Science.gov

Sample records for rotating fuel injection

  1. Fuel injection

    SciTech Connect

    Iiyoshi, A.; Vogoshi, S.

    1983-12-01

    The Plasma Physics Laboratory and the Dept. of Electrical Engineering report on three types of pellet injectors which have different applications: injection of a pellet into a magnetic bottle for magnetic confinement; injection of a pellet into a vacuum chamber for an inertial confinement experiment; and injection of a pellet into a magnetic bottle where the pellet is ionized by high-power laser irradiation for target plasma production. The requirements of pellet injectors are summarized in a table. Theoretical studies on pellet ablation in hot plasma and ablated particle diffusion are underway.

  2. Fuel injection valve connection

    SciTech Connect

    Eshleman, E.S.; Field, M.J.; Penwright, J.L.

    1987-09-15

    A fuel injection valve connection is described which consists of a fuel injection valve having a cylindrical inlet fitting. The fitting has a threaded internal surface and a cylindrical external surface. A fuel connector has a projection with a threaded external surface that mates with the threaded internal surface of the fitting. The connector also has a sleeve with a cylindrical internal surface surrounding the fitting and an O-ring sealingly engaging the internal surface of the sleeve and the external surface of the fitting, whereby the valve may be rotated relative to the connector without breaking the sealing engagement between the valve and the connector, and wherein the connector also has a tab engageable with the injector to prevent unthreading of the valve from the connector.

  3. Governor for fuel injection pump

    SciTech Connect

    Yogome, Y.; Itsuki, S.; Shimizu, T.; Shimizu, T.; Hamada, H.

    1987-05-19

    This patent describes double-lever type governor for a fuel injection pump comprising: a governor case; a governor lever and a tension lever rotatably supported in the case and operatively associated with each other; a start spring interposed between the governor lever and the tension lever securing a start fuel increment stroke in the governor lever; a fuel regulating rack connected to the governor lever; a supporting shaft mounted in the case supporting both the governor lever and the tension lever for rotation; and a locking mechanism which connects both levers at the time when the start fuel increment stroke of the governor lever becomes zero or approximately zero to be eliminated.

  4. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  5. Fuel injection system for internal combustion engine

    SciTech Connect

    Nagao, A.; Yoshioka, S.; Oda, H.; Tokushima, T.

    1988-11-22

    This patent describes a fuel injection system for an internal combustion engine having a crankshaft and a combustion chamber, the system comprising (a) an intake passage for introducing an intake gas into the combustion chamber and provided with an intake valve; (b) a fuel injection valve for injecting fuel into the intake passage in the vicinity of the combustion chamber; (c) operating condition detecting means for detecting the operating condition of the engine and outputting a signal corresponding to the thus detected operating condition; (d) fuel injection amount determining means which receives an output signal of the operating conditions detecting means, thereby determining the amount of fuel to be supplied to the combustion chamber, and outputs a signal corresponding to thus determined amount; (e) crankshaft angle detecting means for detecting the rotation angle of the crankshaft; (f) injection timing control means which receives signals from the fuel injection amount determining means and crankshaft angle detecting means, outputs a start signal for actuating the fuel injection valve and a termination signal for terminating the actuation of the fuel injection valve, and actuates the fuel injection valve for the duration between the start and termination signals, thereby supplying an amount of fuel determined by the fuel injection amount determining means; (g) the start and termination signals being set against the crankshaft angle so that the whole fuel injection from the injection valve to the intake passage under light load operation of the engine reaches the combustion chamber substantially in the latter half of the intake stroke before the intake valve is closed.

  6. Fuel injection apparatus for automobile

    SciTech Connect

    De Grazia, T.W. Jr.

    1987-09-22

    This patent describes a fuel injection adapter for use on a vehicle including a carburetor having a throat, a fuel pump, a throttle and a throttle control lever. In consists of: chamber means adapted for mounting adjacent the carburetor; metering jet means, including an orifice with different size internal diameters and a longitudinal needle movable within the orifice for varying the volume of fuel delivered. Fuel inlet means on the chamber means adapted for connection to the fuel pump; adjustment means mechanically coupled to the throttle lever and responsive to movement to control movement of the metering jet means to vary the amount of fuel delivered by the nozzle means. The adjustment includes an operating lever coupled to the throttle lever, a needle plate coupled to the operating lever and means on the needle plate for engaging the needle; and fuel shutoff means coupled in series with the fuel inlet means for cutting off fuel to the chamber means when the operating lever is moved to a position corresponding to a throttle wide-open position.

  7. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  8. Fuel injection device and method

    DOEpatents

    Carlson, L.W.

    1983-12-21

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  9. Fuel injection device and method

    DOEpatents

    Carlson, Larry W.

    1986-02-04

    A fuel injection system and method provide for shaping a combustion plume within a combustion chamber to effectively recirculate hot combustion gases for stable combustion conditions while providing symmetrical combustion conditions. Char and molten slag are passed to the outer boundary layer to complete combustion of char while permitting initial substoichiometric combustion in a reductive atmosphere for reducing discharge of nitrogen oxides. Shaping of the plume is accomplished by an axially adjustable pintle which permits apportionment of driving pressure between elements which contribute tangential and those which contribute radial directional components to oxidant flow entering the combustion chamber.

  10. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  11. Mixed Mode Fuel Injector And Injection System

    DOEpatents

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  12. Combustion oscillation control by cyclic fuel injection

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Robey, E.; Cowell, L.; Rawlins, D.

    1997-04-01

    A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle.combustor arrangement. The fuel is natural gas. Cyclic injection of 14 percent control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {minus}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

  13. Combustion oscillation control by cyclic fuel injection

    SciTech Connect

    Richards, G.A.; Yip, M.J.; Robey, E.; Cowell, L.; Rawlins, D.

    1995-04-01

    A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

  14. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  15. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  16. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  17. 30 CFR 36.22 - Fuel-injection system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fuel-injection system. 36.22 Section 36.22... EQUIPMENT Construction and Design Requirements § 36.22 Fuel-injection system. This system shall be so constructed that the quantity of fuel injected can be controlled at a desired maximum value and shall be...

  18. Momentum transfer to rotating magnetized plasma from gun plasma injection

    SciTech Connect

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-11-15

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.

  19. Momentum transfer to rotating magnetized plasma from gun plasma injection

    NASA Astrophysics Data System (ADS)

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-11-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1-87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.

  20. Momentum transfer to rotating magnetized plasma from gun plasma injection

    NASA Astrophysics Data System (ADS)

    Hassam, A. B.; Shamim, Imran; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-10-01

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. The plasma gun would be located in the axial mid-plane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of order the initial momentum of the target plasma. Several numerical firings are done into cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that upto 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.

  1. Combustion in a Bomb with a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Cohn, Mildred; Spencer, Robert C

    1935-01-01

    Fuel injected into a spherical bomb filled with air at a desired density and temperature could be ignited with a spark a few thousandths of a second after injection, an interval comparable with the ignition lag in fuel-injection engines. The effect of several variables on the extent and rate of combustion was investigated: time intervals between injection and ignition of fuel of 0.003 to 0.06 second and one of 5 minutes; initial air temperatures of 100 degrees C. to 250 degrees C.; initial air densities equivalent to 5, 10, and 15 absolute atmospheres pressure at 100 degrees C.; and air-fuel ratios of 5 to 25.

  2. Dual mode fuel injection system and fuel injector for same

    SciTech Connect

    Lawrence, Keith E.; Tian, Ye

    2005-09-20

    A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.

  3. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  4. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  5. Premixed direct injection nozzle for highly reactive fuels

    SciTech Connect

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  6. Fuel injection system for an internal combustion engine

    SciTech Connect

    Freyer, E.; Steinwart, J.; Will, P.

    1981-01-06

    A fuel injection system for an internal combustion engine includes an air suction pipe, a throttle valve located in the pipe, and a member, upstream of the throttle valve, which is actuatable by air flowing through the suction pipe so as to move a piston valve to dose a quantity of fuel to a fuel injection nozzle. The system includes a duct which bypasses the throttle valve, the duct having a valve which closes the duct when the throttle valve is closed and when the engine is above the idling speed. Dosing of fuel is thereby stopped during coasting of a vehicle, leading to decreased fuel consumption.

  7. Distribution and regularity of injection from a multicylinder fuel-injection pump

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1936-01-01

    This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.

  8. Improvement of fuel injection system of locomotive diesel engine.

    PubMed

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office. PMID:25084413

  9. Self-sustaining fuel purging fuel injection system

    SciTech Connect

    Bradley, J.R.; Koblish, T.R.

    1994-01-11

    A fuel injector system for a combustor of a gas turbine engine includes first and second fuel injectors rendered operative to discharge fuel to the combustor during a high power regime of engine operation and rendered non-operative during a lower power regime of engine operation. The first and second fuel injectors include respective first and second fuel discharge passages in fuel flow communication to one another and to the combustor via associated fuel discharge lips to sustain a flame region. The first and second fuel injectors are operatively associated with respective first and second air discharge means having air discharge lips for discharging air to the combustor for sustaining the flame region therein. When the fuel injectors are rendered non-operative, different pneumatic pressures are established at the fuel discharge lips to purge fuel from the fuel injectors to the combustor. 26 figs.

  10. Port fuel injection and induction system for internal combustion engine

    SciTech Connect

    Bishai, M.N.

    1991-04-23

    This patent describes an engine having a valve cover with a PVC valve to vent a valve chamber so as to eliminate oil and gas fumes there from and an automotive fuel injection system having a port fuel injector connected to a fuel supply and to an air manifold for injecting an air/fuel mixture into the injector for producing a fuel spray pattern at the outlet of an air induction passage form a throttle body assembly and upstream of an inlet valve to the combustion chamber of an internal combustion engine characterized by an integral electric motor driven pump assembly means supplying the injection air to the air manifold; the motor pump assembly means having a pump inlet connected to the PVC valve for providing a lubrication mist to the pump during the operation thereof and the motor pump assembly means having a pump outlet connected to the inlet of the air manifold.

  11. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  12. Elimination of fuel pressure fluctuation and multi-injection fuel mass deviation of high pressure common-rail fuel injection system

    NASA Astrophysics Data System (ADS)

    Li, Pimao; Zhang, Youtong; Li, Tieshuan; Xie, Lizhe

    2015-03-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73% at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92% at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  13. Heat Transfer to Fuel Sprays Injected into Heated Gases

    NASA Technical Reports Server (NTRS)

    Selden, Robert F; Spencer, Robert C

    1938-01-01

    This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.

  14. Pressure Fluctuations in a Common-Rail Fuel Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1931-01-01

    This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.

  15. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  16. System and method for injecting fuel

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2012-12-04

    According to various embodiments, a system includes a staggered multi-nozzle assembly. The staggered multi-nozzle assembly includes a first fuel nozzle having a first axis and a first flow path extending to a first downstream end portion, wherein the first fuel nozzle has a first non-circular perimeter at the first downstream end portion. The staggered multi-nozzle assembly also includes a second fuel nozzle having a second axis and a second flow path extending to a second downstream end portion, wherein the first and second downstream end portions are axially offset from one another relative to the first and second axes. The staggered multi-nozzle assembly further includes a cap member disposed circumferentially about at least the first and second fuel nozzles to assemble the staggered multi-nozzle assembly.

  17. Water injected fuel cell system compressor

    DOEpatents

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  18. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  19. Ultra low injection angle fuel holes in a combustor fuel nozzle

    DOEpatents

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  20. Thermostructural analysis of a scramjet fuel-injection strut

    NASA Technical Reports Server (NTRS)

    Wieting, A. R.; Thornton, E. A.

    1978-01-01

    Results of a thermal/structural design analysis study of a fuel injection strut for an airframe integrated hydrogen cooled scramjet are presented. It is indicated that a feasible thermal/structural concept has been identified for the static load conditions and that thermal stresses dominate the response. It is suggested that the response of the concept to dynamic loads be investigated.

  1. 30 CFR 36.22 - Fuel-injection system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel-injection system. 36.22 Section 36.22 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Construction and Design Requirements...

  2. 30 CFR 36.22 - Fuel-injection system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fuel-injection system. 36.22 Section 36.22 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Construction and Design Requirements...

  3. Two-stage, hydraulic-assisted fuel injection nozzle

    SciTech Connect

    Cotter, D.H.; Teerman, R.F.; Timmer, R.C.

    1987-08-04

    This patent describes a fuel injection nozzle for internal combustion engines including, in combination, a nozzle body means having a fuel inlet means at one end and a fuel injection spray orifice means at its opposite spray outlet end with a discharge passage means interconnecting the inlet means to the spray orifice means; a valve seat in the passage means upstream of the spray orifice means, a spring chamber means in the nozzle body means intermediate the ends, a pressure actuated injection valve in the nozzle body movable relative to the valve seat and having one end extending into the spring chamber means; a first spring means and second spring means in the spring chamber means operatively connected to each other and to the injection valve to effect the opening of the injection valve in two stages is controlled by the first spring means; and the second spring means with a first stage opening as controlled by the first spring and a second state opening as controlled by both the first and second spring. A valve controlled orifice passage means is in flow communication at one end with the discharge passage means and at its opposite end with the spring chamber means.

  4. Some Characteristics of Fuel Sprays at Low-injection Pressures

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1931-01-01

    This report presents the results of tests conducted at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine some of the characteristics of the fuel sprays obtained from an 0.008-inch and a 0.020-inch open nozzle when injection pressures from 100 to 500 pounds per square inch were used. Fuel oil and gasoline were injected into air at densities of atmospheric land 0.325 pound per cubic foot. It was found that the penetration rate at these low pressures was about the same as the rate obtained with higher pressures. Spray cone-angles were small and individual oil drops were visible in all the sprays. Gasoline and fuel oil sprays had similar characteristics.

  5. Repeated bevacizumab injections versus mitomycin C in rotational conjunctival flap for prevention of pterygium recurrence

    PubMed Central

    Ozsutcu, Mustafa; Ayintap, Emre; Akkan, Julide C U; Koytak, Arif; Aras, Cengiz

    2014-01-01

    Aims: To evaluate the efficacy of repeated bevacizumab injection in rotational conjunctival flap surgery versus rotational conjunctival flap with adjunctive mitomycin C (MMC) or rotational conjunctival flap alone. Materials and Methods: Ninety eyes of 90 patients who underwent primary pterygium surgery with rotational flap were evaluated. Patients were randomly assigned to undergo conjunctival rotational flap alone (Group A) or conjunctival rotational flap with either 0.02% MMC application (Group B) or adjunctive subconjunctival 2.5 mg/0.1 ml bevacizumab injection (Group C). Each group consisted of 30 eyes. Recurrence rates at 9 months were evaluated. Results: There were no statistically significant differences in mean size of the pterygium across the limbus in terms of length (P > 0.5). The recurrence rates at 9 months were 26.6% (n = 8) in Group A, 13.3% (n = 4) in Group B, and 10% (n = 3) in Group C. The recurrence rates in Group B and C were significantly lower than in Group A (P =0.1806). The recurrence rates were similar in Group B and C (P > 0.05). Conclusions: Subconjunctival bevacizumab injection may decrease the recurrence rate of primary pterygium surgery with rotational conjunctival flap. Further studies with a larger population and longer follow-up period are needed to supplement this study. PMID:24178405

  6. Fuel injection valve having a burnished guide bore and seat

    SciTech Connect

    Sasao, I.; Takaoka, Y.

    1987-03-24

    A method is described of producing a fuel injection valve which comprises a main fuel injection valve body; a valve rod slidable in the body and having an end with a valve body; and a valve seat-forming member attached to the main fuel injection valve body with the valve rod guidably received therein; the valve seat forming member having an interior including a guide bore for guiding opening and closing displacements of the valve rod. The guide bore has a uniform diameter throughout its entire length. A valve seat connected to the guide bore by an intermediate connecting portion, the valve seat having a smaller diameter than that of the guide bore and a fuel discharge port formed in continuation of the valve seat. The method comprises: forming a starting bore in the valve seat-forming member by boring, the starting bore having a straight, rectilinear bore portion leading into a lower tapered bore portion, and thereafter concurrently forming the guide bore and the valve seat from the starting bore by simultaneously subjecting the surfaces of the straight, rectilinear portion of the lower tapered bore portion of the starting bore to a burnishing operation by a single and common burnishing tool. This leaves a non-barnished portion between the burnished guide bore and the burnished valve seat, the non-burnished portion forming the intermediate connecting portion which provides a smoothly stepped configuration from the guide bore to the valve seat.

  7. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  8. Rotation of a Thin Elastic Rod Injected into a Cylindrical Constraint

    NASA Astrophysics Data System (ADS)

    Mulcahy, Connor; Su, Tianxiang; Wicks, Nathan; Pabon, Jahir; Reis, Pedro

    2015-03-01

    We report the results from an experimental investigation of the buckling of a thin elastic rod injected into a horizontal cylindrical constraint, with an emphasis on comparing the two cases of rotating, or not, the rod at the injection site. We are particularly interested on the total length of rod that can be injected into the pipe prior to the onset of helical buckling. This instability arises due to the frictional rod-constraint contact that eventually leads to the buildup of axial stress on the rod, above a critical value. We explore the dependence of the buckling conditions on the physical and control parameters of the system (e.g. material and geometric parameters, injection speed and rotation frequency) and rationalize the underlying physical mechanism through a reduced model. Funding and support provided by Schlumberger-Doll Research.

  9. Fuel injection system uses air-bled nozzles

    SciTech Connect

    Gayler, R.J.

