Science.gov

Sample records for rotating electromagnetic field

  1. Analytical model for electromagnetic cascades in rotating electric field

    SciTech Connect

    Nerush, E. N.; Bashmakov, V. F.; Kostyukov, I. Yu.

    2011-08-15

    Electromagnetic cascades attract a lot of attention as an important quantum electrodynamics effect that will reveal itself in various electromagnetic field configurations at ultrahigh intensities. We study cascade dynamics in rotating electric field analytically and numerically. The kinetic equations for the electron-positron plasma and gamma-quanta are formulated. The scaling laws are derived and analyzed. For the cascades arising far above the threshold the dependence of the cascade parameters on the field frequency is derived. The spectra of high-energy cascade particles are calculated. The analytical results are verified by numerical simulations.

  2. External Electromagnetic Fields of Slowly Rotating Relativistic Magnetized NUT Stars

    NASA Astrophysics Data System (ADS)

    Ahmedov, B. J.; Khugaev, A. V.

    2006-08-01

    Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with non-vanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation in specific angular momentum and NUT parameter . The relativistic star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and ii) dipolar magnetic field aligned with the axis of rotation. It has been shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, it has been obtained that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit.

  3. A note on electromagnetic fields of a slowly rotating magnetized neutron star

    NASA Astrophysics Data System (ADS)

    de Paolis, F.; Ingrosso, G.; Nucita, A. A.; Qadir, A.

    2003-05-01

    Using the electromagnetic fields of an aligned rotating magnetic dipole in a Schwarzschild background, the fields and the surface and bulk charge densities had been computed for an obliquely rotating dipole by De Paolis, Qadir and Tarman (Nuovo Cimento B, 114 (1999) 11). Rezzolla, Ahmedov and Miller (Mon. Not. R. Astron. Soc., 322 (2001) 723) had argued that the analysis was not valid as the Kerr background should have been used. As such the charge density and fields obtained earlier needed to be recomputed using their analysis. This suggestion has been followed here.

  4. Continuum resonance induced electromagnetic torque by a rotating plasma response to static resonant magnetic perturbation field

    SciTech Connect

    Liu Yueqiang; Connor, J. W.; Cowley, S. C.; Ham, C. J.; Hastie, R. J.; Hender, T. C.

    2012-10-15

    A numerical study is carried out, based on a simple toroidal tokamak equilibrium, to demonstrate the radial re-distribution of the electromagnetic torque density, as a result of a rotating resistive plasma (linear) response to a static resonant magnetic perturbation field. The computed electromagnetic torque peaks at several radial locations even in the presence of a single rational surface, due to resonances between the rotating response, in the plasma frame, and both Alfven and sound continuum waves. These peaks tend to merge together to form a rather global torque distribution, when the plasma resistivity is large. The continuum resonance induced net electromagnetic torque remains finite even in the limit of an ideal plasma.

  5. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  6. Coupling of translational and rotational motion in chiral liquids in electromagnetic and circularly polarised electric fields

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Kusalik, Peter G.; Woods, Sarah A.

    2012-03-01

    Non-equilibrium molecular dynamics simulations of R and S enantiomers of 1,1-chlorofluoroethane, both for pure liquids and racemic mixtures, have been performed at 298 K in the absence and presence of both electromagnetic (e/m) and circularly polarised electric (CP) fields of varying frequency (100-2200 GHz) and intensity (0.025-0.2 V Å-1rms). Significant non-thermal field effects were noted in the coupling of rotational and translational motion; for instance, in microwave and far-infrared (MW/IR) e/m fields, marked increases in rotational and translational diffusion vis-à-vis the zero-field case took place at 0.025-0.1 V Å-1rms, with a reduction in translational diffusion vis-à-vis the zero-field case above 0.1 V Å-1rms above 100 GHz. This was due to enhanced direct coupling of rotational motion with the more intense e/m field at the ideal intrinsic rotational coupling frequency (approximately 700 GHz) leading to such rapidly oscillating rotational motion that extent of translational motion was effectively reduced. In the case of CP fields, rotational and translational diffusion was also enhanced for all intensities, particularly at approximately 700 GHz. For both MW/IR and CP fields, non-linear field effects were evident above around 0.1 V Å-1rms intensity, in terms of enhancements in translational and rotational motion. Simulation of 90-10 mol. % liquid mixtures of a Lennard-Jones solvent with R and S enantiomer-solutes in MW/IR and CP fields led to more limited promotion of rotational and translational diffusion, due primarily to increased frictional effects. For both e/m and CP fields, examination of the laboratory- and inertial-frame auto- and cross-correlation functions of velocity and angular velocity demonstrated the development of explicit coupling with the external fields at the applied frequencies, especially so in the more intense fields where nonlinear effects come into play. For racemic mixtures, elements of the laboratory- and inertial

  7. Theory of the plasma thruster based on the rotating electromagnetic field

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, Ya. I.; Lutsenko, V. V.; Rudenko, T. S.

    2015-04-01

    A theory of electrodeless electric propulsion systems (EEPS) based on the use of the solenoid magnetic field and the rotating electromagnetic field produced by antennas is developed, which includes a study of the plasma acceleration by the Radio Frequency (RF) field and the concomitant thrust. It was assumed that the frequency of the RF field exceeds the lower hybrid frequency but is much less than the electron gyrofrequency. Relations for the thrust are obtained and analyzed. It is shown that thrust gain is significant only when the RF-induced drift velocity well exceeds the fluid velocity of the injected plasma. It is revealed that the curvature of the magnetic field lines and the plasma acceleration in the region outside the solenoid are the factors which can considerably increase the thrust. On the other hand, it is found that the axial inhomogeneity of the plasma and some other factors are unfavorable for the thrust. The obtained results can be used for the optimization of particular experiments aimed to create a new thruster for long-time space missions.

  8. Causal extraction of black hole rotational energy by various kinds of electromagnetic fields

    SciTech Connect

    Koide, Shinji; Baba, Tamon

    2014-09-10

    Recent general relativistic magnetohydrodynamics (MHD) simulations have suggested that relativistic jets from active galactic nuclei (AGNs) have been powered by the rotational energy of central black holes. Some mechanisms for extraction of black hole rotational energy have been proposed, like the Penrose process, Blandford-Znajek mechanism, MHD Penrose process, and superradiance. The Blandford-Znajek mechanism is the most promising mechanism for the engines of the relativistic jets from AGNs. However, an intuitive interpretation of this mechanism with causality is not yet clarified, while the Penrose process has a clear interpretation for causal energy extraction from a black hole with negative energy. In this paper, we present a formula to build physical intuition so that in the Blandford-Znajek mechanism, as well as in other electromagnetic processes, negative electromagnetic energy plays an important role in causal extraction of the rotational energy of black holes.

  9. External electromagnetic fields of a slowly rotating magnetized star with gravitomagnetic charge

    NASA Astrophysics Data System (ADS)

    Ahmedov, B. J.; Khugaev, A. V.; Abdujabbarov, A. A.

    2012-02-01

    We study Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star and find analytical solutions for the exterior electric fields after separating the equations for electric field into angular and radial parts in the lowest order in angular momentum and NUT charge approximation. The star is considered isolated and in vacuum, with dipolar magnetic field aligned with the axis of rotation. The contribution to the external electric field of star from the NUT charge is considered in detail.

  10. External Electromagnetic Fields of a Slowly Rotating Magnetized Star with Nonvanishing Gravitomagnetic Charge

    NASA Astrophysics Data System (ADS)

    Ahmedov, B. J.; Khugaev, A. V.; Rakhmatov, N. I.

    2008-09-01

    We write Maxwell equations in the external background spacetime of a slowly rotating magnetized NUT star and find analytical solutions after separating them into angular and radial parts. The star is considered isolated and in vacuum, with monopolar configuration model for the stellar magnetic field. The contribution to the external field from the NUT charge and frame-dragging effect are considered in detail.

  11. Causal signal transmission by quantum fields. V: Generalised Keldysh rotations and electromagnetic response of the Dirac sea

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Stenholm, S.

    2012-11-01

    The connection between real-time quantum field theory (RTQFT) [see, e.g., A. Kamenev and A. Levchenko, Adv. Phys. 58 (2009) 197] and phase-space techniques [E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (Cambridge, 1995)] is investigated. The Keldysh rotation that forms the basis of RTQFT is shown to be a phase-space mapping of the quantum system based on the symmetric (Weyl) ordering. Following this observation, we define generalised Keldysh rotations based on the class of operator orderings introduced by Cahill and Glauber [K.E. Cahill, R.J. Glauber, Phys. Rev. 177 (1969) 1882]. Each rotation is a phase-space mapping, generalising the corresponding ordering from free to interacting fields. In particular, response transformation [L.I. Plimak, S. Stenholm, Ann. Phys. (N.Y.) 323 (2008) 1989] extends the normal ordering of free-field operators to the time-normal ordering of Heisenberg operators. Structural properties of the response transformation, such as its association with the nonlinear quantum response problem and the related causality properties, hold for all generalised Keldysh rotations. Furthermore, we argue that response transformation is especially suited for RTQFT formulation of spatial, in particular, relativistic, problems, because it extends cancellation of zero-point fluctuations, characteristic of the normal ordering, to interacting fields. As an example, we consider quantised electromagnetic field in the Dirac sea. In the time-normally-ordered representation, dynamics of the field looks essentially classical (fields radiated by currents), without any contribution from zero-point fluctuations. For comparison, we calculate zero-point fluctuations of the interacting electromagnetic field under orderings other than time-normal. The resulting expression is physically inconsistent: it does not obey the Lorentz condition, nor Maxwell's equations.

  12. Electromagnetic Fields

    MedlinePlus

    ... cancer. Some people worry that wireless and cellular phones cause cancer. They give off radio-frequency energy (RF), a form of electromagnetic radiation. Scientists need to do more research on this ...

  13. Causal signal transmission by quantum fields. V: Generalised Keldysh rotations and electromagnetic response of the Dirac sea

    SciTech Connect

    Plimak, L.I.; Stenholm, S.

    2012-11-15

    The connection between real-time quantum field theory (RTQFT) [see, e.g., A. Kamenev and A. Levchenko, Adv. Phys. 58 (2009) 197] and phase-space techniques [E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (Cambridge, 1995)] is investigated. The Keldysh rotation that forms the basis of RTQFT is shown to be a phase-space mapping of the quantum system based on the symmetric (Weyl) ordering. Following this observation, we define generalised Keldysh rotations based on the class of operator orderings introduced by Cahill and Glauber [K.E. Cahill, R.J. Glauber, Phys. Rev. 177 (1969) 1882]. Each rotation is a phase-space mapping, generalising the corresponding ordering from free to interacting fields. In particular, response transformation [L.I. Plimak, S. Stenholm, Ann. Phys. (N.Y.) 323 (2008) 1989] extends the normal ordering of free-field operators to the time-normal ordering of Heisenberg operators. Structural properties of the response transformation, such as its association with the nonlinear quantum response problem and the related causality properties, hold for all generalised Keldysh rotations. Furthermore, we argue that response transformation is especially suited for RTQFT formulation of spatial, in particular, relativistic, problems, because it extends cancellation of zero-point fluctuations, characteristic of the normal ordering, to interacting fields. As an example, we consider quantised electromagnetic field in the Dirac sea. In the time-normally-ordered representation, dynamics of the field looks essentially classical (fields radiated by currents), without any contribution from zero-point fluctuations. For comparison, we calculate zero-point fluctuations of the interacting electromagnetic field under orderings other than time-normal. The resulting expression is physically inconsistent: it does not obey the Lorentz condition, nor Maxwell's equations. - Highlights: Black-Right-Pointing-Pointer The Keldysh rotation is a phase-space mapping based on

  14. Electromagnetic fields and torque for a rotating gyroscope with a superconducting shield

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1975-01-01

    In a proposed experiment, a measurement is to be made of the angular precession of a rotating superconducting gyroscope for the purpose of testing different general-relativity theories. For various reasons having to do with the design of the experiment, the superconducting shield surrounding the gyroscope is not spherically symmetric and produces a torque. There are two distinct features of the shield which lead to a torque on the gyroscope. First, its shape is a sphere intersected by a plane. If the angular momentum of the gyroscope is not parallel to the rotational symmetry axis of the shield, there is a torque which is calculated. Second, there are small holes in the spherical portion of the shield. The earth's field can penetrate through these holes and give an additional torque which is also calculated. In the actual experiment, these torques must be accurately known or made very small in order to obtain meaningful results. The present calculation is sufficiently general for application over a wide range of experimental design parameters.

  15. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  16. Introducing electromagnetic field momentum

    NASA Astrophysics Data System (ADS)

    Yu-Kuang Hu, Ben

    2012-07-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional analysis and without using vector calculus identities or the need to evaluate integrals. I use this result to show that linear and angular momenta are conserved for a charge in the presence of a magnetic dipole when the dipole strength is changed.

  17. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  18. Proca and electromagnetic fields

    SciTech Connect

    Hillion, P.; Quinnerz, S.

    1986-07-01

    In the framework of the proper orthochronous Lorentz group, the old connection is revived between the electromagnetic field characterized by a self-dual tensor and a traceless second-rank spinor obeying the Proca equation. The relationship between this spinor and the Hertz potential also considered as a self-dual tensor is emphasized. The extension of this formalism to meet the covariance under the full Lorentz group is also discussed.

  19. Gravitomagnetic field of rotating rings

    NASA Astrophysics Data System (ADS)

    Ruggiero, Matteo Luca

    2016-04-01

    In the framework of the so-called gravitoelectromagnetic formalism, according to which the equations of the gravitational field can be written in analogy with classical electromagnetism, we study the gravitomagnetic field of a rotating ring, orbiting around a central body. We calculate the gravitomagnetic component of the field, both in the intermediate zone between the ring and the central body, and far away from the ring and central body. We evaluate the impact of the gravitomagnetic field on the motion of test particles and, as an application, we study the possibility of using these results, together with the Solar System ephemeris, to infer information on the spin of ring-like structures.

  20. Interactions between electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Schwan, H. P.

    1985-02-01

    We applied for this grant to support a workshop at Erice, Italy. This workshop has been commonly called Erice School and the main subject of this workshop is the interaction of electromagnetic fields with biological cells and molecules. The grant from ONR enabled us to invite American scientists to participants in this workshop and deliver scientific papers. The duration of the Erice School was ten days. Therefore, we had sufficient time to discuss the problems of electromagnetic radiations. Vigorous discussions took place during official sessions and during private conversations. The participants of this workshop are mostly those who have been active in the research on bioelectromagnetics, but there are some numbers of speakers who discussed the basic electrical and magnetic properties of polyelectrolytes, biological membranes and tissue. The workshop was unique in that there were participants with a variety of training backgrounds. This enabled us to exchange the information between applied scientists and basic scientists. Also, active exchanges of opinions took place between biological scientists and physical scientists.

  1. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    PubMed Central

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-01-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through. PMID:27321246

  2. Translation and Rotation of Transformation Media under Electromagnetic Pulse

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-06-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell’s equations, which recently has spawned a booming field called ‘transformation optics’. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through.

  3. Translation and Rotation of Transformation Media under Electromagnetic Pulse.

    PubMed

    Gao, Fei; Shi, Xihang; Lin, Xiao; Xu, Hongyi; Zhang, Baile

    2016-01-01

    It is well known that optical media create artificial geometry for light, and curved geometry acts as an effective optical medium. This correspondence originates from the form invariance of Maxwell's equations, which recently has spawned a booming field called 'transformation optics'. Here we investigate responses of three transformation media under electromagnetic pulses, and find that pulse radiation can induce unbalanced net force on transformation media, which will cause translation and rotation of transformation media although their final momentum can still be zero. Therefore, the transformation media do not necessarily stay the same after an electromagnetic wave passes through. PMID:27321246

  4. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  5. Self-dual electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2010-08-01

    We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.

  6. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  7. An electromagnetic theory of turbulence driven poloidal rotation

    SciTech Connect

    McDevitt, C. J.; Guercan, Oe. D.

    2012-10-15

    An electromagnetic theory of turbulence driven poloidal rotation is developed with particular emphasis on understanding poloidal rotation in finite-{beta} plasmas. A relation linking the flux of polarization charge to the divergence of the total turbulent stress is derived for electromagnetic gyrokinetic modes. This relation is subsequently utilized to derive a constraint on the net electromagnetic turbulent stress exerted on the poloidal flow. Various limiting cases of this constraint are considered, where it is found that electromagnetic contributions to the turbulent stress may either enhance or reduce the net turbulent stress depending upon the branch of turbulence excited.

  8. What Are Electromagnetic Fields?

    MedlinePlus

    ... with distance from it. Conductors such as metal shield them very effectively. Other materials, such as building ... with distance from the source. Most building materials shield electric fields to some extent. Magnetic fields arise ...

  9. Electromagnetic waves propagation nearby rotating gravitating astrophysical object with atmosphere

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Tereshin, A. A.; Fomin, I. V.; Chelnokov, M. B.; Kauts, V. L.; Gladysheva, T. M.; Bazleva, D. D.

    The aim of the article to explore the effects of gravitational lensing and attraction of electromagnetic radiation in the description of the propagation of radiation nearby the atmospheres of rotating astrophysical objects.

  10. Macroscopic vacuum effects in an inhomogeneous and nonstationary electromagnetic field

    SciTech Connect

    Gal'tsov, D.V.; Nikitina, N.S.

    1983-04-01

    Macroscopic effects of vacuum polarization by a strong nonuniform and nonstationary fields, which are kinematically forbidden in the case of a uniform magnetic field, are considered. Calculations are perfomed for the deflection of a light beam in the field of a magnetic dipole, for the production of photon pairs by an inclined rotator, and for doubling and modulation of the frequency in scattering of low-frequency electromagnetic waves by the magnetic field of an inclined rotator.

  11. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  12. The courts and electromagnetic fields

    SciTech Connect

    Freeman, M. )

    1990-07-19

    This article examines the recent development in eminent domain cases involving power transmission line rights of way, the issue of fear of the mythical buyer. The author feels that the fear of electrocution or of the possible cancer-inducing effects of electromagnetic fields is greatly influencing court decisions in these cases. The results could be more expensive rights of way acquisition by utilities.

  13. Physiologic regulation in electromagnetic fields

    SciTech Connect

    Michaelson, S.M.

    1982-01-01

    Electromagnetic fields have been demonstrated to elicit thermoregulatory responses, neuroendocrine, neurochemical modulations, and behavioral reactions. These physiologic regulatory processes are exquisitely tuned, interrelated functions that constitute sensitive indicators of organismic responses to radiofrequency energy absorption (the radiofrequency portion of the electromagnetic spectrum includes as one part microwaves). Assessment of the integration and correlation of these functions relative to the thermal inputs and homeokinetic reactions of the individual subjected to radiofrequency energy should permit differentiation between potential hazards that might compromise the individual's ability to maintain normal physiologic function and effects that are compensated by physiologic redundancy.

  14. Binary black holes' effects on electromagnetic fields.

    PubMed

    Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-08-21

    In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves. PMID:19792706

  15. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life. PMID:1837859

  16. Electromagnetic fields of separable spacetimes

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.; Lynden-Bell, Donald

    2007-03-01

    Carter derived the forms of the metric and the vector potentials of the spacetimes in which the relativistic Schrödinger equation for the motion of a charged particle separates. Here we show that on each 'spheroidal' surface a rotation rate, ω, exists such that relative to those rotating axes the electric and magnetic fields are parallel and orthogonal to the spheroid which is thus an equipotential in those axes. All the finite Carter separable systems without magnetic monopoles or gravomagnetic NUT monopoles have the same gyromagnetic ratio as the Dirac electron.

  17. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  18. Link invariants of electromagnetic fields.

    PubMed

    von Bodecker, Hanno; Hornig, Gunnar

    2004-01-23

    The cross-helicity integral is known in fluid dynamics and plasma physics as a topological invariant which measures the mutual linkage of two divergence-free vector fields, e.g., magnetic fields, on a three-dimensional domain. Generalizing this concept, a new topological invariant is found which measures the mutual linkage of three closed two-forms, e.g., electromagnetic fields, on a four-dimensional domain. The integral is shown to detect a separation of the cross helicity between two of the fields with the help of the third field. It can be related to the triple linking number known in knot theory. Furthermore, it is shown that the well-known three-dimensional cross helicity and the new four-dimensional invariant are the first two examples of a series of topological invariants which are defined by n-1 field strengths F=dA on a simply connected n-dimensional manifold M(n). PMID:14753856

  19. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  20. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  1. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. PMID:26686296

  2. Hysteresis in rotation magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanyi, Amalia

    2000-01-01

    The different properties of the vector Jiles-Atherton hysteresis operator is proved under forced H- and B-field supply. Feeding the magnetic material with alternating and circular polarised rotational excitation, the different properties of the model under the input field intensity and the flux density are investigated and the results are proved in figures.

  3. Medical applications of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  4. NMR in rotating magnetic fields: Magic angle field spinning

    SciTech Connect

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  5. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    SciTech Connect

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form.

  6. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  7. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  8. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  9. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  10. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  11. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  12. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  13. Generating highly uniform electromagnetic field characteristics

    DOEpatents

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  14. [Health effects of electromagnetic fields].

    PubMed

    Röösli, Martin

    2013-12-01

    Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies. PMID:24297859

  15. Nanomechanical electric and electromagnetic field sensor

    DOEpatents

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  16. Interaction of electromagnetic fields and biological tissues

    NASA Astrophysics Data System (ADS)

    Darshan Shrivastava, Bhakt; Barde, Ravindra; Mishra, Ashutosh; Phadke, S.

    2014-09-01

    This paper deals with the electromagnetic field interact in biological tissues. It is actually one of the important challenges for the electromagnetic field for the recent years. The experimental techniques are use in Broad-band Dielectric Measurement (BDM) with LCR meters. The authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biological tissues. Experimental work carried out done in inter-university consortium (IUC) Indore. The major difficulties that appear are related to the material properties, to the effect of the electromagnetic problem and to the thermal model of the biological tissues.

  17. Relativistic diffusive motion in thermal electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2013-04-01

    We discuss relativistic dynamics in a random electromagnetic field which can be considered as a high temperature limit of the quantum electromagnetic field in a heat bath (cavity) moving with a uniform velocity w. We derive a diffusion approximation for the particle’s dynamics generalizing the diffusion of Schay and Dudley. It is shown that the Jüttner distribution is the equilibrium state of the diffusion.

  18. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  19. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  20. Electromagnetic currents induced by color fields

    NASA Astrophysics Data System (ADS)

    Tanji, Naoto

    2015-12-01

    The quark production in classical color fields is investigated with a focus on the induction of an electromagnetic current by produced quarks. We show that the color SU(2) and the SU(3) theories lead significantly different results for the electromagnetic current. In uniform SU(2) color fields, the net electromagnetic current is not generated, while in SU(3) color fields the net current is induced depending on the color direction of background fields. Also the numerical study of the quark production in inhomogeneous color fields is done. Motivated by gauge field configurations provided by the color glass condensate framework, we introduce an ensemble of randomly distributed color electric fluxtubes. The spectrum of photons emitted from the quarks by a classical process is shown.

  1. Can the slow-rotation approximation be used in electromagnetic observations of black holes?

    NASA Astrophysics Data System (ADS)

    Ayzenberg, Dimitry; Yagi, Kent; Yunes, Nicolás

    2016-05-01

    Future electromagnetic observations of black holes (BHs) may allow us to test general relativity (GR) in the strong-field regime. Such tests, however, require knowledge of rotating BH solutions in modified gravity theories, a class of which does not admit the Kerr metric as a solution. Several rotating BH solutions in modified theories have only been found in the slow-rotation approximation (i.e. assuming the spin angular momentum is much smaller than the mass squared). We here investigate whether the systematic error due to the approximate nature of these BH metrics is small enough relative to the observational error to allow their use in electromagnetic observations to constrain deviations from GR. We address this by considering whether electromagnetic observables constructed from a slow-rotation approximation to the Kerr metric can fit observables constructed from the full Kerr metric with systematic errors smaller than current observational errors. We focus on BH shadow and continuum spectrum observations, as these are the least influenced by accretion disk physics, with current observational errors of about 10%. We find that the fractional systematic error introduced by using a second-order, slowly rotating Kerr metric is at most 2% for shadows created by BHs with dimensionless spins χ ≤slant 0.6. We also find that the systematic error introduced by using the slowly rotating Kerr metric as an exact metric when constructing continuum spectrum observables is negligible for BHs with dimensionless spins of χ ≲ 0.9. Our results suggest that the modified gravity solutions found in the slow-rotation approximation may be used to constrain realistic deviations from GR with continuum spectrum and BH shadow observations.

  2. Electromagnetic field dynamics in Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Palenzuela, Carlos; Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Liebling, Steven; Neilsen, David; Motl, Patrick

    2011-04-01

    Neutron star mergers represent one of the most promising sources of gravitational waves (GW) within the bandwidth of advLIGO. In addition to GW, strong magnetic fields may offer the possibility of a characteristic electromagnetic signature allowing for concurrent detection. In this talk we present results from numerical evolutions of such mergers, studying the dynamics of both the gravitational and electromagnetic degrees of freedom.

  3. Electromagnetic fields in fractal continua

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Mena, Baltasar; Patiño, Julián; Morales, Daniel

    2013-04-01

    Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum ΦD3⊂E3 with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space Fα accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.

  4. Electromagnetic signature in holographic plasma with B field

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan

    2013-01-01

    We explore the effect of a magnetic field on the electromagnetic signature in QCD-like plasma by taking the AdS/CFT approach. Concretely, we choose two QCD gravity dual models to do comparative studies: the D4/D6 and D3/D7 models. The magnetic field is simulated by a spatial component of the flavor U(1) gauge field in the bulk side. For both models, we plot the spectral function and photoemission rate for lightlike momenta as well as the ac conductivity. Due to the presence of the magnetic field, the rotational symmetry is partially broken. Therefore, we plot the spectral function and photoemission rate with spatial momentum parallel or perpendicular to the magnetic field, respectively. We find that the magnetic field induces an anisotropic feature in the electromagnetic signature. To be specific, when the emitted photons from the plasma are moving along the magnetic field, the electromagnetic signature is weakened as the magnetic field is increasing; on the contrary, when the produced photons move perpendicular to the magnetic field, the magnetic field has the effect of amplifying the electromagnetic signature. This should have a relationship with the anisotropic feature of the photon signal observed in heavy-ion collision experiments. This anisotropic characteristic can also be observed in the ac conductivity of the holographic plasma. In the infrared regime of the frequency, the magnetic field suppresses the ac conductivity (along the direction perpendicular to the magnetic field) and likely gives a pseudogap structure. However, the ac conductivity along the magnetic field is enhanced due to the presence of the magnetic field.

  5. Fundamental issues on electromagnetic fields (EMF).

    PubMed

    Novini, A

    1993-01-01

    This paper will examine the fundamental principals of Electromagnetic Field Radiation. The discussion will include: The basic physical characteristics of magnetic and electric fields, the numerous sources of EMF in our everyday lives, ways to detect and measure EMF accurately, what to look for in EMF instruments, and the issues and misconceptions on shielding and exposure reduction. PMID:8098895

  6. Radiated fields from an electromagnetic pulse simulator

    NASA Astrophysics Data System (ADS)

    Pelletier, M.; Delisle, G. Y.; Kashyap, S.

    Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.

  7. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  8. Study of Rotating-Wave Electromagnetic Modes for Applications in Space Exploration

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2016-08-01

    Rotating waves are circularly polarized electromagnetic wave fields that behave like traveling waves but have discrete resonant frequencies of standing waves. In JPL's Communications Ground Systems Section (333), we are making use of this peculiar type of electromagnetic modes to develop a new generation of devices and instruments for direct applications in space exploration. In this article, we present a straightforward analysis about the phase velocity of these wave modes. A derivation is presented for the azimuthal phase velocity of transverse magnetic rotating modes inside cylindrical cavity resonators. Computer simulations and experimental measurements are also presented that corroborate the theory developed. It is shown that the phase velocity of rotating waves inside cavity resonators increases with radial position within the cavity and decreases when employing higher-order operating modes. The exotic features of rotating modes, once better understood, have the potential to enable the implementation of a plethora of new devices that range from amplifiers and frequency multipliers to electron accelerators and ion thrusters.

  9. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  10. Exact quantization of a paraxial electromagnetic field

    SciTech Connect

    Aiello, A.; Woerdman, J. P.

    2005-12-15

    A nonperturbative quantization of a paraxial electromagnetic field is achieved via a generalized dispersion relation imposed on the longitudinal and the transverse components of the photon wave vector. This theoretical formalism yields a seamless transition between the paraxial- and the Maxwell-equation solutions. This obviates the need to introduce either ad hoc or perturbatively defined field operators. Moreover, our (exact) formalism remains valid beyond the quasimonochromatic paraxial limit.

  11. Visualization of circuit card electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Zwillinger, Daniel

    1995-01-01

    Circuit boards are used in nearly every electrical appliance. Most board failures cause differing currents in the circuit board traces and components. This causes the circuit board to radiate a differing electromagnetic field. Imaging this radiated field, which is equivalent to measuring the field, could be used for error detection. Using estimates of the fields radiated by a low power digital circuit board, properties of known materials, and available equipment, we determined how well the following technologies could be used to visualize circuit board electromagnetic fields (prioritized by promise): electrooptical techniques, magnetooptical techniques, piezoelectric techniques, thermal techniques, and electrodynamic force technique. We have determined that sensors using the electrooptical effect (Pockels effect) appear to be sufficiently sensitive for use in a circuit board imaging system. Sensors utilizing the magnetooptical effect may also be adequate for this purpose, when using research materials. These sensors appear to be capable of achieving direct broadband measurements. We also reviewed existing electromagnetic field sensors. Only one of the sensors (recently patented) was specifically designed for circuit board measurements.

  12. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  13. Radiofrequency Electromagnetic Field Map of Timisoara

    NASA Astrophysics Data System (ADS)

    Stefu, N.; Solyom, I.; Arama, A.

    2015-12-01

    There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.

  14. Electromagnetic field of a linear antenna

    NASA Astrophysics Data System (ADS)

    Derby, Norman; Olbert, Stanislaw

    2008-11-01

    Animated computer simulations of the electric field of a radiating antenna can capture the attention of students in introductory electromagnetism courses and stimulate active discussions. The simulations raise questions not usually addressed in textbooks. In certain cases, some of the field lines appear to move toward the antenna, the speed of the field lines can change as they move, and the field lines exhibit strange behavior (circling or splitting) at certain points. Because their fields can be expressed in terms of elementary functions, animations of point dipole antennas are common, but animations showing the fields of antennas with more realistic lengths are not as common because analytical expressions for these fields are not as well known. We show that it is possible to derive analytical expressions in terms of elementary functions for the electromagnetic field of linear antennas of finite length. We draw attention to an open-source method for displaying the fine details within the field patterns and then give a general discussion of singular points and their motions, derive expressions for their location and phase velocity, and apply these results to some of the phenomena that are visible in visualizations of the fields of various antennas.

  15. Electromagnetic field induced biological effects in humans.

    PubMed

    Kaszuba-Zwolińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  16. Electromagnetic unification of matter and force fields

    NASA Astrophysics Data System (ADS)

    John, Sarah

    2004-05-01

    Special relativity and quantum mechanics are descriptive of electromagnetic propagation in waveguides, with mass analogous to the cutoff frequency of a waveguide mode [S.John, Bull.Am.Phys.Soc. vol.39,no.2,1254 (1994)]. It is further postulated herein that all spin 1/2 matter (necessarily massive) and spin 1 force fields have their origin in the electromagnetic fields E and B. This concept is not new. Majorana, among others have obtained electromagnetic representations of Dirac-like equations valid for the zero-mass case. Here, the spinor representation of the Maxwell equations, as given by Sallhofer, is extended to oscillatory fields with propagation constant m to obtain, in the absence of charge and current densities, the coupled equation (M. hatp + β E)ψ = 0 , where M = diag[ M σ, M^* σ ] , β = offdiag[I,I] , ψ ^ = i ^dag ( σ. B0 ( p), σ. E_0(p)), and M=m+ip, with the energy-mass relation given by E^2 = M M . Further, it is shown that the interaction term of QED is a direct consequence of including the sources and currents of Maxwell equations. Qualitative field patterns for spin 1/2 and spin 1 states, such as the electron, neutrino, magnetic monopole, quarks, photon, and massive gauge bosons are suggested.

  17. Aspects of Interacting Electromagnetic and Torsion Fields

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Helaÿel-Neto, José A.

    2011-01-01

    The interaction energy is studied for the coupling of axial torsion fields with photons in the presence of an external electromagnetic field. To this end, we compute the static quantum potential. Our discussion is carried out using the gauge-invariant but path-dependent variables formalism, which is alternative to the Wilson loop approach. Our results show that the static potential is a Yukawa correction to the usual static Coulomb potential. Interestingly, when this calculation is done by considering a mass term for the gauge field, the Coulombic piece disappears leading to a screening phase.

  18. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  19. On electromagnetic field problems in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  20. Hamiltonian dynamics of the parametrized electromagnetic field

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-06-01

    We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.

  1. Rotationally Vibrating Electric-Field Mill

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    2008-01-01

    A proposed instrument for measuring a static electric field would be based partly on a conventional rotating-split-cylinder or rotating-split-sphere electric-field mill. However, the design of the proposed instrument would overcome the difficulty, encountered in conventional rotational field mills, of transferring measurement signals and power via either electrical or fiber-optic rotary couplings that must be aligned and installed in conjunction with rotary bearings. Instead of being made to rotate in one direction at a steady speed as in a conventional rotational field mill, a split-cylinder or split-sphere electrode assembly in the proposed instrument would be set into rotational vibration like that of a metronome. The rotational vibration, synchronized with appropriate rapid electronic switching of electrical connections between electric-current-measuring circuitry and the split-cylinder or split-sphere electrodes, would result in an electrical measurement effect equivalent to that of a conventional rotational field mill. A version of the proposed instrument is described.

  2. Cardiac torsion and electromagnetic fields: the cardiac bioinformation hypothesis.

    PubMed

    Burleson, Katharine O; Schwartz, Gary E

    2005-01-01

    Although in physiology the heart is often referred to as a simple piston pump, there are in fact two additional features that are integral to cardiac physiology and function. First, the heart as it contracts in systole, also rotates and produces torsion due to the structure of the myocardium. Second, the heart produces a significant electromagnetic field with each contraction due to the coordinated depolarization of myocytes producing a current flow. Unlike the electrocardiogram, the magnetic field is not limited to volume conduction and extends outside the body. The therapeutic potential for interaction of this cardioelectromagnetic field both within and outside the body is largely unexplored. It is our hypothesis that the heart functions as a generator of bioinformation that is central to normative functioning of body. The source of this bioinformation is based on: (1) vortex blood flow in the left ventricle; (2) a cardiac electromagnetic field and both; (3) heart sounds; and (4) pulse pressure which produce frequency and amplitude information. Thus, there is a multidimensional role for the heart in physiology and biopsychosocial dynamics. Recognition of these cardiac properties may result in significant implications for new therapies for cardiovascular disease based on increasing cardiac energy efficiency (coherence) and bioinformation from the cardioelectromagnetic field. Research studies to test this hypothesis are suggested. PMID:15823696

  3. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  4. Electromagnetic field emissions from underwater power cables

    NASA Astrophysics Data System (ADS)

    DiBiasio, Christopher

    This study is performed as a partial aid to a larger study that aims to determine if electromagnetic fields produced by underwater power cables have any effect on marine species. In this study, a new numerical method for calculating magnetic fields around subsea power cables is presented and tested. The numerical method is derived from electromagnetic theory, and the program, Matlab, is implemented in order to run the simulations. The Matlab code is validated by performing a series of tests in which the theoretical code is compared with other previously validated magnetic field solvers. Three main tests are carried out; two of these tests are physical and involve the use of a magnetometer, and the third is numerical and compares the code with another numerical model known as Ansys. The data produced by the Matlab code remains consistent with the measured values from both the magnetometer and the Ansys program; thus, the code is considered valid. The validated Matlab code can then be implemented into other parts of the study in order to plot the magnetic field around a specific power cable.

  5. Electromagnetic fields on a quantum scale. I.

    PubMed

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later. PMID:12908293

  6. Cosmological magnetic fields from inflation in extended electromagnetism

    SciTech Connect

    Beltran Jimenez, Jose; Maroto, Antonio L.

    2011-01-15

    In this work we consider an extended electromagnetic theory in which the scalar state which is usually eliminated by means of the Lorenz condition is allowed to propagate. This state has been shown to generate a small cosmological constant in the context of standard inflationary cosmology. Here we show that the usual Lorenz gauge-breaking term now plays the role of an effective electromagnetic current. Such a current is generated during inflation from quantum fluctuations and gives rise to a stochastic effective charge density distribution. Because of the high electric conductivity of the cosmic plasma after inflation, the electric charge density generates currents which give rise to both vorticity and magnetic fields on sub-Hubble scales. Present upper limits on vorticity coming from temperature anisotropies of the CMB are translated into lower limits on the present value of cosmic magnetic fields. We find that, for a nearly scale invariant vorticity spectrum, magnetic fields B{sub {lambda}>}10{sup -12} G are typically generated with coherence lengths ranging from subgalactic scales up to the present Hubble radius. Those fields could act as seeds for a galactic dynamo or even account for observations just by collapse and differential rotation of the protogalactic cloud.

