Science.gov

Sample records for rotating dilaton black

  1. Charged rotating dilaton black strings

    SciTech Connect

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  2. Charged rotating Kaluza-Klein black holes in dilaton gravity

    SciTech Connect

    Allahverdizadeh, Masoud; Matsuno, Ken; Sheykhi, Ahmad

    2010-02-15

    We obtain a class of slowly rotating charged Kaluza-Klein black hole solutions of the five-dimensional Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling constant. At infinity, the spacetime is effectively four dimensional. In the absence of the squashing function, our solution reduces to the five-dimensional asymptotically flat slowly rotating charged dilaton black hole solution with two equal angular momenta. We calculate the mass, the angular momentum, and the gyromagnetic ratio of these rotating Kaluza-Klein dilaton black holes. It is shown that the dilaton field and the nontrivial asymptotic structure of the solutions modify the gyromagnetic ratio of the black holes. We also find that the gyromagnetic ratio crucially depends on the dilaton coupling constant, {alpha}, and decreases with increasing {alpha} for any size of the compact extra dimension.

  3. Extremal charged rotating dilaton black holes in odd dimensions

    NASA Astrophysics Data System (ADS)

    Allahverdizadeh, Masoud; Kunz, Jutta; Navarro-Lérida, Francisco

    2010-09-01

    Employing higher-order perturbation theory, we find a new class of charged rotating black hole solutions of Einstein-Maxwell-dilaton theory with general dilaton coupling constant. Starting from the Myers-Perry solutions, we use the electric charge as the perturbative parameter, and focus on extremal black holes with equal-magnitude angular momenta in odd dimensions. We perform the perturbations up to 4th order for black holes in 5 dimensions and up to 3rd order in higher odd dimensions. We calculate the physical properties of these black holes and study their dependence on the charge and the dilaton coupling constant.

  4. Charged rotating dilaton black strings with logarithmic nonlinear source

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2016-03-01

    We find a new class of charged rotating dilaton black string solutions in the presence of logarithmic nonlinear electrodynamics. The dilaton potential is chosen in the form of the Liouville-type. We also present the suitable counterterm which removes the divergences of the action in the presence of dilaton potential. We find the conserved and thermodynamic quantities and check that the first law of thermodynamics holds on the black string horizon. We also address some theoretical implications of the nonlinear black hole/string solutions.

  5. Charged rotating dilaton black holes with Kaluza-Klein asymptotics

    NASA Astrophysics Data System (ADS)

    Knoll, Christian; Nedkova, Petya

    2016-03-01

    We construct a class of stationary and axisymmetric solutions to the five-dimensional Einstein-Maxwell-dilaton gravity, which describe configurations of charged rotating black objects with Kaluza-Klein asymptotics. The solutions are constructed by uplifting a vacuum seed solution to six dimensions, performing a boost and a subsequent circle reduction. We investigate the physical properties of the charged solutions and obtain their general relations to the properties of the vacuum seed. We also derive the gyromagnetic ratio and the Smarr-like relations. As particular cases, we study three solutions, which describe a charged rotating black string, a charged rotating black ring on Kaluza-Klein bubbles, and a superposition of two black holes and a Kaluza-Klein bubble.

  6. Nonlinear electrodynamics and thermodynamic geometry of rotating dilaton black branes

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2016-07-01

    We construct a new class of rotating dilaton solutions in the presence of logarithmic nonlinear electrodynamics. These solutions represent black branes with flat horizon and contain k=[(n-1)/2] rotation parameters in n-dimensional spacetime where [ x] is the integer part of x. We study the causal structure of the spacetime and calculate thermodynamic and conserved quantities and show that these quantities satisfy the first law of thermodynamics on the black brane horizon, { dM}={ TdS}+{{{sum _{i=1}k}}}Ω id{J}i+{ Ud}{Q}. Then, we study geometrical approach towards thermodynamics by choosing an appropriate geometrical metric. We show that the singularity of the Ricci scalar coincides exactly with the phase transition points. We observe that our system encounters two types of phase transitions depending on the metric parameters. For the first one the heat capacity is zero and for the second one the heat capacity diverges. In the first kind of phase transition, the brane has a transition from an unstable non-physical to a stable physical state. In the second type of phase transition the brane moves from a stable to an unstable state. Finally, we comment on the dynamical stability of the obtained solutions under perturbations in four dimensions.

  7. Slowly rotating dilatonic black holes with exponential form of nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Sheykhi, A.; Sepehri Rad, M.; Matsuno, K.

    2015-10-01

    The generalization of the four-dimensional Kerr-Newman black holes to include the nonlinear electrodynamics has been one of the famous problems in black hole physics. In this paper, we address the effects of the small rotation parameter on the exact black hole solutions of Einstein-dilaton gravity coupled to the exponential nonlinear electrodynamics. We find a new stationary black hole solutions of this theory, in the limit of small angular momentum, and in the presence of Liouville-type potential for the dilaton field and an arbitrary value of the dilaton coupling constant. We compute the angular momentum and the gyromagnetic ratio of these rotating dilaton black holes. Interestingly enough, we find that the nonlinearity of the electrodynamics do not affect the angular momentum and the gyromagnetic ratio of the spacetime, while in contrast, the dilaton field can modify the angular momentum as well as the gyromagnetic ratio of the rotating black holes. We find the gyromagnetic ratio as , where is the coupling constant of the dilaton and the electrodynamic fields. For , we arrive at , which is the gyromagnetic ratio of the Kerr-Newman black holes in four dimensions.

  8. Quantum (in)stability of 2D charged dilaton black holes and 3D rotating black holes

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    1999-02-01

    The quantum properties of charged black holes (BHs) in two-dimensional (2D) dilaton-Maxwell gravity (spontaneously compactified from heterotic string) with N dilaton coupled scalars are studied. We first investigate 2D BHs found by McGuigan, Nappi, and Yost. Kaluza-Klein reduction of 3D gravity with minimal scalars leads also to 2D dilaton-Maxwell gravity with dilaton coupled scalars and the rotating BH solution found by Bañados, Teitelboim, and Zanelli, which can be also described by 2D charged dilatonic BHs. Evaluating the one-loop effective action for dilaton coupled scalars in large N (and the s-wave approximation for the Bañados-Teitelboim-Zanelli case), we show that quantum-corrected BHs may evaporate or else antievaporate similarly to 4D Nariai BHs as is observed by Bousso and Hawking. Higher modes may cause the disintegration of BHs in accordance with recent observation by Bousso.

  9. Geodesic equations in the static and rotating dilaton black holes: Analytical solutions and applications

    NASA Astrophysics Data System (ADS)

    Soroushfar, Saheb; Saffari, Reza; Sahami, Ehsan

    2016-07-01

    In this paper, we consider the timelike and null geodesics around the static (GMGHS, magnetically charged GMGHS, electrically charged GMGHS) and the rotating (Kerr-Sen dilaton-axion) dilaton black holes. The geodesic equations are solved in terms of Weierstrass elliptic functions. To classify the trajectories around the black holes, we use the analytical solution and effective potential techniques and then characterize the different types of the resulting orbits in terms of the conserved energy and angular momentum. Also, using the obtained results we study astrophysical applications.

  10. Bifurcation of the quasinormal spectrum and zero damped modes for rotating dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2015-09-01

    It has been recently found that for the near extremal Kerr black holes appearing of zero damped modes (accompanied by quasinormal mode branching) signifies about inapplicability of the regime of small perturbations and the onset of turbulence. Here we show that this phenomenon is not limited by Kerr or Kerr-Newman solutions only, but also takes place for rotating dilatonic black holes for which we have found zero damped modes both numerically and analytically. We have also shown that, contrary to recent claims, there is no instability of a charged massive scalar field in the background of the rotating dilatonic black hole under physically adequate boundary conditions. Analytic expression for dominant quasinormal frequencies is deduced in the regime of large coupling q Q , where q and Q are the field and black hole charges, respectively.

  11. Absorption cross-section and decay rate of rotating linear dilaton black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Aslan, O. A.

    2016-02-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  12. Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Sheykhi, A.; Dehghani, M. H.

    2015-10-01

    In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α >1, the solutions can encounter an unstable phase depending on the metric parameters.

  13. Slowly-Rotating Black Hole Solution in Einstein-Dilaton-Gauss-Bonnet Gravity

    NASA Astrophysics Data System (ADS)

    Ayzenberg, Dimitry; Yunes, Nicolas

    2015-04-01

    We present a stationary and axisymmetric black hole solution in Einstein-Dilaton-Gauss-Bonnet gravity to quadratic order in the ratio of the spin angular momentum to the black hole mass squared. This solution introduces new corrections to previously found nonspinning and linear-in-spin solutions. The location of the event horizon and the ergosphere are modified, as well as the quadrupole moment. The new solution is of Petrov type I, although lower order in spin solutions are of Petrov type D. There are no closed timelike curves or spacetime regions that violate causality outside of the event horizon in the new solution. We calculate the modifications to the binding energy, Kepler's third law, and properties of the innermost stable circular orbit. These modifications are important for determining how the electromagnetic properties of accretion disks around supermassive black holes are changed from those expected in general relativity.

  14. Tunneling Radiation of Massive Vector Bosons from Dilaton Black Holes

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Jun-Kun; Wu, Xing-Hua

    2016-07-01

    It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza—Klein black hole, and the rotating Kerr—Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature. Supported by National Natural Science Foundation of China under Grant No. 11205048

  15. Scalar field radiation from dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2012-12-01

    We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.

  16. Hawking Temperature of Dilaton Black Holes from Tunneling

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Rong; Li, Ran; Liu, Fei-Hu

    Recently, it has been suggested that Hawking radiation can be derived from quantum tunneling methods. Here, we calculated Hawking temperature of dilatonic black holes from tunneling formalism. The two semiclassical methods adopted here are: the null-geodesic method proposed by Parikh and Wilczek and the Hamilton-Jacobi method proposed by Angheben et al. We apply the two methods to analyze the Hawking temperature of the static spherical symmetric dilatonic black hole, the rotating Kaluza-Klein black hole, and the rotating Kerr-Sen black hole.

  17. Hawking radiation of massive vector particles from the linear dilaton black holes

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Junkun

    2016-07-01

    By using the tunneling formalism, we calculated the massive vector particles' Hawking radiation from the non-rotating and rotating linear dilaton black holes. By applying the WKB approximation to the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector particles from the linear dilaton black holes. The Hawking temperatures of the linear dilaton black holes have been recovered, which are consistent with the previous results in the literature. This means that the vector particles' tunneling method can also be used in studying the Hawking radiation of asymptotically non-flat and non-AdS black holes.

  18. Charged dilatonic black holes in gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Faizal, Mir; Panah, B. Eslam; Panahiyan, S.

    2016-05-01

    In this paper, we present charged dilatonic black holes in gravity's rainbow. We study the geometric and thermodynamic properties of black hole solutions. We also investigate the effects of rainbow functions on different thermodynamic quantities for these charged black holes in dilatonic gravity's rainbow. Then we demonstrate that the first law of thermodynamics is valid for these solutions. After that, we investigate thermal stability of the solutions using the canonical ensemble and analyze the effects of different rainbow functions on the thermal stability. In addition, we present some arguments regarding the bound and phase transition points in context of geometrical thermodynamics. We also study the phase transition in extended phase space in which the cosmological constant is treated as the thermodynamic pressure. Finally, we use another approach to calculate and demonstrate that the obtained critical points in extended phase space represent a second order phase transition for these black holes.

  19. Effect of thermal fluctuations on a charged dilatonic black Saturn

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Faizal, Mir

    2016-04-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  20. Decay of Dirac hair around a dilaton black hole

    SciTech Connect

    Gibbons, Gary W.; Rogatko, Marek

    2008-02-15

    The intermediate and late-time behavior of a massive Dirac field in the background of static spherically symmetric dilaton black hole solutions is investigated. The intermediate asymptotic behavior of a massive Dirac field depends on the mass parameter as well as the wave number of the mode, while the late-time behavior has a power-law decay rate independent of both.

  1. Critical behavior of Born-Infeld dilaton black holes

    NASA Astrophysics Data System (ADS)

    Dehghani, M. H.; Sheykhi, A.; Dayyani, Z.

    2016-01-01

    We explore the critical behavior of (n +1 )-dimensional topological Born-Infeld-dilaton black holes in an extended phase space. We treat the cosmological constant and the Born-Infeld (BI) parameter as the thermodynamic pressure and BI vacuum polarization which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature, Gibbs free energy, and investigate the behavior of these quantities. We also study the analogy of the van der Waals liquid-gas system with the Born-Infeld-dilaton black holes in canonical ensemble in which we can treat the black hole charge as a fixed external parameter. Moreover, we show that the critical values of pressure, temperature and volume are physical provided the coupling constant of dilaton gravity is less than 1 and the horizon is sphere. Finally, we calculate the critical exponents and show that although thermodynamic quantities depend on the dilaton coupling constant, BI parameter and the dimension of the spacetime, they are universal and are independent of metric parameters.

  2. Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole

    SciTech Connect

    Wei, Shao-Wen; Liu, Yu-Xiao E-mail: liuyx@lzu.edu.cn

    2013-11-01

    In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin a, the size of the shadow decreases with the dilaton parameter b. The distortion of the shadow monotonically increases with b and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on this assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin a and dilaton parameter b on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.

  3. Penrose process in a charged axion-dilaton coupled black hole

    NASA Astrophysics Data System (ADS)

    Ganguly, Chandrima; SenGupta, Soumitra

    2016-04-01

    Using the Newman-Janis method to construct the axion-dilaton coupled charged rotating black holes, we show that the energy extraction from such black holes via the Penrose process takes place from the axion/Kalb-Ramond field energy responsible for rendering the angular momentum to the black hole. Determining the explicit form for the Kalb-Ramond field strength, which is argued to be equivalent to spacetime torsion, we demonstrate that at the end of the energy extraction process, the spacetime becomes torsion free with a spherically symmetric non-rotating black hole remnant. In this context, applications to physical phenomena, such as the emission of neutral particles in astrophysical jets, are also discussed. It is seen that the infalling matter gains energy from the rotation of the black hole, or equivalently from the axion field, and that it is ejected as a highly collimated astrophysical jet.

  4. Hawking radiation of non-asymptotically flat rotating black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, Izzet; Aslan, Onur Atilla

    2016-04-01

    We study the Hawking radiation of non-asymptotically flat rotating linear dilaton black holes, which are the solutions to the 4D Einstein-Maxwell-dilaton-axion action by using the semi-classical radiation spectrum method. Using scalar perturbations, we show that both angular and radial equations produce exact analytical solutions. Thus, we obtain a precise radiation spectrum for the rotating linear dilaton black hole. The high-frequency regime does not yield the standard Hawking temperature of this black hole computed from the surface gravity. However, we show in detail that the specific low-frequency band of the radiation spectrum allows for the original Hawking temperature of the rotating linear dilaton black hole. The computations are also exhibited graphically.

  5. Thermodynamics of rotating solutions in (n+1)-dimensional Einstein-Maxwell-dilaton gravity

    SciTech Connect

    Sheykhi, A.; Riazi, N.; Pakravan, J.; Dehghani, M. H.

    2006-10-15

    We construct a class of charged, rotating solutions of (n+1)-dimensional Einstein-Maxwell-dilaton gravity with cylindrical or toroidal horizons in the presence of Liouville-type potentials and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black brane, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We also compute temperature, entropy, charge, electric potential, mass and angular momentum of the black brane solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity in the canonical ensemble. We find that the system is thermally stable when the coupling constant between the dilaton and matter field {alpha}{<=}1, while for {alpha}>1 the system has an unstable phase. This shows that the dilaton field makes the solution unstable, while it is stable even in Lovelock gravity.

  6. Dilaton gravity, charged dust, and (quasi-) black holes

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Fabris, J. C.; Silveira, R.; Zaslavskii, O. B.

    2014-05-01

    We consider Einstein-Maxwell-dilaton gravity with charged dust and interaction of the form P(χ)FμνFμν, where P(χ) is an arbitrary function of the dilaton field χ that can be normal or phantom. For any regular P(χ), static configurations are possible with arbitrary functions g00=exp(2γ(xi)) (i =1, 2, 3) and χ=χ(γ), without any assumption of spatial symmetry. The classical Majumdar-Papapetrou system is restored by putting χ =const. Among possible solutions are black-hole (BH) and quasi-black-hole (QBH) ones. Some general results on BH and QBH properties are deduced and confirmed by examples. It is found, in particular, that asymptotically flat BHs and QBHs can exist with positive energy densities of matter and both scalar and electromagnetic fields.

  7. Dilaton gravity, (quasi-) black holes, and scalar charge

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Fabris, J. C.; Silveira, R.; Zaslavskii, O. B.

    2014-09-01

    We consider static electrically charged dust configurations in the framework of Einstein-Maxwell-dilaton gravity with the interaction term P(\\chi) F_{mn} F^{mn} in the Lagrangian, where P(\\chi) is an arbitrary function of the dilaton field \\chi, and the latter is allowed to be normal or phantom. It is shown that, for any regular P(\\chi), static configurations are possible with arbitrary functions g_{00} = e^{2\\gamma(x^i)} (i=1,2,3) and \\chi = \\chi(\\gamma), without any assumption of spatial symmetry. The corresponding matter, electric charge and scalar charge densities are found from the field equations. Meanwhile, configurations with nontrivial \\chi(x^i) generically require a nonzero scalar charge density distribution. The classical Majumdar-Papapetrou (MP) system is obtained as a special case where \\chi = const; there is its scalar analogue in the case F_{mn} = 0, but only with a phantom \\chi field. Among possible solutions are black-hole (BH) and quasi-black-hole (QBH) ones. Some general results on QBH properties obtained previously for the MP system are here extended to systems with the dilaton. Particular examples of asymptotically flat spherically symmetric BH and QBH solutions are found, some of them being phantom-free, that is, exist with positive energy densities of matter and both scalar and electromagnetic fields.

  8. Topology, entropy, and Witten index of dilaton black holes

    SciTech Connect

    Gibbons, G.W.; Kallosh, R.E. )

    1995-03-15

    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) a topology [ital S][sup 1][times][ital R][times][ital S][sup 2] and Euler number [chi]=0 in contrast with the nonextreme case with [chi]=2. The entropy of extreme U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstroem case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of [ital all] extreme black holes, including [U(1)][sup 2] black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten index. We have studied also the topology of moduli space'' of multi-black-holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not hyper-Kaehler since the corresponding geometry has a torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electromagnetic black hole is 300 times greater than that released by the fission of a [sup 235]U nucleus.

  9. Conformally invariant thermodynamics of a Maxwell-Dilaton black hole

    NASA Astrophysics Data System (ADS)

    Lopez-Monsalvo, C. S.; Nettel, F.; Quevedo, H.

    2013-12-01

    The thermodynamics of Maxwell-Dilaton black holes has been extensively studied. It has served as a fertile ground to test ideas about temperature through various definitions of surface gravity. In this paper, we make an independent analysis of this black hole solution in both, Einstein and Jordan, frames. We explore a set of definitions for the surface gravity and observe the different predictions they make for the near extremal configuration of this black hole. Finally, motivated by the singularity structure in the interior of the event horizon, we use a holographic argument to remove the micro-states from the disconnected region of this solution. In this manner, we construct a frame independent entropy from which we obtain a temperature which agrees with the standard results in the non-extremal regime, and has a desirable behaviour around the extremal configurations according to the third law of black hole mechanics.

  10. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    SciTech Connect

    Pani, Paolo; Cardoso, Vitor

    2009-04-15

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  11. Uniqueness of photon sphere for Einstein-Maxwell-dilaton black holes with arbitrary coupling constant

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    2016-03-01

    The uniqueness of a static asymptotically flat photon sphere for a static black hole solution in the Einstein-Maxwell-dilaton theory with an arbitrary coupling constant is proposed. Using the conformal positive energy theorem, we show that the dilaton photon sphere subject to the nonextremality condition constitutes a cylinder over a topological sphere.

  12. Thermodynamics of Gauss-Bonnet-dilaton Lifshitz black branes

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Dehghani, M. H.; Sheykhi, A.

    2015-09-01

    We explore an effective supergravity action in the presence of a massless gauge field which contains a Gauss-Bonnet term as well as a dilaton field. We construct a new class of black brane solutions of this theory with a Lifshitz asymptotic by fixing the parameters of the model such that the asymptotic Lifshitz behavior can be supported. Then we construct the well-defined finite action through the use of the counterterm method. We also obtain two independent constants along the radial coordinate by combining the equations of motion. Calculations of these two constants at infinity through the use of the large-r behavior of the metric functions show that our solution respects the no-hair theorem. Furthermore, we combine these two constants in order to get a constant C which is proportional to the energy of the black brane. We calculate this constant at the horizon in terms of the temperature and entropy and at large-r in terms of the geometrical mass. By calculating the value of the energy density through the use of the counterterm method, we obtain the relation between the energy density, the temperature, and the entropy. This relation is the generalization of the well-known Smarr formula for AdS black holes. Finally, we study the thermal stability of our black brane solution and show that it is stable under thermal perturbations.

  13. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    SciTech Connect

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-10-15

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the

  14. Solitons and black holes in a generalized Skyrme model with dilaton-quarkonium field

    SciTech Connect

    Doneva, Daniela D.; Stefanov, Ivan Zh.; Yazadjiev, Stoytcho S.

    2011-06-15

    Skyrme theory is among the viable effective theories which emerge from the low-energy limit of quantum chromodynamics. Many of its generalizations include also a dilaton. Here we find new self-gravitating solutions, both solitons and black holes, in a generalized Skyrme model in which a dilaton is present. The investigation of the properties of the solutions is done numerically. We find that the introduction of the dilaton in the theory does not change the picture qualitatively, only quantitatively. The model considered here has one free parameter more than the Einstein-Skyrme model which comes from the potential of the dilaton. We have applied also the turning point method to establish that one of the black-hole branches of solutions is unstable. The turning point method here is based on the first law of black-hole thermodynamics a detailed derivation of which is given in the Appendix of the paper.

  15. Thermodynamic instability of charged dilaton black holes in AdS spaces

    SciTech Connect

    Sheykhi, A.; Dehghani, M. H.; Hendi, S. H.

    2010-04-15

    We study thermodynamic instability of a class of (n+1)-dimensional charged dilatonic spherically symmetric black holes in the background of the anti-de Sitter universe. We calculate the quasilocal mass of the anti-de Sitter dilaton black hole through the use of the subtraction method of Brown and York. We find a Smarr-type formula and perform a stability analysis in the canonical ensemble and disclose the effect of the dilaton field on the thermal stability of the solutions. Our study shows that the solutions are thermally stable for small {alpha}, while for large {alpha} the system has an unstable phase, where {alpha} is a coupling constant between the dilaton and matter field.

  16. Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity

    SciTech Connect

    Sheykhi, A.; Riazi, N.

    2007-01-15

    We construct a new class of (n+1)-dimensional (n{>=}3) black hole solutions in Einstein-Born-Infeld-dilaton gravity with Liouville-type potential for the dilaton field and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can represent black holes, with inner and outer event horizons, an extreme black hole, or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the thermodynamic quantities of the black hole solutions and find that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis and investigate the effect of dilaton on the stability of the solutions.

  17. Magnetic Dilaton Rotating Strings in the Presence of Exponential Nonlinear Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Mahmoudi, Z.

    2016-09-01

    In this paper, we construct a new class of four-dimensional spinning magnetic dilaton string solutions which produces a longitudinal nonlinear electromagnetic field. The Lagrangian of the matter field has the exponential form. We study the physical properties of the solution in ample details. Geometrical, causal and geodisical structures of the solutions are investigated, separately. We confirm that the spacetime is both null and geodesically complete. We find that these solutions have no curvature singularity and no horizon, but have a conic geometry. We investigate the effects of variation of charge and the intensity of the dilaton field, on the deficit angle. Due to the presence of the dilaton field, the asymptotic behavior of the solutions are neither flat nor (anti-) de Sitter [(A)dS]. Furthermore, we extend our study to the higher dimensions and obtain the ( n+1)-dimensional magnetic rotating dilaton strings with k≤[ n/2] rotation parameters and calculate conserved quantities of the solutions. Although these solutions are not asymptotically (A)dS, we use counterterm method to calculate conserved quantities. We also calculate electric charge and show that the net electric charge of the spinning string is proportional to the rotating parameter and the electric field only exists when the rotation parameter does not vanish.

  18. Magnetic Dilaton Rotating Strings in the Presence of Exponential Nonlinear Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Mahmoudi, Z.

    2016-04-01

    In this paper, we construct a new class of four-dimensional spinning magnetic dilaton string solutions which produces a longitudinal nonlinear electromagnetic field. The Lagrangian of the matter field has the exponential form. We study the physical properties of the solution in ample details. Geometrical, causal and geodisical structures of the solutions are investigated, separately. We confirm that the spacetime is both null and geodesically complete. We find that these solutions have no curvature singularity and no horizon, but have a conic geometry. We investigate the effects of variation of charge and the intensity of the dilaton field, on the deficit angle. Due to the presence of the dilaton field, the asymptotic behavior of the solutions are neither flat nor (anti-) de Sitter [(A)dS]. Furthermore, we extend our study to the higher dimensions and obtain the (n+1)-dimensional magnetic rotating dilaton strings with k≤[n/2] rotation parameters and calculate conserved quantities of the solutions. Although these solutions are not asymptotically (A)dS, we use counterterm method to calculate conserved quantities. We also calculate electric charge and show that the net electric charge of the spinning string is proportional to the rotating parameter and the electric field only exists when the rotation parameter does not vanish.

  19. Late-time evolution of a charged massless scalar field in the spacetime of a dilaton black hole

    NASA Astrophysics Data System (ADS)

    Moderski, Rafał; Rogatko, Marek

    2001-04-01

    We investigate the power-law tails in the evolution of a charged massless scalar field around a fixed background of a dilaton black hole. Using both analytical and numerical methods we find the inverse power-law relaxation of charged fields at future timelike infinity, future null infinity, and along the outer horizon of the considered black hole. We envisage that a charged hair decays slower than neutral ones. The oscillatory inverse power law along the outer horizon of the dilaton black hole is of great importance for a mass inflation scenario along the Cauchy horizon of a dynamically formed dilaton black hole.

  20. Quantum Gravity Effects on the Tunneling Radiation of the Einstein-Maxwell-Dilaton-Axion Black Hole

    NASA Astrophysics Data System (ADS)

    Cheng, Tianhu; Ren, Ruyi; Chen, Deyou; Liu, Zixiang; Li, Guopin

    2016-07-01

    Taking into account effects of quantum gravity, we investigate the evaporation of an Einstein-Maxwell-Dilaton-Axion black hole. The corrected Hawking temperature is gotten respectively by the scalar particle's and the fermion's tunneling across the horizon. This temperature is lower than the original one derived by Hawking, which means quantum gravity effects slow down the rise of the temperature.

  1. Fermions Tunneling from Non-Stationary Dilaton-Maxwell Black Hole via General Tortoise Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shu-Zheng

    2009-10-01

    Fermions tunneling of the non-stationary Dilaton-Maxwell black hole is investigated with general tortoise coordinate transformation. The Dirac equation is simplified by semiclassical approximation so that the Hamilton-Jacobi equation is generated. Finally the tunneling rate and the Hawking temperature is calculated.

  2. Rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Mojica, Sindy; Zagermann, Marco

    2016-03-01

    We construct sequences of rapidly rotating neutron stars in dilatonic Einstein-Gauss-Bonnet theory, employing two equations of state for the nuclear matter. We analyze the dependence of the physical properties of these neutron stars on the Gauss-Bonnet coupling strength. For a given equation of state we determine the physically relevant domain of rapidly rotating neutron stars, which is delimited by the set of neutron stars rotating at the Kepler limit, the set of neutron stars along the secular instability line, and the set of static neutron stars. As compared to Einstein gravity, the presence of the Gauss-Bonnet term decreases this domain, leading to lower values for the maximum mass as well as to smaller central densities. The quadrupole moment is decreased by the Gauss-Bonnet term for rapidly rotating neutron stars, while it is increased for slowly rotating neutron stars. The universal relation between the quadrupole moment and the moment of inertia found in general relativity appears to extend to dilatonic Einstein-Gauss-Bonnet theory with very little dependence on the coupling strength of the Gauss-Bonnet term. The neutron stars carry a small dilaton charge.

  3. Information Loss and Tunneling Radiation of the Non-Stationary Dilaton-Maxwell Black Hole

    NASA Astrophysics Data System (ADS)

    Chen, Deyou; Yang, Shuzheng

    Taking the self-gravitational interaction and unfixed background space-time into account, we discuss the tunneling radiation of the Dilaton-Maxwell black hole by the Hamilton-Jacobi method. The result shows that the tunneling rate is related not only to the change of Bekenstein-Hawking entropy, but also to a subtle integral about the black hole mass, which does not satisfy the unitary theory and is different from Parikh and Wilczek's result. This implies that information loss in black hole evaporation is possible.

  4. Dilaton field minimally coupled to 2+1 gravity; uniqueness of the static Chan-Mann black hole and new dilaton stationary metrics

    SciTech Connect

    García-Diaz, Alberto A.

    2014-01-14

    Using the Schwarzschild coordinate frame for a static cyclic symmetric metric in 2+1 gravity coupled minimally to a dilaton logarithmically depending on the radial coordinate in the presence of an exponential potential, by solving first order linear Einstein equations, the general solution is derived and it is identified with the Chan–Mann dilaton solution. In these coordinates, a new stationary dilaton solution is obtained; it does not allow for a de Sitter–Anti-de Sitter limit at spatial infinity, where its structural functions increase indefinitely. On the other hand, it is horizonless and allows for a naked singularity at the origin of coordinates; moreover, one can identify at a large radial coordinate a (quasi-local) mass parameter and in the whole space a constant angular momentum. Via a general SL(2,R)–transformation, applied on the static cyclic symmetric metric, a family of stationary dilaton solutions has been generated. A particular SL(2,R)–transformation is identified, which gives rise to the rotating Chan–Mann dilaton solution. All the exhibited solutions have been characterized by their quasi-local energy, mass, and momentum through their series expansions at spatial infinity. The algebraic structure of the Ricci–energy-momentum, and Cotton tensors is given explicitly.

  5. Analytic solutions of the geodesic equation for Einstein-Maxwell-dilaton-axion black holes

    NASA Astrophysics Data System (ADS)

    Flathmann, Kai; Grunau, Saskia

    2015-11-01

    In this article we study the geodesic motion of test particles and light in the Einstein-Maxwell-dilaton-axion black hole spacetime. We derive the equations of motion and present their solutions in terms of the Weierstraß ℘, σ and ζ functions. With the help of parametric diagrams and effective potentials we analyze the geodesic motion and give a list of all possible orbit types.

  6. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    NASA Astrophysics Data System (ADS)

    Aniceto, Pedro; Pani, Paolo; Rocha, Jorge V.

    2016-05-01

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a = 1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a = 1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a = 1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a ≠ 1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  7. Thermodynamic geometry and thermal stability of n -dimensional dilaton black holes in the presence of logarithmic nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.

    2015-12-01

    In this paper, we construct a new class of black hole solutions which is coupled to the logarithmic nonlinear electrodynamics in the context of dilaton gravity. We consider an n -dimensional action in which gravity is coupled to the logarithmic nonlinear electrodynamics field and a scalar dilaton field to obtain the equations of motion of the gravitational, dilaton and electromagnetic fields. This leads to finding a new class of n -dimensional static and spherically symmetric black hole solutions in the presence of two Liouville-type dilaton potentials. The asymptotic behavior of these solutions is neither flat nor (anti-)de Sitter [(A)dS], and in the limiting case where the nonlinear parameter β goes to infinity, our solutions reduce to the black holes of Einstein-Maxwell-dilaton gravity in higher dimensions. Thermodynamic quantities such as mass, temperature, electric potential and entropy are also computed, and it is shown that they agree with the first law of thermodynamics. Furthermore, we find that for small values of the electric charge parameter q , and the dilaton coupling constant α , as well as small dimension n , the solutions are thermally stable. By increasing n , the region of stability stands for smaller values of α independent of q . Finally, we use the method of thermodynamical geometry and find the phase transition points by calculating the Ricci scalar of a thermodynamic metric.

  8. Hawking Radiation and Entropy of a Dynamic Dilaton-Maxwell Black Hole with a New Tortoise Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Lan, Xiao-Gang

    2013-05-01

    By introducing a new tortoise coordinate transformation, we apply Damour-Ruffini-Sannan method to study the Hawking radiation of massive scalar particles in a dynamic Dilaton-Maxwell black hole. We find that Hawking radiation spectrum shows still the blackbody one, while the Hawking temperature is significantly changed. Additionally, by adopting the thin film method, we calculate the entropy of a dynamic Dilaton-Maxwell black hole. The result indicates that the entropy for such a black hole is still in proportional to the area of its event horizon.

  9. Quasinormal modes for single horizon black holes in generic 2D dilaton gravity

    NASA Astrophysics Data System (ADS)

    Kettner, Joanne; Kunstatter, Gabor; Medved, A. J. M.

    2004-12-01

    There has been some recent speculation that a connection may exist between the quasinormal-mode spectra of highly damped black holes and the fundamental theory of quantum gravity. This notion follows from a conjecture by Hod that the real part of the highly damped mode frequencies can be used to calibrate the semi-classical level spacing in the black-hole quantum area spectrum. However, even if the level spacing can be fixed in this manner, it still remains unclear whether this implies a physically significant 'duality' or merely a numerical coincidence. This tapestry of ideas serves as the motivation for the current paper. We utilize the 'monodromy approach' to calculate the quasinormal-mode spectra for a generic class of black holes in two-dimensional dilatonic gravity. Our results agree with the prior literature whenever a direct comparison is possible and provide the analysis of a much more diverse class of black-hole models than previously considered.

  10. Kerr-Sen dilaton-axion black hole lensing in the strong deflection limit

    SciTech Connect

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.

    2007-01-15

    In the present work we study numerically quasiequatorial lensing by the charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the strong deflection limit. In this approximation we compute the magnification and the positions of the relativistic images. The most outstanding effect is that the Kerr-Sen black hole caustics drift away from the optical axis and shift in the clockwise direction with respect to the Kerr caustics. The intersections of the critical curves on the equatorial plane as a function of the black hole angular momentum are found, and it is shown that they decrease with the increase of the parameter Q{sup 2}/M. All of the lensing quantities are compared to particular cases as Schwarzschild, Kerr, and Gibbons-Maeda black holes.

  11. Peculiar properties of a charged dilatonic black hole in AdS{sub 5}

    SciTech Connect

    Gubser, Steven S.; Rocha, Fabio D.

    2010-02-15

    We study a charged dilatonic black hole in AdS{sub 5}, derived from a Lagrangian involving a gauge field whose kinetic term is modified by the exponential of a neutral scalar. This black hole has two properties which one might reasonably demand of the dual of a Fermi liquid: Its entropy is proportional to temperature at low temperature, and its extremal limit supports normal modes of massless, charged bulk fermions. The black hole we study has a simple analytic form because it can be embedded in type IIB string theory as the near-horizon limit of D3-branes with equal spins in two of the three independent transverse planes. Two further properties can be deduced from this embedding: There is a thermodynamic instability, reminiscent of ferromagnetism, at low temperatures; and there is an AdS{sub 3} factor in the extremal near-horizon geometry which accounts for the linear dependence of entropy on temperature. Altogether, it is plausible that the dilatonic black hole we study, or a relative of it with similar behavior in the infrared, is the dual of a Fermi liquid; however, the particular embedding in string theory that we consider is unlikely to have such a dual description, unless through some unexpected boson-fermion equivalence at large N.

  12. New 2D dilaton gravity for nonsingular black holes

    NASA Astrophysics Data System (ADS)

    Kunstatter, Gabor; Maeda, Hideki; Taves, Tim

    2016-05-01

    We construct a two-dimensional action that is an extension of spherically symmetric Einstein-Lanczos-Lovelock (ELL) gravity. The action contains arbitrary functions of the areal radius and the norm squared of its gradient, but the field equations are second order and obey Birkhoff’s theorem. In complete analogy with spherically symmetric ELL gravity, the field equations admit the generalized Misner-Sharp mass as the first integral that determines the form of the vacuum solution. The arbitrary functions in the action allow for vacuum solutions that describe a larger class of interesting nonsingular black hole spacetimes than previously available.

  13. Thermal properties of charged dilaton black hole, energy and momentum in teleparallel equivalent of general relativity

    NASA Astrophysics Data System (ADS)

    Nashed, Gamal G. L.

    2013-03-01

    Two different charged dilaton black holes in 4-dimension, within teleparallel equivalent of general relativity (TEGR), are derived. These solutions are related through local Lorentz transformation. The total energy of these black holes, using three different methods, the Hamiltonian method, the translational momentum 2-form and the Euclidean continuation method given by Gibbons and Hawking, is calculated. It is shown that the three methods give the same results. The value of energy is shown to depend on the mass M and charge q. The verification of the first law of thermodynamics is proved. Finally, it is shown that if the charge q is vanishing then, the total energy reduced to that of Schwarzschild's black hole.

  14. Rotating black hole and quintessence

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.

    2016-04-01

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω ) due to the quintessential matter, apart from the mass ( M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α =-e^2 ne 0 and ω =1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α =0. Interestingly, for a given value of parameter ω , there exists a critical rotation parameter (a=aE), which corresponds to an extremal black hole with degenerate horizons, while for ablack hole with Cauchy and event horizons, and no black hole for a>aE. We find that the extremal value a_E is also influenced by the parameter ω and so is the ergoregion.

  15. Analytical Kerr-Sen dilaton-axion black hole lensing in the weak deflection limit

    SciTech Connect

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.

    2010-01-15

    We investigate analytical gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black holes in the weak-deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b, and r{sub {alpha}/}b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}=}Q{sup 2}/M, Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images, the corresponding signed and absolute magnifications up to post-Newtonian order. It is shown that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The pointlike caustics drift away from the optical axis and do not depend on the charge. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.

  16. Gravitational Lensing by Kerr-Sen Dilaton-Axion Black Hole in the Weak Deflection Limit

    SciTech Connect

    Gyulchev, G. N.; Yazadjiev, S. S.

    2010-11-25

    We investigate analytically gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the weak deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b and r{sub {alpha}}/b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}}= Q{sup 2}/M,Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images up to post-Newtonian order. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The lensing observables are compared to these characteristics for particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.

  17. A nonsingular rotating black hole

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.

    2015-11-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a well-defined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m( r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r ≫ k, k>0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k=0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics.

  18. Late-time evolution of a self-interacting scalar field in the spacetime of a dilaton black hole

    SciTech Connect

    Moderski, Rafal; Rogatko, Marek

    2001-08-15

    We investigate the late-time tails of self-interacting (massive) scalar fields in the spacetime of a dilaton black hole. Following the no hair theorem we examine the mechanism by which self-interacting scalar hair decays. We reveal that the intermediate asymptotic behavior of the considered field perturbations is dominated by an oscillatory inverse power-law decaying tail. The numerical simulations show that at very late time, massive self-interacting scalar hair decays slower than any power law.

  19. Shape of rotating black holes

    NASA Astrophysics Data System (ADS)

    Gabach-Clement, Maria E.; Reiris, Martin

    2013-08-01

    We give a thorough description of the shape of rotating axisymmetric stable black-hole (apparent) horizons applicable in dynamical or stationary regimes. It is found that rotation manifests in the widening of their central regions (rotational thickening), limits their global shapes to the extent that stable holes of a given area A and angular momentum J≠0 form a precompact family (rotational stabilization) and enforces their whole geometry to be close to the extreme-Kerr horizon geometry at almost maximal rotational speed (enforced shaping). The results, which are based on the stability inequality, depend only on A and J. In particular they are entirely independent of the surrounding geometry of the space-time and of the presence of matter satisfying the strong energy condition. A complete set of relations between A, J, the length L of the meridians and the length R of the greatest axisymmetric circle, is given. We also provide concrete estimations for the distance between the geometry of horizons and that of the extreme Kerr, in terms only of A and J. Besides its own interest, the work has applications to the Hoop conjecture as formulated by Gibbons in terms of the Birkhoff invariant, to the Bekenstein-Hod entropy bounds and to the study of the compactness of classes of stationary black-hole space-times.