    1983-04-01

    A microprocessor-controlled fuel injection system known as ''Pijet'' has been developed by researchers at Piper FM Ltd. It is explained that air and fuel are mixed in the fuel injectors and the mixture is distributed to each cylinder via ''natural selection.'' The system consists of integrated primary pressure pump and pressure relief valve; control box, integrated with the throttle valve housing and containing throttle angle sensor and fuel metering slot valve; solenoid-operated fuel metering pulser and fuel accumulator; fuel injectors; electronic control module; engine speed sensor; and engine, air temperature, and barometric pressure sensors. It is pointed out that the Pijet system has been used successfully in a number of European and Japanese cars ranging from 1.1 to 2.0 L with operating mileage from 5000 to 30,000 miles. The application of inertia-ram tuned induction systems has shown maximum torque increases of 10-15% with a torque spread increase of 1200 rpm into the low speed range.

  10. Apparatus and method for controlling the secondary injection of fuel

    DOEpatents

    Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

    2013-03-05

    A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

  11. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered...

  12. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered...

  13. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered...

  14. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered...

  15. Development of a fuel injected two-stroke gasoline engine

    SciTech Connect

    Plohberger, D.; Mikulic, L.A.; Landfahrer, K.

    1988-01-01

    AVL's development of a semi-direct injected two-stroke engine employed a carburetted 250cc production motorcycle engine as a baseline. Special emphasis was placed on the investigation of fuel jet and scavenge flow interactions. To evaluate the scavenge flow pattern, a steady flow test procedure was developed and applied. The results of scavenging system optimization were confirmed by subsequent engine tests which showed significant gains in power output. Completion of the first phase of the research program resulted in the development of a semi-direct injection system using currently available automotive low pressure manifold injection system components. Compared to the original carburetted engine, significant improvements were demonstrated, including a 30% reduction of fuel consumption, a reduction of up to 60% in hydrocarbon emissions and up to 70% in carbon monoxide emission, averaged over the engine's speed and load range. Engine BMEP and power characteristics were maintained and improved. In addition, the critical idle operating conditions were improved significantly by stabilizing the combustion with minimized cyclic variations. The results of thermodynamic cycle analyses, based both on engine test measurements and on calculations, are presented. Finally, the paper compares the semi-direct and direct injection systems and presents an outlook based on some of the results of the current phase of AVL's low emission two-stroke engine research program.

  16. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  17. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  18. Rates of fuel discharge as affected by the design of fuel-injection systems for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Marsh, E T

    1933-01-01

    Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.

  19. Correlation between Rotator Cuff Tears and Repeated Subacromial Steroid Injections: A Case-Controlled Study

    PubMed Central

    Bhatia, M; Singh, B; Nicolaou, N; Ravikumar, KJ

    2009-01-01

    INTRODUCTION Concern exists regarding potential damage to the rotator cuff from repeated corticosteroid injections into the subacromial space. PATIENTS AND METHODS In this retrospective, case-controlled study, 230 consecutive patients presenting to three orthopaedic units with subacromial impingement and investigated as an end-point with magnetic resonance imaging (MRI) of the shoulder were divided into groups having received less than three or three or more subacromial injections of corticosteroids. RESULTS With no significant difference in age and sex distribution, analysis by MRI showed no significant difference between the two groups in the incidence of rotator cuff tear (P < 1.0). CONCLUSIONS This suggests that corticosteroid use in patients with subacromial impingement should not be considered a causative factor in rotator cuff tears. PMID:19409148

  20. Novel application-oriented transient fuel model of a port fuel injection S. I. engine

    NASA Astrophysics Data System (ADS)

    Wang, Cunlei; Zhang, Jianlong; Yin, Chengliang

    2014-03-01

    Most researches on transient fuel control of port fuel injection S.I. engine are carried out from the perspective of advanced mathematical theories. When it comes to practical control, there exist many limitations although they are more intelligent. In order to overcome the fuel wetting effect of PFI engine, the application-oriented transient fuel control is studied by analyzing the key parameters which are closely related with the engine transient characteristics. Both validity and simplicity are taken into consideration. Based on the fuel wall-wetting theory and popular fuel compensation strategy, short-term transient fuel(STF) and long-term transient fuel(LTF), as well as their individual decay approaches, are introduced. STF is to compensate the drastic fuel film loss caused by sudden throttle change, while the function of LTF is to compensate the fuel film loss by manifold air pressure( p) fluctuation. Each of them has their respective pros and cons. The engine fuel mass and air mass are also calculated for air-fuel ratio(AFR) according to ideal gas state equation and empirical equations. The vehicle acceleration test is designed for model validation. The engine experiences several mild and heavy accelerations corresponding to the gear change during vehicle acceleration. STF and LTF control are triggered reliably. The engine transient fuel control simulation adopts the same inputs as the test to ensure consistency. The logged test data are used to check the model output. The results show that the maximum fuel pulse width(FPW) error reaches 2 ms, and it only occurs under engine heavy acceleration condition. The average FPW error is 0.57 ms. The results of simulation and test are close overall, which indicates the accuracy of steady and transient fuel. The proposed research provides an efficient approach not only suitable for practical engineering application, but also for AFR prediction, fuel consumption calculation, and further studies on emission control.

  1. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  2. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  3. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  4. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    NASA Astrophysics Data System (ADS)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Gerhardt, S. P.; Boyer, M. D.; Andre, R.; Kolemen, E.; Taira, K.

    2016-03-01

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  5. Fuel injection system and method of operating the same for an engine

    SciTech Connect

    Topinka, Jennifer Ann; DeLancey, James Peter; Primus, Roy James; Pintgen, Florian Peter

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  6. Spray Penetration with a Simple Fuel Injection Nozzle

    NASA Technical Reports Server (NTRS)

    Miller, Harold E; Beardsley, Edward G

    1926-01-01

    The purpose of the tests covered by this report was to obtain specific information on the rate of penetration of the spray from a simple injection nozzle, having a single orifice with a diameter of 0.015 inch when injecting into compressed gases. The results have shown that the effects of both chamber and fuel pressures on penetration are so marked that the study of sprays by means of high-speed photography or its equivalent is necessary if the effects are to be appreciated sufficiently to enable rational analysis. It was found for these tests that the negative acceleration of the spray tip is approximately proportional to the 1.5 power of the instantaneous velocity of the spray tip.

  7. Adhesive capsulitis: one sonographic-guided injection of 20 mg triamcinolon into the rotator interval.

    PubMed

    Juel, Niels Gunnar; Oland, Gunnar; Kvalheim, Synnøve; Løve, Tormod; Ekeberg, Ole Marius

    2013-06-01

    The aim of this study was to establish a method for injecting corticosteroid into the rotator interval under sonographic guidance and to measure the effect on function, pain and range of motion after 4 and 12 weeks. This study involved a multicenter cohort trial and carried out at outpatient clinics of the physical medicine and rehabilitation departments in Oslo and Porsgrunn, Norway. 39 patients with adhesive capsulitis lasting between 3 and 12 months. Sonographic-guided corticosteroid and lidocaine injection into the rotator interval medial to the biceps tendon using 20 mg triamcinolon hexacetat and 3 ml 20 mg/ml xylocain. Change in the shoulder pain and disability index score (SPADI) after 12 weeks. The change in SPADI was 42 points (95 % confidence interval, 33-51). Changes in the secondary outcomes shoved highly statistically significant increase in active and passive range of motion. One ultrasound-guided corticosteroid injection into the rotator interval seems to give significant improvement in SPADI and active range of motion after 12 weeks. The protocol was evaluated by the research faculty at Oslo university hospital, dept of physical medicine. The study was regarded as regular clinical procedure as injections with triamcinolon already is standard treatment. No trial registration was obtained but the protocol presented the local ethics committee without comments. PMID:23263492

  8. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  9. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  10. Surgical correction of cryptotia combined with intraoperative distention using isotonic saline injection and rotation flap method.

    PubMed

    Uemura, Tetsuji; Matsumoto, Naozumi; Tanabe, Tsuyoshi; Saitoh, Tomoichi; Matsushita, Shigeto; Mitsukawa, Nobuyuki

    2005-05-01

    The following report describes the combination of surgical correction with intraoperative distention using isotonic saline injection and the rotation flap method for correction of cryptotia. This technique provided extensive skin coverage of the upper portion of the auricle and was an easy and quick method of dissecting the cartilage of the posterior auricle. The main advantages of this technique include achievement of skin expansion without the need for expander material, simple design of the skin incision, and easy dissection of the cartilage. Although one patient experienced partial congestion in the upper tip of the rotation flap, no other complications occurred. Further, cryptotia did not recur. PMID:15915119

  11. An experimental study on the effect of air bubble injection on the flow induced rotational hub

    SciTech Connect

    Nouri, N.M.; Sarreshtehdari, A.

    2009-01-15

    Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water. (author)

  12. Measurements of Fuel Distribution Within Sprays for Fuel-Injection Engines

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1937-01-01

    Two methods were used to measure fuel distribution within sprays from several types of fuel-injection nozzles. A small tube inserted through the wall of an air tight chamber into which the sprays were injected could be moved about inside the chamber. When the pressure was raised to obtain air densities of 6 and 14 atmospheres, some air was forced through the tube and the fuel that was carried with it was separated by absorbent cotton and weighed. Cross sections of sprays from plain, pintle, multiple-orifice, impinging-jets, centrifugal, lip, slit, and annular-orifice nozzles were investigated, at distances of 1, 3, 5, and 7 inches from the nozzles.

  13. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    DOEpatents

    Mao, Chien-Pei; Short, John; Klemm, Jim; Abbott, Royce; Overman, Nick; Pack, Spencer; Winebrenner, Audra

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  14. Advanced diesel electronic fuel injection and turbocharging. Final report, July 1990-December 1993

    SciTech Connect

    Beck, N.J.; Barkhimer, R.L.; Steinmeyer, D.C.; Kelly, J.E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine. Electronic fuel injection, Turbocharging, Diesel combustion, Cold starting, Flame photography.

  15. Materials for High-Pressure Fuel Injection Systems

    SciTech Connect

    Blau, P.; Shyam, A.; Hubbard, C.; Howe, J.; Trejo, R.; Yang, N.; Pollard, M.

    2011-09-30

    . Compared to the smooth specimens, EDM notching led to a severe reduction in total fatigue life. A reduction in fatigue life of nearly four orders of magnitude can occur at an EDM notch the approximate size of fuel injector spray holes. Consequently, the initiation and propagation behavior of cracks from small spray holes is relevant for generation of design quality data for the next generation diesel fuel injection devices. This is especially true since the current design methodologies usually rely on the less conservative smooth specimen fatigue testing results, and since different materials can have varying levels of notch fatigue resistance.

  16. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the

  17. Piezoceramic multilayer actuators for fuel injection systems in automotive area

    NASA Astrophysics Data System (ADS)

    Schuh, Carsten; Steinkopff, Thorsten; Wolff, Andreas; Lubitz, Karl

    2000-06-01

    Cofired multilayer piezoceramic actuators as extremely fast valve driving elements will lead to a significant progress in the field of fuel injection systems. A careful adaptation of the component performance to the system demands, an extraordinary high reliability, and competitive low production costs are prerequisites for this large-scale industrial application. With proper material selection as basis, conventional multilayer technology has to be substantially extended in order to achieve large stack volumes, to avoid degradation effects during cofiring and nevertheless to meet the target costs. Under large-signal driving conditions, the static and dynamic behavior of the component is essentially influenced by driving pulse shape, clamping force, and stiffness of the load. Linear FE methods are employed to calculate the performance criteria of different actuator designs. Moreover, a FE-implementation using a micromechanical domain switching model was developed in order to describe the strongly nonlinear material behavior. Together with a quantitative estimation of crack initiation and propagation by means of fracture mechanics, these methods can give valuable hits for controlling the effects of fatigue and deterioration which may limit the operating life time. In order to optimize the interaction of the electrical and mechanical parts in the injection system, dynamic models of piezoelectric components must be provided. A nonlinear model of the stack actuator has been developed for the analysis software MATLAB/SIMULINK. Special attention has been paid to the hysteresis properties.

  18. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  19. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  20. Planar near-nozzle velocity measurements during a single high-pressure fuel injection

    NASA Astrophysics Data System (ADS)

    Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas

    2015-09-01

    In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.

  1. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    SciTech Connect

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Weiland, Mark A.; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systems (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.

  2. The time lag and interval of discharge with a spring actuated fuel injection pump

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson; Gardiner, A W

    1923-01-01

    Discussed here is research on a spring activated fuel pump for solid or airless injection with small, high speed internal combustion engines. The pump characteristics under investigation were the interval of fuel injection in terms of degrees of crank travel and in absolute time, the lag between the time the injection pump plunger begins its stroke and the appearance of the jet at the orifice, and the manner in which the fuel spray builds up to a maximum when the fuel valve is opened, and then diminishes.

  3. Numerical investigation of the impact of asymmetric fuel injection on shock train characteristics

    NASA Astrophysics Data System (ADS)

    Qin, Bin; Chang, Juntao; Jiao, Xiaoliang; Bao, Wen; Yu, Daren

    2014-12-01

    Numerical simulations are carried out to investigate the impact of asymmetric fuel injection on shock train characteristics using the commercial-code FLUENT. The asymmetry of fuel injection is examined by changing the fuel flow rates of the upper and lower wall fuel injectors. The numerical approach solves the two-dimensional Reynolds-averaged Navier-Stokes (RANS) equations, supplemented with a k-ω model of turbulence. As a result, different ways of fuel injections will always lead to shock train transitions, with the variations of shock train structure, strength and leading edge position. For symmetric fuel injection, the flowfield of the isolator is quite asymmetric with the boundary layer of the upper wall side developing much stronger than that of the lower wall, which is due to the heterogeneity of the incoming flow. Regarding to asymmetric fuel injection with more of lower wall side, though the pressures in the combustor are nearly the same, the first shock of the shock train converts between 'Distinct symmetric X type shock' and 'Obscure and weaker asymmetric shock' and the shock train leading edge moves upstream with the increase of the asymmetry level. With regard to asymmetric fuel injection with more of upper wall side, 'incomplete asymmetric X type shock' occurs and the shock train structures keep nearly the same with low level of fuel injection asymmetry. Unexpected results like unstart will happen when increasing the level of fuel injection asymmetry. And the isolator will come back to normal state by decreasing the differential of upper and lower wall sides fuel injections.

  4. Preloaded compliant linkage for fuel injection pump rack

    SciTech Connect

    Brisbon, E.S.; Krosney, M.

    1989-07-25

    This patent describes in a fuel injection pump system for an internal combustion engine. The improvement comprising: a compliant linkage in the pump rack means positioned between a first portion of the pump rack means engaged by the gear and a second portion thereof which is connected to the plunger means. The linkage comprising a precompressed spring urging the first and second portions of the pump rack means apart from each other with a force greater than the value of load forces acting on the rack means during normal operation in the absence of abnormally strong transient load forces, but less than the driving force produced by the stepper output shaft; whereby the spring remains in its normal precompressed state during normal operation; is additionally compressed when transient load forces occur so as to permit continue normal operation of the gear even though the second portion of the rack means is arrested; and returns to its normal precompressed state when the transient local forces disappear, thus permitting the second portion of the pump rack means to assume its proper controlled position. Herein the first portion of the rack means is pivotable about an axis normal to the length of the pump rack means and is biased toward the gear by a spring.

  5. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  6. Episodic barrel rotations induced by intrastriatal injection of quinolinic acid in rats. Inhibition by anticonvulsants.

    PubMed

    Marrannes, R; Wauquier, A

    1988-09-01

    Unilateral intrastriatal injection of quinolinic acid (2,3 pyridine dicarboxylate; QUIN) in the rat produces episodic barrel rotations and tonic-clonic forepaw movements, lasting for several hours. We investigated whether intraperitoneal posttreatment with anticonvulsants could abolish this phenomenon when it is already fully developed, and whether their potency ratio was similar in models of epilepsy. All 8 tested antiepileptics, namely carbamazepine, clonazepam, diazepam, diphenylhydantoin, ethosuximide, flunarizine, phenobarbital and sodium valproate decreased this behaviour in a dose-dependent way. Six other drugs with anticonvulsant properties were also effective: DL-2-amino-7-phosphonoheptanoic acid, desipramine, etomidate, ketamine, meprobamate and sabeluzole. The ED50-values for halving the frequency of the episodes of barrel rotation correlated well with published ED50-values for inhibition of tonic hindpaw extension in the maximal metrazol seizure test (rs = .95, p less than 0.001) and with the ED50-values for halving the duration of the forepaw clonus in the rat-kindling model (rs = .93, p less than 0.001). This quinolinic acid test allows visualization of the onset of action of anticonvulsants, with each animal as its own control. In order to assess whether this test is also sensitive to drugs influencing the symptoms of Huntington's disease, the effect of the dopamine antagonists haloperidol and pimozide, the acetylcholinesterase inhibitor physostigmine and the anticholinergics atropine and dexetimide were investigated as well. The experiments suggested that the barrel rotations and clonic forepaw movements, only 3-6 hours after intrastriatal injection of QUIN respond to anticonvulsants, but are not specifically sensitive to drugs used in the symptomatic treatment of Huntington's disease. PMID:2978064

  7. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  8. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  9. Airblast fuel injection with adjustable valve cracking pressure

    SciTech Connect

    Halvorsen, R.M.