  7. Translation operator for finite dmensional electromagnetic fields

    SciTech Connect

    Howard, A.Q. Jr.

    1981-04-01

    Computation of electromagnetic fields in particular applications is usually accompanied by the adhoc assumption that the field contains a finite number of degrees of freedom. Herein, this assumption is made at the outset. It is shown that if an annular region between two closed surfaces contains no sources or sinks and is isotropic, lossless and homogeneous, a unique translation operator can be defined algebraically. Conservation of energy defines the translation operator T to within an arbitrary unitary transformation. The conditions of causality, unitarity and energy conservation are shown to uniquely determine T. Both scalar and vector fields are treated. In both of these cases, frequency and time domain transforms are computed. The transform T is compared with the analagous one as derived from the time domain Stratton-Chu Formulation. The application to a radiation condition boundary constraint on finite difference and finite element computations is discussed.

  8. Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Krongos, D. S.; Torre, C. G.

    2015-07-01

    Rainich-type conditions giving a spacetime "geometrization" of matter fields in general relativity are reviewed and extended. Three types of matter are considered: perfect fluids, scalar fields, and electromagnetic fields. Necessary and sufficient conditions on a spacetime metric for it to be part of a perfect fluid solution of the Einstein equations are given. Formulas for constructing the fluid from the metric are obtained. All fluid results hold for any spacetime dimension. Geometric conditions on a metric which are necessary and sufficient for it to define a solution of the Einstein-scalar field equations and formulas for constructing the scalar field from the metric are unified and extended to arbitrary dimensions, to include a cosmological constant, and to include any self-interaction potential. Necessary and sufficient conditions on a four-dimensional spacetime metric for it to be an electrovacuum and formulas for constructing the electromagnetic field from the metric are generalized to include a cosmological constant. Both null and non-null electromagnetic fields are treated. A number of examples and applications of these results are presented.

  9. Dark energy and cosmic magnetic fields: electromagnetic relics from inflation

    NASA Astrophysics Data System (ADS)

    Jiménez, Jose Beltrán; Maroto, Antonio L.

    We consider an extended electromagnetic theory in which the scalar state which is usually eliminated be means of the Lorenz condition is allowed to propagate. On super-Hubble scales, such a state is given by the temporal component of the electromagnetic potential and contributes as an effective cosmological constant to the energy-momentum tensor. Its initial amplitude is set by quantum fluctuations generated during inflation and it is shown that the predicted value for the cosmological constant agrees with observations provided inflation took place at the electroweak scale. We also consider more general theories including non-minimal couplings to the space-time curvature in the presence of the temporal electromagnetic background. We show that both in the minimal and non-minimal cases, the modified Maxwell's equations include new effective current terms which can generate magnetic fields from sub-galactic scales up to the present Hubble horizon. The corresponding amplitudes could be enough to seed a galactic dynamo or even to account for observations just by collapse and differential rotation in the protogalactic cloud.

  10. Near-field radiofrequency electromagnetic exposure assessment.

    PubMed

    Rubtsova, Nina; Perov, Sergey; Belaya, Olga; Kuster, Niels; Balzano, Quirino

    2015-09-01

    Personal wireless telecommunication devices, such as radiofrequency (RF) electromagnetic field (EMF) sources operated in vicinity of human body, have possible adverse health effects. Therefore, the correct EMF assessment is necessary in their near field. According to international near-field measurement criteria, the specific absorption rate (SAR) is used for absorbed energy distribution assessment in tissue simulating liquid phantoms. The aim of this investigation is to validate the relationship between the H-field of incident EMF and absorbed energy in phantoms. Three typical wireless telecommunication system frequencies are considered (900, 1800 and 2450 MHz). The EMF source at each frequency is an appropriate half-wave dipole antenna and the absorbing medium is a flat phantom filled with the suitable tissue simulating liquid. Two methods for SAR estimation have been used: standard procedure based on E-field measured in tissue simulating medium and a proposed evaluation by measuring the incident H-field. Compared SAR estimations were performed for various distances between sources and phantom. Also, these research data were compared with simulation results, obtained by using finite-difference time-domain method. The acquired data help to determine the source near-field space characterized by the smallest deviation between SAR estimation methods. So, this region near the RF source is suitable for correct RF energy absorption assessment using the magnetic component of the RF fields. PMID:26444190

  11. Theory of a ring laser. [electromagnetic field and wave equations

    NASA Technical Reports Server (NTRS)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  12. Electromagnetic fields with vanishing scalar invariants

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-06-01

    We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.

  13. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  14. Plant Responses to High Frequency Electromagnetic Fields.

    PubMed

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  15. Rotating copper plasmoid in external magnetic field

    SciTech Connect

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  16. Equilibrium rotation in field-reversed configurations

    SciTech Connect

    Steinhauer, Loren

    2008-01-15

    The turbulence that drives anomalous transport in field-reversed configurations (FRCs) is believed to break the otherwise closed magnetic surfaces inside the separatrix. This places electrons in the core of the plasma in electrical contact with those in the periphery. This effect was proposed and investigated in the context of spheromaks [D. D. Ryutov, Phys. Plasmas 14, 022506 (2007)]. The opening up of internal magnetic field lines serves to regulate the electrostatic potential in the interior of the plasma, and in turn drives ion rotation. In effect, 'end-shorting', a well-known phenomenon in the FRC scrape-off layer, also extends into the plasma interior. For conditions relevant to experiments, the ion rotation can be expressed in terms of equilibrium properties (density and temperature gradients) and as such is the 'equilibrium' rotation. This theory is incomplete in that it neglects evolving, transport-related effects that modify the equilibrium and, indirectly, the rotation rate. Consequently, the equilibrium rotation theory is only partially successful in predicting experimental results: although it predicts the average rotation well, the estimated degree of rotational shear seems unlikely, especially at late times in the plasma lifetime.

  17. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  18. Truesdell invariance in relativistic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Walwadkar, B. B.; Virkar, K. V.

    1984-01-01

    The Truesdell derivative of a contravariant tensor fieldX ab is defined with respect to a null congruencel a analogous to the Truesdell stress rate in classical continuum mechanics. The dynamical consequences of the Truesdell invariance with respect to a timelike vectoru a of the stress-energy tensor characterizing a charged perfect fluid with null conductivity are the conservation of pressure (p), charged density (e) an expansion-free flow, constancy of the Maxwell scalars, and vanishing spin coefficientsα+¯β = ¯σ - λ = τ = 0 (assuming freedom conditionsk = λ = ɛ ψ + ¯γ = 0). The electromagnetic energy momentum tensor for the special subcases of Ruse-Synge classification for typesA andB are described in terms of the spin coefficients introduced by Newman-Penrose.

  19. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  20. Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Peng; Kong, Gao-Pan; Zhang, Xing; He, Guo-Wei

    2013-09-01

    Using molecular dynamics simulations, we demonstrate pumping of water through a carbon nanotube by applying the combination of a rotating electric field and a rotating magnetic field. The driving force is a Lorentz force generated from the motion of charges in the magnetic field, and the motion is caused by the rotation of the electric field. We find that there exits a linear relationship between the average pumping velocity v and magnetic field strength B, which can be used to control the flux of the continuous unidirectional water flow. This approach is expected to be used in liquid circulation without a pressure gradient.

  1. Electromagnetic polarizabilities: Lattice QCD in background fields

    SciTech Connect

    W. Detmold, B.C. Tiburzi, A. Walker-Loud

    2012-04-01

    Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HI gamma S.

  2. Mortality in workers exposed to electromagnetic fields

    SciTech Connect

    Milham, S. Jr.

    1985-10-01

    In an occupational mortality analysis of 486,000 adult male death records filed in Washington State in the years 1950-1982, leukemia and the non-Hodgkin's lymphomas show increased proportionate mortality ratios (PMRs) in workers employed in occupations with intuitive exposures to electromagnetic fields. Nine occupations of 219 were considered to have electric or magnetic field exposures. These were: electrical and electronic technicians, radio and telegraph operators, radio and television repairmen, telephone and power linemen, power station operators, welders, aluminum reduction workers, motion picture projectionists and electricians. There were 12,714 total deaths in these occupations. Eight of the nine occupations had PMR increases for leukemia (International Classification of Diseases (ICD), seventh revision 204) and seven of the nine occupations had PMR increases for the other lymphoma category (7th ICD 200.2, 202). The highest PMRs were seen for acute leukemia: (67 deaths observed, 41 deaths expected; PMR 162), and in the other lymphomas (51 deaths observed, 31 deaths expected; PMR 164). No increase in mortality was seen for Hodgkin's disease or multiple myeloma. These findings offer some support for the hypothesis that electric and magnetic fields may be carcinogenic.

  3. Inelastic deformation of conductive bodies in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Morachkovsky, Oleg; Naumenko, Konstantin; Lavinsky, Denis

    2015-12-01

    Inelastic deformation of conductive bodies under the action of electromagnetic fields is analyzed. Governing equations for non-stationary electromagnetic field propagation and elastic-plastic deformation are presented. The variational principle of minimum of the total energy is applied to formulate the numerical solution procedure by the finite element method. With the proposed method, distributions of vector characteristics of the electromagnetic field and tensor characteristics of the deformation process are illustrated for the inductor-workpiece system within a realistic electromagnetic forming process.

  4. Influence of an electromagnetic field on the formation of wet metal foam

    NASA Astrophysics Data System (ADS)

    Heitkam, Sascha; Schwarz, Stephan; Santarelli, Claudio; Fröhlich, Jochen

    2013-03-01

    This paper presents a method of floating bubbles in liquid metal by applying an electromagnetic field. The aim of this method is to distribute the bubbles more homogeneously and to stop drainage in the generation process of metal foam. A horizontal electric current, combined with an orthogonal, horizontal magnetic field creates an upward Lorentz force that counteracts gravitational acceleration. Phase-resolving numerical simulations have been applied in order to investigate the complex behavior of a large number of bubbles exposed to these fields. Controlled by the strength of the electromagnetic fields, the bubbles can ascend more slowly, stagnate, or even descend. Due to the influence of the bubbles on the electric current, however, rotating flows are induced which prevent the bubbles from becoming immobile and induce an interesting mixing structure. Consequently, the applied electromagnetic field offers the opportunity to manipulate the bubble distribution and the drainage in the generation process of wet metal foam.

  5. The Universal C*-Algebra of the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2016-02-01

    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

  6. A nonstationary axially symmetric electromagnetic field in a moving sphere

    NASA Astrophysics Data System (ADS)

    Vestyak, V. A.; Tarlakovsky, D. V.

    2015-10-01

    Integral representations of series coefficients for components of an electromagnetic field with nuclei are formulated in the form of Green's functions. Approximate quasi-static analogs are used as these functions. An example of the translational motion of the sphere is presented. Explicit formulas for the components of the electromagnetic field are derived.

  7. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  8. Rotational and magnetic field instabilities in neutron stars

    SciTech Connect

    Kokkotas, Kostas D.

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  9. Assessment of Electromagnetic Fields at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  10. The sensitivity of children to electromagnetic fields.

    PubMed

    Kheifets, Leeka; Repacholi, Michael; Saunders, Rick; van Deventer, Emilie

    2005-08-01

    In today's world, technologic developments bring social and economic benefits to large sections of society; however, the health consequences of these developments can be difficult to predict and manage. With rapid advances in electromagnetic field (EMF) technologies and communications, children are increasingly exposed to EMFs at earlier and earlier ages. Consistent epidemiologic evidence of an association between childhood leukemia and exposure to extremely low frequency (ELF) magnetic fields has led to their classification by the International Agency for Research on Cancer as a "possible human carcinogen." Concerns about the potential vulnerability of children to radio frequency (RF) fields have been raised because of the potentially greater susceptibility of their developing nervous systems; in addition, their brain tissue is more conductive, RF penetration is greater relative to head size, and they will have a longer lifetime of exposure than adults. To evaluate information relevant to children's sensitivity to both ELF and RF EMFs and to identify research needs, the World Health Organization held an expert workshop in Istanbul, Turkey, in June 2004. This article is based on discussions from the workshop and provides background information on the development of the embryo, fetus, and child, with particular attention to the developing brain; an outline of childhood susceptibility to environmental toxicants and childhood diseases implicated in EMF studies; and a review of childhood exposure to EMFs. It also includes an assessment of the potential susceptibility of children to EMFs and concludes with a recommendation for additional research and the development of precautionary policies in the face of scientific uncertainty. PMID:16061584

  11. Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas

    SciTech Connect

    Liu Jian; Qin Hong

    2012-10-15

    Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.

  12. Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

    SciTech Connect

    Jian Liu and Hong Qin

    2011-11-07

    The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.

  13. Industrialization, electromagnetic fields, and breast cancer risk.

    PubMed Central

    Kheifets, L I; Matkin, C C

    1999-01-01

    The disparity between the rates of breast cancer in industrialized and less-industrialized regions has led to many hypotheses, including the theory that exposure to light-at-night and/or electromagnetic fields (EMF) may suppress melatonin and that reduced melatonin may increase the risk of breast cancer. In this comprehensive review we consider strengths and weaknesses of more than 35 residential and occupational epidemiologic studies that investigated the association between EMF and breast cancer. Although most of the epidemiologic data do not provide strong support for an association between EMF and breast cancer, because of the limited statistical power as well as the possibility of misclassification and bias present in much of the existing data, it is not possible to rule out a relationship between EMF and breast cancer. We make several specific recommendations for future studies carefully designed to test the melatonin-breast cancer and EMF-breast cancer hypotheses. Future study designs should have sufficient statistical power to detect small to moderate associations; include comprehensive exposure assessments that estimate residential and occupational exposures, including shift work; focus on a relevant time period; control for known breast cancer risks; and pay careful attention to menopausal and estrogen receptor status. PMID:10229714

  14. Brownian dipole rotator in alternating electric field.

    PubMed

    Rozenbaum, V M; Vovchenko, O Ye; Korochkova, T Ye

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters. PMID:18643221

  15. Brownian dipole rotator in alternating electric field

    NASA Astrophysics Data System (ADS)

    Rozenbaum, V. M.; Vovchenko, O. Ye.; Korochkova, T. Ye.

    2008-06-01

    The study addresses the azimuthal jumping motion of an adsorbed polar molecule in a periodic n -well potential under the action of an external alternating electric field. Starting from the perturbation theory of the Pauli equation with respect to the weak field intensity, explicit analytical expressions have been derived for the time dependence of the average dipole moment as well as the frequency dependences of polarizability and the average angular velocity, the three quantities exhibiting conspicuous stochastic resonance. As shown, unidirectional rotation can arise only provided simultaneous modulation of the minima and maxima of the potential by an external alternating field. For a symmetric potential of hindered rotation, the average angular velocity, if calculated by the second-order perturbation theory with respect to the field intensity, has a nonzero value only at n=2 , i.e., when two azimuthal wells specify a selected axis in the system. Particular consideration is given to the effect caused by the asymmetry of the two-well potential on the dielectric loss spectrum and other Brownian motion parameters. When the asymmetric potential in a system of dipole rotators arises from the average local fields induced by an orientational phase transition, the characteristics concerned show certain peculiarities which enable detection of the phase transition and determination of its parameters.

  16. Interpreting marine controlled source electromagnetic field behaviour with streamlines

    NASA Astrophysics Data System (ADS)

    Pethick, A. M.; Harris, B. D.

    2013-10-01

    Streamlines represent particle motion within a vector field as a single line structure and have been used in many areas of geophysics. We extend the concept of streamlines to interactive three dimensional representations of the coupled vector fields generated during marine controlled source electromagnetic surveys. These vector fields have measurable amplitudes throughout many hundreds of cubic kilometres. Electromagnetic streamline representation makes electromagnetic interactions within complex geo-electrical setting comprehensible. We develop an interface to rapidly compute and interactively visualise the electric and magnetic fields as streamlines for 3D marine controlled source electromagnetic surveys. Several examples highlighting how interactive use has value in marine controlled source electromagnetic survey design, interpretation and teaching are provided. The first videos of electric, magnetic and Poynting vector field streamlines are provided along with the first published example of the airwave represented as streamlines. We demonstrate that the electric field airwave is a circulating vortex moving down and out from the air-water interface towards the ocean floor. The use of interactive streamlines is not limited to marine controlled source electromagnetic methods. Streamlines provides a high level visualisation tool for interpreting the electric and magnetic field behaviour generated by a wide range of electromagnetic survey configurations for complex 3D geo-electrical settings.

  17. Feedback-Driven Mode Rotation Control by Electro-Magnetic Torque

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Strait, E. J.; Garofalo, A. M.; La Haye, R. J.; in, Y.; Hanson, J. M.; Shiraki, D.; Volpe, F.

    2013-10-01

    The recent experimental discovery of feedback-driven mode rotation control, supported by modeling, opens new approaches for avoidance of locked tearing modes that otherwise lead to disruptions. This approach is an application of electro-magnetic (EM) torque using 3D fields, routinely maximized through a simple feedback system. In DIII-D, it is observed that a feedback-applied radial field can be synchronized in phase with the poloidal field component of a large amplitude tearing mode, producing the maximum EM torque input. The mode frequency can be maintained in the 10 Hz to 100 Hz range in a well controlled manner, sustaining the discharges. Presently, in the ITER internal coils designed for edge localized mode (ELM) control can only be varied at few Hz, yet, well below the inverse wall time constant. Hence, ELM control system could in principle be used for this feedback-driven mode control in various ways. For instance, the locking of MHD modes can be avoided during the controlled shut down of multi hundreds Mega Joule EM stored energy in case of emergency. Feedback could also be useful to minimize mechanical resonances at the disruption events by forcing the MHD frequency away from dangerous ranges. Work supported by the US DOE under DE-AC02-09CH11466, DE-FC-02-04ER54698, DE-FG02-08ER85195, and DE-FG02-04ER54761.

  18. Eddy current in a rotating cylinder in a static field by a stochastic method

    NASA Astrophysics Data System (ADS)

    Lévêque, J.; Lubin, T.; Mezani, S.; Rezzoug, A.

    2012-02-01

    This paper deals with the calculation of eddy current in a copper cylinder. This cylinder rotates in an applied static magnetic field. The electromagnetic problem is solved in two-dimension by considering transient motion. Two methods for eddy current computation are compared: stochastic method and classical finite element method. The main goal of this paper is to compare these methods.

  19. Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2004-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  20. Growth Stimulation of Biological Cells and Tissue by Electromagnetic Fields and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)

    2002-01-01

    The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells, and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.

  1. Electromagnetic harvester for lateral vibration in rotating machines

    NASA Astrophysics Data System (ADS)

    de Araujo, Marcus Vinícius Vitoratti; Nicoletti, Rodrigo

    2015-02-01

    Energy harvesters are devices that convert mechanical energy, usually vibration, into electrical energy that can be used to supply low power circuits (e.g. sensors). In this work, an energy harvester is designed for converting the mechanical energy of the lateral vibrations of shafts into electrical energy. For that, permanent magnets are mounted in the shaft and coils are mounted in a fixed structure. A configuration analysis is performed to find the appropriated polarization of the magnets and orientation of the coils in order to have electromagnetic induction without resisting torque on the shaft. Experimental tests are done for different electrical configurations of the coils: independent, in series and, in parallel. The results show that more electric power is induced when the coils are connected in series, and vibration reduction is more evident when the coils are connected independently.

  2. Algebraic structure of general electromagnetic fields and energy flow

    SciTech Connect

    Hacyan, Shahen

    2011-08-15

    Highlights: > Algebraic structure of general electromagnetic fields in stationary spacetime. > Eigenvalues and eigenvectors of the electomagnetic field tensor. > Energy-momentum in terms of eigenvectors and Killing vector. > Explicit form of reference frame with vanishing Poynting vector. > Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  3. On Projecting Discretized Electromagnetic Fields with Unstructured Grids

    SciTech Connect

    Lee, Lie-Quan; Candel, Arno; Kabel, Andrea; Li, Zenghai; /SLAC

    2008-08-13

    A new method for projecting discretized electromagnetic fields on one unstructured grid to another grid is presented in this paper. Two examples are used for studying the errors of different projection methods. The analysis shows that the new method is very effective on balancing both the error of the electric field and that of the magnetic field (or curl of the electric field).

  4. Slowly rotating pulsars and magnetic field decay

    NASA Astrophysics Data System (ADS)

    Han, J. L.

    1997-02-01

    Two dozen long period pulsars are separated from the swarm of ordinary pulsars by an obvious gap in the P versus Sd diagram (where Sd=log˙(P)+21.0), with a plausible upper boundary for ordinary pulsars. Possible pulsar evolutionary tracks are discussed to explain the diagram in terms of previously suggested scenarios of magnetic field decay. The (P-Sd) diagram is difficult to understand if there is no magnetic field decay during the active life of pulsars. However, if the magnetic fields of neutron stars decay exponentially, almost all slowly rotating pulsars must have been injected with a very long initial spin period of about 2 seconds, which seems impossible. Based on qualitative analyses, it is concluded that magnetic fields of neutron stars decay as a power-law, with a time scale related to the initial field strengths. The plausible boundary and the gap are suggested to naturally divide pulsars with distinct magnetic "genes", ie. pulsars which were born from strongly magnetized progenitors -- such as Bp stars, and pulsars born from normal massive stars. The possibility remains open that a fraction of slowly rotating pulsars were injected with long initial spin periods, while others would have a classical pulsar evolution history. It is suggested that PSR B1849+00 was born in the supernova remnant Kes-79 with an initial period of about 2 seconds.

  5. Neutrino spin dynamics in dense matter and electromagnetic field

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Lobanov, A. E.; Murchikova, E. M.

    2009-01-01

    A complete set of solutions to the Dirac-Pauli equation is derived for a massive neutrino that interacts with dense matter and a strong electromagnetic field. It is shown that these solutions may describe neutrino spin precession.

  6. Asymmetric error field interaction with rotating conducting walls

    SciTech Connect

    Paz-Soldan, C.; Brookhart, M. I.; Hegna, C. C.; Forest, C. B.

    2012-07-15

    The interaction of error fields with a system of differentially rotating conducting walls is studied analytically and compared to experimental data. Wall rotation causes eddy currents to persist indefinitely, attenuating and rotating the original error field. Superposition of error fields from external coils and plasma currents are found to break the symmetry in wall rotation direction. The vacuum and plasma eigenmodes are modified by wall rotation, with the error field penetration time decreased and the kink instability stabilized, respectively. Wall rotation is also predicted to reduce error field amplification by the marginally stable plasma.

  7. Probing the electromagnetic field distribution within a metallic nanodisk.

    PubMed

    Meneses-Rodríguez, David; Ferreiro-Vila, Elías; Prieto, Patricia; Anguita, José; González, María U; García-Martín, José M; Cebollada, Alfonso; García-Martín, Antonio; Armelles, Gaspar

    2011-12-01

    A Co nanolayer is used as a local probe to evaluate the vertical inhomogeneous distribution of the electromagnetic (EM) field within a resonant metallic nanodisk. Taking advantage of the direct relation between the magneto-optical activity and the electromagnetic field intensity in the Co layer, it is shown that the nonuniform EM distribution within the nanodisk under plasmon resonant conditions has maximum values close to the upper and lower flat faces, and a minimum value in the middle. PMID:21972067

  8. Effects of Electromagnetic Fields on Fish and Invertebrates

    SciTech Connect

    Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno

    2010-10-13

    In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.

  9. Magnetic fields and nonthermal electromagnetic radiation of stars

    NASA Astrophysics Data System (ADS)

    Kryvdyk, Volodymyr

    2016-07-01

    The results of the astrophysical observations of the magnetic fields and the nonthermal electromagnetic radiation of stars and the mechanisms generation of the nonthermal electromagnetic radiation from the magnetized stars of different spectral classes on the different stages their evolution are present. Results of observations allow to calculate the plasma parameters and the magnetic fields in areas around magnetized stars where is generated given radiation and their change during stellar evolution.

  10. Electromagnetic fields and potentials generated by massless charged particles

    SciTech Connect

    Azzurli, Francesco; Lechner, Kurt

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  11. Electromagnetic Detection and Real-Time DMLC Adaptation to Target Rotation During Radiotherapy

    SciTech Connect

    Wu Junqing; Ruan, Dan; Cho, Byungchul; Sawant, Amit; Petersen, Jay; Newell, Laurence J.; Cattell, Herbert; Keall, Paul J.

    2012-03-01

    Purpose: Intrafraction rotation of more than 45 Degree-Sign and 25 Degree-Sign has been observed for lung and prostate tumors, respectively. Such rotation is not routinely adapted to during current radiotherapy, which may compromise tumor dose coverage. The aim of the study was to investigate the geometric and dosimetric performance of an electromagnetically guided real-time dynamic multileaf collimator (DMLC) tracking system to adapt to intrafractional tumor rotation. Materials/Methods: Target rotation was provided by changing the treatment couch angle. The target rotation was measured by a research Calypso system integrated with a real-time DMLC tracking system employed on a Varian linac. The geometric beam-target rotational alignment difference was measured using electronic portal images. The dosimetric accuracy was quantified using a two-dimensional ion chamber array. For each beam, the following five delivery modes were tested: 1) nonrotated target (reference); 2) fixed rotated target with tracking; 3) fixed rotated target without tracking; 4) actively rotating target with tracking; and 5) actively rotating target without tracking. Dosimetric performance of the latter four modes was measured and compared to the reference dose distribution using a 3 mm/3% {gamma}-test. Results: Geometrically, the beam-target rotational alignment difference was 0.3 Degree-Sign {+-} 0.6 Degree-Sign for fixed rotation and 0.3 Degree-Sign {+-} 1.3 Degree-Sign for active rotation. Dosimetrically, the average failure rate for the {gamma}-test for a fixed rotated target was 11% with tracking and 36% without tracking. The average failure rate for an actively rotating target was 9% with tracking and 35% without tracking. Conclusions: For the first time, real-time target rotation has been accurately detected and adapted to during radiation delivery via DMLC tracking. The beam-target rotational alignment difference was mostly within 1 Degree-Sign . Dose distributions to fixed and actively

  12. Visualizing electromagnetic fields at the nanoscale by single molecule localization.

    PubMed

    Steuwe, Christian; Erdelyi, Miklos; Szekeres, G; Csete, M; Baumberg, Jeremy J; Mahajan, Sumeet; Kaminski, Clemens F

    2015-05-13

    Coupling of light to the free electrons at metallic surfaces allows the confinement of electric fields to subwavelength dimensions, far below the optical diffraction limit. While this is routinely used to manipulate light at the nanoscale, in electro-optic devices and enhanced spectroscopic techniques, no characterization technique for imaging the underlying nanoscopic electromagnetic fields exists, which does not perturb the field or employ complex electron beam imaging. Here, we demonstrate the direct visualization of electromagnetic fields on patterned metallic substrates at nanometer resolution, exploiting a strong "autonomous" fluorescence-blinking behavior of single molecules within the confined fields allowing their localization. Use of DNA-constructs for precise positioning of fluorescence dyes on the surface induces this distance-dependent autonomous blinking thus completely obviating the need for exogenous agents or switching methods. Mapping such electromagnetic field distributions at nanometer resolution aids the rational design of nanometals for diverse photonic applications. PMID:25915093

  13. Nonlinear electromagnetic fields as a source of universe acceleration

    NASA Astrophysics Data System (ADS)

    Kruglov, S. I.

    2016-04-01

    A model of nonlinear electromagnetic fields with a dimensional parameter β is proposed. From PVLAS experiment the bound on the parameter β was obtained. Electromagnetic fields are coupled with the gravitation field and we show that the universe accelerates due to nonlinear electromagnetic fields. The magnetic universe is considered and the stochastic magnetic field is a background. After inflation the universe decelerates and approaches to the radiation era. The range of the scale factor, when the causality of the model and a classical stability take place, was obtained. The spectral index, the tensor-to-scalar ratio, and the running of the spectral index were estimated which are in approximate agreement with the Planck, WMAP, and BICEP2 data.

  14. Electromagnetic waves in optical fibres in a magnetic field

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Burdanova, M. G.

    2016-03-01

    A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion-polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field.

  15. Weak electromagnetic field admitting integrability in Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Kolář, Ivan; Krtouš, Pavel

    2015-06-01

    We investigate properties of higher-dimensional generally rotating black-hole spacetimes, so-called Kerr-NUT-(anti)-de Sitter spacetimes, as well as a family of related spaces which share the same explicit and hidden symmetries. In these spaces, we study a particle motion in the presence of a weak electromagnetic field and compare it with its operator analogies. First, we find general commutativity conditions for classical observables and for their operator counterparts, then we investigate a fulfillment of these conditions in the Kerr-NUT-(anti)-de Sitter and related spaces. We find the most general form of the weak electromagnetic field compatible with the complete integrability of the particle motion and the comutativity of the field operators. For such a field we solve the charged Hamilton-Jacobi and Klein-Gordon equations by separation of variables.

  16. Electromagnetic fields of a nonprecessing and precessing, spinning, permanent magnet, conducting sphere

    NASA Astrophysics Data System (ADS)

    Mueller, R. S.

    1991-02-01

    The electromagnetic fields inside and outside a steadily rotating, magnetized, conducting sphere are determined for the cases of nonprecession and precession. In both cases the spin rotational axis is aligned with the magnetic axis of the sphere. The field expressions are those measured in the laboratory reference frame. For a nonprecessing sphere the magnetic fields are identical to the fields of a stationary sphere, but in addition there is an induced induction of order v-squared/c-squared whose lines of force radiate in loops above and below the equator. The electric and magnetic induction field expressions were derived into static and dynamic parts. The amplitudes of these parts were plotted as functions of the angle of inclination of the polar axis. The dynamic parts are circularly and elliptically polarized. The pivot point of the precessing sphere was chosen off center. The only two stable positions are at theta = 0 deg and 180 deg for a center pivot.

  17. Suppression and control of leakage field in electromagnetic helical microwiggler

    SciTech Connect

    Ohigashi, N.; Tsunawaki, Y.; Imasaki, K.

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  18. Invited commentary: electromagnetic fields and cancer in railway workers.

    PubMed

    Savitz, D A

    2001-05-01

    The ideal study of occupational exposure to electromagnetic fields and cancer risk would have a clear exposure source, historically stable exposures, and comparable groups of exposed and unexposed workers. Cohorts of railway workers have marked exposure contrasts and limited job changes and provide marginally adequate study sizes, but there have been important changes in their exposures over time, and the field frequency involved is unusual. The results of Minder and Pfluger's study (Am J Epidemiol 2001;153:825--35) add modest support for an association between electromagnetic field exposure and leukemia. However, given the large size and high quality of a number of previous studies of occupational electromagnetic field exposure and cancer, additional studies similar to past ones are unlikely to yield important new insights. PMID:11323312

  19. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-03-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ} , show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  20. External Field QED on Cauchy Surfaces for Varying Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Deckert, D.-A.; Merkl, F.

    2016-08-01

    The Shale-Stinespring Theorem (J Math Mech 14:315-322, 1965) together with Ruijsenaar's criterion (J Math Phys 18(4):720-737, 1977) provide a necessary and sufficient condition for the implementability of the evolution of external field quantum electrodynamics between constant-time hyperplanes on standard Fock space. The assertion states that an implementation is possible if and only if the spatial components of the external electromagnetic four-vector potential {A_μ} are zero. We generalize this result to smooth, space-like Cauchy surfaces and, for general {A_μ}, show how the second-quantized Dirac evolution can always be implemented as a map between varying Fock spaces. Furthermore, we give equivalence classes of polarizations, including an explicit representative, that give rise to those admissible Fock spaces. We prove that the polarization classes only depend on the tangential components of {A_μ} w.r.t. the particular Cauchy surface, and show that they behave naturally under Lorentz and gauge transformations.

  1. Health Effects of Electromagnetic Fields: A Review of Literature.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1995-01-01

    Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…

  2. Quaternionic Analysis of Generalized Electromagnetic Fields of Superluminal Dyons

    SciTech Connect

    Bisht, P. S.; Negi, O. P. S.

    2008-04-21

    Superluminal electromagnetic fields of dyons are described in T{sup 4}--space and Quaternion formulation of various quantum equations is derived. It is shown that on passing from subluminal to superluminal realm via quaternion the theory of dyons becomes the Tachyonic dyons. Corresponding field Equations of Tachyonic dyons are derived in consistent, compact and simpler form.

  3. Electropumping of water with rotating electric fields

    NASA Astrophysics Data System (ADS)

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2013-04-01

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  4. On guided versus deflected fields in controlled-source electromagnetics

    NASA Astrophysics Data System (ADS)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  5. Quantum processes in short and intensive electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Titov, A. I.; Kämpfer, Burkhard; Hosaka, Atsushi; Takabe, Hideaki

    2016-05-01

    This work provides an overview of our recent results in studying two most important and widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.g. laser) wave field or generalized Breit-Wheeler process, and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that the probabilities of particle production in both processes are determined by interplay of two dynamical effects, where the first one is related to the shape and duration of the pulse and the second one is non-linear dynamics of the interaction of charged fermions with a strong electromagnetic field. We elaborate suitable expressions for the production probabilities and cross sections, convenient for studying evolution of the plasma in presence of strong electromagnetic fields.

  6. Integral equations for the electromagnetic field in dielectrics

    NASA Astrophysics Data System (ADS)

    Mostowski, Jan; Załuska-Kotur, Magdalena A.

    2016-09-01

    We study static the electric field and electromagnetic waves in dielectric media. In contrast to the standard approach, we use, formulate and solve integral equations for the field. We discuss the case of an electrostatic field of a point charge placed inside a dielectric; the integral equation approach allows us to find and interpret the dielectric constant in terms of molecular polarizability. Next we discuss propagation of electromagnetic waves using the same integral equation approach. We derive the dispersion relation and find the reflection and transmission coefficients at the boundary between the vacuum and the dielectric. The present approach supplements the standard approach based on macroscopic Maxwell equations and contributes to better a understanding of some electromagnetic effects.

  7. The effect of pulsed electromagnetic field therapy on food sensitivity.

    PubMed

    Monro, Jean A; Puri, Basant K

    2015-01-01

    Owing to the involvement of the immune system in the etiology of food sensitivity, and because pulsed electromagnetic field therapy is associated with beneficial immunologic changes, it was hypothesized that pulsed electromagnetic fields may have a beneficial effect on food sensitivity. A small pilot study was carried out in patients suffering from food sensitivity, with the antigen leukocyte antibody test being employed to index the degree of food sensitivity in terms of the number of foods to which each patient reacted. It was found that a 1-week course of pulsed electromagnetic field therapy, consisting of one hour's treatment per day, resulted in a reduction in the mean number of reactive foods of 10.75 (p < 0.05). On the basis of these results, a larger study is warranted. PMID:24712751

  8. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    PubMed

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. PMID:21441722

  9. Electromagnetic instabilities attributed to a cross-field ion drift

    NASA Technical Reports Server (NTRS)

    Chang, C. L.; Wong, H. K.; Wu, C. S.

    1990-01-01

    Instabilities due to a cross-field ion flow are reexamined by including the electromagnetic response of the ions, which has been ignored in existing discussions. It is found that this effect can lead to significant enhancement of the growth rate. Among the new results, a purely growing, electromagnetic unstable mode with a wave vector k parallel to the ambient magnetic field is found. The plasma configuration under consideration is similar to that used in the discussion of the well-known modified-two-stream instability. This instability has a growth rate faster than the ion cyclotron frequency, and is not susceptible to high-plasma-beta stabilization.

  10. Near-field thermal electromagnetic transport: An overview

    NASA Astrophysics Data System (ADS)

    Edalatpour, Sheila; DeSutter, John; Francoeur, Mathieu

    2016-07-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added to Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres with size comparable to the wavelength, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. A transient analysis shows that despite a non-uniform spatial distribution of power absorbed, the sphere temperature remains spatially uniform at any instant due to the fact that the thermal resistance by conduction is much smaller than the resistance by radiation. The formalism proposed in this paper is general, and could be used as a starting point for adapting solution methods employed in traditional electromagnetic scattering problems to near-field thermal electromagnetic transport.

  11. Coulomb field in a constant electromagnetic background

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Gitman, D. M.; Shabad, A. E.

    2016-06-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with a Euler-Heisenberg (EH) effective Lagrangian. The linear electric response to an imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field and corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants. These are specialized for the EH Lagrangian.

