from different areas of the painting were taken. In almost all of these samples, septated hyphae were observed to surround the canvas fibers and in most of them, spiny or rough-surfaced conidia were also observed. A sample from the canvas which was incubated over a Sabourand agar plate yielded a fungus very similar to the one observed in the tape samples after subculturing in potato dextrose agar. Slide cultures and culture characteristics provided evidence that this fungus was a species of Scopulariopsis. This fungus has been implicated in human disease and in this case, it was the cause of the deterioration of the painting. PMID:2043232

  15. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation.

    PubMed

    Salmones, Dulce; Mata, Gerardo; Waliszewski, Krzysztof N

    2005-03-01

    The results of the cultivation of six strains of Pleurotus (P. djamor (2), P. ostreatus (2) and P. pulmonarius (2)) on coffee pulp and wheat straw are presented. Metabolic activity associated with biomass of each strain was determined, as well as changes in lignin and polysaccharides (cellulose and hemicellulose), phenolic and caffeine contents in substrate samples colonized for a period of up to 36 days. Analysis were made of changes during the mycelium incubation period (16 days) and throughout different stages of fructification. Greater metabolic activity was observed in the wheat straw samples, with a significant increase between 4 and 12 days of incubation. The degradation of polysaccharide compounds was associated with the fruiting stage, while the reduction in phenolic contents was detected in both substrates samples during the first eight days of incubation. A decrease was observed in caffeine content of the coffee pulp samples during fruiting stage, which could mean that some caffeine accumulates in the fruiting bodies. PMID:15501659

  16. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations. PMID:23535542

  17. Antioxidant Potential of White Oyster Culinary-Medicinal Mushroom, Pleurotus florida (Higher Basidiomycetes).

    PubMed

    Ganeshpurkar, Aditya; Pardhi, Priya; Bhadoriya, Santosh Singh; Jain, Nikhil; Rai, Gopal; Jain, Alok Pal

    2015-01-01

    The present work was focused to evaluate in vitro antioxidant of Pleurotus florida. The hydroethanolic extract was prepared by macerating basidiocarp with water:ethanol (1:1). The antioxidant potential was evaluated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity, reducing power, chelating effects on ferrous ions, total antioxidant capacity, and lipid peroxidation inhibitory activity. Further total flavonoid and phenolic content was also estimated. The comparison between different antioxidant assays was done by correlation coefficient. The results from the antioxidant assays showed that hydroethanolic extract (HEE) might act as radical scavenger to a certain extent. The distinct scavenging activities of HEE can be due to the diverse phytochemical constituents. Being a rich source of antioxidants, P. florida can be used as an accessible source of natural antioxidants with consequential health benefits. PMID:26082988

  18. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process. PMID:25419675

  19. Effect of 'Azotobacter' Bioinoculant on the Growth and Substrate Utilization Potential of Pleurotus eous Seed Spawn

    PubMed Central

    Parani, K.; Pothiraj, C.; Rajapandy, V.

    2005-01-01

    We investigated the effect of nitrogen fixing Azotobacter bioinoculant on the mycelial growth and the rate of substrate utilization by Pleurotus eous. The synergistic or antagonistic role of the microorganism during dual culturing with the mushroom or the competitor molds Trichoderma viride, and Trichoderma reesi was studied. Azotobacter was inhibitory to the molds, which are competitive to the mushroom in the seed spawn substrate, but was synergistic towards the mushroom. The growth, substrate utilization potential as total nitrogen content and cellulase enzyme activities of the mushroom in the seed spawn substrate were also enhanced in the presence of the bioinoculant at lower inoculum concentrations, upto 5 ml broth culture per spawn bottle. PMID:24049469

  20. Immobilization of a Pleurotus ostreatus Laccase Mixture on Perlite and Its Application to Dye Decolourisation

    PubMed Central

    Salatino, Piero; Sannia, Giovanni

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena. PMID:24895564

  1. Abiotic and Biotic Degradation of Oxo-Biodegradable Plastic Bags by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process. PMID:25419675

  2. Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities

    NASA Astrophysics Data System (ADS)

    Lee, Y.-K.; Chang, H.-H.; Kim, J.-S.; Kim, J. K.; Lee, K.-S.

    2000-02-01

    To induce the lignocellulolytic mutants of Pleurotus ostreatus, the mycelia were irradiated by gamma-ray radiation to doses of 1-2 kGy. Five strains were isolated by the criteria of clamp connection, fruiting body formation, growth rate and activities of extracellular enzymes. All isolated strains were able to form the fruiting bodies and grew similarly to the control. The extracellular enzymes activities in liquid media of isolated strains were up to 10 times higher than the control. Genetic similarities of the isolated strains ranged from 64.4% to 93.3% of the control. From these results, it seems that the genetic diversity of P. ostreatus could be changed and useful strains be induced by gamma-ray radiation to recycle or reuse biowastes.

  3. Antioxidant and hepatoprotective activities of intracellular polysaccharide from Pleurotus eryngii SI-04.

    PubMed

    Zhang, Chen; Li, Shangshang; Zhang, Jianjun; Hu, Chunlong; Che, Gen; Zhou, Meng; Jia, Le

    2016-10-01

    In present study, the intracellular polysaccharide (IPS) and its two fractions of IPS-1 and IPS-2 were obtained and purified by DEAE-52 cellulose chromatography from Pleurotus eryngii SI-04 mycelia, and their hepatoprotective effects were also investigated. The results showed that the IPS-2 had superior hepatoprotective effects by increasing the serum enzyme activities and bilirubin (BIL) levels, decreasing the serum albumin (ALB) and triglyceride (TG) levels, improving the hepatic antioxidant status, and ameliorating the hepatic structure damage. Furthermore, the monosaccharide composition and main bond types were also analyzed. These conclusions demonstrated that the both IPS and its fractions might be suitable for functional foods and natural drugs in preventing the acute liver damage. PMID:27259648