    1990-10-16

    This patent describes an airblast fuel injector having injector body means for forming an inner air chamber with a downstream air discharge orifice, an outer air chamber with a downstream air discharge orifice and an annular fuel chamber between the inner and outer air chambers with a downstream fuel discharge orifice. The injector body means forming a passage between the annular fuel chamber and an upstream fuel inlet chamber, a valve seat member adjustably received in the passage and having a fuel bore for receiving fuel from the fuel inlet chamber and terminating in a fuel discharge port, and an arcuate spring valve disposed on the injector body means and including a cantilever end portion overlying the fuel discharge port and biased against the valve seat member over the fuel discharge port when fuel pressure is below a minimum value and operable when fuel pressure exceeds a selected value to allow fuel flow discharge from the fuel discharge port to the annular fuel chamber. The valve seat member being adjustable in position in the passage relative to the cantilever end portion of the valve from the exterior of the injector body means to adjust the valve opening pressure.

  10. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  11. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1931-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  12. A Comparison of Fueling with Deuterium Pellet Injection from Different Locations on the DIII-D Tokamak

    SciTech Connect

    Baylor, L.R.; Combs, S.K.; Gohil, P.; Houlberg, W.A.; Hsieh, C.; Jernigan, T.C.; Parks, P.B.

    1999-06-14

    Initial pellet injection experiments on DIII-D with high field side (HFS) injection have demonstrated that deeper pellet fuel deposition is possible even with HFS injected pellets that are significantly slower than pellets injected from the low field side (LFS) (outer midplane) location. A radial displacement of the pellet mass shortly after or during the ablation process is consistent with the observed mass deposition profiles measured shortly after injection. Vertical injection inside the magnetic axis shows some improvement in fueling efficiency over LFS injection and may provide an optimal injection location for fueling with high speed pellets.

  13. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    DOEpatents

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  14. Controlling device for a fuel-quantity adjusting member of a fuel injection pump

    SciTech Connect

    Eheim, F.; Hofer, G.; Konrath, K.; Straubel, M.

    1987-11-03

    This patent describes a controlling device for a fuel-quantity adjustment element of a fuel injection pump including an adjusting lever pivotable around a shaft. The adjusting lever is coupled with a fuel-quantity adjusting element, a drag lever pivotable around the shaft of the adjusting lever. The drag lever communicates with the adjusting lever by way of a coupling element. An adjustable governor spring assembly is arranged to act on the drag lever, a stop for stopping the drag lever, further including a device for generating rpm-dependent force transmittable to the drag lever by means of an actuating element thereof and counter to the governor spring assembly, whereby the drag lever and the adjusting lever are coupled for movement together at least at the end of each relative movement effected by the actuating element. The actuating element acts directly upon the drag lever and the adjusting lever during deflection by way of a predetermined relative adjustment distance between the drag lever and the adjusting lever for adjustment by the actuating element, at least one spring arranged between the adjusting lever and a fixed support. At least one spring acts on the adjusting lever to force the adjusting lever into contact with an adjustable stop which is adjustable in dependence from the operating parameters of the combustion engine.

  15. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  16. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  17. Fuel injection and mixing systems and methods of using the same

    DOEpatents

    Mao, Chien-Pei; Short, John

    2010-08-03

    A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.

  18. Fuel-lubricity requirements for diesel-injection systems. Interim report, Sep 90-Feb 91

    SciTech Connect

    Lacey, P.I.; Lestz, S.J.

    1991-02-01

    The U.S. Department of Defense has adopted the single fuel for the battlefield concept. Diesel fuel will be replace by JP-8/Jet A-1, which has both lower lubricity and viscosity. Currently, the tribological requirements of fuel-lubricated components in the injection system are unknown. As a result, no widely approved lubricity test or standard exists. Similar problems are currently faced in commercial applications where low-sulfur/aromatic fuels are being introduced. The present study details the wear mechanisms likely to exist with low lubricity fuels, with particular reference to injection equipment known to be fuel sensitive. The wear mechanism was found to ba a function of contact severity and may not be uniquely defined by a single test. A number of potentially viable lubricity tests is suggested, and fuel/additive components are recommended for wear reduction.

  19. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1934-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  20. An Apparatus for Measuring Rates of Discharge of a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Dutee, Francis J

    1941-01-01

    A portable apparatus for rapidly determining rates of discharge of a fuel-injection system is described. Satisfactory operation of this apparatus with injection-pump speeds up to 2400 r.p.m was obtained. Rate-of-discharge tests were made with several cam-plunger-valve injection systems with long injection tubes. A check valve designed to reduce secondary discharges was tested. This check valve was operated with injection-pump speeds up to 2400 r.p.m without the occurrence of large secondary discharges.

  1. Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1980-01-01

    Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.

  2. Effectiveness of Subacromial Anti-Adhesive Agent Injection after Arthroscopic Rotator Cuff Repair: Prospective Randomized Comparison Study

    PubMed Central

    Oh, Chung Hee; Oh, Joo Han; Kim, Sae Hoon; Cho, Jae Hwan; Yoon, Jong Pil

    2011-01-01

    Background Arthroscopic rotator cuff repair generally has a good clinical outcome but shoulder stiffness after surgery due to subacromial adhesion is one of the most common and clinically important complications. Sodium hyaluronate (HA) has been reported to be an anti-adhesive agent in a range of surgical procedures. However, there are few reports of the outcomes of arthroscopic rotator cuff repair of the shoulder. This study examined whether a subacromial injection of HA/carboxymethylated cellulose (CMC) affected the postoperative shoulder stiffness and healing of rotator cuff repair, as well as the safety of an injection. Methods Between January 2008 and May 2008, 80 consecutive patients with arthroscopic rotator cuff repair were enrolled. The patients were assigned randomly to the HA/CMC injection group (n = 40) or control group (n = 40). All patients were evaluated using the visual analog scale (VAS) for pain, passive range of motion at 2, 6 weeks, 3, 6, 12 months after surgery, and the functional scores at 6, 12 months postoperatively. Cuff healing was also evaluated using CT arthrography or ultrasonography at 6 or 12 months after surgery. Results The HA/CMC injection group showed faster recovery of forward flexion at 2 weeks postoperatively than the control group but the difference was not statistically significant (p = 0.09). There were no significant difference in pain VAS, internal rotation, external rotation and functional scores between two groups at each follow-up period. The functional scores improved 6 months after surgery in both groups but there were no differences between the two groups. The incidence of unhealed rotator cuff was similar in the two groups. There were no complications related to an injection of anti-adhesive agents including wound problems or infections. Conclusions A subacromial injection of an anti-adhesive agent after arthroscopic rotator cuff repair tended to produce faster recovery in forward flexion with no adverse effects on

  3. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures.

    PubMed

    Zhu, Rencheng; Hu, Jingnan; Bao, Xiaofeng; He, Liqiang; Lai, Yitu; Zu, Lei; Li, Yufei; Su, Sheng

    2016-09-01

    Vehicle emissions are greatly influenced by various factors that are related to engine technology and driving conditions. Only the fuel injection method and ambient temperature are investigated in this research. Regulated gaseous and particulate matter (PM) emissions from two advanced gasoline-fueled vehicles, one with direct fuel injection (GDI) and the other with port fuel injection (PFI), are tested with conventional gasoline and ethanol-blended gasoline (E10) at both -7 °C and 30 °C. The total particle number (PN) concentrations and size distributions are monitored with an Electrical Low Pressure Impactor (ELPI(+)). The solid PN concentrations are measured with a condensation particle counter (CPC) after removing volatile matters through the particle measurement program (PMP) system. The results indicate that decreasing the ambient temperature from 30 °C to -7 °C significantly increases the fuel consumption and all measured emissions except for NOx. The GDI vehicle exhibits lower fuel consumption than the PFI vehicle but emits more total hydrocarbons (THC), PM mass and solid PN emissions at 30 °C. The adaptability of GDI technology appears to be better than that of PFI technology at low ambient temperature. For example, the CO, THC and PM mass emission factors of the PFI vehicle are higher than those of the GDI vehicle and the solid PN emission factors are comparable in the cold-start tests at -7 °C. Specifically, during start-up the particulate matter emissions of the PFI are much higher than the GDI. In most cases, the geometric mean diameter (GMD) of the accumulation mode particles is 58-86 nm for both vehicles, and the GMD of the nucleation mode particles is 10-20 nm. The results suggest that the gaseous and particulate emissions from the PFI vehicle should not be neglected compared to those from the GDI vehicle especially in a cold environment. PMID:27267738

  4. Geomechanical simulation of the stress tensor rotation caused by injection of cold water in a deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Jeanne, Pierre; Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; Walters, Mark; Hartline, Craig; Borgia, Andrea

    2015-12-01

    We present a three-dimensional thermohydromechanical numerical study of the evolution and distribution of the stress tensor within the northwest part of The Geysers geothermal reservoir (in California), including a detailed study of the region around one injection well from 2003 to 2012. Initially, after imposing a normal faulting stress regime, we calculated local changes in the stress regime around injection wells. Our results were compared with previously published studies in which the stress state was inferred from inverting the focal plane mechanism of seismic events. Our main finding is that changes in stress tensor orientation are caused by injection-induced progressive cooling of the reservoir, as well as by the seasonal variations in injection rate. Because of the gravity flow and cooling around a liquid zone formed by the injection, the vertical stress reduction is larger and propagates far below the injection well. At the same time, the horizontal stress increases, mostly because of stress redistribution below and above the cooling area. These two phenomena cause the rotation of the stress tensor and the appearance of a strike-slip regime above, inside, and below the cooling area. The cooling and the associated rotation of the stress regime can play a significant role in the observed long-term deepening of the microseismicity below active injection wells.

  5. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Movahednejad, E.; Ommi, F.; Nekofar, K.

    2013-04-01

    The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  6. Apparatus for injection casting metallic nuclear energy fuel rods

    DOEpatents

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  7. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    NASA Astrophysics Data System (ADS)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  8. Fuel injection assembly for use in turbine engines and method of assembling same

    SciTech Connect

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  9. Integrated Fuel Injection and Mixing System with Impingement Cooling Face

    NASA Technical Reports Server (NTRS)

    Mansour, Adel B. (Inventor); Harvey, Rex J. (Inventor); Tacina, Robert R. (Inventor); Laing, Peter (Inventor)

    2003-01-01

    An atomizing injector includes a metering set having a swirl chamber, a spray orifice and one or more feed slots etched in a thin plate. The swirl chamber is etched in a first side of the plate and the spray orifice is etched through a second side to the center of the swirl chamber. Fuel feed slots extend non-radially to the swirl chamber. The injector also includes integral swirler structure. The swirler structure includes a cylindrical air swirler passage, also shaped by etching, through at least one other thin plate. The cylindrical air swirler passage is located in co-axial relation to the spray orifice of the plate of the fuel metering set such that fuel directed through the spray orifice passes through the air swirler passage and swirling air is imparted to the fuel such that the fuel has a swirling component of motion. At least one air feed slot is provided in fluid communication with the air swirler passage and extends in non-radial relation thereto. Air supply passages extend through the plates of the metering set and the swirler structure to feed the air feed slot in each plate of the swirler structure.

  10. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  11. Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection.

    PubMed

    Liu, Jiao; Wu, Zheng-Mao; Xia, Guang-Qiong

    2009-07-20

    A novel dual-channel chaotic synchronization configuration is proposed. This system is constructed on the basis of two unidirectionally coupled vertical-cavity surface-emitting lasers (VCSELs), where a VCSEL subjected to polarization-rotated optical feedback is used as a transmitter and the other VCSEL subjected to polarization-rotated optical injection is used as a receiver. The synchronization and communication performances of such a system are numerically investigated. The results show that, similar to polarization-preserved coupled system with polarization-preserved optical feedback at the T-VCSEL port and polarization-preserved optical injection at the R-VCSEL port, such polarization-rotated coupled system can also realize complete synchronization between each pair of linear polarization (LP) modes and the total output of T-VCSEL and R-VCSEL. Compared with the polarization-preserved coupled system, this proposed system has higher tolerance to mismatched parameters. Furthermore, the average intensities of two orthogonal LP modes are almost the same so that this framework may be used to realize dual-channel chaos communication. Under the additive chaos modulation (ACM) encryption scheme, the encoded messages can be successfully extracted for both of orthogonal LP modes. PMID:19654666

  12. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-03-24

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.

  13. Effects of Fuel Temperature on Injection Process and Combustion of Dimethyl Ether Engine.

    PubMed

    Guangxin, Gao; Zhulin, Yuan; Apeng, Zhou; Shenghua, Liu; Yanju, Wei

    2013-12-01

    To investigate the effects of fuel temperature on the injection process in the fuel-injection pipe and the combustion characteristics of compression ignition (CI) engine, tests on a four stroke, direct injection dimethyl ether (DME) engine were conducted. Experimental results show that as the fuel temperature increases from 20 to 40 °C, the sound speed is decreased by 12.2%, the peak line pressure at pump and nozzle sides are decreased by 7.2% and 5.6%, respectively. Meanwhile, the injection timing is retarded by 2.2 °CA and the injection duration is extended by 0.8 °CA. Accordingly, the ignition delay and the combustion duration are extended by 0.7 °CA and 4.0 °CA, respectively. The cylinder peak pressure is decreased by 5.4%. As a result, the effective thermal efficiency is decreased, especially for temperature above 40 °C. Before beginning an experiment, the fuel properties of DME, including the density, the bulk modulus, and the sound speed were calculated by "ThermoData." The calculated result of sound speed is consistent with the experimental results. PMID:23918238

  14. An Optical and Computational Investigation on the Effects of Transient Fuel Injections in Internal Combustion Engines

    NASA Astrophysics Data System (ADS)

    Neal, Nicholas

    The effects of transient rate-of-injection profiles on high-pressure fuel jets have been studied in an optically accessible internal combustion engine. High-speed optical imaging measurements were applied over a range of ambient conditions, fuel types, and injection parameters. The optical data demonstrate that during the early part of the injection, while the liquid core of the jet is disintegrating, penetration is functionally linked to the orifice exit velocity up until a downstream distance hypothesized to be the jet breakup length. The jets then transition to a mixing dominated penetration behavior further downstream. Therefore, for cases that exhibit transient rate-of-injection (ROI) profiles, quasi-steady correlations for penetration have poor agreement with the empirical data. The lack of agreement between models using quasi-steady approximations and the high-speed experimental data, and the experimental evidence of liquid core physics impacting the transient jet penetration, motivated the development of a new 1-D model that integrates liquid core penetration physics and eliminates quasi-steady approximations. The new 1-D modeling methodology couples the transport equations for the evolution of the liquid core of the jet and the surrounding sheath of droplets resulting from breakup. The results of the model are validated against the aforementioned optical transient jet measurements. Finally, experimental results for two jet fuels and a diesel fuel are studied with the aid of the model. Differences in fuel properties cause the diesel fuel jet to transition from an incomplete spray to a complete spray later than the jet fuels during the transient injection process. Increasing ambient density causes the transition to happen earlier during the injection transient for all three fuels. The ignition delay and liftoff length appeared to be relatively unaffected by the late transition from incomplete to complete spray at low ambient density and low injection

  15. Development of CNG direct injection (CNGDI) clean fuel system for extra power in small engine

    NASA Astrophysics Data System (ADS)

    Ali, Yusoff; Shamsudeen, Azhari; Abdullah, Shahrir; Mahmood, Wan Mohd Faizal Wan

    2012-06-01

    A new design of fuel system for CNG engine with direct injection (CNGDI) was developed for a demonstration project. The development of the fuel system was done on the engine with cylinder head modifications, for fuel injector and spark plug openings included in the new cylinder head. The piston was also redesigned for higher compression ratio. The fuel rails and the regulators are also designed for the direct injection system operating at higher pressure about 2.0 MPa. The control of the injection timing for the direct injectors are also controlled by the Electronic Control Unit specially designed for DI by another group project. The injectors are selected after testing with the various injection pressures and spray angles. For the best performance of the high-pressure system, selection is made from the tests on single cylinder research engine (SCRE). The components in the fuel system have to be of higher quality and complied with codes and standards to secure the safety of engine for high-pressure operation. The results of the CNGDI have shown that better power output is produced and better emissions were achieved compared to the aspirated CNG engine.

  16. Experiment on fuel injection in high-enthalpy flow

    NASA Astrophysics Data System (ADS)

    Tanno, Hideyuki; Komuro, Tomoyuki; Sato, Kazuo; Itoh, Katsuhiro; Ueda, Shuichi

    2001-04-01

    An experiment of inert gas injection into a high enthalpy hypersonic air flow is described. Gaseous helium at room temperature was injected transversely through four (phi) 1.5 mm circular sonic injectors at a spacing of 20 mm, which was located 28 mm downstream from a backward-facing step of 4 mm height. The experiment was carried out in the high enthalpy shock tunnel HIEST under the free stream test condition at Mach number of 6.5 and at the velocity of 4 km/s. The purpose of the experiment was to examine transient behavior of the helium jet mixing with the test air flow. Sequential Schlieren flow visualization with high-speed CCD camera of 1 (mu) sec exposure time have been used. Pitot pressure profile in the helium jet was measured at three stream-wise location. The measurements showed that the helium jet reached to the steady state in less than 2 msec, which was within HIEST test duration.

  17. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant

  18. Modeling and control of plasma rotation for NSTX using Neoclassical Toroidal Viscosity (NTV) and Neutral Beam Injection (NBI)

    NASA Astrophysics Data System (ADS)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan

    2014-10-01

    A model-based system to control plasma rotation in a magnetically confined toroidal fusion device is developed to maintain plasma stability for long pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed to control plasma rotation by using momentum from injected neutral beams and viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the data driven model obtained, a feedback controller is designed to theoretically sustain the toroidal momentum of the plasma in a stable fashion and to achieve desired plasma rotation profiles. On going work includes extending this method to NSTX Upgrade which has more complete radial coverage of the neutral beams momentum sources which enable simultaneous control of plasma stored energy (Beta control).