  12. Conservation laws and symmetry transformations of the electromagnetic field with sources

    NASA Astrophysics Data System (ADS)

    Nienhuis, Gerard

    2016-02-01

    In classical electrodynamics, the universal conservation laws of energy, momentum, and angular momentum are expressed by well-known continuity equations for the densities of these quantities. In the presence of charges and currents source terms must be added. These terms describe the exchange of energy and (linear or angular) momentum between field and matter. Recently, other conserved quantities of the electromagnetic field have been introduced and discussed. Examples are the pseudoscalars chirality and helicity, which are related to the handedness of the field. Even though these quantities have no obvious definition for matter, their conservation laws can still be presented in the form of continuity equations with source terms added. We show that these terms shed light on the interaction of chiral light with matter. A different role of conserved quantities is that they generate symmetry transformations of the system. The spatial transformations translation and rotation of the radiation field are generated by differential operators acting on mode functions. These operators are identical in form to the operators for the momentum and angular momentum of a quantum particle with spin 1. Also, for the total helicity and spin angular momentum of the field such operators on mode functions can be identified. A quite different picture arises in a quantum description of the electromagnetic field. The operator nature of the conserved quantities then arises from the commutation rules of photon creation and annihilation operators. We analyze the relation between these two pictures of symmetry transformations of the electromagnetic field.

  13. Interaction of extremely low-frequency electromagnetic fields with humans

    SciTech Connect

    Tenforde, T.S.

    1990-04-01

    Public concern has grown in recent years concerning the possible health effects of extremely low-frequency (ELF) electromagnetic fields to which we are exposed in all aspects of everyday life. By definition ELF refers to the range of electromagnetic field frequencies below 300 Hz, which includes the power transmission and distribution frequencies used throughout the world. In materials with the electrical and magnetic properties of living tissues, these fields have a long wavelength (5000 m) and skin depth (150 m). As a consequence, in their interactions with humans and other living organisms ELF fields behave as though they are composed of independent electric and magnetic fields components. This paper discusses ELF fields and their interactions with humans and other living organisms as well as their biological effects.

  14. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  15. Method for imaging with low frequency electromagnetic fields

    DOEpatents

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  16. Field intercomparisons of electromagnetic current meters

    NASA Astrophysics Data System (ADS)

    Guza, R. T.; Clifton, M. C.; Rezvani, F.

    1988-08-01

    In order to assess the performance of current meters within and near the surf zone, data from biaxial electromagnetic current meters with spherical and open frame probe geometries were intercompared. One bottom-mounted flow meter of each type was deployed in a mean depth of 7.0 m for 17 days, and two sensors of each type were deployed in a mean depth of 2.0 m for 5 days. Sensors in the shallow deployment were frequently in the surf zone. Hourly averaged mean flows measured by different sensor types are highly correlated, averaging above 0.98. The largest difference between measured mean flows is a constant bias, typically about 3.0 cm/s, which is roughly equal to the estimated accuracy of the sensor offset calibrations. Root-mean-square deviations from this constant bias are less than 2.0 cm/s, and are contributed to by errors in both gain calibration and sensor orientation. Comparisons of measured (surface gravity wave) oscillatory currents were made both between current meter types and with velocities inferred from the application of linear theory to pressure sensor data. Correlations between time series of UTrms (the rms total oscillatory velocity for a 1-hour record) were all above 0.99 in 7.0-m depth and averaged 0.95 for the shallow deployment. The average UTrms ratio (over all hour-long records) was within 1.0 ±0.07 for all current meter pairs in both deployments, which is consistent with the estimated 5% uncertainties in the flow meter gain calibration. Typical fluctuations of the UTrms ratio of any spherical and open frame sensor pair about its mean ratio, indicative of flow meter gain distortions probably associated with variations in the hydrodynamic environment, were less than 0.04 for any one deployment. Ratios of UTrms from both deployments taken together suggest that the open frame sensor overresponds, relative to the spherical probe, by about 5% at low (about 10.0 cm/s) total (mean + UTrms) speeds, and underresponds by about 5% at higher total

  17. A physically motivated quantization of the electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bennett, Robert; Barlow, Thomas M.; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field.

  18. Electromagnetic field generation by explosion in the ionosphere

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Sergeev, I. Yu.; Yaschenko, A. K.

    2006-01-01

    Interpolation model of the shock wave excited by explosion in the ionosphere is obtained. Basic criteria of the model are the correspondence to exact solutions for strong shock waves, the extrapolating to small Mach numbers and the agreement with experimental data. It allows obtaining the spatial-temporal distribution of thermodynamic functions and gas velocity behind the shock wave front. The model can be used for determination of the shock related electric current and the perturbation of ionosphere conductivity tensor. Calculations of electromagnetic field distribution in front of the shock wave related to explosion have shown the oscillatory structure of the field perturbation in the vicinity of the magnetic force line corresponding to the center of explosion. In the plane perpendicular to external magnetic field the perturbation has a form of pulse dispersed according to diffusion law. The oscillation frequency and the phase velocity of electromagnetic field perturbation decrease with increase of the propagation angle relatively to geomagnetic field direction.

  19. Slowly rotating scalar field wormholes: The second order approximation

    SciTech Connect

    Kashargin, P. E.; Sushkov, S. V.

    2008-09-15

    We discuss rotating wormholes in general relativity with a scalar field with negative kinetic energy. To solve the problem, we use the assumption about slow rotation. The role of a small dimensionless parameter plays the ratio of the linear velocity of rotation of the wormhole's throat and the velocity of light. We construct the rotating wormhole solution in the second-order approximation with respect to the small parameter. The analysis shows that the asymptotical mass of the rotating wormhole is greater than that of the nonrotating one, and the null energy condition violation in the rotating wormhole spacetime is weaker than that in the nonrotating one.

  20. Rotational Doppler Effect and Barnett Field in Spinning NMR

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Jun'ichi; Ono, Masao; Maekawa, Sadamichi; Saitoh, Eiji

    2015-04-01

    We report the observation of the rotational Doppler effect using nuclear magnetic resonance (NMR). We have developed a coil-spinning technique that enables measurements by rotating a detector and fixing a sample. We found that the rotational Doppler effect gives rise to NMR frequency shifts equal to the rotation frequency. We formulate the rotational Doppler effect and the Barnett field using a vector model for the nuclear magnetic moment. This formulation reveals that, with just the sample rotating, both effects cancel each other, thereby explaining the absence of an NMR frequency shift in conventional sample-spinning NMR measurements.

  1. What Message Should Health Educators Give regarding Electromagnetic Fields?

    ERIC Educational Resources Information Center

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  2. Electromagnetic fields-Part 1; Biological effects

    SciTech Connect

    Nair, I.; Morgan, M.G. )

    1990-08-01

    It is known that low-frequency electric and magnetic fields can produce a variety of effects in biological systems. Pulsed magnetic fields, for instance, are used to mend broken bones, and other beneficial medical applications are being developed. But in more chronic and less controlled environments, can exposure to such fields also pose health risks No one knows. Today that possibility, however, requires serious consideration. Though present knowledge is fragmentary, and a coherent theory to explain the observations seems far off, the continuous presence of power-frequency fields in the modern environment makes potential health effects a matter of serious scientific and public health policy concern. That concern has focused on cancer - especially leukemia and brain tumors - and developmental abnormalities, and, to a lesser extent on endocrine and nervous system disorders, including chronic depression. The authors focus on 60-hertz fields, where the mechanism of interaction probably involves the cell membrane, is nonlinear, and may act by causing some cooperative phenomena among the components of the cell membrane.

  3. Fractional effective action at strong electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kleinert, Hagen; Strobel, Eckhard; Xue, She-Sheng

    2013-07-01

    In 1936, Weisskopf [K. Dan. Vidensk. Selsk. Mat. Fys. Medd. XIV (1936)] showed that for vanishing electric or magnetic fields the strong-field behavior of the one-loop Euler-Heisenberg effective Lagrangian of quantum electro dynamics (QED) is logarithmic. Here we generalize this result for different limits of the Lorentz invariants E→2-B→2 and B→·E→. The logarithmic dependence can be interpreted as a lowest-order manifestation of an anomalous power behavior of the effective Lagrangian of QED, with critical exponents δ=e2/(12π) for spinor QED, and δS=δ/4 for scalar QED.

  4. Charged and Electromagnetic Fields from Relativistic Quantum Geometry

    NASA Astrophysics Data System (ADS)

    Arcodía, Marcos; Bellini, Mauricio

    2016-06-01

    In the Relativistic Quantum Geometry (RQG) formalism recently introduced, was explored the possibility that the variation of the tensor metric can be done in a Weylian integrable manifold using a geometric displacement, from a Riemannian to a Weylian integrable manifold, described by the dynamics of an auxiliary geometrical scalar field $\\theta$, in order that the Einstein tensor (and the Einstein equations) can be represented on a Weyl-like manifold. In this framework we study jointly the dynamics of electromagnetic fields produced by quantum complex vector fields, which describes charges without charges. We demonstrate that complex fields act as a source of tetra-vector fields which describe an extended Maxwell dynamics.

  5. Electromagnetic fields from mobile phone base station - variability analysis.

    PubMed

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis. PMID:26444202

  6. [Clinical monitoring in areas of exposure to radiofrequency electromagnetic fields].

    PubMed

    Suvorov, I M

    2013-01-01

    Clinical syndromes induced by high intensity radiofrequency electromagnetic field chronic exposure are described. Persons injured by occupational exposure have been observed central nervous system changes in diencephalic syndrome form, cardio-vascular system changes revealed in atherosclerosis, isch(a)emic heart disease and coronary insufficiency rapid progressive expansion. General public living in territory of radar station exposure zone different functional disorders have been identified: vegetative dystonia (asthenovegetative syndrome), thrombocytopenia, decrease of blood coagulation index, and thyroid gland function changes. Observed diseases clinical variability may be determined by electromagnetic exposure characteristics. PMID:23785812

  7. Beta decay and other processes in strong electromagnetic fields

    SciTech Connect

    Akhmedov, E. Kh.

    2011-09-15

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear {beta} decay as an example, we study the weak- and strong-field limits, as well as the field-induced {beta} decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear {beta} decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total {beta}-decay rates are unobservably small.

  8. Computational electromagnetics: the physics of smooth versus oscillatory fields.

    PubMed

    Chew, W C

    2004-03-15

    This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described. PMID:15306509

  9. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  10. Energetics of a Kerr blackhole in electromagnetic fields Role of the relative angular velocity of charged particles

    NASA Astrophysics Data System (ADS)

    Parthasarathy, S.; Dhurandhar, S. V.; Dadhich, N.

    1985-06-01

    The authors consider a rotating black hole in an external dipole magnetic field. By defining the relative angular velocity parameter Ω they analyse the various contributions due to electromagnetic fields and rotation to the effective potential. It turns out that the magnetic field contribution is in general related to Ω. An interesting case of prescribing the orbit for a locally nonrotating observer (LNRO) by a particle of appropriate charge and angular momentum parameters is considered. For such an orbit Ω = 0, stationarity is built in and is ensured by the Lorentz force in contrast to the usual LNRO orbit where it has to be maintained by externally providing proper outward radial acceleration.

  11. Magnetic field structure evolution in rotating magnetic field plasmas

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Huang, T.-S.

    2008-07-15

    A study of magnetic field structure evolution during 40-ms plasma discharge has been performed in a new device with 80 cm long/40 cm diameter cylindrical chamber, in which a plasma current I{sub p}{approx_equal}2 kA was driven and sustained by a rotating magnetic field. The main focus of the experiments is on how the changes in externally applied magnetic field affect the current profile and magnetic field in plasma. During plasma discharge, a pulse current was briefly fed to a magnetic coil located at the midplane (middle coil). The magnetic field in cross section of plasma was scanned with pickup probes. Two regimes were studied: without and with an external toroidal field (TF) produced by axial I{sub z} current. With a relatively small current (I{sub m} {<=} 600 A) in the middle coil, the plasma current is boosted up to 5 kA. The magnetic flux surfaces become extended along the axial Z direction, sometimes with the formation of doublet shape plasma. The regime without TF appears to be less stable, presumably due to the reversal of plasma current in central area of plasma column.

  12. Motion of trapped electrons in gyro-resonant electromagnetic field

    NASA Astrophysics Data System (ADS)

    Hafizi, B.; Aamodt, R. E.

    1987-12-01

    It is shown that the phase space of magnetically trapped electrons in plasmas interacting with gyro-resonant electromagnetic waves is divided into two parts. In one, as a particle gains energy its turning point moves towards the region of weaker magnetic field; in the other, energy gain results in the turning point moving towards the region of stronger magnetic field, with possible detrapping. Present address: Lodestar Research Corporation, P.O. Box 4545, Boulder, CO 80306, USA

  13. Numerical Analysis of Electromagnetic Fields in Multiscale Model

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Fang, Guang-You; Ji, Yi-Cai

    2015-04-01

    Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. Supported in part by China Postdoctoral Science Foundation under Grant No. 201M550839, and in part by the Key Research Program of the Chinese Academy of Sciences under Grant No. KGZD-EW-603

  14. Core-collapsed supernovae. Magnetic field and rotation.

    NASA Astrophysics Data System (ADS)

    Moiseenko, Sergey; Gennady, Bisnovatyi-Kogan

    We discuss the problem of physical mechanism of core-collapse supernovae explosions. Nonuniform contraction of the rotating iron core in presupernova leads to the formation of the differentially rotating cofiguartion. Rapidly rotating dence core and slowly rotating envelope. In the presence of initial poloidal magnetic field the differential rotation generates toroidal component of the magnetic field. At the developed stage of the magnetic field evolution magneto-differenial-rotational instability appears what leads to the exponential growth of all components of the magnetic field. Increased magnetic pressure produces a compression wave what tranforms to the MHD shock wave and produces the supernova explosion. The explosion energy corresponds to the observational data and theoretical predictions. It weakly depends on the details of neutrino transport and equation of state.

  15. Note: Design of a novel rotating magnetic field device

    NASA Astrophysics Data System (ADS)

    Godínez, F. A.; Chávez, O.; Zenit, R.

    2012-06-01

    A novel device to produce a rotating magnetic field was designed, constructed, and tested. The system consists of a Helmholtz coil pair which is mechanically coupled to a dc electric motor whose angular velocity is controlled. The coil pair generates a uniform magnetic field; the whole system is rotated maintaining the coils energized using brushes. The magnetic field strength is uniform (≈5.8 mT) for a workspace of about 100 mm along the rotation axis. The system remains free of undesirable high amplitude mechanical vibrations for rotation frequencies below 10 Hz. We verified the performance of the apparatus by conducting experiments with magnetic swimmers.

  16. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Technical Reports Server (NTRS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-01-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  17. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Astrophysics Data System (ADS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-02-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  18. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    SciTech Connect

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  19. Electromagnetic biaxial vector scanner using radial magnetic field.

    PubMed

    Han, Aleum; Cho, Ah Ran; Ju, Suna; Ahn, Si-Hong; Bu, Jong-Uk; Ji, Chang-Hyeon

    2016-07-11

    We present an electromagnetic biaxial vector-graphic scanning micromirror. In contrast to conventional electromagnetic actuators using linear magnetic field, proposed device utilizes a radial magnetic field and uniquely designed current paths to enable the 2 degree-of-freedom scanning motion. As the radial field is generated by concentrically assembled magnets placed under the scanner die, large driving torque can be generated without the aid of hermetic packaging and relatively small device volume can be achieved. Mechanical half scan angle of 6.43° and 4.20° have been achieved at DC current of 250mA and 350mA for horizontal and vertical scans, respectively. Forced actuation along both scan axes has been realized by feedback control. PMID:27410851

  20. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.

    PubMed

    Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil

    2014-10-28

    Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency. PMID:25248035

  1. Biological effects and exposure criteria for radiofrequency electromagnetic fields

    SciTech Connect

    Not Available

    1986-01-01

    This report, which begins with a discussion of fundamental studies at the molecular level, presents a review of the subject matter covered in NCRP Report No. 67 on mechanisms of interaction of radiofrequency electromagnetic (RFEM) fields with tissue. The discussion continues to progressively larger scales of interaction, beginning with macromolecular and cellular effects, chromosomal and mutagenic effects, and carcinogenic effects. The scope of the subject matter is then expanded to include systemic effects such as those on reproduction, growth, and development, hematopoiesis and immunology, endocrinology and autonomic nervous function, cardiovascular effects and cerebrovascular effects. The interaction of electromagnetic fields with the central nervous system and special senses is also discussed. Also included are epidemiological studies, a discussion of thermoregulation, and a history of therapeutic applications of RFEM fields. The report concludes with human exposure criteria and rationale.

  2. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  3. Emitting waves from heterogeneity by a rotating electric field.

    PubMed

    Zhao, Ye-Hua; Lou, Qin; Chen, Jiang-Xing; Sun, Wei-Gang; Ma, Jun; Ying, He-Ping

    2013-09-01

    In a generic model of excitable media, we simulate wave emission from a heterogeneity (WEH) induced by an electric field. Based on the WEH effect, a rotating electric field is proposed to terminate existed spatiotemporal turbulence. Compared with the effects resulted by a periodic pulsed electric field, the rotating electric field displays several improvements, such as lower required intensity, emitting waves on smaller obstacles, and shorter suppression time. Furthermore, due to rotation of the electric field, it can automatically source waves from the boundary of an obstacle with small curvature. PMID:24089977

  4. Controlling Electromagnetic Field by Graded Meta-materials

    NASA Astrophysics Data System (ADS)

    Sun, Lei

    Metamaterials , i.e. artificial materials with electromagnetic properties not readily available in nature, have become a major research topic in both scientific and engineering communities. Being different from conventional materials, metamaterials possess peculiar electromagnetic properties, e.g. negative refractive index, depending on their structures. In particular, metamaterials form a basis for achieving cloaking device that makes an object invisible or transparency to the probing electromagnetic wave. This topic has significant impact on various fields ranging from optics, medicine, biology to nanotechnology. Several cloaking techniques have been proposed by different research groups, namely, anomalous localized resonance, transformation optics, and scattering cancellation, etc. Each of them has its own advantages and disadvantages. For instance, the limitation in working frequency is a primary disadvantage of them. This thesis is concentrated on controlling electromagnetic field by graded metamaterials, i.e, metamaterials with graded structures, with the objective to realize the broadband electromagnetic transparency by extending the working frequency. Regarding the limitations of existing cloaking techniques, we propose the graded model based on the scattering cancellation technique, because it does not rely on resonant phenomena, and is fairly robust to relatively high variations of the shape and electromagnetic properties of the cloaked object. We modify the original Mie theory and Rayleigh scattering theory to deal with the graded metamaterial structures, and calculate the scattering cross section of graded isotropic and anisotropic spherical structures, an alytically and numerically. For the graded isotropic spherical structure, we achieve the exact analytic expressions for both full-wave and Rayleigh scattering cross sections, within our modified Mie theory and Rayleigh scattering theory. The numerical studies on the scattering cross sections clearly

  5. Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Choe, Gwangson; Lee, Junggi

    2016-04-01

    Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. It is found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  6. Radiotelephone with reduced electromagnetic field in human head

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    The quarter-wave monopole base driven over a circular ground plane with a finite radius has applications in over-the-horizon radar and on surveillance aircraft. A new use, for which the analysis is given in this paper, is as an over-the-head-mounted antenna for cellular telephones. With this design, the electromagnetic field in the head and the associated specific absorption rate of electromagnetic energy are greatly reduced when compared with the conventional hand-held transceiver. A complete analysis is carried out of the electromagnetic field on the surface of the head and throughout its interior when the head is modeled as a cylinder with the electrical properties of the brain enclosed in a wall with the thickness and electrical properties of the skull. Graphs and tables are provided that give the field in the air on the surface of the head and in the skull and brain. The far field is also determined. The results are compared with those obtained with the hand-held radiotelephone (King, 1995).

  7. Effects of noise and electromagnetic fields on reproductive outcomes.

    PubMed Central

    Meyer, R E; Aldrich, T E; Easterly, C E

    1989-01-01

    Much public health research has been directed to studies of cancer risks due to chemical agents. Recently, increasing attention has been given to adverse reproductive outcomes as another, shorter-term biologic indicator of public health impact. Further, several low-level ubiquitous physical agents have been implicated recently as possibly affecting human health. These physical factors (noise and electromagnetic fields) represent difficult topics for research with epidemiologic study methods. This paper provides a brief review of the published data related to the risk of adverse reproductive outcomes and exposure to noise or electromagnetic fields. The discussion includes ideas for possible biologic mechanisms, considerations for exposure assessment, and suggestions for epidemiologic research. PMID:2667980

  8. Controversies related to electromagnetic field exposure on peripheral nerves.

    PubMed

    Say, Ferhat; Altunkaynak, Berrin Zuhal; Coşkun, Sina; Deniz, Ömür Gülsüm; Yıldız, Çağrı; Altun, Gamze; Kaplan, Arife Ahsen; Kaya, Sefa Ersan; Pişkin, Ahmet

    2016-09-01

    Electromagnetic field (EMF) is a pervasive environmental presence in modern society. In recent years, mobile phone usage has increased rapidly throughout the world. As mobile phones are generally held close to the head while talking, studies have mostly focused on the central and peripheral nervous system. There is a need for further research to ascertain the real effect of EMF exposure on the nervous system. Several studies have clearly demonstrated that EMF emitted by cell phones could affect the systems of the body as well as functions. However, the adverse effects of EMF emitted by mobile phones on the peripheral nerves are still controversial. Therefore, this review summarizes current knowledge on the possible positive or negative effects of electromagnetic field on peripheral nerves. PMID:26718608

  9. Rotation and Magnetic Fields: the Evil Twins of Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Charbonneau, P.

    In this paper I give an overview of the numerous ways in which rotation and magnetic fields can interact under stellar interior conditions. I first provide “tutorial” examples of how magnetic fields can (1) alter existing stellar internal flows, (2) generate internal flows, and of how rotation can (3) amplify or (4) destroy magnetic fields. The upshot of all this is that treating rotation or magnetic fields in isolation of one another, as intermediate steps towards the “full picture”, may yield a situation that can only be applied meaningfully under very limited and specific astrophysical circumstances, if any.

  10. Systemic Effects of Electromagnetic Fields in Patients with Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Cañedo-Dorantes, L.; Valle, L.; Uruchurtu, E.; Medel, A.; García-Mayen, F.; Serrano-Luna, G.

    2003-09-01

    Healing of acute myocardial infarction (AMI) is associated with inflammatory response, which promotes healing and scar formation. Activation of a local inflammatory response in patients with sequel of AMI could have an important role to enhance angiogenesis and regeneration of hibernating myocardial tissue. Chronic arterial leg ulcers have a similar etiology, and healing has been promoted by exposure to extremely low frequency electromagnetic fields (ELF). We report the evolution of three AMI patients with sequel of AMI that were exposed to ELF.

  11. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  12. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    NASA Astrophysics Data System (ADS)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  13. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  14. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    SciTech Connect

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-08-11

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  15. Opinion on potential health effects of exposure to electromagnetic fields.

    PubMed

    2015-09-01

    In January 2015, the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) published its final opinion on "Potential health effects of exposure to electromagnetic fields." The purpose of this document was to update previous SCENIHR opinions in the light of recently available information since then, and to give special consideration to areas that had not been dealt with in the previous opinions or in which important knowledge gaps had been identified. PMID:26179386

  16. FLASH requirements for the high intensity radiated field electromagnetic environment

    NASA Astrophysics Data System (ADS)

    Murdock, John K.

    1995-05-01

    The worldwide proliferation of high intensity emitting sources and the more electric aircraft increase the intensity of the Electromagnetic Environment (EME) in which aircraft must operate. A FLASH program HIRF (High Intensity Radiated Field) EME requirement is derived to cover both commercial and military fixed and rotary wing aircraft. This requirement is derived from the radiated susceptibility requirement documents of both the FAA and U.S. military. Specific test data and analysis will show that we can meet this requirement.

  17. Separability of test fields equations on the C -metric background. II. Rotating case and the Meissner effect

    NASA Astrophysics Data System (ADS)

    KofroÅ, David

    2016-05-01

    We present the separation of the Teukolsky master equation for the test field of arbitrary spin on the background of the rotating C -metric. We also summarize and simplify some known results about Debye potentials of these fields on type D background. The equation for the Debye potential is also separated. Solving for the Debye potential of the electromagnetic field we show that on the extremely rotating C -metric no magnetic field can penetrate through the outer black hole horizon—we thus recover the Meissner effect for the C -metric.

  18. Electron-ion collision operator in strong electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Fraiman, Gennadiy; Balakin, Alexey

    2012-10-01

    The pair electron-ion collision operator is found for the kinetic equation describing the one-particle drift distribution in strong electromagnetic fields [1]. The pair collisions are studied under the conditions when the oscillation velocity of an electron driven by an external electromagnetic wave is much larger than the electron drift velocity. The operator is presented in the Boltzmann form and describes collisions with both small and large changes of the particle momentum. In contrast with the Landau collision operator, which describes diffusion in the momentum space, the collision operator that we propose describes a new and very important effect, namely, Coulomb attraction of a wave-driven oscillating electron to an ion due to multiple returns of the electron to the same ion. This effect leads to a large increase of the collision cross-section of electron-ion collisions in strong laser fields, to increased efficiency of the Joule heating in plasma, to the generation of fast electrons through e-i collisions, etc. [4pt] [1] A. A. Balakin and G. M. Fraiman, Electron-ion collision operator in strong electromagnetic fields, EPL 93, 35001 (2011).

  19. Measurement of radiofrequency electromagnetic fields in and around ambulances.

    PubMed

    Boivin, W S; Boyd, S M; Coletta, J A; Neunaber, L M

    1997-01-01

    Electromagnetic interference (EMI) with medical devices can threaten patient safety. More information is needed regarding circumstances in health care environments in which electromagnetic (EM) field strengths are expected to be high, such as emergency/transport. In ambulances medical devices and communications equipment must function properly in close proximity. This study characterized EM fields in and around ambulances under realistic conditions. Two types of ambulances were surveyed: the advanced life support (ALS) unit and the basic life support (BLS) unit. The surveys were conducted on-site using the ambulance mobile radio as the primary source of EM energy. Broadband field-strength measurements were collected at various locations in and around the ambulance to map interior and exterior EM field distributions. Nine ambulances were surveyed. In addition to the transmitter power and frequency, the field strengths measured were shown to be dependent upon the shielding provided by the ambulance roof and proximity of the measurement probe to the antenna. Field-strength measurements frequently exceeded the 3 V/m standard immunity level for devices set by the IEC Standard 601-1-2. The results indicate that the ambulance environment presents a considerable challenge to medical devices specifically used for emergency medical care. In order to assure their proper operation, medical devices used for transport emergency care must be able to withstand exposure to EM field strengths comparable to those reported in this study. PMID:9099436

  20. Offshore windmills and the effects of electromagnetic fields on fish.

    PubMed

    Ohman, Marcus C; Sigray, Peter; Westerberg, Håkan

    2007-12-01

    With the large scale developments of offshore windpower the number of underwater electric cables is increasing with various technologies applied. A wind farm is associated with different types of cables used for intraturbine, array-to-transformer, and transformer-to-shore transmissions. As the electric currents in submarine cables induce electromagnetic fields there is a concern of how they may influence fishes. Studies have shown that there are fish species that are magneto-sensitive using geomagnetic field information for the purpose of orientation. This implies that if the geomagnetic field is locally altered it could influence spatial patterns in fish. There are also physiological aspects to consider, especially for species that are less inclined to move as the exposure could be persistent in a particular area. Even though studies have shown that magnetic fields could affect fish, there is at present limited evidence that fish are influenced by the electromagnetic fields that underwater cables from windmills generate. Studies on European eel in the Baltic Sea have indicated some minor effects. In this article we give an overview on the type of submarine cables that are used for electric transmissions in the sea. We also describe the character of the magnetic fields they induce. The effects of magnetic fields on fish are reviewed and how this may relate to the cables used for offshore wind power is discussed. PMID:18240676

  1. New methodology for use in rotating field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Jachman, Rebecca Corina

    High-resolution NMR spectra of samples with anisotropic broadening are simplified to their isotropic spectra by fast rotation of the sample at the magic angle 54.7°. This dissertation concerns the development of novel Nuclear Magnetic Resonance (NMR) methodologies which would rotate the magnetic field instead of the sample, i.e. rotating field NMR. It also provides an overview of the NMR concepts, procedures, and experiments needed to understand the methodologies that will be used for rotating field NMR. A simple two-dimensional shimming method based on harmonic corrector rings provides arbitrary multiple order shimming corrections that are necessary for rotating field systems, but can be used in shimming other systems as well. Those results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to a factor of ten. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients. Additionally, initial investigations into a specialized pulse sequence for the rotating field NMR experiment, which allows for spinning at angles other than the magic angle and spinning slower than the anisotropic broadening is discussed. This will be useful for rotating field NMR because there are limits on how fast a field can be spun and difficulties of reaching the magic angle. This pulse sequence is a combination of the previously established projected magic angle spinning (p-MAS) and magic angle turning (MAT) pulse sequences. One of the goals of this project is for rotating field NMR to be used on biological systems. The p-MAS pulse sequence was successfully tested on bovine tissue samples, which suggests that it will be a viable methodology to use in rotating field NMR. A side experiment on steering magnetic particles by MRI gradients was also carried out. Initial investigations indicate some movement, but for total steering control, further experiments are

  2. Electro-Magnetic Fields and Plasma in the Cosmos

    SciTech Connect

    Scott, Donald E.

    2006-03-21

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories.

  3. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185961

  4. Exposure to electromagnetic fields and suicide among electric utility workers

    PubMed Central

    van Wijngaarden, Edwin; Savitz, David A; Kleckner, Robert C; Cai, Jianwen; Loomis, Dana

    2000-01-01

    Objective To examine mortality from suicide in relation to estimated exposure to extremely low-frequency electromagnetic fields in a cohort of138,905 male electric utility workers. Methods Case-control sampling, which included 536 deaths from suicide and 5,348 eligible controls. Exposure was classified based on work in the most common jobs with increased exposure to magnetic fields and indices of cumulative exposure to magnetic fields based on a measurement survey. Results Suicide mortality was increased relative to work in exposed jobs and with indices of exposure to magnetic fields. Increased odds ratios (ORs) were found for years of employment as an electrician (OR, 2.18; 95% confidence interval [CI], 1.25-3.80) or line worker(OR, 1.59; 95% CI, 1.18-2.14), whereas a decreased OR was found for power plant operators (OR, 0.67; 95% CI, 0.33-1.40). A dose-response gradient withexposure to magnetic fields was found for exposure in the previous year, with a mortality OR of 1.70 (95% CI, 1.00-2.90) in the highest exposure category.Stronger associations, with ORs in the range of 2.12 to 3.62, were found for men younger than 50 years. Conclusions These data provide evidence for an association between occupational electromagnetic fields and suicide that warrants further evaluation. A plausible mechanism related to melatonin and depression provides a direction for additional laboratory research and epidemiologic evaluation. PMID:10924428

  5. Nonminimally coupled gravitational and electromagnetic fields: pp-wave solutions

    SciTech Connect

    Dereli, Tekin; Sert, Oezcan

    2011-03-15

    We give the Lagrangian formulation of a generic nonminimally extended Einstein-Maxwell theory with an action that is linear in the curvature and quadratic in the electromagnetic field. We derive the coupled field equations by a first-order variational principle using the method of Lagrange multipliers. We look for solutions describing plane-fronted Einstein-Maxwell waves with parallel rays. We give a family of exact pp-wave solutions associated with a partially massless spin-2 photon and a partially massive spin-2 graviton.

  6. Topological thermal Casimir effect for spinor and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mota, H. F.; Bezerra, V. B.

    2015-12-01

    We obtain the thermal corrections to the Casimir energy for the neutrino and electromagnetic fields in Einstein and closed Friedmann universes containing a static, infinitely straight and thin cosmic string. The Casimir free energy is also obtained as well as their low and high temperature limits. It is shown that the vacuum energies associated with these fields, in the background considered, are given simply by the vacuum energies in the absence of the cosmic string multiplied by a factor that codifies the presence of this topological defect.

  7. Time-Domain Computation Of Electromagnetic Fields In MMICs

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  8. Electromagnetic field properties in the vicinity of a massive wormhole

    SciTech Connect

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  9. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices. PMID:27607498

  10. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1978-01-01

    The most important types of auroral radio emissions are reviewed. Particular attention is given to the following four types of electromagnetic emissions: auroral hiss, saucers, ELF noise bands, and auroral kilometric radiation. It is shown that the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances in the range of 2.5-5 earth radii, probably in direct association with auroral-particle acceleration by parallel electric fields. The auroral hiss appears to be generated by amplified Cerenkov radiation. Several mechanisms are proposed for the auroral kilometric radiation, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  11. Electromagnetic field properties in the vicinity of a massive wormhole

    NASA Astrophysics Data System (ADS)

    Novikov, I. D.; Shatskiy, A. A.

    2011-12-01

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic "hair." An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordström black hole, with the corresponding disappearance of "hair." A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  12. Birefringence and polarization rotator induced by electromagnetically induced transparency in rare earth ion-doped crystals

    NASA Astrophysics Data System (ADS)

    Li, Zhixiang; Liu, Jianji; Yu, Ping; Zhang, Guoquan

    2016-05-01

    The birefringence induced by the electromagnetically induced transparency effect in a {Pr}^{3+}:{Y}_2 {SiO}_5 crystal was studied by using a balanced polarimeter technique. The results show that it is possible to control the polarization state of the output probe beam by adjusting the experimental conditions. Particularly, the coherently prepared {Pr}^{3+}:{Y}_2 {SiO}_5 crystal can serve as a polarization rotator for a linearly polarized input probe beam at the two-photon resonant condition. Such coherent control on the polarization of light should be useful for polarization-based classical and quantum information processing such as all-optical switching, polarization preserving light pulse memory and polarization qubits based on rare earth ion-doped solids.

  13. Electromagnetic field evolution in relativistic heavy-ion collisions

    SciTech Connect

    Voronyuk, V.; Toneev, V. D.; Cassing, W.; Bratkovskaya, E. L.; Konchakovski, V. P.; Voloshin, S. A.

    2011-05-15

    The hadron string dynamics (HSD) model is generalized to include the creation and evolution of retarded electromagnetic fields as well as the influence of the magnetic and electric fields on the quasiparticle propagation. The time-space structure of the fields is analyzed in detail for noncentral Au + Au collisions at {radical}(s{sub NN})=200 GeV. It is shown that the created magnetic field is highly inhomogeneous, but in the central region of the overlapping nuclei it changes relatively weakly in the transverse direction. For the impact parameter b=10 fm, the maximal magnetic field - perpendicularly to the reaction plane - is obtained of order eB{sub y}/m{sub {pi}}{sup 2}{approx}5 for a very short time {approx}0.2 fm/c, which roughly corresponds to the time of a maximal overlap of the colliding nuclei. We find that at any time, the location of the maximum in the eB{sub y} distribution correlates with that of the energy density of the created particles. In contrast, the electric field distribution, being also highly inhomogeneous, has a minimum in the center of the overlap region. Furthermore, the field characteristics are presented as a function of the collision energy and the centrality of the collisions. To explore the effect of the back reaction of the fields on hadronic observables, a comparison of HSD results with and without fields is exemplified. Our actual calculations show no noticeable influence of the electromagnetic fields--created in heavy-ion collisions--on the effect of the electric charge separation with respect to the reaction plane.

  14. Electromagnetic field exposure dosimeter. Final report, September 1992-May 1993

    SciTech Connect

    Feaga, A.C.; Hilliard, M.P.; Link, R.

    1994-07-28

    The growing concern about adverse health effects caused by electromagnetic radiation prompted the ideas for this dosimeter. Data have been presented that link prolonged exposure to electromagnetic radiation from power lines to leukemia and some types of cancer. At present, though, there is a lack of recording instrumentation to measure the prolonged exposure of an individual; thus, it is not possible to correlate properly the amount of exposure or dose to health effects. With the recent advances in small, low-power devices, a small measuring device can be developed. Once this is built, a large data base can be obtained to help correlate electromagnetic field exposure to health conditions. The objective of this project is to develop an instrument which can measure electromagnetic fields over a prolonged period of time. The instrument would be small, say about the size of a radio Walkman, and would be worn throughout the day while taking data, as the individual goes about normal activities. A PC would be used to retrieve the data from the instrument at the end of the day. The dosimeter comprises a triaxial ferrite-loaded coil sensor, a set of amplifiers and filters, analog-to-digital converters, a microcontroller, and random access data memory. The signals from the sensor are filtered into three frequency ranges: one to measure 60-Hz exposure and two harmonics, another to measure high-energy pulsed energy, and a third frequency range to record the activity level of the individual. The signals from the filters are digitized and read into a microcontroller. The microcontroller performs a few calculations and controls the flow of the data to either random access memory or to a computer. A computer is used to retrieve the data from the dosimeter, and can store and display the measured data.

  15. Rotating magnetic quadrupole current drive for field-reversed configurations

    SciTech Connect

    Milroy, Richard D.; Guo, H.Y.