  20. Cosmological rotating black holes in five-dimensional fake supergravity

    SciTech Connect

    Nozawa, Masato; Maeda, Kei-ichi

    2011-01-15

    In recent series of papers, we found an arbitrary dimensional, time-evolving, and spatially inhomogeneous solution in Einstein-Maxwell-dilaton gravity with particular couplings. Similar to the supersymmetric case, the solution can be arbitrarily superposed in spite of nontrivial time-dependence, since the metric is specified by a set of harmonic functions. When each harmonic has a single point source at the center, the solution describes a spherically symmetric black hole with regular Killing horizons and the spacetime approaches asymptotically to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology. We discuss in this paper that in 5 dimensions, this equilibrium condition traces back to the first-order 'Killing spinor' equation in 'fake supergravity' coupled to arbitrary U(1) gauge fields and scalars. We present a five-dimensional, asymptotically FLRW, rotating black-hole solution admitting a nontrivial 'Killing spinor', which is a spinning generalization of our previous solution. We argue that the solution admits nondegenerate and rotating Killing horizons in contrast with the supersymmetric solutions. It is shown that the present pseudo-supersymmetric solution admits closed timelike curves around the central singularities. When only one harmonic is time-dependent, the solution oxidizes to 11 dimensions and realizes the dynamically intersecting M2/M2/M2-branes in a rotating Kasner universe. The Kaluza-Klein-type black holes are also discussed.

  1. Hawking radiation of dyon particles from the Einstein Maxwell-Dilaton Axion black hole via covariant anomaly

    NASA Astrophysics Data System (ADS)

    Zeng, Xiao-Xiong; Liu, Xiong-Wei; Yang, Shu-Zheng

    2008-12-01

    Hawking radiation of particles with electric and magnetic charges from the Einstein Maxwell-Dilaton Axion black hole is derived via the anomaly cancellation method, initiated by Robinson and Wilczek and elaborated by Banerjee and Kulkarni recently. We reconstruct the electromagnetic field tensor to redefine the gauge potential and equivalent charge corresponding to the source with electric and magnetic charges. We only adopt the covariant gauge and gravitational anomalies to discuss the near-horizon quantum anomaly in the dragging coordinate frame. Our result shows that Hawking radiation in this case also can be reproduced from the viewpoint of anomaly.

  2. Rotating black branes in Brans-Dicke-Born-Infeld theory

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.

    2008-08-01

    In this paper, we present a new class of charged rotating black brane solutions in the higher dimensional Brans-Dicke-Born-Infeld theory and investigate their properties. Solving the field equations directly is a nontrivial task because they include the second derivatives of the scalar field. We remove this difficulty through a conformal transformation. Also, we find that the suitable Lagrangian of Einstein-Born-Infeld-dilaton gravity is not the same as presented by Dehghani et al. [J. Cosmol. Astropart. Phys. 0702, 020 (2007)]. We show that the given solutions can present black brane, with inner and outer event horizons, an extreme black brane, or a naked singularity provided the parameters of the solutions are chosen suitably. These black brane solutions are neither asymptotically flat nor (anti-)de Sitter. Then we calculate finite Euclidean action, the conserved, and thermodynamic quantities through the use of counterterm method. Finally, we argue that these quantities satisfy the first law of thermodynamics, and the entropy does not follow the area law.

  3. Effects of power-law Maxwell field on the critical phenomena of higher dimensional dilaton black holes

    NASA Astrophysics Data System (ADS)

    Mo, Jie-Xiong; Li, Gu-Qiang; Xu, Xiao-Bao

    2016-04-01

    The effects of a power-law Maxwell field on the critical phenomena of higher dimensional dilaton black holes are probed in detail. We successfully derive the analytic solutions of the critical point and carry out some checks to ensure that these critical quantities are positive. It is shown that the constraint on the parameter α describing the strength of the coupling of the electromagnetic field and the scalar field turns out to be 0 <α2<1 , which is tighter than that in the nonextended phase space. It is also shown that these critical quantities and the ratio Pcvc/Tc are affected by the power-law Maxwell field. Moreover, critical exponents are found to coincide with those of other anti-de Sitter black holes, showing the powerful influence of mean field theory.

  4. Extended phase space thermodynamics and P- V criticality: Brans-Dicke-Born-Infeld vs. Einstein-Born-Infeld-dilaton black holes

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Tad, R. Moradi; Armanfard, Z.; Talezadeh, M. S.

    2016-05-01

    Motivated by a thermodynamic analogy of black holes and Van der Waals liquid/gas systems, in this paper, we study P- V criticality of both dilatonic Born-Infeld black holes and their conformal solutions, Brans-Dicke-Born-Infeld solutions. Due to the conformal constraint, we have to neglect the old Lagrangian of dilatonic Born-Infeld theory and its black hole solutions, and introduce a new one. We obtain spherically symmetric nonlinearly charged black hole solutions in both Einstein and Jordan frames and then we calculate the related conserved and thermodynamic quantities. After that, we extend the phase space by considering the proportionality of the cosmological constant and thermodynamical pressure. We obtain critical values of the thermodynamic coordinates through numerical methods and plot the relevant P- V and G- T diagrams. Investigation of the mentioned diagrams helps us to study the thermodynamical phase transition. We also analyze the effects of varying different parameters on the phase transition of black holes.

  5. Dilatonic Entropic Force

    NASA Astrophysics Data System (ADS)

    Sakalli, I.

    2011-08-01

    We show in detail that the entropic force of the static spherically symmetric spacetimes with unusual asymptotics can be calculated through the Verlinde's arguments. We introduce three different holographic screen candidates, which are first employed thoroughly by Myung and Kim [Phys. Rev. D 81, 105012 (2010)] for Schwarzschild black hole solutions, in order to identify the entropic force arising between a charged dilaton black hole and a test particle. The significance of the dilaton parameter on the entropic force is highlighted, and shown graphically.

  6. BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE

    SciTech Connect

    Takahashi, Masaaki; Takahashi, Rohta

    2010-05-15

    We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.

  7. "Triangular" extremal dilatonic dyons

    NASA Astrophysics Data System (ADS)

    Gal'tsov, Dmitri; Khramtsov, Mikhail; Orlov, Dmitri

    2015-04-01

    Explicit dyonic solutions in four-dimensional Einstein-Maxwell-dilaton theory are known only for three particular values of the dilaton coupling constant: a = 0 , 1 ,√{ 3}. However, numerical evidence was presented on existence of dyons admitting an extremal limit in theories with more general sequence of dilaton couplings a =√{ n (n + 1) / 2 } labeled by an integer n. Apart from the lower members n = 0 , 1 , 2, this family of theories does not have motivation from supergravity/string theory, and analytical origin of the above sequence remained unclear so far. We fill the gap showing that this formula follows from analyticity of the dilaton function at the AdS2 ×S2 event horizon of the extremal dyonic black hole, with n being the leading dilaton power in the Taylor expansion. We also derive generalization of this rule for asymptotically anti-de Sitter dyonic black holes with spherical, planar and hyperbolic topology of the horizon.

  8. Renormalized vacuum polarization of rotating black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  9. Rotating black rings on Taub-NUT

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Teo, Edward

    2012-06-01

    In this paper, we construct new solutions describing rotating black rings on Taub-NUT using the inverse-scattering method. These are five-dimensional vacuum spacetimes, generalising the Emparan-Reall and extremal Pomeransky-Sen'kov black rings to a Taub-NUT background space. When reduced to four dimensions in Kaluza-Klein theory, these solutions describe (possibly rotating) electrically charged black holes in superposition with a finitely separated magnetic monopole. Various properties of these solutions are studied, from both a five- and four-dimensional perspective.

  10. Shadow of rotating regular black holes

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon; Amir, Muhammed; Ahmedov, Bobomurat; Ghosh, Sushant G.

    2016-05-01

    We study the shadows cast by the different types of rotating regular black holes viz. Ayón-Beato-García (ABG), Hayward, and Bardeen. These black holes have in addition to the total mass (M ) and rotation parameter (a ), different parameters as electric charge (Q ), deviation parameter (g ), and magnetic charge (g*). Interestingly, the size of the shadow is affected by these parameters in addition to the rotation parameter. We found that the radius of the shadow in each case decreases monotonically, and the distortion parameter increases when the values of these parameters increase. A comparison with the standard Kerr case is also investigated. We have also studied the influence of the plasma environment around regular black holes to discuss its shadow. The presence of the plasma affects the apparent size of the regular black hole's shadow to be increased due to two effects: (i) gravitational redshift of the photons and (ii) radial dependence of plasma density.

  11. Charged rotating noncommutative black holes

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Nicolini, Piero

    2010-11-01

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  12. Charged rotating noncommutative black holes

    SciTech Connect

    Modesto, Leonardo; Nicolini, Piero

    2010-11-15

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  13. Ultraspinning instability of rotating black holes

    SciTech Connect

    Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.

    2010-11-15

    Rapidly rotating Myers-Perry black holes in d{>=}6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.

  14. Twisting of light around rotating black holes

    NASA Astrophysics Data System (ADS)

    Tamburini, Fabrizio; Thidé, Bo; Molina-Terriza, Gabriel; Anzolin, Gabriele

    2011-03-01

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted near them. We have found that this leads to a new relativistic effect that imprints orbital angular momentum on such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. As non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  15. Rotating black holes can have short bristles

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2014-12-01

    The elegant 'no short hair' theorem states that, if a spherically-symmetric static black hole has hair, then this hair must extend beyond 3/2 the horizon radius. In the present paper we provide evidence for the failure of this theorem beyond the regime of spherically-symmetric static black holes. In particular, we show that rotating black holes can support extremely short-range stationary scalar configurations (linearized scalar 'clouds') in their exterior regions. To that end, we solve analytically the Klein-Gordon-Kerr-Newman wave equation for a linearized massive scalar field in the regime of large scalar masses.

  16. Stringy stability of charged dilaton black holes with flat event horizon

    SciTech Connect

    Ong, Yen Chin; Chen, Pisin

    2015-01-15

    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.

  17. Three-charge doubly rotating black ring

    SciTech Connect

    Gal'tsov, Dmitri V.; Scherbluk, Nikolai G.

    2010-02-15

    Using the recently proposed new solution generating technique, we construct the charged version of the Pomeranski-Senkov doubly rotating black ring in the U(1){sup 3} five-dimensional supergravity. For arbitrary values of charges the solution is unbalanced, but the Dirac-Misner string is removed when two of the charges are set to zero. In this particular case our solution can be uplifted to some solutions of six-dimensional vacuum gravity.

  18. Noncommutative geometry-inspired rotating black hole in three dimensions

    NASA Astrophysics Data System (ADS)

    Tejeiro, Juan Manuel; Larrañaga, Alexis

    2012-01-01

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.

  19. Rotating black string with nonlinear source

    SciTech Connect

    Hendi, S. H.

    2010-09-15

    In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

  20. CFTs in rotating black hole backgrounds

    NASA Astrophysics Data System (ADS)

    Figueras, Pau; Tunyasuvunakool, Saran

    2013-06-01

    We use AdS/CFT to construct the gravitational dual of a 5D CFT in the background of a non-extremal rotating black hole. Our boundary conditions are such that the vacuum state of the dual CFT corresponds to the Unruh state. We extract the expectation value of the stress tensor of the dual CFT using holographic renormalization and show that it is stationary and regular on both the future and the past event horizons. The energy density of the CFT is found to be negative everywhere in our domain and we argue that this can be understood as a vacuum polarization effect. We construct the solutions by numerically solving the elliptic Einstein-DeTurck equation for stationary Lorentzian spacetimes with Killing horizons. Communicated by H Reall

  1. Nonaxisymmetric instability of rapidly rotating black hole in five dimensions

    SciTech Connect

    Shibata, Masaru; Yoshino, Hirotaka

    2010-01-15

    We present results from numerical solution of Einstein's equation in five dimensions describing evolution of rapidly rotating black holes. We show, for the first time, that the rapidly rotating black holes in higher dimensions are unstable against nonaxisymmetric deformation; for the five-dimensional case, the critical value of spin parameter for onset of the instability is {approx_equal}0.87.

  2. Charged fermions tunneling from accelerating and rotating black holes

    SciTech Connect

    Rehman, Mudassar; Saifullah, K. E-mail: saifullah@qau.edu.pk

    2011-03-01

    We study Hawking radiation of charged fermions from accelerating and rotating black holes with electric and magnetic charges. We calculate the tunneling probabilities of incoming and outgoing fermionic particles and find the Hawking temperature of these black holes. We also provide an explicit expression of the classical action for the massive and massless particles in the background of these black holes.

  3. Scalar emission in a rotating Goedel black hole

    SciTech Connect

    Chen Songbai; Wang Bin; Jing Jiliang

    2008-09-15

    We study the absorption probability and Hawking radiation of the scalar field in the rotating Goedel black hole in minimal five-dimensional gauged supergravity. We find that Goedel parameter j imprints in the greybody factor and Hawking radiation. It plays a different role from the angular momentum of the black hole in the Hawking radiation and super-radiance. This information can help us know more about rotating Goedel black holes in minimal five-dimensional gauged supergravity.

  4. Particle motion and Penrose processes around rotating regular black hole

    NASA Astrophysics Data System (ADS)

    Abdujabbarov, Ahmadjon

    2016-07-01

    The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.

  5. Rotating black hole thermodynamics with a particle probe

    SciTech Connect

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  6. Charged rotating Kaluza-Klein black holes in five dimensions

    SciTech Connect

    Nakagawa, Toshiharu; Ishihara, Hideki; Matsuno, Ken; Tomizawa, Shinya

    2008-02-15

    We construct a new charged rotating Kaluza-Klein black hole solution in the five-dimensional Einstein-Maxwell theory with a Chern-Simon term. The features of the solutions are also investigated. The spacetime is asymptotically locally flat, i.e., it asymptotes to a twisted S{sup 1} bundle over the four-dimensional Minkowski spacetime. The solution describe a non-BPS black hole rotating in the direction of the extra dimension. The solutions have the limits to the supersymmetric black hole solutions, a new extreme non-BPS black hole solution and a new rotating non-BPS black hole solution with a constant twisted S{sup 1} fiber.

  7. Cosmic censorship of rotating Anti-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-02-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  8. Quantum tunneling from scalar fields in rotating black strings

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2013-08-01

    Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outgoing scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.

  9. Dilaton and modified gravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; van de Bruck, Carsten; Davis, Anne-Christine; Shaw, Douglas

    2010-09-01

    We consider the dilaton in the strong string-coupling limit and elaborate on the original idea of Damour and Polyakov whereby the dilaton coupling to matter is minimized and vanishes at a finite value of the dilaton field. Combining this type of coupling with an exponential potential, the effective potential of the dilaton becomes matter density dependent. We study the background cosmology, showing that the dilaton can play the role of dark energy. We also analyze the constraints imposed by the absence of violation of the equivalence principle. Imposing these constraints and assuming that the dilaton plays the role of dark energy, we consider the consequences of the dilaton on large scale structures and, in particular, the behavior of the slip functions and the growth index at low redshift.

  10. Gamma rays from accretion onto rotating black holes

    NASA Technical Reports Server (NTRS)

    Collins, M. S.

    1978-01-01

    Ionized matter falling onto an isolated, rotating black hole will be heated sufficiently that proton-proton collisions will produce mesons, including neutral pions, which decay into gamma rays. For massive (1000 M sub circled dot), black holes, the resulting gamma-ray luminosity may exceed 10 to the 36th power engs/s, with a spectrum peaked near 20 MeV.

  11. Gamma rays from accretion onto rotating black holes

    NASA Technical Reports Server (NTRS)

    Collins, M. S.

    1979-01-01

    Ionized matter falling onto an isolated rotating black hole will be heated sufficiently that proton-proton collisions will produce mesons, including neutral pions, which decay into gamma rays. For massive (1000-solar mass) black holes, the resulting gamma-ray luminosity may exceed 10 to the 36th erg/s with a spectrum peaked near 20 MeV.

  12. Shapes of rotating nonsingular black hole shadows

    NASA Astrophysics Data System (ADS)

    Amir, Muhammed; Ghosh, Sushant G.

    2016-07-01

    It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .

  13. Hawking temperature of rotating charged black strings from tunneling

    NASA Astrophysics Data System (ADS)

    Ahmed, Jamil; Saifullah, K.

    2011-11-01

    Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.

  14. Rotating black lens solution in five dimensions

    SciTech Connect

    Chen Yu; Teo, Edward

    2008-09-15

    It has recently been shown that a stationary, asymptotically flat vacuum black hole in five space-time dimensions with two commuting axial symmetries must have an event horizon with either a spherical, ring or lens-space topology. In this paper, we study the third possibility, a so-called black lens with L(n,1) horizon topology. Using the inverse scattering method, we construct a black-lens solution with the simplest possible rod structure, and possessing a single asymptotic angular momentum. Its properties are then analyzed; in particular, it is shown that there must either be a conical singularity or a naked curvature singularity present in the space-time.

  15. Instabilities of Extremal Rotating Black Holes in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Ishibashi, Akihiro

    2015-11-01

    Recently, Durkee and Reall have conjectured a criterion for linear instability of rotating, extremal, asymptotically Minkowskian black holes in dimensions, such as the Myers-Perry black holes. They considered a certain elliptic operator, , acting on symmetric trace-free tensors intrinsic to the horizon. Based in part on numerical evidence, they suggested that if the lowest eigenvalue of this operator is less than the critical value -1/4 ( called "effective BF-bound"), then the black hole is linearly unstable. In this paper, we prove an extended version of their conjecture. Our proof uses a combination of methods such as (1) the "canonical energy method" of Hollands-Wald, (2) algebraically special properties of the near horizon geometries associated with the black hole, (3) the Corvino-Schoen technique, and (4) semiclassical analysis. Our method of proof is also applicable to rotating, extremal asymptotically Anti-deSitter black holes. In that case, we find additional instabilities for ultra-spinning black holes. Although we explicitly discuss in this paper only extremal black holes, we argue that our results can be generalized to near extremal black holes.

  16. Slowly rotating black holes with nonlinear electrodynamics in five dimensions

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Sepehri Rad, M.

    2014-10-01

    Employing linear order perturbation theory with the rotation parameter as the perturbative parameter, we obtain asymptotically AdS slowly rotating black hole solutions in the Einstein gravity with Born-Infeld (BI) type nonlinear electrodynamics (NED). We start from asymptotically AdS static black hole solutions coupled to BI type NED in five dimensions. Then, we consider the effect of adding a small amount of angular momenta to the seed solutions. Finally, we investigate the geometry and thermodynamic properties of the solutions.

  17. A strongly coupled anisotropic fluid from dilaton driven holography

    NASA Astrophysics Data System (ADS)

    Jain, Sachin; Kundu, Nilay; Sen, Kallol; Sinha, Aninda; Trivedi, Sandip P.

    2015-01-01

    We consider a system consisting of 5 dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically AdS 5 region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.

  18. Hawking radiation of a high-dimensional rotating black hole

    NASA Astrophysics Data System (ADS)

    Ren, Zhao; Lichun, Zhang; Huaifan, Li; Yueqin, Wu

    2010-01-01

    We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy ω is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation.

  19. Radiation spectrum of a high-dimensional rotating black hole

    NASA Astrophysics Data System (ADS)

    Zhao, Ren; Li, Huaifan; Zhang, Lichun; Wu, Yueqin

    2010-03-01

    This study extends the classical Damour-Ruffini method and discusses Hawking radiation in a ( n + 4)-dimensional rotating black hole. Under the condition that the total energy and angular momentum of spacetime are conservative, but angular momentum a = J/ M of unit mass of the black hole is variable, taking into consideration the reaction of the radiation of the particle to the spacetime, a new Tortoise coordinate transformation and discuss the black hole radiation spectrum is discussed. The radiation spectrum that satisfies the unitary principle in the general case is derived.

  20. Entropy of a radiating rotating charged black hole

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Jiang; Zhao, Zheng; Yang, Xue-Jun

    2004-06-01

    The Hawking radiation temperature and the entropy of a radiating rotating charged black hole are calculated by employing the method of tortoise coordinate transformation and the improved brick-wall model. A new tortoise coordinate transformation is introduced which simplifies the cut-off factor and more satisfying results are obtained. The results show that the temperature of the event horizon depends on time and angle, and the entropy of a non-stationary black hole is exactly proportional to its horizon area as in the case of a stationary black hole.

  1. ROTATING NON-KERR BLACK HOLE AND ENERGY EXTRACTION

    SciTech Connect

    Liu Changqing; Chen Songbai; Jing Jiliang

    2012-06-01

    The properties of the ergosphere and energy extraction by the Penrose process in a rotating non-Kerr black hole are investigated. It is shown that the ergosphere is sensitive to the deformation parameter {epsilon} and the shape of the ergosphere becomes thick as parameter {epsilon} increases. It is of interest to note that, compared with the Kerr black hole, the deformation parameter {epsilon} can enhance the maximum efficiency of the energy extraction process greatly. Especially for the case of a > M, the non-Kerr metric describes a superspinning compact object and the maximum efficiency can exceed 60%, while it is only 20.7% for the extremal Kerr black hole.

  2. Magnetic strings in dilaton gravity

    SciTech Connect

    Dehghani, M.H.

    2005-03-15

    First, I present two new classes of magnetic rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with Liouville-type potential. The first class of solutions yields a four-dimensional spacetime with a longitudinal magnetic field generated by a static or spinning magnetic string. I find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when the rotation parameter does not vanish, there exists an electric field, and therefore the spinning string has a net electric charge which is proportional to the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. The net electric charge of the strings in these spacetimes is proportional to their velocities. Second, I obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. I argue that these solutions can present horizonless spacetimes with conic singularity, if one chooses the parameters of the solutions suitable. I also use the counterterm method and compute the conserved quantities of these spacetimes.

  3. Thermodynamics of 5D dilaton-gravity

    SciTech Connect

    Megias, E.

    2011-05-23

    We calculate the free energy, spatial string tension and Polyakov loop of the gluon plasma using the dilaton potential of Ref. [1] in the dilaton-gravity theory of AdS/QCD. The free energy is computed from the Black Hole solutions of the Einstein equations in two ways: first, from the Bekenstein-Hawking proportionality of the entropy with the area of the horizon, and secondly from the Page-Hawking computation of the free energy. The finite temperature behaviour of the spatial string tension and Polyakov loop follow from the corresponding string theory in AdS{sub 5}. Comparison with lattice data is made.

  4. Particles Generation and Bose Instability in Primordial Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    The author makes a connection between the Kepler's laws of motion for planets in the gravitational field of the Sun with the motion of test particles in classical mechanics. Subsequently He discusses the quantum problem, or the motion of scalar particles described by Klein-Gordon equation in the gravitational field of a black hole, when the Particle's Energy is less than the Rest Energy of the Particle: E< mc^2. It is mentioned that the spectrum of energies will be discrete one as in the case of the Hydrogen atom. But, due to very fast decreasing of the Potential energy of the particle near the horizon of the Black Hole, or the Black Hole itself, the spectrum will be a quasidiscrete one. The imaginary part of the Energy describes the fall of the particle into Black Hole. There are two features, which could complicate the problem: 1) The rotation of the Black Hole 2) The spin of the Particles. The first circumstance will lead, as is shown by author, to superradiation (the Imaginary part of the Energy will change the sign) as in the case of Particles scattering (E>mc^2). As in that case detailed calculations show that the black Hole will drop the angular momentum very fast if the black Hole is highly rotating. Electrically charged particles cannot develop such a process due to very fast ionization of bosonic levels by electromagnetic radiation. Meanwhile, neutral particles produces Gamma-bursts of energies 67.5, 274.5, 932 Mev correspondingly. The duration of bursts is 1.26* 10^-17 s (for neutral pion), 2.99*10^-18 s (for Eta meson), 8.55*10^-19 s (for D^0 meson). The radiated energies are 1.2 * 10^35 erg, 8.67*10^34 erg, 8.55*10^33 erg, corresponding to very great powers of the order of magnitude 10^52 erg/s. The second circumstance does stops the superradiative decay due to Pauli exclussion principle. The imaginary part of the Energy will not change the sign, and the particles levels are decaying only. For this reason the superradiative bound levels decay of the

  5. Rotating black holes at future colliders. III. Determination of black hole evolution

    SciTech Connect

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-06-15

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes.

  6. Perturbative charged rotating 5D Einstein-Maxwell black holes

    NASA Astrophysics Data System (ADS)

    Navarro-Lérida, Francisco

    2010-12-01

    We present perturbative charged rotating 5D Einstein-Maxwell black holes with spherical horizon topology. The electric charge Q is the perturbative parameter, the perturbations being performed up to 4th order. The expressions for the relevant physical properties of these black holes are given. The gyromagnetic ratio g, in particular, is explicitly shown to be non-constant in higher order, and thus to deviate from its lowest order value, g = 3. Comparison of the perturbative analytical solutions with their non-perturbative numerical counterparts shows remarkable agreement.

  7. Corrected Entropy Law for Charged and Rotating Black Strings

    NASA Astrophysics Data System (ADS)

    Rizwan, Muhammad

    2016-08-01

    The primary objective in this work is to study the corrected entropy law for charged and rotating black strings in asymptotically anti-de Sitter spacetime. By employing, the Hamilton-Jacobi approach, fermions tunneling beyond semiclassical approximation is investigated. The correction has been done by taking the proportionality parameters of quantum correction of action I i to the semiclassical action I 0 as 2 π times the inverse of the black string horizon area. Moreover, with the aid of corrected Hawking temperature we finally compute the corrected area law, which includes the logarithmic term and inverse area terms.

  8. Exact solution for two unequal counter-rotating black holes

    NASA Astrophysics Data System (ADS)

    Cabrera-Munguia, I.; Macías, Alfredo

    2013-07-01

    The full analytical form of the metric describing two unequal counter-rotating black holes with a massless strut (conical singularity) in between is derived explicitly. It is characterized by means of physical parameters like the two Komar masses M1 and M2, Komar angular momenta J1 and J2 (having J1 and J2 opposite sign) and the separation distance R between the centers of the black hole horizons. This solution belongs to a 4-parameter subclass of the double-Kerr-NUT problem, in which the five physical parameters satisfy an algebraic relationship and the interaction force can be observed as Schwarzschild type.

  9. Rotating black holes in the teleparallel equivalent of general relativity

    NASA Astrophysics Data System (ADS)

    Nashed, Gamal G. L.

    2016-05-01

    We derive set of solutions with flat transverse sections in the framework of a teleparallel equivalent of general relativity which describes rotating black holes. The singularities supported from the invariants of torsion and curvature are explained. We investigate that there appear more singularities in the torsion scalars than in the curvature ones. The conserved quantities are discussed using Einstein-Cartan geometry. The physics of the constants of integration is explained through the calculations of conserved quantities. These calculations show that there is a unique solution that may describe true physical black hole.

  10. Rotating and accelerating black holes with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Ng, Cheryl; Teo, Edward

    2016-08-01

    We propose a new form of the rotating C-metric with cosmological constant, which generalizes the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that arise from it.

  11. Electrically charged matter rotating around magnetized black holes

    NASA Astrophysics Data System (ADS)

    Kovar, Jiri; Slany, Petr; Stuchlik, Zdenek; Karas, Vladimir

    2015-08-01

    We present results of our study of charged-fluid toroidal structures surrounding a non-rotating black hole surrounded by a dipole and large-scale, asymptotically uniform magnetic fields. In continuation of our former study of electrically charged matter in approximation of zero conductivity, we demonstrate the existence of orbiting structures in the equatorial plane, levitating above it and those hovering near the symmetry axis. We constrain the range of black-hole, magnetic fields and matter parameters that allow stable configurations of the fluid structures and derive the geometrical shape of equi-pressure surfaces, characterizing the temperature and other astrophysical characteristic profiles. Our simplified analytical study suggests that these regions of stability may be relevant for trapping electrically charged particles and dust grains in some areas of the black hole magnetosphere, being thus important in some astrophysical situations.

  12. Hidden Symmetries of Higher-Dimensional Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    Kubiznak, David

    2008-09-01

    In this thesis we study higher-dimensional rotating black holes. Such black holes are widely discussed in string theory and brane-world models at present. We demonstrate that even the most general known Kerr-NUT-(A)dS spacetime, describing the general rotating higher-dimensional asymptotically (anti) de Sitter black hole with NUT parameters, is in many aspects similar to its four-dimensional counterpart. Namely, we show that it admits a fundamental hidden symmetry associated with the principal conformal Killing-Yano tensor. Such a tensor generates towers of hidden and explicit symmetries. The tower of Killing tensors is responsible for the existence of irreducible, quadratic in momenta, conserved integrals of geodesic motion. These integrals, together with the integrals corresponding to the tower of explicit symmetries, make geodesic equations in the Kerr-NUT-(A)dS spacetime completely integrable. We further demonstrate that in this spacetime the Hamilton-Jacobi, Klein-Gordon, and stationary string equations allow complete separation of variables and the problem of finding parallel-propagated frames reduces to the set of the first order ordinary differential equations. Moreover, we show that the Kerr-NUT-(A)dS spacetime is the most general Einstein space which possesses all these properties. We also explicitly derive the most general (off-shell) canonical metric admitting the principal conformal Killing-Yano tensor and demonstrate that such a metric is necessarily of the special algebraic type D of the higher-dimensional algebraic classification. The results presented in this thesis describe the new and complete picture of the relationship of hidden symmetries and rotating black holes in higher dimensions.

  13. Rotating black holes in an expanding Universe from fake supergravity

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Klemm, Dietmar

    2015-02-01

    Using the recipe of Meessen and Palomo-Lozano (2009 J. High Energy Phys. JHEP05(2009)042), where all fake supersymmetric backgrounds of matter-coupled fake N = 2, d = 4 gauged supergravity were classified, we construct dynamical rotating black holes in an expanding FLRW Universe. This is done for two different prepotentials that are both truncations of the stu model and correspond to just one vector multiplet. In this scenario, the cosmic expansion is driven by two U(1) gauge fields and by a complex scalar that rolls down its potential. Generically, the solutions of Meessen and Palomo-Lozano are fibrations over a Gauduchon-Tod base space, and we make three different choices for this base, namely flat space, the three-sphere and the Berger sphere. In the first two cases, the black holes are determined by harmonic functions on the base, while in the last case they obey a deformed Laplace equation that contains the squashing parameter of the Berger sphere. This is the generalization to a cosmological context of the usual recipe in ungauged supergravity, where black holes are given in terms of harmonic functions on three-dimensional Euclidean space. The constructed solutions may be instrumental in addressing analytically certain aspects of black hole physics in a dynamical context.

  14. Slowly rotating black holes in Einstein-æther theory

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Sotiriou, Thomas P.; Vega, Ian

    2016-02-01

    We study slowly rotating, asymptotically flat black holes in Einstein-æther theory and show that solutions that are free from naked finite area singularities form a two-parameter family. These parameters can be thought of as the mass and angular momentum of the black hole, while there are no independent æ ther charges. We also show that the æ ther has nonvanishing vorticity throughout the spacetime, as a result of which there is no hypersurface that resembles the universal horizon found in static, spherically symmetric solutions. Moreover, for experimentally viable choices of the coupling constants, the frame-dragging potential of our solutions only shows percent-level deviations from the corresponding quantities in General Relativity and Hořava gravity. Finally, we uncover and discuss several subtleties in the correspondence between Einstein-æther theory and Hořava gravity solutions in the cω→∞ limit.

  15. Slowly rotating black holes in alternative theories of gravity

    SciTech Connect

    Pani, Paolo; Macedo, Caio F. B.; Crispino, Luis C. B.; Cardoso, Vitor

    2011-10-15

    We present, in closed analytic form, a general stationary, slowly rotating black hole, which is a solution to a large class of alternative theories of gravity in four dimensions. In these theories, the Einstein-Hilbert action is supplemented by all possible quadratic, algebraic curvature invariants coupled to a scalar field. The solution is found as a deformation of the Schwarzschild metric in general relativity. We explicitly derive the changes to the orbital frequency at the innermost stable circular orbit and at the light ring in closed form. These results could be useful when comparing general relativity against alternative theories by (say) measurements of x-ray emission in accretion disks, or by stellar motion around supermassive black holes. When gravitational-wave astronomy comes into force, strong constraints on the coupling parameters can in principle be made.

  16. 5D extremal rotating black holes and CFT duals

    NASA Astrophysics Data System (ADS)

    Loran, Farhang; Soltanpanahi, Hesam

    2009-08-01

    Kerr/CFT correspondence has been recently applied to various types of 5D extremal rotating black holes. A common feature of all such examples is the existence of two chiral CFT duals corresponding to the U(1) symmetries of the near horizon geometry. In this paper, by studying the moduli space of the near horizon metric of five-dimensional extremal black holes which are asymptotically flat or AdS, we realize an SL(2, {\\mathbb Z} ) modular group which is a symmetry of the near horizon geometry. We show that there is a lattice of chiral CFT duals corresponding to the moduli points identified under the action of the modular group. The microscopic entropy corresponding to all such CFTs is equivalent and is in agreement with the Bekenstein-Hawking entropy.

  17. Structure of the singularity inside a realistic rotating black hole

    NASA Astrophysics Data System (ADS)

    Ori, Amos

    1992-04-01

    The structure and results of an analysis of the asymptotic behavior of nonlinear, asymmetric, metric perturbations near the Cauchy horizon inside a Kerr black hole are presented. This analysis suggests that metric perturbations, to all orders in the perturbation expansion, are finite and small at the Cauchy horizon, even though their gradients (and the curvature) diverge there. Accordingly, objects which fall into a realistic rotating blackhole a longtime after the collapse will not be crushed by a tidal gravitational deformations as they approach the curvature singularity.

  18. Tunneling of massive vector particles from rotating charged black strings

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali

    2016-07-01

    We study the quantum tunneling of charged massive vector bosons from a charged static and a rotating black string. We apply the standard methods, first we use the WKB approximation and the Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving for the radial part by using the determinant of the metric equals zero, the corresponding tunneling rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from pure thermality and is consistent with an underlying unitary theory.

  19. Accretion of radiation and rotating primordial black holes

    NASA Astrophysics Data System (ADS)

    Mahapatra, S.; Nayak, B.

    2016-02-01

    We consider rotating primordial black holes (PBHs) and study the effect of accretion of radiation in the radiation-dominated era. The central part of our analysis deals with the role of the angular momentum parameter on the evolution of PBHs. We find that both the accretion and evaporation rates decrease with an increase in the angular momentum parameter, but the rate of evaporation decreases more rapidly than the rate of accretion. This shows that the evaporation time of PBHs is prolonged with an increase in the angular momentum parameter. We also note that the lifetime of rotating PBHs increases with an increase in the accretion efficiency of radiation as in the case of nonrotating PBHs.

  20. Joint Evolution of Spinning Supermassive Black Holes and Rotating Nuclei

    NASA Astrophysics Data System (ADS)

    Merritt, David; Vasiliev, Eugene

    2015-01-01

    A rotating supermassive black hole (SBH) interacts with stars in a galactic nucleus via torques due to dragging of inertial frames. If the stars orbit preferentially about an axis that is misaligned with the SBH's spin, the SBH will experience a net torque and its spin vector will precess; individual stellar orbits also precess about the instantaneous SBH spin vector, although at different rates depending on their orbital elements. Solution of the coupled, post-Newtonian equations describing this interaction reveals two evolutionary modes: sustained precession of the SBH; and damped precession, leading to alignment of the SBH spin with the nuclear angular momentum. Beyond a certain radius, stars interact gravitationally with each other in a time shorter than the Lense-Thirring time. Long-term evolution in this case is well described as uniform precession of the SBH about the cluster's rotational axis, with a stochastic contribution due to star-star interactions.

  1. Relativistic Collapse of Rotating Supermassive Stars to Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart L.

    2003-10-01

    There is compelling evidence that supermassive black holes (SMBHs) exist. Yet the origin of these objects, or their seeds, is still unknown. We are performing general relativistic simulations of gravitational collapse to black holes in different scenarios to help reveal how SMBH seeds might arise in the universe. SMBHs with ~ 109 Msolar must have formed by z > 6, or within 109 yrs after the Big Bang, to power quasars. It may be difficult for gas accretion to build up such a SMBH by this time unless the initial seed black hole already has a substantial mass. One plausible progenitor of a massive seed black hole is a supermassive star (SMS). We have followed the collapse of a SMS to a SMBH by means of 3D hydrodynamic simulations in post-Newtonian gravity and axisymmetric simulations in full general relativity. The initial SMS of arbitrary mass M in these simulations rotates uniformly at the mass-shedding limit and is marginally unstable to radial collapse. The final black hole mass and spin are determined to be Mh/M ~ 0.9 and Jh/Mh2 ~ 0.75. The remaining mass goes into a disk of mass Mdisk/M ~ 0.1. This disk arises even though the total spin of the progenitor star, J/M2 = 0.97, is safely below the Kerr limit. The collapse generates a mild burst gravitational radiation. Nonaxisymmetric bars or one-armed spirals may arise during the quasi-stationary evolution of a SMS, during its collapse, or in the ambient disk about the hole, and are potential sources of quasi-periodic waves, detectable by LISA.

  2. Collapse of differentially rotating supermassive stars: Post black hole formation

    SciTech Connect

    Saijo, Motoyuki; Hawke, Ian

    2009-09-15

    We investigate the collapse of differentially rotating supermassive stars (SMSs) by means of 3+1 hydrodynamic simulations in general relativity. We particularly focus on the onset of collapse to understand the final outcome of collapsing SMSs. We find that the estimated ratio of the mass between the black hole and the surrounding disk from the equilibrium star is roughly the same as the results from numerical simulation. This suggests that the picture of axisymmetric collapse is adequate, in the absence of nonaxisymmetric instabilities, to illustrate the final state of the collapse. We also find that quasiperiodic gravitational waves continue to be emitted after the quasinormal mode frequency has decayed. We furthermore have found that when the newly formed black hole is almost extreme Kerr, the amplitude of the quasiperiodic oscillation is enhanced during the late stages of the evolution. Geometrical features, shock waves, and instabilities of the fluid are suggested as a cause of this amplification behavior. This alternative scenario for the collapse of differentially rotating SMSs might be observable by the Laser Interferometer Space Antenna.

  3. Instability and new phases of higher-dimensional rotating black holes

    SciTech Connect

    Dias, Oscar J. C.; Monteiro, Ricardo; Santos, Jorge E.; Figueras, Pau; Emparan, Roberto

    2009-12-01

    It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically and find the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.

  4. Rotating (A)dS black holes in bigravity

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Higuita-Borja, Daniel; Méndez-Zavaleta, Julio A.

    2016-01-01

    In this paper we explore the advantage of using the Kerr-Schild Ansatz in the search for analytic configurations to bigravity. It turns out that it plays a crucial role by providing means to straightforwardly calculate the square root matrix encoding the interaction terms between both gravities. In this spirit, we rederive the Babichev-Fabbri family of asymptotically flat rotating black holes with the aid of an emerging circularity theorem. Taking into account that the interaction terms contain by default two cosmological constants, we repeat our approach starting from the more natural seeds for the Kerr-Schild Ansatz in this context: the (A)dS spacetimes. As a result, we show that a couple of Kerr-(A)dS black holes constitute an exact solution to ghost-free bigravity. Similar to the asymptotically flat case, these black holes share the same angular momentum and (A)dS radius, but their masses are not constrained to be equal.

  5. Accelerating black diholes and static black dirings

    SciTech Connect

    Teo, Edward

    2006-01-15

    We show how a recently discovered black-ring solution with a rotating 2-sphere can be turned into two new solutions of Einstein-Maxwell-dilaton theory. The first is a four-dimensional solution describing a pair of oppositely charged, extremal black holes--known as a black dihole--undergoing uniform acceleration. The second is a five-dimensional solution describing a pair of concentric, static extremal black rings carrying opposite dipole charges--a so-called black diring. The properties of both solutions, which turn out to be formally very similar, are analyzed in detail. We also present, in an appendix, an accelerating version of the Zipoy-Voorhees solution in four-dimensional Einstein gravity.

  6. Non-conformal hydrodynamics in Einstein-dilaton theory

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shailesh; Lee, Bum-Hoon; Park, Chanyong; Roychowdhury, Raju

    2012-09-01

    In the Einestein-dilaton theory with a Liouville potential parameterized by η, we find a Schwarzschild-type black hole solution. This black hole solution, whose asymptotic geometry is described by the warped metric, is thermodynamically stable only for 0 ≤ η < 2. Applying the gauge/gravity duality, we find that the dual gauge theory represents a non-conformal thermal system with the equation of state depending on η. After turning on the bulk vector fluctuations with and without a dilaton coupling, we calculate the charge diffusion constant, which indicates that the life time of the quasi normal mode decreases with η. Interestingly, the vector fluctuation with the dilaton coupling shows that the DC conductivity increases with temperature, a feature commonly found in electrolytes.