  4. Pantoea pleuroti sp. nov., Isolated from the Fruiting Bodies of Pleurotus eryngii.

    PubMed

    Ma, Yuanwei; Yin, Yonggang; Rong, Chengbo; Chen, Sanfeng; Liu, Yu; Wang, Shouxian; Xu, Feng

    2016-02-01

    Four Gram-negative-staining, facultatively anaerobic bacterial isolates were obtained from the fruiting bodies of the edible mushroom Pleurotus eryngii showing symptoms of bacterial blight disease in Beijing, China. Nearly complete 16S rRNA gene sequencing placed these isolates in the genus Pantoea. Multilocus sequence analysis based on the partial sequences of atpD, gyrB, infB and rpoB revealed Pantoea agglomerans as their closest phylogenetic relatives. DNA-DNA hybridization and phenotypic tests confirmed the classification of the new isolates as a novel species. The name Pantoea pleuroti sp. nov. [type strain KCTC 42084(T) = CGMCC 1.12894(T) = JZB 2120015(T)] is proposed. PMID:26581526

  5. Purification, characterization and hepatoprotective activities of mycelia zinc polysaccharides by Pleurotus djamor.

    PubMed

    Zhang, Jianjun; Liu, Min; Yang, Yongheng; Lin, Lin; Xu, Nuo; Zhao, Huajie; Jia, Le

    2016-01-20

    This study was designed to investigate the physicochemical properties (molecular weights, bond types and monosaccharide compositions), antioxidant activities, and hepatoprotective effects on carbon tetrachloride (CCl4)-induced acute liver damage of mycelia zinc polysaccharides (MZPSs) and its major fractions (MZPS-1, -2 and -3) separated from Pleurotus djamor. In vitro assays, the MZPS-3 demonstrated relatively strong antioxidant activities in dose-dependent manners. For in vivo hepatoprotective activities, administration of MZPS-3 at 800 mg/kg significantly decreased the levels of AST, ALT, MDA and LPO, remarkably increased the levels of TC, TG and ALB, and prominently restored the activities of SOD, GSH-Px, CAT and T-AOC in serum/liver homogenate against CCl4-induced injures. Findings presented in this study clearly demonstrated that MZPSs, especially MZPS-3, might be suitable for functional foods and natural drugs in preventing the CCl4-induced acute liver damage. PMID:26572391

  6. Isolation and characterization of wild-type lipoxygenase LOX(Psa)1 from Pleurotus sapidus.

    PubMed

    Plagemann, Ina; Krings, Ulrich; Berger, Ralf G

    2014-01-01

    The lipoxygenase LOX(Psa) 1 of Pleurotus sapidus, originally investigated because of its ability to oxidize (+)-valencene to the valuable grapefruit aroma (+)-nootkatone, was isolated from the peptidase-rich lyophilisate using a three-step purification scheme including preparative isoelectric focusing and chromatographic techniques. Nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS) of the purified enzyme and peptide mass fingerprint analysis gave 38 peptides of the lipoxygenase from P. sapidus. Nearly 50% of the 643 amino acids long sequence encoded by the cDNA was covered. Both terminal peptides of the native LOX(Psa) 1 were identified by de novo sequencing, and the postulated molecular mass of 72.5 kDa was confirmed. With linoleic acid as the substrate, the LOX(Psa)1 showed a specific activity of 113 U mg(-1) and maximal activity at pH 7.0 and 30 degrees C, respectively. PMID:24873036

  7. Optimization of Arundo donax Saccharification by (Hemi)cellulolytic Enzymes from Pleurotus ostreatus

    PubMed Central

    Liguori, Rossana; Ionata, Elena; Marcolongo, Loredana; Vandenberghe, Luciana Porto de Souza; La Cara, Francesco; Faraco, Vincenza

    2015-01-01

    An enzymatic mixture of cellulases and xylanases was produced by Pleurotus ostreatus using microcrystalline cellulose as inducer, partially characterized and tested in the statistical analysis of Arundo donax bioconversion. The Plackett-Burman screening design was applied to identify the most significant parameters for the enzymatic hydrolysis of pretreated A. donax. As the most significant influence during the enzymatic hydrolysis of A. donax was exercised by the temperature (°C), pH, and time, the combined effect of these factors in the bioconversion by P. ostreatus cellulase and xylanase was analyzed by a 33 factorial experimental design. It is worth noting that the best result of 480.10 mg of sugars/gds, obtained at 45°C, pH 3.5, and 96 hours of incubation, was significant also when compared with the results previously reached by process optimization with commercial enzymes. PMID:26634214

  8. Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation.

    PubMed

    Pezzella, Cinzia; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero; Sannia, Giovanni

    2014-01-01

    In the present study, a crude laccase preparation from Pleurotus ostreatus was successfully immobilized on perlite, a cheap porous silica material, and tested for Remazol Brilliant Blue R (RBBR) decolourisation in a fluidized bed recycle reactor. Results showed that RBBR decolourisation is mainly due to enzyme action despite the occurrence of dye adsorption-related enzyme inhibition. Fine tuning of immobilization conditions allowed balancing the immobilization yield and the resulting rate of decolourisation, with the adsorption capacity of the solid biocatalyst. In the continuous lab scale reactor, a maximum conversion degree of 56.1% was achieved at reactor space-time of 4.2 h. Stability and catalytic parameters of the immobilized laccases were also assessed in comparison with the soluble counterparts, revealing an increase in stability, despite a reduction of the catalytic performances. Both effects are most likely ascribable to the occurrence of multipoint attachment phenomena. PMID:24895564

  9. Nutritional characterisation of Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. produced using paper scraps as substrate.