    2005-07-15

    In the translation, confinement, and sustainment experiment [A. L. Hoffman, H. Y. Guo, J. T. Slough, S. J. Tobin, L. S. Schrank, W. A. Reass, and G. A. Wurden, Fusion Sci. Technol. 41, 92 (2002)], field-reversed configurations (FRCs) are created and sustained using a rotating magnetic field (RMF). The RMF is usually in the form of a rotating dipole, which in vacuum penetrates uniformly to the axis of symmetry. However, plasma conditions in the FRC normally adjust so that the RMF only partially penetrates the plasma column. We have investigated the possibility of using a rotating quadrupole rather than a rotating dipole magnetic field. The vacuum field from a quadrupole is proportional to radius and cannot penetrate to the axis of symmetry; however, this is not a disadvantage if the current drive is confined to the outer region of the FRC. It was found that the quadrupole drive efficiency is comparable to that of a dipole, but the rotating dipole is more effective at stabilizing the n=2 rotational instability. A strong internal oscillation in B{sub {theta}} is often observed in FRCs sustained by a quadrupole field. The spectral content of the signals indicates that an internal n=1 magnetic structure forms and corotates with the electrons. Similar but much lower amplitude structures can form when a rotating dipole is employed (edge-driven mode)

  16. Destabilization of hydrodynamically stable rotation laws by azimuthal magnetic fields

    NASA Astrophysics Data System (ADS)

    Rüdiger, Günther; Hollerbach, Rainer; Schultz, Manfred; Elstner, Detlef

    2007-06-01

    We consider the effect of toroidal magnetic fields on hydrodynamically stable Taylor-Couette differential rotation flows. For current-free magnetic fields a non-axisymmetric m = 1 magnetorotational instability arises when the magnetic Reynolds number exceeds O(100). We then consider how this `azimuthal magnetorotational instability' (AMRI) is modified if the magnetic field is not current-free, but also has an associated electric current throughout the fluid. This gives rise to current-driven Tayler instabilities (TIs) that exist even without any differential rotation at all. The interaction of the AMRI and the TI is then considered when both electric currents and differential rotation are present simultaneously. The magnetic Prandtl number Pm turns out to be crucial in this case. Large Pm have a destabilizing influence, and lead to a smooth transition between the AMRI and the TI. In contrast, small Pm have a stabilizing influence, with a broad stable zone separating the AMRI and the TI. In this region the differential rotation is acting to stabilize the TIs, with possible astrophysical applications (Ap stars). The growth rates of both the AMRI and the TI are largely independent of Pm, with the TI acting on the time-scale of a single rotation period, and the AMRI slightly slower, but still on the basic rotational time-scale. The azimuthal drift time-scale is ~20 rotations, and may thus be a (flip-flop) time-scale of stellar activity between the rotation period and the diffusion time.

  17. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    SciTech Connect

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  18. Instability-driven electromagnetic fields in coronal plasmasa)

    NASA Astrophysics Data System (ADS)

    Manuel, M. J.-E.; Li, C. K.; Séguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-05-01

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. Séguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser-irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of ˜210 μm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  19. Instability-driven electromagnetic fields in coronal plasmas

    DOE PAGESBeta

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; et al

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  20. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  1. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect

    Manuel, M. J.-E.; Li, C. K.; Séguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-05-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. Séguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser-irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of ∼210 μm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  2. Rotating Capacitor Measures Steady Electric Fields

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Kirkham, H.; Eng, B.

    1986-01-01

    Portable sensor measures electric fields created by dc powerlines or other dc-high-voltage sources. Measures fields from 70 to 50,000 V/m with linearity of 2 percent. Sensor used at any height above ground. Measures both magnitude and direction of field and provides signals representing these measurements to remote readout device. Sensor functions with minimal disturbance of field it is measuring.

  3. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    PubMed

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors. PMID:27232668

  4. Application of nano material for shielding power-frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Li, Hualiang; Li, Li; Liu, Jiawen

    2015-07-01

    Only limited data are available on shielding electromagnetic field exposure in professional work. In our paper, we studied the electromagnetic field intensity in 500 kV substations, and explored influence of nanomaterial in high voltage laboratory simulation. Moreover, the results of nano-fabrics material for shielding power frequency electromagnetic field indicated that, both shielding fabrics can almost completely shield the electric field, but have weak shielding effectiveness against magnetic field.

  5. New Limits on Extragalactic Magnetic Fields from Rotation Measures.

    PubMed

    Pshirkov, M S; Tinyakov, P G; Urban, F R

    2016-05-13

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields. PMID:27232014

  6. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  7. An Optimization of Pulsed ElectroMagnetic Fields Study

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  8. Healing of Chronic Wounds through Systemic Effects of Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Trigos, I.; García-Cantú, R.; Godina-Nava, J. J.; Serrano, G.

    2002-08-01

    Extremely low frequency electromagnetic fields (ELF) were configured to interact with peripheral blood mononuclear cells (PBMC). These ELF were applied in the arm to five patients with chronic wounds resistant to medical and surgical treatment. Wound healing began in all patients during the first two weeks after ELF exposure permiting their previously unresponsive chronic wounds to function as internal controls. All lesions were cured or healed >70% in less than four months. Systemic effects were explained by ELF activation of PBMC and their transportation through the blood to the affected site. This therapy is effective in selected patients with chronic wounds.

  9. Bray-Liebhafsky oscillatory reaction in the radiofrequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Stanisavljev, Dragomir R.; Velikić, Zoran; Veselinović, Dragan S.; Jacić, Nevena V.; Milenković, Maja C.

    2014-09-01

    Oscillatory Bray-Liebhafsky (BL) reaction is capacitively coupled with the electromagnetic radiation in the frequency range 60-110 MHz. Because of the specific reaction dynamics characterized by several characteristic parameters (induction period, period between chemical oscillations and their amplitude) it served as a good model system for the investigation of the effects of radiofrequent (RF) radiation. RF power of up to 0.2 W did not produce observable changes of the BL reaction parameters in the limit of the experiment reproductivity. Results indicate that, under the given experimental conditions, both dissipative and reactive properties of the solution are not considerably coupled with the RF electrical field.

  10. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  11. Electric-field-induced rotation of Brownian metal nanowires.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2013-09-01

    We describe the physical mechanism responsible for the rotation of Brownian metal nanowires suspended in an electrolyte exposed to a rotating electric field. The electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole and to the induced-charge electro-osmotic flow around the particle. Experiments demonstrate that the primary driving mechanism is the former of these two. Our analysis contrasts with previous work describing the electrical manipulation of metallic particles with electric fields, which neglected the electrical double layer. Theoretical values for the rotation speed are calculated and good agreement with experiments is found. PMID:24125362

  12. Electromagnetic field tapering using all-dielectric gradient index materials

    PubMed Central

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  13. Electromagnetic effects in an applied-field magnetoplasmadynamic thruster

    SciTech Connect

    Arakawa, Y.; Sasoh, A. Tohoku University, Sendai, )

    1992-02-01

    Experimental and analytical studies have been conducted on the performance and thrust production mechanisms of an applied-field magnetoplasmadynamic thruster. The thruster was able to run with a high-thruster performance due to large electromagnetic effects related to the applied magnetic field. Using hydrogen, helium, and argon as the propellant, over 20 percent thrust efficiency was obtained over a wide specific impulse range from 1000 to 7000 s at input power levels between 2.2 and 15.9 kW. From the measurements of performance characteristics and current densities in the acceleration region, and by a theoretical analysis, it is found that the thruster operation is characterized by a parameter, B-squared/m (B: applied magnetic field strength, m: propellant mass flow rate). 9 refs.

  14. Electromagnetic field tapering using all-dielectric gradient index materials.

    PubMed

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-01-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes. PMID:27464989

  15. Electromagnetic field tapering using all-dielectric gradient index materials

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz

    2016-07-01

    The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.

  16. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is

  17. Novel rotating field probe for inspection of tubes

    NASA Astrophysics Data System (ADS)

    Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S.

    2012-05-01

    Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

  18. Novel rotating field probe for inspection of tubes

    SciTech Connect

    Xin, J.; Tarkleson, E.; Lei, N.; Udpa, L.; Udpa, S. S.

    2012-05-17

    Inspection of steam generator tubes in nuclear power plants is extremely critical for safe operation of the power plant. In the nuclear industry, steam generator tube inspection using eddy current techniques has evolved over the years from a single bobbin coil, to rotating probe coil (RPC) and array probe, in an attempt to improve the speed and reliability of inspection. The RPC probe offers the accurate spatial resolution but involves complex mechanical rotation. This paper presents a novel design of eddy current probes based on rotating fields produced by three identical coils excited by a balanced three-phase supply. The sensor thereby achieves rotating probe functionality by electronic means and eliminates the need for mechanical rotation. The field generated by the probe is largely radial that result in induced currents that flow circularly around the radial axis and rotating around the tube at a synchronous speed effectively producing induced eddy currents that are multidirectional. The probe will consequently be sensitive to cracks of all orientations in the tube wall. The finite element model (FEM) results of the rotating fields and induced currents are presented. A prototype probe is being built to validate simulation results.

  19. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields.

    PubMed

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers' exposure to the electromagnetic field have been considered: workers' body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  20. Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

    PubMed Central

    Zradziński, Patryk

    2015-01-01

    Due to the various physical mechanisms of interaction between a worker's body and the electromagnetic field at various frequencies, the principles of numerical simulations have been discussed for three areas of worker exposure: to low frequency magnetic field, to low and intermediate frequency electric field and to radiofrequency electromagnetic field. This paper presents the identified difficulties in applying numerical simulations to evaluate physical estimators of direct and indirect effects of exposure to electromagnetic fields at various frequencies. Exposure of workers operating a plastic sealer have been taken as an example scenario of electromagnetic field exposure at the workplace for discussion of those difficulties in applying numerical simulations. The following difficulties in reliable numerical simulations of workers’ exposure to the electromagnetic field have been considered: workers’ body models (posture, dimensions, shape and grounding conditions), working environment models (objects most influencing electromagnetic field distribution) and an analysis of parameters for which exposure limitations are specified in international guidelines and standards. PMID:26323781

  1. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    NASA Astrophysics Data System (ADS)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  2. Transport properties of a charged hot spot in an external electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bondarenko, S.; Komoshvili, K.; Prygarin, A.

    2016-06-01

    We investigate adiabatic expansion of a charged and rotating fluid element consisting of weakly interacting particles, which is initially perturbed by an external electromagnetic field. A framework for the perturbative calculation of the non-equilibrium distribution function of this fluid volume is considered and the distribution function is calculated to the first order in the perturbative expansion. This distribution function, which describes the evolution of the element with constant entropy, allows to calculate momentum flux tensor and viscosity coefficients of the expanding system. We show, that these viscosity coefficients depend on the initial angular velocity of the spot and on the strength of its initial perturbation by the external field. Obtained results are applied to the phenomenology of the viscosity to the entropy ratio calculated in lattice models.

  3. Nonsingular electrodynamics of a rotating black hole moving in an asymptotically uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya; Ahmedov, Bobomurat; Rezzolla, Luciano

    2016-07-01

    We extend the Wald solution for magnetic field to a black hole that is also moving at constant velocity. In particular, we derive analytic solutions for the Maxwell equations for a rotating black hole moving at constant speed in an asymptotically uniform magnetic test field. By adopting Kerr-Schild coordinates we avoid singular behaviors at the horizon and obtain a complete description of the charge and current distributions in terms of the black-hole spin and velocity. Using this solution, we compute the energy losses expected when charged particles are accelerated along the magnetic field lines, improving previous estimates that had to cope with singular electromagnetic fields on the horizon. When used to approximate the emission from binary black holes in a uniform magnetic field, our estimates match reasonably well those from numericalrelativity calculations in the force-free approximation.

  4. Introduction to Electromagnetic Fields and Geodesics in a Tokamak

    NASA Astrophysics Data System (ADS)

    Sharma, Stephen

    Photons mediate electromagnetic radiation such that electric and magnetic particles obey the principle of least action from the applied fields. Elastic and inelastic collisions arise after summation of Lagrangian geodesics. In the case of reacting tritium and deuterium, energy is released in the form of electromagnetic radiation, neutrons, and alpha particles. Within fusion tokamaks, alpha particle energies determine if a self sustaining reaction--or ignition--will proceed. If particle mean free path is confined by electric and magnetic fields, then fusion occurs at higher frequencies. If temperature is increased and particle velocity is increased, then collision frequency increases. Modeling the nucleons as polarizable quark dielectric liquid drops increases differentiation between scattering events and fusion. When the cross section of two reactant liquid drops is coincident, fusion occurs. If cross sections do not overlap sufficiently, Coulomb scattering occurs. One strives for understanding of geometric approaches to solving for reactants' cross sections and fusion collision frequency in order to determine power output per particle and critical density of reactants.

  5. Field evaluation of an electromagnetic current meter based vertical profiler

    NASA Astrophysics Data System (ADS)

    Hamblin, P. F.; Marmoush, Y. M. R.; Boyce, F. M.; Smith, A. A.

    1987-10-01

    A current profiler consisting of a vertical array of three electromagnetic current meters has been evaluated through an intercomparison of the three sensors, with reference to nearby current and wave data and by comparison to recent laboratory performance tests (Aubrey and Trowbridge, 1985). Mean flow estimates are too uncertain and variable to allow bottom boundary layer shear stress to be estimated by the conventional logarithmic law method. As well as unexplained sudden shifts in the mean speed response, the comparison with vector-averaged current meter data indicates possible long-term reduction in response due to fouling of the sensors by biological growth. The directional response was less sensitive to fouling effects. The oscillatory response on one occasion after field deployment for 17 days indicates a reduction in response from 41 to 45% at a period of oscillation of 3 s in a combined steady and oscillatory flow field. This study demonstrates that despite careful laboratory calibration, electromagnetic current meters are not at present suitable for quantitative study of dynamics of sediment resuspension in near-bottom shallow-water environments.

  6. Pulsar rotation and dispersion measures and the galactic magnetic field.

    NASA Technical Reports Server (NTRS)

    Manchester, R. N.

    1972-01-01

    Use of observations of pulsar polarization and pulse time of arrival at frequencies between 250 and 500 MHz to determine rotation and dispersion measures for 19 and 21 pulsars, respectively. These measurements have been used to calculate mean line-of-sight components of the magnetic field in the path to the pulsars. These and other observations show that there is probably no contribution to the observed rotation measure from the pulsar itself. Low-latitude, low-dispersion pulsars are observed to have strong field components, and a strong dependence of rotation-measure sign on galactic longitude has been found. The observations are consistent with a relatively uniform field of about 3.5 microgauss directed toward about l = 90 deg in the local region, but appear to be inconsistent with the helical model for the local field.

  7. Surface chirality induced by rotational electrodeposition in magnetic fields

    PubMed Central

    Mogi, Iwao; Morimoto, Ryoichi; Aogaki, Ryoichi; Watanabe, Kazuo

    2013-01-01

    The surfaces of minerals could serve important catalytic roles in the prebiotic syntheses of organic molecules, such as amino acids. Thus, the surface chirality is responsible for the asymmetric syntheses of biomolecules. Here, we show induction of the surface chirality of copper metal film by electrodeposition via electrochemical cell rotation in magnetic fields. Such copper film electrodes exhibit chiral behaviour in the electrochemical reaction of alanine enantiomers, and the rotating direction allows control of the chiral sign. These findings are discussed in connection with the asymmetric influence of the system rotation on the magnetohydrodynamic micro-vortices around the electrode surfaces. PMID:23999254

  8. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  9. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOEpatents

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  10. Photon merging and splitting in electromagnetic field inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Seegert, Nico

    2016-04-01

    We investigate photon merging and splitting processes in inhomogeneous, slowly varying electromagnetic fields. Our study is based on the three-photon polarization tensor following from the Heisenberg-Euler effective action. We put special emphasis on deviations from the well-known constant field results, also revisiting the selection rules for these processes. In the context of high-intensity laser facilities, we analytically determine compact expressions for the number of merged/split photons as obtained in the focal spots of intense laser beams. For the parameter range of typical petawatt class laser systems as pump and probe, we provide estimates for the numbers of signal photons attainable in an actual experiment. The combination of frequency upshifting, polarization dependence and scattering off the inhomogeneities renders photon merging an ideal signature for the experimental exploration of nonlinear quantum vacuum properties.

  11. Acceleration of adiabatic quantum dynamics in electromagnetic fields

    SciTech Connect

    Masuda, Shumpei; Nakamura, Katsuhiro

    2011-10-15

    We show a method to accelerate quantum adiabatic dynamics of wave functions under electromagnetic field (EMF) by developing the preceding theory [Masuda and Nakamura, Proc. R. Soc. London Ser. A 466, 1135 (2010)]. Treating the orbital dynamics of a charged particle in EMF, we derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states in any desired short time. The scheme is consolidated by describing a way to overcome possible singularities in both the additional phase and driving potential due to nodes proper to wave functions under EMF. As explicit examples, we exhibit the fast forward of adiabatic squeezing and transport of excited Landau states with nonzero angular momentum, obtaining the result consistent with the transitionless quantum driving applied to the orbital dynamics in EMF.

  12. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  13. Electromagnetic field limits set by the V-Curve.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  14. Note: A time-resolved Kerr rotation system with a rotatable in-plane magnetic field

    NASA Astrophysics Data System (ADS)

    Qian, Xuan; Gu, Xiaofang; Ji, Yang

    2010-10-01

    A time-resolved Kerr rotation system with a rotatable in-plane magnetic field has been constructed to study anisotropic spin relaxation of electrons in semiconductors. A permanent magnet magic ring is placed on top of a motor-driven rotation stage (RS) to create the rotatable in-plane magnetic field. The RS is placed on a second translation stage to vary the local magnetic field around a sample. The in-plane magnetic field in such a system varies from 0.05 to 0.95 T, with full-round 360° rotatablity, thus offering a convenient and low-cost way to study the anisotropy of spin dynamics in semiconductors. Its performance was demonstrated via measurement of the anisotropy of the spin dephasing time (SDT) of electrons in a two-dimensional electron system embedded in a GaAs/Al0.35Ga0.65As heterostructure. The SDT with B∥[11¯0] was observed to be 10% larger than that with B∥[110], consistent with the results of others, which was measured via rotating sample.

  15. Enhancement of nitric oxide generation by low frequency electromagnetic field.

    PubMed

    Yoshikawa; Tanigawa; Tanigawa; Imai; Hongo; Kondo

    2000-07-01

    Oxidative stress is implicated in the intracellular signal transduction pathways for nitric oxide synthase (NOS) induction. The electromagnetic field (EMF) is believed to increase the free radical lifespan [S. Roy, Y. Noda, V. Eckert, M.G. Traber, A. Mori, R. Liburdy, L. Packer, The phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst in rat peritoneal neutrophils is increased by a 0.1 mT (60 Hz) magnetic field, FEBS Lett. 376 (1995) 164-6; F.S. Prato, M. Kavaliers, J.J. Carson, Behavioural evidence that magnetic field effects in the land snail, Cepaea nemoralis, might not depend on magnetite or induced electric currents, Bioelectromagnetics 17 (1996) 123-30; A.L. Hulbert, J. Metcalfe, R. Hesketh, Biological response to electromagnetic fields, FASEB 12 (1998) 395-420]. We tested the effects of EMF on endotoxin induced nitric oxide (NO) generation in vivo. Male BALB/C mice were injected with lipopolysaccharide (LPS) intraperitoneously (i.p.), followed by the exposure to EMF (0.1 mT, 60 Hz). Five hours and 30 min after the LPS administration, mice were administered with a NO spin trap, ferrous N-methyl-D-glucaminedithiocarbamate (MGD-Fe). Thirty minutes later, mice were sacrificed, and their livers were removed. The results were compared to three control groups: group A (LPS (-) EMF(-)); group B (LPS(-) EMF(+)); group C (LPS(+) EMF(-)). The ESR spectra of obtained livers were examined at room temperature. Three-line spectra of NO adducts were observed in the livers of all groups. In groups A and B very weak signals were observed, but in groups C and D strong spectra were observed. The signal intensity of the NO adducts in Group D was also significantly stronger than that in Group C. EMF itself did not induce NO generation, however, it enhanced LPS induced NO generation in vivo. PMID:10927193

  16. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications. PMID:26595908

  17. Sensitivity to full-field visual movement compatible with head rotation: variations among axes of rotation.

    PubMed

    Harris, L R; Lott, L A

    1995-01-01

    Movement detection thresholds for full-field visual motion about various axes were measured in three subjects using a two-alternative forced-choice staircase method. Thresholds for 1-s exposures to rotation about different rotation axes varied significantly over the range 0.139 +/- 0.05 deg/s to 0.463 +/- 0.166 deg/s. The highest thresholds were found in response to rotation about axes closely aligned to the line of sight. Variations among the thresholds for different axes could not be explained by different movement patterns in the fovea or variations in motion sensitivity with eccentricity. The variations can be well simulated by a three-channel model for coding the axis and velocity of full-field visual motion. A three-channel visual coding system would be well suited for extracting information about self-rotation from a complex pattern of retinal image motion containing components due to both rotation and translation. A three-channel visual motion system would also be readily compatible with vestibular information concerning self-rotation arising from the semicircular canals. PMID:8527373

  18. A. A. Ukhtomskii`s dominance principle of brain activity in the perception of electromagnetic fields

    SciTech Connect

    Kholodov, Yu.A.

    1994-07-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a {open_quotes}placebo{close_quotes} or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  19. A. A. Ukhtomskii's dominance principle of brain activity in the perception of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Kholodov, Yu. A.

    1994-01-01

    Preliminary instruction of the subject plays an important role in the perception of weak electromagnetic fields acting on the hand. Active attention to a potential effect amplifies a brain state that can be called caution dominance and arises spontaneously with a “placebo” or an electromagnetic field. The radar principle of brain operation is discussed among the physiological mechanisms through which electromagnetic fields act on an organism.

  20. Mechanisms of biological effects of radiofrequency electromagnetic fields: an overview

    SciTech Connect

    Erwin, D.N.

    1988-11-01

    Manmade sources of electromagnetic (EM) fields, and therefore human exposures to them, continue to increase. Public concerns stem from the effects reported in the literature, the visibility of the sources, and somewhat from confusion between EM fields and ionizing radiation. Protecting humans from the real hazards and allaying groundless fears requires a self-consistent body of scientific data concerning effects of the fields, levels of exposures which cause those effects, and which effects are deleterious (or beneficial or neutral). With that knowledge, appropriate guidelines for safety can be devised, while preserving the beneficial uses of radiofrequency radiation (RFR) energy for military or civilian purposes. The task is monumental because of the large and growing number of biological endpoints and the infinite array of RFR exposure conditions under which those endpoints might be examined. The only way to reach this goal is to understand the mechanisms by which EM fields interact with tissues. As in other fields of science, a mechanistic understanding of RFR effects will enable scientists to generalize from a selected few experiments to derive the laws of RFR bioeffects. This article gives an overview of present knowledge of those mechanisms and the part that the USAF School of Aerospace Medicine has played in expanding that knowledge. 91 references.

  1. Crosswell electromagnetic tomography: System design considerations and field results

    SciTech Connect

    Wilt, M.J.; Alumbaugh, D.L.; Lee, K.H.; Deszcz-Pan, M.; Morrison, H.F.; Becker, A.

    1995-05-01

    Electrical conductivity is an important petroleum reservoir parameter because of its sensitivity to porosity, pore fluid type, and saturation. Although induction logs are widely used to obtain the conductivity near boreholes, the poor resolution offered by surface-based electrical and electromagnetic (EM) field systems has thus far limited obtaining this information in the region between boreholes. Low-frequency crosswell EM offers the promise of providing subsurface conductivity information at a much higher resolution than was previously possible. Researchers at Lawrence Livermore National Lab (LLNL), and Lawrence Berkeley Laboratories (LBL), together with an industrial consortium, recently began a program to conduct low-frequency crosswell EM surveys and develop suitable inversion techniques for interpreting the data. In developing the field instrumentation the authors used off-the-shelf components whenever possible, but custom-designed induction coil transmitters and receivers were built for the field experiments. The assembled field system has adequate power for moderate to high-resolution imaging, using boreholes spaced up to 500 m apart. The initial field experiment was undertaken in flat lying terrain at the British petroleum test site in Devine, Texas.

  2. Setting prudent public health policy for electromagnetic field exposures.

    PubMed

    Carpenter, David O; Sage, Cindy

    2008-01-01

    Electromagnetic fields (EMF) permeate our environment, coming both from such natural sources as the sun and from manmade sources like electricity, communication technologies and medical devices. Although life on earth would not be possible without sunlight, increasing evidence indicates that exposures to the magnetic fields associated with electricity and to communication frequencies associated with radio, television, WiFi technology, and mobile cellular phones pose significant hazards to human health. The evidence is strongest for leukemia from electricity-frequency fields and for brain tumors from communication-frequency fields, yet evidence is emerging for an association with other diseases as well, including neurodegenerative diseases. Some uncertainty remains as to the mechanism(s) responsible for these biological effects, and as to which components of the fields are of greatest importance. Nevertheless, regardless of whether the associations are causal, the strengths of the associations are sufficiently strong that in the opinion of the authors, taking action to reduce exposures is imperative, especially for the fetus and children. Inaction is not compatible with the Precautionary Principle, as enunciated by the Rio Declaration. Because of ubiquitous exposure, the rapidly expanding development of new EMF technologies and the long latency for the development of such serious diseases as brain cancers, the failure to take immediate action risks epidemics of potentially fatal diseases in the future. PMID:18763539

  3. Electromagnetic Form Factors of Hadrons in Quantum Field Theories

    SciTech Connect

    Dominguez, C. A.

    2008-10-13

    In this talk, recent results are presented of calculations of electromagnetic form factors of hadrons in the framework of two quantum field theories (QFT), (a) Dual-Large N{sub c} QCD (Dual-QCD{sub {infinity}}) for the pion, proton, and {delta}(1236), and (b) the Kroll-Lee-Zumino (KLZ) fully renormalizable Abelian QFT for the pion form factor. Both theories provide a QFT platform to improve on naive (tree-level) Vector Meson Dominance (VMD). Dual-QCD{sub {infinity}} provides a tree-level improvement by incorporating an infinite number of zero-width resonances, which can be subsequently shifted from the real axis to account for the time-like behaviour of the form factors. The renormalizable KLZ model provides a QFT improvement of VMD in the framework of perturbation theory. Due to the relative mildness of the {rho}{pi}{pi} coupling, and the size of loop suppression factors, the perturbative expansion is well defined in spite of this being a strong coupling theory. Both approaches lead to considerable improvements of VMD predictions for electromagnetic form factors, in excellent agreement with data.

  4. Magnetic Field Rotations at Kinetic Scales in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Chen, Christopher; Matteini, Lorenzo; Burgess, David; Horbury, Timothy

    2015-04-01

    The distribution of spatial angle changes in the solar wind magnetic field is usually attributed to a mixture of turbulence and other structures. Recent results have suggested that in the MHD inertial range this distribution may be scale invariant, generated by the turbulence, and consist mainly of field rotations. Here, we examine the distribution of magnetic field rotations in the smaller scale kinetic range (from ion to electron scales), where the turbulence is thought to be dissipated, using combined fluxgate/search-coil magnetometer data from Cluster. The degree of self-similarity is measured and the spatial distribution of the fluctuations at different scales is compared. At ion scales, the energy in angle rotations larger than α drops exponentially with α with e-folding ~10°, and at electron scales with e-folding

  5. Cross-spectrally pure light, cross-spectrally pure fields and statistical similarity in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Lu, RongSheng; Chen, Feinan; Li, Jia

    2014-08-01

    This paper describes the concept of cross-spectrally pure light, implications of statistical similarity of an optical field on its cross-spectral purity and cross-spectrally pure fields. First, the concept of cross-spectral purity of light is analysed in the space-frequency domain by taking into account the vectorial nature of the radiation, and the conditions and reduction formula are obtained. Then, by utilizing statistical similarity, the relationship between cross-spectral purity and spatial coherence is explored in the electromagnetic field. Last, the conditions for cross-spectrally pure fields are discussed, the polychromatic plane wave and the far field produced by a planar, secondary, stochastic electromagnetic source are studied as examples, and moreover, the relationship between cross-spectral purity and spatial coherence, which we have drawn, is verified during the study.

  6. Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Wang, B.; Tang, L. D.; Qi, J. G.; Wang, J. Z.

    2013-03-01

    It was investigated that corrosion resistance of Al-5 % Cu alloy was influenced by pulse electromagnetic field (PEMF). The morphologies were observed by scanning election microscopy (SEM). The corrosion behaviors were investigated by potentiodynamic polarization tests and immersion tests. The results indicated that corrosion resistance of samples could be increased by using pulse electromagnetic field, moreover, the optimum parameter of pulse electromagnetic field in this experiment was showed as follows: 500 V, 3 Hz, 30 s. Decreasing the quantity of eutectic in grain boundaries and refining the grains were main causations for increasing corrosion resistance of Al-5 % Cu alloy with pulse electromagnetic field.

  7. Nonlinear resonance of the rotating circular plate under static loads in magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Yuda; Wang, Tong

    2015-11-01

    The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.

  8. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    SciTech Connect

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-11-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  9. Electromagnetic Fields Generated by Ocean Currents and the Potential for Using Geomagnetic Data in Ocean and Climate Studies.

    NASA Astrophysics Data System (ADS)

    Tyler, Robert H.

    1995-01-01

    The ocean currents flowing through the earth's main magnetic field are known to induce secondary magnetic fields. Hence, variations in the ocean circulation induce variations in the net magnetic field. This research is aimed at exploring the potential for using geomagnetic data to study variability in ocean circulation and climate. First, general relativity theory is used to formally establish the proper set of electromagnetic equations to be used for observers in a rotating (accelerating) frame of reference observing a medium (the ocean, in this case) with relative velocity. Extra terms due to rotation are derived and described and a generalized Schiff's charge density is shown to be potentially significant for the application to ocean circulation. We extend the theory of electromagnetic fields generated by ocean currents. Many analytical solutions are found for idealized ocean features including sheared flow, jets, and a Stommel gyre. Results indicate that the ocean-induced magnetic fields will typically have magnitudes of 10's-100's of nT within the ocean. Outside of the ocean, the magnitudes are smaller (typically 1-10 nT) but decay on scales set by the horizontal scale of the ocean feature. We investigate the time-scales associated with the adjustment of electromagnetic fields generated by low -frequency ocean currents. We find that the time scales can be quite long, prohibiting a quasistatic assumption in the treatment of the electromagnetic fields generated by the important tidal, inertial, and diurnal-frequency ocean currents. Three-dimensional explicit time-dependent and steady-state finite-difference numerical models are constructed to study the electromagnetic fields generated by more realistic ocean current and conductivity features. The ocean currents generate electromagnetic forces on the fluid at the surface of the earth's core. If these forces lead to significant core motion, the effect of the oceans on the generation and variability of the earth

  10. Using strong electromagnetic fields to control x-ray processes.

    SciTech Connect

    Young, L.; Buth, C.; Dunford, R. W.; Ho, P.; Kanter, E. P.; Kraessig, B.; Peterson, E. R.; Rohringer, N.; Santra, R.; Southworth, S. H.

    2010-06-01

    Exploration of a new ultrafast-ultrasmall frontier in atomic and molecular physics has begun. Not only is is possible to control outer-shell electron dynamics with intense ultrafast optical lasers, but now control of inner-shell processes has become possible by combining intense infrared/optical lasers with tunable sources of X-ray radiation. This marriage of strong-field laser and X-ray physics has led to the discovery of methods to control reversibly resonant X-ray absorption in atoms and molecules on ultrafast timescales. Using a strong optical dressing field, resonant X-ray absorption in atoms can be markedly suppressed, yielding an example of electromagnetically induced transparency for x rays. Resonant X-ray absorption can also be controlled in molecules using strong non-resonant, polarized laser fields to align the framework of a molecule, and therefore its unoccupied molecular orbitals to which resonant absorption occurs. At higher laser intensities, ultrafast field ionization produces an irreversible change in X-ray absorption. Finally, the advent of X-ray free electron lasers enables first exploration of non-linear X-ray processes.

  11. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  12. Could Radiotherapy Effectiveness Be Enhanced by Electromagnetic Field Treatment?

    PubMed Central

    Francisco, Artacho-Cordón; del Mar, Salinas-Asensio María; Irene, Calvente; Sandra, Ríos-Arrabal; Josefa, León; Elisa, Román-Marinetto; Nicolás, Olea; Isabel, Núñez María

    2013-01-01

    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy. PMID:23867611

  13. The role of electromagnetic fields in neurological disorders.

    PubMed

    Terzi, Murat; Ozberk, Berra; Deniz, Omur Gulsum; Kaplan, Suleyman

    2016-09-01

    In the modern world, people are exposed to electromagnetic fields (EMFs) as part of their daily lives; the important question is "What is the effect of EMFs on human health?" Most previous studies are epidemiological, and we still do not have concrete evidence of EMF pathophysiology. Several factors may lead to chemical, morphological, and electrical alterations in the nervous system in a direct or indirect way. It is reported that non-ionizing EMFs have effects on animals and cells. The changes they bring about in organic systems may cause oxidative stress, which is essential for the neurophysiological process; it is associated with increased oxidization in species, or a reduction in antioxidant defense systems. Severe oxidative stress can cause imbalances in reactive oxygen species, which may trigger neurodegeneration. This review aims to detail these changes. Special attention is paid to the current data regarding EMFs' effects on neurological disease and associated symptoms, such as headache, sleep disturbances, and fatigue. PMID:27083321

  14. Annals of conflicting results: looking back on electromagnetic field research.

    PubMed Central

    Schoen, D

    1996-01-01

    Few environmental health issues are as contentious as the question of whether exposure to electromagnetic fields (EMFs) from power lines increases cancer risk. Among the many actors in this controversy, epidemiologists have played the leading role in raising the question and motivating research. Epidemiologic studies of the effects of exposure to power-line EMFs include the investigation by Dr. Gilles Thériault and colleagues into incidence rates of cancer among electric-utility workers in Quebec, Ontario and France. With the development of personal dosimeters to measure exposure to electric, magnetic and pulsed EMFs, occupational studies in the 1990s have made an important methodologic advance. But, as Thériault explains, improvements in assessing exposure have not yet translated into clear and consistent findings. Images p1444-a PMID:8943934

  15. Effects of electromagnetic fields on osteoporosis: A systematic literature review.

    PubMed

    Wang, Rong; Wu, Hua; Yang, Yong; Song, Mingyu

    2016-01-01

    Electromagnetic fields (EMFs) as a safe, effective and noninvasive treatment have been researched and used for many years in orthopedics, and the common use clinically is to promote fracture healing. The effects of EMFs on osteoporosis have not been well concerned. The balance between osteoblast and osteoclast activity as well as the balance between osteogenic differentiation and adipogenic differentiation of bone marrow mesenchymal stem cells plays an important role in the process of osteoporosis. A number of recent reports suggest that EMFs have a positive impact on the balances. In this review, we discuss the recent advances of EMFs in the treatment of osteoporosis from basic research to clinical study and introduce the possible mechanism. In addition, we presented future perspectives of application of EMFs for osteoporosis. PMID:27356174

  16. Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing.

    PubMed

    Acosta, V M; Jensen, K; Santori, C; Budker, D; Beausoleil, R G

    2013-05-24

    We use electromagnetically induced transparency (EIT) to probe the narrow electron-spin resonance of nitrogen-vacancy centers in diamond. Working with a multipass diamond chip at temperatures 6-30 K, the zero-phonon absorption line (637 nm) exhibits an optical depth of 6 and inhomogeneous linewidth of ~30 GHz FWHM. Simultaneous optical excitation at two frequencies separated by the ground-state zero-field splitting (2.88 GHz) reveals EIT resonances with a contrast exceeding 6% and FWHM down to 0.4 MHz. The resonances provide an all-optical probe of external electric and magnetic fields with a projected photon-shot-noise-limited sensitivity of 0.2 V/cm/√[Hz] and 0.1 nT/√[Hz], respectively. Operation of a prototype diamond-EIT magnetometer measures a noise floor of ~/<1 nT/√[Hz] for frequencies above 10 Hz and Allan deviation of 1.3±1.1 nT for 100 s intervals. The results demonstrate the potential of diamond-EIT devices for applications ranging from quantum-optical memory to precision measurement and tests of fundamental physics. PMID:23745875

  17. Paternal occupational exposure to electromagnetic fields and neuroblastoma in offspring

    SciTech Connect

    Wilkins, J.R. 3d.; Hundley, V.D. )

    1990-06-01

    Investigators in Texas have reported an association between paternal employment in jobs linked with exposure to electromagnetic fields and risk of neuroblastoma in offspring. In an attempt to replicate this finding, the authors conducted a case-control study in Ohio. A total of 101 incident cases of neuroblastoma were identified through the Columbus (Ohio) Children's Hospital Tumor Registry. All cases were born sometime during the period 1942-1967. From a statewide roster of birth certificates, four controls were selected for each case, with individual matching on the case's year of birth, race, and sex, and the mother's county of residence at the time of the (index) child's birth. Multiple definitions were employed to infer the potential for paternal occupational exposure to electromagnetic fields from the industry/occupation statements on the birth certificates. Case-control comparisons revealed adjusted odds ratios ranging in magnitude from 0.5 to 1.9. For two of the exposure definitions employed--both of which are similar to one used by the Texas investigators--the corresponding odds ratios were modestly elevated (odds ratios = 1.6 and 1.9). Notably, the magnitude of these odds ratios is not inconsistent with the Texas findings, where the exposure definition referred to yielded an odds ratio of 2.1. Because the point estimates in this study are imprecise, and because the biologic plausibility of the association is uncertain, the results reported here must be interpreted cautiously. However, the apparent consistency between two independent studies suggests that future evaluation of the association is warranted.