  7. The missing asymptotic sector of rotating black-hole spectroscopy

    NASA Astrophysics Data System (ADS)

    Keshet, Uri; Ben-Meir, Arnon

    2014-10-01

    The rotation of a Kerr black hole splits its low-frequency spectrum in two, so it was so far unclear why the known highly-damped resonances show no splitting. We find the missing, split sector, with spin s quasinormal modes approaching the total reflection frequencies ω (n ∈ N) = - ΩΔJ - iκ (n - s), where Ω, κ and ΔJ are the horizon's angular velocity, surface gravity, and induced change in angular momentum. Surprisingly, the new sector is at least partly polar, and corresponds to reversible J transitions. Its fundamental branch converges quickly, possibly affecting gravitational wave signals. A simple interpretation of the Carter constant of motion is proposed.

  8. High energy physics in the vicinity of rotating black holes

    NASA Astrophysics Data System (ADS)

    Grib, A. A.; Pavlov, Yu. V.

    2015-10-01

    We consider particle collisions in the vicinity of the horizon of rotating black holes. We show that the existence of geodesics for both massive and massless particles coming from inside the gravitational radius leads to different possibilities for an unboundedly high collision energy to appear in the center-of-mass frame of two particles. We give a classification of such geodesics in the general case based on a proved theorem for extremal spherical orbits. We analyze the case of the unbounded energy increase in the situation where one (critical) particle moves along the "white hole" geodesic with an angular momentum close to the bound while the other particle falls along an ordinary geodesic and the case of an unbounded negative angular momentum of the first particle.

  9. Hawking radiation of scalar particles from accelerating and rotating black holes

    SciTech Connect

    Gillani, Usman A.; Rehman, Mudassar; Saifullah, K. E-mail: mudassar051@yahoo.com

    2011-06-01

    Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.

  10. Scaling symmetry and scalar hairy rotating AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Ahn, Byoungjoon; Hyun, Seungjoon; Park, Sang-A.; Yi, Sang-Heon

    2016-01-01

    By using the scaling symmetry in the reduced action formalism, we derive the novel Smarr relation which holds even for the hairy rotating AdS3 black holes. Then, by using the Smarr relation we argue that the hairy rotating AdS3 black holes are stable thermodynamically, compared to the nonhairy ones.

  11. Quasars: a supermassive rotating toroidal black hole interpretation

    NASA Astrophysics Data System (ADS)

    Spivey, R. J.

    2000-08-01

    A supermassive rotating toroidal black hole (TBH) is proposed as the fundamental structure of quasars and other jet-producing active galactic nuclei. Rotating protogalaxies gather matter from the central gaseous region leading to the birth of massive toroidal stars, the internal nuclear reactions of which proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse produces a slender ring-shaped TBH remnant. Transitory electron and neutron degeneracy stabilized collapse phases, although possible, are unlikely owing to the large masses involved thus these events are typically the first supernovae of the host galaxies. Given time, the TBH mass increases through continued accretion by several orders of magnitude, the event horizon swells whilst the central aperture shrinks. The difference in angular velocities between the accreting matter and the TBH induces a magnetic field that is strongest in the region of the central aperture and innermost ergoregion. Owing to the presence of negative energy states when such a gravitational vortex is immersed in an electromagnetic field, circumstances are near ideal for energy extraction via non-thermal radiation including the Penrose process and superradiant scattering. This establishes a self-sustaining mechanism whereby the transport of angular momentum away from the quasar by relativistic bi-directional jets reinforces both the modulating magnetic field and the TBH/accretion disc angular velocity differential. Continued mass-capture by the TBH results in contraction of the central aperture until the TBH topology transitions to being spheroidal, extinguishing quasar behaviour. Similar mechanisms may be operating in microquasars, supernovae and sources of repeating gamma-ray bursts when neutron density or black hole tori arise. Long-term TBH stability seems to require either a negative cosmological constant, a non-stationary space-time resulting from the presence of accreting matter or the intervention of quantum

  12. ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE

    SciTech Connect

    Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid

    2013-04-20

    Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radius down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.

  13. Lifespan of rotating black hole in the frame of generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    He, Tangmei; Zhang, Jingyi; Yang, Jinbo; Tan, Hongwei

    2016-01-01

    In this paper, the lifespan under the generalized uncertainty principle (GUP) of rotating black hole is derived through the corrected radiation energy flux and the first law of the thermodynamics of black hole. The radiation energy flux indicates that there exist the highest temperature and the minimum mass both of which are relevant to the initial mass of the black hole in the final stage of the radiation. The lifespan of rotating black hole includes three terms: the dominant term is just the lifespan in the flat spacetime; the other two terms are individually induced by the rotation and the GUP.

  14. Estimation of the mass outflow rates around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata

    We consider steady, advective, rotating, inviscid accretion disc around the spinning black holes to compute the mass outflow rate (R_{dot{m}}) defined as the ratio of mass flux of outflowing to the inflowing matter. Due to centrifugal barrier, accreting matter suffers discontinuous shock transition and because of shock compression, the post-shock matter becomes hot and denser than the pre-shock matter. We call the post-shock disc as Post Shock Corona (PSC). During accretion, a part of the inflowing matter deflects as bipolar outflows due to the presence of excess thermal gradient force at PSC. We find that R_{dot{m}}is directly correlated with the spin of the black hole (a_{k}) for the same set of inflow parameter, namely specific energy (E) and specific angular momentum (λ). We observe that the maximum outflow rate(R_{dot{m}}^{max}) weakly depends on spin (a_{k}) that lies in the range˜ 17% - 18% of the inflow rate.

  15. Adiabatic growth of a black hole in a rotating stellar system

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Goodman, Jeremy

    1989-01-01

    The consequences of slowly adding a massive black hole to the center of a rotating stellar system are considered. Although both the rotation velocity V and the velocity dispersion sigma increase when the black hole is added, the rotation velocity increases faster. The effect goes in the right direction but is too gradual to explain the V/sigma profiles recently observed in several galactic nuclei.

  16. Where are the BTZ black hole degrees of freedom? The rotating case

    NASA Astrophysics Data System (ADS)

    Mitchell, Joseph M.

    2016-07-01

    Recent work has shown that the entropy of the non-rotating BTZ black hole can be derived from a dual conformal description at any spatial location. In this followup it is shown that a dual conformal description exists at any spatial location for the rotating BTZ black hole as well. As in the non-rotating case, two copies of the central charge {c}+/- =3{\\ell }/2G are recovered and the microcanonical Cardy formula yields the correct Bekenstein–Hawking entropy.

  17. Trace anomaly of dilaton-coupled scalars in two dimensions

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Hawking, Stephen

    1997-12-01

    Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole evaporation. We show that their trace anomaly is (1/24π)[R-6(∇φ)2-2□φ]. It follows that a Russo-Susskind-Thorlacius-type counterterm appears naturally in the one-loop effective action.

  18. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-12-01

    We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.

  19. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    SciTech Connect

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.

  20. No hair theorem in quasi-dilaton massive gravity

    NASA Astrophysics Data System (ADS)

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-06-01

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  1. Mirror effect induced by the dilaton field on the Hawking radiation

    SciTech Connect

    Maeda, Kengo; Okamura, Takashi

    2006-11-03

    A ''stringy particle'' action is naturally derived from Kaluza-Klein compactification of a test string action coupled to the dilaton field in a conformally invariant manner. According to the standard procedure, we perform the second quantization of the stringy particle. As an interesting application, we consider evaporation of a near-extremal dilatonic black hole by Hawking radiation via the stringy particles. We show that a mirror surface which reflects them is induced by the dilaton field outside the the horizon when the size of the black hole is comparable to the Planck scale. As a result, the energy flux does not propagate across the surface, and hence the evaporation of the dilatonic black hole stops just before the naked singularity at the extremal state appears even though the surface gravity is non-zero in the extremal limit.

  2. General Nonextremal Rotating Black Holes in Minimal Five-Dimensional Gauged Supergravity

    SciTech Connect

    Chong, Z.-W.; Lue, H.; Pope, C.N.; Cvetic, M.

    2005-10-14

    We construct the general solution for nonextremal charged rotating black holes in five-dimensional minimal gauged supergravity. They are characterized by four nontrivial parameters: namely, the mass, the charge, and the two independent rotation parameters. The metrics in general describe regular rotating black holes, providing the parameters lie in appropriate ranges so that naked singularities and closed timelike curves (CTCs) are avoided. We calculate the conserved energy, angular momenta, and charge for the solutions, and show how supersymmetric solutions arise in a Bogomol'nyi-Prasad-Sommerfield limit. These have naked CTCs in general, but for special choices of the parameters we obtain new regular supersymmetric black holes or smooth topological solitons.

  3. 5D Einstein-Maxwell solitons and concentric rotating dipole black rings

    SciTech Connect

    Yazadjiev, Stoytcho S.

    2008-09-15

    We discuss the application of the solitonic techniques to the 5D Einstein-Maxwell gravity. As an illustration we construct a new exact solution describing two concentric rotating dipole black rings. The properties of the solution are investigated.

  4. Floating and sinking: the imprint of massive scalars around rotating black holes.

    PubMed

    Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-12-01

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity. PMID:22242985

  5. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    SciTech Connect

    Sakalli, I.; Ovgun, A.

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  6. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Ovgun, A.

    2015-09-01

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton-Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  7. Faraday rotation of plasmas in the vicinity of a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe; Bhattacharjee, Chinmoy; Mahajan, Swadesh

    2015-11-01

    The propagation of an electromagnetic wave in a multi-specie plasmas (ion-electron and ion-electron-positron), embedded in the gravitational field of a Schwarzschild black hole, is investigated with particular emphasis on studying the Faraday rotation (rotation of the phase angle of the right and left-handed components of wave). In order to appropriately deal with the strong gravitational field (affecting the plasma in the proximity of the black hole horizon), we employ Rindler coordinates in the 3 +1 decomposition of general relativity. The rather complex dispersion relation for high-frequency electromagnetic waves reveals the dependence of Faraday rotation on the number density of different constituents of the multi-specie plasma, the background magnetic field, and the mass of the black hole. Amongst other things, the expression for the Faraday rotation allows us to determine the black hole mass if the number density and magnetic field strength are estimated, and the rotation of the phase angle is measured. It is also shown how Faraday rotation could be harnessed to infer black hole features in a more complete theory that pertains, for example, to Kerr black holes. Different astrophysical implications are pointed out. Felipe Asenjo thanks CONICyT for funding No. 79130002.

  8. Acceleration of particles as a universal property of rotating black holes

    SciTech Connect

    Zaslavskii, Oleg B.

    2010-10-15

    We argue that the possibility of having infinite energy in the center-of-mass frame of colliding particles is a generic property of rotating black holes. We suggest a general model-independent derivation valid for dirty black holes. The earlier observations for the Kerr or Kerr-Newman metrics are confirmed and generalized.

  9. Energy loss of a heavy particle near 3D charged rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Naji, Jalil

    2014-01-01

    In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss.

  10. Fermions tunnelling from 5D general rotating charged Gödel black hole

    NASA Astrophysics Data System (ADS)

    Song, Shi-Xiong; Huang, Jiang; Ren, Ji-Rong

    2011-01-01

    Using the tunneling method we derive the Hawking temperature of the nonextremal rotating charged black hole in the Gödel universe of five-dimensional minimal supergravity theory found by Wu. We successfully recovered the tunneling probability of charged Dirac particles and the expected Hawking temperature of the black hole, which is exactly consistent with that obtained by other methods.

  11. Graviton emission from simply rotating Kerr-de Sitter black holes: Transverse traceless tensor graviton modes

    SciTech Connect

    Doukas, Jason; Cho, H. T.; Cornell, A. S.; Naylor, Wade

    2009-08-15

    In this article we present results for tensor graviton modes (in seven dimensions and greater, n{>=}3) for gray-body factors of Kerr-de Sitter black holes and for Hawking radiation from simply rotating (n+4)-dimensional Kerr black holes. Although there is some subtlety with defining the Hawking temperature of a Kerr-de Sitter black hole, we present some preliminary results for emissions assuming the standard Hawking normalization and a Bousso-Hawking-like normalization.

  12. Hawking radiation of scalars from accelerating and rotating black holes with NUT parameter

    NASA Astrophysics Data System (ADS)

    Jan, Khush; Gohar, H.

    2014-03-01

    We study the quantum tunneling of scalars from charged accelerating and rotating black hole with NUT parameter. For this purpose we use the charged Klein-Gordon equation. We apply WKB approximation and the Hamilton-Jacobi method to solve charged Klein-Gordon equation. We find the tunneling probability of outgoing charged scalars from the event horizon of this black hole, and hence the Hawking temperature for this black hole

  13. General nonextremal rotating charged Gödel black holes in minimal five-dimensional gauged supergravity.

    PubMed

    Wu, Shuang-Qing

    2008-03-28

    I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds. PMID:18517852

  14. General Nonextremal Rotating Charged Gödel Black Holes in Minimal Five-Dimensional Gauged Supergravity

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Qing

    2008-03-01

    I present the general exact solutions for nonextremal rotating charged black holes in the Gödel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four nontrivial parameters: namely, the mass m, the charge q, the Kerr equal rotation parameter a, and the Gödel parameter j. I calculate the conserved energy, angular momenta, and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. I also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Gödel black hole backgrounds.

  15. Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Fully Relativistic Simulations

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Shapiro, Stuart L.

    2002-06-01

    We follow the collapse in axisymmetry of a uniformly rotating, supermassive star (SMS) to a supermassive black hole in full general relativity. The initial SMS of arbitrary mass M is marginally unstable to radial collapse and rotates at the mass-shedding limit. The collapse proceeds homologously early on and results in the appearance of an apparent horizon at the center. Although our integration terminates before final equilibrium is achieved, we determine that the final black hole will contain about 90% of the total mass of the system and will have a spin parameter J/M2~0.75. The remaining gas forms a rotating disk about the nascent hole.

  16. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    SciTech Connect

    Koide, Shinji; Baba, Tamon

    2014-09-10

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  17. The Klein-Gordon equation of a rotating charged hairy black hole in (2 + 1) dimensions

    NASA Astrophysics Data System (ADS)

    Pourhassan, B.

    2016-03-01

    In this paper, we consider the Klein-Gordon equation in a 3D charged rotating hairy black hole background to study behavior of a massive scalar field. In the general case, we find periodic-like behavior for the scalar field which may vanish at the black hole horizon or far from the black hole horizon. For the special cases of non-rotating or near horizon approximation, we find radial solution of Klein-Gordon equation in terms of hypergeometric and Kummer functions. Also for the case of uncharged black hole, we find numerical solution of the Klein-Gordon equation as periodic function which may enhance out of the black hole or vanish at horizon. We find allowed boundary conditions which may yield to the identical bosons described by scalar field.

  18. Collapse of a Rotating Supermassive Star to a Supermassive Black Hole: Analytic Determination of the Black Hole Mass and Spin

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart L.; Shibata, Masaru

    2002-10-01

    The collapse of a uniformly rotating, supermassive star (SMS) to a supermassive black hole (SMBH) has been followed recently by means of hydrodynamic simulations in full general relativity. The initial SMS of arbitrary mass M in these simulations rotates uniformly at the mass-shedding limit and is marginally unstable to radial collapse. The final black hole mass and spin have been determined to be Mh/M~0.9 and Jh/M2h~0.75. The remaining mass goes into a disk of mass Mdisk/M~0.1. Here we show that these black hole and disk parameters can be calculated analytically from the initial stellar density and angular momentum distribution. The analytic calculation thereby corroborates and provides a simple physical explanation for the computational discovery that SMS collapse inevitably terminates in the simultaneous formation of a SMBH and a rather substantial ambient disk. This disk arises even though the total spin of the progenitor star, J/M2=0.97, is safely below the Kerr limit. The calculation performed here applies to any marginally unstable n=3 polytrope uniformly rotating at the breakup speed, independent of stellar mass or the source of internal pressure. It illustrates how the black hole and disk parameters can be determined for the collapse of other types of stars with different initial density and rotation profiles.

  19. Horizon structure and shadow of rotating Einstein-Born-Infeld black holes

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh

    2016-07-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to innity ( ! 1). We nd that for a given , mass M and charge Q, there exist critical spinning parameter aE and rEH, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rEH increases with increase in the Born-Infeld parameter . While a < aE describe a non-extremal Einstein-Born- Infeld black hole with outer and inner horizons. Similarly, the effect of on innite redshift surface and in turn on ergoregion is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational eld. We also investigate the shadow cast by the rotating Einstein- Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadows of Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole which are concentric circles, for different values of the Born-Infeld parameter , whose radius decreases with increase in the value of parameter . The shadows for the rotating Einstein-Born-Infeld solution are also included.

  20. Radionic nonuniform black strings

    NASA Astrophysics Data System (ADS)

    Tamaki, Takashi; Kanno, Sugumi; Soda, Jiro

    2004-01-01

    Nonuniform black strings in the two-brane system are investigated using the effective action approach. It is shown that the radion acts as a nontrivial hair of the black strings. From the brane point of view, the black string appears as the deformed dilatonic black hole which becomes a dilatonic black hole in the single brane limit and reduces to the Reissner-Nordström black hole in the close limit of two-branes. The stability of solutions is demonstrated using catastrophe theory. From the bulk point of view, the black strings are proved to be nonuniform. Nevertheless, the zeroth law of black hole thermodynamics still holds.

  1. The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-10-01

    Bekenstein and Mukhanov (BM) have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating) Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch ≡ δω / Δω ≪ 1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ (a bar) ≡ δω / Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a bar ≡ J /M2 is the dimensionless angular momentum of the black hole). It is shown that ζ (a bar) is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a bar ≳ 0.9 are characterized by the dimensionless ratio ζ (a bar) ≳ 1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy) spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle) is expected to smear the black-hole radiation spectrum into a continuum.

  2. Entropy bound of horizons for accelerating, rotating and charged Plebanski-Demianski black hole

    NASA Astrophysics Data System (ADS)

    Debnath, Ujjal

    2016-09-01

    We first review the accelerating, rotating and charged Plebanski-Demianski (PD) black hole, which includes the Kerr-Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou-Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  3. Rotating black holes in a draining bathtub: Superradiant scattering of gravity waves

    NASA Astrophysics Data System (ADS)

    Richartz, Maurício; Prain, Angus; Liberati, Stefano; Weinfurtner, Silke

    2015-06-01

    In a draining rotating fluid flow background, surface perturbations behave as a scalar field on a rotating effective black hole spacetime. We propose a new model for the background flow which takes into account the varying depth of the water. Numerical integration of the associated Klein-Gordon equation using accessible experimental parameters shows that gravity waves in an appropriate frequency range are amplified through the mechanism of superradiance. Our numerical results suggest that the observation of this phenomenon in a common fluid mechanical system is within experimental reach. Unlike the case of wave scattering around Kerr black holes, which depends only on one dimensionless background parameter (the ratio a /M between the specific angular momentum and the mass of the black hole), our system depends on two dimensionless background parameters, namely the normalized angular velocity and surface gravity at the effective black hole horizon.

  4. Holographic conductivity for logarithmic charged dilaton-Lifshitz solutions

    NASA Astrophysics Data System (ADS)

    Dehyadegari, A.; Sheykhi, A.; Kord Zangeneh, M.

    2016-07-01

    We disclose the effects of the logarithmic nonlinear electrodynamics on the holographic conductivity of Lifshitz dilaton black holes/branes. We analyze thermodynamics of these solutions as a necessary requirement for applying gauge/gravity duality, by calculating conserved and thermodynamic quantities such as the temperature, entropy, electric potential and mass of the black holes/branes. We calculate the holographic conductivity for a (2 + 1)-dimensional brane boundary and study its behavior in terms of the frequency per temperature. Interestingly enough, we find out that, in contrast to the Lifshitz-Maxwell-dilaton black branes which have conductivity for all z, here in the presence of nonlinear gauge field, the holographic conductivity does exist provided z ≤ 3 and vanishes for z > 3. It is shown that independent of the nonlinear parameter β, the real part of the conductivity is the same for a specific value of frequency per temperature in both AdS and Lifshitz cases. Besides, the behavior of real part of conductivity for large frequencies has a positive slope with respect to large frequencies for a system with Lifshitz symmetry whereas it tends to a constant for a system with AdS symmetry. This behavior may be interpreted as existence of an additional charge carrier rather than the AdS case, and is due to the presence of the scalar dilaton field in model. Similar behavior for optical conductivity of single-layer graphene induced by mild oxygen plasma exposure has been reported.

  5. Black branes as piezoelectrics.

    PubMed

    Armas, Jay; Gath, Jakob; Obers, Niels A

    2012-12-14

    We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six. PMID:23368298

  6. FAST TRACK COMMUNICATION Single-charge rotating black holes in four-dimensional gauged supergravity

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.

    2011-02-01

    We consider four-dimensional U(1)4 gauged supergravity, and obtain asymptotically AdS4, non-extremal, charged, rotating black holes with one non-zero U(1) charge. The thermodynamic quantities are computed. We obtain a generalization that includes a NUT parameter. The general solution has a discrete symmetry involving inversion of the rotation parameter, and has a string frame metric that admits a rank-2 Killing-Stäckel tensor.

  7. Rotating black holes in a Randall-Sundrum brane with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.; Molina, C.

    2012-12-01

    In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences.

  8. Rotating Kaluza-Klein multi-black holes with Goedel parameter

    SciTech Connect

    Matsuno, Ken; Ishihara, Hideki; Nakagawa, Toshiharu; Tomizawa, Shinya

    2008-09-15

    We obtain new five-dimensional supersymmetric rotating multi-Kaluza-Klein black hole solutions with the Goedel parameter in the Einstein-Maxwell system with a Chern-Simons term. These solutions have no closed timelike curve outside the black hole horizons. At infinity, the space-time is effectively four-dimensional. Each horizon admits various lens space topologies L(n;1)=S{sup 3}/Z{sub n} in addition to a round S{sup 3}. The space-time can have outer ergoregions disjointed from the black hole horizons, as well as inner ergoregions attached to each horizon. We discuss the rich structures of ergoregions.

  9. Equatorial gravitational lensing by accelerating and rotating black hole with NUT parameter

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper is devoted to study equatorial gravitational lensing in accelerating and rotating black hole with a NUT parameter in the strong field limit. For this purpose, we first calculate null geodesic equation using the Hamilton-Jacobi separation method. We then numerically obtain deflection angle and deflection coefficients which depend on acceleration and spin parameter of the black hole. We also investigate observables in the strong field limit by taking the example of a black hole in the center of galaxy. It is concluded that acceleration parameter has a significant effect on the strong field lensing in the equatorial plane.

  10. Supersymmetry in the spacetime of higher-dimensional rotating black holes

    SciTech Connect

    Ahmedov, Haji; Aliev, Alikram N.

    2009-04-15

    General higher-dimensional rotating black hole spacetimes of any dimensions admit the Killing and Killing-Yano tensors, which generate the hidden symmetries just as in four-dimensional Kerr spacetime. We study these properties of the black holes using the formalism of supersymmetric mechanics of pseudoclassical spinning point particles. We present two nontrivial supercharges, corresponding to the Killing-Yano and conformal Killing-Yano tensors of the second rank. We demonstrate that an unusual extended Poisson-Dirac algebra of these supercharges results in two independent Killing tensors in spacetime dimensions D{>=}6, giving explicit examples for the Myers-Perry black holes in D=6 dimensions.

  11. Supersymmetric rotating black hole spacetime tested by geodesics

    NASA Astrophysics Data System (ADS)

    Diemer, Valeria; Kunz, Jutta

    2014-04-01

    We present the complete analytical solution of the geodesics equations in the supersymmetric [Breckenridge-Myers-Peet-Vafa (BMPV)] spacetime J. C. Breckenridge et al. Phys. Lett. B 391, 93 (1997). We study systematically the properties of massive and massless test particle motion. We analyze the trajectories with analytical methods based on the theory of elliptic functions. Since the nature of the effective potential depends strongly on the rotation parameter ω, one has to distinguish between the under-rotating case, the critical case, and the over-rotating case, as discussed by Gibbons and Herdeiro in their pioneering study G. W. Gibbons and C. A. R. Herdeiro, Classical Quantum Gravity 16, 3619 (1999). We discuss various properties that distinguish this spacetime from the classical relativistic spacetimes like Schwarzschild, Reissner-Nordström, Kerr, or Myers-Perry. The over-rotating BMPV spacetime allows, for instance, for planetary bound orbits for massive and massless particles. We also address causality violation, as analyzed in G. W. Gibbons and C. A. R. Herdeiro, Classical Quantum Gravity 16, 3619 (1999).

  12. Vector potential and metric perturbations of a rotating black hole

    NASA Technical Reports Server (NTRS)

    Chrzanowski, P. L.

    1975-01-01

    The assumption of factorized Green's functions together with the inhomogeneous Teukolsky equations are used to derive analytic expressions for homogeneous metric (and vector potential) perturbations of a Kerr black hole. These homogeneous solutions are used to construct solutions to the perturbation equations when sources are present. What one finds are particularly simple formulas for the energy and angular momentum flux in the asymptotic regions at plus or minus infinity.-

  13. Comparing initial data for rapidly rotating, merging black holes

    NASA Astrophysics Data System (ADS)

    Khan, Haroon; SXS Collaboration

    2015-04-01

    Detecting gravitational waves (ripples of curved spacetime) requires accurate predictions of the expected waveforms. Only numerical simulations can predict the waveforms near the time of merger, because then all analytical approximations fail. These numerical simulations must begin with initial data that satisfy the Einstein constraint equations while yielding a pair of merging black holes of the desired physical configuration. Different methods of constructing initial data yield physically different systems, which lead to different initial bursts of spurious ``junk'' gravitational radiation as the system relaxes to equilibrium. By extending work by to the case of rapidly spinning black holes, I am using the Spectral Einstein Code (SpEC) to test whether such physically different initial data are nevertheless astrophysically equivalent (i.e., whether the waveforms agree after the initial relaxation). Specifically, extending the work of, I am using two different initial data methods to simulate merging black holes with equal masses and equal spins aligned with the orbital angular momentum of the system.

  14. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat

    2016-05-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while ablack hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β , whose radius decreases with increase of the value of the parameter β . Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole.

  15. Regular rotating de Sitter–Kerr black holes and solitons

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina; Galaktionov, Evgeny

    2016-07-01

    We study the basic generic properties of the class of regular rotating solutions asymptotically Kerr for a distant observer, obtained with using the Gürses–Gürsey algorithm from regular spherically symmetric solutions specified by {T}tt={T}rr which belong to the Kerr–Schild metrics. All regular solutions obtained with the Newman–Janis complex translation from the known spherical solutions, belong to this class. Spherical solutions with {T}tt={T}rr satisfying the weak energy condition (WEC), have obligatory de Sitter center. Rotation transforms the de Sitter center into the interior de Sitter vacuum disk. Regular de Sitter–Kerr solutions have at most two horizons and two ergospheres, and two different kinds of interiors. In the case when an original spherical solution satisfies the dominant energy condition, there can exist the interior de Sitter vacuum { S }-surface which contains the de Sitter disk as a bridge. The WEC is violated in the internal cavities between the { S }-surface and the disk, which are filled thus with a phantom fluid. In the case when a related spherical solution violates the dominant energy condition, vacuum interior of a rotating solution reduces to the de Sitter disk only.

  16. Rapidly rotating black holes in dynamical Chern-Simons gravity: Decoupling limit solutions and breakdown

    NASA Astrophysics Data System (ADS)

    Stein, Leo C.

    2014-08-01

    Rapidly rotating black holes are a prime arena for understanding corrections to Einstein's theory of general relativity (GR). We construct solutions for rapidly rotating black holes in dynamical Chern-Simons (dCS) gravity, a useful and motivated example of a post-GR correction. We treat dCS as an effective theory and thus work in the decoupling limit, where we apply a perturbation scheme using the Kerr metric as the background solution. Using the solutions to the scalar field and the trace of the metric perturbation, we determine the regime of validity of our perturbative approach. We find that the maximal spin limit may be divergent, and the decoupling limit is strongly restricted for rapid rotation. Rapidly rotating stellar-mass black holes can potentially be used to place strong bounds on the coupling parameter ℓ of dCS. In order for the black hole observed in GRO J1655-40 to be within the decoupling limit, we need ℓ≲22 km, a value 7 orders of magnitude smaller than present Solar System bounds on dynamical Chern-Simons gravity.

  17. The critical phenomena of charged rotating de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Guo, Xiongying; Li, Huaifan; Zhang, Lichun; Zhao, Ren

    2016-07-01

    In this paper, we investigate the effective thermodynamic quantities in Kerr–Newman–de Sitter spacetime by considering the relations between the black hole event horizon and the cosmological event horizon. We find the effect of the critical point of Kerr–Newman–de Sitter spacetime for the different state parameters. We study the critical phenomena of the system taking different state parameters. This result is consistent with the nature of a liquid–gas phase transition at the critical point, hence deepening the understanding of the analogy of charged de Sitter spacetime and liquid–gas systems.

  18. Absorption of massless scalar field by rotating black holes

    NASA Astrophysics Data System (ADS)

    Leite, Luiz C. S.; Crispino, Luís C. B.; de Oliveira, Ednilton S.; Macedo, Caio F. B.; Dolan, Sam R.

    2016-07-01

    We compute the absorption cross-section of the Kerr black holes (BH) for the massless scalar field, and present a selection of numerical results, to complement the results of Ref.[C. F. B. Macedo, L. C. S. Leite, E. S. Oliveria, S. R. Dolan and L. C. B. Crispino, Phys. Rev. D 88 (2013) 064033.] We show that, in the high-frequency regime, the cross-section approaches the geodesic capture cross-section. We split the absorption cross-section into corotating and counterrotating contributions, and we show that the counterrotating contribution exceeds the corotating one.

  19. Statistical Entropy of Four-Dimensional Rotating Black Holes from Near-Horizon Geometry

    SciTech Connect

    Cvetic, M.; Larsen, F.; Cvetic, M.

    1999-01-01

    We show that a class of four-dimensional rotating black holes allow five-dimensional embeddings as black rotating strings. Their near-horizon geometry factorizes locally as a product of the three-dimensional anti{endash}de Sitter space-time and a two-dimensional sphere (AdS{sub 3}{times}S{sup 2} ), with angular momentum encoded in the global space-time structure. Following the observation that the isometries on the AdS{sub 3} space induce a two-dimensional (super)conformal field theory on the boundary, we reproduce the microscopic entropy with the correct dependence on the black hole angular momentum. {copyright} {ital 1999} {ital The American Physical Society }

  20. On the black hole limit of rotating discs of charged dust

    NASA Astrophysics Data System (ADS)

    Breithaupt, Martin; Liu, Yu-Chun; Meinel, Reinhard; Palenta, Stefan

    2015-07-01

    Investigating the rigidly rotating disc of dust with constant specific charge, we find that it leads to an extreme Kerr-Newman black hole in the ultra-relativistic limit. A necessary and sufficient condition for a black hole limit is, that the electric potential in the co-rotating frame is constant on the disc. In that case certain other relations follow. These relations are reviewed with a highly accurate post-Newtonian expansion. Remarkably it is possible to survey the leading order behaviour close to the black hole limit with the post-Newtonian expansion. We find that the disc solution close to that limit can be approximated very well by a ‘hyperextreme’ Kerr-Newman solution with the same gravitational mass, angular momentum and charge.

  1. Thermodynamics and Hawking radiation of five-dimensional rotating charged Goedel black holes

    SciTech Connect

    Wu Shuangqing; Peng Junjin

    2011-02-15

    We study the thermodynamics of Goedel-type rotating charged black holes in five-dimensional minimal supergravity. These black holes exhibit some peculiar features such as the presence of closed timelike curves and the absence of a globally spatial-like Cauchy surface. We explicitly compute their energies, angular momenta, and electric charges that are consistent with the first law of thermodynamics. Besides, we extend the covariant anomaly cancellation method, as well as the approach of the effective action, to derive their Hawking fluxes. Both the methods of the anomaly cancellation and the effective action give the same Hawking fluxes as those from the Planck distribution for blackbody radiation in the background of the charged rotating Goedel black holes. Our results further support that Hawking radiation is a quantum phenomenon arising at the event horizon.

  2. Phenomenology of Rotating Extra-Dimensional Black Holes at Hadron Colliders

    SciTech Connect

    Frost, James A.

    2010-02-10

    Results are presented from CHARYBDIS2, a new Monte Carlo simulation of black hole production and decay at hadron colliders. The main new features of CHARYBDIS2 are a full treatment of the spin-down phase of the decay process using the angular and energy distributions of the associated Hawking radiation, improved modelling of the loss of angular momentum and energy in the production process as well as a wider range of options for the Planck-scale termination of the decay. The new features allow the study of the effects of black hole rotation and the feasibility of its observation. We present results, with emphasis on the consequences and experimental signatures of black hole rotation at the LHC. The effects of rotation are found to be large, with substantial changes to particle energies and distributions. Rotation persists throughout evaporation, invalidating the approximation of a rapid spin-down followed by isotropic emission in a non-rotating Schwarzschild phase. A selection of results are presented from the original article, arXiv:0904:0979.

  3. The formation of supermassive black holes in rapidly rotating disks

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.

    2015-06-01

    Massive primordial halos exposed to moderate UV backgrounds are the potential birthplaces of supermassive black holes. In these halos, an initially isothermal collapse will occur, leading to high accretion rates of ~0.1 M⊙ yr-1. During the collapse, the gas in the interior will turn into a molecular state, and will form accretion disk in order to conserve angular momentum. We consider here the structure of such an accretion disk and the role of viscous heating in the presence of high accretion rates for a central star of 10, 100, and 104 M⊙. Our results show that the temperature in the disk increases considerably due to viscous heating, leading to a transition from the molecular to the atomic cooling phase. We found that the atomic cooling regime may extend out to several 100 AU for a 104 M⊙ central star and that it provides substantial support to stabilize the disk. It therefore favors the formation of a massive central object. The comparison of clump migration and contraction time scales shows that stellar feedback from these clumps may occur during the later stages of the evolution. Overall, viscous heating provides an important pathway to obtain an atomic gas phase within the center of the halo, and helps in the formation of very massive objects. The massive object may collapse to form a massive black hole of about ≥104 M⊙.

  4. Oscillating supertubes and neutral rotating black hole microstates

    NASA Astrophysics Data System (ADS)

    Mathur, Samir D.; Turton, David

    2014-04-01

    The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may be constructed in string theory.

  5. Renormalized vacuum polarization on rotating warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.; Louko, Jorma

    2015-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  6. Gravitational radiation and angular momentum flux from a slowly rotating dynamical black hole

    SciTech Connect

    Wu, Yu-Huei; Wang, Chih-Hung

    2011-04-15

    A four-dimensional asymptotic expansion scheme is used to study the next-order effects of the nonlinearity near a spinning dynamical black hole. The angular-momentum flux and energy flux formula are then obtained by constructing the reference frame in terms of the compatible constant spinors and the compatibility of the coupling leading-order Newman-Penrose equations. By using the slow rotation and small-tide approximation for a spinning black hole, the horizon cross-section we chose is spherical symmetric. It turns out the flux formula is rather simple and can be compared with the known results. Directly from the energy flux formula of the slow-rotating dynamical horizon, we find that the physically reasonable condition on requiring the positivity of the gravitational energy flux yields that the shear will monotonically decrease with time. Thus a slow-rotating dynamical horizon will asymptotically approach an isolated horizon during late time.

  7. Intersecting nonextreme p-branes and linear dilaton background

    SciTech Connect

    Chen, C.-M.; Gal'tsov, Dmitri V.; Ohta, Nobuyoshi

    2005-08-15

    We construct the general static solution to the supergravity action containing gravity, the dilaton and a set of antisymmetric forms describing the intersecting branes delocalized in the relative transverse dimensions. The solution is obtained by reducing the system to a set of separate Liouville equations (the intersection rules implying the separability); it contains the maximal number of free parameters corresponding to the rank of the differential equations. Imposing the requirement of the absence of naked singularities, we show that the general configurations are restricted to two and only two classes: the usual asymptotically flat intersecting branes, and the intersecting branes some of which are asymptotically flat and some approach the linear dilaton background at infinity. In both cases the configurations are black. These are supposed to be relevant for the description of the thermal phase of the QFT's in the corresponding Domain-Wall/QFT duality.

  8. Sequences of extremal radially excited rotating black holes.

    PubMed

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2014-01-10

    In the Einstein-Maxwell-Chern-Simons theory the extremal Reissner-Nordström solution is no longer the single extremal solution with vanishing angular momentum, when the Chern-Simons coupling constant reaches a critical value. Instead a whole sequence of rotating extremal J=0 solutions arises, labeled by the node number of the magnetic U(1) potential. Associated with the same near horizon solution, the mass of these radially excited extremal solutions converges to the mass of the extremal Reissner-Nordström solution. On the other hand, not all near horizon solutions are also realized as global solutions. PMID:24483880

  9. Phantom black holes and sigma models

    SciTech Connect

    Azreg-Aienou, Mustapha; Clement, Gerard; Fabris, Julio C.; Rodrigues, Manuel E.

    2011-06-15

    We construct static multicenter solutions of phantom Einstein-Maxwell-dilaton theory from null geodesics of the target space, leading to regular black holes without spatial symmetry for certain discrete values of the dilaton coupling constant. We also discuss the three-dimensional gravitating sigma models obtained by reduction of phantom Einstein-Maxwell, phantom Kaluza-Klein and phantom Einstein-Maxwell-dilaton-axion theories. In each case, we generate by group transformations phantom charged black hole solutions from a neutral seed.

  10. Horizon structure and shadow of rotating Einstein-Born-Infeld black holes

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh

    2016-07-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to innity ( ! 1). We nd that for a given , mass M and charge Q, there exist critical spinning parameter aE and rEH, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rEH increases with increase in the Born-Infeld parameter . While a < aE describe a non-extremal Einstein-Born- Infeld black hole with outer and inner horizons. Similarly, the e ect of on innite redshift surface and in turn on ergoregion is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational eld. We also investigate the shadow cast by the rotating Einstein- Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadows of Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole which are concentric circles, for di erent values of the Born-Infeld parameter , whose radius decreases with increase in the value of parameter . The shadows for the rotating Einstein-Born-Infeld solution are also included.

  11. Nonsingular electrodynamics of a rotating black hole moving in an asymptotically uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya; Ahmedov, Bobomurat; Rezzolla, Luciano

    2016-07-01

    We extend the Wald solution for magnetic field to a black hole that is also moving at constant velocity. In particular, we derive analytic solutions for the Maxwell equations for a rotating black hole moving at constant speed in an asymptotically uniform magnetic test field. By adopting Kerr-Schild coordinates we avoid singular behaviors at the horizon and obtain a complete description of the charge and current distributions in terms of the black-hole spin and velocity. Using this solution, we compute the energy losses expected when charged particles are accelerated along the magnetic field lines, improving previous estimates that had to cope with singular electromagnetic fields on the horizon. When used to approximate the emission from binary black holes in a uniform magnetic field, our estimates match reasonably well those from numericalrelativity calculations in the force-free approximation.

  12. Seed for general rotating non-extremal black holes of {N}= 8 supergravity

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.; Compère, Geoffrey

    2014-01-01

    We describe the most general asymptotically flat, stationary, non-extremal, dyonic black hole of the four-dimensional {N}= 2 supergravity coupled to three vector multiplets that describes the low-energy regime of the STU model. Under U-dualities, this can be used as a seed to generate all single-centered stationary black holes of {N}= 8 supergravity. The independent conserved charges are the mass, angular momentum, four electric charges and four magnetic charges; an independent NUT charge can also be added. Several aspects of the black hole are presented, including thermodynamics, the BPS limit, the near-horizon limit in the extremal fast and slow rotating cases, properties of black hole horizons, the existence of Killing tensors and the separability of probe scalars.

  13. On dilatons and the LHC diphoton excess

    NASA Astrophysics Data System (ADS)

    Megías, Eugenio; Pujolàs, Oriol; Quirós, Mariano

    2016-05-01

    We study soft wall models that can embed the Standard Model and a naturally light dilaton. Exploiting the full capabilities of these models we identify the parameter space that allows to pass Electroweak Precision Tests with a moderate Kaluza-Klein scale, around 2 TeV. We analyze the coupling of the dilaton with Standard Model (SM) fields in the bulk, and discuss two applications: i) Models with a light dilaton as the first particle beyond the SM pass quite easily all observational tests even with a dilaton lighter than the Higgs. However the possibility of a 125 GeV dilaton as a Higgs impostor is essentially disfavored; ii) We show how to extend the soft wall models to realize a 750 GeV dilaton that could explain the recently reported diphoton excess at the LHC.