  19. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    NASA Astrophysics Data System (ADS)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  20. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    NASA Technical Reports Server (NTRS)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  1. 76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-14-07, Amendment 39-15602 (73 FR 39574), for certain fuel injected reciprocating engines manufactured... 12866, (2) Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034...-07, Amendment 39-15602 (73 FR 39574), and adding the following new AD: Lycoming Engines...

  2. A Comparison of Fuel Sprays from Several Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1936-01-01

    This report presents the tests results of a series of tests made of the sprays from 14 fuel injection nozzles of 9 different types, the sprays being injected into air at atmospheric density and at 6 and 14 times atmospheric density. High-speed spark photographs of the sprays from each nozzle at each air density were taken at the rate of 2,000 per second, and from them were obtained the dimensions of the sprays and the rates of spray-tip penetration. The sprays were also injected against plasticine targets placed at different distances from the nozzles, and the impressions made in the plasticine were used as an indication of the distribution of the fuel within the spray. Cross-sectional sketches of the different types of sprays are given showing the relative sizes of the spray cores and envelopes. The characteristics of the sprays are compared and discussed with respect to their application to various types of engines.

  3. Installation, maintenance and operating manual for the Lucas-type fuel injection system of the 3 B rotary engine

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The installation procedure, maintenance, adjustment and operation of a Lucas type fuel injection system for 13B rotary racing engine is outlined. Components of the fuel injection system and installation procedure and notes are described. Maintenance, adjustment, and operation are discussed.

  4. Effectiveness of Platelet-rich Plasma Injection for Rotator Cuff Tendinopathy: A Prospective Open-label Study

    PubMed Central

    Scarpone, Michael; Snell, Edward; DeMeo, Patrick; Ruppert, Kristine; Pritchard, Perry; Arbogast, Gennie; Wilson, John J.; Balzano, John F.

    2013-01-01

    Objective: Assess platelet rich plasma (PRP) injection for rotator cuff tendinopathy (RCT). Design: Prospective open label study with 1-year follow-up. Methods: Participants recruited from an outpatient sports medicine clinic had clinically and magnetic resonance image (MRI)—demonstrated RCT refractory to physical therapy and corticosteroid injection. They received one ultrasound-guided injection of 3.0 mL of 1% xylocaine followed by 3.5 mL of PRP at the lesion and surrounding tendon. Primary outcome: 0–10 visual analog scale (VAS; baseline, 8, 12, and 52 weeks). Secondary outcomes: functional shoulder tests assessing rotator cuff strength and endurance (at baseline and 8 and 12 weeks), MRI severity (1–5 points [at baseline and 4 and 8 weeks]), and patient satisfaction (52 weeks). Results: Eighteen participants with 19 assessed shoulders reported VAS pain score improvement from 7.5 ± 0.3 points to 0.5 ± 0.3 points by week 12 and 0.4 ± 0.2 (P = .0001) points at week 52. Functional outcomes significantly improved; the largest effect was seen in the external rotation test: 33.5 ± 5.7 seconds to 62.6 ± 7.2 seconds at week 12 (P = .0001). MRI appearance improved by 1 to 3 points in 16 of 18 assessed shoulders. Seventeen participants were “completely satisfied” (12) or “satisfied” (5). One participant was “unsatisfied.” Conclusions: A single ultrasound-guided, intralesional injection of PRP resulted in safe, significant, sustained improvement of pain, function, and MRI outcomes in participants with refractory RCT. Randomized multidisciplinary effectiveness trials that add ultrasound and validated clinical outcome measures are needed to further assess PRP for RCT. PMID:24416661

  5. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    NASA Astrophysics Data System (ADS)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  6. Numerical Modeling of Fuel Injection into an Accelerating, Turning Flow with a Cavity

    NASA Astrophysics Data System (ADS)

    Colcord, Ben James

    Deliberate continuation of the combustion in the turbine passages of a gas turbine engine has the potential to increase the efficiency and the specific thrust or power of current gas-turbine engines. This concept, known as a turbine-burner, must overcome many challenges before becoming a viable product. One major challenge is the injection, mixing, ignition, and burning of fuel within a short residence time in a turbine passage characterized by large three-dimensional accelerations. One method of increasing the residence time is to inject the fuel into a cavity adjacent to the turbine passage, creating a low-speed zone for mixing and combustion. This situation is simulated numerically, with the turbine passage modeled as a turning, converging channel flow of high-temperature, vitiated air adjacent to a cavity. Both two- and three-dimensional, reacting and non-reacting calculations are performed, examining the effects of channel curvature and convergence, fuel and additional air injection configurations, and inlet conditions. Two-dimensional, non-reacting calculations show that higher aspect ratio cavities improve the fluid interaction between the channel flow and the cavity, and that the cavity dimensions are important for enhancing the mixing. Two-dimensional, reacting calculations show that converging channels improve the combustion efficiency. Channel curvature can be either beneficial or detrimental to combustion efficiency, depending on the location of the cavity and the fuel and air injection configuration. Three-dimensional, reacting calculations show that injecting fuel and air so as to disrupt the natural motion of the cavity stimulates three-dimensional instability and improves the combustion efficiency.

  7. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  8. Performance of a High-Speed Compression-Ignition Engine Using Multiple Orifice Fuel Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Foster, H H

    1930-01-01

    This report presents test results obtained at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics during an investigation to determine the relative performance of a single-cylinder, high-speed, compression-ignition engine when using fuel injection valve nozzles with different numbers, sizes, and directions of round orifices. A spring-loaded, automatic injection valve was used, centrally located at the top of a vertical disk-type combustion chamber formed between horizontally opposed inlet and exhaust valves of a 5 inch by 7 inch engine.

  9. Modulation of Young Injection Events at Saturn at the Rotation Period of Perturbations in the Winter Hemisphere: A Proposed Mechanism

    NASA Astrophysics Data System (ADS)

    Kivelson, M.; Jia, X.

    2014-12-01

    Non-dispersive or "young" plasma injection events observed near midnight at Saturn are modulated at the period associated with the winter hemisphere [Kennelly et al., 2013]. Most other periodic dynamics of the magnetosphere are dominated by responses at the period of the summer hemisphere. The anomalous periodicity of plasma injection has not been explained. We present a theoretical explanation of ionospheric control, noting (as do Kennelly et al.) that the growth rate of the interchange instability is controlled by ionospheric conductance although the instability condition does not involve the ionosphere [Southwood and Kivelson, 1989]. The motion of the foot of a flux tube through the ionosphere is impeded by high conductance (line tying). Low conductance allows slippage and rapid growth of the instability. When the ionospheres have very different conductances, flux tube motion may be asymmetrical, with rapid displacement occurring only in the low conductance, winter hemisphere. A rotationally modulated low conductivity in that hemisphere would impose periodicity on injections. Pre-equinox (2009) at Saturn, the northern hemisphere conductance was low but probably varied with rotation phase because of the pattern of field-aligned currents (FACs) thought to rotate about the pole at the northern period, TN[Jia and Kivelson, 2012]. The upward current region in the ionosphere was probably more highly ionized than the downward current region because of electron precipitation. Two predictions follow. (1) The probability of an injection event in the midnight sector should maximize when the downward FAC in the winter hemisphere (conductivity minimum) has rotated into the midnight sector and (2) in northern winter, the tilt of the interchanging flux tube should produce positive radial field perturbations at and above the equator for inward-moving flux tubes and negative radial field perturbations for outward-moving flux tubes. Tests of these predictions will be reported

  10. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    SciTech Connect

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D.

    1993-12-31

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  11. Dimpled/grooved face on a fuel injection nozzle body for flame stabilization and related method

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo; Zuo, Baifang

    2013-08-20

    A fuel injection head for a fuel nozzle used in a gas turbine combustor includes a substantially hollow body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween. A plurality of pre-mix tubes or passages extend axially through the hollow body with inlets at the upstream end face and outlets at the downstream end face. An exterior surface of the downstream end face is formed with three-dimensional surface features that increase a total surface area of the exterior surface as compared to a substantially flat, planar downstream end face.

  12. Performance of a Fuel-Injection Spark-Ignition Engine Using a Hydrogenated Safety Fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1934-01-01

    This report presents the performance of a single-cylinder test engine using a hydrogenated safety fuel. The safety fuel has a flash point of 125 degrees f. (Cleveland open-dup method), which is high enough to remove most of the fire hazard, and an octane number of 95, which permits higher compression ratios to be used than are permissible with most undoped gasolines.

  13. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  14. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  15. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    SciTech Connect

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such as INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism.

  16. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-15

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  17. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE PAGESBeta

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-09

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  18. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Astrophysics Data System (ADS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-06-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  19. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Technical Reports Server (NTRS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-01-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  20. Jet Injection Used to Control Rotating Stall in a High-Speed Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Strazisar, Anthony J.; Weigl, Harald J.; Spakovzsky, Zoltan; Paduano, James D.

    1998-01-01

    In a joint effort between the Massachusetts Institute of Technology (MIT) and the NASA Lewis Research Center, a new technology was demonstrated to identify and control rotating stall and surge in a single-stage, high-speed compressor. Through the use of highvelocity, high-frequency jet injectors, the instabilities of surge and stall were controlled in a high-speed compressor rig. Through the use of active stall control, modal instabilities that normally occur in the pressure measurements prior to stall were normalized and the range of the compressor was extended. Normally the events of rotating stall and surge instabilities limit the operation of the aeroengine compressor to a region below the surge line. To enhance the performance of the compressor, the Lewis/MIT team used active stall control methods to extend the normal operation of the compressor beyond the original stall point.

  1. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Kindracki, J.; Wolański, P.; Gut, Z.

    2011-04-01

    An experimental study on rotating detonation is presented in this paper. The study was focused on the possibility of using rotating detonation in a rocket engine. The research was divided into two parts: the first part was devoted to obtaining the initiation of rotating detonation in fuel-oxygen mixture; the second was aimed at determination of the range of propagation stability as a function of chamber pressure, composition, and geometry. Additionally, thrust and specific impulse were determined in the latter stage. In the paper, only rich mixture is described, because using such a composition in rocket combustion chambers maximizes the specific impulse and thrust. In the experiments, two kinds of geometry were examined: cylindrical and cylindrical-conic, the latter can be simulated by a simple aerospike nozzle. Methane, ethane, and propane were used as fuel. The pressure-time courses in the manifolds and in the chamber are presented. The thrust-time profile and detonation velocity calculated from measured pressure peaks are shown. To confirm the performance of a rocket engine with rotating detonation as a high energy gas generator, a model of a simple engine was designed, built, and tested. In the tests, the model of the engine was connected to the dump tank. This solution enables different environmental conditions from a range of flight from 16 km altitude to sea level to be simulated. The obtained specific impulse for pressure in the chamber of max. 1.2 bar and a small nozzle expansion ratio of about 3.5 was close to 1,500 m/s.

  2. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  3. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    NASA Astrophysics Data System (ADS)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  4. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  5. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  6. Significance of chamber pressure to complex multi-phase physics in jet engine fuel injection processes

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer; Oefelein, Joseph

    2014-11-01

    Injection processes in jet engines at chamber pressures in excess of the thermodynamic critical pressure of the liquid fuel are not well understood. Under some conditions, a distinct two-phase interface may not exist anymore which eliminates the presence of classical spray atomization phenomena. A comprehensive model for jet engine fuel injections is derived to quantify the conditions under which the interfacial dynamics transition to diffusion-dominated mixing processes without surface tension. At certain conditions, the model shows two-phase interfaces with substantially increased thicknesses and distinctively reduced mean free paths in comparison to ambient pressure conditions. Then, the underlying assumptions of a distinct two-phase interface do not apply anymore and the interface along with its surface tension is shown to deteriorate as it broadens substantially. As a consequence of this physical complexity, the conceptual view of spray atomization and evaporation as an appropriate model for jet engine injection processes is, contrary to conventional wisdom, questionable at certain operating conditions. Instead, a Large Eddy Simulation using a dense-fluid approximation is applied which takes the complex thermo-physics of real-fluid behavior into account.

  7. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  8. Gasoline composition for reducing intake valve deposits in port fuel injected engines

    SciTech Connect

    Aiello, R.P.; Riley, M.J.; Millay, H.D.

    1991-04-09

    This patent describes an unleaded fuel composition. It comprises a major amount of hydrocarbon base fuel of the gasoline boiling range containing an effective amount to reduce intake valve deposits in electronic port fuel injected engines of a mixture of about 2.5 ppmw or higher of basic nitrogen based on the fuel composition in the form of an oil soluble aliphatic alkylene polyamine containing at least one olefinic polymer chain attached to at least one nitrogen or carbon atom of the alkylene radical connecting the amino nitrogen atoms and the polyamine having a molecular weight in the range of from about 600 to about 10,000 and from about 75 ppmw to about 125 ppmw based on the fuel composition of at least one component selected from a polymer of a C{sub 2} to C{sub 6} monoolefin, the corresponding hydrogenated polymer or copolymer, an oil soluble poly(oxyalkylene) alcohol, glycol or polyol or a mono or di ether thereof, which has the formula R{sub 1}-O-(R{sub 2}O){sub n}-R{sub 3} wherein R{sub 1} and R{sub 3} each independently is a hydrogen atom or an aliphatic, cycloaliphatic or mononuclear aromatic hydrocarbon group of up to 40 carbon atoms, R{sub 2} represents an alkylene group and n is an integer of at least 7, a naphthenic or paraffinic oil having a viscosity of 100{degrees}C.

  9. Rotational moulding.

    PubMed

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  10. Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.

    PubMed

    Shen, Liye; Ma, Jingxing; Song, Pengfei; Lu, Zhihao; Yin, Yao; Liu, Yongdi; Cai, Lankun; Zhang, Lehua

    2016-10-01

    A rotating disk electrode (RDE) was used to investigate the concentration loss and impedance characteristics of anodic biofilms in microbial fuel cells (MFCs). Amperometric time-current analysis revealed that at the rotation rate of 480 rpm, a maximum current density of 168 µA cm(-2) can be achieved, which was 22.2 % higher than when there was no rotation. Linear sweep voltammetry and electrochemical impedance spectroscopy tests showed that when the anodic potential was set to -300 mV vs. Ag/AgCl reference, the power densities could increase by 59.0  %, reaching 1385 mW m(-2), the anodic resistance could reduce by 19  %, and the anodic capacitance could increase by 36 %. These results concur with a more than 85 % decrease of the diffusion layer thickness. Data indicated that concentration loss, diffusion layer thickness, and the mixing velocity play important roles in anodic resistance reduction and power output of MFCs. These findings could be helpful to the design of future industrial-scale MFCs with mixed bacteria biofilms. PMID:27282165

  11. An Investigation of the Characteristics of Steel Diaphragms for Automatic Fuel-Injection Valves

    NASA Technical Reports Server (NTRS)

    Joachim, W F

    1926-01-01

    This research on steel diaphragms was undertaken at the Langley Memorial Aeronautical Laboratory, as a part of a general investigation on fuel injection engines for aircraft. The work determined the load-deflection, load- deformation and hysteresis characteristics for single diaphragms having thicknesses from 0.00s inch to 0.012 inch, and for similar diaphragms tested in multiple having total thicknesses from 0.012 inch to 0.180 inch. The elastic limit loads and deflections, and rupture points of single diaphragms were also determined. Some work was done on diaphragms having central orifices in order to determine the effect of orifice diameter upon the load deflection characteristics.

  12. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  13. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    PubMed

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels. PMID:21627159

  14. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  15. Stratospheric Injection of Reflective Aerosols or Particles by Means of Aviation Fuel Additives.

    NASA Astrophysics Data System (ADS)

    Gorman, J.

    2007-12-01

    Various suggestions have been made for stratospheric aerosols or particles to simulate the observed cooling effect of major volcanic eruptions. The best known is the detailed proposal of Paul Crutzen for sulphur dioxide. Also extensively discussed is diatomous earth, injected as individual diatoms. (Silica particles originating as marine shells.) This paper describes the selection and preliminary testing of chemicals that might be used as aviation fuel additives to distribute these two products, sulphur dioxide and micron sized silica particles, from a high flying commercial or military aircraft. The two chemicals tested are dimethyl sulphide to produce sulphur dioxide and tetra ethyl silicate to produce silica particles. In a closed glass jar both of these chemicals are indistinguishable from jet aviation fuel. Both are clear, colourless, oily liquids. Both dissolve in aviation fuel in any proportion. Solutions of each of these chemicals have been burned in a paraffin blowlamp as a simple simulation of a jet engine combustion chamber. Observation of the combustion suggests that the desired chemicals are produced and that the silica particles are of smoke or mist (micron) size. It is suggested that the solutions would probably have no detrimental effects on the fuel tanks, pipes, pumps or combustion chambers of the jet engine. This paper includes general facts about jet engines, aviation fuel, aircraft fuel systems and flight plans which may not be known to climate scientists. Also briefly considered are the health consequences of silica particles in the stratosphere. No tests have been done on a jet engine. Suggestions are made on the type of tests that would be needed by an organization having engine static test facilities.