  18. Jet Rotation Driven by Magnetohydrodynamic Shocks in Helical Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Fendt, Christian

    2011-08-01

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfvén Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  19. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  20. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  1. Electromagnetic field and cylindrical compact objects in modified gravity

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.; Bhatti, M. Zaeem ul Haq

    2016-05-01

    In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.

  2. Pseudo-gradient and Lagrangian boundary control system formulation of electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Jeltsema, Dimitri; van der Schaft, Arjan

    2007-09-01

    This paper describes an electromagnetic field analogue of the classical Brayton-Moser formulation. It is shown that Maxwell's curl equations constitute a pseudo-gradient system with respect to a single electromagnetic mixed-potential functional and a metric defined by the constitutive relations of the fields. Besides its use for the generation of power-based Lyapunov functionals for stability analysis and Poynting-like flow balances, the electromagnetic mixed-potential formulation suggests a family of alternative variational principles. This yields a novel Lagrangian boundary control system formulation admitting nonzero energy flow through the boundary. The corresponding symplectic Hamiltonian system is still associated with the total electromagnetic field energy.

  3. ON THE ROTATION OF THE MAGNETIC FIELD ACROSS THE HELIOPAUSE

    SciTech Connect

    Opher, M.; Drake, J. F.

    2013-12-01

    Based on the difference between the orientation of the interstellar and the solar magnetic fields, there was an expectation by the community that the magnetic field direction will rotate dramatically across the heliopause (HP). Recently, the Voyager team concluded that Voyager 1 (V1) crossed into interstellar space last year. The question is then why there was no significant rotation in the direction of the magnetic field across the HP. Here we present simulations that reveal that strong rotations in the direction of the magnetic field at the HP at the location of V1 (and Voyager 2) are not expected. The solar magnetic field strongly affects the drapping of the interstellar magnetic field (B {sub ISM}) around the HP. B {sub ISM} twists as it approaches the HP and acquires a strong T component (East-West). The strong increase in the T component occurs where the interstellar flow stagnates in front of the HP. At this same location the N component B{sub N} is significantly reduced. Above and below, the neighboring B {sub ISM} lines also twist into the T direction. This behavior occurs for a wide range of orientations of B {sub ISM}. The angle δ = asin (B{sub N} /B) is small (around 10°-20°), as seen in the observations. Only after some significant distance outside the HP is the direction of the interstellar field distinguishably different from that of the Parker spiral.

  4. PIC simulation of electrodeless plasma thruster with rotating electric field

    NASA Astrophysics Data System (ADS)

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-01

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  5. PIC simulation of electrodeless plasma thruster with rotating electric field

    SciTech Connect

    Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki

    2012-11-27

    For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.

  6. Rotational stability of a long field-reversed configuration

    SciTech Connect

    Barnes, D. C. Steinhauer, L. C.

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  7. Electromagnetic induction tomography field experiment at Lost Hills, CA

    SciTech Connect

    Buettner, H. M.; Berryman, J. G.

    1998-11-03

    We have collected borehole to surface electromagnetic induction field data for a shallow steam injection that is underway at Mobil Oil' s Lost Hills-3 field in San Joaquin Valley. Earlier work had been done at the same site by Wilt et al. (1996). This site is an interesting test for techniques under development for environmental engineering, because it can be viewed as an excellent analog of a shallow environmental remediation using steam injection. Surface magnetic field data (vertical and radial fields, magnitude and phase) were collected using 18 receiver stations along two profiles which ran radially from the EM transmitter well from 5 m to 120 m. The data at each surface station were collected while the EM transmitter was raised slowly from a depth of 120 m to a final depth of 20 m. As part of this experiment, a calibration of the EM transmitter was also performed. Magnetic field data from Lost Hills were successfully collected, including both vertical and horizontal (surface radial) magnitude and phase data along a northerly profile and along a westerly profile. We have observed that the radial receiver data appear to be better behaved than the vertical receiver data, suggesting that these data may be less sensitive to environmental clutter (numerous metallic pipes crisscrossing the site at the surface) than are the vertical data. Some simple 1-D modeling has been done to confirm that the expected conductivity change in the steam zone should produce an observable anomaly in the measured data when comparing the pre-steam to the post-steam conditions. Results of this test were positive. Further analyses of these data making use of a new code developed in a companion paper are in progress and will presented separately.

  8. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  9. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. PMID:25721476

  10. SYSTEMS FOR EXPOSING MICE TO 2,450-MHZ ELECTROMAGNETIC FIELDS

    EPA Science Inventory

    Two systems for exposing mice to 2,450-MHz electromagnetic fields are described. In a waveguide system, four mice were placed in a Styrofoam cage and exposed dorsally to circularly polarized electromagnetic fields. The temperature and humidity in the mouse holder were kept consta...

  11. Electromagnetic fluid drift turbulence in static ergodic magnetic fields

    SciTech Connect

    Reiser, D.; Scott, B.

    2005-12-15

    Numerical simulations of three-dimensional nonlinear electromagnetic fluid drift turbulence in a tokamak plasma with externally applied stochastic magnetic-field perturbations are presented. The contributions to the radial particle transport due to nonlinearities arising from ExB advection and magnetic flutter are investigated for perturbation fields of varying strengths in the cases of low and high collisionalities. The perturbation strength is varied to study the physics for Chirikov parameters above 1. In all the cases considered a significant increase of ExB transport is found. A static contribution in the density and velocity perturbations contributes significantly to the total radial ExB transport. For low collisionality, the external perturbation leads to enhanced density and velocity fluctuations over a broad range in the toroidal wave-number spectrum, resulting in an enhanced turbulent flux. For high collisionality, the density fluctuations stay roughly the same and the velocity fluctuations are increased in an intermediate range of the toroidal wave number spectrum, separated from the maximum of the density fluctuations, thus leaving the turbulent flux almost unchanged.

  12. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  13. Extremely low frequency electromagnetic fields and cancer: the epidemiologic evidence.

    PubMed Central

    Bates, M N

    1991-01-01

    This paper reviews the epidemiologic evidence that low frequency electromagnetic fields generated by alternating current may be a cause of cancer. Studies examining residential exposures of children and adults and studies of electrical and electronics workers are reviewed. Using conventional epidemiologic criteria for inferring causal associations, including strength and consistency of the relationship, biological plausibility, and the possibility of bias as an explanation, it is concluded that the evidence is strongly suggestive that such radiation is carcinogenic. The evidence is strongest for brain and central nervous system cancers in electrical workers and children. Weaker evidence supports an association with leukemia in electrical workers. Some evidence also exists for an association with melanoma in electrical workers. Failure to find consistent evidence of a link between residential exposures and adult cancers may be attributable to exposure misclassification. Studies so far have used imperfect surrogates for any true biologically effective magnetic field exposure. The resulting exposure misclassification has produced relative risk estimates that understate any true risk. PMID:1821368

  14. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field.

    PubMed

    Wen, Chih-Yung; Yeh, Cheng-Peng; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2009-12-01

    This paper presents a novel simple micromixer based on stable water suspensions of magnetic nanoparticles (i.e. ferrofluids). The micromixer chip is built using standard microfabrication and simple soft lithography, and the design can be incorporated as a subsystem into any chemical microreactor or a miniaturized biological sensor. An electromagnet driven by an AC power source is used to induce transient interactive flows between a ferrofluid and Rhodamine B. The alternative magnetic field causes the ferrofluid to expand significantly and uniformly toward Rhodamine B, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which have not been observed by other active mixing methods utilizing only magnetic force, increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The miscible fingering instabilities are observed and applied in the microfluidics for the first time. This work is carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors and the present experimental results demonstrate that the proposed micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is higher than 29.2 Oe and frequency ranges from 45 to 300 Hz. PMID:19921677

  15. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    SciTech Connect

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. The analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.

  16. The interaction between plasma rotation, stochastic fields and tearing mode excitation by external perturbation fields

    NASA Astrophysics Data System (ADS)

    DeBock, M. F. M.; Classen, I. G. J.; Busch, C.; Jaspers, R. J. E.; Koslowski, H. R.; Unterberg, B.; TEXTOR Team

    2008-01-01

    For fusion reactors, based on the principle of magnetic confinement, it is important to avoid so-called magnetic islands or tearing modes. They reduce confinement and can be the cause of major disruptions. One class of magnetic islands is that of the perturbation field driven modes. This perturbation field can, for example, be the intrinsic error field. Theoretical work predicts a strong relationship between plasma rotation and the excitation of perturbation field modes. Experimentally, the theory on mode excitation and plasma rotation has been confirmed on several tokamaks. In those experiments, however, the control over the plasma rotation velocity and direction, and over the externally applied perturbation field was limited. In this paper experiments are presented that were carried out at the TEXTOR tokamak. Two tangential neutral beam injectors and a set of helical perturbation coils, called the dynamic ergodic divertor (DED), provide control over both the plasma rotation and the external perturbation field in TEXTOR. This made it possible to set up a series of experiments to test the theory on mode excitation and plasma rotation in detail. The perturbation field induced by the DED not only excites magnetic islands, it also sets up a layer near the plasma boundary where the magnetic field is stochastic. It will be shown that this stochastic field alters both the rotational response of the plasma on the perturbation field and the threshold for mode excitation. It therefore has to be included in an extended theory on mode excitation.

  17. Generation of Whistler Wave by a Rotating Magnetic Field Source

    NASA Astrophysics Data System (ADS)

    Karavaev, A.; Papadopoulos, K.; Shao, X.; Sharma, A. S.; Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.

    2008-12-01

    The interaction of Rotating Magnetic Fields (RMF) with plasmas is a fundamental plasma physics problem with implications to fusion related Field-Reversed Configurations (FRC), space propulsion, astronaut protection from cosmic rays in long interstellar travel, control of the energetic population in the radiation belts and near zone processes in pulsar magnetospheres. In this paper we report recent experiments on the generation of whistler waves with a new type RMF-based antenna. The experiments were conducted on UCLA's Large Plasma Device (LAPD). The Rotating Magnetic Field (RMF) is created using poly-phased loop antennas. A number of parameter combinations, e.g. plasma density, background magnetic field, and driving current, were used. It was found that RMF created by a two phase-delayed loop antenna drives significant currents along the ambient magnetic field. The measured amplitude of induced wave field was proportional to the square-root of the plasma density. The spatial decay rate for the wave perturbation across the background magnetic field was found to scale with the plasma skin depth. A small amplitude second harmonic was also measured. The paper will also present analytic and simulation results that account for the experimental results; in particular, the scaling of the induced magnetic field as a function of the RMF and plasma parameters and the spatial decay rate of magnetic field. Applications of RMF as an efficient radiation source of plasma waves in space plasmas will be discussed. This work was sponsored by ONR MURI Grant 5-28828

  18. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  19. Dynamics of Magnetotactic Bacteria in a Rotating Magnetic Field

    PubMed Central

    Ērglis, Kaspars; Wen, Qi; Ose, Velta; Zeltins, Andris; Sharipo, Anatolijs; Janmey, Paul A.; Cēbers, Andrejs

    2007-01-01

    The dynamics of the motile magnetotactic bacterium Magnetospirillum gryphiswaldense in a rotating magnetic field is investigated experimentally and analyzed by a theoretical model. These elongated bacteria are propelled by single flagella at each bacterial end and contain a magnetic filament formed by a linear assembly of ∼40 ferromagnetic nanoparticles. The movements of the bacteria in suspension are analyzed by consideration of the orientation of their magnetic dipoles in the field, the hydrodynamic resistance of the bacteria, and the propulsive force of the flagella. Several novel features found in experiments include a velocity reversal during motion in the rotating field and an interesting diffusive wandering of the trajectory curvature centers. A new method to measure the magnetic moment of an individual bacterium is proposed based on the theory developed. PMID:17526564

  20. Large-scale velocity fields. [of solar rotation

    NASA Technical Reports Server (NTRS)

    Howard, Robert F.; Kichatinov, L. L.; Bogart, Richard S.; Ribes, Elizabeth

    1991-01-01

    The present evaluation of recent observational results bearing on the nature and characteristics of solar rotation gives attention to the status of current understanding on such large-scale velocity-field-associated phenomena as solar supergranulation, mesogranulation, and giant-scale convection. Also noted are theoretical suggestions reconciling theory and observations of giant-scale solar convection. The photosphere's global meridional circulation is suggested by solar rotation models requiring pole-to-equator flows of a few m/sec, as well as by the observed migration of magnetic activity over the solar cycle. The solar rotation exhibits a latitude and cycle dependence which can be understood in terms of a time-dependent convective toroidal roll pattern.

  1. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Ettehadi-Abari, Mehdi; Sedaghat, Mahsa

    2016-03-01

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range I{λ^2} ˜eq 10^{14}{-}10^{16}{{W}}{{{cm}}^{-2}} \\upmu{{{m}}2} . The collisionless effect is found to be significant when the incident laser intensity is less than 10^{16}{{W}}{{{cm}}^{-2}}\\upmu{{{m}}2} . In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.

  2. Sheared Plasma Rotation in Partially Stochastic Magnetic Fields

    SciTech Connect

    Wingen, A.; Spatschek, K. H.

    2009-05-08

    It is shown that resonant magnetic perturbations generate sheared flow velocities in magnetized plasmas. Stochastic magnetic fields in incomplete chaos influence the drift motion of electrons and ions differently. Using a fast mapping technique, it is demonstrated that a radial electric field is generated due to the different behavior of passing particles (electrons and ions) in tokamak geometry; magnetic trapping of ions is neglected. Radial profiles of the polodial velocity resulting from the force balance in the presence of a strong toroidal magnetic field are obtained. Scaling laws for plasma losses and the forms of sheared plasma rotation profiles are discussed.

  3. The influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    NASA Astrophysics Data System (ADS)

    Papadopoulos, D.

    2012-01-01

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the quantum electrodynamical (QED) effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  4. Influence of strong field vacuum polarization on gravitational-electromagnetic wave interaction

    SciTech Connect

    Forsberg, M.; Brodin, G.; Papadopoulos, D.

    2010-07-15

    The interaction between gravitational and electromagnetic waves in the presence of a static magnetic field is studied. The field strength of the static field is allowed to surpass the Schwinger critical field, such that the QED effects of vacuum polarization and magnetization are significant. Equations governing the interaction are derived and analyzed. It turns out that the energy conversion from gravitational to electromagnetic waves can be significantly altered due to the QED effects. The consequences of our results are discussed.

  5. Pentoxifylline and electromagnetic field improved bone fracture healing in rats

    PubMed Central

    Atalay, Yusuf; Gunes, Nedim; Guner, Mehmet Dervis; Akpolat, Veysi; Celik, Mustafa Salih; Guner, Rezzan

    2015-01-01

    Background The aim of this study was to evaluate the effects of a phosphodiesterase inhibitor pentoxifylline (PTX), electromagnetic fields (EMFs), and a mixture of both materials on bone fracture healing in a rat model. Materials and methods Eighty male Wistar rats were randomly divided into four groups: Group A, femur fracture model with no treatment; Group B, femur fracture model treated with PTX 50 mg/kg/day intraperitoneal injection; Group C, femur fracture model treated with EMF 1.5±0.2 Mt/50 Hz/6 hours/day; and Group D, femur fracture model treated with PTX 50 mg/kg/day intraperitoneal injection and EMF 1.5±0.2 Mt/50 Hz/6 hours/day. Results Bone fracture healing was significantly better in Group B and Group C compared to Group A (P<0.05), but Group D did not show better bone fracture healing than Group A (P>0.05). Conclusion It can be concluded that both a specific EMF and PTX had a positive effect on bone fracture healing but when used in combination, may not be beneficial. PMID:26388687

  6. Pulsed electromagnetic field may accelerate in vitro endochondral ossification.

    PubMed

    Wang, Jue; Tang, Na; Xiao, Qiang; Zhang, Li; Li, Yu; Li, Juan; Wang, Jun; Zhao, Zhihe; Tan, Lijun

    2015-01-01

    Recapitulation of embryonic endochondral bone formation is a promising alternative approach to bone tissue engineering. However, the time-consuming process is one of the reasons the approach is unpractical. Here, we aimed at accelerating the in vitro endochondral ossification process of tissue engineering by using a pulsed electromagnetic field (PEMF). The rat bone marrow-derived stem cells were chondrogenic or hypertrophic differentiated in a three-dimensional pellet culture system, and treated with different intensities of PEMF (1, 2, and 5 mT with modulation frequency 750 Hz, carrier frequency 75 Hz and a duty ratio of 0.8, 3 h/day for 4 weeks). The effects of PEMF on hypertrophy and endochondral ossification were assessed by safranin O staining, immunohistochemistry, and quantitative real-time polymerase chain reaction. The results suggest that PEMF at 1, 2, and 5 mT may inhibit the maintenance of the cartilaginous phenotype and increase cartilage-specific extracellular matrix degradation in the late stage of chondrogenic differentiation. In addition, among the three different intensities, only PEMF at 1 mT directed the differentiation of chondrogenic-induced stem cell pellets to the hypertrophic stage and promoted osteogenic differentiation. Our findings provide the feasibility to optimize the process of in vitro endochondral ossification with PEMF stimulation. PMID:25358461

  7. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  8. Interactive Visualization of Rotational Symmetry Fields on Surfaces.

    PubMed

    Palacios, Jonathan; Zhang, Eugene

    2011-07-01

    Rotational symmetries (RoSys) have found uses in several computer graphics applications, such as global surface parameterization, geometry remeshing, texture and geometry synthesis, and nonphotorealistic visualization of surfaces. The visualization of N-way rotational symmetry (N-RoSy) fields is a challenging problem due to the ambiguities in the N directions represented by an N-way symmetry. We provide an algorithm that allows faithful and interactive representation of N-RoSy fields in the plane and on surfaces, by adapting the well-known line integral convolution (LIC) technique from vector and second-order tensor fields. Our algorithm captures N directions associated with each point in a given field by decomposing the field into multiple different vector fields, generating LIC images of these fields, and then blending the results. To address the loss of contrast caused by the blending of images, we observe that the pixel values in LIC images closely approximate normally distributed random variables. This allows us to use concepts from probability theory to correct the loss of contrast without the need to perform any image analysis at each frame. PMID:20855918

  9. Phase-space representation and polarization domains of random electromagnetic fields.

    PubMed

    Castaneda, Roman; Betancur, Rafael; Herrera, Jorge; Carrasquilla, Juan

    2008-08-01

    The phase-space representation of stationary random electromagnetic fields is developed by using electromagnetic spatial coherence wavelets. The propagation of the field's power and states of spatial coherence and polarization results from correlations between the components of the field vectors at pairs of points in space. Polarization domains are theoretically predicted as the structure of the field polarization at the observation plane. In addition, the phase-space representation provides a generalization of the Poynting theorem. Theoretical predictions are examined by numerically simulating the Young experiment with electromagnetic waves. The experimental implementation of these results is a current subject of research. PMID:18670539

  10. The Dosimetric Impact of Prostate Rotations During Electromagnetically Guided External-Beam Radiation Therapy

    SciTech Connect

    Amro, Hanan; Hamstra, Daniel A.; Mcshan, Daniel L.; Sandler, Howard; Vineberg, Karen; Hadley, Scott; Litzenberg, Dale

    2013-01-01

    Purpose: To study the impact of daily rotations and translations of the prostate on dosimetric coverage during radiation therapy (RT). Methods and Materials: Real-time tracking data for 26 patients were obtained during RT. Intensity modulated radiation therapy plans meeting RTOG 0126 dosimetric criteria were created with 0-, 2-, 3-, and 5-mm planning target volume (PTV) margins. Daily translations and rotations were used to reconstruct prostate delivered dose from the planned dose. D{sub 95} and V{sub 79} were computed from the delivered dose to evaluate target coverage and the adequacy of PTV margins. Prostate equivalent rotation is a new metric introduced in this study to quantify prostate rotations by accounting for prostate shape and length of rotational lever arm. Results: Large variations in prostate delivered dose were seen among patients. Adequate target coverage was met in 39%, 65%, and 84% of the patients for plans with 2-, 3-, and 5-mm PTV margins, respectively. Although no correlations between prostate delivered dose and daily rotations were seen, the data showed a clear correlation with prostate equivalent rotation. Conclusions: Prostate rotations during RT could cause significant underdosing even if daily translations were managed. These rotations should be managed with rotational tolerances based on prostate equivalent rotations.

  11. OBLIQUELY ROTATING PULSARS: SCREENING OF THE INDUCTIVE ELECTRIC FIELD

    SciTech Connect

    Melrose, D. B.; Yuen Rai

    2012-02-01

    Pulsar electrodynamics has been built up by taking ingredients from two models, the vacuum-dipole model, which ignores the magnetosphere but includes the inductive electric field due to the obliquely rotating magnetic dipole, and the corotating-magnetosphere model, which neglects the vacuum inductive electric field and assumes a corotating magnetosphere. We argue that the inductive field can be neglected only if it is screened by a current, J{sub sc}, which we calculate for a rigidly rotating magnetosphere. Screening of the parallel component of the inductive field can be effective, but the perpendicular component cannot be screened in a pulsar magnetosphere. The incompletely screened inductive electric field has not been included in any model for a pulsar magnetosphere, and taking it into account has important implications. One effect is that it implies that the magnetosphere cannot be corotating, and we suggest that drift relative to corotation offers a natural explanation for the drifting of subpulses. A second effect is that this screening of the parallel inductive electric field must break down in the outer magnetosphere, and this offers a natural explanation for the acceleration of the electrons that produce pulsed gamma-ray emission.

  12. Suppressing Turbulence and Enhancing the Liquid Suspension Flow in Pipeline with Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Gu, G. Q.; Tao, R.

    2014-03-01

    Flows through pipes are the most common and important transportation of fluids. To enhance the flow output along pipeline, it requires reducing the fluid viscosity and suppressing turbulence simultaneously and effectively. Unfortunately, no method is currently available to accomplish both goals simultaneously. Fore example, heating reduces the fluid viscosity, but makes turbulence worse. Here we show that the symmetry breaking physics provides an efficient solution for this issue. When a strong electromagnetic field is applied in the flow direction in a small section of pipeline, the field polarizes and aggregates the particles suspended inside the base liquid into short chains along the flow direction. Such aggregation breaks the symmetry and makes the fluid viscosity anisotropic. Along the flow direction, the viscosity is significantly reduced; in the directions perpendicular to the flow, the viscosity is substantially increased. The turbulence is thus suppressed as all rotating motions and vertexes are suppressed. Only the flow along the pipeline is enhanced and the outflow is improved. The method is extremely energy efficient since it only aggregates the particles and does not heat the suspensions. Recent field tests on pipeline fully support the theoretical prediction.

  13. Spin-rotation couplings: spinning test particles and Dirac field

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Lusanna, Luca

    2008-06-01

    The hypothesis of coupling between spin and rotation introduced long ago by Mashhoon is examined in the context of “1 + 3” and “3 + 1” space-time splitting techniques, either in special or in general relativity. Its content is discussed in terms of classical (Mathisson-Papapetrou-Dixon-Souriou model) as well as quantum physics (Foldy-Wouthuysen transformation for the Dirac field in an external field), reviewing and discussing all the relevant theoretical literature concerning the existence of such effect. Some original contributions are also included.

  14. Stellar Rotation in the Orion Nebula Cluster Flanking Fields

    NASA Astrophysics Data System (ADS)

    Rebull, L.

    1999-12-01

    We present an optical study of four 45' x 45' fields centered 35' north, south, east, and west of the Orion Nebula Cluster center. We have measured V and I C photometry for 5000 stars in three of these fields, and U photometry for 1600 of those. We have obtained spectral classifications for 300 of the stars with UVI C photometry plus an additional 200 stars located outside the area of our photometric survey. Based on these data, we find 230 active accretion disk candidates. We have also obtained time-series data for stars in each of these four fields, and 300 periods derived from these data will be presented and discussed. In recent months, several investigators have presented rotation rates for stars in the Trapezium and its immediate environs. The paradigm (e.g. Choi and Herbst 1996) until now has been that the slow rotators are still (magnetically) locked to their disks, and that the fast rotators have dissipated their disks sufficiently as to allow spinup. Herbst et al. (2000) claim they see a bimodal distribution of rotators in Orion; Stassun et al. (1999) claim not to see such a distribution in a very similar region, and in fact cast doubt on the bimodality of the original distribution. Different selection effects (as well as different numbers of stars) are likely to be affecting these conclusions; the addition of data presented here will clarify the issues. This research has made use of data taken at McDonald Observatory (by R. Makidon and M. Adams), data taken at the KPNO 0.9m (with B. Patten and C. Pavlovsky), data taken through the WIYN-Queue program, software written by B. Patten, and partial funding via NASA Origins Grants (L. Hillenbrand and S. Strom).

  15. The Dirac equation in an external electromagnetic field: symmetry algebra and exact integration

    NASA Astrophysics Data System (ADS)

    Breev, A. I.; Shapovalov, A. V.

    2016-01-01

    Integration of the Dirac equation with an external electromagnetic field is explored in the framework of the method of separation of variables and of the method of noncommutative integration. We have found a new type of solutions that are not obtained by separation of variables for several external electromagnetic fields. We have considered an example of crossed electric and magnetic fields of a special type for which the Dirac equation admits a nonlocal symmetry operator.

  16. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    PubMed

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  17. Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields: A Content Analysis of British Newspaper Reports

    PubMed Central

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  18. Differential Rotation and Magnetic Field Generation in Giant Gas Planets

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G. A.

    2012-12-01

    Observations of the zonal winds and magnetic fields on the surfaces of giant planets like Jupiter and Saturn beg the questions of what flows and fields exist well below their surfaces and how they are maintained. In roughly four years, NASA's Juno mission to Jupiter and the Cassini Solstice mission at Saturn will provide near-surface measurements of the magnetic fields of these giant planets that will help to answer these questions. Until then, theoretical models and computer simulations continue to provide predictions for what the NASA missions at Jupiter and Saturn will discover. A major question is how deep below the surface do the latitudinally-banded zonal winds extend, i.e., what is the subsurface differential rotation. If the zonal winds are maintained only within the shallow Jovian atmosphere, they should play no significant role in the dynamo mechanism because the dynamo operates well below the surface where the electrical conductivity is high. On the other hand, latitudinally banded magnetic field structures measured by Juno at Jupiter and Cassini at Saturn would support the prediction that the zonal winds on these giant planets extend deep below their surfaces. Computer simulations of convective dynamos with electrical conductivity increasing by several orders of magnitude with depth are presented. Examples are shown of how the magnetic field structures, for different simulated patterns of differential rotation, would appear as a function of the eccentric orbital radius of the spacecraft.

  19. Effect of electric-field fluctuations on rotational revival amplitudes

    NASA Astrophysics Data System (ADS)

    Pearson, Andrew J.; Antonsen, Thomas M.

    2009-11-01

    We study numerically the behavior of rotational revivals in a molecular gas when subject to the fluctuating electric field of a background plasma. We model a molecule using a rigid rotor Hamiltonian and couple it to an electric field using permanent and induced multipole interaction terms. The evolution of the density matrix for the molecule is calculated for a short intense laser pulse, followed by a fluctuating background electric field. A broad superposition of angular momentum eigenstates of a molecule is created by the laser field, and the result of an ensemble average over initial molecular orientation is a set of recurring peaks in the probability density for observing a particular orientation—the so-called “rotational revivals.” The fluctuating background field is created using the dressed particle technique, and the result is a loss of coherence between the phases of the various basis states of the molecule, which causes a decreasing amplitude for subsequent alignment peaks. Modern short-pulse lasers operate with sufficient intensity to make this effect relevant to experiments in molecular alignment.

  20. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    SciTech Connect

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  1. More on the covariant retarded Green's function for the electromagnetic field in de Sitter spacetime

    SciTech Connect

    Higuchi, Atsushi; Lee, Yen Cheong; Nicholas, Jack R.

    2009-11-15

    In a recent paper 2 it was shown in examples that the covariant retarded Green's functions in certain gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of Ref. 2 concerning the electromagnetic field and show that the covariant retarded Green's function with an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges at antipodal points of de Sitter spacetime.

  2. Dynamic model for electromagnetic field and heating patterns in loaded cylindrical cavities

    SciTech Connect

    Tian, Y.L.; Black, W.M.; Sa`adaldin, H.S.; Ahmad, I.; Silberglitt, R.

    1995-07-01

    An analytical solution for the electromagnetic fields in a cylindrical cavity, partially filled with a cylindrical dielectric has been recently reported. A program based on this solution has been developed and combined with the authors` previous program for heat transfer analysis. The new software has been used to simulate the dynamic temperature profiles of microwave heating and to investigate the role of electromagnetic field in heating uniformity and stability. The effects of cavity mode, cavity dimension, the dielectric properties of loads on electromagnetic field and heating patterns can be predicted using this software.

  3. Impact of Low Frequency Electromagnetic Field Exposure on the Candida Albicans

    NASA Astrophysics Data System (ADS)

    Malíková, Ivona; Janoušek, Ladislav; Fantova, Vladyslava; Jíra, Jaroslav; Kříha, Vítĕzslav

    2015-03-01

    Effect of low frequency electromagnetic field on growth of selected microorganism is studied in the article. The diploid fungus that grows both as yeast and filamentous cell was chosen for this research. The theory of ion parametric resonance was taken as the base for studying the influence of electromagnetic field on biological structures. We tested the hypothesis, whether it is possible to observe the change in growth properties of Candida albicans with an AC electromagnetic field tuned to resonance with calcium ions cyclotron frequency.

  4. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    NASA Astrophysics Data System (ADS)

    Cadena, M. S. Reyes; Chapul, L. Sánchez; Pérez, Javiér; García, M. N. Jiménez; López, M. A. Jiménez; Espíndola, M. E. Sánchez; Perez, R. Paniagua; Hernández, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodríguez

    2008-08-01

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-β) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  5. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation.

    PubMed

    Zhang, Enming; Kircher, Moritz F; Koch, Martin; Eliasson, Lena; Goldberg, S Nahum; Renström, Erik

    2014-04-22

    The ability to control the movement of nanoparticles remotely and with high precision would have far-reaching implications in many areas of nanotechnology. We have designed a unique dynamic magnetic field (DMF) generator that can induce rotational movements of superparamagnetic iron oxide nanoparticles (SPIONs). We examined whether the rotational nanoparticle movement could be used for remote induction of cell death by injuring lysosomal membrane structures. We further hypothesized that the shear forces created by the generation of oscillatory torques (incomplete rotation) of SPIONs bound to lysosomal membranes would cause membrane permeabilization, lead to extravasation of lysosomal contents into the cytoplasm, and induce apoptosis. To this end, we covalently conjugated SPIONs with antibodies targeting the lysosomal protein marker LAMP1 (LAMP1-SPION). Remote activation of slow rotation of LAMP1-SPIONs significantly improved the efficacy of cellular internalization of the nanoparticles. LAMP1-SPIONs then preferentially accumulated along the membrane in lysosomes in both rat insulinoma tumor cells and human pancreatic beta cells due to binding of LAMP1-SPIONs to endogenous LAMP1. Further activation of torques by the LAMP1-SPIONs bound to lysosomes resulted in rapid decrease in size and number of lysosomes, attributable to tearing of the lysosomal membrane by the shear force of the rotationally activated LAMP1-SPIONs. This remote activation resulted in an increased expression of early and late apoptotic markers and impaired cell growth. Our findings suggest that DMF treatment of lysosome-targeted nanoparticles offers a noninvasive tool to induce apoptosis remotely and could serve as an important platform technology for a wide range of biomedical applications. PMID:24597847

  6. Rotating sample magnetometer for cryogenic temperatures and high magnetic fields

    NASA Astrophysics Data System (ADS)

    Eisterer, M.; Hengstberger, F.; Voutsinas, C. S.; Hörhager, N.; Sorta, S.; Hecher, J.; Weber, H. W.

    2011-06-01

    We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert (VTI) of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer.

  7. Induction of tamoxifen resistance in breast cancer cells by ELF electromagnetic fields

    SciTech Connect

    Girgert, Rainer . E-mail: rainer.girgert@med.uni-goettingen.de; Schimming, Hartmut; Koerner, Wolfgang; Gruendker, Carsten; Hanf, Volker

    2005-11-04

    The incidence of breast cancer in western societies has been rising ever since the Second World War. Besides the exposure to a multitude of new chemical compounds, electromagnetic field exposure has been linked to breast cancer through a radiation-mediated anti-melatonin pathway. We investigated, whether low-frequency electromagnetic field exposure interferes with the anti-estrogenic activity of tamoxifen. Two different clones of the breast cancer cell line MCF-7 were exposed to highly homogeneous 50 Hz electromagnetic fields and IC{sub 50} values were calculated from dose-response curves of tamoxifen at various field intensities. An intensity-dependent shift of tamoxifen dose-response curves to higher concentrations with a maximal response at 1.2 {mu}T was observed. Hypothetically, electromagnetic field exposure could contribute to tamoxifen resistance observed in breast cancer after long-term treatment.

  8. Transitional and weakly turbulent flow in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Stiller, J.; Fraňa, K.; Cramer, A.

    2006-07-01

    The early stage of turbulent flow driven by a rotating magnetic field is studied via direct numerical simulations and electric potential measurements for the case of a cylindrical geometry. The numerical results show that the undisturbed flow remains stable up to the linear stability limit (Tac), whereas small perturbations may initiate a nonlinear transition at subcritical Taylor numbers. The observed instabilities occur randomly as isolated pairs of Taylor-Görtler vortices, which grow from spots to long tubes until they are dissipated in the lid boundary layers. At 7.5Tac, the flow is governed by large-scale three-dimensional fluctuations and may be characterized as weakly turbulent. Taylor-Görtler vortices provide the major turbulence mechanism, apart from oscillations of the rotation axis. As the vortices tend to align with the azimuthal direction, they result in a locally two-dimensional turbulence pattern.

  9. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  10. Rotating field antenna experiments in Phaedrus-B

    NASA Astrophysics Data System (ADS)

    Yasaka, Y.; Majeski, R.; Browning, J.; Hershkowitz, N.; Roberts, D.

    1987-09-01

    The rotating field antenna installed in the central cell of the Phaedrus-B tandem mirror consists of two close-spaced dual half-turn ICRF antennas. The symmetry axes of the antennas are rotated 90° with respect to each other. Each antenna is driven by a separate rf amplifier, with ≳200 KW power output. The polarization of the resultant antenna near fields is selected by the relative phasing of the antenna currents. In particular, the antenna set can produce nearly pure left or right circularly polarized fields. We find an increase in ion heating as the field polarization is varied from right circularly polarized through linear polarization to left circular polarization, for plasma densities up to 3-4×1012 cm-3, when the antenna set is driven at ω˜ωci (midplane). Ion temperature is diagnosed by a time of flight neutral energy analyzer. Results are compared to the predictions of the ICRF code ANTENA of Brian McVey.

  11. Rotation dependence of a phase delay between plasma edge electron density and temperature fields due to a fast rotating, resonant magnetic perturbation field

    SciTech Connect

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Unterberg, B.; Abdullaev, S. S.; Clever, M.; Coenen, J. W.; Kruezi, U.; Schega, D.; Samm, U.; Jakubowski, M. W.

    2010-06-15

    Measurements of the plasma edge electron density n{sub e} and temperature T{sub e} fields during application of a fast rotating, resonant magnetic perturbation (RMP) field show a characteristic modulation of both, n{sub e} and T{sub e} coherent to the rotation frequency of the RMP field. A phase delay PHI between the n{sub e}(t) and T{sub e}(t) waveforms is observed and it is demonstrated that this phase delay PHI is a function of the radius with PHI(r) depending on the relative rotation of the RMP field and the toroidal plasma rotation. This provides for the first time direct experimental evidence for a rotation dependent damping of the external RMP field in the edge layer of a resistive high-temperature plasma which breaks down at low rotation and high resonant field amplitudes.