  14. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  15. Superradiance and instability of small rotating charged AdS black holes in all dimensions

    NASA Astrophysics Data System (ADS)

    Aliev, Alikram N.

    2016-02-01

    Rotating small AdS black holes exhibit the superradiant instability to low-frequency scalar perturbations, which is amenable to a complete analytic description in four dimensions. In this paper, we extend this description to all higher dimensions, focusing on slowly rotating charged AdS black holes with a single angular momentum. We divide the spacetime of these black holes into the near-horizon and far regions and find solutions to the scalar wave equation in each of these regions. Next, we perform the matching of these solutions in the overlap between the regions, by employing the idea that the orbital quantum number ℓ can be thought of as an approximate integer. Thus, we obtain the complete low-frequency solution that allows us to calculate the complex frequency spectrum of quasinormal modes, whose imaginary part is determined by a small damping parameter. Finally, we find a remarkably instructive expression for the damping parameter, which appears to be a complex quantity in general. We show that the real part of the damping parameter can be used to give a universal analytic description of the superradiant instability for slowly rotating charged AdS black holes in all spacetime dimensions.

  16. Thermodynamics of rotating charged black branes in third order lovelock gravity and the counterterm method

    SciTech Connect

    Dehghani, M.H.; Mann, R.B.

    2006-05-15

    We generalize the quasilocal definition of the stress-energy tensor of Einstein gravity to the case of third order Lovelock gravity, by introducing the surface terms that make the action well-defined. We also introduce the boundary counterterm that removes the divergences of the action and the conserved quantities of the solutions of third order Lovelock gravity with zero curvature boundary at constant t and r. Then, we compute the charged rotating solutions of this theory in n+1 dimensions with a complete set of allowed rotation parameters. These charged rotating solutions present black hole solutions with two inner and outer event horizons, extreme black holes or naked singularities provided the parameters of the solutions are suitably chosen. We compute temperature, entropy, charge, electric potential, mass and angular momenta of the black hole solutions, and find that these quantities satisfy the first law of thermodynamics. We find a Smarr-type formula and perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable. This is commensurate with the fact that there is no Hawking-Page phase transition for black objects with zero curvature horizon.

  17. General relativistic x ray (UV) polarization rotations as a quantitative test for black holes

    NASA Technical Reports Server (NTRS)

    Stark, Richard F.

    1989-01-01

    It is now 11 years since a potentially easily observable and quantitative test for black holes using general relativistic polarization rotations was proposed (Stark and Connors 1977, and Connors and Stark 1977). General relativistic rotations of the x ray polarization plane of 10 to 100 degrees with x ray energy (between 1 and 100 keV) are predicted for black hole x ray binaries. (Classically, by symmetry, there is no rotation.) Unfortunately, x ray polarimetry has not been taken sufficiently seriously during this period, and this test has not yet been performed. A similar (though probably less clean) effect is expected in the UV for supermassive black holes in some quasars active galactic nuclei. Summarizing: (1) a quantitative test (proposed in 1977) for black holes exists; (2) x ray polarimetry of galactic x ray binaries sensitive to at least 1/2 percent between 1 keV and 100 keV is needed (polarimetry in the UV of quasars and AGN will also be of interest); and (3) proportional counters using timerise discrimination were shown in laboratory experiments able to perform x ray polarimetry and this and other methods need to be developed.

  18. Energy extraction and particle acceleration around a rotating black hole in quintessence

    NASA Astrophysics Data System (ADS)

    Oteev, Tursinbay; Abdujabbarov, Ahmadjon; Stuchlík, Zdeněk; Ahmedov, Bobomurat

    2016-08-01

    We study motion and collision of particles in the gravitational field of rotating black hole immersed in quintessential dark energy characterized with the quintessential parameter ωqin(-1;-1/3) governing the equation of state of the dark energy, and the dimensionless quintessential field parameter tilde{c}. We focus on the acceleration of particles due to collisional processes and show how the center of mass energy depends on the quintessential field parameter tilde{c}. We also make comparison of the obtained results to the collisional energetics of quintessential static black holes demonstrating the crucial role of the rotation parameter a in the particle acceleration. Finally we study the dependence of the maximal value of the efficiency of energy extraction through Penrose process for rotating black hole with quintessential field parameter tilde{c}. It is found that quintessence field decreases the energy extraction efficiency through Penrose process and when the parameter tilde{c} vanishes one can get the standard value of the efficiency coefficient for the Kerr black hole as η˜ 21 %.

  19. Non-singular rotating black hole with a time delay in the center

    NASA Astrophysics Data System (ADS)

    Lorenzo, Tommaso De; Giusti, Andrea; Speziale, Simone

    2016-03-01

    As proposed by Bambi and Modesto, rotating non-singular black holes can be constructed via the Newman-Janis algorithm. Here we show that if one starts with a modified Hayward black hole with a time delay in the centre, the algorithm succeeds in producing a rotating metric, but curvature divergences reappear. To preserve finiteness, the time delay must be introduced directly at the level of the non-singular rotating metric. This is possible thanks to the deformation of the inner stationarity limit surface caused by the regularisation, and in more than one way. We outline three different possibilities, distinguished by the angular velocity of the event horizon. Along the way, we provide additional results on the Bambi-Modesto rotating Hayward metric, such as the structure of the regularisation occurring at the centre, the behaviour of the quantum gravity scale alike an electric charge in decreasing the angular momentum of the extremal black hole configuration, or details on the deformation of the ergosphere.

  20. Erratum: Erratum to: Non-singular rotating black hole with a time delay in the center

    NASA Astrophysics Data System (ADS)

    De Lorenzo, Tommaso; Giusti, Andrea; Speziale, Simone

    2016-08-01

    As proposed by Bambi and Modesto, rotating non-singular black holes can be constructed via the Newman-Janis algorithm. Here we show that if one starts with a modified Hayward black hole with a time delay in the centre, the algorithm succeeds in producing a rotating metric, but curvature divergences reappear. To preserve finiteness, the time delay must be introduced directly at the level of the non-singular rotating metric. This is possible thanks to the deformation of the inner stationarity limit surface caused by the regularisation, and in more than one way. We outline three different possibilities, distinguished by the angular velocity of the event horizon. Along the way, we provide additional results on the Bambi-Modesto rotating Hayward metric, such as the structure of the regularisation occurring at the centre, the behaviour of the quantum gravity scale alike an electric charge in decreasing the angular momentum of the extremal black hole configuration, or details on the deformation of the ergosphere.

  1. Charged and rotating AdS black holes and their CFT duals

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Reall, H. S.

    2000-01-01

    Black hole solutions that are asymptotic to AdS5×S5 or AdS4×S7 can rotate in two different ways. If the internal sphere rotates, then one can obtain a Reissner-Nordström-AdS black hole. If the asymptotically AdS space rotates, then one can obtain a Kerr-AdS hole. One might expect superradiant scattering to be possible in either of these cases. Superradiant modes reflected off the potential barrier outside the hole would be reamplified at the horizon, and a classical instability would result. We point out that the existence of a Killing vector field timelike everywhere outside the horizon prevents this from occurring for black holes with negative action. Such black holes are also thermodynamically stable in the grand canonical ensemble. The CFT duals of these black holes correspond to a theory in an Einstein universe with a chemical potential and a theory in a rotating Einstein universe. We study these CFTs in the zero coupling limit. In the first case, Bose-Einstein condensation occurs on the boundary at a critical value of the chemical potential. However, the supergravity calculation demonstrates that this is not to be expected at strong coupling. In the second case, we investigate the limit in which the angular velocity of the Einstein universe approaches the speed of light at finite temperature. This is a new limit in which to compare the CFT at strong and weak coupling. We find that the free CFT partition function and supergravity action have the same type of divergence but the usual factor of 4/3 is modified at finite temperature.

  2. THE FORCE-FREE MAGNETOSPHERE OF A ROTATING BLACK HOLE

    SciTech Connect

    Contopoulos, Ioannis; Kazanas, Demosthenes

    2013-03-10

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity {omega} and the poloidal electric current I. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner ''light surface'' located inside the ergosphere and the outer ''light surface'' which is the generalization of the pulsar light cylinder. We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both ''light surfaces''.

  3. The Force-Free Magnetosphere of a Rotating Black Hole

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  4. Static and rotating universal horizons and black holes in gravitational theories with broken Lorentz invariance

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Satheeshkumar, V. H.; Wang, Anzhong

    2016-06-01

    In this paper, we show the existence of static and rotating universal horizons and black holes in gravitational theories with broken Lorentz invariance. We pay particular attention to the ultraviolet regime, and show that universal horizons and black holes exist not only in the low energy limit but also at the ultraviolet energy scales. This is realized by presenting various static and stationary exact solutions of the full theory of the projectable Hořava gravity with an extra U(1) symmetry in (2 +1 )-dimensions, which, by construction, is power-counting renormalizable.

  5. Surface terms of quasitopological gravity and thermodynamics of charged rotating black branes

    SciTech Connect

    Dehghani, M. H.; Vahidinia, M. H.

    2011-10-15

    We introduce the surface term for quasitopological gravity in order to make the variational principle of the action well defined. We also introduce the charged black branes of quasitopological gravity and calculate the finite action through the use of the counterterm method. Then we compute the thermodynamic quantities of the black brane solution by use of Gibbs free energy and investigate the first law of thermodynamics by introducing a Smarr-type formula. Finally, we generalize our solutions to the case of rotating charged solutions.

  6. Tunnelling of scalar and Dirac particles from squashed charged rotating Kaluza-Klein black holes

    NASA Astrophysics Data System (ADS)

    Stetsko, M. M.

    2016-02-01

    The thermal radiation of scalar particles and Dirac fermions from squashed charged rotating five-dimensional black holes is considered. To obtain the temperature of the black holes we use the tunnelling method. In the case of scalar particles we make use of the Hamilton-Jacobi equation. To consider tunnelling of fermions the Dirac equation was investigated. The examination shows that the radial parts of the action for scalar particles and fermions in the quasi-classical limit in the vicinity of horizon are almost the same and as a consequence it gives rise to identical expressions for the temperature in the two cases.

  7. Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity

    SciTech Connect

    Setare, M. R.; Kamali, V.

    2010-10-15

    In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.

  8. Fluid/gravity correspondence for general non-rotating black holes

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoning; Ling, Yi; Tian, Yu; Zhang, Chengyong

    2013-07-01

    In this paper, we investigate the fluid/gravity correspondence in spacetime with general non-rotating weakly isolated horizon. With the help of a Petrov-like boundary condition and large mean curvature limit, we show that the dual hydrodynamical system is described by a generalized forced incompressible Navier-Stokes equation. Specially, for stationary black holes or those spacetime with some asymptotically stationary conditions, such a system reduces to a standard forced Navier-Stokes system.

  9. Separable wave equations for gravitoelectromagnetic perturbations of rotating charged black strings

    NASA Astrophysics Data System (ADS)

    Miranda, Alex S.; Morgan, Jaqueline; Kandus, Alejandra; Zanchin, Vilson T.

    2015-12-01

    Rotating charged black strings are exact solutions of four-dimensional Einstein-Maxwell equations with a negative cosmological constant and a non-trivial spacetime topology. According to the AdS/CFT correspondence, these black strings are dual to rotating thermal states of a strongly interacting quantum field theory with nonzero chemical potential that lives in a cylinder. The dynamics of linear fluctuations in the dual field theory can be studied from the perturbation equations for classical fields in a black-string spacetime. With this motivation in mind, we develop here a completely gauge and tetrad invariant perturbation approach to deal with the gravitoelectromagnetic fluctuations of rotating charged black strings in the presence of sources. As usual, for any charged black hole, a perturbation in the background electromagnetic field induces a metric perturbation and vice versa. In spite of this coupling and the non-vanishing angular momentum, we show that linearization of equations of the Newman-Penrose formalism leads to four separated second-order complex equations for suitable combinations of the spin coefficients, the Weyl and the Maxwell scalars. Then, we generalize the Chandrasekhar transformation theory by the inclusion of sources and apply it to reduce the perturbation problem to four decoupled inhomogeneous wave equations—a pair for each sector of perturbations. The radial part of such wave equations can be put into Schrödinger-like forms after Fourier transforming them with respect to time. We find that the resulting effective potentials form two pairs of supersymmetric partner potentials and, as a consequence, the fundamental variables of one perturbation sector are related to the variables of the other sector. The relevance of such a symmetry in connection to the AdS/CFT correspondence is discussed, and future applications of the pertubation theory developed here are outlined.

  10. QPOs from Random X-ray Bursts around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  11. GENERALIZED GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC EQUATIONS AND DISTINCTIVE PLASMA DYNAMICS AROUND ROTATING BLACK HOLES

    SciTech Connect

    Koide, Shinji

    2010-01-10

    To study phenomena of plasmas around rotating black holes, we have derived a set of 3+1 formalism of generalized general relativistic magnetohydrodynamic (GRMHD) equations. In particular, we investigated general relativistic phenomena with respect to the Ohm's law. We confirmed the electromotive force due to the gravitation, centrifugal force, and frame-dragging effect in plasmas near the black holes. These effects are significant only in the local small-scale phenomena compared to the scale of astrophysical objects. We discuss the possibility of magnetic reconnection, which is triggered by one of these effects in a small-scale region and influences the plasmas globally. We clarify the conditions of applicability of the generalized GRMHD, standard resistive GRMHD, and ideal GRMHD for plasmas in black hole magnetospheres.

  12. Buoyancy and the Penrose process produce jets from rotating black holes

    NASA Astrophysics Data System (ADS)

    Semenov, V. S.; Dyadechkin, S. A.; Heyn, M. F.

    2014-04-01

    The exact mechanism by which astrophysical jets are formed is still unknown. It is believed that the necessary elements consist of a rotating (Kerr) black hole and a magnetized accreting plasma. We model the accreting plasma as a collection of magnetic flux tubes/strings. If such a tube falls into a Kerr black hole, then the leading portion loses angular momentum and energy as the string brakes. To compensate for this loss, momentum and energy is redistributed to the trailing portion of the tube. We found that buoyancy creates a pronounced helical magnetic field structure aligned with the spin axis. Along the field lines, the plasma is centrifugally accelerated close to the speed of light. This process leads to unlimited stretching of the flux tube since one part of the tube continues to fall into the black hole and, simultaneously, the other part of the string is pushed outward. Eventually, reconnection cuts the tube. The inner part is filled with new material and the outer part forms a collimated bubble-structured relativistic jet. Each plasmoid can be considered as an outgoing particle in the Penrose mechanism: it carries extracted rotational energy away from the black hole while the falling part, with corresponding negative energy, is left inside the ergosphere.

  13. Superradiance from a charged dilation black hole

    SciTech Connect

    Shiraishi, K. )

    1992-12-07

    In this paper, the authors study the behavior of the wave function of charged Klein-Gordon field around a charge dilaton black hole. The rate of spontaneous charge loss is estimated for large black hole case.

  14. Near-horizon circular orbits and extremal limit for dirty rotating black holes

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2015-08-01

    We consider generic rotating axially symmetric "dirty" (surrounded by matter) black holes. Near-horizon circular equatorial orbits are examined in two different cases of near-extremal (small surface gravity κ ) and exactly extremal black holes. This has a number of qualitative distinctions. In the first case, it is shown that such orbits can lie as close to the horizon as one wishes on suitably chosen slices of space-time when κ →0 . This generalizes the observation of T. Jacobson [Classical Quantum Gravity 28, 187001 (2011), 10.1088/0264-9381/28/18/187001] made for the Kerr metric. If a black hole is extremal (κ =0 ), circular on-horizon orbits are impossible for massive particles but, in general, are possible in its vicinity. The corresponding black hole parameters determine also the rate with which a fine-tuned particle on the noncircular near-horizon orbit asymptotically approaches the horizon. Properties of orbits under discussion are also related to the Bañados-Silk-West effect of high energy collisions near black holes. Impossibility of the on-horizon orbits in question is manifestation of kinematic censorship that forbids infinite energies in collisions.

  15. Solitons of axion-dilaton gravity

    SciTech Connect

    Bakas, I. |

    1996-11-01

    We use soliton techniques of the two-dimensional reduced {beta}-function equations to obtain nontrivial string backgrounds from flat space. These solutions are characterized by two integers ({ital n},{ital m}) referring to the soliton numbers of the metric and axion-dilaton sectors, respectively. We show that the Nappi-Witten universe associated with the SL(2){times}SU(2)/SO(1,1){times}U(1) CFT coset arises as a (1,1) soliton in this fashion for certain values of the moduli parameters, while for other values of the soliton moduli we arrive at the SL(2)/SO(1,1){times}SO(1,1){sup 2} background. Ordinary four-dimensional black holes arise as two-dimensional (2,0) solitons, while the Euclidean wormhole background is described as a (0,2) soliton on flat space. The soliton transformations correspond to specific elements of the string Geroch group. These could be used as a starting point for exploring the role of {ital U} dualities in string compactifications to two dimensions. {copyright} {ital 1996 The American Physical Society.}

  16. Can the slow-rotation approximation be used in electromagnetic observations of black holes?

    NASA Astrophysics Data System (ADS)

    Ayzenberg, Dimitry; Yagi, Kent; Yunes, Nicolás

    2016-05-01

    Future electromagnetic observations of black holes (BHs) may allow us to test general relativity (GR) in the strong-field regime. Such tests, however, require knowledge of rotating BH solutions in modified gravity theories, a class of which does not admit the Kerr metric as a solution. Several rotating BH solutions in modified theories have only been found in the slow-rotation approximation (i.e. assuming the spin angular momentum is much smaller than the mass squared). We here investigate whether the systematic error due to the approximate nature of these BH metrics is small enough relative to the observational error to allow their use in electromagnetic observations to constrain deviations from GR. We address this by considering whether electromagnetic observables constructed from a slow-rotation approximation to the Kerr metric can fit observables constructed from the full Kerr metric with systematic errors smaller than current observational errors. We focus on BH shadow and continuum spectrum observations, as these are the least influenced by accretion disk physics, with current observational errors of about 10%. We find that the fractional systematic error introduced by using a second-order, slowly rotating Kerr metric is at most 2% for shadows created by BHs with dimensionless spins χ ≤slant 0.6. We also find that the systematic error introduced by using the slowly rotating Kerr metric as an exact metric when constructing continuum spectrum observables is negligible for BHs with dimensionless spins of χ ≲ 0.9. Our results suggest that the modified gravity solutions found in the slow-rotation approximation may be used to constrain realistic deviations from GR with continuum spectrum and BH shadow observations.

  17. Stationary strings in the spacetime of rotating black holes in five-dimensional minimal gauged supergravity

    SciTech Connect

    Ahmedov, Haji; Aliev, Alikram N.

    2008-09-15

    We examine the separability properties of the equation of motion for a stationary string near a rotating charged black hole with two independent angular momenta in five-dimensional minimal gauged supergravity. It is known that the separability problem for the stationary string in a general stationary spacetime is reduced to that for the usual Hamilton-Jacobi equation for geodesics of its quotient space with one dimension fewer. Using this fact, we show that the 'effective metric' of the quotient space does not allow the complete separability for the Hamilton-Jacobi equation, albeit such a separability occurs in the original spacetime of the black hole. We also show that only for two special cases of interest the Hamilton-Jacobi equation admits the complete separation of variables and therefore the integrability for the stationary string motion in the original background, namely, when the black hole has zero electric charge or it has an arbitrary electric charge but two equal angular momenta. We give the explicit expressions for the Killing tensors corresponding to these cases. However, for the general black hole spacetime the effective metric of the quotient space admits a conformal Killing tensor. We construct the explicit expression for this tensor.

  18. Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin; Wu, Shuang-Qing

    2008-03-01

    Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3 + 1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1 + 1)-dimensional effective metric from these black strings need not be equal to one (√{ - g } ≠ 1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1 + 1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant.

  19. Thermodynamics of charged rotating black branes in Brans-Dicke theory with quadratic scalar field potential

    SciTech Connect

    Dehghani, M. H.; Pakravan, J.; Hendi, S. H.

    2006-11-15

    We construct a class of charged rotating solutions in (n+1)-dimensional Maxwell-Brans-Dicke theory with flat horizon in the presence of a quadratic potential and investigate their properties. These solutions are neither asymptotically flat nor (anti)-de Sitter. We find that these solutions can present black brane, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute the finite Euclidean action through the use of counterterm method, and obtain the conserved and thermodynamic quantities by using the relation between the action and free energy in grand-canonical ensemble. We find that these quantities satisfy the first law of thermodynamics, and the entropy does not follow the area law.

  20. Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity

    SciTech Connect

    Amarilla, Leonardo; Eiroa, Ernesto F.; Giribet, Gaston

    2010-06-15

    The Chern-Simons modification to general relativity in four dimensions consists of adding to the Einstein-Hilbert term a scalar field that couples to the first-class Pontryagin density. In this theory, which has attracted considerable attention recently, the Schwarzschild metric persists as an exact solution, and this is why this model resists several observational constraints. In contrast, the spinning black hole solution of the theory is not given by the Kerr metric but by a modification of it, so far only known for slow rotation and small coupling constant. In the present paper, we show that, in this approximation, the null geodesic equation can be integrated, and this allows us to investigate the shadow cast by a black hole. We discuss how, in addition to the angular momentum of the solution, the coupling to the Chern-Simons term deforms the shape of the shadow.

  1. Integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes.

    PubMed

    Kubizňák, David; Cariglia, Marco

    2012-02-01

    We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes. PMID:22400922

  2. Extracting Energy-Momentum from Rotating Black Holes Using the Penrose Mechanism

    NASA Astrophysics Data System (ADS)

    Williams, Reva Kay

    1999-11-01

    Over the past three decays, since the discovery of quasars, mounting observational evidence has accumulated that black holes indeed exist in nature. In this paper, we present a theoretical and numerical (Monte Carlo) analysis of Penrose scattering processes (Compton and γ-γ e*+e^- production) in the ergosphere of Kerr (rotating) black holes. These model calculations surprising reveal that the high energies and luminosities, the collimated jets about the polar axis, and the asymmetrical jets (which can be enhanced by relativistic Doopler beaming effects), all, are inherent properties of rotation black holes. When we assume that the accretion disk is a two-temperature bistable thin disk/ion corona, recently referred to as an advection dominated accretion flow (ADAF), energies as high as 54 GeV can be attained by these Perose processes along; and when relativistic beaming is included, energies in the TeV range can be achieved, agreeing with observations of some BL Lac objects. We show that the scattered escaping particles exhibit tightly wounded coil-like cone distributions (i.e. highly collimated jet distributions) about the polar axis, with helical polar angles of escape varying from 0.5^o to 30^o for the highest to lowest energy particles, respectively. We show also that the gravitomagnetic (GM) field, which causes the dragging of inertial frames, exerts a force acting on the momentum vectors of the incident and scattered particles, causing the particle emission to be asymmetrical above and below the equatorial plane. This Penrose energy extraction model can be applied to any size black hole irrespective of the mass. Also it is reemphasized why the Blandford and Znajek model is not tenable, as pointed out by Punsly and Coroniti (1989, 1990a, 1990b).

  3. Two-charge rotating black holes in four-dimensional gauged supergravity

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.

    2011-09-01

    We obtain an asymptotically AdS, non-extremal, electrically charged and rotating black hole solution of four-dimensional U(1)4 gauged supergravity with two non-zero and independent U(1) charges. The thermodynamical quantities are computed. We find BPS solutions that are nakedly singular. The solution is generalized to include a NUT parameter and dyonic gauge fields. The string frame metric has a rank-2 Killing-Stäckel tensor and has completely integrable geodesic motion, and the massless Klein-Gordon equation separates for the Einstein frame metric.

  4. Quantum tunneling from rotating black holes with scalar hair in three dimensions

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Gursel, H.

    2016-06-01

    We study the Hawking radiation of scalar and Dirac particles (fermions) emitted from a rotating scalar hair black hole (RSHBH) within the context of three dimensional (3 D) Einstein gravity using non-minimally coupled scalar field theory. Amalgamating the quantum tunneling approach with the Wentzel-Kramers-Brillouin approximation, we obtain the tunneling rates of the outgoing particles across the event horizon. Inserting the resultant tunneling rates into the Boltzmann formula, we then obtain the Hawking temperature (T_H) of the 3 D RSHBH.

  5. Thermodynamics of Einstein-Born-Infeld black holes in three dimensions

    SciTech Connect

    Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai

    2008-08-15

    We show that all thermodynamic quantities of the Einstein-Born-Infeld black holes in three dimensions can be obtained from the dilaton and its potential of two-dimensional dilaton gravity through dimensional reduction. These are all between nonrotating uncharged BTZ (Banados-Teitelboim-Zanelli) black hole (NBTZ) and charged BTZ black hole (CBTZ)

  6. Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld gravity

    SciTech Connect

    Dehghani, M. H.; Sedehi, H. R. Rastegar

    2006-12-15

    We construct a new class of charged rotating solutions of (n+1)-dimensional Einstein-Born-Infeld gravity with cylindrical or toroidal horizons in the presence of cosmological constant and investigate their properties. These solutions are asymptotically (anti)-de Sitter and reduce to the solutions of Einstein-Maxwell gravity as the Born-Infeld parameters goes to infinity. We find that these solutions can represent black branes, with inner and outer event horizons, an extreme black brane or a naked singularity provided the parameters of the solutions are chosen suitably. We compute temperature, mass, angular momentum, entropy, charge and electric potential of the black brane solutions. We obtain a Smarr-type formula and show that these quantities satisfy the first law of thermodynamics. We also perform a stability analysis by computing the heat capacity and the determinant of Hessian matrix of mass of the system with infinite boundary with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles, and show that the system is thermally stable in the whole phase space. Also, we find that there exists an unstable phase when the finite size effect is taken into account.

  7. Circular orbits and related quasiharmonic oscillatory motion of charged particles around weakly magnetized rotating black holes

    NASA Astrophysics Data System (ADS)

    Tursunov, Arman; Stuchlík, Zdeněk; Kološ, Martin

    2016-04-01

    We study the motion of charged particles in the field of a rotating black hole immersed into an external asymptotically uniform magnetic field, focusing on the epicyclic quasicircular orbits near the equatorial plane. Separating the circular orbits into four qualitatively different classes according to the sign of the canonical angular momentum of the motion and the orientation of the Lorentz force, we analyze the circular orbits using the so-called force formalism. We find the analytical solutions for the radial profiles of velocity, specific angular momentum, and specific energy of the circular orbits in dependence on the black-hole dimensionless spin and the magnetic field strength. The innermost stable circular orbits are determined for all four classes of the circular orbits. The stable circular orbits with an outward-oriented Lorentz force can extend to radii lower than the radius of the corresponding photon circular geodesic. We calculate the frequencies of the harmonic oscillatory motion of the charged particles in the radial and vertical directions related to the equatorial circular orbits and study the radial profiles of the radial, ωr; vertical, ωθ; and orbital, ωϕ, frequencies, finding significant differences in comparison to the epicyclic geodesic circular motion. The most important new phenomenon is the existence of toroidal charged particle epicyclic motion with ωr˜ωθ≫ωϕ that could occur around retrograde circular orbits with an outward-oriented Lorentz force. We demonstrate that for the rapidly rotating black holes the role of the "Wald induced charge" can be relevant.

  8. Slowly Varying Dilaton Cosmologies and Their Field Theory Duals

    SciTech Connect

    Awad, Adel; Das, Sumit R.; Ghosh, Archisman; Oh, Jae-Hyuk; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC

    2011-06-28

    We consider a deformation of the AdS{sub 5} x S{sup 5} solution of IIB supergravity obtained by taking the boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on the AdS scale thereby introducing a small parameter {epsilon}. The boundary dilaton has a profile which asymptotes to a constant in the far past and future and attains a minimum value at intermediate times. We construct the sugra solution to first non-trivial order in {epsilon}, and find that it is smooth, horizon free, and asymptotically AdS{sub 5} x S{sup 5} in the far future. When the intermediate values of the dilaton becomes small enough the curvature becomes of order the string scale and the sugra approximation breaks down. The resulting dynamics is analysed in the dual SU(N) gauge theory on S{sup 3} with a time dependent coupling constant which varies slowly. When N{epsilon} << 1, we find that a quantum adiabatic approximation is applicable, and use it to argue that at late times the geometry becomes smooth AdS{sub 5} x S{sup 5} again. When N{epsilon} >> 1, we formulate a classical adiabatic perturbation theory based on coherent states which arises in the large N limit. For large values of the tHooft coupling this reproduces the supergravity results. For small 'tHooft coupling the coherent state calculations become involved and we cannot reach a definite conclusion. We argue that the final state should have a dual description which is mostly smooth AdS5 space with the possible presence of a small black hole.

  9. Slowly varying dilaton cosmologies and their field theory duals

    SciTech Connect

    Awad, Adel; Das, Sumit R.; Ghosh, Archisman; Oh, Jae-Hyuk; Trivedi, Sandip P.

    2009-12-15

    We consider a deformation of the AdS{sub 5}xS{sup 5} solution of IIB supergravity obtained by taking the boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on the anti-de Sitter (AdS) scale thereby introducing a small parameter {epsilon}. The boundary dilaton has a profile which asymptotes to a constant in the far past and future and attains a minimum value at intermediate times. We construct the supergravity (sugra) solution to first nontrivial order in {epsilon}, and find that it is smooth, horizon-free, and asymptotically AdS{sub 5}xS{sup 5} in the far future. When the intermediate values of the dilaton becomes small enough the curvature becomes of order the string scale and the sugra approximation breaks down. The resulting dynamics is analyzed in the dual SU(N) gauge theory on S{sup 3} with a time dependent coupling constant which varies slowly. When N{epsilon}<<1, we find that a quantum adiabatic approximation is applicable, and use it to argue that at late times the geometry becomes smooth AdS{sub 5}xS{sup 5} again. When N{epsilon}>>1, we formulate a classical adiabatic perturbation theory based on coherent states which arises in the large N limit. For large values of the 't Hooft coupling this reproduces the supergravity results. For small 't Hooft coupling the coherent state calculations become involved and we cannot reach a definite conclusion. We argue that the final state should have a dual description which is mostly smooth AdS{sub 5} space with the possible presence of a small black hole.

  10. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NASA Astrophysics Data System (ADS)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-12-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in the presence of a strong Lyman-Werner radiation background. Particularly, we investigate the impact of turbulence and rotation on the fragmentation behaviour of the gas cloud. We accomplish this goal by varying the initial turbulent and rotational velocities. Methods: We performed 3D adaptive mesh refinement simulations with a resolution of 64 cells per Jeans length using the ENZO code, simulating the formation of a protostar up to unprecedentedly high central densities of 1021 cm-3 and spatial scales of a few solar radii. To achieve this goal, we employed the KROME package to improve modelling of the chemical and thermal processes. Results: We find that the physical properties of the simulated gas clouds become similar on small scales, irrespective of the initial amount of turbulence and rotation. After the highest level of refinement was reached, the simulations have been evolved for an additional ~5 freefall times. A single bound clump with a radius of 2 × 10-2 AU and a mass of ~7 × 10-2 M⊙ is formed at the end of each simulation, marking the onset of protostar formation. No strong fragmentation is observed by the end of the simulations, regardless of the initial amount of turbulence or rotation, and high accretion rates of a few solar masses per year are found. Conclusions: Given such high accretion rates, a quasi-star of 105 M⊙ is expected to form within 105 years. Appendix A is available in electronic form at http://www.aanda.org

  11. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  12. Integrability of some charged rotating supergravity black hole solutions in four and five dimensions

    NASA Astrophysics Data System (ADS)

    Vasudevan, Muraari

    2005-09-01

    We study the integrability of geodesic flow in the background of some recently discovered charged rotating solutions of supergravity in four and five dimensions. Specifically, we work with the gauged multicharge Taub-NUT-Kerr-(anti-)de Sitter metric in four dimensions, and the U(1) 3 gauged charged-Kerr-(anti-)de Sitter black hole solution of N = 2 supergravity in five dimensions. We explicitly construct the nontrivial irreducible Killing tensors that permit separation of the Hamilton-Jacobi equation in these spacetimes. These results prove integrability for a large class of previously known supergravity solutions, including several BPS solitonic states. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties. Finally, we also examine the Klein-Gordon equation for a scalar field in these spacetimes and demonstrate separability.

  13. Complete Integrability of Geodesic Motion in General Higher-Dimensional Rotating Black-Hole Spacetimes

    NASA Astrophysics Data System (ADS)

    Page, Don N.; Kubizňák, David; Vasudevan, Muraari; Krtouš, Pavel

    2007-02-01

    We explicitly exhibit n-1=[D/2]-1 constants of motion for geodesics in the general D-dimensional Kerr-NUT-AdS rotating black hole spacetime, arising from contractions of even powers of the 2-form obtained by contracting the geodesic velocity with the dual of the contraction of the velocity with the (D-2)-dimensional Killing-Yano tensor. These constants of motion are functionally independent of each other and of the D-n+1 constants of motion that arise from the metric and the D-n=[(D+1)/2] Killing vectors, making a total of D independent constants of motion in all dimensions D. The Poisson brackets of all pairs of these D constants are zero, so geodesic motion in these spacetimes is completely integrable.

  14. Creation of a scalar potential in 2D dilaton gravity

    SciTech Connect

    Behrndt, K.

    1994-09-01

    The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.

  15. New soft theorems for the gravity dilaton and the Nambu-Goldstone dilaton at subsubleading order

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin; Nohle, Josh

    2016-04-01

    We study the soft behavior of two seemingly different particles that are both referred to as dilatons in the literature, namely the one that appears in theories of gravity and in string theory and the Nambu-Goldstone boson of spontaneously broken conformal invariance. Our primary result is the discovery of a soft theorem at subsubleading order for each dilaton, which in both cases contains the operator of special conformal transformations. Interesting similarities as well as differences between the dilaton soft theorems are discussed.

  16. Separability of a modified Dirac equation in a five-dimensional rotating, charged black hole in string theory

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Qing

    2009-08-01

    The aim of this paper is to investigate the separability of a spin-1/2 spinor field in a five-dimensional rotating, charged black hole constructed by Cvetič and Youm in string theory, in the case when three U(1) charges are set equal. This black hole solution represents a natural generalization of the famous four-dimensional Kerr-Newman solution to five dimensions with the inclusion of a Chern-Simons term to the Maxwell equation. It is shown that the usual Dirac equation cannot be separated by variables in this general spacetime with two independent angular momenta. However if one supplements an additional counterterm into the usual Dirac operator, then the modified Dirac equation for the spin-1/2 spinor particles is separable in this rotating, charged Einstein-Maxwell-Chern-Simons black hole background geometry. A first-order symmetry operator that commutes with the modified Dirac operator has exactly the same form as that previously found in the uncharged Myers-Perry black hole case. It is expressed in terms of a rank-three totally antisymmetric tensor and its covariant derivative. This tensor obeys a generalized Killing-Yano equation and its square is a second-order symmetric Stäckel-Killing tensor admitted by the five-dimensional rotating, charged black hole spacetime.

  17. Separability of a modified Dirac equation in a five-dimensional rotating, charged black hole in string theory

    SciTech Connect

    Wu Shuangqing

    2009-08-15

    The aim of this paper is to investigate the separability of a spin-1/2 spinor field in a five-dimensional rotating, charged black hole constructed by Cvetic and Youm in string theory, in the case when three U(1) charges are set equal. This black hole solution represents a natural generalization of the famous four-dimensional Kerr-Newman solution to five dimensions with the inclusion of a Chern-Simons term to the Maxwell equation. It is shown that the usual Dirac equation cannot be separated by variables in this general spacetime with two independent angular momenta. However if one supplements an additional counterterm into the usual Dirac operator, then the modified Dirac equation for the spin-1/2 spinor particles is separable in this rotating, charged Einstein-Maxwell-Chern-Simons black hole background geometry. A first-order symmetry operator that commutes with the modified Dirac operator has exactly the same form as that previously found in the uncharged Myers-Perry black hole case. It is expressed in terms of a rank-three totally antisymmetric tensor and its covariant derivative. This tensor obeys a generalized Killing-Yano equation and its square is a second-order symmetric Staeckel-Killing tensor admitted by the five-dimensional rotating, charged black hole spacetime.

  18. The massive Dirac field on a rotating black hole spacetime: angular solutions

    NASA Astrophysics Data System (ADS)

    Dolan, Sam R.; Gair, Jonathan R.

    2009-09-01

    The massive Dirac equation on a Kerr-Newman background may be solved by the method of separation of variables. The radial and angular equations are coupled via an angular eigenvalue, which is determined from the Chandrasekhar-Page (CP) equation. Obtaining accurate angular eigenvalues is a key step in studying scattering, absorption and emission of the fermionic field. Here we introduce a new method for finding solutions of the CP equation. First, we introduce a novel representation for the spin-half spherical harmonics. Next, we decompose the angular solutions of the CP equation (the mass-dependent spin-half spheroidal harmonics) in the spherical basis. The method yields a three-term recurrence relation which may be solved numerically via continued-fraction methods, or perturbatively to obtain a series expansion for the eigenvalues. In the case μ = ±ω (where ω and μ are the frequency and mass of the fermion) we obtain eigenvalues and eigenfunctions in a closed form. We study the eigenvalue spectrum and the zeros of the maximally co-rotating mode. We compare our results with previous studies, and uncover and correct some errors in the literature. We provide series expansions, tables of eigenvalues and numerical fits across a wide parameter range and present plots of a selection of eigenfunctions. It is hoped that this study will be a useful resource for all researchers interested in the Dirac equation on a rotating black hole background.

  19. Dilaton cosmology, noncommutativity, and generalized uncertainty principle

    SciTech Connect

    Vakili, Babak

    2008-02-15

    The effects of noncommutativity and of the existence of a minimal length on the phase space of a dilatonic cosmological model are investigated. The existence of a minimum length results in the generalized uncertainty principle (GUP), which is a deformed Heisenberg algebra between the minisuperspace variables and their momenta operators. I extend these deformed commutating relations to the corresponding deformed Poisson algebra. For an exponential dilaton potential, the exact classical and quantum solutions in the commutative and noncommutative cases, and some approximate analytical solutions in the case of GUP, are presented and compared.

  20. Modulus stabilization in higher curvature dilaton gravity

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Mitra, Joydip; SenGupta, Soumitra

    2014-08-01

    We propose a framework of modulus stabilization in two brane warped geometry scenario in presence of higher curvature gravity and dilaton in bulk space-time. In the prescribed setup we study various features of the stabilized potential for the modulus field, generated by a bulk scalar degrees of freedom with quartic interactions localized on the two 3-branes placed at the orbifold fixed points. We determine the parameter space for the gravidilaton and Gauss-Bonnet couplings required to stabilize the modulus in such higher curvature dilaton gravity setup.

  1. Quantum naked singularities in 2D dilaton gravity

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo; Witten, Louis

    1997-02-01

    Roughly speaking, naked singularities are singularities that may be seen by timelike observers. The Cosmic Censorship conjecture forbids their existence by stating that a reasonable system of energy will not, under reasonable conditions, collapse into a naked singularity. There are however many (classical) counter-examples to this conjecture in the literature. We propose a defense of the conjecture through the quantum theory. We will show that the Hawking effect and the accompanying back reaction, when consistently applied to naked singularities in two-dimensional models of dilaton gravity with matter and a cosmological constant, prevent their formation by causing them to explode or to emit radiation catastrophically. This contrasts with black holes which radiate slowly. If this phenomenon is reproduced in the four-dimensional world, the radiation accompanying the formation of naked singularities should have observable consequences.

  2. First law of black Saturn thermodynamics

    SciTech Connect

    Rogatko, Marek

    2007-06-15

    The physical process version and equilibrium state version of the first law of thermodynamics for a black object consisting of n-dimensional charged stationary axisymmetric black hole surrounded by a black rings, the so-called black Saturn, was derived. The general setting for our derivations is n-dimensional dilaton gravity with p+1 strength form fields.

  3. Spherical and planar three-dimensional anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Zanchin, Vilson T.; Miranda, Alex S.

    2004-02-01

    The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein Maxwell dilaton theory was built from the usual four-dimensional (4D) Einstein Maxwell Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner Nordström AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail.