  16. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  17. Ultrasound-Guided Myofascial Trigger Point Injection Into Brachialis Muscle for Rotator Cuff Disease Patients With Upper Arm Pain: A Pilot Study

    PubMed Central

    Suh, Mi Ri; Chang, Won Hyuk; Choi, Hyo Seon

    2014-01-01

    Objective To assess the efficacy of trigger point injection into brachialis muscle for rotator cuff disease patients with upper arm pain. Methods A prospective, randomized, and single-blinded clinical pilot trial was performed at university rehabilitation hospital. Twenty-one patients clinically diagnosed with rotator cuff disease suspected of having brachialis myofascial pain syndrome (MPS) were randomly allocated into two groups. Effect of ultrasound (US)-guided trigger point injection (n=11) and oral non-steroidal anti-inflammatory drug (NSAID) (n=10) was compared by visual analog scale (VAS). Results US-guided trigger point injection of brachialis muscle resulted in excellent outcome compared to the oral NSAID group. Mean VAS scores decreased significantly after 2 weeks of treatment compared to the baseline in both groups (7.3 vs. 4.5 in the injection group and 7.4 vs. 5.9 in the oral group). The decrease of the VAS score caused by injection (ДVAS=-2.8) was significantly larger than caused by oral NSAID (ДVAS=-1.5) (p<0.05). Conclusion In patients with rotator cuff disease, US-guided trigger point injection of the brachialis muscle is safe and effective for both diagnosis and treatment when the cause of pain is suspected to be originated from the muscle. PMID:25379497

  18. Modeling and control of plasma rotation and βn for NSTX-U using Neoclassical Toroidal Viscosity and Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan; Boyer, Mark

    2015-11-01

    A model-based system is presented allowing control of the plasma rotation profile in a magnetically confined toroidal fusion device to maintain plasma stability for long pulse operation. The analysis, using NSTX data and NSTX-U TRANSP simulations, is aimed at controlling plasma rotation using momentum from six injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the momentum diffusion and torque balance model obtained, a feedback controller is designed and predictive simulations using TRANSP will be presented. Robustness of the model and the rotation controller will be discussed.

  19. Influence of fuel injection timing and pressure on in-flame soot particles in an automotive-size diesel engine.

    PubMed

    Zhang, Renlin; Kook, Sanghoon

    2014-07-15

    The current understanding of soot particle morphology in diesel engines and their dependency on the fuel injection timing and pressure is limited to those sampled from the exhaust. In this study, a thermophoretic sampling and subsequent transmission electron microscope imaging were applied to the in-flame soot particles inside the cylinder of a working diesel engine for various fuel injection timings and pressures. The results show that the number count of soot particles per image decreases by more than 80% when the injection timing is retarded from -12 to -2 crank angle degrees after the top dead center. The late injection also results in over 90% reduction of the projection area of soot particles on the TEM image and the size of soot aggregates also become smaller. The primary particle size, however, is found to be insensitive to the variations in fuel injection timing. For injection pressure variations, both the size of primary particles and soot aggregates are found to decrease with increasing injection pressure, demonstrating the benefits of high injection velocity and momentum. Detailed analysis shows that the number count of soot particles per image increases with increasing injection pressure up to 130 MPa, primarily due to the increased small particle aggregates that are less than 40 nm in the radius of gyration. The fractal dimension shows an overall decrease with the increasing injection pressure. However, there is a case that the fractal dimension shows an unexpected increase between 100 and 130 MPa injection pressure. It is because the small aggregates with more compact and agglomerated structures outnumber the large aggregates with more stretched chain-like structures. PMID:24933154

  20. Some Factors Affecting the Reproducibility of Penetration and the Cut-Off of Oil Sprays for Fuel-injection Engines

    NASA Technical Reports Server (NTRS)

    Beardsley, E G

    1928-01-01

    This investigation was undertaken at the Langley Memorial Aeronautical Laboratory in connection with a general research on fuel-injection for aircraft. The purpose of the investigation was to determine the factors controlling the reproducibility of spray penetration and secondary discharges after cut-off. The development of single sprays from automatic injection valves was recorded by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. The effect of two types of injection valves, injection-valve tube length, initial pressure in the injection-valve tube, speed of the injection control mechanism, and time of spray cut-off, on the reproducibility of spray penetration, and on secondary discharges were investigated. It was found that neither type of injection valve materially affected spray reproducibility. The initial pressure in the injection-valve tube controlled the reproducibility of spray penetrations. An increase in the initial pressure or in the length of the injection-valve tube slightly increased the spray penetration within the limits of this investigation. The speed of the injection-control mechanism did not affect the penetration. Analysis of the results indicates that secondary discharges were caused in this apparatus by pressure waves initiated by the rapid opening of the cut-off valve. The secondary discharges were eliminated in this investigation by increasing the length of the injection-valve tube. (author)

  1. Experimental characterization of cooled EGR in a gasoline direct injection engine for reducing fuel consumption and nitrogen oxide emission

    NASA Astrophysics Data System (ADS)

    Park, Sang-Ki; Lee, Jungkoo; Kim, Kyungcheol; Park, Seongho; Kim, Hyung-Man

    2015-11-01

    The emphasis on increasing fuel economy and reducing emissions is increasing. Attention has turned to how the performance of a gasoline direct injection (GDI) engine can be improved to achieve lower fuel consumption and NOx emission. Therefore, positive effects can reduce fuel consumption and NOx emission as well as knock suppression. The cooled exhaust gas recirculation (EGR) ranges within the characteristic map are characterized from the experimental results at various speeds and brake mean effective pressures in a GDI engine. The results show that the application of cooled EGR system brought in 3.63 % reduction as for the fuel consumption and 4.34 % as for NOx emission.

  2. In-Cylinder Reaction Chemistry and Kinetics During Negative Valve Overlap Fuel Injection Under Low-Oxygen Conditions

    SciTech Connect

    Kalaskar, Vickey B; Szybist, James P; Splitter, Derek A; Pihl, Josh A; Gao, Zhiming; Daw, C Stuart

    2013-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) as well as other forms of advanced combustion. During this event, at least a portion of the fuel hydrocarbons can be converted to products containing significant levels of H2 and CO, as well as other short chain hydrocarbons by means of thermal cracking, water-gas shift, and partial oxidation reactions, depending on the availability of oxygen and the time-temperature-pressure history. The resulting products alter the autoignition properties of the combined fuel mixture for HCCI. Fuel-rich chemistry in a partial oxidation environment is also relevant to other high efficiency engine concepts (e.g., the dedicated EGR (D-EGR) concept from SWRI). In this study, we used a unique 6-stroke engine cycle to experimentally investigate the chemistry of a range of fuels injected during NVO under low oxygen conditions. Fuels investigated included iso-octane, iso-butanol, ethanol, and methanol. Products from NVO chemistry were highly dependent on fuel type and injection timing, with iso-octane producing less than 1.5% hydrogen and methanol producing more than 8%. We compare the experimental trends with CHEMKIN (single zone, 0-D model) predictions using multiple kinetic mechanisms available in the current literature. Our primary conclusion is that the kinetic mechanisms investigated are unable to accurately predict the magnitude and trends of major species we observed.

  3. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    SciTech Connect

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan; Lee, Chan-Bock

    2013-07-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.

  4. Regression rate study of porous axial-injection, endburning hybrid fuel grains

    NASA Astrophysics Data System (ADS)

    Hitt, Matthew A.

    This experimental and theoretical work examines the effects of gaseous oxidizer flow rates and pressure on the regression rates of porous fuels for hybrid rocket applications. Testing was conducted using polyethylene as the porous fuel and both gaseous oxygen and nitrous oxide as the oxidizer. Nominal test articles were tested using 200, 100, 50, and 15 micron fuel pore sizes. Pressures tested ranged from atmospheric to 1160 kPa for the gaseous oxygen tests and from 207 kPa to 1054 kPa for the nitrous oxide tests, and oxidizer injection velocities ranged from 35 m/s to 80 m/s for the gaseous oxygen tests and from 7.5 m/s to 16.8 m/s for the nitrous oxide tests. Regression rates were determined using pretest and posttest length measurements of the solid fuel. Experimental results demonstrated that the regression rate of the porous axial-injection, end-burning hybrid was a function of the chamber pressure, as opposed to the oxidizer mass flux typical in conventional hybrids. Regression rates ranged from approximately 0.75 mm/s at atmospheric pressure to 8.89 mm/s at 1160 kPa for the gaseous oxygen tests and 0.21 mm/s at 207 kPa to 1.44 mm/s at 1054 kPa for the nitrous oxide tests. The analytical model was developed based on a standard ablative model modified to include oxidizer flow through the grain. The heat transfer from the flame was primarily modeled using an empirically determined flame coefficient that included all heat transfer mechanisms in one term. An exploratory flame model based on the Granular Diffusion Flame model used for solid rocket motors was also adapted for comparison with the empirical flame coefficient. This model was then evaluated quantitatively using the experimental results of the gaseous oxygen tests as well as qualitatively using the experimental results of the nitrous oxide tests. The model showed agreement with the experimental results indicating it has potential for giving insight into the flame structure in this motor configuration

  5. Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering.

    PubMed

    Beyrau, Frank; Bräuer, Andreas; Seeger, Thomas; Leipertz, Alfred

    2004-02-01

    Pure rotational coherent anti-Stokes Raman spectroscopy is applied for quantitative gas-phase temperature measurements in the vaporizing spray of an automotive fuel injector. Interferences from elastically scattered stray light are greatly reduced by use of a polarization technique and spectral filtering in a double monochromator. The applicability of this technique to probing low-temperature sprays is successfully demonstrated. PMID:14759040

  6. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  7. CHARACTERIZATION OF POLED SINGLE-LAYER PZT FOR PIEZO STACK IN FUEL INJECTION SYSTEM

    SciTech Connect

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay

    2010-01-01

    Poled single-layer PZT has been characterized in as-extracted and as-received states. PZT plate specimens in the former were extracted from a stack. Flexure strength of PZT was evaluated by using ball-on-ring and 4-point bend tests. Fractography showed that intergranular fractures dominated the fracture surface and that volume pores were the primary strength-limiting flaws. The electric field effect was investigated by testing the PZT in open circuit and coercive field levels. An asymmetrical response on the biaxial flexure strength with respect to the electric field direction was observed. These experimental results will assist reliability design of the piezo stack that is being considered in fuel injection system.

  8. Effects of fuel injection on mixing and upstream interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Tu, Qiuya

    Scramjet engine performance has been studied experimentally and computationally almost under steady-state conditions. Transients of the airflow and fueling in the scramjet's isolator or combustor create important fluid-dynamic/ combustion interactions. Spark schlieren photography was employed to study the effects of pressure rise in the combustion chamber on the isolator flow at three conditions with isolator entrance Mach number of 1.6, 1.9 and 2.5, covering the range of dual-mode combustion and transition to full scramjet operation. Heat release through combustion in the model scramjet was simulated by incrementally blocking the flow exit until upstream-interaction was induced and a shock train formed in the isolator. Theoretical predictions of the pressure rise in the isolator under separated flow conditions were calculated, which agreed well with the experimental data. The prediction is sensitive to the accurate modeling of the isolator inlet conditions and the correct selection of wall friction coefficient. Gaseous helium and argon have been transversely injected into a Mach 1.6 airflow simulating a light and a heavy fuel injection behind a thin triangular pylon placed upstream, in the isolator, which has a negligible impact on pressure losses. Planar laser-induced fluorescence (PLIF) was used to observe the penetration and mixing in the test section at three cross-sections including the recirculation region and beyond. Results were compared to the no-pylon cases, which showed the presence of the pylon resulted in improving both penetration and spreading of the jet. Simulation for shock wave/ boundary-layer interaction was conducted in Fluent for case of M=1.9 at 60% blockage by using k-ε RNG model with two different near wall treatments. In both cases, the shock ran out of isolator before the computation converged, this is different from experimental results. Proper actual wall friction force may have a very important effect on the computation, which needs

  9. Fast batch injection analysis system for on-site determination of ethanol in gasohol and fuel ethanol.

    PubMed

    Pereira, Polyana F; Marra, Mariana C; Munoz, Rodrigo A A; Richter, Eduardo M

    2012-02-15

    A simple, accurate and fast (180 injections h(-1)) batch injection analysis (BIA) system with multiple-pulse amperometric detection has been developed for selective determination of ethanol in gasohol and fuel ethanol. A sample aliquot (100 μL) was directly injected onto a gold electrode immersed in 0.5 mol L(-1) NaOH solution (unique reagent). The proposed BIA method requires minimal sample manipulation and can be easily used for on-site analysis. The results obtained with the BIA method were compared to those obtained by gas-chromatography and similar results were obtained (at 95% of confidence level). PMID:22340122

  10. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.; Keiser, Sandra A.

    2015-08-01

    Both astronomical observations of the interaction of Type II supernova remnants (SNRs) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar System's SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether or not such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here, we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 {M}⊙ cloud cores and shock speeds of 20 or 40 km s-1. Central protostars and protoplanetary disks form in all models, although with their disk spin axes aligned somewhat randomly. The disks derive most of their angular momentum not from the initial cloud rotation, but from the Rayleigh-Taylor fingers that also inject shock wave SLRIs. Injection efficiencies, fi, the fraction of the incident shock wave material injected into the collapsing cloud core, are ˜0.04-0.1 in these models, similar to when the rotation axis is parallel to the shock propagation direction. Evidently, altering the rotation axis orientation has only a minor effect on the outcome, strengthening the case for this scenario as an explanation for the Solar System's SLRIs.

  11. Wear analysis of diesel-engine fuel-injection pumps from military ground equipment fueled with Jet A-1. Interim report Jan-May 91

    SciTech Connect

    Lacey, P.I.

    1991-05-01

    The U.S. Department of Defense has adopted the single fuel for the battlefield concept. During Operation Desert Shield/Storm, Jet A-1 replaced diesel in many applications. A simultaneous increase in fuel injection pump failures was observed during that operation. Prior to its introduction, a number of studies had indicated that JP-8 is compatible with the current fleet of ground equipment. This report forms part of an ongoing study to define the fuel lubricity requirements of ground equipment. The report also details the wear and failure mechanisms observed from used pumps. The results indicate that, although Jet A-1 does increase wear, many other failure mechanisms are also prevalent.

  12. Molecular Cluster Injection for High-Density Fueling on the Lithium Tokamak eXperiment (LTX)

    NASA Astrophysics Data System (ADS)

    Lundberg, D. P.; Kaita, R.; Majeski, R.; Stotler, D. P.

    2010-11-01

    LTX is designed to reduce global recycling, by reducing the neutral hydrogen density in the plasma edge with a liquid lithium wall. Gas-based fueling systems, such as wall-mounted gas puffers or supersonic gas injectors, are ill-suited for use in a low-recycling plasma, as they source a significant amount of gas into the plasma edge. Following experiments on the HL-2A tokamak by Yao, et al. (Nucl. Fusion 47(2007) 1399), a Molecular Cluster Injector (MCI) was designed to supply a high-density, collimated fueling source for LTX. When operated with H2 backing pressures of 50-150psia, a 4ms MCI pulse produces molecular densities of 1-4x10^16 cm-3 at distances over 20cm from the nozzle, and supplies a particle flux of 340-775 torr-lit/s, sufficient to replace the predicted LTX particle inventory. The H2 density profiles are consistent with flows that produce molecular clusters of a few hundred molecules each, which is expected to improve neutral penetration into the plasma core, relative to pure gas-phase injection. The neutral penetration into LTX plasmas will be diagnosed by a fast visible camera with an Hα filter, as well as microwave interferometry.

  13. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. III. Rotating three-dimensional cloud cores

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A.

    2014-06-10

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.

  14. CONVERSION OF WIND POWER TO HYDROGEN FUEL: DESIGN OF AN ALTERNATIVE ENERGY SYSTEM FOR AN INJECTION MOLDING FACILITY

    EPA Science Inventory

    Injection molding plants are large consumers of electricity. At its current level of operations, Harbec Plastics (Ontario, NY) uses about 2,000,000 kilowatt-hours of electricity per year. Based on the US average fuel mix, approximately 1.5 pounds of CO2

  15. Failure analysis of fuel-injection pumps from generator sets fueled with Jet A-1. Interim report, Nov 90-Jan 91

    SciTech Connect

    Lacey, P.I.; Lestz, S.J.

    1991-01-01

    The U.S. Department of Defense (DOD) has adopted the single fuel for the battlefield concept. Diesel fuel will be replaced by JP-8/Jet A-1 in compression ignition engines, thereby lowering the fuel logistics burden. These fuels have successfully undergone extensive testing in both the laboratory and in field trials. However, increased failure rates are being reported on a number of fuel-sensitive components during Operation Desert Shield in Saudi Arabia. Five failed Stanadyne rotary fuel injection pumps were returned to the Belvoir Fuels and Lubricants Research Facility (BFLRF) at Southwest Research Institute (SwRI) for disassembly and post-failure analysis. Particular attention was given to the possible effects of low-lubricity fuel. The results of the investigation indicate that most of the failures may be attributed to causes other than poor fuel lubricity. The reason for failure of specific components in two of the pumps could not be conclusively determines. However, it is believed that they would not have occurred as a result of short-term operation with Jet A-1.

  16. The Use of Large Valve Overlap in Scavenging a Supercharged Spark-ignition Engine Using Fuel Injection

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1932-01-01

    This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.

  17. Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles

    SciTech Connect

    Gao, Jian; Moon, Seoksu; Nishida, Keiya; Matsumoto, Yuhei; Zhang, Yuyin

    2009-06-15

    This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The images show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)

  18. Synchronized droplet size measurements for coal-water-slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    SciTech Connect

    Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A.

    1993-12-31

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  19. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  20. [Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].

    PubMed

    Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming

    2012-12-01

    A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm. PMID:23379140

  1. Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures

    NASA Astrophysics Data System (ADS)

    Pendleton, S. J.; Montello, A.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2012-12-01

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work uses coherent anti-Stokes Raman spectroscopy (CARS) to measure the rotational and vibrational excitation of nitrogen molecules in the discharge afterglow in a variety of fuel/air mixtures outside the limits of combustion in order to elucidate the thermal behaviour of TPI. The time evolution of relative populations of vibrationally excited states of nitrogen in the electronic ground state are reported for each gas mixture; it is shown that generation of these vibrationally excited states is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 µs following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 µs. Possible mechanisms for this behaviour are discussed. In addition, rotational temperature increases of at least 500 K are reported for all gas mixtures. The effect of this temperature increase on ignition, reaction rates, and thermal energy pathways are discussed.