  12. Nanoparticle Interactions with Low-Frequency Electromagnetic Fields for Ablation Therapy

    NASA Astrophysics Data System (ADS)

    Jensen, Scott; Doyle, Timothy

    2009-10-01

    The in vivo ablation of malignant tumors can be significantly enhanced with nanoparticles (NPs) that absorb energy from electromagnetic (EM) waves and subsequently heat targeted regions in the body. Low-frequency EM fields can penetrate much deeper than near-infrared and visible light. Ohmic heating has primarily been the sole mechanism considered for the coupling of the EM fields to the NPs, but few quantitative analyses have been published to predict NP heating rates. To address this issue, this study identified and modeled four excitation mechanisms for the remote heating of NPs by low-frequency EM waves. These mechanisms included (1) ohmic heating of conductive NPs, (2) translational vibrations of charged NPs, (3) rotational vibrations of piezoelectric NPs, and (4) acoustic wave generation by piezoelectric NPs. Preliminary results showed that for a constant NP volume, the heating rate is independent of NP size for ohmic heating. Additionally, ohmic heating produced the lowest heating rates of the four mechanisms. These results point to possible new NP technologies to optimize heating rates and tumor ablation in patients.

  13. Pitch Angle Scattering of Energetic Particles by Waves Generated from a Rotating Magnetic Field Source

    NASA Astrophysics Data System (ADS)

    Shao, X.; Karavaev, A. V.; Sharma, A. S.; Papadopoulos, K.; Gumerov, N.; Gigliotti, A. F.; Gekelman, W. N.

    2009-12-01

    Injection of whistler waves into Earth's inner radiation belt to enhance precipitation of energetic electrons has been an active research area, and is referred to as RB Remediation (RBR). Most mechanisms of pitch angle scattering of energetic particles are based on gyro-resonant wave-particle interaction. Recent experiments and simulations show that Rotating Magnetic Field (RMF) antennas in plasmas can be efficient radiation sources of MHD and whistler waves. In experiments conducted in the Large Plasma Device (LAPD) at UCLA, poly-phased current loops drove the RMF antenna. These experiments, as well as simulations show that 75-85% of the radiation generated by the RMF antenna is in guided propagation. The whistler and MHD waves have non-local magnetic field gradients in the transverse direction and these provide ways to break the adiabatic invariants of electrons and precipitate them via a non-resonant scattering. In this paper simulations of non-resonant pitch angle scattering of energetic particles by waves generated by RMF sources are presented. Three-dimensional EMHD simulations are used to model whistlers and the resultant 3D electromagnetic fields are used in particle tracing codes to study pitch angle scattering. The simulations are carried out for a wide range of magnetic fields produced by RMF sources, including fields much larger than the ambient magnetic field in space plasma environments. This work was sponsored by ONR MURI Grant 5-28828

  14. Nucleon electromagnetic form factors on the lattice and in chiral effective field theory

    SciTech Connect

    Goeckeler, M.; Hemmert, T.R.; Horsley, R.; Pleiter, D.; Rakow, P.E.L.; Schaefer, A.; Schierholz, G.

    2005-02-01

    We compute the electromagnetic form factors of the nucleon in quenched lattice QCD, using nonperturbatively improved Wilson fermions, and compare the results with phenomenology and chiral effective field theory.

  15. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  16. How good a clock is rotation? The stellar rotation-mass-age relationship for old field stars

    SciTech Connect

    Epstein, Courtney R.; Pinsonneault, Marc H. E-mail: pinsono@astronomy.ohio-state.edu

    2014-01-10

    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30% level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 M {sub ☉}. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and α Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ∼2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 M {sub ☉} stars.

  17. Rotating and binary relativistic stars with magnetic field

    NASA Astrophysics Data System (ADS)

    Markakis, Charalampos

    We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry

  18. Growth and Transverse Field Muon Spin Rotation of Cobalt Niobate

    NASA Astrophysics Data System (ADS)

    Munsie, Timothy; Millington, Anna; Marjerrison, Casey; Medina, Teresa; Wilson, Murray; Kermarrec, Edwin; Liu, Lian; Dabkowska, Hanna; Uemura, Yasutomo; Williams, Travis; Luke, Graeme

    2014-03-01

    Cobalt niobate, CoNb2O6, is a material whose spins, when in a transverse field, act like the theoretical ideal 1D-Ising model. This occurs due to the magnetic spins aligning highly anisotropically along the Co2+ chains. Because of this unique structure and material performance, the creation and characterization of this material is of both experimental and theoretical interest. The research we will present is a detailing of changes in the characteristics of the growth of the material utilizing the optical floating zone crystal growth method compared to previous growth parameters and an examination of this material in a moderately high transverse field using the technique of muon spin rotation (μSR). We have determined that the quality of crystals created by the floating zone are highly dependent on the growth parameters utilized (original ceramic shape and rotation rate) and dictate the speed at which the growth can be performed. Transverse Field μSR shows a gradual but significant change to the magnetic structure of the material below 5 K. Second Affiliation: Brockhouse Institute for Materials Research.

  19. Chandrasekhar's relation and stellar rotation in the Kepler field

    SciTech Connect

    Silva, J. R. P.; Soares, B. B.; De Freitas, D. B. E-mail: brauliosoares@uern.br

    2014-11-20

    According to the statistical law of large numbers, the expected mean of identically distributed random variables of a sample tends toward the actual mean as the sample increases. Under this law, it is possible to test the Chandrasekhar's relation (CR), (V) = (π/4){sup –1}(Vsin i), using a large amount of Vsin i and V data from different samples of similar stars. In this context, we conducted a statistical test to check the consistency of the CR in the Kepler field. In order to achieve this, we use three large samples of V obtained from Kepler rotation periods and a homogeneous control sample of Vsin i to overcome the scarcity of Vsin i data for stars in the Kepler field. We used the bootstrap-resampling method to estimate the mean rotations ((V) and (Vsin i)) and their corresponding confidence intervals for the stars segregated by effective temperature. Then, we compared the estimated means to check the consistency of CR, and analyzed the influence of the uncertainties in radii measurements, and possible selection effects. We found that the CR with (sin i) = π/4 is consistent with the behavior of the (V) as a function of (Vsin i) for stars from the Kepler field as there is a very good agreement between such a relation and the data.

  20. Control of the frozen geometric quantum correlation by applying the time-dependent electromagnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Mei; Xu, Jing-Bo; Yu, You-Hong

    2016-04-01

    We investigate how the time-dependent electromagnetic field affects the sudden transitions of the geometric quantum correlation for two qubits each coupled to its own dissipative environment, and two qubits uniformly coupled to a common dissipative environment, respectively. It is shown that the sudden transitions of the geometric quantum correlation in both cases can be controlled by making use of time-dependent electromagnetic field and, in addition, the frozen time during which the geometric quantum correlation remains constant can be lengthened.

  1. Electromechanical effects on multilayered cells in nonuniform rotating fields

    NASA Astrophysics Data System (ADS)

    Sebastián, José Luis; Muñoz, Sagrario; Sancho, Miguel; Martínez, Genoveva; Álvarez, Gabriel

    2011-07-01

    We use the Maxwell stress tensor to calculate the dielectrophoretic force and electrorotational torque acting on a realistic four-shelled model of the yeast Saccharomyces cerevisiae in a nonuniform rotating electric field generated by four coplanar square electrodes. The comparison of these results with numerical calculations of the dipolar and quadrupolar contributions obtained from an integral equation for the polarization charge density shows the effect of the quadrupole contribution in the proximity of the electrode plane. We also show that under typical experimental conditions the substitution of the multilayered cell by an equivalent cell with homogeneous permittivity underestimates the quadrupole contribution to the force and torque by 1 order of magnitude.

  2. Spin in stationary gravitational fields and rotating frames

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2010-03-01

    A spin motion of particles in stationary spacetimes is investigated in the framework of the classical gravity and relativistic quantum mechanics. We bring the Dirac equation for relativistic particles in nonstatic spacetimes to the Hamiltonian form and perform the Foldy-Wouthuysen transformation. We show the importance of the choice of tetrads for description of spin dynamics in the classical gravity. We derive classical and quantum mechanical equations of motion of the spin for relativistic particles in stationary gravitational fields and rotating frames and establish the full agreement between the classical and quantum mechanical approaches.

  3. Amyotrophic lateral sclerosis and occupational exposure to electromagnetic fields

    SciTech Connect

    Davanipour, Z.; Sobel, E.; Bowman, J.D.; Qian, Z.; Will, A.D.

    1997-03-01

    In an hypothesis-generating case-control study of amyotrophic lateral sclerosis, lifetime occupational histories were obtained. The patients (n = 28) were clinic based. The occupational exposure of interest in this report is electromagnetic fields (EMFs). This is the first and so far the only exposure analyzed in this study. Occupational exposure up to 2 years prior to estimated disease symptom onset was used for construction of exposure indices for cases. Controls (n = 32) were blood and nonblood relatives of cases. Occupational exposure for controls was through the same age as exposure for the corresponding cases. Twenty (71%) cases and 28 (88%) controls had at least 20 years of work experience covering the exposure period. The occupational history and task data were used to classify blindly each occupation for each subject as having high, medium/high, medium, medium/low, or low EMF exposure, based primarily on data from an earlier and unrelated study designed to obtain occupational EMF exposure information on workers in ``electrical`` and ``nonelectrical`` jobs. By using the length of time each subject spent in each occupation through the exposure period, two indices of exposure were constructed: total occupational exposure (E{sub 1}) and average occupational exposure (E{sub 2}). For cases and controls with at least 20 years of work experience, the odds ratio (OR) for exposure at the 75th percentile of the E{sub 1} case exposure data relative to minimum exposure was 7.5 (P < 0.02; 95% CI, 1.4--38.1) and the corresponding OR for E{sub 2} was 5.5 (P < 0.02; 95% CI, 1.3--22.5). For all cases and controls, the ORs were 2.5 (P < 0.1; 95% CI, 0.9--8.1) for E{sub 1} and 2.3 (P = 0.12; 95% CI, 0.8--6.6) for E{sub 2}. This study should be considered an hypothesis-generating study. Larger studies, using incident cases and improved exposure assessment, should be undertaken.

  4. Route to Topological Superconductivity via Magnetic Field Rotation.

    PubMed

    Loder, Florian; Kampf, Arno P; Kopp, Thilo

    2015-01-01

    The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H(c2), which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor. PMID:26477669

  5. Route to Topological Superconductivity via Magnetic Field Rotation

    PubMed Central

    Loder, Florian; Kampf, Arno P.; Kopp, Thilo

    2015-01-01

    The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field Hc2, which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor. PMID:26477669

  6. Comparison of potential field solutions for Carrington Rotation 2144

    NASA Astrophysics Data System (ADS)

    Hayashi, Keiji; Yang, Shangbin; Deng, Yuagyong

    2016-02-01

    We examined differences among the coronal magnetic field structures derived with the potential field source surface (PFSS) model for Carrington Rotation 2144, from 21 November to 19 December 2013. We used the synoptic maps of solar photospheric magnetic field from four observatories, the Huairou Solar Observing Station (HSOS), Global Oscillation Network Group (GONG), Helioseismic Magnetic Imager (HMI), and Wilcox Solar Observatory (WSO). We tested two smoothing methods, Gaussian and boxcar averaging, and correction of unbalanced net magnetic flux. The solutions of three-dimensional coronal magnetic field are significantly different each other. An open-field region derived with HSOS data agrees best with the corresponding coronal hole observed by Solar Dynamics Observatories/Atmospheric Imaging Assembly, while HMI data yielded best agreements with the near-Earth OMNI database. The GONG data overall gave agreements as good as the HMI. The PFSS calculations using WSO data were least sensitive to the choices we examined in this work. Differences in PFSS solutions using different choices and parameters in smoothing imply that the photospheric magnetic field distributions with size of several degrees at midlatitude and low-latitude regions can be decisive, at least, in the examined period. To better determine the global solar corona, therefore, further evaluation of influences from compact bipolar magnetic field is needed.

  7. Influence of electromagnetic field on soliton-mediated charge transport in biological systems.

    PubMed

    Brizhik, Larissa

    2015-01-01

    It is shown that electromagnetic fields affect dynamics of Davydov's solitons which provide charge transport processes in macromolecules during metabolism of the system. There is a resonant frequency of the field at which it can cause the transition of electrons from bound soliton states into delocalised states. Such decay of solitons reduces the effectiveness of charge transport, and, therefore, inhibits redox processes. Solitons radiate their own electromagnetic field of characteristic frequency determined by their average velocity. This self-radiated field leads to synchronization of soliton dynamics and charge transport processes, and is the source of the coherence in the system. Exposition of the system to the oscillating electromagnetic field of the frequency, which coincides with the eigen-frequency of solitons can enhance eigen-radiation of solitons, and, therefore, will enhance synchronization of charge transpor, stimulate the redox processes and increase coherence in the system. Electromagnetic oscillating field causes also ratchet phenomenon of solitons, i.e., drift of solitons in macromolecules in the presence of unbiased periodic field. Such additional drift enhances the charge transport processes. It is shown that temperature facilitates the ratchet drift. In particular, temperature fluctuations lead to the lowering of the critical value of the intensity and period of the field, above which the drift of solitons takes place. Moreover, there is a stochastic resonance in the soliton dynamics in external electromagnetic fields. This means, that there is some optimal temperature at which the drift of solitons is maximal. PMID:26098523

  8. Electromagnetic field expressions in the wavenumber domain from both the horizontal and vertical electric dipoles

    NASA Astrophysics Data System (ADS)

    Li, Yuguo; Li, Gang

    2016-08-01

    In this paper, we present wavenumber domain (WD) electromagnetic field expressions at any depth in a layered conductivity earth due to both the horizontal and vertical electric dipoles, which can be buried anywhere within the layered earth. In modeling controlled-source electromagnetic (CSEM) responses for a 2D conductivity structure with a 3D source, it is very common to separate electromagnetic fields into a primary field and a secondary field to avoid the source singularity. This secondary field scheme requires WD background fields at any depth for a layered conductivity structure. To obtain primary electromagnetic fields in the WD, one can calculate quasi-analytical primary fields in the space domain (SD) and then transform them into the WD. However, this SD method is not a very efficient method of calculation. With the use of Schelkunoff potentials, we derive the quasi-analytic expressions for the electromagnetic fields in the WD, i.e. the WD method. Numerical tests indicate that the WD method can give results with the same accuracy as the SD method, and furthermore, the WD method is much faster than the SD method.

  9. Static electric and electromagnetic low-frequency fields (biological effects and hygienic assessment)

    SciTech Connect

    Davydov, B.I.; Karpov, V.N.

    1982-11-01

    The literature data are used to analyze the hygienic situation when man is exposed to constant electrical and low frequency electromagnetic radiations. The spectral characteristics and intensities of electrical fields near and on the surface of the earth generated by natural sources of electromagnetic radiations (electrical quasi-static fields, atmospheric electricity, thunderstorm charges, electromagnetic radiation emitted by the Sun and galaxies) are given. They can be employed to determine man's adaptive capabilities to the frequencies described during acute and chronic irradiation. The mechanisms of biological effects of the exposures are discussed. The methods for calculating the safety levels based on the USSR radiation safety standards and the competing frequencies procedure proposed can be applied to the design of electrotechnical devices and evaluation of integral hazard of constant electrical and electromagnetic fields of low frequencies.

  10. Linking the momentum of the electromagnetic field to the associated photons

    NASA Astrophysics Data System (ADS)

    Jakoby, Bernhard

    2013-11-01

    Considering the total force on matter in a dynamic electromagnetic field yields that, in contrast to the static case, the rate of change of mechanical momentum is not directly related to the integration of the Maxwell stress tensor but an additional term occurs, which can be interpreted as the rate of change of ‘electromagnetic momentum’. For beginners, the latter concept is hard to grasp in terms of a field theory. However, the electromagnetic momentum can readily be interpreted as the momentum of the photons associated with the electromagnetic field as presented in this paper. Even though the notion of photons is not required or included in Maxwellian electrodynamics, this relation may help students to get a better grip on the interpretation of momentum conservation in electrodynamics.

  11. The flow field in a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2011-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engine. They potentially provide further gains than an intermittent or pulsed detonation-wave engine (PDE). However, significantly less work has been on this concept when compared to the PDE. In this talk, we present the detailed flow field in an idealized RDE, primarily consisting of two concentric cylinders. A premixed detonable mixture is injected into the annulus between the two concentric cylinders. Once a detonation is initiated, it keeps travelling around in the annulus as long as there is fresh detonable mixture ahead of it. Hence, the injection process is critically important to the stability and performance of the RDE. Furthermore, we show that the flow field is quite complex consisting of multiple shock waves and the outflow is primarily axial, although the detonation-wave is travelling around circumferentially. Sponsored by the NRL 6.1 Computational Physics Task Area.

  12. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  13. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    PubMed Central

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  14. Electromagnetic Near Field Measurements of Two Critical Assemblies

    SciTech Connect

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  15. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOEpatents

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  16. Realistic exact solution for the exterior field of a rotating neutron star

    SciTech Connect

    Pachon, Leonardo A.; Rueda, Jorge A.; Sanabria-Gomez, Jose D.

    2006-05-15

    A new six-parametric, axisymmetric, and asymptotically flat exact solution of Einstein-Maxwell field equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular momentum, mass-quadrupole moment, current octupole moment, electric charge, and magnetic dipole, so it can represent the exterior field of a rotating, deformed, magnetized, and charged object; some properties of the closed-form analytic solution such as its multipolar structure, electromagnetic fields, and singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical interior solutions representing neutron stars, calculated by Berti and Stergioulas [E. Berti and N. Stergioulas, Mon. Not. R. Astron. Soc. 350, 1416 (2004)], imposing that the multipole moments be the same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we present an extensive comparison of the radii of innermost stable circular orbits (ISCOs) obtained from the Berti and Stergioulas numerical solutions, the Kerr solution [R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963)], the Hartle and Thorne solution [J. B. Hartle and K. S. Thorne, Astrophys. J. 153, 807 (1968)], an analytic series expansion derived by Shibata and Sasaki [M. Shibata and M. Sasaki, Phys. Rev. D 58, 104011 (1998)], and our exact solution. We found that radii of ISCOs from our solution fits better than others with realistic numerical interior solutions.

  17. Growth of II-VI Solid Solutions in the Presence of a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Gillies, D. C; Motakef, S.; Dudley, M.; Matyi, R.; Volz, H.

    1999-01-01

    The application of a rotating magnetic field (RMF)in the frequency range 60-400 Hz and field strength of the order of 2-8 mT to crystal growth has received increasing attention in recent years. To take full advantage of the control of fluid flow by the forces applied by the field, the liquid column must be electrically conducting. Also, the application of RMF to the directional solidification of a column of liquid can result in complete mixing in the resultant solid. Thus, the technique of RMF is suited to solvent zones and float zones where the composition of the liquid is more readily controlled. In the work we report on, numerical modeling has been applied to II-VI systems, particularly tellurium based traveling heater techniques (THM). Results for a spectrum of field strengths and acceleration levels will be presented. These show clearly the effects of competing buoyancy forces and electromagnetic stirring. Crystals of cadmium zinc telluride and mercury cadmium telluride have been grown terrestrially from a tellurium solvent zone. The effects of the RMF during these experiments will be demonstrated with micrographs showing etch pits, white beam x-ray synchrotron topographs and triple axis x-ray diffraction.

  18. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review.

    PubMed

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions. PMID:27275776

  19. Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  20. Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media

    SciTech Connect

    Tong Zhisong; Korotkova, Olga

    2010-09-15

    The theory of scattering of scalar stochastic fields from deterministic and random media is generalized to the electromagnetic domain under the first-order Born approximation. The analysis allows for determining the changes in spectrum, coherence, and polarization of electromagnetic fields produced on their propagation from the source to the scattering volume, interaction with the scatterer, and propagation from the scatterer to the far field. An example of scattering of a field produced by a {delta}-correlated partially polarized source and scattered from a {delta}-correlated medium is provided.

  1. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  2. Characterization of magnetic field profiles at RFX-mod by Faraday rotation measurements

    NASA Astrophysics Data System (ADS)

    Auriemma, Fulvio; Brombin, Matteo; Canton, Alessandra; Giudicotti, Leonardo; Innocente, Paolo; Zilli, Enrico

    2009-11-01

    A multichannel far-infrared (FIR, λ=118.8 μm) polarimeter has been recently upgraded and re-installed on RFX-mod to measure the Faraday rotation angle along five vertical chords. Polarimetric data, associated with electron density profile, allow the reconstruction of the poloidal magnetic field profile. In this work the setup of the diagnostic is presented and the first Faraday rotation measurements are analyzed. The measurements have been performed at plasma current above 1.2 MA and electron density between 2 and 6x10^19 m-3. The actual S/N ratio is slightly lower than the expected one, due to electromagnetic coupling of the detectors with the saddle coils close to the polarimeter position. Due to this limit, only average information in the flat-top phase of the discharge could be so far obtained. The experimental data have been compared with the result of the μ&p equilibrium model [1], showing a good agreement between experiment and model, whereas the main differences are in the external region of the plasma. A different parameterization of the μ=μ0 J.B/B^2 profile has been proposed to enhance the agreement between model and experiment. [0pt] [1] Ortolani and Snack, World Scientific (1993) Singapore

  3. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.; Gillies, D. C.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time- independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  4. Magnetic Field Effect on the Stability of Flow Induced by a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Gillies, D. C.; Volz, M. P.

    1999-01-01

    A linear stability analysis has been performed for the flow induced by a rotating magnetic field in a cylindrical column filled with electrically conducting fluid. The first transition is time-independent and results in the generation of Taylor vortices. The critical value of the magnetic Taylor number has been examined as a function of the strength of the transverse rotating magnetic field, the strength of an axial static magnetic field, and thermal buoyancy. Increasing the transverse field increases the critical magnetic Taylor number and decreases the aspect ratio of the Taylor vortices at the onset of instability. An increase in the axial magnetic field also increases the critical magnetic Taylor number but increases the aspect ratio of the Taylor vortices. Thermal buoyancy is found to have only a negligible effect on the onset of instability.

  5. Neutrino spin dynamics in dense matter and electromagnetic field

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.

    2008-11-01

    We discuss behavior of massive Dirac neutrino with anomalous magnetic moment propagating through dense magnetized matter on the basis of the obtained solutions of the Dirac-Pauli equation. This system of solutions demonstrates spin rotating properties and represents pure neutrino states.

  6. Rotational Resonance in milli-tesla fields detected by Field Cycling NMR.

    PubMed

    Reutter, S; Privalov, A; Buntkowsky, G; Fujara, F

    2012-02-01

    Rotational Resonance (R(2)) between different spin Zeeman levels in samples of adamantane C(10)H(16) (homonuclear R(2)) and a mixture of C(10)H(16) and C(10)D(16) (both homonuclear and heteronuclear R(2)) has been studied. A Field Cycling NMR instrument was used to match the external field frequency ν(0) to a fixed frequency of sample rotation ν(r) at ν(r) = 40, 50 or 60 kHz. Rotational Resonance is observed at rational frequency ratios of ν(0)/ν(r), such as 12, 23, 32 and 1. The method may prove to become a useful tool for the determination of spin-spin distances in condensed matter. PMID:22239819

  7. Poloidal asymmetry in perpendicular plasma rotation and radial electric field measured with correlation reflectometry at TEXTOR

    SciTech Connect

    Soldatov, S.; Kramer-Flecken, A.; Wassenhove, G. Van

    2008-09-15

    Measurements of plasma rotation and electric field are crucial for the study of plasma confinement and transport. The present paper is devoted to experimental observations of poloidal asymmetry in perpendicular plasma rotation with correlation reflectometry on TEXTOR.

  8. Vibration of Induction Motor Rotor in Rotating Magnetic Field

    NASA Astrophysics Data System (ADS)

    Iwata, Yoshio; Sato, Hidenori; Komatsuzaki, Toshihiko; Saito, Takuhiro

    The rotor vibration of two-pole induction motor with rotating magnetic field has been investigated. The vibration is measured at any relative location of the stator and the rotor with various power supply frequencies in the experiment and is analyzed in consideration of mechanical factors of the rotor. The following conclusion is obtained through the experiment and the analysis; (1) 2ω vibration of twice the power supply frequency ω is generated because of offset between the stator center and the gyrational center of the rotor. (2) Two vibrations of ω(1-s) and ω(1+s) where s is slip ratio are generated because of the rotor unbalance or the disagreement between the gyrational center and geometrical center of the rotor. (3) An unstable vibration is predicted in the analysis when the power supply frequency is equal to natural frequency of the rotor, however, the unstable vibration was not generated in the experiment because of the damping.

  9. Interference effects in angular streaking with a rotating terahertz field

    NASA Astrophysics Data System (ADS)

    Kazansky, A. K.; Bozhevolnov, A. V.; Sazhina, I. P.; Kabachnik, N. M.

    2016-01-01

    A method of angular streaking with a rotating terahertz electric field for photoelectrons produced by femtosecond extreme ultraviolet pulses is suggested and theoretically analyzed. The method can be used for free electron laser (FEL) pulse characterization on a shot-to-shot basis. It is shown that in related measurements an interesting phenomenon appears: formation of very bright and sharp features in the angular resolved electron spectra measured in the plane perpendicular to the collinear beam direction. These features are similar to the conventional caustics in the wave propagation. The caustics are accompanied by a well-developed interference structure. The intensity distribution along the caustic is determined by the envelope of the FEL pulse.

  10. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  11. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  12. Rotating dipole and quadrupole field for a multiple cathode system

    SciTech Connect

    Chang, X.; Ben-Zvi, I.; Kewisch, J.; Litvinenko, V.; Meng, W.; Pikin, A.; Ptitsyn, V.; Rao, T.; Sheehy, B.; Skarita, J.; Wang, E.; Wu, Q.; Xin, T.

    2011-03-28

    A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC [1]. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented. The future eRHIC project, next upgrade of EHIC, will be the first electron-heavy ion collider in the world. For polarized-electron and polarized proton collisions, it requires a polarized electron source with high average current ({approx}50 mA), short bunch ({approx}3 mm), emittance of about 20 {micro}m and energy spread of {approx}1% at 10 MeV. The state-of-art polarized electron cathode can generate average current of about more than 1 mA, but much less than 50 mA. The current is limited by the quantum efficiency, lifetime, space charge and ultra-high vacuum requirement of the polarized cathode. A possible approach to achieve the 50 mA beam is to employ multiple cathodes, such as 20 cathodes, and combine the multiple bunched beams from cathodes to the same axis. We name it as 'Gatling gun' because its operations bear similarity to a multi-barrel Gatling gun. The electron spin direction is not affected by electric field but will follow to the direction of the magnetic bending. This requires that, to preserve the spin polarization from cathode, the fixed bending field after the solenoid and the rotating bending field in combiner must be either a pair of electric bendings or a pair of magnetic bendings. We choose the scheme with a pair of magnetic bendings because it is much easier than the scheme with a pair of electric bendings at our 200 keV electron energy level.

  13. Plane symmetric metrics associated with semi-plane symmetric electromagnetic fields in higher dimensions

    NASA Astrophysics Data System (ADS)

    Liang, Canbin; Tian, Guihua

    1994-11-01

    Electromagnetic fields yielding plane symmetric metrics in higher-dimensional spacetimes are exhausted and classified. It is shown that these EM fields must fall into one of the following two cases: (i)F it =F iz =0,i=1,...,n; (ii)Ftz=0. We give the general solution to the Einstein-Maxwell equations in higher dimensions corresponding to electromagnetic fields of case (ii) withF it =F iz , which covers all even-dimensional spacetimes as well as a subcase of odd-dimensional spacetimes.

  14. Quantum mechanical probability current as electromagnetic 4-current from topological EM fields

    NASA Astrophysics Data System (ADS)

    van der Mark, Martin B.

    2015-09-01

    Starting from a complex 4-potential A = αdβ we show that the 4-current density in electromagnetism and the probability current density in relativistic quantum mechanics are of identical form. With the Dirac-Clifford algebra Cl1,3 as mathematical basis, the given 4-potential allows topological solutions of the fields, quite similar to Bateman's construction, but with a double field solution that was overlooked previously. A more general nullvector condition is found and wave-functions of charged and neutral particles appear as topological configurations of the electromagnetic fields.

  15. Electrical engineers' perceptions on education - electromagnetic field theory and its connection to working life

    NASA Astrophysics Data System (ADS)

    Keltikangas, K.; Wallén, H.

    2010-10-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n=99 and n=120). The answers show a reasonably good satisfaction with the electrical engineering studies in general, but limited practical usefulness of the field theory courses in working life. However, both respondent groups mentioned that electromagnetic field theory should belong to the basic electrical engineering curriculum, which suggests a need to strengthen the connections between the different topics in the curriculum to enable a better holistic understanding of electrical engineering.

  16. Proton radiography as an electromagnetic field and density perturbation diagnostic (invited)

    SciTech Connect

    Mackinnon, A.J.; Patel, P.K.; Town, R.P.; Edwards, M.J.; Phillips, T.; Lerner, S.C.; Price, D.W.; Hicks, D.; Key, M.H.; Hatchett, S.; Wilks, S.C.; Borghesi, M.; Romagnani, L.; Kar, S.; Toncian, T.; Pretzler, G.; Willi, O.; Koenig, M.; Martinolli, E.; Lepape, S.

    2004-10-01

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with million electron volt protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter.

  17. The electromagnetic field in conductive slabs and cylinders submitted to a harmonic longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Íñiguez, J.; Raposo, V.; Zazo, M.; García-Flores, A.; Hernández-Gómez, P.

    2009-11-01

    The analysis of the induced current distribution in conducting wires subjected to a harmonic axial voltage is important in designing many electrical devices such as transformers and transmission lines. The azimuthal magnetic field induces axial electric currents and therefore the impedance of the wire depends on the excitation frequency. The current density is increasingly confined to a thin layer at the boundary of the wire as the frequency increases. To minimize this effect at higher frequencies it is necessary to enhance the surface-to-volume ratio by using thin high-conductivity wires. The study of induction phenomena in conducting samples subjected to a harmonic longitudinal magnetic field has attracted less attention. The time-varying magnetic flux induces eddy currents, which flow perpendicularly to the axis of the sample. We study the electromagnetic field in samples of simple geometry, making the usual approximations in good conductors. The validity of our calculations extends to several GHz and allows us to propose a method for determining the electrical conductivity by measuring the phase angle of the complex mutual inductance between a primary coil, responsible for the external magnetic field, and a secondary winding around the sample.

  18. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    SciTech Connect

    Yu, Haining; Du, Jiulin

    2014-11-15

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions.

  19. Rotation of solar magnetic fields for the current solar cycle 24

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2014-11-01

    The rotation of solar magnetic fields for the current solar cycle 24 is investigated through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields during Carrington rotation numbers 2076-2146 (2008 October to 2014 January). The sidereal rotation rates of positive and negative magnetic fields at some latitudes are shown, and it can be found that the positive (negative) fields generally rotate faster than the negative (positive) fields in the southern (northern) hemisphere at low latitudes. The mean rotation profiles of total, positive, and negative magnetic fields between ±60° latitudes in the time interval are also obtained. It should be noted that both of the mean rotation profiles of the positive and negative magnetic fields, as well as the mean rotation profile of the total magnetic field, exhibit a quasi-rigid rotation at latitudes above about 55°. The mean rotation rates of the positive (negative) polarity reach their maximum values at about 9°(6)° latitude in the southern (northern) hemisphere. The mean rotation profile of the total magnetic field displays an obvious north-south asymmetry, where the rotation seems to be more differential in the northern hemisphere. The latitude variation in the rotation rate differences between positive and negative magnetic fields is further studied, and it is found that magnetic fields with the same polarity as the leading sunspots at a given hemisphere rotate faster than those with the opposite polarity, except for the zones around 52° latitude of the southern hemisphere and around 35° latitude of the northern hemisphere. The implication of these results is discussed. It is clear that the obtained results can provide some observational constraints on the theoretical research of the mechanisms of differential rotation and solar cycle.

  20. New insights into rotating frame relaxation at high field.

    PubMed

    Spear, John T; Gore, John C

    2016-09-01

    Measurements of spin-lock relaxation rates in the rotating frame (R1ρ ) at high magnetic fields afford the ability to probe not only relatively slow molecular motions, but also other dynamic processes, such as chemical exchange and diffusion. In particular, measurements of the variation (or dispersion) of R1ρ with locking field allow the derivation of quantitative parameters that describe these processes. Measurements in deuterated solutions demonstrate the manner and degree to which exchange dominates relaxation at high fields (4.7 T, 7 T) in simple solutions, whereas temperature and pH are shown to be very influential factors affecting the rates of proton exchange. Simulations and experiments show that multiple exchanging pools of protons in realistic tissues can be assumed to behave independently of each other. R1ρ measurements can be combined to derive an exchange rate contrast (ERC) that produces images whose intensities emphasize protons with specific exchange rates rather than chemical shifts. In addition, water diffusion in the presence of intrinsic susceptibility gradients may produce significant effects on R1ρ dispersions at high fields. The exchange and diffusion effects act independently of each other, as confirmed by simulation and experimentally in studies of red blood cells at different levels of oxygenation. Collectively, R1ρ measurements provide an ability to quantify exchange processes, to provide images that depict protons with specific exchange rates and to describe the microstructure of tissues containing magnetic inhomogeneities. As such, they complement traditional T1 or T2 measurements and provide additional insights from measurements of R1ρ at a single locking field. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26866422

  1. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    ERIC Educational Resources Information Center

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  2. FAST TRACK COMMUNICATION: Free form of the Foldy-Wouthuysen transformation in external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Murguía, Gabriela; Raya, Alfredo

    2010-10-01

    We derive the exact Foldy-Wouthuysen transformation for Dirac fermions in a time-independent external electromagnetic field in the basis of the Ritus eigenfunctions, namely the eigenfunctions of the operator (γ sdot Π)2, with Πμ = pμ - eAμ. On this basis, the transformation acquires a free form involving the dynamical quantum numbers induced by the field.

  3. Dynamical localization of Dirac particles in electromagnetic fields with dominating magnetic potentials

    NASA Astrophysics Data System (ADS)

    Barbaroux, Jean-Marie; Mehringer, Josef; Stockmeyer, Edgardo; Taarabt, Amal

    2016-04-01

    We consider two-dimensional massless Dirac operators in a radially symmetric electromagnetic field. In this case the fields may be described by one-dimensional electric and magnetic potentials V and A. We show dynamical localization in the regime when lim r → ∞ ⁡ | V | / | A | < 1, where dense point spectrum occurs.

  4. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  5. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOEpatents

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  6. Experimental research in aerodynamic control with electric and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Braun, E. M.; Lu, F. K.; Wilson, D. R.

    2009-01-01

    Fifty years ago, publications began to discuss the possibilities of electromagnetic flow control (EMFC) to improve aerodynamic performance. This led to an era of research that focused on coupling the fundamentals of magnetohydrodynamics (MHD) with propulsion, control, and power generation systems. Unfortunately, very few designs made it past an exploratory phase as, among other issues, power consumption was unreasonably high. Recent proposed advancements in technology like the MARIAH hypersonic wind tunnel and the AJAX scramjet engine concepts have led to a new phase of MHD research in the aerospace industry, with many interdisciplinary applications. Compared with propulsion systems and channel flow accelerators, EMFC concepts applied to control surface aerodynamics have not seen the same level of advancement that may eventually produce a device that can be integrated with an aircraft or missile. The purpose of this paper is to review the overall feasibility of the different electric and EMFC concepts. Emphasis is placed on EMFC with high voltage ionization sources and experimental work.

  7. Lossy chaotic electromagnetic reverberation chambers: Universal statistical behavior of the vectorial field.

    PubMed

    Gros, J-B; Kuhl, U; Legrand, O; Mortessagne, F

    2016-03-01

    The effective Hamiltonian formalism is extended to vectorial electromagnetic waves in order to describe statistical properties of the field in reverberation chambers. The latter are commonly used in electromagnetic compatibility tests. As a first step, the distribution of wave intensities in chaotic systems with varying opening in the weak coupling limit for scalar quantum waves is derived by means of random matrix theory. In this limit the only parameters are the modal overlap and the number of open channels. Using the extended effective Hamiltonian, we describe the intensity statistics of the vectorial electromagnetic eigenmodes of lossy reverberation chambers. Finally, the typical quantity of interest in such chambers, namely, the distribution of the electromagnetic response, is discussed. By determining the distribution of the phase rigidity, describing the coupling to the environment, using random matrix numerical data, we find good agreement between the theoretical prediction and numerical calculations of the response. PMID:27078293

  8. Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muiznieks, A.; Buligins, L.; Raming, G.; Mühlbauer, A.; Lüdge, A.; Riemann, H.

    2000-06-01

    Three-dimensional numerical modelling is carried out to analyse the floating zone crystal growth with the needle-eye technique used for the production of high-quality silicon single crystals with large diameters ( ⩾100 mm ). Since the pancake inductor has only one turn, the EM field and the distribution of heat sources and EM forces are only roughly axisymmetric. The non-symmetry together with crystal rotation reflects itself on the hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. The non-symmetric high-frequency electromagnetic field of the pancake inductor is calculated by boundary element method. The obtained non-symmetric power distribution on the free melt surface and the corresponding EM forces are used for the coupled calculation of the 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with control volume approach. The buoyancy, Marangoni and EM forces are considered. The afterwards calculated corresponding 3D dopant concentration field is used to derive the variations of resistivity in a longitudinal cut of the grown crystal. The results are compared with experimental measurements (photo-scanning method) and with results of 2D transient flow calculations. Rotational striations are found in both 3D-calculated and experimental resistivity distributions and show a qualitative agreement. A Fourier analysis for the resistivity variations is performed and the observed differences are explained by modelling limitations.