    PubMed

    Fernandes, Ângela; Barros, Lillian; Martins, Anabela; Herbert, Paulo; Ferreira, Isabel C F R

    2015-02-15

    Pleurotus ostreatus (Jacq. ex Fr.) P. Kumm. is the third most produced edible mushroom worldwide, due to its ability to colonise and degrade a large variety of lignocellulosic substrates. Therefore, the objective of this work was to evaluate the chemical composition of fruiting bodies of P. ostreatus grown on blank and printed paper substrates, in comparison with samples grown on oat straw (control). The nutritional properties of the control sample were similar to values reported in the literature, while the chemical composition of the samples obtained using paper scraps, either blank or printed, was highly satisfactory. The results obtained validated the nutritional characteristics of the samples, highlighting a profitable means to recycle paper. PMID:25236243

  10. Genome-wide functional analysis of SSR for an edible mushroom Pleurotus ostreatus.

    PubMed

    Qu, Jibin; Huang, Chenyang; Zhang, Jinxia

    2016-01-10

    Simple sequence repeats (SSRs) play specific roles in many biological activities. In this paper, we focused on SSRs in the genome of Pleurotus ostreatus, which is a widely cultivated edible mushroom. The distribution curves of SSRs and exons are opposite throughout the genome, which means that SSRs are mostly located in non-coding regions. A comparative analysis of nine fungi suggests that Agaricomycotina fungi have similar SSR distributions. Functional enrichment analysis on the SSR-containing gene set uncovers enriched functions about environmental interactions and important cellular functions for life. Trinucleotide SSRs account for an extremely high fraction of all SSRs, and in exonic regions, they are equivalent to inserting repeating amino acids (RAAs) into the protein sequences. The RAA indel could partly explain some enriched functions of the genes they modify. Agaricomycotina fungi have similar distributions of RAAs, indicating that this may be a potential common mechanism for some specific functions. PMID:26386282

  11. Effects of overexpression of PKAc genes on expressions of lignin-modifying enzymes by Pleurotus ostreatus.

    PubMed

    Toyokawa, Chihana; Shobu, Misaki; Tsukamoto, Rie; Okamura, Saki; Honda, Yoichi; Kamitsuji, Hisatoshi; Izumitsu, Kousuke; Suzuki, Kazumi; Irie, Toshikazu

    2016-09-01

    We studied the role of genes encoding the cAMP-dependent protein kinase A catalytic subunit (PKAc) in the ligninolytic system in Pleurotus ostreatus. The wild-type P. ostreatus strain PC9 has two PKAc-encoding genes: PKAc1 and PKAc2 (protein ID 114122 and 85056). In the current study, PKAc1 and PKAc2 were fused with a β-tubulin promoter and introduced into strain PC9 to produce the overexpression strains PKAc1-97 and PKAc2-69. These strains showed significantly higher transcription levels of isozyme genes encoding lignin-modifying enzymes than strain PC9, but the specific gene expression patterns differed between the two recombinant strains. Both recombinants showed 2.05-2.10-fold faster degradation of beechwood lignin than strain PC9. These results indicate that PKAc plays an important role in inducing the wood degradation system in P. ostreatus. PMID:26979984

  12. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats.

    PubMed

    Zhang, Yan; Hu, Tao; Zhou, Hongli; Zhang, Yang; Jin, Gang; Yang, Yu

    2016-02-01

    This study was performed to evaluate the effects of total polysaccharides extracted from Pleurotus ostreatus on type 2 diabetes. Rats were administered with high-fat diet and streptozotocin (STZ) to induce diabetes. The rats were then treated with 100, 200, and 400 mg/kg/d POP or vehicle for 4 weeks. Our experiments indicated that POP reduces hyperglycemia and hyperlipidemia levels, improves insulin resistance, and increases glycogen storage by activating GSK3 phosphorylation and GLUT4 translocation. Moreover, POP reduces the risk of oxidative damage by increasing superoxide dismutase(SOD), catalase(CAT), and glutathione peroxidase(GSH-Px) activities and decreasing malonaldehyde(MDA) level. These results suggest that POP exerts antidiabetic effect on STZ-induced diabetic rats. PMID:26627601

  13. Optimization of Arundo donax Saccharification by (Hemi)cellulolytic Enzymes from Pleurotus ostreatus.

    PubMed

    Liguori, Rossana; Ionata, Elena; Marcolongo, Loredana; Vandenberghe, Luciana Porto de Souza; La Cara, Francesco; Faraco, Vincenza

    2015-01-01

    An enzymatic mixture of cellulases and xylanases was produced by Pleurotus ostreatus using microcrystalline cellulose as inducer, partially characterized and tested in the statistical analysis of Arundo donax bioconversion. The Plackett-Burman screening design was applied to identify the most significant parameters for the enzymatic hydrolysis of pretreated A. donax. As the most significant influence during the enzymatic hydrolysis of A. donax was exercised by the temperature (°C), pH, and time, the combined effect of these factors in the bioconversion by P. ostreatus cellulase and xylanase was analyzed by a 3(3) factorial experimental design. It is worth noting that the best result of 480.10 mg of sugars/gds, obtained at 45 °C, pH 3.5, and 96 hours of incubation, was significant also when compared with the results previously reached by process optimization with commercial enzymes. PMID:26634214

  14. Production of mycelial biomass by the Amazonian edible mushroom Pleurotus albidus.

    PubMed

    Kirsch, Larissa de Souza; de Macedo, Ana Júlia Porto; Teixeira, Maria Francisca Simas