  2. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    NASA Astrophysics Data System (ADS)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology

  3. Laboratory endurance test of sunflower methyl esters for direct injected diesel engine fuel

    SciTech Connect

    Kaufman, K.; Ziejewski, M.

    1983-12-01

    A methyl ester of sunflower oil was durability tested using the test cycle recommended by the Alternate Fuels Committee of the Engine Manufacturer's Association. The results are compared to a baseline test using diesel fuel. Based on the results, the methyl ester fuel successfully completed the 200-hour durability test.

  4. 78 FR 70240 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... mounted fuel injector fuel lines (stainless steel tube assembly), installed. Table 1 to Paragraph (c..., Amendment 39-16894 (76 FR 79051, December 21, 2011), (``AD 2011-26-04''), for certain Lycoming Engines fuel...'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not...

  5. Usefulness of a Hanging Position With Internal Rotation of Shoulder in Ultrasonography-Guided Intra-articular Steroid Injection for Adhesive Capsulitis

    PubMed Central

    2016-01-01

    Objective To evaluate the feasibility of a new position (internal rotation in hanging) in ultrasonography, we compared the length of the glenohumeral joint space and the effectiveness of steroid injection with the hanging position and with the commonly used abdomen or cross position. Methods A prospective, randomized controlled trial was performed in 42 patients with adhesive capsulitis of shoulder. We used three arm positions for the posterior approach as follows: the patient's palm on thigh, other hand on abdomen (abdomen position); hand on patient's opposite shoulder (cross position); arm in hanging position with internal rotation of shoulder (hanging position). The order of shoulder position was randomized and blinded. Real-time ultrasonography-guided intra-articular steroid injection was performed by posterior approach at the first position in each patient. The Brief Pain Inventory (BPI), the Shoulder Pain and Disability Index (SPADI), and range of motion (ROM) were measured before steroid injection and 2 weeks after injection. Results The lengths of the joint space were 2.88±0.75, 2.93±0.89, and 2.82±0.79 mm in abdomen, cross, and hanging position respectively, with no significant difference among the three positions (p=0.429). Treatment efficacy was significantly improved in ROM, total BPI, and SPADI in all three positions (p<0.001). The changes in ROM for shoulder abduction were 23.6°±19.7°, 22.2°±20.9°, and 10.0°±7.8° in abdomen, cross, and hanging position, respectively. Changes in total BPI scores were 25.1±15.7, 23.6.±18.0, 11.6±6.1, and changes in total SPADI score were 35.0±14.2, 30.9±28.9, and 16.5±10.3 in abdomen, cross, and hanging position, respectively. There were no significant difference among the three positions for all parameters (p=0.194, p=0.121, and p=0.108, respectively. Conclusion For patients with adhesive capsulitis who cannot achieve or maintain abdomen or cross position, scanning and injection with the shoulder in

  6. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    SciTech Connect

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  7. Development of HRJ fuel from Brassica in rotation with wheat for the Western U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aviation industry has expressed a strong interest in the development of renewable jet fuel from oilseed crops within the U.S. to supplement its fuel needs and provide a smaller carbon footprint for its industry. The USDA/NIFA identified objectives within its recent BRDI grant program/proposal to...

  8. Determination of Hg and Pb in fuels by inductively coupled plasma mass spectrometry using flow injection chemical vapor generation.

    PubMed

    Chen, Feng-yi; Jiang, Shiuh-Jen

    2009-12-01

    An isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Hg and Pb in fuels using flow injection vapor generation (VG) as the sample introduction system. A simple and inexpensive in-situ nebulizer/vapor generator was employed in this study. An emulsion containing 10% v/v fuel, 2% m/v Triton X-100 and 1.0% m/v tartaric acid was injected into VG-ICP-MS system for the determination of Hg and Pb. Sodium borohydride was used for vapor generation. Since the sensitivities of Hg and Pb in emulsion and those in aqueous solution are quite different, isotope dilution and standard addition methods were used for the determination of Hg and Pb in selected fuel samples. The influences of vapor generation conditions and emulsion preparation on the ion signals are reported. This method has been applied for the determination of Hg and Pb in various fuel samples such as diesel, gasoline and engine oil obtained locally. The analytical results obtained by isotope dilution and standard addition methods were in good agreement with each other and also with those of digested samples analyzed by pneumatic nebulization ICP-MS. Under the optimum operating conditions, the detection limits obtained were 0.02 and 0.03 ng mL(-1) for Hg and Pb, respectively, in prepared emulsified solutions, corresponding to 0.2 and 0.3 ng mL(-1) of Hg and Pb, respectively, in the original fuel samples. PMID:20009337

  9. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  10. Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell

    NASA Astrophysics Data System (ADS)

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Tang, Yanping; Wang, Yalin; Jia, Jinping

    2016-08-01

    Polypyrrole (PPy) film is synthesized on Ti substrate through electrochemical polymerization method and is applied as cathode material in a TiO2 NTs-PPy dual rotating disk photo fuel cell (PFC). The optimized PPy electrochemical polymerization is carried out using linear sweep voltammetry from 0 V to 1.2 V (vs. SCE) with scan rate of 0.1 V s-1, 100 circles. Sixty milliliter real textile wastewater with the initial COD and conductivity of 408 ± 6 mgO2 L-1 and 20180 μS cm-1 is treated in this PFC under UV irradiation. About 0.46 V open-circuit voltage (VOC) and 1.8-2.2 mA short-circuit current (JSC) are obtained. Due to the effective electron-hole separation effect, the COD removal rate is as high as 0.0055 min-1. Stable current and COD removal can be obtained at different output voltage. Two influence factors including rotating speed and pH are investigated. Better electricity generation performance and COD removal activity are achieved at high rotating speed and in acidic condition. In comparison with platinized cathode, though VOC is lower, similar JSC is measured. Considering the high cost of Pt, PPy is a promising alternative cathode material in PFC that can also generate electricity efficiently and stably.

  11. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    NASA Astrophysics Data System (ADS)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  12. Second jet workshop on pellet injection: pellet fueling program in the United States. Summary

    SciTech Connect

    Milora, S.L.

    1983-01-01

    S. Milora described the US programme on pellet injection. It has four parts: (1) a confinement experimental program; (2) pellet injector development; (3) theoretical support; and (4) tritium pellet study for TFTR.

  13. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  14. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-04-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  15. Experimental evaluation of premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1977-01-01

    Experiments were performed to evolve and evaluate a premixing-prevaporizing fuel system to be used with a catalytic combustor for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using Jet A fuel. Three types of air blast injectors, an air assist nozzle and a simplex pressure atomizer were tested. Air swirlers with vane angles up to 30 deg were used to improve the spatial fuel distribution. The work was done in a 12-cm (4.75-in.) diameter tubular rig. Test conditions were: a pressure of 0.3 and 0.5 MPa (3 and 5 atm), inlet air temperatures up to 800 K (980 F), velocity of 20 m/sec (66 ft/sec) and fuel-air ratios of 0.01 and 0.025. Uniform spatial fuel distributions that were within plus or minus 10 percent of the mean were obtained. Complete vaporization of the fuel was achieved with air blast configurations at inlet air temperatures of 550 K (530 F) and higher. The total pressure loss was less than 0.5 percent for configurations without air swirlers and less than 1 percent for configurations with a 30 deg vane angle air swirler.

  16. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    SciTech Connect

    West, B.; Green, J.B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  17. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion. PMID:16270557

  18. Effect of the level of unsaturation and of alcohol modifications of plant oil fuels on the long-term performance of a direct injected diesel engine

    SciTech Connect

    Ziejewski, M.

    1985-01-01

    A 200-hour durability screening test recommended by the Engine Manufacturers Association was adopted to study the effects of four alternate fuels on the long-term performance of a four cylinder, direct injected diesel engine. Tested fuels included diesel fuel (control), a 25-75 blend by volume of alkali-refined sunflower oil and diesel fuel, a 25-75 blend by volume of high oleic safflower oil and diesel fuel, a nonionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil. Least squares regression procedures were used to analyze the long term effects of the test fuels on engine performance and to compare the test fuels. Time of the engine operation had a significant effect only on exhaust temperature. For all other response variables, time was not a factor. However, significant differences between tested fuels were observed. An analysis of variance was employed to compare CRC carbon and lacquer ratings, as well as wear of engine parts. The carbon deposits produced by the microemulsion and the 25-75 sunflower oil blend were significantly heavier than those generated by the other tested fuels. None of the fuels produced excessive engine wear. The 25-75 sunflower oil blend and the microemulsion caused problems with the fuel injection system.

  19. Coefficients of discharge of fuel-injection nozzles for compression-ignition engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1932-01-01

    This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.

  20. Experimental evaluation of two premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R.

    1976-01-01

    A premixing-prevaporizing fuel system to be used with a catalytic combustor was evaluated for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using jet A fuel. Two types of air blast injectors were tested, a splash groove injector and a multiple jet cross stream injector. Air swirlers with vane angles of 15 deg and 30 deg were used to improve the spatial fuel distribution in a 12 cm diameter tubular rig. Distribution and vaporization measurements were made 35.5 cm downstream of the injector. The spatial fuel distribution was nearly uniform with the multiple jet contrastream injector and the splash-groove injector with a 30 deg air swirler. The vaporization was nearly 100 percent at an inlet air temperature of 600 K, and at 800 K inlet air temperature fuel oxidation reactions were observed. The total pressure loss was less than 0.5 percent of the total pressure for the multiple jet cross stream injector and the splash groove injector (without air swirler) and less than 1 percent for the splash groove with a 30 deg air swirler.

  1. Investigation of the mechanism in Rijke pulse combustors with tangential air and fuel injection. Final report

    SciTech Connect

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-03-01

    To study the mechanisms that control the operation of this combustor, an experimental setup is developed with access for detailed optical measurements. Propane is employed as fuel because the absence of liquid drops and combustion generated particulates in the combustion region significantly simplifies the optical diagnostics. The experimental techniques utilized include acoustic pressure measurements, space and time resolved radiation measurements, steady temperature measurements, exhaust flow chemical analysis, high speed video and intensified images of the reacting flow field by a computer based CCD camera imaging system. Flow visualization by the imaging system and the results from radiation intensity distribution measurements suggest that the periodic combustion processes caused by periodic vortex shedding and impingement provide the energy required to sustain the pressure oscillations. High radiation intensity occurs during a relatively short period of time and is in phase with the pressure oscillations, indicating that Rayleigh`s criterion is satisfied. Periodic variations of the air and fuel flow rates and, consequently, the air/fuel ratio of the reacting mixture inside the combustor appear to be another mechanism that contributes to the occurrence of periodic combustion and heat release processes. The presence of this mechanism has been uncovered by acoustic pressure measurements that revealed the presence of traveling pressure waves inside the air and fuel feed lines. These traveling waves produce periodic fuel and air feed rates which, in turn, result in periodic combustion and heat release processes within the combustor.

  2. Subcritical and supercritical fuel injection and mixing in single and binary species systems

    NASA Astrophysics Data System (ADS)

    Roy, Arnab

    Subcritical and supercritical fluid injection using a single round injector into a quiescent atmosphere comprising single and binary species was investigated using optical diagnostics. Different disintegration and mixing modes are expected for the two cases. In the binary species case, the atmosphere comprised an inert gas of a different composition than that of the injected fluid. In single species case, the atmosphere consisted of the same species as that of the injected fluid. Density values were quantified and density gradient profiles were inferred from the experimental data. A novel method was applied for the detection of detailed structures throughout the entire jet center plane. Various combinations of injectant and chamber conditions were tested and a wide range of density ratios were covered. The subcritical cases demonstrated the importance of surface tension and inertial forces, while the supercritical cases showed no signs of surface tension and, in most situations, resembled the mixing characteristics of a gaseous jet injected into a gaseous environment. A comparison between the single and binary species systems has also been provided. A detailed laser calibration procedure was undertaken to account for the laser absorption through the gas and liquid phases and for fluorescence in the non-linear excitation regime for high laser pulse energy. Core lengths were measured for binary species cases and correlated with visualization results. An eigenvalue approach was taken to determine the location of maximum gradients for determining the core length. Jet divergence angles were also calculated and were found to increase with chamber-to-injectant density ratio for both systems. A model was proposed for the spreading angle dependence on density ratio for both single and binary species systems and was compared to existing theoretical studies and experimental work. Finally, a linear stability analysis was performed for the jet injected into both subcritical and

  3. Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1983-01-01

    Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.

  4. Utilisation of short rotation forestry for on-site boiler fuel

    SciTech Connect

    Sims, R.E.H.; Lowe, H.T.

    1995-11-01

    A New Zealand meat processing company has planted 100 ha of land adjacent to its plant in short rotation coppice eucalyptus trees for land treatment of the effluent stream (5000+ m{sup 3}/day). To be effective this necessitates removal of the accumulate biomass from the site at regular intervals (every 3-4 years). Using the biomass for fuelwood on site could offset the cost of effluent treatment if it could substitute for the existing energy supplies bought into the plant. A wide range of harvesting, drying, processing, storage and conversion options were identified with the objective of using the biomass produced on site to partly displace the coal currently fuelling a 4.2 MW boiler to provide process steam. A computer model was developed to identify the optimum biomass utilisation system from the variety of combinations of options possible including use of contractors. The objective was to match the work capacity of the various equipment components and to minimise the investment payback period for the company. Boiler options to convert or replace the current boiler or to purchase an additional wood-fired boiler were also included. The model was based around the specific requirements of this particular meat plant but it could be adapted to suit other similar short rotation forestry, biomass utilisation schemes.

  5. Original use of a direct injection high efficiency nebulizer for the standardization of liquid fuels spray flames

    NASA Astrophysics Data System (ADS)

    Lemaire, R.; Maugendre, M.; Schuller, T.; Therssen, E.; Yon, J.

    2009-10-01

    It is of practical importance to lead laboratory-scale experiments allowing a better understanding of the impact of commercial fuels composition on the formation of combustion residues such as soot particles. To this end, a hybrid burner has been designed recently to burn high-speed sprays of small liquid fuel droplets. It consists of a Holthuis (previously McKenna) burner originally equipped with a direct injection high efficiency nebulizer for the atomization of liquid hydrocarbons. A detailed description of this original setup is given in this paper. A priori estimations of atomization and evaporation times and length scales are then proposed and compared with experimental data. Droplet-size distribution measurements obtained in nonreacting conditions using a Malvern Spraytec particle sizer are presented and compared with values estimated by calculation. Cold sprays contours and liquid jet lengths in flames determined by Mie scattering at 532 and 1064 nm, respectively, are also presented. The results discussed in this work indicate that the hydrodynamic characteristics of the sprays generated with our system are relatively independent of the physical properties of fuels leading to comparable flames with identical liquid jet lengths, dimensions, and global structure. This feature facilitates an accurate comparison of flames burning various liquid hydrocarbons, which is of interest to emphasize differences in pollutants emissions and to highlight chemical effects for soot formation analysis.

  6. Three Dimensional Transient Turbulent Simulations of Scramjet Fuel Injection and Combustion

    NASA Astrophysics Data System (ADS)

    Bahbaz, Marwane

    2011-11-01

    Scramjet is a propulsion system that is more effective for hypersonic flights (M >5). The main objective of the simulation is to understand both the mixing and combustion process of air flow using hydrogen fuel in high speed environment s. The understanding of this phenomenon is used to determine the number of fuel injectors required to increase combustion efficiency and energy transfer. Due to the complexity of this simulation, multiple software tools are used to achieve this objective. First, Solid works is used to draw a scramjet combustor with accurate measurements. Second software tool used is Gambit; It is used to make several types of meshes for the scramjet combustor. Finally, Open Foam and CFD++ are software used to process and post process the scramjet combustor. At this stage, the simulation is divided into two categories. The cold flow category is a series of simulations that include subsonic and supersonic turbulent air flow across the combustor channel with fuel interaction from one or more injectors'. The second category is the combustion simulations which involve fluid flow and fuel mixing with ignition. The simulation and modeling of scramjet combustor will assist to investigate and understand the combustion process and energy transfer in hypersonic environment.

  7. Ignition and Flame Development in the Case of Diesel Fuel Injection

    NASA Technical Reports Server (NTRS)

    Holfelder, Otto

    1936-01-01

    To investigate the process of ignition and combustion in the case of spray injection into heated air, a new form of apparatus is developed and the tests carried out with it described. Photographs of the spray before and after ignition are obtained at frequencies of 500 pictures per second. Pressures and temperatures are simultaneously recorded on oscillograms. Information on the initial conditions, ignition time lag, period of complete combustion, place where ignition starts, and general course of the combustion is obtained.

  8. Effect of primary-zone water injection on pollutants from a combustor burning liquid ASTM A-1 and vaporized propane fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.

  9. Analysis of an arc-driven railgun for fusion fuel pellet injection

    SciTech Connect

    Azzerboni, B. ); Cardelli, E.; Raugi, M.; Tellini, A. )

    1990-11-01

    In this paper the behavior of an arc-driven railgun for hydrogen pellet injection is examined. Launch of saboted and unsaboted pellets is considered, and the arc mass influence on the behavior of the accelerating system is analyzed in both cases. The characteristic quantities of the hydrogen plasma armature are evaluated by means of an a dimensional model. The efficiency of the system is investigated as to whether or not the recovery of the energy remaining in the railgun at the time of launch is performed.

  10. Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle.

    SciTech Connect

    Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.; Martin, Glen C.; Mueller, Charles J.

    2008-04-01

    Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around a 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.