  9. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect

    Mosher, J.C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  10. Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings

    SciTech Connect

    Tan, Wei; Sun, Yong; Chen, Hong; Wang, Zhi-Guo

    2014-03-03

    A hybrid coupling model containing both near- and far-field couplings is developed for radiating two-resonator structures. We demonstrate that the near- and far-field couplings make distinguished contributions to electromagnetic responses. Compared to the classical electromagnetically induced transparency configurations, the presence of far-field coupling provides more flexibility in tuning lineshapes. Planar metamaterials composed of metal wires are designed based on this model, and various electromagnetic responses are experimentally observed.

  11. Analysis and simulation research of electromagnetic field model in resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xuan, Wenbo; Luo, Zhen; Li, Yang; Wang, Rui; Fan, Naifeng

    2010-12-01

    Resistance spot welding (RSW) has rarely been applied to the fields requiring high welding quality, as it is limited by the instability of welding quality and quality monitoring system. Inversion imaging of nugget is a new developing method of monitoring welding quality at this background. Before the inversion image, this paper does some researches on the electromagnetic forward problem by establishing the forward model and simulating its electromagnetic field. In order to verify the reliability of this model, this paper takes the magnetic field signals as example to carry out the spot welding experiments. By comparison, the data illustrates that this electromagnetic model is reliable within a certain distance range. Besides these, this paper also does some researches on the different patterns of Hall sensor array, in order to find the array pattern with smaller errors to carry out inversion imaging.

  12. Analysis and simulation research of electromagnetic field model in resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xuan, Wenbo; Luo, Zhen; Li, Yang; Wang, Rui; Fan, Naifeng

    2011-05-01

    Resistance spot welding (RSW) has rarely been applied to the fields requiring high welding quality, as it is limited by the instability of welding quality and quality monitoring system. Inversion imaging of nugget is a new developing method of monitoring welding quality at this background. Before the inversion image, this paper does some researches on the electromagnetic forward problem by establishing the forward model and simulating its electromagnetic field. In order to verify the reliability of this model, this paper takes the magnetic field signals as example to carry out the spot welding experiments. By comparison, the data illustrates that this electromagnetic model is reliable within a certain distance range. Besides these, this paper also does some researches on the different patterns of Hall sensor array, in order to find the array pattern with smaller errors to carry out inversion imaging.

  13. [Electromagnetic fields in hospitals: wireless-LAN as a risk factor?].

    PubMed

    Oertle, M; Lehmann, H; Fritschi, P; Müller, M; Berz, R

    2006-06-01

    The actual level of exposure to non-ionizing radiation in Swiss hospitals is not well known. Therefore, the electromagnetic field of wireless LAN (WLAN) and other non-ionizing radiation sources in the publicly funded Hospital Thun (Switzerland), where WLAN supports bedside access to the computerized patient record for more than three years, has been measured. The results are compared to the international and national exposure limits for the general public. Nurse workplaces as well as patient rooms show exposure levels well below the legal (national and international) exposure limits. In the investigated patients' room the electromagnetic field of GSM and broadband cellular phone networks are dominant, whereas at the nurse workplace WLAN exposure is the most important source of exposure. The results of a questionnaire survey emphasize, that the hospital staff does not worry much about electromagnetic fields of new ICT technologies. PMID:16783890

  14. Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry.

    PubMed

    Kibis, O V; Slepyan, G Ya; Maksimenko, S A; Hoffmann, A

    2009-01-16

    We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered light spectrum as well as an altered Rabi frequency are predicted to be inherent to such systems. In particular, dipole radiation at the Rabi frequency appears to be possible. Since the Rabi frequency is controlled by the strength of the coupling electromagnetic field, the effect can serve for the frequency-tuned parametric amplification and generation of electromagnetic waves. Manifestation of the effect is discussed for III-nitride quantum dots with strong built-in electric field breaking the inversion symmetry. Terahertz emission from arrays of such quantum dots is shown to be experimentally observable. PMID:19257272

  15. Evaluation of the electromagnetic field level emitted by medium frequency AM broadcast stations.

    PubMed

    Licitra, G; Bambini, S; Barellini, A; Monorchio, A; Rogovich, A

    2004-01-01

    In order to estimate the level of the electromagnetic field produced by telecommunication systems, different computational techniques can be employed whose complexity depends on the accuracy of the final results. In this paper, we present the validation of a code based on the method of moments that allows us to analyse the electromagnetic field emitted by radio-communication systems operating at medium frequencies. The method is able to provide an accurate estimate of the levels of electromagnetic field produced by this type of device and, consequently, it can be used as a method for verifying the compliance of the system with the safe exposure level regulations and population protection laws. Some numerical and experimental results are shown relevant to an amplitude modulated (AM) radio transmitter, together with the results of a forthcoming system that will be operative in the near future. PMID:15550708

  16. Separation of particles, suspended in a conducting liquid, with the help of an alternating electromagnetic field

    SciTech Connect

    Korovin, V.M.

    1986-01-01

    The author studies MHD flow at low Reynolds numbers past a spherical particle with conductivity ..cap alpha../sub 1/ greater than or equal to0, moving in a viscous fluid at rest with conductivity ..cap alpha../sub 2/ not = ..cap alpha../sub 1/, filling the interior space of a long solenoid fed by an alternating current. It is shown that aside from the electromagnetic force calculated from the analog of Archimedes' principle, and from the Lorentz force arising from the interaction of eddy currents flowing in th particle with the magnetic field, the particle is also subjected to an electromagnetic propulsive force. A formula relating the local characteristics of the electromagnetic field with the velocity of the particle put into motion by the field but neglecting inertial effects is obtained.

  17. The effect of electromagnetic fields emitted by mobile phones on human sleep.

    PubMed

    Loughran, Sarah P; Wood, Andrew W; Barton, Julie M; Croft, Rodney J; Thompson, Bruce; Stough, Con

    2005-11-28

    Previous research has suggested that exposure to radiofrequency electromagnetic fields increases electroencephalogram spectral power in non-rapid eye movement sleep. Other sleep parameters have also been affected following exposure. We examined whether aspects of sleep architecture show sensitivity to electromagnetic fields emitted by digital mobile phone handsets. Fifty participants were exposed to electromagnetic fields for 30 min prior to sleep. Results showed a decrease in rapid eye movement sleep latency and increased electroencephalogram spectral power in the 11.5-12.25 Hz frequency range during the initial part of sleep following exposure. These results are evidence that mobile phone exposure prior to sleep may promote rapid eye movement sleep and modify the sleep electroencephalogram in the first non-rapid eye movement sleep period. PMID:16272890

  18. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    DOE PAGESBeta

    Tuchin, Kirill

    2013-01-01

    I reviewmore » the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~ m π 2 at RHIC and ~ 10 m π 2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J / ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.« less

  19. A study on the discrete image method for calculation of transient electromagnetic fields in geological media

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Xin; Pan, He-Ping; Luo, Miao

    2015-12-01

    We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement" method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drillhole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper

  20. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  1. Groundwater treatment in a field pilot methanotrophic rotating biological contactor

    SciTech Connect

    Belcher, D.M.; Vira, A.; Dooley, M.A.; Johnson, J.C.

    1995-12-31

    A pilot-scale rotating biological contactor (RBC) was operated under field conditions for approximately 1 month to remove chlorinated and nonchlorinated organic compounds from groundwater. Methanotrophic conditions were successfully established and maintained in the RBC during the field program. Results of the pilot program indicated that low concentrations of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride could be treated to below the maximum contaminant levels (MCLs) of 70 ad 2 {micro}g/L, respectively. Maximum removal rates for cis-DCE and vinyl chloride measured during the pilot study were 2.14 {micro}g cis-DCE/ft{sup 2} disc media-minute (952 {micro}g cis-DCE/mg volatile solids [VS]-day) and 0.3 {micro}g vinyl chloride/ft{sup 2}-minute (143 {micro}g vinyl chloride/mg VS-day), respectively. Chlorinated ethene removal efficiencies decreased after the first 2 weeks of operation. Low concentrations of toluene, ethylbenzene, and total xylenes (TEX) were effectively removed from groundwater throughout the course of the pilot study. The maximum observed TEX removal rate was 3.0 {micro}g TEX/ft{sup 2}-minute.

  2. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: a comparative study.

    PubMed

    Corallo, Claudio; Volpi, Nila; Franci, Daniela; Vannoni, Daniela; Leoncini, Roberto; Landi, Giacomo; Guarna, Massimo; Montella, Antonio; Albanese, Antonietta; Battisti, Emilio; Fioravanti, Antonella; Nuti, Ranuccio; Giordano, Nicola

    2013-06-01

    Osteoarthritis (OA) is the most common joint disease, characterized by matrix degradation and changes in chondrocyte morphology and metabolism. Literature reported that electromagnetic fields (EMFs) can produce benefits in OA patients, even if EMFs mechanism of action is debated. Human osteoarthritic chondrocytes isolated from femoral heads were cultured in vitro in bidimensional (2-D) flasks and in three-dimensional (3-D) alginate beads to mimic closely cartilage environment in vivo. Cells were exposed 30 min/day for 2 weeks to extremely low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic field (TAMMEF) with variable frequencies, intensities, and waveforms. Cell viability was measured at days 7 and 14, while healthy-cell density, heavily vacuolized (hv) cell density, and cluster density were measured by light microscopy only for 3-D cultures after treatments. Cell morphology was observed for 2-D and 3-D cultures by transmission electron microscopy (TEM). Chondrocyte exposure to TAMMEF enhances cell viability at days 7 and 14 compared to ELF. Light microscopy analysis showed that TAMMEF enhances healthy-cell density, reduces hv-cell density and clustering, compared to ELF. Furthermore, TEM analysis showed different morphology for 2-D (fibroblast-like) and 3-D (rounded shape) cultures, confirming light microscopy results. In conclusion, EMFs are effective and safe for OA chondrocytes. TAMMEF can positively interfere with OA chondrocytes representing an innovative non-pharmacological approach to treat OA. PMID:23263545

  3. [Patient exposure to electromagnetic fields in magnetic resonance scanners: a review].

    PubMed

    Guibelalde del Castillo, E

    2013-12-01

    The use of non-ionizing electromagnetic fields in the low frequency end of the electromagnetic spectrum and static fields, radiofrequencies (RF), and microwaves is fundamental both in modern communication systems and in diagnostic medical imaging techniques like magnetic resonance imaging (MRI). The proliferation of these applications in recent decades has led to intense activity in developing regulations to guarantee their safety and to the establishment of guidelines and legal recommendations for the public, workers, and patients. In April 2012 it was foreseen that the European Parliament and Council would approve and publish a directive on the minimum health and safety requirements regarding the exposure of workers to the risks arising from electromagnetic fields, which would modify Directive 2004/40/EC. New studies related to the exposure to electromagnetic radiation and its impact on health published in recent years have led to a new postponement, and it is now foreseen that the directive will come into effect in October 2013. One of the most noteworthy aspects of the new version of the directive is the exclusion of the limits of occupational exposure to electromagnetic fields in the clinical use of MRI. In exchange for this exception, physicians and experts in protection against non-ionizing radiation are asked to make additional efforts to train workers exposed to non-ionizing radiation and to establish mechanisms to guarantee the correct application of non-ionizing electromagnetic fields in patients, along similar lines to the principles of justification and optimization established for ionizing radiation. On the basis of the most recently published studies, this article reviews some safety-related aspects to take into account when examining patients with MRI with high magnetic fields. PMID:24246885

  4. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  5. Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field

    NASA Astrophysics Data System (ADS)

    Abanov, Alexander G.; Gromov, Andrey

    2014-07-01

    We compute electromagnetic, gravitational, and mixed linear response functions of two-dimensional free fermions in an external quantizing magnetic field at an integer filling factor. The results are presented in the form of the effective action and as an expansion of currents and stresses in wave vectors and frequencies of the probing electromagnetic and metric fields. In addition to the well-studied U (1) Chern-Simons and Wen-Zee terms we find a gravitational Chern-Simons term that controls the correction to the Hall viscosity due to the background curvature. We relate the coefficient in front of the term with the chiral central charge.

  6. Effects of Electromagnetic Fields in Spinal Muscular Atrophy: A Case Report

    NASA Astrophysics Data System (ADS)

    Cañedo, L.; Martínez-Mata, J.; Serrano-Luna, G.

    2004-09-01

    Spinal Muscular Atrophy Type I is a disease that rapidly progress to death in early infancy. A case report of a child with Werdnig-Hoffmann disease Type I that recovered at three years of age after two years exposure to electromagnetic fields (ELF) is presented. The child is now eleven years old and with the exception of slightly abnormal gait, the muscle mass of tights and gluteus, high, weight and his everyday activities correspond to those of a normal child his age. Hypothetical explanations for the effects of the electromagnetic fields are discussed.

  7. Tools and Setups for Experiments with AC and Rotating Magnetic Fields

    ERIC Educational Resources Information Center

    Ponikvar, D.

    2010-01-01

    A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several…

  8. Association between electromagnetic field exposure and abortion in pregnant women living in Tehran

    PubMed Central

    Abad, Masoumeh; Malekafzali, Hossein; Simbar, Masoumeh; Seyed Mosaavi, Hassan; Merghati Khoei, Effat

    2016-01-01

    Background: Health-related quality of life is affected by electromagnetic field exposure in each person everyday life. However, this is extremely controversial issue. Objective: Investigation of the associations between electromagnetic field exposure and miscarriage among women of Tehran. Materials and Methods: In this longitudinal study, 462 pregnant women with gestational age <12 wks from seven main regions of Tehran city in Iran with similar social and cultural status were participated. Women were interviewed face-to face to collect data. Reproductive information was collected using medical file recorded in those hospitals the subjects had delivery. The measuring device measured electromagnetic waves, Narda safety test solutions with valid calibration date at the entrance door of their houses. Results: A significant likelihood of miscarriage in women who exposed to significant level of electromagnetic wave. However, this association was not confirmed by Wald test. Conclusion: This study may not provide strong or consistent evidence that electromagnetic field exposure is associated or cause miscarriage. This issue may be due to small sample size in this study. PMID:27326421

  9. A study of solidification with a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Roplekar, Jayant K.

    Due to the drive for weight reduction in the automobile industry, near net shape parts produced by semi-solid processing of aluminum alloys are increasingly replacing traditional steel parts. Magnetohydrodynamic direct chill casting (MHD-DC) process, developed in the mid-eighties, is the method of choice to produce rheocast metal alloys for semi-solid applications. In spite of commercial applicability of the MHD-DC process there is no integrated process model available for this process. In the present work we use an experimental setup that combines directional solidification with magnetic stirring to develop a numerical model for the MHD-DC process. We use the finite element method to solve the coupled equations of turbulent fluid flow, species transport and heat transfer with solidification on a fixed grid. Effects of the rotating magnetic field are incorporated through a body-force term which is determined a priori based on a detailed analytical study and experimental data. Due to the nature of temperature-solute coupling and the advection dominated evolution of the liquid fraction, special numerical procedures had to be implemented in the present work. The numerical procedure used in the present work is validated against two validation problems. In the first validation problem, we apply the two-phase methodology to solve the classical problem of diffusion-dominated solidification. The good agreement between the finite element solution and the analytical solution establishes soundness of the two-phase formulation developed in this work. In the second validation problem, a finite element prediction of the flow induced in a cylindrical cavity due to a rotating magnetic field is compared with an independent spectral solution. The close agreement between two radically different solution procedures establishes the accuracy in the formulation and implementation of the both procedures. We then simulate the experiments using the numerical model. The numerical model

  10. Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field

    SciTech Connect

    Boychuk, A. N. Zakhlevnykh, A. N.; Makarov, D. V.

    2015-09-15

    The behavior of the orientational structure of a ferronematic in a rotating uniform magnetic field is investigated using the continual theory. The time-dependent system of equations describing the dynamics of the ferronematic is derived. The dependences of the angles of rotation of the director and of the magnetization of the ferronematic on the velocity of field rotation are determined for various values of the material parameters. Two regimes (synchronous and asynchronous) of rotation of the ferronematic structure are detected. In the synchronous regime, the director rotates with the frequency of the magnetic field and a constant phase delay. The asynchronous regime is characterized by a time-dependent phase delay. The dependence of the critical angular velocity of magnetic field rotation, which determines the boundary between the synchronous and asynchronous regimes, on the magnetic field strength is derived.

  11. Dynamics of disklike clusters formed in a magnetorheological fluid under a rotational magnetic field.

    PubMed

    Nagaoka, Yutaka; Morimoto, Hisao; Maekawa, Toru

    2005-03-01

    We investigate the cluster formations and dynamics in a magnetorheological fluid under a rotational magnetic field focusing on the case of a relatively high volume fraction. We find that isotropic disklike clusters, which rotate more slowly than the field rotation, are formed at low Mason numbers (the ratio of viscous to magnetic forces) and, what is more, we show short rod clusters, which rotate stably thanks to the low Mason numbers and circulate along the surface of the disklike clusters. The circulation velocity of the surface particles is much higher than the rotational surface velocity of the rigid disklike clusters. PMID:15903473

  12. IMMUNOLOGIC EFFECTS OF ELECTROMAGNETIC FIELDS (1981-1983)

    EPA Science Inventory

    In vitro studies provide evidence that support and EM field induced thermal mechanism for immune effects. When proper control of culture temperatures has been achieved during in vitro exposure to EM fields, no alterations have been observed for a variety of immune cell functions....

  13. Electromagnetic field of fractal distribution of charged particles

    SciTech Connect

    Tarasov, Vasily E.

    2005-08-15

    Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional integrals are used to describe fractal distribution. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of integral Maxwell equation, the simple examples of the fields of homogeneous fractal distribution are considered. The electric dipole and quadrupole moments for fractal distribution are derived.

  14. DiPerna-Lions Flow for Relativistic Particles in an Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Jabin, P.-E.; Masmoudi, N.

    2015-09-01

    We show the existence and uniqueness of a DiPerna-Lions flow for relativistic particles subject to a Lorentz force in an electromagnetic field. The electric and magnetic fields solve the linear Maxwell system in the vacuum but for singular initial conditions which are only in the physical energy space. As the corresponding force field is only in L 2, we have to perform a careful analysis of the cancellations over a trajectory.

  15. Instability of a liquid metal surface in an electromagnetic field and relevance to EMC

    SciTech Connect

    Kageyama, R.; Evans, J.W.

    1996-10-01

    In electromagnetic casting (EMC) the surface of the molten metal, at the solidification front around the periphery of the melt pool, is not confirmed by a solid mold (as in, say, direct chill casting) but is free to move. Consequently disturbances of the melt surface are reflected in defects (waviness) in the solid ingot. The present paper examines the dynamics of a liquid metal surface in an electromagnetic field comparable to that of EMC. Numerical calculations of the flow of metal and motion of the melt surface have been accompanied by laboratory experiments in which a laser vibrometer has been used to measure the oscillations of the free surface of a mercury pool. Surface oscillations growth with increasing electromagnetic field strength in both the computations and the experiment, probably originating from the turbulent flow in the melt. The implications for EMC are discussed.

  16. Possible action mechanism of the electromagnetic fields in the liver cancer development: A mathematical proposal

    NASA Astrophysics Data System (ADS)

    Jiménez-García, Mónica Noemí; Godina-Nava, Juan José

    2012-02-01

    Currently it is known that electromagnetic field exposure can induce biological changes, although the precise effects and action mechanism of the interaction between the electromagnetic field and biological systems are not well understood. In this work we propose a possible action mechanism, concerning the effect that the extremely low frequency electromagnetic field exposure has on the early stage of liver cancer development. The model is developed studying the phenomena called oxidative stress that it appears after it is applied a carcinogenic agent used to induce hepatic cancer chemically in an experimental animal model. This physical-chemical process involves the movement of magnetic field dependent free charged particles, called free radicals. We will consider the use of the radical pairs theory as a framework, in which we will describe the spin density operator evolution by implementing the stochastic Liouville equation with hyperfine interaction. This describes how the selectivity of the interaction between spin states of the free radicals with the applied electromagnetic field, influences the development of pre-neoplastic lesions in the liver. AIP Publishing is retracting this article due to the substantial use of content in the Results and Conclusions section without proper citation of a previously published paper in Chemical Physics Letters 361 (2012) 219-225. This article is retracted from the scientific record with effect from 15 October 2015.

  17. Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis

    NASA Astrophysics Data System (ADS)

    Kulak, Andrzej; Kubisz, Jerzy; Klucjasz, Slawomir; Michalec, Adam; Mlynarczyk, Janusz; Nieckarz, Zenon; Ostrowski, Michal; Zieba, Stanislaw

    2014-06-01

    We present the Hylaty geophysical station, a high-sensitivity and low-noise facility for extremely low frequency (ELF, 0.03-300 Hz) electromagnetic field measurements, which enables a variety of geophysical and climatological research related to atmospheric, ionospheric, magnetospheric, and space weather physics. The first systematic observations of ELF electromagnetic fields at the Jagiellonian University were undertaken in 1994. At the beginning the measurements were carried out sporadically, during expeditions to sparsely populated areas of the Bieszczady Mountains in the southeast of Poland. In 2004, an automatic Hylaty ELF station was built there, in a very low electromagnetic noise environment, which enabled continuous recording of the magnetic field components of the ELF electromagnetic field in the frequency range below 60 Hz. In 2013, after 8 years of successful operation, the station was upgraded by extending its frequency range up to 300 Hz. In this paper we show the station's technical setup, and how it has changed over the years. We discuss the design of ELF equipment, including antennas, receivers, the time control circuit, and power supply, as well as antenna and receiver calibration. We also discuss the methodology we developed for observations of the Schumann resonance and wideband observations of ELF field pulses. We provide examples of various kinds of signals recorded at the station.

  18. Microfabricated sensors for the measurement of electromagnetic fields in biological tissues

    NASA Astrophysics Data System (ADS)

    Monberg, James; Henning, Albert K.

    1995-09-01

    Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.

  19. Dynamic domain wall chirality rectification by rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Bisig, Andre; Mawass, Mohamad-Assaad; Stärk, Martin; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Gliga, Sebastian; Weigand, Markus; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2015-03-01

    We report on the observation of magnetic vortex domain wall chirality reversal in ferromagnetic rings that is controlled by the sense of rotation of a magnetic field. We use time-resolved X-ray microscopy to dynamically image the chirality-switching process and perform micromagnetic simulations to deduce the switching details from time-resolved snapshots. We find experimentally that the switching occurs within less than 4 ns and is observed in all samples with ring widths ranging from 0.5 μm to 2 μm, ring diameters between 2 μm and 5 μm, and a thickness of 30 nm, where a vortex domain wall is present in the magnetic onion state of the ring. From the magnetic contrast in the time-resolved images, we can identify effects of thermal activation, which plays a role for the switching process. Moreover, we find that the process is highly reproducible so that the domain wall chirality can be set with high fidelity.

  20. 3-D explosions: a meditation on rotation (and magnetic fields)

    NASA Astrophysics Data System (ADS)

    Wheeler, J. C.

    This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!

  1. Controlling electromagnetic fields at boundaries of arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  2. Laboratory and field testing of commercial rotational seismometers

    USGS Publications Warehouse

    Nigbor, R.L.; Evans, J.R.; Hutt, C.R.

    2009-01-01

    There are a small number of commercially available sensors to measure rotational motion in the frequency and amplitude ranges appropriate for earthquake motions on the ground and in structures. However, the performance of these rotational seismometers has not been rigorously and independently tested and characterized for earthquake monitoring purposes as is done for translational strong- and weak-motion seismometers. Quantities such as sensitivity, frequency response, resolution, and linearity are needed for the understanding of recorded rotational data. To address this need, we, with assistance from colleagues in the United States and Taiwan, have been developing performance test methodologies and equipment for rotational seismometers. In this article the performance testing methodologies are applied to samples of a commonly used commercial rotational seismometer, the eentec model R-1. Several examples were obtained for various test sequences in 2006, 2007, and 2008. Performance testing of these sensors consisted of measuring: (1) sensitivity and frequency response; (2) clip level; (3) self noise and resolution; and (4) cross-axis sensitivity, both rotational and translational. These sensor-specific results will assist in understanding the performance envelope of the R-1 rotational seismometer, and the test methodologies can be applied to other rotational seismometers.

  3. Linearity of the Faraday-rotation-type ac magnetic-field sensor with a ferrimagnetic or ferromagnetic rotator film

    NASA Astrophysics Data System (ADS)

    Mori, Hiroshi; Asahara, Yousuke

    1996-03-01

    We analyze the linearity and modulation depth of ac magnetic-field sensors or current sensors, using a ferrimagnetic or ferromagnetic film as the Faraday rotator and employing the detection of only the zeroth-order optical diffraction component from the rotator. It is theoretically shown that for this class of sensor the condition of a constant modulation depth and that of a constant ratio error give an identical series of curves for the relationship between Faraday rotation angle greater than or equals V and polarizer/analyzer relative angle Phi . We give some numerical examples to demonstrate the usefulness of the result with reference to a rare-earth iron garnet film as the rotator.

  4. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  5. Nonequilibrium electromagnetics: Local and macroscopic fields and constitutive relationships

    SciTech Connect

    Baker-Jarvis, James; Kabos, Pavel; Holloway, Christopher L.

    2004-09-01

    We study the electrodynamics of materials using a Liouville-Hamiltonian-based statistical-mechanical theory. Our goal is to develop electrodynamics from an ensemble-average viewpoint that is valid for microscopic and nonequilibrium systems at molecular to submolecular scales. This approach is not based on a Taylor series expansion of the charge density to obtain the multipoles. Instead, expressions of the molecular multipoles are used in an inverse problem to obtain the averaging statistical-density function that is used to obtain the macroscopic fields. The advantages of this method are that the averaging function is constructed in a self-consistent manner and the molecules can either be treated as point multipoles or contain more microstructure. Expressions for the local and macroscopic fields are obtained, and evolution equations for the constitutive parameters are developed. We derive equations for the local field as functions of the applied, polarization, magnetization, strain density, and macroscopic fields.

  6. A Set of Computer Projects for an Electromagnetic Fields Class.

    ERIC Educational Resources Information Center

    Gleeson, Ronald F.

    1989-01-01

    Presented are three computer projects: vector analysis, electric field intensities at various distances, and the Biot-Savart law. Programing suggestions and project results are provided. One month is suggested for each project. (MVL)

  7. Calculation of the electric field resulting from human body rotation in a magnetic field

    NASA Astrophysics Data System (ADS)

    Cobos Sánchez, Clemente; Glover, Paul; Power, Henry; Bowtell, Richard

    2012-08-01

    A number of recent studies have shown that the electric field and current density induced in the human body by movement in and around magnetic resonance imaging installations can exceed regulatory levels. Although it is possible to measure the induced electric fields at the surface of the body, it is usually more convenient to use numerical models to predict likely exposure under well-defined movement conditions. Whilst the accuracy of these models is not in doubt, this paper shows that modelling of particular rotational movements should be treated with care. In particular, we show that v  ×  B rather than -(v  ·  ∇)A should be used as the driving term in potential-based modelling of induced fields. Although for translational motion the two driving terms are equivalent, specific examples of rotational rigid-body motion are given where incorrect results are obtained when -(v  ·  ∇)A is employed. In addition, we show that it is important to take into account the space charge which can be generated by rotations and we also consider particular cases where neglecting the space charge generates erroneous results. Along with analytic calculations based on simple models, boundary-element-based numerical calculations are used to illustrate these findings.

  8. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  9. Uniform rotating field network structure to efficiently package a magnetic bubble domain memory

    NASA Technical Reports Server (NTRS)

    Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor); Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor)

    1978-01-01

    A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.

  10. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz-6 GHz).

    PubMed

    Gajšek, Peter; Ravazzani, Paolo; Wiart, Joe; Grellier, James; Samaras, Theodoros; Thuróczy, György

    2015-01-01

    Average levels of exposure to radiofrequency (RF) electromagnetic fields (EMFs) of the general public in Europe are difficult to summarize, as exposure levels have been reported differently in those studies in which they have been measured, and a large proportion of reported measurements were very low, sometimes falling below detection limits of the equipment used. The goal of this paper is to present an overview of the scientific literature on RF EMF exposure in Europe and to characterize exposure within the European population. A comparative analysis of the results of spot or long-term RF EMF measurements in the EU indicated that mean electric field strengths were between 0.08 V/m and 1.8 V/m. The overwhelming majority of measured mean electric field strengths were <1 V/m. It is estimated that <1% were above 6 V/m and <0.1% were above 20 V/m. No exposure levels exceeding European Council recommendations were identified in these surveys. Most population exposures from signals of radio and television broadcast towers were observed to be weak because these transmitters are usually far away from exposed individuals and are spatially sparsely distributed. On the other hand, the contribution made to RF exposure from wireless telecommunications technology is continuously increasing and its contribution was above 60% of the total exposure. According to the European exposure assessment studies identified, three population exposure categories (intermittent variable partial body exposure, intermittent variable low-level whole-body (WB) exposure and continuous low-level WB exposure) were recognized by the authors as informative for possible future risk assessment. PMID:23942394

  11. Strings: A possible alternative explanation for the Unification of Gravitation Field and Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Rivera, Susana

    Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters

  12. On the electrodynamics of moving permanent dipoles in external electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Mansuripur, Masud

    2014-09-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. The close association of momentum with energy thus demands that the Poynting theorem and the Lorentz law remain consistent with each other, while, at the same time, ensuring compliance with the conservation laws of energy, linear momentum, and angular momentum. This paper shows how a consistent application of the aforementioned laws of electrodynamics to moving permanent dipoles (both electric and magnetic) brings into play the rest-mass of the dipoles. The rest mass must vary in response to external electromagnetic fields if the overall energy of the system is to be conserved. The physical basis for the inferred variations of the rest-mass appears to be an interference between the internal fields of the dipoles and the externally applied fields. We use two different formulations of the classical theory in which energy and momentum relate differently to the fields, yet we find identical behavior for the restmass in both formulations.

  13. Rotational shear near the solar surface as a probe for subphotospheric magnetic fields

    NASA Astrophysics Data System (ADS)

    Kitchatinov, L. L.

    2016-05-01

    Helioseismology revealed an increase in the rotation rate with depth just beneath the solar surface. The relative magnitude of the radial shear is almost constant with latitude. This rotational state can be interpreted as a consequence of two conditions characteristic of the near-surface convection: the smallness of convective turnover time in comparison with the rotation period and absence of a horizontal preferred direction of convection anisotropy. The latter condition is violated in the presence of a magnetic field. This raises the question of whether the subphotospheric fields can be probed with measurements of near-surface rotational shear. The shear is shown to be weakly sensitive to magnetic fields but can serve as a probe for sufficiently strong fields of the order of one kilogauss. It is suggested that the radial differential rotation in extended convective envelopes of red giants is of the same origin as the near-surface rotational shear of the Sun.

  14. Realistic exact solution for the exterior field of a rotating neutron star

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Rueda, Jorge A.; Sanabria-Gómez, José D.

    2006-05-01

    A new six-parametric, axisymmetric, and asymptotically flat exact solution of Einstein-Maxwell field equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular momentum, mass-quadrupole moment, current octupole moment, electric charge, and magnetic dipole, so it can represent the exterior field of a rotating, deformed, magnetized, and charged object; some properties of the closed-form analytic solution such as its multipolar structure, electromagnetic fields, and singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical interior solutions representing neutron stars, calculated by Berti and Stergioulas [E. Berti and N. Stergioulas, Mon. Not. R. Astron. Soc.MNRAA40035-8711 350, 1416 (2004)10.1111/j.1365-2966.2004.07740.x], imposing that the multipole moments be the same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we present an extensive comparison of the radii of innermost stable circular orbits (ISCOs) obtained from the Berti and Stergioulas numerical solutions, the Kerr solution [R. P. Kerr, Phys. Rev. Lett.PRLTAO0031-9007 11, 237 (1963)10.1103/PhysRevLett.11.237], the Hartle and Thorne solution [J. B. Hartle and K. S. Thorne, Astrophys. J.ASJOAB0004-637X 153, 807 (1968)10.1086/149707], an analytic series expansion derived by Shibata and Sasaki [M. Shibata and M. Sasaki, Phys. Rev. DPRVDAQ0556-2821 58, 104011 (1998)10.1103/PhysRevD.58.104011], and our exact solution. We found that radii of ISCOs from our solution fits better than others with realistic numerical interior solutions.

  15. Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats

    PubMed Central

    Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali

    2016-01-01

    Introduction In recent years, there has been an increase in the attention paid to safety effects, environmental and society’s health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. Methods In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats’ ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. Results EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Conclusion Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced

  16. Electrical Engineers' Perceptions on Education--Electromagnetic Field Theory and Its Connection to Working Life

    ERIC Educational Resources Information Center

    Keltikangas, K.; Wallen, H.

    2010-01-01

    This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…

  17. Possible Mechanism of Action of the Electromagnetic Fields of Ultralow Frequency on G-protein

    SciTech Connect

    Nava, J. J. Godina; Segura, M. A. Rodriguez; Garcia, M. N. Jimenez; Cadena, M. S. Reyes

    2008-08-11

    Based in several clinical achievements and mathematical simulation of the immune sytem, previously studied, permit us to establish that a possible Mechanism of Action of ultralow frequency Electromagnetic Fields (ELF) is on G-protein as it has been proposed in specialized literature.

  18. Electron beam electromagnetic field interaction in one-dimensional coaxial vircator

    NASA Astrophysics Data System (ADS)

    Shao, H.; Liu, G. Z.; Yang, Z. F.

    2005-10-01

    A one-dimensional model of the interaction between an injected electron beam and an electromagnetic (EM) field inside a coaxial vircator is presented. The effects of the injected electron beam energy spread, anode absorption rate, feedback and injected current premodulation are analyzed. The EM-gains of interaction between the electron beam and TM01, TE11 modes are derived and discussed.

  19. EVALUATION OF THE POTENTIAL CARCINOGENICITY OF ELECTROMAGNETIC FIELDS (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA or Agency) is posting on this web site a draft document related to the potential adverse human health effects resulting from exposure to electromagnetic fields (EMF). This document was never finalized after EPA activities were discon...

  20. PHYSICAL FOUNDATIONS OF QUANTUM ELECTRONICS: Vector potential of the electromagnetic field of a photon

    NASA Astrophysics Data System (ADS)

    Makshantsev, B. I.; Makshantsev, V. B.

    2001-09-01

    A solution of D'Alembert's equation for the vector potential of an electromagnetic field is found in the form of a wave packet, which does not spread in time and space. The expression obtained for the vector potential of a photon is used for the solution of some problems.

  1. The Role of Angular Momentum in the Construction of Electromagnetic Multipolar Fields

    ERIC Educational Resources Information Center

    Tischler, Nora; Zambrana-Puyalto, Xavier; Molina-Terriza, Gabriel

    2012-01-01

    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions…

  2. Quaternionic Analysis and Formulation of Generalized Electromagnetic fields in Chiral Media

    SciTech Connect

    Bisht, P. S.; Negi, O. P. S.; Singh, Jivan

    2007-10-03

    The time dependent Dirac-Maxwell's Equations in presence of electric and magnetic sources are written in chiral media and the solutions for the classical problem are obtained in unique simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in chiral media has also been developed in compact, simple and consistent manner.

  3. Biological Effects of Weak Electromagnetic Field on Healthy and Infected Lime (Citrus aurantifolia) Trees with Phytoplasma

    PubMed Central

    Abdollahi, Fatemeh; Niknam, Vahid; Ghanati, Faezeh; Masroor, Faribors; Noorbakhsh, Seyyed Nasr

    2012-01-01

    Exposure to electromagnetic fields (EMF) has become an issue of concern for a great many people and is an active area of research. Phytoplasmas, also known as mycoplasma-like organisms, are wall-less prokaryotes that are pathogens of many plant species throughout the world. Effects of electromagnetic fields on the changes of lipid peroxidation, content of H2O2, proline, protein, and carbohydrates were investigated in leaves of two-year-old trees of lime (Citrus aurantifolia) infected by the Candidatus Phytoplasma aurantifoliae. The healthy and infected plants were discontinuously exposed to a 10 KHz quadratic EMF with maximum power of 9 W for 5 days, each 5 h, at 25°C. Fresh and dry weight of leaves, content of MDA, proline, and protein increased in both healthy and infected plants under electromagnetic fields, compared with those of the control plants. Electromagnetic fields decreased hydrogen peroxide and carbohydrates content in both healthy and infected plants compared to those of the controls. PMID:22649313

  4. A wave guide model of lightning currents and their electromagnetic field

    NASA Technical Reports Server (NTRS)

    Volland, H.