    2016-01-01

    Edible mushroom species are considered as an adequate source of food in a healthy diet due to high content of protein, fiber, vitamins, and a variety of minerals. The representatives of Pleurotus genus are characterized by distinct gastronomic, nutritional, and medicinal properties among the edible mushrooms commercialized worldwide. In the present study, the growth of mycelial biomass of Pleurotus albidus cultivated in submerged fermentation was evaluated. Saccharose, fructose, and maltose were the three main carbon sources for mycelial biomass formation with corresponding yields of 7.28gL(-1), 7.07gL(-1), and 6.99gL(-1). Inorganic nitrogen sources did not stimulate growth and the optimal yield was significantly higher with yeast extract (7.98gL(-1)). The factorial design used to evaluate the influence of saccharose and yeast extract concentration, agitation speed, and initial pH indicated that all variables significantly influenced the production of biomass, especially the concentration of saccharose. The greater amount of saccharose resulted in the production of significantly more biomass. The highest mycelial biomass production (9.81gL(-1)) was reached in the medium formulated with 30.0gL(-1) saccharose, 2.5gL(-1) yeast extract, pH 7.0, and a speed of agitation at 180rpm. Furthermore, P. albidus manifested different aspects of morphology and physiology under the growth conditions employed. Media composition affected mycelial biomass production indicating that the diversification of carbon sources promoted its improvement and can be used as food or supplement. PMID:27266626

  15. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    PubMed Central

    Guadarrama-Mendoza, P.C.; del Toro, G. Valencia; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G.

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter. PMID:25477920

  16. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region.

    PubMed

    Guadarrama-Mendoza, P C; del Toro, G Valencia; Ramírez-Carrillo, R; Robles-Martínez, F; Yáñez-Fernández, J; Garín-Aguilar, M E; Hernández, C G; Bravo-Villa, G

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R(1-n)xB(1-n), R(1-n)xB(2-1), R(2-n)xB(1-n) and R(2-n)xB(2-1)). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R(1-n)xB(1-n) being faster than the latter. PMID:25477920

  17. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis

    PubMed Central

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R.; Clardy, Jon

    2009-01-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. In the first system to be analyzed at the molecular level, the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the parasitic fungus (Escovopsis sp.). PMID:19330011

  18. Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips.

    PubMed

    Ryu, Sun-Hwa; Cho, Myung-Kil; Kim, Myungkil; Jung, Sang-Min; Seo, Jin-Ho

    2013-11-01

    The laccase gene of Polyporus brumalis was genetically transformed to overexpress its laccase. The transformants exhibited increased laccase activity and effective decolorization of the dye Remazol Brilliant Blue R than the wild type. When the transformants were pretreated with wood chips from a red pine (softwood) and a tulip tree (hardwood) for 15 and 45 days, they showed higher lignin-degradation activity as well as higher wood-chip weight loss than the wild type. When the wood chips treated with the transformant were enzymatically saccharified, the highest sugar yields were found to be 32.5 % for the red pine wood and 29.5 % for the tulip tree wood, on the basis of the dried wood weights, which were 1.6-folds higher than those for the wild type. These results suggested that overexpression of the laccase gene from P. brumalis significantly contributed to the pretreatment of lignocellulose for increasing sugar yields. PMID:23975277

  19. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium.

    PubMed

    Kasai, Noriyuki; Ikushiro, Shinichi; Hirosue, Shinji; Arisawa, Akira; Ichinose, Hirofumi; Uchida, Yujirou; Wariishi, Hiroyuki; Ohta, Miho; Sakaki, Toshiyuki

    2010-01-01

    We cloned full-length cDNAs of 130 cytochrome P450s (P450s) derived from Phanerochaete chrysosporium and successfully expressed 70 isoforms in Saccharomyces cerevisiae. To elucidate substrate specificity of P. chrysosporium P450s, we examined various substrates including steroid hormones, several drugs, flavonoids and polycyclic aromatic hydrocarbons using the recombinant S. cerevisiae cells. Of these P450s, two CYPs designated as PcCYP50c and PcCYP142c with 14% identity in their amino acid sequences catalyse 3'-hydroxylation of flavone and O-deethylation of 7-ethoxycoumarin. Kinetic data of both enzymes on both reactions fitted not to the Michaelis-Menten equation but to Hill's equation with a coefficient of 2, suggesting that two substrates bind to the active site. Molecular modelling of PcCYP50c and a docking study of flavone to its active site supported this hypothesis. The enzymatic properties of PcCYP50c and PcCYP142c resemble mammalian drug-metabolizing P450s, suggesting that their physiological roles are metabolism of xenobiotics. It is noted that these unique P. chrysosporium P450s have a potential for the production of useful flavonoids. PMID:19819902

  20. Improving xylitol production through recombinant expression of xylose reductase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Hirabayashi, Sho; Wang, Jianqiao; Kawagishi, Hirokazu; Hirai, Hirofumi

    2015-07-01

    We generated an expression construct consisting of the xylose reductase (XR) gene (xr) from Phanerochaete chrysosporium. Transformant X7 exhibited increased xylitol production and markedly higher XR activities than the wild-type strain. RT-PCR analysis demonstrated that the increased XR activity was associated with constant expression of the recombinant xr gene. PMID:25547244

  1. A New Intermediate in the Mineralization of 3,4-Dichloroaniline by the White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Sandermann, Heinrich; Heller, Werner; Hertkorn, Norbert; Hoque, Enamul; Pieper, Dietmar; Winkler, Reinhard

    1998-01-01

    Phanerochaete chrysosporium ATCC 34541 has been reported to be unable to mineralize 3,4-dichloroaniline (DCA). However, high mineralization is now shown to occur when a fermentation temperature of 37° and gassing with oxygen are used. Mineralization did not correlate with lignin peroxidase activity. The latter was high under C limitation and low under N limitation, whereas the reverse was true for mineralization. The kinetics of DCA metabolism was studied in low-N and low-C and C- and N-rich culture media by metabolite analysis and 14CO2 determination. In all cases, DCA disappeared within 2 days, and a novel highly polar conjugate termed DCAX accumulated in the growth medium. This metabolite was a dead-end product under C and N enrichment. In oxygenated low-C medium and in much higher yield in oxygenated low-N medium, DCAX was converted to DCA-succinimide and then mineralized. DCAX was purified by high-performance liquid chromatography and identified as N-(3,4-dichlorophenyl)-α-ketoglutaryl-δ-amide by high-performance liquid chromatography and mass spectroscopy, gas chromatography and mass spectroscopy, and nuclear magnetic resonance spectroscopy. The formation of conjugate intermediates is proposed to facilitate mineralization because the sensitive amino group of DCA needs protection so that ring cleavage rather than oligomerization can occur. PMID:9726875