  11. Large eddy simulation of fuel injection and mixing process in a diesel engine

    NASA Astrophysics Data System (ADS)

    Zhou, Lei; Xie, Mao-Zhao; Jia, Ming; Shi, Jun-Rui

    2011-08-01

    The large eddy simulation (LES) approach implemented in the KIVA-3V code and based on one-equation sub-grid turbulent kinetic energy model are employed for numerical computation of diesel sprays in a constant volume vessel and in a Caterpillar 3400 series diesel engine. Computational results are compared with those obtained by an RANS (RNG k- ɛ) model as well as with experimental data. The sensitivity of the LES results to mesh resolution is also discussed. The results show that LES generally provides flow and spray characteristics in better agreement with experimental data than RANS; and that small-scale random vortical structures of the in-cylinder turbulent spray field can be captured by LES. Furthermore, the penetrations of fuel droplets and vapors calculated by LES are larger than the RANS result, and the sub-grid turbulent kinetic energy and sub-grid turbulent viscosity provided by the LES model are evidently less than those calculated by the RANS model. Finally, it is found that the initial swirl significantly affects the spray penetration and the distribution of fuel vapor within the combustion chamber.

  12. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  13. Multicomponent liquid and vapor fuel distribution measurements in the cylinder of a port-injected, spark- ignition engine

    NASA Astrophysics Data System (ADS)

    Styron, Joshua Putman

    Over the last twenty years, much of the innovation in automotive engine design has been directed towards meeting lower emissions standards as required by the federal government. Correlations used to tune engines that are based on engine-out hydrocarbon measurements alone often fail to be portable to other engine designs because the testing procedures provide little information on in-cylinder fuel/air mixing and combustion processes. A better understanding of in-cylinder processes should improve the applicability of emissions correlations, reducing the amount of engine testing required and providing additional emissions improvements. A 2.5 L, V-6, port-injected engine was modified for optical access by separating one head from the block. The engine could be fitted with one of two heads that produced either a swirling flow or a tumbling flow in the engine. An extended piston with a window in its crown rides in a transparent cylinder liner of fused silica. This arrangement is suitable for laser imaging techniques. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. Accurate representation of both phases and more than one volatility was demonstrated to be necessary for drawing complete conclusions from fuel distribution data. The exciplex fluorescence technique was calibrated in a separate, calibration cell where careful control of mixture composition, temperature, and pressure was possible. Fluorescence was measured as a function of total pressure from 0 to 1450 kPa, temperature from 18 to 200°C, and fuel-to-air ratio from 0 to twice stoichiometric. The calibrated technique applied to the engine provided both qualitative and quantitative data for improving our understanding of in-cylinder mixing and comparison with engine simulation codes. The engine

  14. Dynamic fractionation of trace metals in soil and sediment samples using rotating coiled column extraction and sequential injection microcolumn extraction: a comparative study.

    PubMed

    Rosende, Maria; Savonina, Elena Yu; Fedotov, Petr S; Miró, Manuel; Cerdà, Víctor; Wennrich, Rainer

    2009-09-15

    Dynamic fractionation has been recognized as an appealing alternative to conventional equilibrium-based sequential extraction procedures (SEPs) for partitioning of trace elements (TE) in environmental solid samples. This paper reports the first attempt for harmonization of flow-through dynamic fractionation using two novel methods, the so-called sequential injection microcolumn (SIMC) extraction and rotating coiled column (RCC) extraction. In SIMC extraction, a column packed with the solid sample is clustered in a sequential injection system, while in RCC, the particulate matter is retained under the action of centrifugal forces. In both methods, the leachants are continuously pumped through the solid substrates by the use of either peristaltic or syringe pumps. A five-step SEP was selected for partitioning of Cu, Pb and Zn in water soluble/exchangeable, acid-soluble, easily reducible, easily oxidizable and moderately reducible fractions from 0.2 to 0.5 g samples at an extractant flow rate of 1.0 mL min(-1) prior to leachate analysis by inductively coupled plasma-atomic emission spectrometry. Similarities and discrepancies between both dynamic approaches were ascertained by fractionation of TE in certified reference materials, namely, SRM 2711 Montana Soil and GBW 07311 sediment, and two real soil samples as well. Notwithstanding the different extraction conditions set by both methods, similar trends of metal distribution were in generally found. The most critical parameters for reliable assessment of mobilizable pools of TE in worse-case scenarios are the size-distribution of sample particles, the density of particles, the content of organic matter and the concentration of major elements. For reference materials and a soil rich in organic matter, the extraction in RCC results in slightly higher recoveries of environmentally relevant fractions of TE, whereas SIMC leaching is more effective for calcareous soils. PMID:19615513

  15. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  16. Effect of Viscosity on Fuel Leakage Between Lapped Plungers and Sleeves and on the Discharge from a Pump-Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1935-01-01

    Test data and analysis show that the rate of fuel leakage between a lapped plunger and sleeve varies directly with the density of the fuel, the diameter of the plunger, the pressure producing the leakage, and the cube of the mean clearance between the plunger and sleeve. The rate varies inversely as the length of the lapped fit and the viscosity of the fuel. With a mean clearance between the plunger and sleeve of 0.0001 inch the leakage amounts to approximately 0.2 percent of the fuel injected with gasoline and as low as 0.01 percent with diesel fuel oils. With this mean clearance an effective seal is obtained when the length of the lap is three times the diameter of the lap. The deformation of the sleeve and plunger under pressure is sufficient to change the rate of leakage appreciably from that which would be obtained if the clearance was constant under pressure.

  17. Effect of Particle and Injection Parameters on the Performance of a Dual-Stage High-Velocity Oxygen Fuel Thermal Spray System

    NASA Astrophysics Data System (ADS)

    Khan, Mohammed N.; Shamim, Tariq

    2015-06-01

    For temperature-sensitive material (such as titanium) coatings, recently developed high-velocity oxygen fuel dual-stage thermal spray systems offer better control of particle oxidation and production of various coating structures. These advantages of the dual-stage thermal system are significantly influenced by the state of the coating particles being injected. Hence, the objective of the present study is to investigate the effects of particle size, shape, injection velocity, and injection angle on a dual-stage thermal spray system by employing a comprehensive mathematical model. The results demonstrate that the particle size, shape, injection velocity, and injection angle affect the particle velocity and temperature, which in turn may affect the coating quality. The results show that smaller particles have higher temperatures and velocities owing to decrease in particle thermal and mass inertia. Spherical particles have higher temperature and lower velocity than the non-spherical particles because of lower drag. The particle velocity and temperature also increase with the increase of the injection velocity. Similarly, the particles injection angle also plays an important role. Higher particle temperatures and velocities outside of the barrel are obtained if the particles are injected at oblique angles to the main gaseous flow.

  18. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    SciTech Connect

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  19. The N.A.C.A. Photographic Apparatus for Studying Fuel Sprays from Oil Engine Injection Valves and Test Results from Several Researches

    NASA Technical Reports Server (NTRS)

    Beardsley, Edward G

    1928-01-01

    Apparatus for recording photographically the start, growth, and cut-off of oil sprays from injection valves has been developed at the Langley Memorial Aeronautical Laboratory. The apparatus consists of a high-tension transformer by means of which a bank of condensers is charged to a high voltage. The controlled discharge of these condensers in sequence, at a rate of several thousand per second, produces electric sparks of sufficient intensity to illuminate the moving spray for photographing. The sprays are injected from various types of valves into a chamber containing gases at pressures up to 600 pounds per square inch. Several series of pictures are shown. The results give the effects of injection pressure, chamber pressure, specific gravity of the fuel oil used, and injection-valve design, upon spray characteristics.

  20. A study of NO{sub x} reduction by fuel injection recirculation. Final report, January 1995--June 1996

    SciTech Connect

    Feese, J.J.; Turns, S.R.

    1996-08-01

    Flue-gas recirculation (FGR) is a well-known method used to control oxides of nitrogen (NO{sub x}) in industrial burner applications. Recent small- and large-scale experiments in natural-gas fired boilers have shown that introducing the recirculated flue gases with the fuel results in a much greater reduction in NO{sub x}, per unit mass of gas recirculated, in comparison to introducing the flue gases with the combustion air. That fuel injection recirculation (FIR) is more effective than windbox FGR is quite remarkable. At present, however, there is no definitive understanding of why FIR is more effective than conventional FGR. The objective of the present investigation is to ascertain whether or not chemical and/or molecular transport effects alone can explain the differences in NO{sub x} reduction observed between FIR and FGR by studying laminar diffusion flames. The purpose of studying laminar flames is to isolate chemical effects from the effects of turbulent mixing and heat transfer, which are inherent in practical boilers. The results of both the numerical simulations and the experiments suggest that, although molecular transport and chemical kinetic phenomena are affected by the location of diluent addition depending on flow conditions, the greater effectiveness of FIR over FGR in practical applications may result from differences in turbulent mixing and heat transfer. Further research is required to understand how differences in diluent-addition location affect NO{sub x} production in turbulent flames. The present study, however, provides an underlying basis for understanding how flow conditions can affect flame chemistry. 51 figs., 7 tabs.

  1. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    NASA Astrophysics Data System (ADS)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  2. Intravitreal injection

    MedlinePlus

    Retinal vein occlusion-intravitreal injection; Triamcinolone-intravitreal injection; Dexamethasone-intravitreal injection; Lucentis-intravitreal injection; Avastin-intravitreal injection; Bevacizumab-intravitreal injection; Ranibizumab- ...

  3. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE PAGESBeta

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  4. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  5. Evaluation of resistively heated fuel injection technology to reduce cold start emissions and assist starting/driveaway of a methanol-fueled vehicle

    NASA Astrophysics Data System (ADS)

    Piotrowski, Gregory K.; Schaefer, Ronald M.

    1992-03-01

    The report provides the results from a program to evaluate a set of heated fuel injectors on an M100 fueled vehicle in an attempt to lower cold start emissions of unburned fuel and carbon monoxide and to improve cold start ability and drive ability. This technology was evaluated at several different temperatures.

  6. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  7. Non-Intrusive, Laser-Based Imaging of Jet-A Fuel Injection and Combustion Species in High Pressure, Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.; deGroot, Wilhelmus A.

    2001-01-01

    The emphasis of combustion research efforts at NASA Glenn Research Center (GRC) is on collaborating with industry to design and test gas-turbine combustors and subcomponents for both sub- and supersonic applications. These next-generation aircraft combustors are required to meet strict international environmental restrictions limiting emissions. To meet these goals, innovative combustor concepts require operation at temperatures and pressures far exceeding those of cur-rent designs. New and innovative diagnostic tools are necessary to characterize these flow streams since existing methods are inadequate. The combustion diagnostics team at GRC has implemented a suite of highly sensitive, nonintrusive optical imaging methods to diagnose the flowfields of these new engine concepts. By using optically accessible combustors and flametubes, imaging of fuel and intermediate combustion species via planar laser-induced fluorescence (PLIF) at realistic pressures are now possible. Direct imaging of the fuel injection process through both planar Mie scattering and PLIF methods is also performed. Additionally, a novel combination of planar fuel fluorescence imaging and computational analysis allows a 3-D examination of the flowfield, resulting in spatially and temporally resolved fuel/air volume distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions, thereby greatly enhancing the evaluation of fuel injector performance and other combustion phenomena. Stable species such as CO2, O2, N2O. and hydrocarbons are also investigated by a newly demonstrated 1-D, spontaneous Raman spectroscopic method. This visible wavelength Raman technique allows the acquisition of quantitative. stable species concentration measurements from the flow.

  8. Non-Intrusive, Laser-Based Imaging of Jet-A Fuel Injection and Combustion Species in High Pressure, Subsonic Flows

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; deGroot, W. A.

    2000-01-01

    The emphasis of combustion research efforts at NASA Glenn Research Center (GRC) is on collaborating with industry to design and test gas-turbine combustors and subcomponents for both sub- and supersonic applications. These next-generation aircraft combustors are required to meet strict international environmental restrictions limiting emissions. To meet these goals, innovative combustor concepts require operation at temperatures and pressures far exceeding those of current designs. New and innovative diagnostic tools are necessary to characterize these flow streams since existing methods are inadequate. The combustion diagnostics team at GRC has implemented a suite of highly sensitive, nonintrusive optical imaging methods to diagnose the flowfields of these new engine concepts. By using optically accessible combustors and flame-tubes, imaging of fuel and intermediate combustion species via planar laser-induced fluorescence (PLIF) at realistic pressures are now possible. Direct imaging of the fuel injection process through both planar Mie scattering and PLIF methods is also performed. Additionally, a novel combination of planar fuel fluorescence imaging and computational analysis allows a 3-D examination of the flowfield, resulting in spatially and temporally resolved fuel/air volume distribution maps. These maps provide detailed insight into the fuel injection process at actual conditions, thereby greatly enhancing the evaluation of fuel injector performance and other combustion phenomena. Stable species such as CO2, O2, N2, H2O, and hydrocarbons are also investigated by a newly demonstrated 1-D, spontaneous Raman spectroscopic method. This visible wavelength Raman technique allows the acquisition of quantitative, stable species concentration measurements from the flow.

  9. New Reduced Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2004-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes that are being developed at Glenn. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates were then used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx were obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3

  10. Simplified Two-Time Step Method for Calculating Combustion and Emission Rates of Jet-A and Methane Fuel With and Without Water Injection

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified kinetic scheme for Jet-A, and methane fuels with water injection was developed to be used in numerical combustion codes, such as the National Combustor Code (NCC) or even simple FORTRAN codes. The two time step method is either an initial time averaged value (step one) or an instantaneous value (step two). The switch is based on the water concentration in moles/cc of 1x10(exp -20). The results presented here results in a correlation that gives the chemical kinetic time as two separate functions. This two time step method is used as opposed to a one step time averaged method previously developed to determine the chemical kinetic time with increased accuracy. The first time averaged step is used at the initial times for smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, initial water to fuel mass ratio, temperature, and pressure. The second instantaneous step, to be used with higher water concentrations, gives the chemical kinetic time as a function of instantaneous fuel and water mole concentration, pressure and temperature (T4). The simple correlations would then be compared to the turbulent mixing times to determine the limiting rates of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. Chemical kinetic time equations for fuel, carbon monoxide and NOx are obtained for Jet-A fuel and methane with and without water injection to water mass loadings of 2/1 water to fuel. A similar correlation was also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium concentrations of carbon monoxide and nitrogen oxide as functions of overall equivalence ratio, water to fuel mass ratio, pressure and temperature (T3). The temperature of the gas entering

  11. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  12. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  13. Adaptive engine injection for emissions reduction

    DOEpatents

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  14. Study of a blast-furnace smelting technology which involves the injection of pulverized-coal fuel, natural gas, and an oxygen-enriched blast into the hearth

    SciTech Connect

    Ryzhenkov, A.N.; Yaroshevskii, S.L.; Zamuruev, V.P.; Popov, V.E.; Afanas'eva, Z.K.

    2006-05-15

    Studies were made of features of a blast-furnace smelting technology that involves the injection of natural gas (NG), oxygen (O{sub 2}) and pulverized-coal fuel (PCF) into the hearth. The technology has been implemented in the compensation and overcompensation regimes, which has made it possible to maintain or improve the gas dynamics of the furnace, the conditions for the reduction of iron oxides, the heating of the charge, and PCF combustion in the tuyere zone as PCF consumption is increased and coke use is decreased. Under the given conditions, with the blast having an oxygen content of 25.64-25.7%, the hearth injection of 131-138 kg PCF and 65-69 m{sup 3} NG for each ton of pig iron has made it possible to reduce coke consumption by 171-185 kg/ton pig (30.2-32.7%), reduce the consumption of comparison fuel by 36-37 kg/ton (5.2-5.3%), and lower the production cost of the pig iron by 43-49 hryvnas/ton (3.7-6.4%). Here, furnace productivity has increased 3.8-6.5%, while the quality of the conversion pig iron remains the same as before. Measures are being implemented to further increase the level and efficiency of PCF use.

  15. Insects associated with winter legume cover crops in a sorghum for Bio-fuel and cotton rotation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of novel crops for bio-fuel production requires evaluating the potential for sound ecological and economical implementation in a particular region. We examined the pest and generalist beneficial insect species associated with various winter cover crops (including narrowleaf lupin, white vetch, ...

  16. Combining steam injection with hydraulic fracturing for the in situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel.

    PubMed

    Nilsson, Bertel; Tzovolou, Dimitra; Jeczalik, Maciej; Kasela, Tomasz; Slack, William; Klint, Knud E; Haeseler, Frank; Tsakiroglou, Christos D

    2011-03-01

    A steam injection pilot-scale experiment was performed on the unsaturated zone of a strongly heterogeneous fractured soil contaminated by jet fuel. Before the treatment, the soil was stimulated by creating sub-horizontal sand-filled hydraulic fractures at three depths. The steam was injected through one hydraulic fracture and gas/water/non-aqueous phase liquid (NAPL) was extracted from the remaining fractures by applying a vacuum to extraction wells. The injection strategy was designed to maximize the heat delivery over the entire cell (10 m × 10 m × 5 m). The soil temperature profile, the recovered NAPL, the extracted water, and the concentrations of volatile organic compounds (VOCs) in the gas phase were monitored during the field test. GC-MS chemical analyses of pre- and post-treatment soil samples allowed for the quantitative assessment of the remediation efficiency. The growth of the heat front followed the configuration of hydraulic fractures. The average concentration of total hydrocarbons (g/kg of soil) was reduced by ∼ 43% in the upper target zone (depth = 1.5-3.9 m) and by ∼ 72% over the entire zone (depth = 1.5-5.5 m). The total NAPL mass removal based on gas and liquid stream measurements and the free-NAPL product were almost 30% and 2%, respectively, of those estimated from chemical analyses of pre- and post-treatment soil samples. The dominant mechanisms of soil remediation was the vaporization of jet fuel compounds at temperatures lower than their normal boiling points (steam distillation) enhanced by the ventilation of porous matrix due to the forced convective flow of air. In addition, the significant reduction of the NAPL mass in the less-heated deeper zone may be attributed to the counter-current imbibition of condensed water from natural fractures into the porous matrix and the gravity drainage associated with seasonal fluctuations of the water table. PMID:21030134

  17. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  18. A study of performance and emission characteristics of computerized CI engine with composite biodiesel blends as fuel at various injection pressures

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandarshekara, K.; Pramod Kumar, M. R.