  4. Effects of turbulent viscosity on a rotating gas ring around a black hole: Results of numerical simulations

    NASA Astrophysics Data System (ADS)

    Giri, K.; Chang, H.-K.

    2015-12-01

    In this paper, we present the time evolution of a rotationally axisymmetric gas ring around a non rotating black hole using two dimensional grid-based hydrodynamics simulations. We show the way in which angular momentum transport is included in simulations of non-selfgravitating accretion of matter towards a black hole. We use the Shakura-Sunyaev α viscosity prescription to estimate the turbulent viscosity for all major viscous stress tensors. We investigate how a gas ring which is initially assumed to rotate with Keplerian angular velocity is accreted onto a black hole and hence forms an accretion disc in the presence of turbulent viscosity. We show that a centrifugally pressure supported sub-Keplerian flow with shocks forms when the ring starts to disperse with inclusion of relatively small amount of viscosity. But, if the viscosity is above the critical value, the shock disappears altogether and the whole disc becomes Keplerian which is subsonic everywhere except in a region close to the horizon, where it supersonically enters to the black hole. We discovered a multiple valued Mach number solution and the corresponding density distributions that connect matter (a) from the initial Keplerian gas ring to a sub-Keplerian disc with shocks in presence of small amount of viscosity and (b) from the sub-Keplerian flow to a Keplerian disc in presence of huge amount of viscosity. We calculate the temporal variations of the magnitude of various time scales which ensure us about the stability of the flow.

  5. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Hang; Meng, Xin-he

    2016-08-01

    In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d > 4 with at least one rotation parameter ai = 0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d > 4) and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  6. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  7. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole

    NASA Astrophysics Data System (ADS)

    Frolov, Valery P.; Thorne, Kip S.

    1989-04-01

    The renormalized expectation value of the stress-energy tensor ren of a quantum field in an arbitrary quantum state near the future horizon of a rotating (Kerr) black hole is derived in two very different ways: One derivation (restricted for simplicity to a massless scalar field) makes use of traditional techniques of quantum field theory in curved spacetime, augmented by a variant of the ``η formalism'' for handling superradiant modes. The other derivation (valid for any quantum field) uses the equivalence principle to infer, from ren in flat spacetime, what must be ren near the hole's horizon. The two derivations give the same result-a result in accord with a previous conjecture by Zurek and Thorne: ren, in any quantum state, is equal to that, ZAMO, which zero-angular-momentum observers (ZAMO's) would compute from their own physical measurements near the horizon, plus a vacuum-polarization contribution Tvac polμν, which is the negative of the stress-energy of a rigidly rotating thermal reservoir with angular velocity equal to that of the horizon ΩH, and (red-shifted) temperature equal to that of the Hawking temperature TH. A discussion of the conditions of validity for equivalence-principle arguments reveals that curvature-coupling effects (of which the equivalence principle is unaware) should produce fractional corrections of order α2≡(surface gravity of hole)2×(distance to horizon)2 to Tvac polμν and since gravitational blue-shifts cause the largest components of Tvac polμν in the proper reference frame of the ZAMO's to be of O(α-2), curvature-coupling effects in Tvac polμν and thence in ren are of O(α0) in the ZAMO frame. It is shown, by a quantum-field-theory derivation of the density matrix, that in the Hartle-Hawking vacuum the near-horizon ZAMO's see a thermal reservoir with angular velocity ΩH and temperature TH whose thermal stress-energy ZAMO gets renormalized away by Tvac pol

  8. A Particle Probing Thermodynamics in Rotating AdS Black Hole

    NASA Astrophysics Data System (ADS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-07-01

    We briefly review the thermodynamics of a probe particle absorption to a black hole in this proceeding. The particle energy has a relation to its momenta at the horizon of the black hole. Following this relation, the particle infinitesimally changes the black hole mass and momenta. Under these changes, the changes of properties of the black hole are consistent with the laws of thermodynamics.

  9. Biomass production and water use of Black Locust (Robinia pseudoacacia L.) for short-rotation plantation

    NASA Astrophysics Data System (ADS)

    Mantovani, D.; Veste, M.; Freese, D.

    2012-04-01

    The early successional tree species Robinia pseudoacacia L. demonstrates a high potential for biomass production in short rotation plantations and agroforestry systems. On marginal lands and recultivated areas, often characterized by poor edaphic conditions, black locust is already successfully cropped. In southern Brandenburg (East Germany), vast areas have been exploited for lignite open cast mining and the outcome is a drastic alteration of the top soil layer and subsurface geological structure, causing a radical change of the hydrologic cycle. Soil poor in nutrient and carbon, combined with low rainfall, limits the reclamation of these areas and their use for conventional agriculture. However, promising results have been obtained by the establishment of black locust for bioenergy production. For the evaluation of the black locust growth potential in southern Brandenburg with its sandy soils and low annual mean rainfall, detailed information about the link between growth, transpiration and soil water availability are needed. Therefore, we determined the biomass-transpiration relation and formulated the equation that describes the intertwined interaction between water use and biomass production. The equation will be integrated into mathematical tools. To reduce the numerous environmental variables involved in field experiments, we grew black locust under semi-controlled environmental conditions by using wick lysimeters. The lysimeters were filled with sandy loam soil and water was supplied solely by an automatic irrigation system in relation to the volumetric soil water content (7%, 10%, and 14%). Rainfall is excluded by a light transmissive roof. Water use efficiency (WUE) at whole plant level is evaluated by the ratio between the biomass produced during the vegetation period and the cumulative daily water use. The study encompasses ecophysiological investigations of the gas exchange (H2O and CO2) on single leaves, to evaluate the influence of the stomata

  10. Extreme luminosities in ejecta produced by intermittent outflows around rotating black holes

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2015-02-01

    Extreme sources in the Transient Universe show evidence of relativistic outflows from intermittent inner engines, such as cosmological gamma-ray bursts (GRBs). They probably derive from rotating back holes interacting with surrounding matter. We show that these interactions are enhanced inversely proportional to the duty cycle in advection of magnetic flux, as may apply at high accretion rates. We demonstrate the morphology and ballistic propagation of relativistic ejecta from burst outflows by numerical simulations in relativistic magnetohydrodynamics. Applied to stellar mass black holes in core-collapse of massive stars, it provides a robust explosion mechanism as a function of total energy output. At breakout, these ejecta may produce a low-luminosity GRB. A long GRB may ensue from an additional ultrarelativistic baryon-poor inner jet from a sufficiently long-lived intermittent inner engine. The simulations demonstrate a complex geometry in mergers of successive ejecta, whose mixing and shocks provide a pathway to broad-band high-energy emission from magnetic reconnection and shocks.

  11. Massive Vector Particles Tunneling from the Neutral Rotating Anti-de Sitter Black Holes in Conformal Gravity

    NASA Astrophysics Data System (ADS)

    Li, Ran; Zhao, Jun-Kun

    2016-04-01

    We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter (AdS) black holes in conformal gravity by using the tunneling method. It is well known that the dynamics of massive vector particles are governed by the Proca field equation. Applying WKB approximation to the Proca equation, the tunneling probabilities and radiation spectrums of the emitted particles are derived. Hawking temperature of the neutral rotating AdS black holes in conformal gravity is recovered, which is consistent with the previous result in the literature. Supported by the National Natural Science Foundation of China under Grant No. 11205048, and the Foundation for Young Key Teacher of Henan Normal University

  12. Analogs of the double-Reissner-Nordstroem solution in magnetostatics and dilaton gravity: Mathematical description and basic physical properties

    SciTech Connect

    Manko, V. S.; Sanchez-Mondragon, J.; Ruiz, E.

    2009-04-15

    In this paper we consider a magnetic analog of the double-Reissner-Nordstroem solution and construct the corresponding magnetic potential A{sub {phi}} in the explicit form. The behavior of the resulting solution under the Harrison transformation then naturally singles out the asymmetric black diholes--configurations composed of two nonextreme black holes possessing unequal masses, and charges equal in magnitude but opposite in sign - as its most general subclass for which equilibrium of the black-hole constituents can be achieved with the aid of the external magnetic (or electric) field. We also generalize the double-Reissner-Nordstroem solution to dilaton gravity with arbitrary dilaton coupling, yielding the four-dimensional double-Gibbons-Maeda spacetime. The study of some physical properties of the solutions obtained leads, in particular, to very simple formulas for the areas of the horizons and surface gravities.

  13. Fermions tunneling of higher-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, ShuZheng

    2009-04-01

    The 1/2 spin fermions tunneling at the horizon of n-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter is researched via semi-classical approximation method, and the Hawking temperature and fermions tunneling rate are obtained in this Letter. Using a new method, the semi-classical Hamilton-Jacobi equation is gotten from the Dirac equation in this Letter, and the work makes several quantum tunneling theories more harmonious.

  14. Time Evolution of a Rotating Gas Ring around a Black Hole in Presence of Viscosity and Cooling

    NASA Astrophysics Data System (ADS)

    Giri, Kinsuk

    2016-07-01

    We investigate the flow dynamics of a rotating gas ring around a black hole in presence of turbulent viscosity and also cooling. We find that the matter of the initial gas ring starts to move inwards as the viscosity is enhanced. The so called centrifugal pressure supported sub-Keplerian flow with shocks forms in our simulation when the ring starts to disperse with inclusion of relatively small amount of viscosity. But, when the value of viscosity parameter is reasonably large, the accreting matter reaches up to marginally stable orbit which is close to the black hole and the whole disc becomes roughly Keplerian. The variation of shock's nature due to change of the magnitude of viscosity and also the variation of disc nature due the cooling processes may play an important role to study the temporal and spectral properties of the black hole candidates.

  15. Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation

    SciTech Connect

    Sekiguchi, Yu-ichirou; Shibata, Masaru

    2005-04-15

    We perform axisymmetric simulations for gravitational collapse of a massive iron core to a black hole in full general relativity. The iron cores are modeled by {gamma}=4/3 equilibrium polytrope for simplicity. The hydrodynamic equations are solved using a high-resolution shock-capturing scheme with a parametric equation of state. The Cartoon method is adopted for solving the Einstein equations. Simulations are performed for a wide variety of initial conditions changing the mass ({approx_equal}2.0-3.0M{sub {center_dot}}), the angular momentum, the rotational velocity profile of the core, and the parameters of the equations of state which are chosen so that the maximum mass of the cold spherical polytrope is {approx_equal}1.6M{sub {center_dot}}. Then, the criterion for the prompt black hole formation is clarified in terms of the mass and the angular momentum for several rotational velocity profile of the core and equations of state. It is found that (i) with the increase of the thermal energy generated by shocks, the threshold mass for the prompt black hole formation is increased by 20-40%, (ii) the rotational centrifugal force increases the threshold mass by < or approx. 25%, (iii) with the increase of the degree of differential rotation, the threshold mass is also increased, and (iv) the amplification factors shown in the results (i)-(iii) depend sensitively on the equation of state. We also find that the collapse dynamics and the structure of the shock formed at the bounce depend strongly on the stiffness of the adopted equation of state. In particular, as a new feature, a strong bipolar explosion is observed for the collapse of rapidly rotating iron cores with an equation of state which is stiff in subnuclear density and soft in supranuclear density. Gravitational waves are computed in terms of a quadrupole formula. It is also found that the waveform depends sensitively on the equations of state.

  16. Dilaton cosmology and the modified uncertainty principle

    NASA Astrophysics Data System (ADS)

    Majumder, Barun

    2011-09-01

    Very recently Ali et al. (2009) proposed a new generalized uncertainty principle (with a linear term in Plank length which is consistent with doubly special relativity and string theory. The classical and quantum effects of this generalized uncertainty principle (termed as modified uncertainty principle or MUP) are investigated on the phase space of a dilatonic cosmological model with an exponential dilaton potential in a flat Friedmann-Robertson-Walker background. Interestingly, as a consequence of MUP, we found that it is possible to get a late time acceleration for this model. For the quantum mechanical description in both commutative and MUP framework, we found the analytical solutions of the Wheeler-DeWitt equation for the early universe and compare our results. We have used an approximation method in the case of MUP.

  17. Conformal anomaly actions for dilaton interactions

    NASA Astrophysics Data System (ADS)

    Delle Rose, Luigi; Marzo, Carlo; Serino, Mirko

    2014-11-01

    We discuss, in conformally invariant field theories such as QCD with massless fermions, a possible link between the perturbative signature of the conformal anomaly, in the form of anomaly poles of the 1-particle irreducible effective action, and its descrip- tion in terms of Wess-Zumino actions with a dilaton. The two descriptions are expected to capture the UV and IR behaviour of the conformal anomaly, in terms of fundamental and effective degrees of freedom respectively, with the dilaton effective state appearing in a nonlinear realization. As in the chiral case, conformal anomalies seem to be related to the appearance of these effective interactions in the 1PI action in all the gauge-invariant sectors of the Standard Model. We show that, as a consequence of the underlying anomalous symmetry, the infinite hierarchy of recurrence relations involving self-interactions of the dilaton is entirely determined only by the first four of them. This relation can be generalized to any even space-time dimension.

  18. Line Emission from an Accretion Disk Around a Rotating Black Hole: Toward a Measurement of Frame Dragging

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.

    1997-01-01

    Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.

  19. Entropy spectrum of dimensional stringy black holes

    NASA Astrophysics Data System (ADS)

    Suresh, Jishnu; Kuriakose, V. C.

    2015-05-01

    We explore the entropy spectrum of dimensional dilatonic stringy black holes via the adiabatic invariant integral method known as Jiang and Han's method (Phys Lett B 718:584, 2012) and the Bohr-Sommerfeld quantization rule. It is found that the corresponding spectrum depends on black hole parameters like charge, ADM mass, and, more interestingly, on the dilatonic field. We calculate the entropy of the present black hole system via the Euclidean treatment of quantum gravity and study the thermodynamics of the black hole and find that the system does not undergo any phase transition.

  20. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    SciTech Connect

    Stettler, R.F.; Hinckley, T.M.; Heilman, P.E.; Bradshaw, H.D. Jr.

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  1. Estimation of biological nitrogen fixation by black locust in short-rotation forests using natural 15N abundance method

    NASA Astrophysics Data System (ADS)

    Veste, M.; Böhm, C.; Quinckenstein, A.; Freese, D.

    2012-04-01

    The importance of short rotation forests and agroforestry systems for woody biomass production for bioenergy will increase in Central Europe within the next decades. In this context, black locust (Robinia pseudoacacia) has a high growth potential especially at marginal, drought-susceptible sites such as occur in Brandenburg State (Eastern Germany). As a pioneer tree species black locust grows under a wide range of site conditions. The native range of black locust in Northern America is classified by a humid to sub-humid climate with a mean annual precipitation of 1020 to 1830 mm. In Central and Eastern Europe, this species is cultivated in a more continental climate with an annual precipitation often below 600 mm. Therefore, black locust is known to be relatively drought tolerant compared to other temperate, deciduous tree species. Because of its N2-fixation ability black locust plays generally an important role for the improvement of soil fertility. This effect is of particular interest at marginal sites in the post-mining landscapes. In order to estimate the N2-fixation potential of black locust at marginal sites leaf samples were taken from black locust trees in short rotation plantations planted between 1995 and 2007 in post-mining sites south of Cottbus (Brandenburg, NE Germany). The variation of the natural 15N abundance was measured to evaluate the biological nitrogen fixation. The nitrogen derived from the atmosphere can be calculated using a two-pool model from the quotient of the natural 15N abundances of the N2-fixing plant and the plant available soil N. Because representatively determining the plant available soil N is difficult, a non-N2-fixing reference plant growing at the same site with a similar root system and temporal N uptake pattern to the N2-fixing plant is often used. In our case we used red oak (Quercus rubra) as a reference. The average nitrogen content in the leaves of black locust ranged from 3.1% (C/N 14.8) in 15 years old trees to 3

  2. D instanton on the linear-dilaton background

    SciTech Connect

    Gal'tsov, D. V. Orlov, D. G. Klevtsov, S. E.

    2007-09-15

    It is shown that, in addition to a standard asymptotically flat D instanton, IIB superstring theory contains an instanton-type excitation on the linear-dilaton background. The new solution is asymptotically flat, but the dilaton grows linearly at infinity. The total action of this configuration diverges, but the instanton action proper becomes finite upon subtracting an infinite background contribution.

  3. Microscopic entropy of the three-dimensional rotating black hole of Bergshoeff-Hohm-Townsend massive gravity

    SciTech Connect

    Giribet, Gaston; Oliva, Julio; Tempo, David; Troncoso, Ricardo

    2009-12-15

    Asymptotically anti-de Sitter rotating black holes for the Bergshoeff-Hohm-Townsend massive gravity theory in three dimensions are considered. In the special case when the theory admits a unique maximally symmetric solution, apart from the mass and the angular momentum, the black hole is described by an independent 'gravitational hair' parameter, which provides a negative lower bound for the mass. This bound is saturated at the extremal case, and since the temperature and the semiclassical entropy vanish, it is naturally regarded as the ground state. The absence of a global charge associated with the gravitational hair parameter reflects itself through the first law of thermodynamics in the fact that the variation of this parameter can be consistently reabsorbed by a shift of the global charges, giving further support to consider the extremal case as the ground state. The rotating black hole fits within relaxed asymptotic conditions as compared with the ones of Brown and Henneaux, such that they are invariant under the standard asymptotic symmetries spanned by two copies of the Virasoro generators, and the algebra of the conserved charges acquires a central extension. Then it is shown that Strominger's holographic computation for general relativity can also be extended to the Bergshoeff-Hohm-Townsend theory; i.e., assuming that the quantum theory could be consistently described by a dual conformal field theory at the boundary, the black hole entropy can be microscopically computed from the asymptotic growth of the number of states according to Cardy's formula, in exact agreement with the semiclassical result.

  4. Short Rotation Woody Crops Program. Quarterly progress report, March 1-May 31, 1985. [Sycamore, alders, black locust, larch, poplars, saltbush

    SciTech Connect

    Wright, L.L.; Perlack, R.D.; Wenzel, C.R.; Trimble, J.L.; Ranney, J.W.

    1985-08-01

    This report covers the progress of the Short Rotation Woody Crops Program (SRWCP) during the third quarter of fiscal year 1985. This report summarizes ORNL management activities, technical activities at ORNL and subcontract institutions, and the technology transfer that is occurring as a result of subcontractor and ORNL activities. Third-year results of a nutrient utilization study confirmed that there were no benefits to quarterly fertilization with urea nitrogen. Testing of one prototype short-rotation intensive culture harvester was conducted on a sycamore plantation on Scott Paper Company land in southern Alabama. Coppice yields of European black alder reported by Iowa State University indicate potential productivity of about 7.2 dry Mg . ha/sup -1/ . year/sup -1/ if the best trees are selected. Coppice yields were more than double first-rotation yields. About 31,000 black locust and larch trees were established in 12 genetic tests at 4 sites in Michigan. Seedling rotation productivity rates of 4-year-old hybrid poplar, based on harvest data, were reported by Pennsylvania State University. Rates varied from 4.8 dry Mg . ha/sup -1/ . year/sup -1/ to 10.7 dry Mg . ha/sup -1/ . year/sup -1/, depending on site, management strategy, and planting year. An efficient method for in vitro micropropagation of elite genotypes of fourwing saltbush was developed by Plant Resources Institute. A new study to evaluate yield/density relationships was established by the USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Dissertation research on the crown geometry of plantation-grown American sycamore was completed.

  5. A no-short scalar hair theorem for rotating Kerr black holes

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2016-06-01

    If a black hole has hair, how short can this hair be? A partial answer to this intriguing question was recently provided by the ‘no-short hair’ theorem which asserts that the external fields of a spherically symmetric electrically neutral hairy black-hole configuration must extend beyond the null circular geodesic which characterizes the corresponding black-hole spacetime. One naturally wonders whether the no-short hair inequality {r}{hair}\\gt {r}{null} is a generic property of all electrically neutral hairy black-hole spacetimes. In this paper we provide evidence that the answer to this interesting question may be positive. In particular, we prove that the recently discovered cloudy Kerr black-hole spacetimes—non-spherically symmetric non-static black holes which support linearized massive scalar fields in their exterior regions—also respect this no-short hair lower bound. Specifically, we analytically derive the lower bound {r}{field}/{r}+\\gt {r}+/{r}- on the effective lengths of the external bound-state massive scalar clouds (here {r}{field} is the peak location of the stationary bound-state scalar fields and r ± are the horizon radii of the black hole). Remarkably, this lower bound is universal in the sense that it is independent of the physical parameters (proper mass and angular harmonic indices) of the exterior scalar fields. Our results suggest that the lower bound {r}{hair}\\gt {r}{null} may be a general property of asymptotically flat electrically neutral hairy black-hole configurations.

  6. Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole: Effects of Black Hole Absorption

    NASA Astrophysics Data System (ADS)

    Tagoshi, H.; Mano, S.; Takasugi, E.

    Gravitational waves from coalescing compact binaries are the most promising candidates which will be able to be detected by the near-future, ground based laser interferometric gravitational wave detectors such as LIGO, VIRGO, TAMA, GEO600 etc. The standard method to calculate inspiraling wave forms from coalescing binaries is the post-Newtonian expansion of the Einstein equations, in which the orbital velocity v of binaries is assumed to be small compared to the speed of light. Then, we calculate the post-Newtonian expansion of the gravitational wave luminosities from a test particle in circular orbit around a rotating black hole. We consider both the gravitational wave at infinity and the black hole absorption of the wave. The calculation is based on the post-Newtonian Techniques for the Teukolsky equation. This calculation is limited to cases when one star is a test particle. However, we can calculate the very high orders of the post-Newtonian expansion in this case. Then these calculation is very helpful for the more general calculations of the post-Newtonian expansion. Using the results, we discuss the convergence property of the post-Newtonian expansion. We also discuss the effects of those high order post-Newtonian effect of gravitational wave emission to the orbital evolution of coalescing compact binaries.

  7. Dilaton stabilization in three-generation heterotic string model

    NASA Astrophysics Data System (ADS)

    Beye, Florian; Kobayashi, Tatsuo; Kuwakino, Shogo

    2016-09-01

    We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.

  8. Fermions tunneling from rotating stationary Kerr black hole with electric charge and magnetic charge

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Yang, Shu-Zheng

    2010-06-01

    In this paper, the method of semi-classical fermion tunneling is extended to explore the fermion tunneling behavior of a Kerr-Newman-Kasuya black hole. Thus, the Hamilton-Jacobi equation in Kerr-Newman-Kasuya space-time is derived by the method presented in Refs. Lin and Yang (2009) [24-26], the Hawking temperature at the horizon and the tunneling probability of spin- 1/2 fermions are finally obtained following the semi-classical quantum equation. The results indicate the common features of this black hole.

  9. General parametrization of axisymmetric black holes in metric theories of gravity

    NASA Astrophysics Data System (ADS)

    Konoplya, Roman; Rezzolla, Luciano; Zhidenko, Alexander

    2016-03-01

    Following previous work of ours in spherical symmetry, we here propose a new parametric framework to describe the spacetime of axisymmetric black holes in generic metric theories of gravity. In this case, the metric components are functions of both the radial and the polar angular coordinates, forcing a double expansion to obtain a generic axisymmetric metric expression. In particular, we use a continued-fraction expansion in terms of a compactified radial coordinate to express the radial dependence, while we exploit a Taylor expansion in terms of the cosine of the polar angle for the polar dependence. These choices lead to a superior convergence in the radial direction and to an exact limit on the equatorial plane. As a validation of our approach, we build parametrized representations of Kerr, rotating dilaton, and Einstein-dilaton-Gauss-Bonnet black holes. The match is already very good at lowest order in the expansion and improves as new orders are added. We expect a similar behavior for any stationary and axisymmetric black-hole metric.

  10. Improved fast-rotating black hole evolution simulations with modified Baumgarte-Shapiro-Shibata-Nakamura formulation

    NASA Astrophysics Data System (ADS)

    Yo, Hwei-Jang; Cao, Zhoujian; Lin, Chun-Yu; Pan, Hsing-Po

    2015-07-01

    Different formulations of Einstein's equations used in numerical relativity can affect not only the stability but also the accuracy of numerical simulations. In the original Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation, the loss of the angular momentum, J , is non-negligible in highly spinning single black hole evolutions. This loss also appears, usually right after the merger, in highly spinning binary black hole simulations, The loss of J may be attributed to some unclear numerical dissipation. Reducing unphysical dissipation is expected to result in more stable and accurate evolutions. In the previous work [H.-J. Yo et al., Phys. Rev. D 86, 064027 (2012).] we proposed several modifications which are able to prevent black hole evolutions from the unphysical dissipation, and the resulting simulations are more stable than in the traditional BSSN formulation. Specifically, these three modifications (M1, M2, and M3) enhance the effects of stability, hyperbolicity, and dissipation of the formulation. We experiment further in this work with these modifications, and demonstrate that these modifications improve the accuracy and also effectively suppress the loss of J , particularly in the black hole simulations with an initially large ratio of J and a square of the ADM mass.

  11. Proposal for a geophysical search for dilatonic waves

    SciTech Connect

    Shiomi, Sachie

    2008-08-15

    We propose a new method of searching for the composition-dependent dilatonic waves, predicted by unified theories of strings. In this method, Earth's surface-gravity changes due to translational motions of its inner core, excited by dilatonic waves, are searched for by using superconducting gravimeters. This method has its best sensitivity at the frequency of {approx}7x10{sup -5} Hz, which is lower than the sensitive frequencies of previous proposals using gravitational wave detectors: {approx}10 to 1000 Hz. Using available results of surface-gravity measurements with superconducting gravimeters and assuming a simple Earth model, we present preliminary upper limits on the energy density of a stochastic background of massless dilatons at the low frequency. Though the results are currently limited by the uncertainty in the Earth model, this method has a potential of detecting dilatonic waves in a new window.

  12. Dilatonic non-linear sigma models and Ricci flow extensions

    NASA Astrophysics Data System (ADS)

    Carfora, M.; Marzuoli, A.

    2016-09-01

    We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.

  13. Light-front holographic QCD with generic dilaton profile

    NASA Astrophysics Data System (ADS)

    Guo, Zhaoheng; Liu, Tianbo; Ma, Bo-Qiang

    2016-04-01

    We generalize the soft-wall and hard-wall models to a light-front holographic QCD model with a generic dilaton profile. The effective potential induced by a higher power dilaton profile is interpreted as a stronger color confinement at long distance, and it gradually evolves to the hard-wall model when the power increases to infinity. As an application, we investigate the exotic meson states recently discovered in experiments in the generic soft-wall model with a higher power dilaton profile, and the results are in agreement with the spectra of the exotic mesons. Our calculation indicates a weaker interaction at short distance and a stronger interaction at large distance for the components in the exotic mesons. The generic dilaton profile deserves further scrutiny for understanding the strong interaction and for applications.

  14. Binaries of massive black holes in rotating clusters: dynamics, gravitational waves, detection and the role of eccentricity

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, P.; Eichhorn, C.; Porter, E. K.; Spurzem, R.

    2010-02-01

    The dynamical evolution of binaries of intermediate-mass black holes (IMBHs; massive black holes with a mass ranging between 102 and 104Msolar) in stellar clusters has recently received an increasing amount of attention. This is at least partially due to the fact that if the binary is hard enough to evolve to the phase at which it will start emitting gravitational waves (GWs) efficiently, there is a good probability that it will be detectable by future space-borne detectors like Laser Interferometer Space Antenna. We study this evolution in the presence of rotation in the cluster by carrying out a series of simulations of an equal-mass binary of IMBHs embedded in a stellar distribution with different rotational parameters. The survey indicates that eccentricities and inclinations are primarily determined by the initial conditions of the IMBHs and the influence of dynamical friction, even though they are finally perturbed by the scattering of field stars. In particular, the eccentricity is strongly connected to the initial IMBHs velocities, and values of ~0.7 up to 0.9 are reached for low initial velocities, while almost circular orbits result if the initial velocities are increased. Evidence suggests a dependency of the eccentricity on the rotation parameter. We found only weak changes in the inclination, with slight variations of the orientation of the angular momentum vector of the binary. Counter-rotation simulations yield remarkably different results in eccentricity. A Monte Carlo study indicates that these sources will be detectable by a detector such as Laser Interferometer Space Antenna (LISA) with median signal-to-noise ratios (SNR) of between 10 and 20 over a three-year period, although some events had SNR of 300 or greater. Furthermore, one should also be able to estimate the chirp mass with median fractional errors of 10-4, reduced mass of the order of 10-3 and luminosity distance of the order of 10-1. Finally, these sources will have a median angular

  15. Class of Einstein-Maxwell-dilaton-axion space-times

    SciTech Connect

    Matos, Tonatiuh; Miranda, Galaxia; Sanchez-Sanchez, Ruben; Wiederhold, Petra

    2009-06-15

    We use the harmonic maps ansatz to find exact solutions of the Einstein-Maxwell-dilaton-axion (EMDA) equations. The solutions are harmonic maps invariant to the symplectic real group in four dimensions Sp(4,R){approx}O(5). We find solutions of the EMDA field equations for the one- and two-dimensional subspaces of the symplectic group. Specially, for illustration of the method, we find space-times that generalize the Schwarzschild solution with dilaton, axion, and electromagnetic fields.

  16. EXTREMAL ENERGY SHIFTS OF RADIATION FROM A RING NEAR A ROTATING BLACK HOLE

    SciTech Connect

    Karas, VladimIr; Sochora, Vjaceslav

    2010-12-20

    Radiation from a narrow circular ring shows a characteristic double-horn profile dominated by photons having energy around the maximum or minimum of the allowed range, i.e., near the extremal values of the energy shift. The energy span of a spectral line is a function of the ring radius, black hole spin, and observer's viewing angle. We describe a useful approach to calculate the extremal energy shifts in the regime of strong gravity. Then we consider an accretion disk consisting of a number of separate nested annuli in the equatorial plane of a Kerr black hole, above the innermost stable circular orbit. We suggest that the radial structure of the disk emission could be reconstructed using the extremal energy shifts of the individual rings deduced from the broad wings of a relativistic spectral line.

  17. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Krtouš, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the “Killing tower” of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  18. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    SciTech Connect

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-15

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  19. Non-axisymmetric relativistic wind accretion with velocity gradients on to a rotating black hole

    NASA Astrophysics Data System (ADS)

    Cruz-Osorio, A.; Lora-Clavijo, F. D.

    2016-08-01

    We model, for the first time, the Bondi-Hoyle accretion of a fluid with velocity gradients on to a Kerr black hole, by numerically solving the fully relativistic hydrodynamics equations. Specifically, we consider a supersonic ideal gas, which has velocity gradients perpendicular to the relative motion. We measure the mass and specific angular accretion rates to illustrate whether the fluid presents unstable patterns or not. The initial parameters, we consider in this work, are the velocity gradient ɛv, the black hole spin a, the asymptotic Mach number M_{∞} and adiabatic index Γ. We show that the flow accretion reaches a fairly stationary regime, unlike in the Newtonian case, where significant fluctuations of the mass and angular momentum accretion rates are found. On the other hand, we consider a special case where both density and velocity gradients of the fluid are taken into account. The spin of the black hole and the asymptotic Newtonian Mach number, for this case, are a = 0.98 and M_{∞}=1, respectively. A kind of flip-flop behaviour is found at the early times; nevertheless, the system also reaches a steady state.

  20. Non-axisymmetric relativistic wind accretion with velocity gradients on to a rotating black hole

    NASA Astrophysics Data System (ADS)

    Cruz-Osorio, A.; Lora-Clavijo, F. D.

    2016-08-01

    We model, for the first time, the Bondi-Hoyle accretion of a fluid with velocity gradients onto a Kerr black hole, by numerically solving the fully relativistic hydrodynamics equations. Specifically, we consider a supersonic ideal gas, which has velocity gradients perpendicular to the relative motion. We measure the mass and specific angular accretion rates to illustrate whether the fluid presents unstable patterns or not. The initial parameters, we consider in this work, are the velocity gradient $\\epsilon_{v}$, the black hole spin $a$, the asymptotic Mach number ${\\cal M}_{\\infty}$ and adiabatic index $\\Gamma$. We show that the flow accretion reaches a fairly stationary regime, unlike in the Newtonian case, where significant fluctuations of the mass and angular momentum accretion rates are found. On the other hand, we consider a special case where both density and velocity gradients of the fluid are taken into account. The spin of the black hole and the asymptotic Newtonian Mach number, for this case, are $a=0.98$ and ${\\cal M}_{\\infty}=1$, respectively. A kind of flip-flop behavior is found at the early times; nevertheless, the system also reaches a steady state.

  1. Numerical parameter survey of non-radiative black hole accretion: flow structure and variability of the rotation measure

    NASA Astrophysics Data System (ADS)

    Pang, Bijia; Pen, Ue-Li; Matzner, Christopher D.; Green, Stephen R.; Liebendörfer, Matthias

    2011-08-01

    We conduct a survey of numerical simulations to probe the structure and appearance of non-radiative black hole accretion flows like the supermassive black hole at the Galactic Centre. We find a generic set of solutions, and make specific predictions for currently feasible rotation measure (RM) observations, which are accessible to current instruments including the Expanded Very Large Array (EVLA), Giant Metrewave Radio Telescope (GMRT) and Atacama Large Millimeter Array (ALMA). The slow time variability of the RM is a key quantitative signature of this accretion flow. The time variability of RM can be used to quantitatively measure the nature of the accretion flow, and to differentiate models. Sensitive measurements of RM can be achieved using RM synthesis or using pulsars. Our energy conserving ideal magnetohydrodynamical simulations, which achieve high dynamical range by means of a deformed-mesh algorithm, stretch from several Bondi radii to about one-thousandth of that radius, and continue for tens of Bondi times. Magnetized flows which lack outward convection possess density slopes around -1, almost independent of physical parameters, and are more consistent with observational constraints than are strongly convective flows. We observe no tendency for the flows to become rotationally supported in their centres, or to develop steady outflow. We support these conclusions with formulae which encapsulate our findings in terms of physical and numerical parameters. We discuss the relation of these solutions to other approaches. The main potential uncertainties are the validity of ideal magnetohydrodynamic and the absence of a fully relativistic inner boundary condition. The RM variability predictions are testable with current and future telescopes.

  2. Gravitoelectromagnetic perturbations of Kerr-Newman black holes: stability and isospectrality in the slow-rotation limit.

    PubMed

    Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2013-06-14

    The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) ≲ 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory. PMID:25165905

  3. MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY

    SciTech Connect

    Kuo, C. Y.; Asada, K.; Rao, R.; Nakamura, M.; Algaba, J. C.; Liu, H. B.; Inoue, M.; Koch, P. M.; Ho, P. T. P.; Matsushita, S.; Pu, H.-Y.; Nishioka, H.; Pradel, N.; Akiyama, K.

    2014-03-10

    We present the first constraint on the Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M87. By fitting the polarization position angles (χ) observed with the Submillimeter Array at four independent frequencies around ∼230 GHz and interpreting the change in χ as a result of external Faraday rotation associated with accretion flow, we determine the RM of the M87 core to be between –7.5 × 10{sup 5} and 3.4 × 10{sup 5} rad m{sup –2}. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the RM constrains the mass accretion rate M-dot to be below 9.2 × 10{sup –4} M {sub ☉} yr{sup –1} at a distance of 21 Schwarzschild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical advection-dominated accretion flow and prefers the adiabatic inflow-outflow solution or convection-dominated accretion flow for the hot accretion flow in M87.

  4. Counter-rotating stellar discs around a massive black hole: self-consistent, time-dependent dynamics

    NASA Astrophysics Data System (ADS)

    Touma, J. R.; Sridhar, S.

    2012-07-01

    We formulate the collisionless Boltzmann equation for dense star clusters that lie within the radius of influence of a massive black hole in galactic nuclei. Our approach to these nearly Keplerian systems follows that of Sridhar & Touma: Delaunay canonical variables are used to describe stellar orbits and we average over the fast Keplerian orbital phases. The stellar distribution function (DF) evolves on the longer time-scale of precessional motions, whose dynamics is governed by a Hamiltonian, given by the orbit-averaged self-gravitational potential of the cluster. We specialize to razor-thin, planar discs and consider two counter-rotating ('±') populations of stars. To describe discs of small eccentricities, we expand the ± Hamiltonian to fourth order in the eccentricities, with coefficients that depend self-consistently on the ± DFs. We construct approximate ± dynamical invariants and use Jeans' theorem to construct time-dependent ± DFs, which are completely described by their centroid coordinates and shape matrices. When the centroid eccentricities are larger than the dispersion in eccentricities, the ± centroids obey a set of four autonomous equations ordinary differential equations. We show that these can be cast as a two-degree-of-freedom Hamiltonian system which is non-linear, yet integrable. We study the linear instability of initially circular discs and derive a criterion for the counter-rotating instability. We then explore the rich non-linear dynamics of counter-rotating discs, with focus on the variety of steadily precessing eccentric configurations that are allowed. The stability and properties of these configurations are studied as functions of parameters such as the disc mass ratios and angular momentum.

  5. Extended solution space for Chern-Simons gravity: The slowly rotating Kerr black hole

    SciTech Connect

    Cambiaso, Mauro; Urrutia, Luis F.

    2010-11-15

    In the Einstein-Cartan formulation, an iterative procedure to find solutions in nondynamical Chern-Simons gravity in vacuum is proposed. The iterations, in powers of a small parameter {beta} which codifies the Chern-Simons coupling, start from an arbitrary torsionless solution of Einstein equations. With Schwarzschild as the zeroth-order choice, we derive a second-order differential equation for the O({beta}) corrections to the metric, for an arbitrary zeroth-order embedding parameter. In particular, the slowly rotating Kerr metric is an O({beta}) solution in either the canonical or the axial embeddings.

  6. Anti-de Sitter-Space/Conformal-Field-Theory Casimir Energy for Rotating Black Holes

    SciTech Connect

    Gibbons, G.W.; Perry, M.J.; Pope, C.N.

    2005-12-02

    We show that, if one chooses the Einstein static universe as the metric on the conformal boundary of Kerr-anti-de Sitter spacetime, then the Casimir energy of the boundary conformal field theory can easily be determined. The result is independent of the rotation parameters, and the total boundary energy then straightforwardly obeys the first law of thermodynamics. Other choices for the metric on the conformal boundary will give different, more complicated, results. As an application, we calculate the Casimir energy for free self-dual tensor multiplets in six dimensions and compare it with that of the seven-dimensional supergravity dual. They differ by a factor of 5/4.

  7. Formation of Supermassive Black Holes in Galactic Bulges: A Rotating Collapse Model Consistent with the M(sub BH-sigma) Relation

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Graff, David S.; Mbonye, Manasse; Richstone, Douglas O.

    2003-01-01

    Motivated by the observed correlation between black hole masses M(sub BH) and the velocity dispersion sigma of host galaxies, we develop a theoretical model of black hole formation in galactic bulges (this paper generalizes an earlier ApJ Letter). The model assumes an initial state specified by a uniform rotation rate OMEGA and a density distribution of the form rho = a(sup 2)(sub eff)per2piGR(sup 2)(so that a(sub eff)is an effective transport speed). The black hole mass is determined when the centrifugal radius of the collapse flow exceeds the capture radius of the central black hole (for Schwarzschild geometry). This model reproduces the observed correlation between the estimated black hole masses and the velocity dispersions of galactic bulges, i.e., M(sub BH) approximately equal to 10(sup 8) solar mass(sigma per 200 kilometers per second)(sup 4) where sigma = the square root of 2a(sub eff). To obtain this normalization, the rotation rate OMEGA approximately equal to 2 x 10(exp -15) rad per second. The model also defines a bulge mass scale M(sub B). If we identify the scale M(sub B) with the bulge mass, the model determines the ratio mu(sub B) of black hole mass to the host mass: mu(sub B) approximately equal to 0.0024(sigma per 200 kilometer per second), again in reasonable agreement with observed values. In this scenario, supermassive black holes form quickly (in approximately 10(exp 5) yr) and are born rapidly rotating (with a per M approximately 0.9). This paper also shown how these results depend on the assumed initial conditions; the most important quantity is the initial distribution of specific angular momentum in the precollapse state.