  2. Effectiveness of preharvest applications of fungicides on preharvest bunch rot and postharvest sour rot of ‘Redglobe’ grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postharvest sour rot of ‘Redglobe’ grapes, also called “non-Botrytis slip skin”, “breakdown disorder”, “soft tissue breakdown”, or “melting decay” has affected this cultivar worldwide. The disorder causes berries to discolor, split, lose internal structure, and decay from veraison to harvest (Camero...

  3. ROS-Dependent Mitochondria Molecular Mechanisms Underlying Antitumor Activity of Pleurotus abalonus Acidic Polysaccharides in Human Breast Cancer MCF-7 Cells

    PubMed Central

    Shi, Xiaolong; Zhao, Yan; Jiao, Yadong; Shi, Tengrui; Yang, Xingbin

    2013-01-01

    Background A greater reduction in cancer risk associated with mushroom diet rich in fungus polysaccharides is generally accepted. Meanwhile, edible Pleurotus abalonus as a member of Abalone mushroom family is a popular nutritional supplement that purportedly prevents cancer occurrence. However, these anecdotal claims are supported by limited studies describing tumor-inhibitory responses to the promising polysaccharides, and the molecular mechanisms underlying these properties have not yet been elucidated. Methodology/Principal Findings We here fractionated the crude polysaccharide preparation from the fruiting bodies of P. abalonus into three fractions, namely PAP-1, PAP-2 and PAP-3, and tested these fractions for antiproliferative activity in human breast cancer MCF-7 cells. The largest PAP-3, an acidic polysaccharide fraction with a molecular mass of 3.68×105 Da, was the most active in inhibiting MCF-7 cancer cells with an IC50 of 193 µg/mL. The changes in cell normal morphology were observed by DAPI staining and the PAP-3-induced apoptosis was confirmed by annexin V/propidium iodide staining. The apoptosis was involved in mitochondria-mediated pathway including the loss of mitochondrial membrane potential (Δψm), the increase of Bax/Bcl-2 ratio, caspase-9/3 activation, and poly(ADP-ribose) polymerase (PARP) degradation, as well as intracellular ROS production. PAP-3 also induced up-regulation of p53, and cell cycle arrest at the S phase. The incubation of MCF-7 cells with antioxidant superoxide dismutase (SOD) and N-acetylcysteine (NAC) significantly attenuated the ROS generation and apoptosis caused by PAP-3, indicating that intracellular ROS plays a pivotal role in cell death. Conclusions/Significance These findings suggest that the polysaccharides, especially acidic PAP-3, are very important nutritional ingredients responsible for, at least in part, the anticancer health benefits of P. abalonus via ROS-mediated mitochondrial apoptotic pathway. It is a

  4. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus.

    PubMed

    Sethuraman, A; Akin, D E; Eriksson, K E

    1999-11-01

    Production of ligninolytic enzymes and degradation of 14C-ring labeled synthetic lignin by the white-rot fungus Cyathus stercoreus ATCC 36910 were determined under a variety of conditions. The highest mineralization rate for 14C dehydrogenative polymerizates (DHP; 38% 14CO2 after 30 days) occurred with 1 mM ammonium tartrate as nitrogen source and 1% glucose as additional carbon source, but levels of extracellular laccase and manganese peroxidase (MnP) were low. In contrast, 10 mM ammonium tartrate with 1% glucose gave low mineralization rates (10% 14CO2 after 30 days) but higher levels of laccase and manganese peroxidase. Lignin peroxidase was not produced by C. stercoreus under any of the studied conditions. Mn(II) at 11 ppm gave a higher rate of 14C DHP mineralization than 0.3 or 40 ppm, but the highest manganese peroxidase level was obtained with Mn(II) at 40 ppm. Cultivation in aerated static flasks gave rise to higher levels of both laccase and manganese peroxidase compared to the levels in shake cultures. 3,4-Dimethoxycinnamic acid at 500 microM concentration was the most effective inducer of laccase of those tested. The purified laccase was a monomeric glycoprotein having an apparent molecular mass of 70 kDa, as determined by calibrated gel filtration chromatography. The pH optimum and isoelectric point of the purified laccase were 4.8 and 3.5, respectively. The N-terminal amino acid sequence of C. stercoreus laccase showed close homology to the N-terminal sequences determined from other basidiomycete laccases. Information on C. stercoreus, whose habitat and physiological requirements for lignin degradation differ from many other white-rot fungi, expands the possibilities for industrial application of biological systems for lignin degradation and removal in biopulping and biobleaching processes. PMID:10570816

  5. Open-Ended Experimentation with the Fungus Pilobolus.

    ERIC Educational Resources Information Center

    Coble, Charles R.; Bland, Charles E.

    This paper describes open-ended experimentation with the fungus Pilobolus for laboratory work by high school students. The fungus structure and reproduction is described and sources of the fungus are suggested. Four areas for investigation are suggested: the effect of a diffuse light source, the effect of a point light source, the effect of light…

  6. White-rot fungal response to fresh and photolytically-weathered pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    Gibson, C. D.; Berry, T. D.; Wang, R.; Bird, J. A.; Filley, T. R.