    1980-01-01

    Lightning channels are considered as resonant wave guides in which only standing resonant wave modes can be excited. Two types of discharging currents develop. Type 1 is an aperiodic wave; type 2 is a damped oscillation. The electromagnetic radiation field of both types of currents is calculated and compared with the observation.

  5. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells

    PubMed Central

    2014-01-01

    Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758

  6. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  7. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  8. Interaction of electromagnetic fields with chondrocytes in gel culture

    NASA Astrophysics Data System (ADS)

    Grodzinsky, Alan J.; Buschmann, Michael D.; Gluzband, Yehezkiel A.

    1992-01-01

    The specific objectives of this research period were: (1) to quantify the effect of applied electric fields on chondrocyte metabolism, using a range of stimulation frequencies and amplitudes; (2) to compare the chondrocyte biosynthetic response to applied fields at early times in agarose gel culture before an extracellular matrix has accumulated and at later times after significant deposition of matrix around and between the cells; and (3) to begin to interpret the biosynthetic response to applied fields in terms of models of physical mechanisms. The results of these studies suggest that electric fields applied to chondrocytes in agarose can modulate the synthesis of proteoglycans and protein constituents. Biosynthesis may be inhibited or stimulated depending on the amplitude of the applied current density. In addition, the presence of extracellular matrix may enhance the ability of normal chondrocytes and cells in intact cartilage to respond to electric fields, although the presence of matrix was not required for the stimulatory response to be observed with Swarm rat chondrosarcoma cells.

  9. Gene transcription and electromagnetic fields. Final progress report

    SciTech Connect

    Henderson, A.S.

    1992-12-31

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  10. A study of the electromagnetic characteristics of no-insulation GdBCO racetrack coils under an external magnetic ripple field

    NASA Astrophysics Data System (ADS)

    Choi, Y. H.; Yang, D. G.; Kim, Y. G.; Kim, S. G.; Song, J. B.; Lee, H. G.

    2016-04-01

    Here we report the effect of an external magnetic ripple field on the electromagnetic characteristics of GdBCO racetrack coils being operated with a constant DC current. Two types of GdBCO racetrack coils, one wound without turn-to-turn insulation (NI) and the other wound with Kapton tape (INS), were examined under external ripple fields generated by a permanent magnet mounted on a rotor, which was driven by a separate AC motor. The voltage fluctuations and magnetic field variations were measured with respect to the external ripple field intensity (B ERF), rotating speed, and the operating condition. When the INS and NI coils were exposed to an external ripple field (herein, I op = 80 A, B ERF = 2 mT, and 5 rpm), a voltage fluctuation occurred because a time-varying magnetic field interacted with an electric circuit creating an electromotive force. The peak-to-peak voltage (V pp = 0.29 mV) of the NI coil was ∼1.86 times lower than that (0.54 mV) of the INS coil, because the voltage response of the NI coil lagged behind dB/dt due to the existence of turn-to-turn contact. Furthermore, the V pp of the INS coil increased with increasing B ERF and rotating speed, while those of the NI coil were barely affected due to the delay of electromagnetic induction. In excessive current and ripple field conditions (I op = 1.125 I c, B ERF = 8 mT, and 50 rpm) the INS coil eventually quenched while the NI coil did not, implying that the electromagnetic stability of the NI coil in excessive time-varying field conditions was superior to that of the INS coil.

  11. Effect of Magnetic Field on Thermal Instability of Oldroydian Viscoelastic Rotating Fluid in Porous Medium

    NASA Astrophysics Data System (ADS)

    Thakur, R. C.; Rana, G. C.

    2013-06-01

    In this paper, we investigate the effect of a vertical magnetic field on thermal instability of an Oldroydian visco-elastic rotating fluid in a porous medium. By applying the normal mode analysis method, the dispersion relation governing the effects of rotation, magnetic field and medium permeability is derived and solved analytically and numerically. For the case of stationary convection, the Oldroydian viscoelastic fluid behaves like an ordinary Newtonian fluid and it is observed that rotation has a stabilizing effect while the magnetic field and medium permeability have a stabilizing/destabilizing effect under certain conditions on thermal instability of the Oldroydian viscoelastic fluid in a porous medium. The oscillatory modes are introduced due to the presence of rotation, the magnetic field and gravity field. It is also observed that the `principle of exchange of stability' is invalid in the presence of rotation and the magnetic field.

  12. Measurements and computations of electromagnetic fields in electric power substations

    SciTech Connect

    Daily, W.K. ); Dawalibi, F. )

    1994-01-01

    The magnetic fields generated by a typical distribution substation were measured and calculated based on a computer model which takes into account currents in the grounding systems, distribution feeder neutrals, overhead ground wires and induced currents in equipment structures and ground grid loops. Both measured and computer results indicate that magnetic fields are significantly influenced by ground currents, as well as induced currents in structures and ground system loops. All currents in the network modeled were computed, based on the measured currents impressed at the boundary points (ends of the conductor network). The agreement between the measured and computer values is good. Small differences were observed and are attributed mainly to uncertainties in the geometry of the network model and phase angles of some of the currents in the neutral conductors which were not measured in the field. Further measurements, including more accurate geometrical information and phase angles, are planned.

  13. Electromagnetic Near Field Measurements of Two Critical Assemblies

    NASA Astrophysics Data System (ADS)

    Goettee, Jeffrey; Goorley, Tim; Mayo, Douglas; Myers, William; Goda, Joetta; Sage, Frank

    2015-04-01

    Preliminary measurements of the fast metal nuclear reactors at the National Criticality Experiments Research Center (NCERC) and at White Sands Missile Range (WSMR) within the past year characterize the very near field environment of these critical assemblies. Both reactors are fast, highly enriched uranium metal reactors and can be operated in a burst mode above prompt supercritical. Initial measurements of the electric and the magnetic fields within the reactor cell are consistent between the two facilities, and begin to describe the dependance on distance and polarization as might be assumed from initial Monte Carlo modelling of these facilities. The amplitude and time variation of the electric and magnetic fields are consistent with burst time scales. The polarization is consistent with the geometry of the source and with Compton scattering from fission gammas as the dominant ionization mechanism. An overview of the two fast neutron sources and the excursion dynamics, the experimental details, and summary of the modelling calculations will be provided as background.

  14. Rayleigh-Taylor-Induced Electromagnetic Fields in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Manuel, Mario J.-E.

    Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic fields are predicted to affect fluid behavior during the core-collapse of supernovae through generation of fields due to hydrodynamic instabilities. In the coronae of stars, self-generated magnetic fields lead to filamentary structure in the hot plasma. Recent experiments by Gregori et al. investigated sources of protogalactic magnetic fields generated by laser-produced shock waves. In inertial confinement fusion experiments, self-generated electromagnetic fields can also play a role and have recently become of great interest to the community. Present day laser facilities provide a unique opportunity to study spontaneous field-generation in these extreme environments under controlled conditions. Instability-induced electromagnetic fields were investigated using a novel monoenergetic-proton radiography system. Fusion protons generated by an 'exploding-pusher' implosion were used to probe laser-irradiated plastic foils with various preimposed surface perturbations. Imaging protons are sensitive to electromagnetic fields and density modulations in the plasma through the Lorentz force and Coulomb collisions, respectively. Corresponding x-ray radiographs of these targets provided mass density distributions and Coulomb effects on protons were assessed using a Monte Carlo code written using the Geant4 framework. Proton fluence distributions were recorded on CR-39 detectors and Fourier analyzed to infer path-integrated field strengths. Rayleigh-Taylor (RT) growth of preimposed surface perturbations generated magnetic fields by the RT-induced Biermann battery and were measured for the first time. Good data were obtained during linear growth and when compared to ideal calculations, demonstrated that field diffusion near the source played an important role

  15. Spectral domains for bosonic pair creation in static electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Li, Y. J.; Grobe, R.; Su, Q.

    2016-04-01

    We study the emission spectrum of bosons created from the vacuum by combined static electric and magnetic fields. Depending on the spatial extension of the magnetic field, we find four regimes of pair creation, characterized by different growth behaviors of the number of the produced particles. We show that these regimes manifest themselves in the eigenenergy spectrum of the Klein-Gordon Hamiltonian. The regimes also lead to rather different kinetic energy spectra of the emitted bosons, whose peak positions can be obtained from a generalized Fano-like perturbative approach.

  16. Confinement of Plasma along Shaped Open Magnetic Fields from the Centrifugal Force of Supersonic Plasma Rotation

    SciTech Connect

    Teodorescu, C.; Young, W. C.; Swan, G. W. S.; Ellis, R. F.; Hassam, A. B.; Romero-Talamas, C. A.

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic ExB rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  17. The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach

    ERIC Educational Resources Information Center

    Likar, A.; Razpet, N.

    2009-01-01

    The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…

  18. Electromagnetic field interactions with the human body: Observed effects and theories

    NASA Technical Reports Server (NTRS)

    Raines, J. K.

    1981-01-01

    The effects of nonionizing electromagnetic (EM) field interactions with the human body were reported and human related studies were collected. Nonionizing EM fields are linked to cancer in humans in three different ways: cause, means of detection, and effective treatment. Bad and benign effects are expected from nonionizing EM fields and much more knowledge is necessary to properly categorize and qualify EM field characteristics. It is concluded that knowledge of the boundary between categories, largely dependent on field intensity, is vital to proper future use of EM radiation for any purpose and the protection of the individual from hazard.

  19. Calculation of electromagnetic fields induced on a geostationary satellite by an electrostatic discharge

    NASA Astrophysics Data System (ADS)

    Froger, E.; Marque, J. P.

    The electromagnetic response of an orbiting satellite to an electrostatic discharge is compared to that of the same object subjected (in a susceptibility test) to an injection current. In the absence of actual data, the comparison was performed on the basis of two numerical simulations: one using the GEODE particle code for the orbiting case, and the other using the ALICE code for a representative injection configuration. It is found that the evolution of the electromagnetic fields is controlled in particular by the particle emission rhythm, giving rise to an ejection flux 'slit' whose rise time is about several tens of nanoseconds.

  20. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  1. Probing the spectral density of the surface electromagnetic fields through scattering of waveguide photons

    PubMed Central

    Chen, Guang-Yin

    2016-01-01

    The spectral density of the metal-surface electromagnetic fields will be strongly modified in the presence of a closely-spaced quantum emitter. In this work, we propose a feasible way to probe the changes of the spectral density through the scattering of the waveguide photon incident on the quantum emitter. The variances of the lineshape in the transmission spectra indicate the coherent interaction between the emitter and the pseudomode resulting from all the surface electromagnetic modes. We further investigate the quantum coherence between the emitter and the pseudomode of the metal-dielectric interface. PMID:26860197

  2. Effects of low-intensity pulsed electromagnetic fields on the early development of sea urchins

    SciTech Connect

    Falugi, C.; Grattarola, M.; Prestipino, G.

    1987-06-01

    The effects of weak electromagnetic signals on the early development of the sea urchin Paracentrotus lividus have been studied. The duration and repetition of the pulses were similar to those used for bone healing in clinical practice. A sequence of pulses, applied for a time ranging from 2 to 4 h, accelerates the cleavages of sea urchin embryo cells. This effect can be quantitatively assessed by determining the time shifts induced by the applied electromagnetic field on the completion of the first and second cleavages in a population of fertilized eggs. The exposed embryos were allowed to develop up to the pluteus stage, showing no abnormalities.

  3. The cavity electromagnetic field within the polarizable continuum model of solvation

    SciTech Connect

    Pipolo, Silvio; Department of Physics, University of Modena and Reggio Emilia, Modena ; Corni, Stefano; Cammi, Roberto

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  4. The cavity electromagnetic field within the polarizable continuum model of solvation.

    PubMed

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-28

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles. PMID:24784260

  5. The cavity electromagnetic field within the polarizable continuum model of solvation

    NASA Astrophysics Data System (ADS)

    Pipolo, Silvio; Corni, Stefano; Cammi, Roberto

    2014-04-01

    Cavity field effects can be defined as the consequences of the solvent polarization induced by the probing electromagnetic field upon spectroscopies of molecules in solution, and enter in the definitions of solute response properties. The polarizable continuum model of solvation (PCM) has been extended in the past years to address the cavity-field issue through the definition of an effective dipole moment that couples to the external electromagnetic field. We present here a rigorous derivation of such cavity-field treatment within the PCM starting from the general radiation-matter Hamiltonian within inhomogeneous dielectrics and recasting the interaction term to a dipolar form within the long wavelength approximation. To this aim we generalize the Göppert-Mayer and Power-Zienau-Woolley gauge transformations, usually applied in vacuo, to the case of a cavity vector potential. Our derivation also allows extending the cavity-field correction in the long-wavelength limit to the velocity gauge through the definition of an effective linear momentum operator. Furthermore, this work sets the basis for the general PCM treatment of the electromagnetic cavity field, capable to describe the radiation-matter interaction in dielectric media beyond the long-wavelength limit, providing also a tool to investigate spectroscopic properties of more complex systems such as molecules close to large nanoparticles.

  6. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Rowland, H. L.

    1993-03-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  7. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  8. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  9. Electromagnetic field analysis of septum magnet for APS positron accumulator ring

    SciTech Connect

    Yokoi, Toshiaki; Turner, L.R.

    1995-07-01

    This report consists of three parts. The first part describes a numerical analysis method for the electromagnetic field analysis of a septum magnet. A novel improvement to the treatment of exciting currents in the time-domain is proposed. The second part discusses numerical predictions of the electromagnetic characteristics of the APS PAR septum. The time variations of stray field and eddy currents are shown for three magnet designs. The last part explores how decreasing the septum material conductivity affects the stray field. The decrease of conductivity may be caused by an inadequate manufacturing of the septum material. The significance of a high quality septum, or flat interface between copper and iron, is emphasized from a point of view of stray field. An ideal method for joining two different metals without distortion, called HIP (Hot Isostatic Pressing), is introduced and recommended based on the authors` experience.

  10. Calcium displacement caused by electromagnetic fields. Final report, 1 November 1982-31 August 1989

    SciTech Connect

    Bond, J.D.; Jordan, C.A.

    1989-08-31

    This research effort was to determine theoretically a physical basis for the interaction of low-intensity externally applied electromagnetic fields with biological tissue. The primary aim of the investigation was to establish a molecular basis for the class of interactions commonly referred to as nonthermal effects of electromagnetic fields with biological systems. In particular, the biological structure of interest was the plasma membrane since it had been either directly or indirectly implicated in numerous experimental studies. It was demonstrated how a membrane undergoing a phase transition could qualitatively account for the release and/or uptake of divalent calcium ions. A characterization of changes in the structure of the membrane/electrolyte interface due to field induced changes in enzymatic activity was demonstrated. The role of critical phenomena was shown analytically to be able to account for the unique sensitivity of biomembranes to weak external field perturbations, and describe alterations in the passive transport of sodium ions in rabbit erythrocytes.

  11. Neurobehavioral effects of power-frequency electromagnetic fields.

    PubMed Central

    Paneth, N

    1993-01-01

    Some laboratory experiments have suggested that power-frequency electric and magnetic fields (EMF) may be capable of influencing calcium efflux from cell membranes, pineal function, and circadian rhythms. As yet, however, no consistent, replicable laboratory model has been developed for any of these effects. Most assessments of human volunteers exposed to EMF have been negative, but occasional effects on vigilance or alertness and some modest effects on circadian rhythmicity have been reported. Several carefully performed studies of workers occupationally exposed to high electric-field strengths have failed to find effects on behavior or cognitive functioning. Although the bulk of human research on the effects of EMF on cognitive performance is negative, there has been less assessment of behavior and psychiatric symptomatology. Because some studies, in both humans and animals, have described effects of EMF on circadian rhythms, future research might concentrate profitably on the assessment of EMF in relation to depression and other cyclically mediated psychiatric disorders. PMID:8206018

  12. Forced magnetic reconnection and field penetration of an externally applied rotating helical magnetic field in the TEXTOR tokamak.

    PubMed

    Kikuchi, Y; de Bock, M F M; Finken, K H; Jakubowski, M; Jaspers, R; Koslowski, H R; Kraemer-Flecken, A; Lehnen, M; Liang, Y; Matsunaga, G; Reiser, D; Wolf, R C; Zimmermann, O

    2006-08-25

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization. PMID:17026312

  13. Quantum tunneling from scalar fields in rotating black strings

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2013-08-01

    Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outgoing scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.

  14. Structure characteristics in industrially centrifugally cast 25Cr20Ni stainless steel tubes solidified under different electromagnetic field intensity

    SciTech Connect

    Wu, X.Q.; Yang, Y.S.; Zhang, J.S.; Jia, G.L.; Hu, Z.Q.

    1999-10-01

    The influences of different electromagnetic field intensities on the solidification structures of industrially centrifugally cast 25Cr20Ni stainless steel tubes have been investigated in detail. The results reveal that the electromagnetic field exerted during the centrifugal solidification causes a marked variation in the structures of the cast tubes. With an increase of the electromagnetic field intensity, the area fraction of the equiaxed structures in transverse sections of the cast tubes increases, and the macrostructures are gradually refined. The distribution of the eutectic carbides changes from the dendrite boundaries to the grain boundaries. However, an excessive electromagnetic field intensity gives rise to many intergranular cast defects formed along the inner walls of the centrifugally cast tubes. The effects of fluid flow induced by the electromagnetic field on the solidification process of the centrifugally cast tubes are the primary reason for the previously mentioned structure variations.

  15. Imaging Nanoscale Electromagnetic Near-Field Distributions Using Optical Forces.

    PubMed

    Huang, Fei; Tamma, Venkata Ananth; Mardy, Zahra; Burdett, Jonathan; Wickramasinghe, H Kumar

    2015-01-01

    We demonstrate the application of Atomic Force Microscopy (AFM) for mapping optical near-fields with nanometer resolution, limited only by the AFM probe geometry. By detecting the optical force between a gold coated AFM probe and its image dipole on a glass substrate, we profile the electric field distributions of tightly focused laser beams with different polarizations. The experimentally recorded focal force maps agree well with theoretical predictions based on a dipole-dipole interaction model. We experimentally estimate the aspect ratio of the apex of gold coated AFM probe using only optical forces. We also show that the optical force between a sharp gold coated AFM probe and a spherical gold nanoparticle of radius 15 nm, is indicative of the electric field distribution between the two interacting particles. Photo Induced Force Microscopy (PIFM) allows for background free, thermal noise limited mechanical imaging of optical phenomenon over wide range of wavelengths from Visible to RF with detection sensitivity limited only by AFM performance. PMID:26073331

  16. Observations of improved confinement in field reversed configurations sustained by antisymmetric rotating magnetic fields

    SciTech Connect

    Guo, H.Y.; Hoffman, A.L.; Steinhauer, L.C.

    2005-06-15

    Rotating magnetic fields (RMF) have been employed to both form and sustain currents in field reversed configurations (FRC). A major concern about this method has been the fear of opening up magnetic field lines with even small ratios of vacuum RMF B{sub {omega}} to external confinement field B{sub e}. A recently proposed innovation was to use an antisymmetric arrangement of RMF, but vacuum calculations with full RMF penetration showed that very low values of B{sub {omega}}/B{sub e} would still be required to provide field-line closure. Recent comparisons of symmetric and antisymmetric RMF drive on the translation, confinement, and sustainment (TCS) facility [A. L. Hoffman, H. Y. Guo, J. T. Slough et al., Fusion Sci. Technol. 41, 92 (2002)] have shown strong improvements in the basic confinement properties of the FRCs when using antisymmetric drive, even with ratios of B{sub {omega}}/B{sub e} as high as 0.3. This is due to normal standard operation with only partial penetration of the RMF beyond the FRC separatrix. The uniform transverse RMF in vacuum is shielded by the conducting plasma, resulting in a mostly azimuthal field near the FRC separatrix with a very small radial component. Simple numerical calculations using analytical solutions for the partially penetrated antisymmetric RMF, superimposed on Grad-Shafranov solutions for the poloidal FRC fields, show good field-line closure for the TCS experimental conditions. The antisymmetric arrangement also leads to more efficient current drive and improved stabilization of rotational modes.

  17. Internal rotation and toroidal part of the magnetic field of AB Doradus

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2000-06-01

    We solve analytically Chandrasekhar's (1956) MHD equations for the steady parts of internal rotation and toroidal component of the magnetic field of the AB Doradus. By taking observed (Donati and Cameron 1997) surface rotation as the boundary condition and assuming that the base of the convection zone rotates rigidly, we estimate the size of the convective envelope to be 40% of the radius and the rotation velocity at the base to be not less than 1.42 x 10-4 rad/sec. We deduce that the toroidal magnetic field is distributed throughout the convective envelope. By taking the average density of 1.78gm cm-3 and radius 5.95 x 1010 cms (Allen 1972), we obtain a Mega gauss field near base of the convective envelope. We present rotational and toroidal magnetic field profiles in the interior, and conjecture on the time dependent part of the magnetic field.

  18. The relativistic dynamics of a point charge in the field of a plane electromagnetic wave traveling in the direction of a uniform static magnetic field

    NASA Technical Reports Server (NTRS)

    Mitchell, T. P.

    1973-01-01

    The motion of a charged particle in electromagnetic fields of various geometric configurations and arising from a variety of sources is of intrinsic interest in electromagnetic theory. The particular configuration consisting of a plane wave propagating in the presence of a static uniform magnetic field whose direction is parallel to the wave normal is examined. The analysis presented here is treated within the context of classical electromagnetic theory. A numerical solution - at least to the approximate Lorentz-Dirac equation - is obtained.

  19. Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by Saccharomyces cerevisiae.

    PubMed

    Perez, Victor H; Reyes, Alfredo F; Justo, Oselys R; Alvarez, David C; Alegre, Ranulfo M

    2007-01-01

    The effect of extremely low frequency (ELF) magnetic fields on ethanol production by Saccharomyces cerevisiae using sugar cane molasses was studied during batch fermentation. The cellular suspension from the fermentor was externally recycled through a stainless steel tube inserted in two magnetic field generators, and consequently, the ethanol production was intensified. Two magnetic field generators were coupled to the bioreactor, which were operated conveniently in simple or combined ways. Therefore, the recycle velocity and intensity of the magnetic field varied in a range of 0.6-1.4 m s(-1) and 5-20 mT, respectively. However, under the best conditions with the magnetic field treatment (0.9-1.2 m s(-1) and 20 mT plus solenoid), the overall volumetric ethanol productivity was approximately 17% higher than in the control experiment. These results made it possible to verify the effectiveness of the dynamic magnetic treatment since the fermentations with magnetic treatment reached their final stage in less time, i.e., approximately 2 h earlier, when compared with the control experiment. PMID:17663568

  20. Production of flickering aurora and field-aligned electron flux by electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Temerin, M.; Mcfadden, J.; Boehm, M.; Carlson, C. W.; Lotko, W.

    1986-01-01

    Recent observations have suggested that flickering aurora is produced by a modulation of the field-aligned component of the electron flux within an auroral arc. It is proposed that a portion of the field-aligned electrons are of ionospheric origin and that these electrons are accelerated and their flux modulated by electromagnetic ion cyclotron waves that occur below the main acceleration region on auroral arc field lines. A model of the electromagnetic ion cyclotron wave shows that the parallel phase velocity of the wave increase as the wave propagates toward the ionosphere. A test particle calculation shows that ionospheric electrons trapped or reflected by the wave are accelerated to energies of several keV and that their flux is modulated at the wave frequency. The relative amplitudes of the model wave electric fields are consistent with the observations of small-scale low-frequency ionospheric and magnetospheric electric fields near auroral arcs of approximately 10 mV/m and 100 mV/m, respectively. The large-amplitude ion cyclotron waves also produce a ponderomotive force and a self-consistent ambipolar electric field. Energy considerations show that the downward energy flux in the electromagnetic ion cyclotron wave can be several percent of the total downward auroral electron energy flux.

  1. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    PubMed Central

    Wu, Yi-Lin; Ma, Shi-Rong; Peng, Tao; Teng, Zeng-Hui; Liang, Xiang-Yan; Guo, Guo-Zhen; Zhang, Hai-Feng; Li, Kang-Chu

    2014-01-01

    Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC) line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF) for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP), stage-specific embryonic antigen-3 (SSEA-3), SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells. PMID:25196518

  2. Effects of pulsed electromagnetic field on differentiation of HUES-17 human embryonic stem cell line.

    PubMed

    Wu, Yi-Lin; Ma, Shi-Rong; Peng, Tao; Teng, Zeng-Hui; Liang, Xiang-Yan; Guo, Guo-Zhen; Zhang, Hai-Feng; Li, Kang-Chu

    2014-01-01

    Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC) line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF) for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP), stage-specific embryonic antigen-3 (SSEA-3), SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells. PMID:25196518

  3. The Role of Rotation and Magnetic Fields in a Core Collapse Supernova

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka

    While the process that converts implosion into explosion in core collapse supernovae is poorly understood, their observed asphericity provides new constraints on the physics of these events. Since pulsars are rotating and magnetized neutron stars, there is no doubt that rotation and magnetic fields are inherent to the exploding engine. We have shown that magnetic field amplification is an inevitable by-product of the differential rotation that accompanies core-collapse. We performed 1D core-collapse simulations of rotating iron cores with various rotational profiles and velocities. We found that differential rotation was a generic feature of rotating iron core collapse. As a result, the magnetorotational instability (MRI) generates magnetic fields of order 1015-17 G in a few tens of milliseconds where the negative shear is the strongest. Although magnetic fields of order 1015-17 G are very strong, they are not strong enough to modify the equation of state of degenerate electron gas near the proto-neutron star. The corresponding MHD luminosity available is ˜ 1052erg s-1, which can modify the explosion dynamics if the power is sustained for a fraction of a second. When rotational effects are included, we found that there is a critical iron core rotation rate that gives the most rapidly rotating proto-neutron star, faster than which the rotational velocity of the proto-neutron star decreases due to centrifugal support. This non-monotonic behavior of post-collapse core rotation suggests that the progenitor of the most rapidly rotating proto-neutron star is not the most rapidly rotating iron core, but that those iron cores with nearly the critical initial rotation rate may produce the maximum proto-neutron star rotation, the strongest magnetic fields, and the most robust supernova explosions. Even small rotation may induce non-axisymmetric instabilities, which drive magneto-acoustic flux in to the mantle, transporting enegy out of the proto-neutron star to the region

  4. Influence of constant, alternating and cyclotron low-intensity electromagnetic fields on fibroblast proliferative activity in vitro.

    PubMed

    Afinogenov, Gennadi; Afinogenova, Anna; Kalinin, Andrey

    2009-01-01

    Available data allow assuming the presence of stimulation of reparative processes under influence of low-intensity electromagnetic field, commensurable with a magnetic field of the Earth. Research of effects of low-intensity electromagnetic fields on fibroblast proliferative activity in human lungs in cell culture was performed.The influence of a constant electromagnetic field, an alternating electromagnetic field by frequency of 50 Hz and cyclotron electromagnetic field with identical intensity for all kinds of fields - 80 mcTl - on value of cellular mass and a correlation of live and dead cells in culture is investigated in three series of experiments. We used the universal electromagnetic radiator generating all three kinds of fields and supplied by a magnetometer which allows measuring the intensity of accurate within 0.1 mcTl including taking into account the Earth's magnetic field intensity.The peak value for stimulation cellular proliferation in the present experiences was two-hour influence by any of the specified kinds of electromagnetic fields. The irradiation by cyclotron electromagnetic field conducts positive dynamics in growth of live cells (up to 206+/-22%) and decreases the number of dead cells (down to 31+/-6%). Application of cyclotron magnetic fields promoted creation of optimum conditions for proliferation. As a result of researches we observed the reliable 30% increase of nitro-tetrazolium index (in nitro-tetrazolium blue test) after irradiation by cyclotron electromagnetic field in experience that testifies to strengthening of the cell breathing of living cells.In our opinion, it is necessary to pay attention not only to a pure gain of cells, but also to reduction of number dead cells that can be criterion of creation of optimum conditions for their specific development and valuable functioning. PMID:20204088

  5. Datta-and-Das spin transistor controlled by a high-frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sheremet, A. S.; Kibis, O. V.; Kavokin, A. V.; Shelykh, I. A.

    2016-04-01

    We developed the theory of spin dependent transport through a spin-modulator device (so-called Datta-and-Das spin transistor) in the presence of a high-frequency electromagnetic field (dressing field). Solving the Schrödinger problem for dressed electrons, we demonstrated that the field drastically modifies the spin transport. In particular, the dressing field leads to renormalization of spin-orbit coupling constants that varies conductivity of the spin transistor. The present effect paves the way for controlling the spin-polarized electron transport with light in prospective spin-optronic devices.

  6. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  7. Electromagnetic induction by finite wavenumber source fields in 2-D lateral heterogeneities - The transverse electric mode

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1984-01-01

    Electromagnetic induction in a laterally homogeneous earth is analyzed in terms of a source field with finite dimensions. Attention is focused on a time-varying two-dimensional current source directed parallel to the strike of a two-dimensional anomalous structure within the earth, i.e., the E-parallel mode. The spatially harmonic source field is expressed as discontinuities in the magnetic (or electric) field of the current in the source. The model is applied to describing the magnetic gradients across megatectonic features, and may be used to predict the magnetic fields encountered by a satellite orbiting above the ionosphere.

  8. Electromagnetic superconductivity of vacuum induced by strong magnetic field: Numerical evidence in lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Buividovich, P. V.; Chernodub, M. N.; Kotov, A. Yu.; Polikarpov, M. I.

    2012-12-01

    Using numerical simulations of quenched SU (2) gauge theory we demonstrate that an external magnetic field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged ρ mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927 (77) GeV2 or Bc = (1.56 ± 0.13) ṡ1016 Tesla. The condensation of the charged ρ mesons in strong magnetic field is a key feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

  9. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    SciTech Connect

    Sharapova, P R; Tikhonova, O V

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  10. 3D mathematical model system for melt hydrodynamics in the silicon single crystal FZ-growth process with rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Lacis, K.; Muiznieks, A.; Ratnieks, G.

    2005-06-01

    A system of three-dimensional numerical models is described to analyse the melt hydrodynamics in the floating zone crystal growth by the needle-eye technique under a rotating magnetic field for the production of high quality silicon single crystals of large diameters big( 100dots 200 mm big). Since the pancake inductor has only one turn, the high frequency (HF) electromagnetic (EM) field and the distribution of heat sources and EM forces on the melt free surface have distinct asymmetric features. This asymmetry together with the displacement of the crystal and feed rod axis and crystal rotation manifests itself as three dimensional hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. Additionally, the rotating magnetic field can be used to influence the melt hydrodynamics and to reduce the flow asymmetry. In the present 3D model system, the shape of the molten zone is obtained from symmetric FZ shape calculations. The asymmetric HF EM field is calculated by the 3D boundary element method. The low-frequency rotating magnetic field and a corresponding force density distribution in the melt are calculated by the 3D finite element method. The obtained asymmetric HF field power distribution on the free melt surface, the corresponding HF EM forces and force density of the rotating magnetic field are used for the coupled calculation of 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with a control volume approach. Beside the EM forces, also the buoyancy and Marangoni forces are considered. After HD calculations a corresponding 3D dopant concentration field is calculated and used to derive the variations resistivity in the grown crystal. The capability of the system of models is illustrated by a calculation example of a realistic FZ system

  11. THE ROTATION PROFILE OF SOLAR MAGNETIC FIELDS BETWEEN {+-}60 Degree-Sign LATITUDES

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2013-08-10

    Through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotation Nos. 1625 to 2129 (from 1975 February to 2012 October), the sidereal rotation rates of solar magnetic fields between {+-}60 Degree-Sign latitudes are investigated. It seems that the temporal variation of rotation rates should be related to the solar cycle phase. The rotation profile of magnetic fields is obtained: the sidereal rotation rates decrease from the equator to mid-latitude and reach their minimum values of about 13.16 deg day{sup -1} (13.17 deg day{sup -1}) at 53 Degree-Sign (54 Degree-Sign ) latitude in the northern (southern) hemisphere, then increase toward higher latitudes. This rotation profile is different from the differential rotation law obtained by Snodgrass from a cross-correlation analysis of daily magnetograms, in which the rotation rates show a steep decrease from the equator to the poles. However, it is much closer to the quasi-rigid rotation law derived by Stenflo from an auto-correlation analysis of daily magnetograms. Some possible interpretations are discussed for the resulting rotation profile.

  12. Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation

    NASA Astrophysics Data System (ADS)

    Spitans, Sergejs; Baake, Egbert; Nacke, Bernard; Jakovics, Andris

    2016-02-01

    By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid ( VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/ VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/ VOF and 3D/ VOF models that use less precise k- ɛ and k- ω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.

  13. Coherence-polarization properties of fields radiated from transversely periodic electromagnetic sources

    NASA Astrophysics Data System (ADS)

    Santarsiero, M.; de Sande, J. C. G.; Piquero, G.; Gori, F.

    2013-05-01

    Planar electromagnetic sources characterized by a periodic variation of their beam coherence-polarization matrix are investigated, as far as the polarization features of the radiated fields are concerned, within the framework of the paraxial approximation. A propagation scheme based on plane-wave decomposition leads to a longitudinal periodicity of the polarization properties of the field, thus extending the Talbot effect to the case of partially coherent electromagnetic sources. The polarization features of beams radiated from sources of this type are illustrated by means of simple examples. In particular, it is shown that completely unpolarized sources with uniform intensity profiles can be easily realized, for which the propagated field becomes perfectly polarized across some transverse planes, and vice versa.

  14. Electromagnetic field generated in model of human head by simplified telephone transceiver

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.

  15. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    SciTech Connect

    Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.

    1995-08-01

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.

  16. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    SciTech Connect

    Komar, A.; Pokol, G. I.; Fueloep, T.

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  17. Modeling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake

    NASA Astrophysics Data System (ADS)

    Gao, Yongxin; Harris, Jerry M.; Wen, Jian; Huang, Yihe; Twardzik, Cedric; Chen, Xiaofei; Hu, Hengshan

    2016-01-01

    The coseismic electromagnetic signals observed during the 2004 Mw 6 Parkfield earthquake are simulated using electrokinetic theory. By using a finite fault source model obtained via kinematic inversion, we calculate the electric and magnetic responses to the earthquake rupture. The result shows that the synthetic electric signals agree with the observed data for both amplitude and wave shape, especially for early portions of the records (first 9 s) after the earthquake, supporting the electrokinetic effect as the reasonable mechanism for the generation of the coseismic electric fields. More work is needed to explain the magnetic fields and the later portions of the electric fields. Analysis shows that the coseismic electromagnetic (EM) signals are sensitive to both the material properties at the location of the EM sensors and the electrochemical heterogeneity in the vicinity of the EM sensors and can be used to characterize the underground electrochemical properties.

  18. Electromagnetic design analysis and performance improvement of axial field permanent magnet generator for small wind turbine

    NASA Astrophysics Data System (ADS)

    Jung, Tae-Uk

    2012-04-01

    Axial field permanent magnet (AFPM) generators are widely applied for the small wind turbine. The output power of conventional AFPM generator, AFER-NS (Axial Field External Rotor-Non Slotted) generator, is limited by the large reluctance by the long air-gap flux paths. In this paper, the novel structure of AFPM generator, AFIR-S (Axial Field Inner Rotor-Slotted) generator, is suggested to improve the output characteristics. The electromagnetic design analysis and the design improvement of the suggested AFIR-S generator are studied. Firstly, the electromagnetic design analysis was done to increase the power density. Secondly, the design optimizations of the rotor pole-arc ratio and skew angle to increase the output power and to reduce the cogging torque. Finally, the output performances of AFER-NS and AFIR-S generator are compared with each other.

  19. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    SciTech Connect

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-08-15

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption.

  20. Growth characteristics of mung beans and water convolvuluses exposed to 425-MHz electromagnetic fields.

    PubMed

    Jinapang, Peeraya; Prakob, Panida; Wongwattananard, Pongtorn; Islam, Naz E; Kirawanich, Phumin

    2010-10-01

    Effects of high-frequency, continuous wave (CW) electromagnetic fields on mung beans (Vigna radiata L.) and water convolvuluses (Ipomoea aquatica Forssk.) were studied at different growth stages (pre-sown seed and early seedling). Specifically, the effects of the electromagnetic source's power and duration (defined as power-duration level) on the growth of the two species were studied. Mung beans and water convolvuluses were exposed to electromagnetic fields inside a specially designed chamber for optimum field absorption, and the responses of the seeds to a constant frequency at various power levels and durations of exposure were monitored. The frequency used in the experiments was 425 MHz, the field strengths were 1 mW, 100 mW, and 10 W, and the exposure durations were 1, 2, and 4 h. Results show that germination enhancement is optimum for the mung beans at 100 mW/1 h power-duration level, while for water convolvuluses the optimum germination power-duration level was 1 mW/2 h. When both seed types were exposed at the early sprouting phase with their respective optimum power-duration levels for optimum seed growth, water convolvuluses showed growth enhancement while mung bean sprouts showed no effects. Water content analysis of the seeds suggests thermal effects only at higher field strength. PMID:20564175