  8. Numerical simulations of optically thick accretion onto a black hole. II. Rotating flow

    SciTech Connect

    Fragile, P. Chris; Olejar, Ally; Anninos, Peter

    2014-11-20

    In this paper, we report on recent upgrades to our general relativistic radiation magnetohydrodynamics code, Cosmos++, including the development of a new primitive inversion scheme and a hybrid implicit-explicit solver with a more general M {sub 1} closure relation for the radiation equations. The new hybrid solver helps stabilize the treatment of the radiation source terms, while the new closure allows for a much broader range of optical depths to be considered. These changes allow us to expand by orders of magnitude the range of temperatures, opacities, and mass accretion rates, and move a step closer toward our goal of performing global simulations of radiation-pressure-dominated black hole accretion disks. In this work, we test and validate the new method against an array of problems. We also demonstrate its ability to handle super-Eddington, quasi-spherical accretion. Even with just a single proof-of-principle simulation, we already see tantalizing hints of the interesting phenomenology associated with the coupling of radiation and gas in super-Eddington accretion flows.

  9. Constants of motion for constrained Hamiltonian systems: A particle around a charged rotating black hole

    SciTech Connect

    Igata, Takahisa; Ishihara, Hideki; Koike, Tatsuhiko

    2011-03-15

    We discuss constants of motion of a particle under an external field in a curved spacetime, taking into account the Hamiltonian constraint, which arises from the reparametrization invariance of the particle orbit. As the necessary and sufficient condition for the existence of a constant of motion, we obtain a set of equations with a hierarchical structure, which is understood as a generalization of the Killing tensor equation. It is also a generalization of the conventional argument in that it includes the case when the conservation condition holds only on the constraint surface in the phase space. In that case, it is shown that the constant of motion is associated with a conformal Killing tensor. We apply the hierarchical equations and find constants of motion in the case of a charged particle in an electromagnetic field in black hole spacetimes. We also demonstrate that gravitational and electromagnetic fields exist in which a charged particle has a constant of motion associated with a conformal Killing tensor.

  10. Randall-Sundrum scenario with bulk dilaton and torsion

    SciTech Connect

    Mukhopadhyaya, Biswarup; Sen, Somasri; SenGupta, Soumitra

    2009-06-15

    We consider a string-inspired torsion-dilaton-gravity action in a Randall-Sundrum braneworld scenario and show that, in an effective four-dimensional theory on the visible brane, the rank-2 antisymmetric Kalb-Ramond field (source of torsion) is exponentially suppressed. The result is similar to our earlier result in [B. Mukhopadhyaya, S. Sen, and S. SenGupta, Phys. Rev. Lett. 89, 121101 (2002); Phys. Rev. Lett. 89, 259902(E) (2002)], where no dilaton was present in the bulk. This offers an explanation of the apparent invisibility of torsion in our space-time. However, in this case the trilinear couplings {approx}TeV{sup -1} between the dilaton and torsion may lead to new signals in TeV-scale experiments, bearing the stamp of extra warped dimensions.

  11. Thermodynamics of higher dimensional topological dilation black holes with a power-law Maxwell field

    NASA Astrophysics Data System (ADS)

    Zangeneh, M. Kord; Sheykhi, A.; Dehghani, M. H.

    2015-02-01

    In this paper, we extend the study on the nonlinear power-law Maxwell field to dilaton gravity. We introduce the (n +1 ) -dimensional action in which gravity is coupled to a dilaton and power-law nonlinear Maxwell field, and we obtain the field equations by varying the action. We construct a new class of higher dimensional topological black hole solutions of Einstein-dilaton theory coupled to a power-law nonlinear Maxwell field and investigate the effects of the nonlinearity of the Maxwell source as well as the dilaton field on the properties of the spacetime. Interestingly enough, we find that the solutions exist provided one assumes three Liouville-type potentials for the dilaton field, and in the case of the Maxwell field, one of the Liouville potentials vanishes. After studying the physical properties of the solutions, we compute the mass, charge, electric potential and temperature of the topological dilaton black holes. We also study the thermodynamics and thermal stability of the solutions and disclose the effects of the dilaton field and the power-law Maxwell field on the thermodynamics of these black holes. Finally, we comment on the dynamical stability of the obtained solutions in four dimensions.

  12. [ital N]=2 supersymmetry in two-dimensional dilaton gravity

    SciTech Connect

    Nelson, W.M.; Park, Y. )

    1993-11-15

    Actions for [ital D]=2, [ital N]=2 supergravity coupled to a scalar field are calculated, and it is shown that the most general power-counting renormalizable dilaton gravity action has an [ital N]=2 locally supersymmetric extension. The presence of chiral terms in the action leads one to hope that nonrenormalization theorems similar to those in global SUSY will apply; this would eliminate some of the renormalization ambiguities which plague ordinary bosonic (and [ital N]=1) dilaton gravity. To investigate this, the model is studied in the superconformal gauge, where it is found that one chiral term becomes nonchiral, so that only one term is safe from renormalization.

  13. Generalized dilaton-Maxwell cosmic string and wall solutions

    NASA Astrophysics Data System (ADS)

    Morris, John R.

    2006-09-01

    The class of static solutions found by Gibbons and Wells for dilaton-electrodynamics in flat spacetime, which describe nontopological strings and walls that trap magnetic flux, is extended to a class of dynamical solutions supporting arbitrarily large, nondissipative traveling waves, using techniques previously applied to global and local topological defects. These solutions can then be used in conjunction with S-duality to obtain more general solitonic solutions for various axidilaton-Maxwell theories. As an example, a set of dynamical solutions is found for axion, dilaton, and Maxwell fields in low energy heterotic string theory using the SL(2,R) invariance of the equations of motion.

  14. N=1 Euler anomaly flow from dilaton effective action

    NASA Astrophysics Data System (ADS)

    Prochazka, Vladimir; Zwicky, Roman

    2016-01-01

    We consider N=1 supersymmetric gauge theories in the conformal window. The running of the gauge coupling is absorbed into the metric by applying a suitable matter superfield- and Weyl-transformation. The computation becomes equivalent to one of a free theory in a curved background carrying the information of the renormalisation group flow. We use the techniques of conformal anomaly matching and dilaton effective action, by Komargodski and Schwimmer, to rederive the difference of the Euler anomaly coefficient Δ a ≡ a UV - a IR for the N=1 theory. The structure of Δ a is therefore in one-to-one correspondence with the Wess-Zumino dilaton action.

  15. Collapse of charged scalar field in dilaton gravity

    SciTech Connect

    Borkowska, Anna; Rogatko, Marek; Moderski, Rafal

    2011-04-15

    We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.

  16. Magnetic branes in (n+1)-dimensional Einstein-Maxwell-dilaton gravity

    SciTech Connect

    Sheykhi, A.; Riazi, N.; Dehghani, M. H.

    2007-02-15

    We construct two new classes of spacetimes generated by spinning and traveling magnetic sources in (n+1)-dimensional Einstein-Maxwell-dilaton gravity with Liouville-type potential. These solutions are neither asymptotically flat nor (A)dS. The first class of solutions which yields a (n+1)-dimensional spacetime with a longitudinal magnetic field and k rotation parameters have no curvature singularity and no horizons, but have a conic geometry. We show that when one or more of the rotation parameters are nonzero, the spinning branes have a net electric charge that is proportional to the magnitude of the rotation parameters. The second class of solutions yields a static spacetime with an angular magnetic field and has no curvature singularity, no horizons, and no conical singularity. Although one may add linear momentum to the second class of solutions by a boost transformation, one does not obtain a new solution. We find that the net electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the magnitude of the velocity of the branes. We also use the counterterm method and calculate the conserved quantities of the solutions.

  17. Model dependence of the multi-transonic behaviour, stability properties and the corresponding acoustic geometry for accretion onto rotating black holes

    NASA Astrophysics Data System (ADS)

    Saha, Sonali; Sen, Sharmistha; Nag, Sankhasubhra; Raychowdhury, Suparna; Das, Tapas K.

    2016-02-01

    Stationary, multi-transonic, integral solutions of hydrodynamic axisymmetric accretion onto a rotating black hole have been compared for different geometrical configurations of the associated accretion disc structures described using the polytropic as well as the isothermal equations of state. Such analysis is performed for accretion under the influence of generalised post Newtonian pseudo Kerr black hole potential. The variations of the stationary shock characteristics with black hole spin have been studied in details for all the disc models and are compared for the flow characterised by the two aforementioned equations of state. Using a novel linear perturbation technique it has been demonstrated that the aforementioned stationary solutions are stable, at least upto an astrophysically relevant time scale. It has been demonstrated that the emergence of the horizon related gravity like phenomena (the analogue gravity effects) is a natural consequence of such stability analysis, and the corresponding acoustic geometry embedded within the transonic accretion can be constructed for the propagation of the linear acoustic perturbation of the mass accretion rate. The analytical expression for the associated sonic surface gravity κ has been obtained self consistently. The variations of κ with the black hole spin parameter for all different geometric configurations of matter and for various thermodynamic equations of state have been demonstrated.

  18. Gravitational waves from a particle in circular orbits around a rotating black hole to the 11th post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Fujita, Ryuichi

    2015-03-01

    We compute the energy flux of the gravitational waves radiated by a particle of mass μ in circular orbits around a rotating black hole of mass M up to the 11th post-Newtonian order (11PN), i.e. v^{22} beyond the leading Newtonian approximation where v is the orbital velocity of the particle [L. Blanchet, Living Rev. Relativity 5, 3 (2002)]. By comparing the PN results for the energy flux with high-precision numerical results in black hole perturbation theory, we find the region of validity in the PN approximation becomes larger with increasing PN order. If one requires the relative error of the energy flux in the PN approximation to be less than 10^{-5}, the energy flux at 11PN (4PN) can be used for v⪉ 0.33 (v ⪉ 0.13). The region of validity can be further extended to v⪉ 0.4 if one applies a resummation method to the energy flux at 11PN. We then compare the orbital phase during a two-year inspiral from the PN results with the high-precision numerical results. We find that, for late (early) inspirals when q≤ 0.3 (q≤ 0.9), where q is the dimensionless spin parameter of the black hole, the difference in the phase is less than 1 (10^{-4}) rad and hence these inspirals may be detected in the data analysis for space detectors such as eLISA/New Gravitational wave Observatory by the PN templates. We also compute the energy flux radiated into the event horizon for a particle in circular orbits around a non-rotating black hole at 22.5PN, i.e. v^{45} beyond the leading Newtonian approximation, which is comparable to the PN order derived in our previous work for the energy flux to infinity at 22PN.

  19. Structures of general relativity in dilaton-Maxwell electrodynamics

    NASA Astrophysics Data System (ADS)

    Kechkin, O. V.; Mosharev, P. A.

    2016-08-01

    It is shown that electro (magneto) static sector of Maxwell’s electrodynamics coupled to the dilaton field in a string theory form possesses the symmetry group of the stationary General Relativity in vacuum. Performing the Ernst formalism, we develope a technique for generation of exact solutions in this modified electrodynamics on the base of the normalized Ehlers symmetry transformation. In the electrostatic case, we construct and study a general class of spherically symmetric solutions that describes a pointlike source of the Coulomb type. It is demonstrated that this source is characterized by finite and singularity-free interaction at short distances. Also it is established that the total electrostatic energy of this source is finite and inversely proportional to the dilaton-Maxwell coupling constant.

  20. String's Current Induced by the Dilatonic Coupling of Gravity

    NASA Astrophysics Data System (ADS)

    Guimarães, Maria E. X.

    The nature of an ordinary cosmic string1 in the framework of a scalar-tensor extension of gravity is investigated. It is shown that in this case, the dilaton field can act as a timelike or a spacelike current traveling along the string, and localized into it2. Apart from the fact that the current can not be formed after the string forming phase transition but exactly at the same time, since the dilaton is not an ordinary scalar field but a component of the gravitational interaction configuration would resemble very much the usual superconducting strings first proposed by Witten3. This means that a network of strings here produced would suffer from the vorton excess problem4, leading to an actual cosmological catastrophe from which one can derive strong constraints on the relevant theories.

  1. Solution of the dilaton problem in open bosonic string theories

    SciTech Connect

    Bern, Z. ); Dunbar, D.C. )

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.

  2. Detailed study of geodesics in the Kerr-Newman-(A)dS spacetime and the rotating charged black hole spacetime in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Soroushfar, Saheb; Saffari, Reza; Kazempour, Sobhan; Grunau, Saskia; Kunz, Jutta

    2016-07-01

    We perform a detailed study of the geodesic equations in the spacetime of the static and rotating charged black hole corresponding to the Kerr-Newman-(A)dS spacetime. We derive the equations of motion for test particles and light rays and present their solutions in terms of the Weierstrass ℘ , ζ , and σ functions as well as the Kleinian σ function. With the help of parametric diagrams and effective potentials, we analyze the geodesic motion and classify the possible orbit types. This spacetime is also a solution of f (R ) gravity with a constant curvature scalar.

  3. Inflation and oscillations of the Universe in 4D dilatonic gravity

    NASA Astrophysics Data System (ADS)

    Fiziev, P.; Georgieva, D.

    2003-03-01

    We investigate the inflation of the Universe in a model of four-dimensional dilatonic gravity with a massive dilaton field Φ. The dilaton simultaneously plays the role of an inflation field and a quintessence field. It yields a sequential hyperinflation with a graceful exit to asymptotic de Sitter space-time, which is an attractor, and is approached as exp(-(3Λobs)ct/2). The time duration of the inflation is reciprocal to the mass of the dilaton: Δtinfl˜m-1Φ. The typical number of e-folds in the simplest model of this type is shown to be realistic without fine-tuning.

  4. Cosmological solutions in five-dimensional Einstein-Maxwell-dilaton theory

    NASA Astrophysics Data System (ADS)

    Ghezelbash, A. M.

    2015-04-01

    We construct new classes of exact cosmological solutions to five-dimensional Einstein-Maxwell-dilaton theory with two coupling constants for the dilaton-Maxwell term and the dilaton-cosmological constant term. All the solutions are nonstationary, and the solutions where both coupling constants are nonzero are almost regular everywhere. The size of the spatial section of the asymptotic metric shrinks to zero at early times and increases to infinitely large at very late times. The cosmological constant depends on the dilaton coupling constant and can take positive, zero, or negative values.

  5. Scale-invariant alternatives to general relativity. II. Dilaton properties

    NASA Astrophysics Data System (ADS)

    Karananas, Georgios K.; Shaposhnikov, Mikhail

    2016-04-01

    In the present paper, we revisit gravitational theories which are invariant under TDiffs—transverse (volume-preserving) diffeomorphisms and global scale transformations. It is known that these theories can be rewritten in an equivalent diffeomorphism-invariant form with an action including an integration constant (cosmological constant for the particular case of non-scale-invariant unimodular gravity). The presence of this integration constant, in general, breaks explicitly scale invariance and induces a runaway potential for the (otherwise massless) dilaton, associated with the determinant of the metric tensor. We show, however, that if the metric carries mass dimension [GeV] -2 , the scale invariance of the system is preserved, unlike the situation in theories in which the metric has mass dimension different from -2 . The dilaton remains massless and couples to other fields only through derivatives, without any conflict with observations. We observe that one can define a specific limit for fields and their derivatives (in particular, the dilaton goes to zero, potentially related to the small distance domain of the theory) in which the only singular terms in the action correspond to the Higgs mass and the cosmological constant. We speculate that the self-consistency of the theory may require the regularity of the action, leading to the absence of the bare Higgs mass and cosmological constant, whereas their small finite values may be generated by nonperturbative effects.

  6. Chiral primordial gravitational waves from dilaton induced delayed chromonatural inflation

    NASA Astrophysics Data System (ADS)

    Obata, Ippei; Soda, Jiro; CLEO Collaboration

    2016-06-01

    We study inflation driven by a dilaton and an axion, both of which are coupled to a SU(2) gauge field. We find that the inflation driven by the dilaton occurs in the early stage of inflation during which the gauge field grows due to the gauge-kinetic function. When the energy density of magnetic fields catches up with that of electric fields, chromonatural inflation takes over in the late stage of inflation, which we call delayed chromonatural inflation. Thus, the delayed chromonatural inflation driven by the axion and the gauge field is induced by the dilaton. The interesting outcome of the model is the generation of chiral primordial gravitational waves on small scales. Since the gauge field is inert in the early stage of inflation, it is viable in contrast to the conventional chromonatural inflation. We find the parameter region where chiral gravitational waves are generated in a frequency range higher than nHz, which are potentially detectable in future gravitational wave interferometers and pulsar-timing arrays such as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO), evolved Laser Interferometer Space Antenna (eLISA), and Square Kilometer Array (SKA).

  7. Non-Abelian magnetic black strings versus black holes

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-05-01

    We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.

  8. Aschenbach effect: Unexpected topology changes in the motion of particles and fluids orbiting rapidly rotating Kerr black holes

    SciTech Connect

    Stuchlik, Zdenek; Slany, Petr; Toeroek, Gabriel; Abramowicz, Marek A.

    2005-01-15

    Newtonian theory predicts that the velocity V of free test particles on circular orbits around a spherical gravity center is a decreasing function of the orbital radius r, dV/dr<0. Only very recently, Aschenbach [B. Aschenbach, Astronomy and Astrophysics, 425, 1075 (2004)] has shown that, unexpectedly, the same is not true for particles orbiting black holes: for Kerr black holes with the spin parameter a>0.9953, the velocity has a positive radial gradient for geodesic, stable, circular orbits in a small radial range close to the black-hole horizon. We show here that the Aschenbach effect occurs also for nongeodesic circular orbits with constant specific angular momentum l=l{sub 0}=const. In Newtonian theory it is V=l{sub 0}/R, with R being the cylindrical radius. The equivelocity surfaces coincide with the R=const surfaces which, of course, are just coaxial cylinders. It was previously known that in the black-hole case this simple topology changes because one of the 'cylinders' self-crosses. The results indicate that the Aschenbach effect is connected to a second topology change that for the l=const tori occurs only for very highly spinning black holes, a>0.99979.

  9. Classification of the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes with a photon sphere

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho; Lazov, Boian

    2016-04-01

    We consider the problem for the classification of static and asymptotically flat Einstein-Maxwell-dilaton spacetimes with a photon sphere. It is first proven that the photon spheres in Einstein-Maxwell-dilaton gravity have constant mean and constant scalar curvature. Then we derive some relations between the mean curvature and the physical characteristics of the photon spheres. Using further the symmetries of the dimensionally reduced Einstein-Maxwell-dilaton field equations we show that the lapse function, the electrostatic potential, and the dilaton field are functionally dependent in the presence of a photon sphere. Using all this we prove the main classification theorem by explicitly constructing all Einstein-Maxwell-dilaton solutions possessing a nonextremal photon sphere.

  10. Non-susy D3 brane and an interpolating solution between AdS5 black hole, AdS5 soliton and a `soft-wall' gravity solution

    NASA Astrophysics Data System (ADS)

    Roy, Shibaji

    2015-10-01

    It is known from the work in [1] of Lu et al. that the non-supersymmetric charged D3-brane (with anisotropies in time as well as one of the spatial directions of D3-brane) of type IIB string theory is characterized by five independent parameters. By fixing one of the parameters and zooming into a particular region of space-time we construct a four parameter family of solution in AdS5, which interpolates between AdS5 black hole and AdS5 soliton (when one of the spatial directions in the Poincare coordinates is compact) by continuously changing the parameters (there is no need to take a double Wick rotation as is usual to go from one solution to the other) from one set of values to another. We consider two cases. In the first case the dilaton is constant for this transition and there are only three independent parameters, whereas in the second case the dilaton varies and there are four independent parameters. In the latter case, the solution interpolates between AdS5 black hole, AdS5 soliton as well as the so-called `soft-wall' gravity solution of AdS/QCD model. We also compare our solution to the previously obtained Constable-Myers solution which is helpful in generalizing the solution for other D p (for p ≠ 3) branes.

  11. Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism

    SciTech Connect

    Bamba, Kazuharu

    2006-12-15

    The generation of the baryon asymmetry of the Universe from the hypermagnetic helicity, the physical interpretation of which is given in terms of hypermagnetic knots, is studied in inflationary cosmology, taking into account the breaking of the conformal invariance of hypercharge electromagnetic fields through both a coupling with the dilaton and with a pseudoscalar field. It is shown that, if the electroweak phase transition is strongly first order and the present amplitude of the generated magnetic fields on the horizon scale is sufficiently large, a baryon asymmetry with a sufficient magnitude to account for the observed baryon-to-entropy ratio can be generated.

  12. Axion-dilaton cosmology, Ricci flows and integrable structures

    NASA Astrophysics Data System (ADS)

    Orlando, Domenico

    2007-09-01

    In this work, based on [Ioannis Bakas, Domenico Orlando, and P. Marios Petropoulos. Ricci flows and expansion in axion-dilaton cosmology. JHEP 01 (2007) 040], we study renormalization-group flows by deforming a class of conformal sigma-models. At leading order in α, renormalization-group equations represent a Ricci flow. In the three-sphere background, the latter is described by the Halphen system, which is exactly solvable in terms of modular forms. The round sphere is found to be the unique perturbative infra-red fixed point at one loop order.

  13. Light wave propagation through a dilaton-Maxwell domain wall

    NASA Astrophysics Data System (ADS)

    Morris, J. R.; Schulze-Halberg, A.

    2015-10-01

    We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the type introduced by Gibbons and Wells [G. W. Gibbons and C. G. Wells, Classical and Quantum Gravity 11, 2499 (1994)]. It is found that if such a wall exists within our observable Universe, it would be absurdly thick, or else have a magnetic field in its core which is much stronger than observed intergalactic fields. We conclude that it is highly improbable that any such wall is physically realized.

  14. Phase structures of 4D stringy charged black holes in canonical ensemble

    NASA Astrophysics Data System (ADS)

    Jia, Qiang; Lu, J. X.; Tan, Xiao-Jun

    2016-08-01

    We study the thermodynamics and phase structures of the asymptotically flat dilatonic black holes in 4 dimensions, placed in a cavity a la York, in string theory for an arbitrary dilaton coupling. We consider these charged black systems in canonical ensemble for which the temperature at the wall of and the charge inside the cavity are fixed. We find that the dilaton coupling plays the key role in the underlying phase structures. The connection of these black holes to higher dimensional brane systems via diagonal (double) and/or direct dimensional reductions indicates that the phase structures of the former may exhaust all possible ones of the latter, which are more difficult to study, under conditions of similar settings. Our study also shows that a diagonal (double) dimensional reduction preserves the underlying phase structure while a direct dimensional reduction has the potential to change it.

  15. All or nothing: On the small fluctuations of two-dimensional string theoretic black holes

    SciTech Connect

    Gilbert, Gerald; Raiten, Eric

    1992-10-01

    A comprehensive analysis of small fluctuations about two-dimensional string-theoretic and string-inspired black holes is presented. It is shown with specific examples that two-dimensional black holes behave in a radically different way from all known black holes in four dimensions. For both the SL(2,R)/U(1) black hole and the two-dimensional black hole coupled to a massive dilaton with constant field strength, it is shown that there are a {\\it continuous infinity} of solutions to the linearized equations of motion, which are such that it is impossible to ascertain the classical linear response. It is further shown that the two-dimensional black hole coupled to a massive, linear dilaton admits {\\it no small fluctuations at all}. We discuss possible implications of our results for the Callan-Giddings-Harvey-Strominger black hole.

  16. Extremal dyonic black holes in D=4 Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Chen, Chiang-Mei; Gal'Tsov, Dmitri V.; Orlov, Dmitry G.

    2008-11-01

    We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton theory with higher curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. In the same theory without the Gauss-Bonnet term the extremal dyon solutions exist only for discrete values of the dilaton coupling constant a. We show that the Gauss-Bonnet term acts as a dyon hair tonic enlarging the allowed values of a to continuous domains in the plane (a,qm) where qm is the magnetic charge. In the limit of the vanishing curvature coupling (a large magnetic charge) the dyon solutions obtained tend to the Reissner-Nordström solution but not to the extremal dyons of the Einstein-Maxwell-dilaton theory. Both solutions have the same dependence of the horizon radius in terms of charges. The entropy of new dyonic black holes interpolates between the Bekenstein-Hawking value in the limit of the large magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice this value for the vanishing magnetic charge. Although an expression for the entropy can be obtained analytically using purely local near-horizon solutions, its interpretation as the black hole entropy is legitimate only once the global black hole solution is known to exist, and we obtain numerically the corresponding conditions on the parameters. Thus, a purely local analysis is insufficient to fully understand the entropy of the curvature-corrected black holes. We also find dyon solutions which are not asymptotically flat, but approach the linear dilaton background at infinity. They describe magnetic black holes on the electric linear dilaton background.

  17. Extremal dyonic black holes in D=4 Gauss-Bonnet gravity

    SciTech Connect

    Chen, C.-M.; Gal'tsov, Dmitri V.; Orlov, Dmitry G.

    2008-11-15

    We investigate extremal dyon black holes in the Einstein-Maxwell-dilaton theory with higher curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. In the same theory without the Gauss-Bonnet term the extremal dyon solutions exist only for discrete values of the dilaton coupling constant a. We show that the Gauss-Bonnet term acts as a dyon hair tonic enlarging the allowed values of a to continuous domains in the plane (a,q{sub m}) where q{sub m} is the magnetic charge. In the limit of the vanishing curvature coupling (a large magnetic charge) the dyon solutions obtained tend to the Reissner-Nordstroem solution but not to the extremal dyons of the Einstein-Maxwell-dilaton theory. Both solutions have the same dependence of the horizon radius in terms of charges. The entropy of new dyonic black holes interpolates between the Bekenstein-Hawking value in the limit of the large magnetic charge (equivalent to the vanishing Gauss-Bonnet coupling) and twice this value for the vanishing magnetic charge. Although an expression for the entropy can be obtained analytically using purely local near-horizon solutions, its interpretation as the black hole entropy is legitimate only once the global black hole solution is known to exist, and we obtain numerically the corresponding conditions on the parameters. Thus, a purely local analysis is insufficient to fully understand the entropy of the curvature-corrected black holes. We also find dyon solutions which are not asymptotically flat, but approach the linear dilaton background at infinity. They describe magnetic black holes on the electric linear dilaton background.

  18. Could fermion masses play a role in the stabilization of the dilaton in cosmology?

    SciTech Connect

    Cabo, Alejandro; Brandenberger, Robert E-mail: rhb@hep.physics.mcgill.ca

    2009-02-15

    We study the possibility that the Dilaton is stabilized by the contribution of fermion masses to its effective potential. We consider the Dilaton gravity action in four dimensions to which we add a mass term for a Dirac fermion. Such an action describes the interaction of the Dilaton with the fermions in the Yang-Mills sector of the coupled supergravity/super-Yang-Mills action which emerges as the low energy effective action of superstring theory after the extra spatial dimensions have been fixed. The Dilaton couples to the Fermion mass term via the usual exponential factor of this field which multiplies the non-kinetic terms of the matter Lagrangian, if we work in the Einstein frame. In the kinetic part of the Fermion action in the Einstein frame the Dilaton does not enter. Such masses can be generated in several ways: they can arise as a consequence of flux about internal spatial dimensions, they may arise as thermal fermion masses in a quasi-static phase in the early universe, and they will arise after the breaking of supersymmetry at late times. The vacuum contribution to the potential for the Dilaton is evaluated up to two loops. The result shows a minimum which could stabilize the Dilaton for reasonable ranges of parameter values.

  19. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany - Model development and application.

    PubMed

    Quinkenstein, A; Jochheim, H

    2016-03-01

    In the temperate zone short rotation coppice systems for the production of woody biomass (SRC) have gained great interest as they offer a pathway to both sustainable bioenergy production and the potential sequestration of CO2 within the biomass and the soil. This study used the carbon model SHORTCAR to assess the carbon cycle of a poplar (Populus suaveolens Fisch. x Populus trichocarpa Torr. et Gray cv. Androscoggin) and a black locust (Robinia pseudoacacia L.) SRC. The model was calibrated using data from established SRC plantations on reclaimed mine sites in northeast Germany and validated through the determination of uncertainty ranges of selected model parameters and a sensitivity analysis. In addition to a 'reference scenario', representing the actual site conditions, 7 hypothetical scenarios, which varied in climate conditions, rotation intervals, runtimes, and initial soil organic carbon (SOC) stocks, were defined for each species. Estimates of carbon accumulation within the biomass, the litter layer, and the soil were compared to field data and previously published results. The model was sensitive to annual stem growth and initial soil organic carbon stocks. In the reference scenario net biome production for SRC on reclaimed sites in Lusatia, Germany amounted to 64.5 Mg C ha(-1) for R. pseudoacacia and 8.9 Mg C ha(-1) for poplar, over a period of 36 years. These results suggest a considerable potential of SRC for carbon sequestration at least on marginal sites. PMID:26696606

  20. Astrophysical black holes in screened modified gravity

    SciTech Connect

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  1. Family of dilatons and metrics for AdS/QCD models

    NASA Astrophysics Data System (ADS)

    Vega, Alfredo; Cabrera, Paulina

    2016-06-01

    We explore some possibilities for obtaining useful metrics and dilatons for anti-de Sitter (AdS)/QCD models. As a guideline, we consider dilatons and/or metrics that on the one hand reproduce the mesonic spectrum, and that on the other hand allow us a correct implementation of chiral symmetry breaking in AdS/QCD models. We discuss two procedures: one is based on supersymmetric quantum mechanics techniques and the other considers the interpolation between some limits on dilatons and/or metrics.

  2. Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole

    NASA Astrophysics Data System (ADS)

    Harms, Enno; Lukes-Gerakopoulos, Georgios; Bernuzzi, Sebastiano; Nagar, Alessandro

    2016-02-01

    We present a new computation of the asymptotic gravitational wave energy fluxes emitted by a spinning particle in circular equatorial orbits about a Kerr black hole. The particle dynamics is computed in the pole-dipole approximation, solving the Mathisson-Papapetrou equations with the Tulczyjew spin-supplementary-condition. The fluxes are computed, for the first time, by solving the 2 +1 Teukolsky equation in the time-domain using hyperboloidal and horizon-penetrating coordinates. Denoting by M the black hole mass and by μ the particle mass, we cover dimensionless background spins a /M =(0 ,±0.9 ) and dimensionless particle spins -0.9 ≤S /μ2≤+0.9 . Our results span orbits of Boyer-Lindquist coordinate radii 4 ≤r /M ≤30 ; notably, we investigate the strong-field regime, in some cases even beyond the last-stable-orbit. We compare our numerical results for the gravitational wave fluxes with the 2.5th order accurate post-Newtonian (PN) prediction obtained analytically by Tanaka et al. [Phys. Rev. D 54, 3762 (1996)]: we find an unambiguous trend of the PN-prediction toward the numerical results when r is large. At r /M =30 the fractional agreement between the full numerical flux, approximated as the sum over the modes m =1 , 2, 3, and the PN prediction is ≲0.5 % in all cases tested. This is close to our fractional numerical accuracy (˜0.2 %). For smaller radii, the agreement between the 2.5PN prediction and the numerical result progressively deteriorates, as expected. Our numerical data will be essential to develop suitably resummed expressions of PN-analytical fluxes in order to improve their accuracy in the strong-field regime.

  3. Spectroastrometry of rotating gas disks for the detection of supermassive black holes in galactic nuclei. III. CRIRES observations of the Circinus galaxy

    NASA Astrophysics Data System (ADS)

    Gnerucci, A.; Marconi, A.; Capetti, A.; Axon, D. J.; Robinson, A.

    2013-01-01

    We present new CRIRES spectroscopic observations of the Brγ emission line in the nuclear region of the Circinus galaxy, obtained with the aim of measuring the black hole (BH) mass with the spectroastrometric technique. The Circinus galaxy is an ideal benchmark for the spectroastrometric technique given its proximity and secure BH measurement obtained with the observation of its nuclear H2O maser disk. The kinematical data have been analyzed both with the classical method based on the analysis of the rotation curves and with the new method developed by us that is based on spectroastrometry. The classical method indicates that the gas disk rotates in a gravitational potential resulting from an extended stellar mass distribution and a spatially unresolved dynamical mass of (1.7 ± 0.2) × 107 M⊙, concentrated within r < 7 pc, corresponding to the seeing-limited resolution of the observations. The new method is capable of probing the gas rotation at scales that are a factor ~3.5 smaller than those probed by the rotation curve analysis, highlighting the potential of spectroastrometry. The dynamical mass, which is spatially unresolved with the spectroastrometric method, is a factor ~2 smaller, 7.9+1.4-1.1 × 106M⊙, indicating that spectroastrometry has been able to spatially resolve the nuclear mass distribution down to 2 pc scales. This unresolved mass is still a factor ~4.5 larger than the BH mass measurement obtained with the H2O maser emission, indicating that even with spectroastrometry, it has not been possible to resolve the sphere of influence of the BH. Based on literature data, this spatially unresolved dynamical mass distribution is likely dominated by warm molecular gas and has been tentatively identified with the circum-nuclear torus that prevents a direct view of the central BH in Circinus. This mass distribution, with a size of ~2 pc, is similar in shape to that of the star cluster of the Milky Way, suggesting that a molecular torus, forming stars at

  4. Holographic cosmic quintessence on the dilatonic brane world

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Lin, Feng-Li

    2002-02-01

    Recently quintessence has been proposed to explain the observation data of supernovae indicating a time-varying cosmological constant and accelerating universe. Inspired by this and its mysterious origin, we look for the possibility that quintessence is the holographic dark matter dominating in the late time in the brane world scenarios. We consider both the cases of a static and moving brane in a dilaton gravity background. For the static brane we use the Hamilton-Jacobi method motivated by holographic renormalization group to study the intrinsic FRW cosmology on the brane and find the constraint on the bulk potential for quintessence. This constraint requires a negative slowly varying bulk potential which implies an anti-de Sitter-like bulk geometry and could be possibly realized from higher dimensional supergravities or string theory. We find a similar constraint for the moving brane cases and that the quintessence on it has the effect of a mildly time-varying Newton constant.

  5. Starobinsky-like inflation in dilaton-brane cosmology

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.

    2014-05-01

    We discuss how Starobinsky-like inflation may emerge from dilaton dynamics in brane cosmology scenarios based on string theory, in which our universe is represented as a three-brane. The effective potential may acquire a constant term from a density of effectively point-like non-pertubative defects on the brane. Higher-genus corrections generate corrections to the effective potential that are exponentially damped at large field values, as in the Starobinsky model, but at a faster rate, leading to a smaller prediction for the tensor-to-scalar perturbation ratio r. This may be compensated partially by logarithmic deformations on the world-sheet due to recoil of the defects due to scattering by string matter on the brane, which tend to enhance the tensor-to-scalar ratio. Quantum fluctuations of the ensemble of D-brane defects during the inflationary period may also enhance the tensor-to-scalar ratio.

  6. Conformal dilaton gravity: Classical noninvariance gives rise to quantum invariance

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; González-Martín, Sergio; Martín, Carmelo P.

    2016-03-01

    When quantizing conformal dilaton gravity, there is a conformal anomaly which starts at two-loop order. This anomaly stems from evanescent operators on the divergent parts of the effective action. The general form of the finite counterterm, which is necessary in order to insure cancellation of the Weyl anomaly to every order in perturbation theory, has been determined using only conformal invariance. Those finite counterterms do not have any inverse power of any mass scale in front of them (precisely because of conformal invariance), and then they are not negligible in the low-energy deep infrared limit. The general form of the ensuing modifications to the scalar field equation of motion has been determined, and some physical consequences have been extracted.

  7. Ultra-weak sector, Higgs boson mass, and the dilaton

    DOE PAGESBeta

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet fieldmore » $$\\sigma$$ which has a very large VEV $$f \\gg m_\\text{Higgs}$$. This requires a sector of "ultra-weak" couplings $$\\zeta_i$$, where $$\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $$\\sigma$$ in the $$\\zeta_i \\rightarrow 0$$ limit. The singlet field $$\\sigma$$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.« less

  8. Ultra-weak sector, Higgs boson mass, and the dilaton

    SciTech Connect

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

  9. AdS2 holography is (non-)trivial for (non-)constant dilaton

    NASA Astrophysics Data System (ADS)

    Grumiller, Daniel; Salzer, Jakob; Vassilevich, Dmitri

    2015-12-01

    We study generic two-dimensional dilaton gravity with a Maxwell field and prove its triviality for constant dilaton boundary conditions, despite of the appearance of a Virasoro algebra with non-zero central charge. We do this by calculating the canonical boundary charges, which turn out to be trivial, and by calculating the quantum gravity partition function, which turns out to be unity. We show that none of the following modifications changes our conclusions: looser boundary conditions, non-linear interactions of the Maxwell field with the dilaton, inclusion of higher spin fields, inclusion of generic gauge fields. Finally, we consider specifically the charged Jackiw-Teitelboim model, whose holographic study was pioneered by Hartman and Strominger, and show that it is non-trivial for certain linear dilaton boundary conditions. We calculate the entropy from the Euclidean path integral, using Wald's method and exploiting the chiral Cardy formula. The macroscopic and microscopic results for entropy agree with each other.

  10. More on critical collapse of axion-dilaton system in dimension four

    SciTech Connect

    Álvarez-Gaumé, Luis; Hatefi, Ehsan E-mail: ehsan.hatefi@cern.ch

    2013-10-01

    We complete our previous study of critical gravitational collapse in the axion-dilaton system by analysing the hyperbolic and parabolic ansaetze. As could be expected, the corresponding Choptuik exponents in four-dimensions differ from the elliptic case.

  11. Regular rotating electrically charged black holes and solitons in non-linear electrodynamics minimally coupled to gravity

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina; Galaktionov, Evgeny

    2015-08-01

    In non-linear electrodynamics coupled to gravity, regular spherically symmetric electrically charged solutions satisfy the weak energy condition and have an obligatory de Sitter center. By the Gürses-Gürsey algorithm they are transformed to spinning electrically charged solutions that are asymptotically Kerr-Newman for a distant observer. Rotation transforms the de Sitter center into a de Sitter vacuum surface which contains the equatorial disk r = 0 as a bridge. We present a general analysis of the horizons, ergoregions and de Sitter surfaces, as well as the conditions of the existence of regular solutions to the field equations. We find asymptotic solutions and show that de Sitter vacuum surfaces have properties of a perfect conductor and ideal diamagnetic, violation of the weak energy condition is prevented by the basic requirement of electrodynamics of continued media, and the Kerr ring singularity is replaced with the superconducting current.

  12. Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances

    NASA Astrophysics Data System (ADS)

    Lahanas, Ab; Mavromatos, Ne; Nanopoulos, Dv

    In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.

  13. The Soliton-Soliton Interaction in the Chiral Dilaton Model

    NASA Astrophysics Data System (ADS)

    Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente

    2013-10-01

    We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.

  14. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

    NASA Astrophysics Data System (ADS)

    Ohanian, Hans C.

    2016-03-01

    Instead of the scalar "dilaton" field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl's original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than {m}_{P} by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

  15. D-brane solutions in a light-like linear dilaton background

    NASA Astrophysics Data System (ADS)

    Nayak, Rashmi R.; Panigrahi, Kamal L.

    2006-07-01

    The light-like linear dilaton background presents a simple time dependent solution of type II supergravity equations of motion that preserves 1/2 supersymmetry in ten dimensions. We construct supergravity D-brane solutions in a linear dilaton background starting from the known intersecting brane solutions in string theory. By applying a Penrose limit on the intersecting (NS1-NS5-NS5‧)-brane solution, we find out a D5-brane in a linear dilaton background. We solve the Killing spinor equations for the brane solutions explicitly, and show that they preserve 1/4 supersymmetry. We also find a M5-brane solution in eleven-dimensional supergravity.

  16. Axial quasinormal modes of Einstein-Gauss-Bonnet-dilaton neutron stars

    NASA Astrophysics Data System (ADS)

    Blázquez-Salcedo, Jose Luis; González-Romero, Luis Manuel; Kunz, Jutta; Mojica, Sindy; Navarro-Lérida, Francisco

    2016-01-01

    We investigate axial quasinormal modes of realistic neutron stars in Einstein-Gauss-Bonnet-dilaton gravity. We consider eight realistic equations of state containing nuclear, hyperonic, and hybrid matter. We focus on the fundamental curvature mode and compare the results with those of pure Einstein theory. We observe that the frequency of the modes is increased by the presence of the Gauss-Bonnet-dilaton, while the impact on the damping time is typically smaller. Interestingly, we obtain that universal relations valid in pure Einstein theory still hold for Einstein-Gauss-Bonnet-dilaton gravity, and we propose a method to use these phenomenological relations to constrain the value of the Gauss-Bonnet coupling.