    2013-12-01

    Pyrogenic organic matter (PyOM or biochar) is the product of the incomplete combustion of biomass. A better understanding of the microbial-mediated degradation of PyOM is critical to assess its role in soil C sequestration and to serve as an agricultural amendment. Recent studies have shown that PyOM additions can prime native soil C but results have been inconsistent, with studies reporting no effect, an increase, or decrease in C mineralization. This study investigated the ability of saprotrophic white-rot fungus, Trametes versicolor, to decompose an unaltered 'fresh' PyOM and a photo-oxidized PyOM. In addition, we measured PyOM-induced priming effects on the mineralization of malt extract agar media (MEA). Enriched (13C) Pinus banksiana-derived PyOM, produced at 450oC under N2, was added fresh and after 4 weeks exposure to 254 nm light to MEA. Vials containing the various types of media were then monitored for CO2 evolution and oxidative enzyme activity. We found that MEA C respired was stimulated (positive priming) by photolyzed PyOM and was inhibited with fresh PyOM addition (negative priming) relative to controls. Vetryl alcohol addition, a laccase production stimulant, resulted in less activity in the presence of PyOM compared with a control, indicating PyOM may disrupt enzyme induction processes. Loss of PyOM-13CO2 was 0.2% (× 0.001) for fresh PyOM and 1.2% (×0.001) for photolyzed PyOM C during 10 weeks averaged across media treatments. While MEA C mineralization decreased after fresh PyOM addition, both oxidative (laccase and manganese peroxidase) and hydrolytic (β glucosidase) enzyme production increased with fresh PyOM in the absence of veratryl alcohol. However, there was a decrease in its presence. These results suggest that the physiological response of this common wood decay fungus to PyOM is complex and responsive to enzymatic triggers but that PyOM itself can act to promote or suppress overall litter or soil decay by fungi.

  7. Leptin receptor overlapping transcript (LepROT) gene participates in insulin pathway through FoxO.

    PubMed

    Wang, Chuan-Xu; Zhao, Ai-Hua

    2016-08-01

    Leptin receptor overlapping transcript (LepROT) is co-transcribed with the leptin receptor (LepR). However, the function and mechanism of LepROT in insulin pathway is unclear. In this study, we report the function of LepROT in maintaining consistent FoxO transcription. LepROT is constitutively expressed during larval development. 20-Hydroxyecdysone, methoprene, and insulin have no effect on the transcription of LepROT. However, the knockdown of LepROT by dsRNA injection in larvae causes delay of the development of Helicoverpa armigera. Knockdown of LepROT results in the upregulation of FoxO and downregulation of PI3K. The knockdown of LepROT also results in the subcellular translocation of FoxO from cytoplasm to nuclei. By contrast, overexpression of LepROT in the HaEpi cell line inhibits FoxO expression. Results suggest that LepROT participates in insulin signaling. PMID:27106118

  8. Influence of customized cooking methods on the phenolic contents and antioxidant activities of selected species of oyster mushrooms (Pleurotus spp.).

    PubMed

    Tan, Yee-Shin; Baskaran, Asweni; Nallathamby, Neeranjini; Chua, Kek-Heng; Kuppusamy, Umah Rani; Sabaratnam, Vikineswary

    2015-05-01

    Nutritional value of cooked food has been considered to be lower compared to the fresh produce. However, many reports showed that processed fruits and vegetables including mushrooms may retain antioxidant activity. Pleurotus spp. as one of the edible mushroom are in great demand globally and become one of the most popular mushrooms grown worldwide with 25-fold increase in production from 1960-2009. The effects of three different cooking methods (boiling, microwave and pressure cooking) on the antioxidant activities of six different types of oyster mushrooms (Pleurotus eryngii, P citrinopileatus, P. cystidiosus P. flabellatus, P. floridanus and P. pulmonarius) were assessed. Free radical scavenging (DPPH) and reducing power (TEAC) were used to evaluate the antioxidant activities and the total phenolic contents were determined by Folin-Ciocalteu reagent. Pressure cooking improved the scavenging abilities of P. floridanus (>200 %), P. flabellatus (117.6 %), and P. pulmonarius (49.1 %) compared to the uncooked samples. On the other hand, the microwaved Pleurotus eryngii showed 17 % higher in the TEAC value when compared to the uncooked sample. There was, however, no correlation between total phenolic content and antioxidant activities. There could be presence of other bioactive components in the processed mushrooms that may have contributed to the antioxidant activity. These results suggested that customized cooking method can be used to enhance the nutritional value of mushrooms and promote good health. PMID:25892809

  9. Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust

    PubMed Central

    Camassola, Marli; da Rosa, Letícia O.; Calloni, Raquel; Gaio, Tamara A.; Dillon, Aldo J.P.

    2013-01-01

    Pleurotus species secrete phenol oxidase enzymes: laccase (Lcc) and manganese peroxidase (MnP). New genotypes of these species show potential to be used in processes aiming at the degradation of phenolic compounds, polycyclic aromatic hydrocarbons and dyes. Hence, a screening of some strains of Pleurotus towards Lcc and MnP production was performed in this work. Ten strains were grown through solid-state fermentation on a medium based on Pinus spp. sawdust, wheat bran and calcium carbonate. High Lcc and MnP activities were found with these strains. Highest Lcc activity, 741 ± 245 U gdm−1 of solid state-cultivation medium, was detected on strain IB11 after 32 days, while the highest MnP activity occurred with strains IB05, IB09, and IB11 (5,333 ± 357; 4,701 ± 652; 5,999 ± 1,078 U gdm−1, respectively). The results obtained here highlight the importance of further experiments with lignocellulolytic enzymes present in different strains of Pleurotus species. Such results also indicate the possibility of selecting more valuable strains for future biotechnological applications, in soil bioremediation and biological biomass pre-treatment in biofuels production, for instance, as well as obtaining value-added products from mushrooms, like phenol oxidase enzymes. PMID:24159307

  10. Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen P. ananatis BD442

    PubMed Central

    Weller-Stuart, Tania; Chan, Wai Yin; Venter, Stephanus N.; Smits, Theo H. M.; Duffy, Brion; Goszczynska, Teresa; Cowan, Don A.; de Maayer, Pieter

    2014-01-01

    Pantoea ananatis is an emerging phytopathogen that infects a broad spectrum of plant hosts. Here, we present the genomes of two South African isolates, P. ananatis PA4, which causes center rot of onion, and BD442, isolated from brown stalk rot of maize. PMID:25103759

  11. Solanapyrone analogues from a Hawaiian fungicolous fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  12. Anti-leukemic and immunomodulatory effects of fungal metabolites of Pleurotus pulmonarius and Pleurotus ostreatus on benzene-induced leukemia in Wister rats

    PubMed Central

    Terry, Alli O.A.; Kola, Oloke J.

    2012-01-01

    Background The use of natural bioactive compounds in conventional chemotherapy is a new direction in cancer treatment that is gaining more research attention recently. Bioactive polysaccharides and polysaccharide-protein complexes from some fungi (edible mushrooms) have been identified as sources of effective and non-toxic antineoplastic agents. Selected oyster mushrooms (Pleurotus pulmonarius and P. ostreatus being local [Nigeria] and exotic strains, respectively) were cultured on a novel medium of yeast extract supplemented with an ethanolic extract of Annona senegalensis, and the antileukemic potential of their metabolites was studied. Methods Leukemia was successfully induced in Wister rats by intravenous injection (0.2 mL) of a benzene solution every 2 days for 3 consecutive weeks. The aqueous solution of fungal metabolites (20 mg/mL) produced by submerged fermentation was orally administered (0.2 mL) before, during, and after leukemia induction. Leukemia burden was assessed by comparing the hematological parameters at baseline and after leukemia induction. The immunomodulatory potential of the metabolites was assessed by using a phagocytic assay (carbon clearance method). The ability to enhance leukopoiesis was assessed by using the total leukocyte count. Results Leukemia induction resulted in significant anemia indices and leukocytosis (P<0.05) in the experimental rats. Both metabolites equally enhanced leukopoiesis and demonstrated phagocytic actions; P. ostreatus activity was significantly higher than that of P. pulmonarius (P<0.05). Conclusion The metabolites exhibited profound antileukemic potential by suppressing leukemia and demonstrating immunotherapeutic activities on animals after oral administration in various experimental groups. PMID:22479280

  13. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

    PubMed Central

    Fragoeiro, Silvia; Bastos, Catarina

    2010-01-01

    This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered. PMID:23956663

  14. Following basal stem rot in young oil palm plantings.

    PubMed

    Panchal, G; Bridge, P D

    2005-01-01

    The PCR primer GanET has previously been shown to be suitable for the specific amplification of DNA from Ganoderma boninense. A DNA extraction and PCR method has been developed that allows for the amplification of the G. boninense DNA from environmental samples of oil palm tissue. The GanET primer reaction was used in conjunction with a palm-sampling programme to investigate the possible infection of young palms through cut frond base surfaces. Ganoderma DNA was detected in frond base material at a greater frequency than would be expected by comparison with current infection levels. Comparisons are made between the height of the frond base infected, the number of frond bases infected, and subsequent development of basal stem rot. The preliminary results suggest that the development of basal stem rot may be more likely to occur when young lower frond bases are infected. PMID:15750744

  15. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles.

    PubMed

    Li, You; You, Li; Simmons, David Rabern; Bateman, Craig C; Short, Dylan P G; Kasson, Matthew T; Rabaglia, Robert J; Hulcr, Jiri

    2015-01-01

    Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations. PMID:26367271

  16. New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles

    PubMed Central

    Bateman, Craig C.; Short, Dylan P. G.; Kasson, Matthew T.; Rabaglia, Robert J.; Hulcr, Jiri

    2015-01-01

    Ambrosia symbiosis is an obligate, farming-like mutualism between wood-boring beetles and fungi. It evolved at least 11 times and includes many notorious invasive pests. All ambrosia beetles studied to date cultivate ascomycotan fungi: early colonizers of recently killed trees with poor wood digestion. Beetles in the widespread genus Ambrosiodmus, however, colonize decayed wood. We characterized the mycosymbionts of three Ambrosiodmus species using quantitative culturing, high-throughput metabarcoding, and histology. We determined the fungi to be within the Polyporales, closely related to Flavodon flavus. Culture-independent sequencing of Ambrosiodmus minor mycangia revealed a single operational taxonomic unit identical to the sequences from the cultured Flavodon. Histological sectioning confirmed that Ambrosiodmus possessed preoral mycangia containing dimitic hyphae similar to cultured F. cf. flavus. The Ambrosiodmus-Flavodon symbiosis is unique in several aspects: it is the first reported association between an ambrosia beetle and a basidiomycotan fungus; the mycosymbiont grows as hyphae in the mycangia, not as budding pseudo-mycelium; and the mycosymbiont is a white-rot saprophyte rather than an early colonizer: a previously undocumented wood borer niche. Few fungi are capable of turning rotten wood into complete animal nutrition. Several thousand beetle-fungus symbioses remain unstudied and promise unknown and unexpected mycological diversity and enzymatic innovations. PMID:26367271

  17. Morphological and enzymatic response of the thermotolerant fungus Fomes sp. EUM1 in solid state fermentation under thermal stress.