  17. Conformal Higgs, or Techni-Dilaton -- Composite Higgs Near Conformality

    NASA Astrophysics Data System (ADS)

    Yamawaki, Koichi

    2011-01-01

    In contrast to the folklore that Technicolor (TC) is a "Higgsless theory", we shall discuss existence of a composite Higgs boson, Techni-Dilaton (TD), a pseudo-Nambu-Goldstone boson of the scale invariance in the Scale-invariant/Walking/Conformal TC (SWC TC) which generates a large anomalous dimension γm ≃ 1 in a wide region from the dynamical mass m = {O} ({TeV}) of the techni-fermion all the way up to the intrinsic scale ΛTC of the SWC TC (analogue of ΛQCD), where ΛTC is taken typically as the scale of the Extended TC scale ΛETC: ΛTC ≃ ΛETC 103 TeV (≫ m). All the techni-hadrons have mass on the same order {O}(m), which in SWC TC is extremely smaller than the intrinsic scale ΛTC ≃ ΛETC, in sharp contrast to QCD where both are of the same order. The mass of TD arises from the non-perturbative scale anomaly associated with the techni-fermion mass generation and is typically 500-600 GeV, even smaller than other techni-hadrons of the same order of {O}(m), in another contrast to QCD which is believed to have no scalar bar qq bound state lighter than other hadrons. We discuss the TD mass in various methods, Gauged NJL model via ladder Schwinger-Dyson (SD) equation, straightforward calculations in the ladder SD/ Bethe-Salpeter equation, and the holographic approach including techni-gluon condensate. The TD may be discovered in LHC.

  18. From Petrov-Einstein-Dilaton-Axion to Navier-Stokes equation in anisotropic model

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Jian; Tian, Yu; Wu, Xiao-Ning

    2016-01-01

    In this paper we generalize the previous works to the case that the near-horizon dynamics of the Einstein-Dilaton-Axion theory can be governed by the incompressible Navier-Stokes equation via imposing the Petrov-like boundary condition on hypersurfaces in the non-relativistic and near-horizon limit. The dynamical shear viscosity η of such dual horizon fluid in our scenario, which isotropically saturates the Kovtun-Son-Starinet (KSS) bound, is independent of both the dilaton field and axion field in that limit.

  19. Charged Particle Tunnels from the Einstein-Maxwell Black Hole

    NASA Astrophysics Data System (ADS)

    Chen, Deyou; Yang, Shuzheng

    Considering the self-gravitation interaction and the unfixed background space-time, we study the Hawking radiation of the Einstein-Maxwell-Dilaton-Axion (EMDA) black hole by the radial geodesic method and the Hamilton-Jacobi method. Both sets of results agree with Parikh and Wilczek's and show that the actual radiation spectrum deviates from the purely thermal one and the tunneling probability is related to the change of Bekenstein-Hawking entropy, which satisfies an underlying unitary theory.

  20. Quasi-black holes: General features and purely field configurations

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Zaslavskii, O. B.

    2015-08-01

    Objects that are on the threshold of forming the horizon but never collapse are called quasi-black holes (QBHs). We discuss the properties of the general spherically symmetric QBH metric without addressing its material source, including its limiting cases as the corresponding small parameter tends to zero. We then show that QBHs can exist among self-gravitating configurations of electromagnetic and dilatonic scalar fields without matter. These general results are illustrated by explicit examples of exact solutions.

  1. Global solutions for higher-dimensional stretched small black holes

    SciTech Connect

    Chen, C.-M.; Gal'tsov, Dmitri V.; Ohta, Nobuyoshi; Orlov, Dmitry G.

    2010-01-15

    Small black holes in heterotic string theory have a vanishing horizon area at the supergravity level, but the horizon is stretched to the finite radius AdS{sub 2}xS{sup D-2} geometry once higher curvature corrections are turned on. This has been demonstrated to give good agreement with microscopic entropy counting. Previous considerations, however, were based on the classical local solutions valid only in the vicinity of the event horizon. Here we address the question of global existence of extremal black holes in the D-dimensional Einstein-Maxwell-Dilaton theory with the Gauss-Bonnet term introducing a variable dilaton coupling a as a parameter. We show that asymptotically flat black holes exist only in a bounded region of the dilaton couplings 0=}5 (but not for D=4) the allowed range of a includes the heterotic string values. For a>a{sub cr} numerical solutions meet weak naked singularities at finite radii r=r{sub cusp} (spherical cusps), where the scalar curvature diverges as |r-r{sub cusp}|{sup -1/2}. For D{>=}7 cusps are met in pairs, so that solutions can be formally extended to asymptotically flat infinity choosing a suitable integration variable. We show, however, that radial geodesics cannot be continued through the cusp singularities, so such a continuation is unphysical.

  2. Black Saturn with a dipole ring

    SciTech Connect

    Yazadjiev, Stoytcho S.

    2007-09-15

    We present a new stationary, asymptotically flat solution of 5D Einstein-Maxwell gravity describing a Saturn-like black object: a rotating black hole surrounded by a rotating dipole black ring. The solution is generated by combining the vacuum black Saturn solution and the vacuum black ring solution with appropriately chosen parameters. Some basic properties of the solution are analyzed and the basic quantities are calculated.

  3. EFT for vortices with dilaton-dependent localized flux

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Diener, Ross; Williams, M.

    2015-11-01

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical `fat brane' solution, and in the effective theory of `point branes' appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper [4] from N=2 supergravity as the end-point of a hierarchical limit in which the Planck mass first and then the supersymmetry breaking scale are sent to infinity. We define, in the parent supergravity model, a new symplectic frame in which, in the rigid limit, manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos terms are fully originated from the dyonic components of the embedding tensor. The supergravity origin of several features of the resulting rigid supersymmetric theory are then elucidated, such as the presence of a traceless SU(2)- Lie algebra term in the Ward identity and the existence of a central charge in the supersymmetry algebra which manifests itself as a harmless gauge transformation on the gauge vectors of the rigid theory; we show that this effect can be interpreted as a kind of "superspace non-locality" which does not affect the rigid theory on space-time. To set the stage of our analysis we take the opportunity in this paper to provide and prove the relevant identities of the most general dyonic gauging of Special-Kaehler and Quaternionic-Kaehler isometries in a generic N=2 model, which include the supersymmetry Ward identity, in a fully symplectic-covariant formalism.

  4. Dilaton dominance in the early universe dilutes dark matter relic abundances

    SciTech Connect

    Lahanas, A. B.

    2011-05-15

    The role of the dilaton field and its coupling to matter may result in a dilution of dark matter (DM) relic densities. This is to be contrasted with quintessence scenarios in which relic densities are augmented, due to modification of the expansion rate, since the Universe is not radiation dominated at DM decoupling. The dilaton field, besides this, affects relic densities through its coupling to dust which tends to decrease relic abundances. Thus two separate mechanisms compete with each other resulting, in general, in a decrease of the relic density. This feature may be welcomed and can help the situation if direct dark matter experiments point towards small neutralino-nucleon cross sections, implying small neutralino annihilation rates and hence large relic densities, at least in the popular supersymmetric scenarios. In the presence of a diluting mechanism, both experimental constraints can be met. The role of the dilaton for this mechanism has been studied in the context of the noncritical string theory but in this work we follow a rather general approach assuming that the dilaton dominates only at early eras long before big bang nucleosynthesis.

  5. Interpreting the 750 GeV diphoton excess in the minimal dilaton model

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Shang, Liangliang; Su, Wei; Zhang, Yang; Zhu, Jinya

    2016-05-01

    We try to interpret the 750 GeV diphoton excess in the minimal dilaton model, which extends the SM by adding one linearized dilaton field and vector-like fermions. We first show by analytic formulas in this framework that the production rates of the γ γ , gg, Zγ , ZZ, WW^*, tbar{t}, and hh signals at the 750 GeV resonance are only sensitive to the dilaton-Higgs mixing angle θ _S and the parameter η ≡ v N_X/f, where f is the dilaton decay constant and N_X denotes the number of the fermions. Then we scan the two parameters by considering various theoretical and experimental constraints to find the solutions to the diphoton excess. We conclude that the model can predict the central value of the diphoton rate without conflicting with any constraints. The signatures of our explanation at the LHC Run II and the vacuum stability at high energy scale are also discussed.

  6. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin; Xiang, Wen-Chang; Cai, Shao-Hong

    2016-08-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11275157 and 11505036, the Doctoral Research Fund of Guizhou Normal University in 2014, the Technology Department of Guizhou Province Fund under Grant No [2015]2114, and the Science and Technology Innovation Talent Team of Guizhou Province under Grant No (2015)4015.

  7. Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general nonextremal rotating charged black hole spacetimes in minimal five-dimensional gauged supergravity

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Qing

    2009-10-01

    We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetič-Lü-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in terms of a rank-2 Stäckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a “tower” of generalized (conformal) Killing-Yano and Stäckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.

  8. Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general nonextremal rotating charged black hole spacetimes in minimal five-dimensional gauged supergravity

    SciTech Connect

    Wu Shuangqing

    2009-10-15

    We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetic-Lue-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in terms of a rank-2 Staeckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a 'tower' of generalized (conformal) Killing-Yano and Staeckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.

  9. Brane-world black holes

    NASA Astrophysics Data System (ADS)

    Chamblin, A.; Hawking, S. W.; Reall, H. S.

    2000-03-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  10. Long time black hole evaporation with bounded Hawking flux

    NASA Astrophysics Data System (ADS)

    Grumiller, D.

    2004-05-01

    The long time behaviour of an evaporating black hole presents a challenge to theoretical physics and touches relevant conceptual issues of quantum gravity, such as the information paradox. There are basically two strategies: top-down, i.e., constructing first a full quantum theory of gravity and discussing black hole evaporation as a particular application thereof, and bottom-up, i.e., sidestepping the difficulties inherent to the former approach by invoking `reasonable' ad hoc assumptions. Exploiting the fact that the Schwarzschild black hole can be described by means of an effective theory in 2D, a particular dilaton gravity model, the latter route is pursued. A crucial technical ingredient is Izawa's result on consistent deformations of 2D BF theory, while the most relevant physical assumption is boundedness of the asymptotic matter flux during the whole evaporation process. Together with making technical assumptions which can be relaxed, the dynamics of the evaporating black hole is described by means of consistent deformations of the underlying gauge symmetries with only one important deformation parameter. An attractor solution, the end-point of the evaporation process, is found. Its metric is flat. However, the behaviour of the dilaton field (which corresponds to the surface area) is non-trivial: it is argued that during the final flicker a first-order phase transition occurs from a linear to a constant dilaton vacuum. Consequently, a shock wave is emitted as a final `thunderbolt' with a total energy of a fraction of the Planck mass. Relations to ultrarelativistic boosts are pointed out. Another fraction of the Planck mass may reside in a cold remnant. The physical discussion addresses the lifetime, the specific heat, the Carter Penrose diagram, the information paradox and cosmological implications. The phenomenon of `dilaton evaporation' to a constant dilaton vacuum might be of relevance also for higher dimensional scalar tensor theories. Based on an

  11. Subsubleading soft theorems of gravitons and dilatons in the bosonic string

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2016-06-01

    Starting from the amplitude with an arbitrary number of massless closed states of the bosonic string, we compute the soft limit when one of the states becomes soft to subsubleading order in the soft momentum expansion, and we show that when the soft state is a graviton or a dilaton, the full string amplitude can be expressed as a soft theorem through subsubleading order. It turns out that there are string corrections to the field theoretical limit in the case of a soft graviton, while for a soft dilaton the string corrections vanish. We then show that the new soft theorems, including the string corrections, can be simply obtained from the exchange diagrams where the soft state is attached to the other external states through the three-point string vertex of three massless states. In the soft-limit, the propagator of the exchanged state is divergent, and at tree-level these are the only divergent contributions to the full amplitude. However, they do not form a gauge invariant subset and must be supplemented with extra non-singular terms. The requirement of gauge invariance then fixes the complete amplitude through subsubleading order in the soft expansion, reproducing exactly what one gets from the explicit calculation in string theory. From this it is seen that the string corrections at subsubleading order arise as a consequence of the three-point amplitude having string corrections in the bosonic string. When specialized to a soft dilaton, it remarkably turns out that the string corrections vanish and that the non-singular piece of the subsubleading term of the dilaton soft theorem is the generator of space-time special conformal transformation.

  12. Extended phase space thermodynamics and P-V criticality of charged black holes in Brans-Dicke theory

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Armanfard, Z.

    2015-10-01

    Motivated by conformal relation between dilaton gravity and Brans-Dicke theory, in this paper, we are taking into account extended phase space thermodynamics to investigate phase transition of charged black holes. We regard spherically symmetric charged black hole solutions in the presence of a scalar field in both Einstein and Jordan frames and calculate related conserved and thermodynamic quantities. Then, we study the analogy of the black hole solution with the Van der Waals liquid-gas system in the extended phase space by considering the cosmological constant proportional to thermodynamical pressure. We obtain critical values of thermodynamic coordinates and plot P-V and G-T diagrams to study the phase transition points and compare the results of dilaton gravity and Brans-Dicke theory.

  13. Bumpy black holes

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Figueras, Pau; Martínez, Marina

    2014-12-01

    We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary nonmonotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black rings, to black Saturns, and to a novel class of bumpy black rings. For a different, recently identified class of bumpy black holes, we find evidence that this family ends in solutions with a localized singularity that exhibits apparently universal properties, and which does not seem to allow for transitions to any known class of black holes.

  14. Fluctuating black hole horizons

    NASA Astrophysics Data System (ADS)

    Mei, Jianwei

    2013-10-01

    In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.

  15. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  16. Tachyon-Dilaton-induced inflation as an α'-resummed string background

    NASA Astrophysics Data System (ADS)

    Alexandre, Jean; Kostouki, Anna; Mavromatos, Nick E.

    2009-03-01

    Within the framework of a novel functional method on the world-sheet of the string, we discuss simple but re-summed (in the Regge slope) inflationary scenarios in the context of closed Bosonic strings, living in four target-space dimensions, in the presence of non-trivial tachyon, dilaton and graviton cosmological backgrounds. The inflationary solutions are argued to guarantee the vanishing of the corresponding Weyl anomaly coefficients in a given world-sheet renormalization scheme, thereby ensuring conformal invariance of the corresponding σ-model to all orders in the Regge slope. The key property is the requirement of ``homogeneity'' of the corresponding Weyl anomaly coefficients. Inflation entails appropriate relations between the dilaton and tachyon field configurations, whose form can lead to either a de Sitter vacuum, incompatible though (due to the cosmic horizons) with the perturbative string scattering amplitudes, or to cosmic space-times involving brief inflationary periods, interpolating smoothly between power-law and/or Minkowski Universes. The latter situation is characterized by well-defined scattering amplitudes, and is thus compatible with a perturbative string framework. It is this scenario that we consider a self-consistent ground state in our framework, which is based on local field redefinitions of background fields.

  17. Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory

    SciTech Connect

    Zanzi, Andrea

    2010-08-15

    The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.

  18. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  19. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  20. Pair creation of black holes during inflation

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Hawking, Stephen W.

    1996-11-01

    Black holes came into existence together with the universe through the quantum process of pair creation in the inflationary era. We present the instantons responsible for this process and calculate the pair creation rate from the no boundary proposal for the wave function of the universe. We find that this proposal leads to physically sensible results, which fit in with other descriptions of pair creation, while the tunneling proposal makes unphysical predictions. We then describe how the pair-created black holes evolve during inflation. In the classical solution, they grow with the horizon scale during the slow roll down of the inflaton field; this is shown to correspond to the flux of field energy across the horizon according to the first law of black hole mechanics. When quantum effects are taken into account, however, it is found that most black holes evaporate before the end of inflation. Finally, we consider the pair creation of magnetically charged black holes, which cannot evaporate. In standard Einstein-Maxwell theory we find that their number in the presently observable universe is exponentially small. We speculate how this conclusion may change if dilatonic theories are applied.

  1. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  2. Horizon area-angular momentum-charge-magnetic flux inequalities in the 5D Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho

    2013-06-01

    In this paper, we consider 5D spacetimes satisfying the Einstein-Maxwell-dilaton gravity equations which are U(1)2 axisymmetric but otherwise highly dynamical. We derive inequalities between the area, the angular momenta, the electric charge and the magnetic fluxes for any smooth stably outer marginally trapped surface.

  3. Large-scale structure challenges dilaton gravity in a 5D brane scenario with AdS bulk

    NASA Astrophysics Data System (ADS)

    Konikowska, Dominika

    2014-02-01

    We study a theory of dilaton gravity in a five-dimensional brane scenario, with a non-minimal coupling of the dilaton to the matter content of the universe localized on the brane. The effective gravitational equations at the brane are derived in the Einstein frame in the covariant approach, addressing certain misconceptions in the literature. We then investigate whether the observed large-scale structure of the universe can exist on the brane in this dilaton gravity scenario with an exact anti de Sitter bulk, assuming that the matter energy-momentum tensor has the form of an inhomogeneous perfect fluid. The corresponding constraint on the spatial derivative of the matter energy density is derived, and subsequently quantified using the current limits resulting from searches for variation of the Newton's constant. By confronting it with the observational data from galaxy surveys, we show that up to scales of the order of 104 Mpc, the derived bound on the spatial derivative of the matter energy density does not allow for the existence of the large-scale structure as observed today. Thus, such a dilaton gravity brane scenario is ruled out.

  4. Black Holes at the LHC: Progress since 2002

    SciTech Connect

    Park, Seong Chan

    2008-11-23

    We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.

  5. Non-Abelian black holes in D=5 maximal gauged supergravity

    SciTech Connect

    Cvetic, M.; Lue, H.; Pope, C. N.

    2010-02-15

    We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS{sub 2}xS{sup 3}. If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.

  6. Chaos in geodesic motion around a black ring

    SciTech Connect

    Igata, Takahisa; Ishihara, Hideki; Takamori, Yohsuke

    2011-02-15

    We study bound orbits of a free particle around a singly rotating black ring. We find there exists chaotic motion of a particle which is gravitationally bound to the black ring by using the Poincare map.

  7. New infinite-dimensional hidden symmetries for the Einstein Maxwell dilaton axion theory

    NASA Astrophysics Data System (ADS)

    Gao, Ya-Jun

    2003-11-01

    An Ernst-like 4 × 4 matrix complex potential is introduced and the motion equations of the stationary axisymmetric Einstein Maxwell dilaton axion (EMDA) theory are written as a so-called Hauser Ernst (HE)-like self-dual relation for the matrix potential. Two HE-type linear systems are established and based on which some explicit formulations of new parametrized symmetry transformations for the EMDA theory are constructed. These hidden symmetries are proved to constitute an infinite-dimensional Lie algebra, which is a semidirect product of the Kac Moody algebra sp(4, R) otimes R(t, t-1) and Virasoro algebra (without centre charges). As a part of that, the positive-half sub-Kac Moody algebra sp(4, R) otimes R(t) corresponds to the Geroch-like symmetries for the EMDA theory.

  8. Dilatonic repulsons and confinement via the AdS/CFT correspondence

    SciTech Connect

    Bak, Dongsu; Gutperle, Michael; Hirano, Shinji; Ohta, Nobuyoshi

    2004-10-15

    We study a class of dilatonic deformations of asymptotically AdS{sub 5}xS{sup 5} geometry analytically and numerically. The spacetime is nonsupersymmetric and suffers from a naked singularity. We propose that the causality bound may serve as a criterion for such a geometry with a naked singularity to still make sense in the AdS/CFT correspondence. We show that the static string, the one corresponding to a large Wilson loop in the dual gauge theory, reveals confinement in a certain range of parameters of our solutions, where the singularity exhibits the repulsion that can well cloak the singularity from the static string probe. In particular, we find the exact expression for the tension of the QCD strings. We also discuss a possible interpretation of our solution in terms of unstable branes and their tachyon matter.

  9. Dynamical moving mirrors and black holes

    NASA Astrophysics Data System (ADS)

    Chung, Tze-Dan; Verlinde, Herman

    1994-04-01

    A simple quantum mechanical model of N free scalar fields interacting with a dynamical moving mirror is formulated and shown to be equivalent to two-dimensional dilaton gravity. We derive the semi-classical dynamics of this system, by including the back reaction due to the quantum radiation. We develop a hamiltonian formalism that describes the time evolution as seen by an asymptotic observer, and write a scattering equation that relates the in-falling and out-going modes at low energies. At higher incoming energy flux, however, the semi-classical model appears to become unstable and the mirror seems to accelerate forever along a trajectory that runs off to infinity. This instability provides a useful paradigm for black hole formation and introduces an analogous information paradox. Finally, we indicate a possible mechanism that may restore the stability of the system at the quantum level without destroying quantum coherence.

  10. Dynamical moving mirrors and black holes.

    NASA Astrophysics Data System (ADS)

    Tzedan, Chung; Verlinde, H.

    1994-04-01

    A simple quantum mechanical model of N free scalar fields interacting with a dynamical moving mirror is formulated and shown to be equivalent to two-dimensional dilaton gravity. The authors derive the semi-classical dynamics of this system, by including the back reaction due to the quantum radiation. They develop a hamiltonian formalism that describes the time evolution as seen by an asymptotic observer, and write a scattering equation that relates the in-falling and out-going modes at low energies. At higher incoming energy flux, however, the semi-classical model appears to become unstable and the mirror seems to accelerate forever along a trajectory that runs off to infinity. This instability provides a useful paradigm for black hole formation and introduces an analogous information paradox.

  11. Slowly balding black holes

    SciTech Connect

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-15

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N{sub B}=e{Phi}{sub {infinity}}/({pi}c({h_bar}/2{pi})), where {Phi}{sub {infinity}}{approx_equal}2{pi}{sup 2}B{sub NS}R{sub NS}{sup 3}/(P{sub NS}c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  12. Slowly balding black holes

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-01

    The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  13. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  14. Charged balanced black rings in five dimensions

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Schnülle, Kirsten

    2011-05-01

    We present balanced black ring solutions of pure Einstein-Maxwell theory in five dimensions. The solutions are asymptotically flat, and their tension and gravitational self-attraction are balanced by the repulsion due to rotation and electrical charge. Hence the solutions are free of conical singularities and possess a regular horizon which exhibits the ring topology S×S. We discuss the global charges and the horizon properties of the solutions and show that they satisfy a Smarr relation. We construct these black rings numerically, restricting to the case of black rings with a rotation in the direction of the S and large black rings. We compare these to the blackfold results.

  15. Characterizing Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  16. Varying fine structure 'constant' and charged black holes

    SciTech Connect

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  17. Black Consciousness

    ERIC Educational Resources Information Center

    Hraba, Joseph; Siegman, Jack

    1974-01-01

    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  18. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  19. Supergranulation rotation

    NASA Astrophysics Data System (ADS)

    Schou, Jesper; Beck, John G.

    2001-01-01

    Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.

  20. Approximate solution to the Callan-Giddings-Harvey-Strominger field equations for two-dimensional evaporating black holes

    SciTech Connect

    Ori, Amos

    2010-11-15

    Callan, Giddings, Harvey, and Strominger (CGHS) previously introduced a two-dimensional semiclassical model of gravity coupled to a dilaton and to matter fields. Their model yields a system of field equations which may describe the formation of a black hole in gravitational collapse as well as its subsequent evaporation. Here we present an approximate analytical solution to the semiclassical CGHS field equations. This solution is constructed using the recently introduced formalism of flux-conserving hyperbolic systems. We also explore the asymptotic behavior at the horizon of the evaporating black hole.

  1. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  2. Rotational aerophones

    NASA Astrophysics Data System (ADS)

    Fletcher, N. H.; Tarnopolsky, A. Z.; Lai, J. C. S.

    2002-03-01

    Free rotational aerophones such as the bullroarer, which consists of a wooden slat whirled around on the end of a string, and which emits a loud pulsating roar, have been used in many ancient and traditional societies for ceremonial purposes. This article presents an experimental and theoretical investigation of this instrument. The aerodynamics of rotational behavior is elucidated, and relates slat rotation frequency to slat width and velocity through the air. Analysis shows that sound production is due to generation of an oscillating-rotating dipole across the slat, the role of the vortices shed by the slat being relatively minor. Apparent discrepancies between the behavior of a bullroarer slat and a slat mounted on an axle in a wind tunnel are shown to be due to viscous friction in the bearings of the wind-tunnel experiment.

  3. Black Holes

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Koekemoer, Anton M.

    2011-02-01

    Participants; Preface Mario Livio and Anton Koekemoer; 1. Black holes, entropy, and information G. T. Horowitz; 2. Gravitational waves from black-hole mergers J. G. Baker, W. D. Boggs, J. M. Centrella, B. J. Kelley, S. T. McWilliams and J. R. van Meter; 3. Out-of-this-world physics: black holes at future colliders G. Landsberg; 4. Black holes in globular clusters S. L. W. McMillan; 5. Evolution of massive black holes M. Volonteri; 6. Supermassive black holes in deep multiwavelength surveys C. M. Urry and E. Treister; 7. Black-hole masses from reverberation mapping B. M. Peterson and M. C. Bentz; 8. Black-hole masses from gas dynamics F. D. Macchetto; 9. Evolution of supermassive black holes A. Müller and G. Hasinger; 10. Black-hole masses of distant quasars M. Vestergaard; 11. The accretion history of supermassive black holes K. Brand and the NDWFS Boötes Survey Teams; 12. Strong field gravity and spin of black holes from broad iron lines A. C. Fabian; 13. Birth of massive black-hole binaries M. Colpi, M. Dotti, L. Mayer and S. Kazantzidis; 14. Dynamics around supermassive black holes A. Gualandris and D. Merritt; 15. Black-hole formation and growth: simulations in general relativity S. L. Shapiro; 16. Estimating the spins of stellar-mass black holes J. E. McClintock, R. Narayan and R. Shafee; 17. Stellar relaxation processes near the Galactic massive black hole T. Alexander; 18. Tidal disruptions of stars by supermassive black holes S. Gezari; 19. Where to look for radiatively inefficient accretion flows in low-luminosity AGN M. Chiaberge; 20. Making black holes visible: accretion, radiation, and jets J. H. Krolik.

  4. Collapsing thin shells with rotation

    NASA Astrophysics Data System (ADS)

    Delsate, Térence; Rocha, Jorge V.; Santarelli, Raphael

    2014-06-01

    We construct exact solutions describing the motion of rotating thin shells in a fully backreacted five-dimensional rotating black hole spacetime. The radial equation of motion follows from the Darmois-Israel junction conditions, where both interior and exterior geometries are taken to be equal angular momenta Myers-Perry solutions. We show that rotation generates anisotropic pressures and momentum along the shell. Gravitational collapse scenarios including rotation are analyzed and a new class of stationary solutions is introduced. Energy conditions for the anisotropic matter shell are briefly discussed. We find that the weak energy condition is not violated for the collapse scenario where the shell starts at rest from infinity, nor for the new class of stationary solutions in anti-de Sitter. We further prove that the cosmic censorship conjecture is always satisfied in our setup.

  5. Black hole thermodynamics in MOdified Gravity (MOG)

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Moffat, John W.; Faizal, Mir

    2016-06-01

    We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.

  6. Black hole magnetospheres

    SciTech Connect

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  7. Phantom black holes and critical phenomena

    SciTech Connect

    Azreg-Aïnou, Mustapha; Marques, Glauber T.

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  8. Rotating Bondi Accretion Flow

    NASA Astrophysics Data System (ADS)

    Park, Myeong-Gu; Han, Du-Hwan

    2016-06-01

    The characteristics of accretion flow onto a black hole are determined by the physical condition of gas at large radius. When the gas has no angular momentum and is polytropic, the accretion flow becomes the classic Bondi flow. The mass accretion rate in such case is an eigenvalue and uniquely determined by the density and the temperature of the surrounding gas for a given black hole mass. When the gas has angular momentum above some critical value, the angular momentum of the gas should be removed by viscosity to reach the black hole horizon. We study, within the slim disk approximation, rotating polytropic accretion flow with alpha viscosity as an an extension of the Bondi flow. The characteristics of the accretion flow are now determined by the temperature, density, and angular momentum of the gas at the outer boundary. We explore the effects of the viscosity parameter and the outer boundary radius on the physical characteristic of the flow, especially on the mass accretion rate, and compare the result with previous works of Park (2009) and Narayan & Fabian (2011).

  9. Boosting jet power in black hole spacetimes

    PubMed Central

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  10. Boosting jet power in black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Neilsen, D.; Lehner, L.; Palenzuela, C.; Hirschmann, E. W.; Liebling, S. L.; Motl, P. M.; Garrett, T.

    2011-08-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  11. Tapping into the Energy of Black Holes

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Lenher, L.; Liebling, S.; Palenzuela, C.; Neilsen, D.; Hirschmann, E.

    2012-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  12. Black tea

    MedlinePlus

    ... that the caffeine in black tea might slow blood clotting, though this hasn’t been shown in people. ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)Black tea contains caffeine. Caffeine ...

  13. Black Ageism

    ERIC Educational Resources Information Center

    Golden, Herbert M.

    1976-01-01

    Notes that attempts to apply research findings based on undifferentiated comparisons between black and white elderly toward the solution of problems faced by black elderly are doomed to ineffectiveness. (Author/AM)

  14. Black psyllium

    MedlinePlus

    Black psyllium is a weed that grows aggressively throughout the world. The plant was spread with the ... to make medicine. Be careful not to confuse black psyllium with other forms of psyllium including blond ...

  15. Black tea

    MedlinePlus

    Black tea is a product made from the Camellia sinesis plant. The aged leaves and stems are ... of the same plant, has some different properties. Black tea is used for improving mental alertness as ...

  16. Black Art.

    ERIC Educational Resources Information Center

    Baraka, Amiri

    1987-01-01

    Discusses black art as not only an expression of black life but as revolutionary art. It must be collective, functional, and committing. It must also be anti-racist, anti-capitalist, and anti-imperialist. (LHW)

  17. Black Cohosh

    MedlinePlus

    ... gov Key References Black cohosh. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on April ... Black cohosh ( Cimicifuga racemosa [L.] Nutt. ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on April ...

  18. Effective Potential in Noncommutative BTZ Black Hole

    NASA Astrophysics Data System (ADS)

    Sadeghi, Jafar; Shajiee, Vahid Reza

    2016-02-01

    In this paper, we investigated the noncommutative rotating BTZ black hole and showed that such a space-time is not maximally symmetric. We calculated effective potential for the massive and the massless test particle by geodesic equations, also we showed effect of non-commutativity on the minimum mass of BTZ black hole.

  19. Dilaton assisted two-field inflation from no-scale supergravity

    NASA Astrophysics Data System (ADS)

    Chakravarty, Girish Kumar; Das, Suratna; Lambiase, Gaetano; Mohanty, Subhendra

    2016-07-01

    We present a two-field inflation model where the inflaton field has a noncanonical kinetic term due to the presence of a dilaton field. It is a two-parameter generalization of one-parameter Brans-Dicke gravity in the Einstein frame. We show that in such an inflation model the quartic and quadratic inflaton potentials, which are otherwise ruled out by the present Planck-Keck/BICEP2 data, yield the scalar spectral index and tensor-to-scalar ratio in accordance with the present data. Such a model yields a tensor-to-scalar ratio of the order of 10-2 which is within the reach of B -mode experiments like Keck/BICEP3, CMBPol and thus can be put to the test in the near future. This model yields negligible non-Gaussianity and no isocurvature perturbations up to slow-roll approximation. Finally, we show that such a model can be realized in the realm of no-scale supergravity.

  20. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    SciTech Connect

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-05-15

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d{>=}4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  1. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  2. Rotation Measurement

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In aircraft turbine engine research, certain investigations require extremely precise measurement of the position of a rotating part, such as the rotor, a disc-like part of the engine's compressor which revolves around a shaft at extremely high speeds. For example, in studies of airflow velocity within a compressor, researchers need to know-for data correlation the instantaneous position of a given spot on the rotor each time a velocity measurement is made. Earlier methods of measuring rotor shaft angle required a physical connection to the shaft, which limited the velocity of the rotating object.

  3. Black Appalachians.

    ERIC Educational Resources Information Center

    Waage, Fred, Ed.; Cabbell, Ed, Ed.

    1986-01-01

    This issue of "Now and Then" focuses on black Appalachians, their culture, and their history. It contains local histories, articles, and poems and short stories by Appalachian blacks. Articles include: "A Mountain Artist's Landscape," a profile of artist Rita Bradley by Pat Arnow; "A Part and Apart," a profile of black historian Ed Cabbell by Pat…

  4. Black Psychology.

    ERIC Educational Resources Information Center

    Jones, Reginald L., Ed.

    The contents of the present volume, designed to bring together in a single place writings by the new black psychologists and other black social and behavioral scientists, are organized in seven parts, as follows: Part I, "Black Psychology: Perspectives," includes articles by Cedric Clark, Wade W. Nobles, Doris P. Mosby, Joseph White, and William…

  5. Black Students.

    ERIC Educational Resources Information Center

    Edwards, Harry

    The black student revolt did not start with the highly publicized activities of the black students at San Francisco State College. The roots of the revolt lie deeply imbedded within the history and structure of the overall black liberation struggle in America. The beginnings of this revolt can be found in the students of Southern Negro colleges in…

  6. Talking Black.

    ERIC Educational Resources Information Center

    Abrahams, Roger D.

    This book contains essays which focus on the systems of communication that operate within and between various social segments of Afro-American communities in the United States. The essays are presented under the following headings: (1) "Getting Into It: Black Talk, Black Life and the Academic," (2) "'Talking My Talk': Black Talk Varieties and…

  7. Formation of black hole and emission of gravitational waves

    PubMed Central

    Nakamura, Takashi

    2006-01-01

    Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed. PMID:25792793

  8. Formation of black hole and emission of gravitational waves.

    PubMed

    Nakamura, Takashi

    2006-12-01

    Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed. PMID:25792793

  9. Tunnelling from black holes and tunnelling into white holes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Bhramar; Ghosh, A.; Mitra, P.

    2008-03-01

    Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.

  10. Note on regular black holes in a brane world

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2015-10-01

    In this work, we show that regular black holes in a Randall-Sundrum-type brane world model are generated by the nonlocal bulk influence, expressed by a constant parameter in the brane metric, only in the spherical case. In the axial case (black holes with rotation), this influence forbids them. A nonconstant bulk influence is necessary to generate regular black holes with rotation in this context.

  11. Black Holes

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  12. Dirac fermions in nontrivial topology black hole backgrounds

    SciTech Connect

    Gozdz, Marek; Nakonieczny, Lukasz; Rogatko, Marek

    2010-05-15

    We discuss the behavior of the Dirac fermions in a general spherically symmetric black hole background with a nontrivial topology of the event horizon. Both massive and massless cases are taken into account. We will conduct an analytical study of intermediate and late-time behavior of massive Dirac hair in the background of a black hole with a global monopole and dilaton black hole pierced by a cosmic string. In the case of a global monopole swallowed by a static black hole, the intermediate late-time behavior depends on the mass of the Dirac field, the multiple number of the wave mode, and the global monopole parameter. The late-time behavior is quite independent of these factors and has a decay rate proportional to t{sup -5/6}. As far as the black hole pierced by a cosmic string is concerned, the intermediate late-time behavior depends only on the hair mass and the multipole number of the wave mode, while the late-time behavior dependence is the same as in the previous case. The main modification stems from the topology of the S{sup 2} sphere pierced by a cosmic string. This factor modifies the eigenvalues of the Dirac operator acting on the transverse manifold.

  13. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  14. Conformal Higgs, or Techni-Dilaton — Composite Higgs Near Conformality

    NASA Astrophysics Data System (ADS)

    Yamawaki, Koichi

    In contrast to the folklore that Technicolor (TC) is a "Higgsless theory", we shall discuss existence of a composite Higgs boson, Techni-Dilaton (TD), a pseudo-Nambu-Goldstone boson of the scale invariance in the Scale-invariant/Walking/Conformal TC (SWC TC) which generates a large anomalous dimension γm ≃ 1 in a wide region from the dynamical mass m = {O} ({TeV}) of the techni-fermion all the way up to the intrinsic scale ΛTC of the SWC TC (analogue of ΛQCD), where ΛTC is taken typically as the scale of the Extended TC scale ΛETC: ΛTC ≃ ΛETC 103 TeV (≫ m). All the techni-hadrons have mass on the same order {O}(m), which in SWC TC is extremely smaller than the intrinsic scale ΛTC ≃ ΛETC, in sharp contrast to QCD where both are of the same order. The mass of TD arises from the non-perturbative scale anomaly associated with the techni-fermion mass generation and is typically 500-600 GeV, even smaller than other techni-hadrons of the same order of {O}(m), in another contrast to QCD which is believed to have no scalar bar {q}q bound state lighter than other hadrons. We discuss the TD mass in various methods, Gauged NJL model via ladder Schwinger-Dyson (SD) equation, straightforward calculations in the ladder SD/ Bethe-Salpeter equation, and the holographic approach including techni-gluon condensate. The TD may be discovered in LHC.

  15. Self-tuning at large (distances): 4D description of runaway dilaton capture

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Diener, Ross; Williams, M.

    2015-10-01

    We complete here a three-part study (see also arXiv:1506.08095 and arXiv:1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg's theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, ℓ, is exponentially large relative to underlying physics scales, r B , with ℓ 2 = r B 2 e - φ where - φ ≫ 1 can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.

  16. Nonlinear evolutions of bosonic clouds around black holes

    NASA Astrophysics Data System (ADS)

    Okawa, Hirotada

    2015-11-01

    Black holes are a laboratory not only for testing the theory of gravity but also for exploring the properties of fundamental fields. Fundamental fields around a supermassive black hole give rise to extremely long-lived quasi-bound states which can in principle extract the energy and angular momentum from the black hole. To investigate the final state of such a system, the backreaction onto the spacetime becomes important because of the nonlinearity of the Einstein equation. In this paper, we review the numerical method to trace the evolution of massive scalar fields in the vicinity of black holes, how such a system originates from scalar clouds initially in the absence of black holes or from the capture of scalar clouds by a black hole, and the evolution of quasi-bound states around both a non-rotating black hole and a rotating black hole including the backreaction.

  17. Black holes with bottle-shaped horizons

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Teo, Edward

    2016-06-01

    We present a new class of four-dimensional AdS black holes with noncompact event horizons of finite area. The event horizons are topologically spheres with one puncture, with the puncture pushed to infinity in the form of a cusp. Because of the shape of their event horizons, we call such black holes "black bottles." The solution was obtained as a special case of the Plebański-Demiański solution, and may describe either static or rotating black bottles. For certain ranges of parameters, an acceleration horizon may also appear in the space-time. We study the full parameter space of the solution, and the various limiting cases that arise. In particular, we show how the rotating black hole recently discovered by Klemm arises as a special limit.

  18. Black brane solutions governed by fluxbrane polynomials

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.

    2014-12-01

    A family of composite black brane solutions in the model with scalar fields and fields of forms is presented. The metric of any solution is defined on a manifold which contains a product of several Ricci-flat 'internal' spaces. The solutions are governed by moduli functions Hs (s = 1 , … , m) obeying non-linear differential equations with certain boundary conditions imposed. These master equations are equivalent to Toda-like equations and depend upon the non-degenerate (m × m) matrix A. It was conjectured earlier that the functions Hs should be polynomials if A is a Cartan matrix for some semisimple finite-dimensional Lie algebra (of rank m). It is shown that the solutions to master equations may be found by using so-called fluxbrane polynomials which can be calculated (in principle) for any semisimple finite-dimensional Lie algebra. Examples of dilatonic charged black hole (0-brane) solutions related to Lie algebras A1, A2, C2 and G2 are considered.

  19. Double Wick rotating Green-Schwarz strings

    NASA Astrophysics Data System (ADS)

    Arutyunov, Gleb; van Tongeren, Stijn J.

    2015-05-01

    Via an appropriate field redefinition of the fermions, we find a set of conditions under which light cone gauge fixed world sheet theories of strings on two different backgrounds are related by a double Wick rotation. These conditions take the form of a set of transformation laws for the background fields, complementing a set of transformation laws for the metric and B field we found previously with a set for the dilaton and RR fields, and are compatible with the supergravity equations of motion. Our results prove that at least to second order in fermions, the AdS5 × S5 mirror model which plays an important role in the field of integrability in AdS/CFT, represents a string on `mirror AdS5 × S5', the background that follows from our transformations. We discuss analogous solutions for AdS3 × S3 × T4 and AdS2 × S2 × T6. The main ingredient in our derivation is the light cone gauge fixed action for a string on an (almost) completely generic background, which we explicitly derive to second order in fermions.

  20. Five-dimensional black hole capture cross sections

    SciTech Connect

    Gooding, Cisco; Frolov, Andrei V.

    2008-05-15

    We study scattering and capture of particles by a rotating black hole in the five-dimensional spacetime described by the Myers-Perry metric. The equations of geodesic motion are integrable, and allow us to calculate capture conditions for a free particle sent towards a black hole from infinity. We introduce a three-dimensional impact parameter describing asymptotic initial conditions in the scattering problem for a given initial velocity. The capture surface in impact parameter space is a sphere for a nonrotating black hole, and is deformed for a rotating black hole. We obtain asymptotic expressions that describe such deformations for small rotational parameters, and use numerical calculations to investigate the arbitrary rotation case, which allows us to visualize the capture surface as extremal rotation is approached.

  1. Black Men.

    ERIC Educational Resources Information Center

    Gary, Lawrence E., Ed.

    The essays in this book examine some of the major issues affecting the behavior and status of black men in the United States. The volume is divided into four sections. Part one compares black and white men on such indicators as sex ratio, age distribution, marital and family status, educational attainment, employment, income, social and political…

  2. Black hole in the expanding universe from intersecting branes

    SciTech Connect

    Maeda, Kei-ichi; Nozawa, Masato

    2010-02-15

    We study physical properties and global structures of a time-dependent, spherically symmetric solution obtained via the dimensional reduction of intersecting M-branes. We find that the spacetime describes a maximally charged black hole which asymptotically tends to the Friedmann-Lemaitre-Robertson-Walker universe filled by a stiff matter. The metric solves the field equations of the Einstein-Maxwell-dilaton system, in which four Abelian gauge fields couple to the dilation with different coupling constants. The spacetime satisfies the dominant energy condition and is characterized by two parameters, Q and {tau}, related to the Maxwell charge and the relative ratio of black-hole horizon radii, respectively. In spite of the nontrivial time dependence of the metric, it turns out that the black-hole event horizon is a Killing horizon. This unexpected symmetry may be ascribed to the fact that the 11-dimensional brane configurations are supersymmetric in the static limit. Finally, combining with laws of the trapping horizon, we discuss the thermodynamic properties of the black hole. It is shown that the horizon possesses a nonvanishing temperature, contrary to the extremal Reissner-Nordstroem solution.

  3. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  4. Destroying Kerr-Sen black holes

    NASA Astrophysics Data System (ADS)

    Siahaan, Haryanto M.

    2016-03-01

    By neglecting the self-force, self-energy, and radiative effects, it has been shown that an extremal or near-extremal Kerr-Newman black hole can turn into a naked singularity when it captures charged and spinning massive particles. A straightforward question then arises: do charged and rotating black holes in string theory possess the same property? In this paper we apply Wald's gedanken experiment, in his study on the possibility of destroying extremal Kerr-Newman black holes, to the case of (near-)extremal Kerr-Sen black holes. We find that feeding a test particle into a (near-)extremal Kerr-Sen black hole could lead to a violation of the extremal bound for the black hole.

  5. Weighing supermassive black holes

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza

    We calculate the black hole masses for a sample of 27728 quasars selected from the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3). To ensure a high signal-to-noise ratio, we reconstruct quasar spectra for this large sample of quasars using the eigenspectra method (Yip et al., 2004). This method reduces the uncertainty of the measurements for even noisy original spectra, making almost all the SDSS quasar spectra usable for our study. A few applications for black hole mass estimates are presented here. Wang et al. (2006) estimated an average radiative efficiency of 30%-35% for quasars at moderate redshift, which implies that most supermassive black holes are rotating very rapidly. Using our black hole mass estimates, we have found that their method is not independent of quasar lifetimes and thus that quasars do not necessarily have such high efficiencies. As a second application, we have investigated a claim by Steinhardt and Elvis (2009) that there exists a sub-Eddington boundary in the quasar mass-luminosity plane using the Shen et al. (2008) mass estimates. We re-calibrate the mass-scaling relations following Wang et al. (2009) with the most up-to-date reverberation estimates of black hole masses. We compare results from the original data sets with the new re-calibrated estimates of the mass-luminosity plane. We conclude that the presence of the sub-Eddington boundary in the original data of Shen et al. (2008) is likely due to biases in the mass-scaling relation and not to any physical process.

  6. Rotation and the AdS-CFT correspondence

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hunter, C. J.; Taylor-Robinson, M. M.

    1999-03-01

    In asymptotically flat space a rotating black hole cannot be in thermodynamic equilibrium because the thermal radiation would have to be corotating faster than light far from the black hole. However in asymptotically anti-de Sitter space such equilibrium is possible for certain ranges of the parameters. We examine the relationship between conformal field theory in rotating Einstein universes of dimensions two to four and Kerr-anti-de Sitter black holes in dimensions three to five. The five-dimensional solution is new. We find similar divergences in the partition function of the conformal field theory and the action of the black hole at the critical angular velocity at which the Einstein universe rotates at the speed of light. This should be an interesting limit in which to study large N Yang-Mills theory.

  7. Black Hills

    Atmospheric Science Data Center

    2014-05-15

    ... surfaces with lower absorption appear as green, yellow, orange or red. Black pixels indicate areas where albedo could not be derived, ... notably reduced in extent, and higher albedo areas (yellow, orange and red pixels) have increased. Because incoming sunlight is ...

  8. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  9. Interior design of a two-dimensional semiclassical black hole: Quantum transition across the singularity

    SciTech Connect

    Levanony, Dana; Ori, Amos

    2010-05-15

    We study the internal structure of a two-dimensional dilatonic evaporating black hole based on the Callan, Giddings, Harvey, and Strominger model. At the semiclassical level, a (weak) spacelike singularity was previously found to develop inside the black hole. We employ here a simplified quantum formulation of spacetime dynamics in the neighborhood of this singularity, using a minisuperspace-like approach. Quantum evolution is found to be regular and well defined at the semiclassical singularity. A well-localized initial wave packet propagating towards the singularity bounces off the latter and retains its well-localized form. Our simplified quantum treatment thus suggests that spacetime may extend semiclassically beyond the singularity, and also signifies the specific extension.

  10. Vortex hair on AdS black holes

    NASA Astrophysics Data System (ADS)

    Gregory, Ruth; Gustainis, Peter C.; Kubizňák, David; Mann, Robert B.; Wills, Danielle

    2014-11-01

    We analyse vortex hair for charged rotating asymptotically AdS black holes in the abelian Higgs model. We give analytical and numerical arguments to show how the vortex interacts with the horizon of the black hole, and how the solution extends to the boundary. The solution is very close to the corresponding asymptotically flat vortex, once one transforms to a frame that is non-rotating at the boundary. We show that there is a Meissner effect for extremal black holes, with the vortex flux being expelled from sufficiently small black holes. The phase transition is shown to be first order in the presence of rotation, but second order without rotation. We comment on applications to holography.

  11. The Crisis in Black and Black.

    ERIC Educational Resources Information Center

    Hutchinson, Earl Ofari

    These essays explore why the historic conflict between blacks and whites in the United States has become a crisis that divides many African Americans. The changing racial dynamic is not marked by conflicts. between the black middle class and the poor, black men and women, the black intellectual elite and rappers, black politicians and the urban…

  12. Rotator Cuff Tears

    MedlinePlus

    ... doctors because of a rotator cuff problem. A torn rotator cuff will weaken your shoulder. This means ... or more of the rotator cuff tendons is torn, the tendon no longer fully attaches to the ...

  13. Rotator Cuff Injuries

    MedlinePlus

    ... others can be very painful. Treatment for a torn rotator cuff depends on age, health, how severe ... is, and how long you've had the torn rotator cuff. Treatment for torn rotator cuff includes: ...

  14. Rotator cuff problems

    MedlinePlus

    ... days, such as in painting and carpentry Poor posture over many years Aging Rotator cuff tears TEARS ... also help prevent rotator cuff problems. Practice good posture to keep your rotator cuff tendons and muscles ...

  15. Exploring Higher-Dimensional Black Holes in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Yoshino, H.; Shibata, M.

    We review the current status of our activity in higher-dimensionalnumerical relativity. We describe a Baumgarte-Shapiro-Shibata-Nakamura formulation in higher dimensions together with cartoon methods which we employ. We also review numerical results which we derive for two subjects in higher-dimensional numerical relativity: dynamical instability of rapidly rotating Myers-Perry (MP) black holes with one rotational parameter and high-velocity black hole collisions and scatterings. The perspective for the future is briefly described.

  16. Neutron tori around Kerr black holes

    NASA Technical Reports Server (NTRS)

    Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.

    1994-01-01

    Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.

  17. Entropy Inequality Violations from Ultraspinning Black Holes.

    PubMed

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold. PMID:26230779

  18. Aspects of Black Holes in Higher Dimensions

    NASA Astrophysics Data System (ADS)

    Hartnett, Gavin S.

    This thesis is divided into three Parts. In Part I the general theory of black holes in higher dimensions is discussed. In addition to an introductory essay, two studies of linear perturbations of Myers-Perry black holes are presented. These black holes are the higher dimensional generalization of the Kerr black hole, and their analysis reveals numerous instabilities. Threshold unstable modes provide the connection between the Myers-Perry black holes and novel stationary black hole solutions such as black rings or black Saturns, as well as other non-stationary solutions known as single Killing vector field black holes. In Part II gauge/gravity duality is briefly reviewed and two aspects are studied in detail. First, the problem of finding a holographic dual to a superconductor with d-wave order parameter is investigated, and second, we examine the problem of holographic thermalization in field theories dual to rotating black holes. Lastly, in Part III the role of de Sitter solutions in string theory is discussed. A recent puzzle surrounding the fate of the de Sitter landscape is reviewed, and it is shown how the study of black holes in certain flux backgrounds can provide insight into this puzzle. We then present a theorem ruling out the addition of black holes to a certain class of flux backgrounds. Finally, a study is presented which shows that black holes can be added to the flux backgrounds relevant for the de Sitter landscape in string theory, thereby providing strong evidence for the resolution of the puzzle.

  19. Spacetime Non-Commutativity Corrections to the Cardy-Verlinde Formula of Achúcarro-Ortiz Black Hole

    NASA Astrophysics Data System (ADS)

    Setare, M. R.

    2007-02-01

    In this letter we compute the corrections to the Cardy-Verlinde formula of Achúcarro-Ortiz black hole, which is the most general two-dimensional black hole derived from the three-dimensional rotating Banados-Teitelboim-Zanelli black hole. These corrections stem from the space non-commutativity. We show that in non-commutative case, non-rotating Achúcarro-Ortiz black hole in contrast with commutative case has two horizons.

  20. Quasinormal modes and classical wave propagation in analogue black holes

    SciTech Connect

    Berti, Emanuele; Cardoso, Vitor; Lemos, Jose P.S.

    2004-12-15

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the 'draining bathtub' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Because of the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute superradiant reflection coefficients and instability time scales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a nonrotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  1. Shadow of noncommutative geometry inspired black hole

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Cheng, Peng; Zhong, Yi; Zhou, Xiang-Nan

    2015-08-01

    In this paper, the shadow casted by the rotating black hole inspired by noncommutative geometry is investigated. In addition to the dimensionless spin parameter a/M0 with M0 black hole mass and inclination angle i, the dimensionless noncommutative parameter √vartheta/M0 is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter √vartheta/M0, while the distortion increases with it. Compared to the Kerr black hole, the parameter √vartheta/M0 increases the deformation of the shadow. This may offer a way to distinguish noncommutative geometry inspired black hole from Kerr one via astronomical instruments in the near future.

  2. Black holes and stars in Horndeski theory

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Charmousis, Christos; Lehébel, Antoine

    2016-08-01

    We review black hole and star solutions for Horndeski theory. For non-shift symmetric theories, black holes involve a Kaluza–Klein reduction of higher dimensional Lovelock solutions. On the other hand, for shift symmetric theories of Horndeski and beyond Horndeski, black holes involve two classes of solutions: those that include, at the level of the action, a linear coupling to the Gauss–Bonnet term and those that involve time dependence in the galileon field. We analyze the latter class in detail for a specific subclass of Horndeski theory, discussing the general solution of a static and spherically symmetric spacetime. We then discuss stability issues, slowly rotating solutions as well as black holes coupled to matter. The latter case involves a conformally coupled scalar field as well as an electromagnetic field and the (primary) hair black holes thus obtained. We review and discuss the recent results on neutron stars in Horndeski theories.

  3. Superextremal spinning black holes via accretion

    NASA Astrophysics Data System (ADS)

    Bode, Tanja; Laguna, Pablo; Matzner, Richard

    2011-09-01

    A Kerr black hole with mass M and angular momentum J satisfies the extremality inequality |J|≤M2. In the presence of matter and/or gravitational radiation, this bound needs to be reformulated in terms of local measurements of the mass and the angular momentum directly associated with the black hole. The isolated and dynamical horizon framework provides such quasilocal characterization of black hole mass and angular momentum. With this framework, it is possible in axisymmetry to reformulate the extremality limit as |J|≤2MH2, with MH the irreducible mass of the black hole computed from its apparent horizon area and J obtained using a rotational Killing vector field on the apparent horizon. The |J|≤2MH2 condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality. The initial configuration consists of a single, rotating black hole surrounded by a thick, shell cloud of negative energy density. For these numerical experiments, we introduce a new matter-without-matter evolution method.

  4. Uniqueness of extremal Kerr and Kerr-Newman black holes

    SciTech Connect

    Amsel, Aaron J.; Horowitz, Gary T.; Marolf, Donald; Roberts, Matthew M.

    2010-01-15

    We prove that the only four-dimensional, stationary, rotating, asymptotically flat (analytic) vacuum black hole with a single degenerate horizon is given by the extremal Kerr solution. We also prove a similar uniqueness theorem for the extremal Kerr-Newman solution. This closes a long-standing gap in the black hole uniqueness theorems.

  5. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    NASA Astrophysics Data System (ADS)

    Aliev, Alikram N.

    2008-02-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol’nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4.

  6. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    SciTech Connect

    Aliev, Alikram N.

    2008-02-15

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4.

  7. Logarithmic corrections in black hole entropy product formula

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2016-07-01

    It has been shown by explicit and exact calculation that whenever we have taken the effects of stable thermal fluctuations, the entropy product formula should not be mass-independent nor does it quantized. It has been examined by giving some specific examples for non-rotating and rotating black hole.

  8. Black holes and high energy physics

    NASA Astrophysics Data System (ADS)

    Grib, A. A.; Pavlov, Yu. V.

    2016-01-01

    Three mechanisms of getting high energies in particle collisions in the ergosphere of the rotating black holes are considered. The consequences of these mechanisms for observation of ultra high energy cosmic rays particles on the Earth as result of conversion of superheavy dark matter particles into ordinary particles are discussed.

  9. Superconformal sum rules and the spectral density flow of the composite dilaton (ADD) multiplet in =1 theories

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Costantini, Antonio; Rose, Luigi Delle; Serino, Mirko

    2014-06-01

    We discuss the signature of the anomalous breaking of the superconformal symmetry in = 1 super Yang Mills theory, mediated by the Ferrara-Zumino hypercurrent () with two vector () supercurrents () and its manifestation in the anomaly action, in the form of anomaly poles. This allows to investigate in a unified way both conformal and chiral anomalies. The analysis is performed in parallel to the Standard Model, for comparison. We investigate, in particular, massive deformations of the = 1 theory and the spectral densities of the anomaly form factors which are extracted from the components of this correlator. In this extended framework it is shown that all the anomaly form factors are characterized by spectral densities which flow with the mass deformation. In particular, the continuum contributions from the two-particle cuts of the intermediate states turn into poles in the zero mass limit, with a single sum rule satisfied by each component. Non anomalous form factors, instead, in the same anomalous correlators, are characterized by non-integrable spectral densities. These tend to uniform distributions as one moves towards the conformal point, with a clear dual behaviour. As in a previous analysis of the dilaton pole of the Standard Model, also in this case the poles can be interpreted as signaling the exchange of a composite dilaton/axion/dilatino (ADD) multiplet in the effective Lagrangian. The pole-like behaviour of the anomaly form factors is shown to be a global feature of the correlators, present at all energy scales, due to the sum rules. A similar behaviour is shown to be present in the Konishi current, which identifies additional composite states. We conclude that global anomalous currents characterized by a single flow in the perturbative picture always predict the existence of composite interpolating fields. In case of gauging of these currents, as in superconformal theories coupled to gravity, we show that the cancellation of the corresponding anomalies

  10. Hawking radiation as tunneling from charged black holes in 0A string theory

    NASA Astrophysics Data System (ADS)

    Kim, Hongbin

    2011-09-01

    There has been much work on explaining Hawking radiation as a quantum tunneling process through horizons. Basically, this intuitive picture requires the calculation of the imaginary part of the action for outgoing particle. And two ways are known for achieving this goal: the null-geodesic method and the Hamilton-Jacobi method. We apply these methods to the charged black holes in 2D dilaton gravity which is originated from the low energy effective theory of type 0A string theory. We derive the correct Hawking temperature of the black holes including the effect of the back reaction of the radiation, and obtain the entropy by using the 1st law of black hole thermodynamics. For fixed-charge ensemble, the 0A black holes are free of phase transition and thermodynamically stable regardless of mass-charge ratio. We show this by interpreting the back reaction term as the inverse of the heat capacity of the black holes. Finally, the possibility of the phase transition in the fixed-potential ensemble is discussed.

  11. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    SciTech Connect

    Unver, O.; Gurtug, O.

    2010-10-15

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence, the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.

  12. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  13. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  14. Critical Collapse of Rotating Radiation Fluids

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas W.; Gundlach, Carsten

    2016-06-01

    We present results from the first fully relativistic simulations of the critical collapse of rotating radiation fluids. We observe critical scaling both in subcritical evolutions—in which case the fluid disperses to infinity and leaves behind flat space—and in supercritical evolutions, which lead to the formation of black holes. We measure the mass and angular momentum of these black holes, and find that both show critical scaling with critical exponents that are consistent with perturbative results. The critical exponents are universal: they are not affected by angular momentum, and are independent of the direction in which the critical curve, which separates subcritical from supercritical evolutions in our two-dimensional parameter space, is crossed. In particular, these findings suggest that the angular momentum decreases more rapidly than the square of the mass, so that, as criticality is approached, the collapse leads to the formation of a nonspinning black hole. We also demonstrate excellent agreement of our numerical data with new closed-form extensions of power-law scalings that describe the mass and angular momentum of rotating black holes formed close to criticality.

  15. Critical Collapse of Rotating Radiation Fluids.

    PubMed

    Baumgarte, Thomas W; Gundlach, Carsten

    2016-06-01

    We present results from the first fully relativistic simulations of the critical collapse of rotating radiation fluids. We observe critical scaling both in subcritical evolutions-in which case the fluid disperses to infinity and leaves behind flat space-and in supercritical evolutions, which lead to the formation of black holes. We measure the mass and angular momentum of these black holes, and find that both show critical scaling with critical exponents that are consistent with perturbative results. The critical exponents are universal: they are not affected by angular momentum, and are independent of the direction in which the critical curve, which separates subcritical from supercritical evolutions in our two-dimensional parameter space, is crossed. In particular, these findings suggest that the angular momentum decreases more rapidly than the square of the mass, so that, as criticality is approached, the collapse leads to the formation of a nonspinning black hole. We also demonstrate excellent agreement of our numerical data with new closed-form extensions of power-law scalings that describe the mass and angular momentum of rotating black holes formed close to criticality. PMID:27314710

  16. Asymptotically flat black holes in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alkaç, Gökhan; Kilicarslan, Ercan; Tekin, Bayram

    2016-04-01

    Asymptotically flat black holes in 2 +1 dimensions are a rarity. We study the recently found black flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black holes and the dynamical black flowers (black holes with radiative gravitons) of the purely quadratic version of new massive gravity. We show how they appear in this theory and we also show that they are also solutions to the infinite order extended version of the new massive gravity, that is the Born-Infeld extension of new massive gravity with an amputated Einsteinian piece. The same metrics also solve the topologically extended versions of these theories, with modified conserved charges and the thermodynamical quantities, such as the Wald entropy. Besides these we find new conformally flat radiating type solutions to these extended gravity models. We also show that these metrics do not arise in Einstein's gravity coupled to physical perfect fluids.

  17. Search for extreme rotation measures in CSS sources

    NASA Astrophysics Data System (ADS)

    Cotton, W. D.; Kravchenko, E.; Kovalev, Y. Y.; Fomalont, E.

    2016-02-01

    Magnetized plasmas traversed by linearly polarized light will reveal their presence by the frequency dependent Faraday rotation of the angle of polarization. The regions surrounding the black holes powering the jets in AGNs are expected to have dense magnetized plasmas, possibly giving rise to very large Faraday rotations. Compact steep spectrum (CSS) sources are good candidates to search for very large Faraday rotated components as they contain compact emission from close to the black hole and many are strongly depolarized at centimeter wavelengths as expected from strong Faraday effects. We present data on several CSS sources (3C 48, 3C 138, and 3C 147) observed with the VLA at frequencies between 20 and 48 GHz in the most extended configuration. Large, but not excessive rotation measures are reported.

  18. Uniqueness theorem for black holes with Kaluza-Klein asymptotic in 5D Einstein-Maxwell gravity

    SciTech Connect

    Yazadjiev, Stoytcho

    2010-07-15

    In the present paper, we prove a uniqueness theorem for stationary multi-black hole configurations with Kaluza-Klein asymptotic in a certain sector of 5D Einstein-Maxwell gravity. As a part of the technical assumptions in the theorem, we assume that the Killing vector associated with the compact dimension is orthogonal to the other Killing vectors and that it is also hypersurface orthogonal. About the Maxwell field, we assume that it is invariant under the Killing symmetries and has a nonzero component only along the Killing vector associated with the compact dimension. We show that such multi-black hole configurations are uniquely specified by the interval structure, angular momenta of the horizons, magnetic charges, and the magnetic flux. A straightforward generalization of the uniqueness theorem for 5D Einstein-Maxwell-dilaton gravity is also given.

  19. How black holes stay black

    NASA Astrophysics Data System (ADS)

    Genzel, Reinhard

    1998-01-01

    The dimness of the black holes located at the center of galaxies surprises astrophysicists, but a possible explanation has been found in the behavior of the plasma they consume. In a hot accretion flow, the gas is ionized to form a plasma. The heavy ions carry most of the mass, and thus of the energy, whereas the electrons produce most of the radiation. But, crucially, in a low-density flow the temperatures of the ions and of the electrons may decouple. Consequently, most of the gravitational energy would be viscously converted into thermal energy of the ions and not radiated away by the electrons. Instead, the gravitational energy is carried with the flow across the event horizon of the black hole. Such a flow leads to a low radiation efficiency even in a highly dissipative accretion disk.

  20. Smoking Cessation among Blacks.

    ERIC Educational Resources Information Center

    Stotts, R. Craig; And Others

    1991-01-01

    Lung cancer is a serious health problem among blacks, with a mortality rate of 119 per 100,000 black males, compared to 81 per 100,000 for white males. Smoking cessation efforts are most successful when tailored to the black community, using black community networks and broadcast media for black audiences. (SLD)

  1. On Responsible Black Leadership.

    ERIC Educational Resources Information Center

    Farrakhan, Louis

    1985-01-01

    Black leaders in the United States must unite among themselves and work for the Black community. Black elected officials should know the will of their constituency before taking a particular stance. Finally, Black leaders should ally themselves with international leaders friendly to the cause of American Blacks. (GC)

  2. Contemporary Black Theatre.

    ERIC Educational Resources Information Center

    Thomas, Pearl

    The distinguishable black theatre in America, mirroring a distinguishable black experience, is an artistic product which demands audience involvement. Both the Afro-American oral tradition and the art of gesture are integral aspects of black theatre. In addition, the tragedy found black theatre is not tragedy in the classic sense, as blacks feel…

  3. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  4. Fermions Tunnelling from Black String and Kerr AdS Black Hole with Consideration of Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Li, Zhong-hua; Zhang, Li-mei

    2016-01-01

    In this paper, using the Hamilton-Jacobi Ansatz, we discuss the tunnelling of fermions when effects of quantum gravity are taken into account. We investigate two cases, black string and Kerr AdS black hole. For black string, the uncharged and un-rotating case, we find that the correction of Hawking temperature is only affected by the mass of emitted fermions and the quantum gravitational corrections slow down the increases of the temperature, which naturally leads to remnants left in the evaporation. For another case, the Kerr AdS black hole, we find that the quantum gravitational corrections are not only determined by the mass of the emitted fermions but also affected by the rotating properties of the AdS black hole. So with consideration of the quantum gravity corrections, an offset around the standard temperature always exists.

  5. Gravitational lensing by black holes: The case of Sgr A*

    SciTech Connect

    Bozza, V.

    2014-01-14

    The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.

  6. A non-Abelian black ring

    NASA Astrophysics Data System (ADS)

    Ortín, Tomás; Ramírez, Pedro F.

    2016-09-01

    We construct a supersymmetric black ring solution of SU (2) N = 1, d = 5 Super-Einstein-Yang-Mills (SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy to what happens in the supersymmetric colored black holes recently constructed in the same theory and in N = 2, d = 4 SEYM. By taking the limit in which the two angular momenta become equal we derive a non-Abelian generalization of the BMPV rotating black-hole solution.

  7. CFT duals for accelerating black holes

    NASA Astrophysics Data System (ADS)

    Astorino, Marco

    2016-09-01

    The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though it is not isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of AdS2 ×S2. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduces, through the Cardy formula, the Bekenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfils the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.

  8. Conserved quantities in a black hole collision

    NASA Astrophysics Data System (ADS)

    Dain, S.; Valiente-Kroon, J. A.

    2002-02-01

    The Newman-Penrose constants of the spacetime corresponding to the development of the Brill-Lindquist initial data are calculated by making use of a particular representation of spatial infinity due to H Friedrich. The Brill-Lindquist initial data set represents the head-on collision of two non-rotating black holes. In this case one non-zero constant is obtained. Its value is given in terms of the product of the individual masses of the black holes and the square of a distance parameter separating the two black holes. This constant retains its value all along null infinity, and therefore it provides information about the late time evolution of the collision process. In particular, it is argued that the magnitude of the constants provides information about the amount of residual radiation contained in the spacetime after the collision of the black holes.

  9. Spectral line broadening in magnetized black holes

    SciTech Connect

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  10. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  11. Mechanism of rotational relaxation.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    A model is presented which describes the characteristic pattern of relaxation of a nonthermal rotational distribution of hydrogen halide, peaked initially at high rotational quantum number J, to a thermal distribution without generating a peak at intermediate J. A method for correcting infrared chemiluminiscence data for modest rotational relaxation is also suggested.

  12. Black diamonds at brane junctions

    NASA Astrophysics Data System (ADS)

    Chamblin, Andrew; Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.

    2000-08-01

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron.

  13. Black diamonds at brane junctions

    SciTech Connect

    Chamblin, Andrew; Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Department of Physics, University of Wales Swansea, Swansea, SA2 8PP,

    2000-08-15

    We discuss the properties of black holes in brane-world scenarios where our Universe is viewed as a four-dimensional sub-manifold of some higher-dimensional spacetime. We consider in detail such a model where four-dimensional spacetime lies at the junction of several domain walls in a higher dimensional anti-de Sitter spacetime. In this model there may be any number p of infinitely large extra dimensions transverse to the brane-world. We present an exact solution describing a black p-brane which will induce on the brane-world the Schwarzschild solution. This exact solution is unstable to the Gregory-Laflamme instability, whereby long-wavelength perturbations cause the extended horizon to fragment. We therefore argue that at late times a non-rotating uncharged black hole in the brane-world is described by a deformed event horizon in p+4 dimensions which will induce, to good approximation, the Schwarzschild solution in the four-dimensional brane world. When p=2, this deformed horizon resembles a black diamond and more generally for p>2, a polyhedron. (c) 2000 The American Physical Society.

  14. Black Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Black Sea in eastern Russia is experiencing an ongoing phytoplankton bloom. This image, the most recent in a series that began in early may, shows the waters to be even more colorful than before. part of the increased brightness may be due to the presence of sun glint , especially in the center of the sea. However, more organisms appear to be present as well, their photosynthetic pigments reflecting different wavelengths of light.This Moderate Resolution Imaging Spectroradiometer (MODIS) image was captured on June 15, 2002.

  15. Symmetries of supergravity black holes

    NASA Astrophysics Data System (ADS)

    Chow, David D. K.

    2010-10-01

    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Stäckel tensors. These are induced by rank-2 Killing-Stäckel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the 'physical' metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity but also consider some other solutions.

  16. Black nightshade poisoning

    MedlinePlus

    Black nightshade poisoning occurs when someone eats pieces of the black nightshade plant. This article is for information only. ... Poisons are found in the black nightshade plant, especially in the unripened fruit and leaves.

  17. Thermodynamics of noncommutative geometry inspired black holes based on Maxwell-Boltzmann smeared mass distribution

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Liu, Yan-Chun; Zhu, Qiao

    2014-02-01

    In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole.

  18. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  19. Why Black-on-Black Homicide?

    ERIC Educational Resources Information Center

    Jeff, Morris F. X., Jr.

    1981-01-01

    The causes of homicides committed against Blacks by Blacks are examined. Major preventive measures are said to be equal opportunity, better jobs, reduction of racial discrimination, elimination of organized crime, removal of drugs from community, and better schools. (JCD)

  20. Rapidly rotating spacetimes and collisional super-Penrose process

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2016-05-01

    We consider generic axially symmetric rotating spacetimes and examine particle collisions in the ergoregion. The results are generic and agree with those obtained in the particular case of the rotating Teo wormhole in Tsukamoto and Bambi, Phys Rev D 91:104040, 2015. It is shown that for sufficiently rapid rotation, the energy of a particle escaping to infinity can become arbitrary large (so-called super-Penrose process). Moreover, this energy is typically much larger than the center-of mass energy of colliding particles. In this sense the situation differs radically from that for collisions near black holes.

  1. Chandra Data Reveal Rapidly Whirling Black Holes

    NASA Astrophysics Data System (ADS)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  2. Spinning BTZ black hole versus Kerr black hole: A closer look

    NASA Astrophysics Data System (ADS)

    Kim, Hongsu

    1999-03-01

    By applying Newman's algorithm, the AdS3 rotating black hole solution is ``derived'' from the nonrotating black hole solution of Bañados, Teitelboim, and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution originally given by BTZ is given in kind of ``unfamiliar'' coordinates which are related to each other by a transformation of time coordinate alone. The relative physical meaning between these two time coordinates is carefully studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating BTZ solution are newly found via Newman's algorithm, the transformation to Kerr-Schild-type coordinates is looked for. Indeed, such a transformation is found to exist. In these Kerr-Schild-type coordinates, a truly maximal extension of its global structure by analytically continuing to an ``antigravity universe'' region is carried out.

  3. Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing

    NASA Astrophysics Data System (ADS)

    He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin

    In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds

  4. Global Rotation of Non-Rotating Origin

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2001-11-01

    At its 24th General Assembly held at Manchester last year, the IAU has adopted the Celestial Ephemeris Origin (CEO) as a new longitude origin of the celestial coordinate system (Capitaine et al. 2000, IAU 2001). The CEO is the application of Guinot's non-rotating origin (NRO) to the Earth's equator (Guinot 1979, Capitaine et al. 1986, Capitaine 1990). By using the current IAU precession/nutation theory, we integrated the global orbit of CEO. It is a slightly curved zigzag pattern of the amplitude of around 23o moving secularly along the ecliptic. Among its kinematical features, we note that CEO has a large secular component of rotation with respect to the inertial reference frame. The current speed of this global rotation is as large as around -4.15 ''/yr. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north celestial pole. Unfortunately this is a general property of NROs. On the other hand, such secular rotation does not exist for some geometrically-defined longitude origins like K, H, and Σ already discussed in Kovalevsky and McCarthy (1998). We think that the existence of a global secular rotaion means that the CEO, and NROs in general, is not appropriate to be specified as the x-axis of celestial coordinate systems.

  5. Black hole non-uniqueness via spacetime topology in five dimensions

    NASA Astrophysics Data System (ADS)

    Kunduri, Hari K.; Lucietti, James

    2014-10-01

    The domain of outer communication of five-dimensional asymptotically flat stationary spacetimes may possess non-trivial 2-cycles. We discuss how this may lead to a gross violation of black hole uniqueness, beyond the existence of black rings, even for solutions with two commuting rotational symmetries. We illustrate this with a simple example in minimal supergravity; a four parameter family of supersymmetric black hole solutions, with spherical horizon topology and a 2-cycle in the exterior. We show there are black holes in this family with identical conserved changes to the BMPV black hole, thereby demonstrating black hole non-uniqueness in this context. We find a decoupling limit of this family of black holes that yields spacetimes asymptotic to the near-horizon geometry of a BMPV black hole which contain a black hole and an exterior 2-cycle.

  6. Black Entrepreneurship in America.

    ERIC Educational Resources Information Center

    Green, Shelley; Pryde, Paul

    The economic condition of black Americans is discussed, proceeding from the assumption that black economic progress does not depend on a renewed struggle for unobtained civil rights, but rather on the creative response of black Americans to economic opportunity and problems. In the long run, black economic development must rely on the…

  7. Black Teachers on Teaching.

    ERIC Educational Resources Information Center

    Foster, Michele

    The importance to the black community of teaching as a profession can be seen in reference material and other literature about blacks, but this book is unique in presenting the voices of black teachers themselves. The stories of 20 black teachers, born between 1905 and 1973, are told in their own voices. These 20 life interviews collect the…

  8. Graduating Black Males

    ERIC Educational Resources Information Center

    Bell, Edward Earl

    2010-01-01

    Background: The graduation numbers for Black males are dismal, chilling, and undeniably pathetic. The nation graduates only 47% of Black males who enter the 9th grade. The infusion of federal dollars and philanthropic support will not stop the trajectory of Black males who drop out of school. Black males face an upheaval educational battle;…

  9. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  10. 5D gravitational waves from complexified black rings

    NASA Astrophysics Data System (ADS)

    Bretón, N.; Feinstein, A.; López, L. A.

    2010-02-01

    In this paper we construct and briefly study the 5D time-dependent solutions of general relativity obtained via double analytic continuation of the black hole (Myers-Perry) and of the black ring solutions with a double (Pomeransky-Senkov) and a single rotation (Emparan-Reall). The new solutions take the form of a generalized Einstein-Rosen cosmology representing gravitational waves propagating in a closed universe. In this context the rotation parameters of the rings can be interpreted as the extra wave polarizations, while it is interesting to state that the waves obtained from Myers-Perry Black holes exhibit an extra boost-rotational symmetry in higher dimensions which signals their better behavior at null infinity. The analogue to the C-energy is analyzed.

  11. A central black hole in M32

    NASA Technical Reports Server (NTRS)

    Tonry, John L.

    1987-01-01

    Observations are presented of the stellar rotation and velocity dispersion in M32. The projected rotation curve has an unresolved cusp at the center, with an amplitude of at least 60 km/s. The stellar velocity dispersion is constant at 56 + or - 5 km/s to a radius of 20 arcsec; a central bump in the observed dispersion is an artifact due to the rotation. The form of the rotation is such that isophotes have constant angular rotation velocity. The three-dimensional rotation field is modeled and the internal mean rotation of the stars around the center of M32 must reach at least 90 km/s at a radius of 2 pc. Hydrostatic equilibrium then requires 3-10 x 10 to the 6th solar masses of dark mass within the central parsec of M32. The possibility that M32 is undergoing core collapse and that this dark mass consists of dark stellar remnants is discussed, but ultimately rejected because the time scale for core collapse of M32 should be 2000 Hubble times. A more likely explanation of this dark mass, especially because of the presence of an X-ray point source at the center of M32, is a massive black hole.

  12. Rapidly rotating polytropes in general relativity

    NASA Technical Reports Server (NTRS)

    Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.

    1994-01-01

    We construct an extensive set of equilibrium sequences of rotating polytropes in general relativity. We determine a number of important physical parameters of such stars, including maximum mass and maximum spin rate. The stability of the configurations against quasi-radial perturbations is diagnosed. Two classes of evolutionary sequences of fixed rest mass and entropy are explored: normal sequences which behave very much like Newtonian evolutionary sequences, and supramassive sequences which exist solely because of relativistic effects. Dissipation leading to loss of angular momentum causes a star to evolve in a quasi-stationary fashion along an evolutionary sequence. Supramassive sequences evolve towards eventual catastrophic collapse to a black hole. Prior to collapse, the star must spin up as it loses angular momentum, an effect which may provide an observational precursor to gravitational collapse to a black hole.

  13. Deformed and twisted black holes with NUTs

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; Kubizňák, David; Frolov, Valeri P.; Kolář, Ivan

    2016-06-01

    We construct a new class of vacuum black hole solutions whose geometry is deformed and twisted by the presence of NUT charges. The solutions are obtained by ‘unspinning’ the general Kerr-NUT-(A)dS spacetimes, effectively switching off some of their rotation parameters. The resulting geometry has a structure of warped space with the Kerr-like Lorentzian part warped to a Euclidean metric of a deformed and/or twisted sphere, with the deformation and twist characterized by the ‘Euclidean NUT’ parameters. In the absence of NUTs, the solution reduces to a well known Kerr-(A)dS black hole with several rotations switched off. New geometries inherit the original symmetry of the Kerr-NUT-(A)dS family, namely, they possess the full Killing tower of hidden and explicit symmetries. As expected, for vanishing NUT, twist, and deformation parameters, the symmetry is further enlarged.

  14. Black holes and Abelian symmetry breaking

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo

    2016-09-01

    Black hole configurations offer insights on the nonlinear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector–tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector–tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarisation, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solutions to higher dimensions.

  15. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.

  16. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  17. CONTROL ROD ROTATING MECHANISM

    DOEpatents

    Baumgarten, A.; Karalis, A.J.

    1961-11-28

    A threaded rotatable shaft is provided which rotates in response to linear movement of a nut, the shaft being surrounded by a pair of bellows members connected to either side of the nut to effectively seal the reactor from leakage and also to store up energy to shut down the reactor in the event of a power failure. (AEC)

  18. THE OLD ROTATION, 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Old Rotation (circa 1896) is the oldest, continuous cotton experiment in the world. Its 13 plots on 1 acre of land on the campus of Auburn University continue to document the long-term effects of crop rotations with and without winter legumes (crimson clover) as a source of nitrogen for cotton,...

  19. Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates

    PubMed Central

    Fang, Yuting; Zhang, Limeng; Jiao, Yongge; Liao, Jingjing; Luo, Lifen; Ji, Sigui; Li, Jiangzhou; Dai, Kuai; Zhu, Shusheng; Yang, Min

    2016-01-01

    Black shank, caused by Phytophthora parasitica var. nicotianae, is a widespread and destructive disease of tobacco. Crop rotation is essential in controlling black shank. Here, we confirmed that rotating black shank-infested fields with rapeseed (Brassica napus) suppressed the incidence this disease. Further study demonstrated that rapeseed roots have a strong ability to attract zoospores and subsequently stop the swimming of zoospores into cystospores. Then, rapeseed roots secrete a series of antimicrobial compounds, including 2-butenoic acid, benzothiazole, 2-(methylthio)benzothiazole, 1-(4-ethylphenyl)-ethanone, and 4-methoxyindole, to inhibit the cystospore germination and mycelial growth of P. parasitica var. nicotianae. Thus, rapeseed rotated with tobacco suppresses tobacco black shank disease through the chemical weapons secreted by rapeseed roots. PMID:27379037

  20. Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates.

    PubMed

    Fang, Yuting; Zhang, Limeng; Jiao, Yongge; Liao, Jingjing; Luo, Lifen; Ji, Sigui; Li, Jiangzhou; Dai, Kuai; Zhu, Shusheng; Yang, Min

    2016-01-01

    Black shank, caused by Phytophthora parasitica var. nicotianae, is a widespread and destructive disease of tobacco. Crop rotation is essential in controlling black shank. Here, we confirmed that rotating black shank-infested fields with rapeseed (Brassica napus) suppressed the incidence this disease. Further study demonstrated that rapeseed roots have a strong ability to attract zoospores and subsequently stop the swimming of zoospores into cystospores. Then, rapeseed roots secrete a series of antimicrobial compounds, including 2-butenoic acid, benzothiazole, 2-(methylthio)benzothiazole, 1-(4-ethylphenyl)-ethanone, and 4-methoxyindole, to inhibit the cystospore germination and mycelial growth of P. parasitica var. nicotianae. Thus, rapeseed rotated with tobacco suppresses tobacco black shank disease through the chemical weapons secreted by rapeseed roots. PMID:27379037