    PubMed

    Ordaz-Hernández, Armando; Ortega-Sánchez, Eric; Montesinos-Matías, Roberto; Hernández-Martínez, Ricardo; Torres-Martínez, Daniel; Loera, Octavio

    2016-08-01

    Thermotolerance of the fungus Fomes sp. EUM1 was evaluated in solid state fermentation (SSF). This thermotolerant strain improved both hyphal invasiveness (38%) and length (17%) in adverse thermal conditions exceeding 30°C and to a maximum of 40°C. In contrast, hyphal branching decreased by 46% at 45°C. The production of cellulases over corn stover increased 1.6-fold in 30°C culture conditions, xylanases increased 2.8-fold at 40°C, while laccase production improved 2.7-fold at 35°C. Maximum production of lignocellulolytic enzymes was obtained at elevated temperatures in shorter fermentation times (8-6 days), although the proteases appeared as a thermal stress response associated with a drop in lignocellulolytic activities. Novel and multiple isoenzymes of xylanase (four bands) and cellulase (six bands) were secreted in the range of 20-150 kDa during growth in adverse temperature conditions. However, only a single laccase isoenzyme (46 kDa) was detected. This is the first report describing the advantages of a thermotolerant white-rot fungus in SSF. These results have important implications for large-scale SSF, where effects of metabolic heat are detrimental to growth and enzyme production, which are severely affected by the formation of high temperature gradients. PMID:27445319

  18. Production of Lytic Enzymes by Trichoderma Isolates during in vitro Antagonism with Aspergillus Niger, The Causal Agent of Collar ROT of Peanut

    PubMed Central

    Gajera, H. P.; Vakharia, D. N.

    2012-01-01

    Twelve isolates of Trichoderma (six of T. harzianum, five of T. viride, one of T. virens), which reduced variably the incidence of collar rot disease caused in peanut by Aspergillus niger Van Tieghem, were evaluated for their potential to produce lytic enzymes during in vitro antagonism. T. viride 60 inhibited highest (86.2%) growth of test fungus followed by T. harzianum 2J (80.4%) at 6 days after inoculation (DAI) on PDA media. The specific activities of chitinase, β-1,3-glucanase and protease were 11, 3.46 and 9 folds higher in T6 antagonist (T. viride 60 and A. niger interactions) followed by 8.72, 2.85 and 9 folds in T8antagonist (T. harzianum 2J and A. niger interactions), respectively, compared to the activity produced by control petri plate T13 (A. niger alone) at 6 DAI. Activity of these lytic enzymes induced in antagonists’ plates comprises the growth of Trichoderma isolates. However, cellulase and poly galacturonase were found least amount in these antagonists treatment. A significant positive correlation (p=0.01) between percentage growth inhibition of test fungus and lytic enzymes – (chitinase, β-1,3-glucanase and protease) in the culture medium of antagonist treatment established a relationship to inhibit growth of fungal pathogen by increasing the levels of these enzymes. Among the Trichoderma isolates, T. viride 60 was found best strain to be used in biological control of plant pathogen A. niger. PMID:24031802

  19. Detection of the sour-rot pathogen Geotrichum candidum in tomato fruit and juice by using a highly specific monoclonal antibody-based ELISA.

    PubMed

    Thornton, Christopher R; Slaughter, David C; Davis, R Michael

    2010-10-15

    Geotrichum candidum is a common soil-borne fungus that causes sour-rot of tomatoes, citrus fruits and vegetables, and is a major contaminant on tomato processing equipment. The aim of this work was to produce a monoclonal antibody and diagnostic assay for its detection in tomato fruit and juice. Using hybridoma technology, a cell line (FE10) was generated that produced a monoclonal antibody belonging to the immunoglobulin class M (IgM) that was specific to G. candidum and the closely related teleomorphic species Galactomyces geotrichum and anamorphic species Geotrichum europaeum and Geotrichum pseudocandidum in the G. geotrichum/G. candidum complex. The MAb did not cross-react with a wide range of unrelated fungi, including some likely to be encountered during crop production and processing. The MAb binds to an immunodominant high molecular mass (> 200 kDa) extracellular polysaccharide antigen that is present on the surface of arthroconidia and hyphae of G. candidum. The MAb was used in a highly specific enzyme-linked immunosorbent assay (ELISA) to accurately detect the fungus in infected tomato fruit and juice. Specificity of the ELISA was confirmed by sequencing of the internally transcribed spacer (ITS) 1-5.8S-ITS2 rRNA-encoding regions of fungi isolated from naturally-infected tomatoes. PMID:20850192

  20. Detection of potato brown rot and ring rot by electronic nose: from laboratory to real scale.

    PubMed

    Biondi, E; Blasioli, S; Galeone, A; Spinelli, F; Cellini, A; Lucchese, C; Braschi, I

    2014-11-01

    A commercial electronic nose (e-nose) equipped with a metal oxide sensor array was trained to recognize volatile compounds emitted by potatoes experimentally infected with Ralstonia solanacearum or Clavibacter michiganensis subsp. sepedonicus, which are bacterial agents of potato brown and ring rot, respectively. Two sampling procedures for volatile compounds were tested on pooled tubers sealed in 0.5-1 L jars at room temperature (laboratory conditions): an enrichment unit containing different adsorbent materials (namely, Tenax(®) TA, Carbotrap, Tenax(®) GR, and Carboxen 569) directly coupled with the e-nose (active sampling) and a Radiello(™) cartridge (passive sampling) containing a generic Carbograph fiber. Tenax(®) TA resulted the most suitable adsorbent material for active sampling. Linear discriminant analysis (LDA) correctly classified 57.4 and 81.3% total samples as healthy or diseased, when using active and passive sampling, respectively. These results suggested the use of passive sampling to discriminate healthy from diseased tubers under intermediate and real scale conditions. 80 and 90% total samples were correctly classified by LDA under intermediate (100 tubers stored at 4°C in net bag passively sampled) and real scale conditions (tubers stored at 4°C in 1.25 t bags passively sampled). Principal component analysis (PCA) of sensorial analysis data under laboratory conditions highlighted a strict relationship between the disease severity and the responses of the e-nose sensors, whose sensitivity threshold was linked to the presence of at least one tuber per sample showing medium disease symptoms. At intermediate and real scale conditions, data distribution agreed with disease incidence (percentage of diseased tubers), owing to the low storage temperature and volatile compounds unconfinement conditions adopted. PMID:25127615