    2013-09-01

    Transesterified vegetable oils are becoming increasingly important as alternative fuels for diesel engines due to several advantages. Biodiesel is a renewable, inexhaustible and green fuel. This paper presents the various properties of the oils derived from Jatropha and Pongamia, their mixes and biodiesels derived from the mixes. An innovative lab scale reactor was designed and developed for biodiesel production from mixed vegetable oils and used for the study of optimization of biodiesel yield [1]. Also, the analysis of data of experimental investigations carried out on a 3.75 kW computerized CI engine at injection pressures of 160 and 180 bar with methyl esters of mixed Jatropha and Pongamia in various proportions are also presented. The brake thermal efficiency for biodiesel blends was found to be higher than that of petrodiesel at various loading conditions. In case of Composite biodiesel blended fuels, the exhaust gas temperature increased with increase in load and the amount of composite biodiesel. The highest exhaust gas temperature was observed as 213 °C for biodiesel among the five loading conditions. When petrodiesel was used the exhaust gas temperature was observed to be 220 °C. The CO2, CO, HC and NOx emissions from the biodiesel blends were lower than that of petrodiesel.

  19. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  20. Centrifugal governor for injection type internal combustion engine

    SciTech Connect

    Takahashi, M

    1989-05-23

    A centrifugal governor for an injection type internal combustion engine, comprising: a housing in which a cam shaft is rotatably supported at its lower section and a fuel injection pump is disposed above the cam shaft; a flyweight disposed at an end of the cam shaft so as to be displaced in accordance with a rotational speed of the engine; a tension lever rotatable upon a driving force of the flyweight with an intermediate fixed shaft as a pivot; a governor spring assembly supported so as not to exert any supporting load between a housing side spring seat and another spring seat provided to the tension lever, and so as to be compressed upon rotation of the tension lever; a guide lever and a floating lever, both rotatable with a pin provided at a lower end of the tension lever as a pivot, and normally connected to each other as an integrated element by a cancellation spring surrounding the pin; the speed lever have a shaped like bell crank, rotatably supported at one end with a shaft connecting the control lever as a pivot, and engaged with an intermediated guide of the guide lever at the other end.

  1. Ducted combustion chamber for direct injection engines and method

    DOEpatents

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  2. Supersonic Pulsed Injection

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Harding, G. C.; Diskin, G. S.

    2001-01-01

    An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.

  3. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  4. Golimumab Injection

    MedlinePlus

    ... it.Golimumab injection comes in prefilled syringes and auto-injection devices for subcutaneous injection. Use each syringe ... method.Do not remove the cap from the auto-injection device or the cover from the prefilled ...

  5. Common Rail Injection System Development

    SciTech Connect

    Electro-Motive,

    2005-12-30

    The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3

  6. Nonlinear control and online optimization of the burn condition in ITER via heating, isotopic fueling and impurity injection

    NASA Astrophysics Data System (ADS)

    Boyer, Mark D.; Schuster, Eugenio

    2014-10-01

    The ITER tokamak, the next experimental step toward the development of nuclear fusion reactors, will explore the burning plasma regime in which the plasma temperature is sustained mostly by fusion heating. Regulation of the fusion power through modulation of fueling and external heating sources, referred to as burn control, is one of the fundamental problems in burning plasma research. Active control will be essential for achieving and maintaining desired operating points, responding to changing power demands, and ensuring stable operation. Most existing burn control efforts use either non-model-based control techniques or designs based on linearized models. These approaches must be designed for particular operating points and break down for large perturbations. In this work, we utilize a spatially averaged (zero-dimensional) nonlinear model to synthesize a multi-variable nonlinear burn control strategy that can reject large perturbations and move between operating points. The controller uses all of the available actuation techniques in tandem to ensure good performance, even if one or more of the actuators saturate. Adaptive parameter estimation is used to improve the model parameter estimates used by the feedback controller in real-time and ensure asymptotic tracking of the desired operating point. In addition, we propose the use of a model-based online optimization algorithm to drive the system to a state that minimizes a given cost function, while respecting input and state constraints. A zero-dimensional simulation study is presented to show the performance of the adaptive control scheme and the optimization scheme with a cost function weighting the fusion power and temperature tracking errors.

  7. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  8. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  9. Golimumab Injection

    MedlinePlus

    ... at golimumab injection before injecting it. Check the expiration date printed on the auto-injection device or carton and do not use the medication if the expiration date has passed. Do not use a prefilled syringe ...

  10. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  11. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    SciTech Connect

    Williams, Ben; Ewart, Paul; Wang, Xiaowei; Stone, Richard; Ma, Hongrui; Walmsley, Harold; Cracknell, Roger; Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different

  12. Sensor for Injection Rate Measurements

    PubMed Central

    Marcic, Milan

    2006-01-01

    A vast majority of the medium and high speed Diesel engines are equipped with multi-hole injection nozzles nowadays. Inaccuracies in workmanship and changing hydraulic conditions in the nozzles result in differences in injection rates between individual injection nozzle holes. The new deformational measuring method described in the paper allows injection rate measurement in each injection nozzle hole. The differences in injection rates lead to uneven thermal loads of Diesel engine combustion chambers. All today known measuring method, such as Bosch and Zeuch give accurate results of the injection rate in diesel single-hole nozzles. With multihole nozzles they tell us nothing about possible differences in injection rates between individual holes of the nozzle. At deformational measuring method, the criterion of the injected fuel is expressed by the deformation of membrane occurring due to the collision of the pressure wave against the membrane. The pressure wave is generated by the injection of the fuel into the measuring space. For each hole of the nozzle the measuring device must have a measuring space of its own into which fuel is injected as well as its measuring membrane and its own fuel outlet. During measurements procedure the measuring space must be filled with fuel to maintain an overpressure of 5 kPa. Fuel escaping from the measuring device is conducted into the graduated cylinders for measuring the volumetric flow through each hole of the nozzle.The membrane deformation is assessed by strain gauges. They are glued to the membrane and forming the full Wheatstone's bridge. We devoted special attention to the membrane shape and temperature compensation of the strain gauges.

  13. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  14. Fuel combustion exhibiting low NO{sub x} and CO levels

    DOEpatents

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  15. Premixed direct injection nozzle

    DOEpatents

    Zuo, Baifang; Johnson, Thomas Edward; Lacy, Benjamin Paul; Ziminsky, Willy Steve

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  16. Paclitaxel Injection

    MedlinePlus

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  17. Mipomersen Injection

    MedlinePlus

    ... become pregnant during your treatment, stop using mipomersen injection and call your doctor immediately. ... Mipomersen injection may cause side effects. Tell your doctor if any of these ... and tiredness that are most likely to occur during the first 2 days ...

  18. Levofloxacin Injection

    MedlinePlus

    ... infections. Levofloxacin injection is also used to prevent anthrax (a serious infection that may be spread on ... in people who may have been exposed to anthrax germs in the air. Levofloxacin injection is in ...

  19. Ciprofloxacin Injection

    MedlinePlus

    ... injection is also used to prevent or treat anthrax (a serious infection that may be spread on ... in people who may have been exposed to anthrax germs in the air. Ciprofloxacin injection is in ...

  20. Romidepsin Injection

    MedlinePlus

    ... with at least one other medication given by mouth or by injection. Romidepsin injection is in a ... antifungals such as itraconazole (Sporanox), ketoconazole (Nizoral), and voriconazole (Vfend); cisapride (Propulsid) (not available in the U.S.); ...

  1. Degarelix Injection

    MedlinePlus

    Degarelix injection is used to treat advanced prostate cancer (cancer that begins in the prostate [a male reproductive gland]). Degarelix injection is in a class of medications called gonadotropin-releasing hormone (GnRH) ...

  2. Paclitaxel Injection

    MedlinePlus

    ... other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  3. Glatiramer Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... to inject glatiramer, inject it around the same time every day. Follow the directions on your prescription ...

  4. Daratumumab Injection

    MedlinePlus

    ... any laboratory test, tell your doctor and the laboratory personnel that you are receiving or received daratumumab injection. ... a blood transfusion, tell your doctor and the laboratory personnel that you are receiving or received daratumumab injection. ...

  5. Pralatrexate Injection

    MedlinePlus

    ... will need to take folic acid and vitamin B12 during your treatment with pralatrexate injection to help ... that you will need to receive a vitamin B12 injection no more than 10 weeks before your ...

  6. Cefoxitin Injection

    MedlinePlus

    ... injection is used to treat infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work ...

  7. Chloramphenicol Injection

    MedlinePlus

    ... treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection ... antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work ...

  8. Oxacillin Injection

    MedlinePlus

    ... is used to treat infections caused by certain bacteria. Oxacillin injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as oxacillin injection will not work ...

  9. Nafcillin Injection

    MedlinePlus

    ... to treat infections caused by certain types of bacteria. Nafcillin injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as nafcillin injection will not work ...

  10. Doripenem Injection

    MedlinePlus

    ... tract, kidney, and abdomen that are caused by bacteria. Doripenem injection is not approved by the Food ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work ...

  11. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone injection is a very effective method of birth control but does not prevent the spread of human ... you have been using a different method of birth control and are switching to medroxyprogesterone injection, your doctor ...

  12. Chloramphenicol Injection

    MedlinePlus

    Chloramphenicol injection is used to treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection is in a class of medications called ...

  13. Levoleucovorin Injection

    MedlinePlus

    ... injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall) when methotrexate is used to to treat certain types of ... people who have accidentally received an overdose of methotrexate or similar medications. Levoleucovorin injection is in a ...

  14. Estrogen Injection

    MedlinePlus

    ... forms of estrogen injection are used to treat hot flushes (hot flashes; sudden strong feelings of heat and sweating) ... If you are using estrogen injection to treat hot flushes, your symptoms should improve within 1 to ...

  15. Palonosetron Injection

    MedlinePlus

    Palonosetron injection is used to prevent nausea and vomiting that may occur within 24 hours after receiving ... occur several days after receiving certain chemotherapy medications. Palonosetron injection is in a class of medications called ...

  16. Leuprolide Injection

    MedlinePlus

    ... normal number of red blood cells) caused by uterine fibroids (noncancerous growths in the uterus). Leuprolide injection is ... Your doctor will tell you how long your treatment with leuprolide injection will last. When used in ...

  17. Naltrexone Injection

    MedlinePlus

    Naltrexone injection is used along with counseling and social support to help people who have stopped drinking large ... injection is also used along with counseling and social support to help people who have stopped abusing opiate ...

  18. Posaconazole Injection

    MedlinePlus

    Posaconazole injection is used to prevent fungal infections in people with a weakened ability to fight infection. Posaconazole injection is in a class of medications called azole antifungals. It works ...

  19. Epinephrine Injection

    MedlinePlus

    Adrenalin® Chloride Solution ... a pre-filled automatic injection device containing a solution (liquid) to inject under the skin or into ... device when this date passes. Look at the solution in the device from time to time. If ...

  20. Trastuzumab Injection

    MedlinePlus

    Trastuzumab injection is used along with other medications or after other medications have been used to treat ... has spread to other parts of the body. Trastuzumab injection is also used during and after treatment ...

  1. Fondaparinux Injection

    MedlinePlus

    ... using fondaparinux injection while you are in the hospital at least 6 to 8 hours after your ... you will continue to use fondaparinux after your hospital stay, you can inject fondaparinux yourself or have ...

  2. Doxycycline Injection

    MedlinePlus

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  3. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone subcutaneous injection is also used to treat endometriosis (a condition in which the type of tissue ... parts of the body in women who have endometriosis. Medroxyprogesterone injection is a very effective method of ...

  4. Ferumoxytol Injection

    MedlinePlus

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... and may cause the kidneys to stop working). Ferumoxytol injection is in a class of medications called ...

  5. Aripiprazole Injection

    MedlinePlus

    ... aripiprazole injection and aripiprazole extended-release injection developed gambling problems or other intense urges or behaviors that ... even if you do not realize that your gambling or any other intense urges or unusual behaviors ...

  6. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  7. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling. Progress report, August 16, 1991--September 30, 1992

    SciTech Connect

    Kim, K.; Zhang, J.

    1992-12-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  8. The effects of fuel volatility, structure, speed and load on hydrocarbon emissions from piston wetting in direct injection spark ignition engines

    NASA Astrophysics Data System (ADS)

    Huang, Yiqun

    Piston wetting can be isolated from the other sources of hydrocarbon (HC) emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In the present study, a variety of pure liquid hydrocarbons are used to examine the influence of fuel volatility, structure, speed and load. The exhaust hydrocarbons were speciated to differentiate between the emissions resulting from the gaseous fuel and those resulting from the liquid fuel. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. To examine the fuel volatility and structure effects, tests of a matrix of nine pure liquid hydrocarbon fuels, including normal-alkanes, iso-alkanes, cyclo-alkanes and aromatics, were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). The effects of engine speed and load were also examined. For these tests, four different normal alkanes were used, including one that appears to be near the Leidenfrost point for operation at the WWMP, one that is near the Nukiyama point, and one that appears to be in the transition region. It is shown that the "Piston Wetting Emissions Index" for engine-out total hydrocarbon emissions increases with both decreasing speed and decreasing load, and that this is primarily an effect of oxidation kinetics. Speed and load have opposite effects on unburned fuel emissions, and this appears to be a pressure effect. For all speeds and loads the Leidenfrost effect appears to be important: the most volatile fuel has the highest total hydrocarbon and unburned fuel emissions whereas the two least volatile fuels have lower emissions and the fuel that is within the transition regime yields intermediate emissions.

  9. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  10. Worldwide Injection Technique Questionnaire Study: Population Parameters and Injection Practices.

    PubMed

    Frid, Anders H; Hirsch, Laurence J; Menchior, Astrid R; Morel, Didier R; Strauss, Kenneth W

    2016-09-01

    From February 1, 2014, through June 30, 2015, 13,289 insulin-injecting patients from 423 centers in 42 countries took part in one of the largest surveys ever performed in diabetes. The goal was to assess patient characteristics, as well as historical and practical aspects of their injection technique. Results show that 4- and 8-mm needle lengths are each used by nearly 30% of patients and 5- and 6-mm needles each by approximately 20%. Higher consumption of insulin (as measured by total daily dose) is associated with having lipohypertrophy (LH), injecting into LH, leakage from the injection site, and failing to reconstitute cloudy insulin. Glycated hemoglobin values are, on average, 0.5% higher in patients with LH and are significantly higher with incorrect rotation of sites and with needle reuse. Glycated hemoglobin values are lower in patients who distribute their injections over larger injection areas and whose sites are inspected routinely. The frequencies of unexpected hypoglycemia and glucose variability are significantly higher in those with LH, those injecting into LH, those who incorrectly rotate sites, and those who reuse needles. Needles associated with diabetes treatment are the most commonly used medical sharps in the world. However, correct disposal of sharps after use is critically suboptimal. Many used sharps end up in public trash and constitute a major accidental needlestick risk. Use of these data should stimulate renewed interest in and commitment to optimizing injection practices in patients with diabetes. PMID:27594185

  11. Supergranulation rotation

    NASA Astrophysics Data System (ADS)

    Schou, Jesper; Beck, John G.

    2001-01-01

    Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.

  12. Pellet injection technology

    NASA Astrophysics Data System (ADS)

    Combs, S. K.

    1993-07-01

    During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures (≂10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of ≂1-2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1-40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice. A few two-stage pneumatic systems (single-shot) have recently been installed on tokamak

  13. IN-SITU AIR INJECTION, SOIL VACUUM EXTRACTION AND ENHANCED BIODEGRADATION: A CASE STUDY IN A JP-4 JET FUEL CONTAMINATED SITE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) and the U.S. Coast Guard (USCG) conducted a joint demonstration of in situ remediation of a JP-4 jet fuel spill at the USCG Support Center in Elizabeth City, North Carolina. The jet fuel was trapped beneath a clay layer that ext...

  14. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  15. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  16. Rotational aerophones

    NASA Astrophysics Data System (ADS)

    Fletcher, N. H.; Tarnopolsky, A. Z.; Lai, J. C. S.

    2002-03-01

    Free rotational aerophones such as the bullroarer, which consists of a wooden slat whirled around on the end of a string, and which emits a loud pulsating roar, have been used in many ancient and traditional societies for ceremonial purposes. This article presents an experimental and theoretical investigation of this instrument. The aerodynamics of rotational behavior is elucidated, and relates slat rotation frequency to slat width and velocity through the air. Analysis shows that sound production is due to generation of an oscillating-rotating dipole across the slat, the role of the vortices shed by the slat being relatively minor. Apparent discrepancies between the behavior of a bullroarer slat and a slat mounted on an axle in a wind tunnel are shown to be due to viscous friction in the bearings of the wind-tunnel experiment.

  17. The Fundamental Principles of High-speed Semi-diesel Engines. Part I: a General Discussion of the Subject of Fuel Injection in Diesel Engines and Detailed Descriptions of Many Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Buchner,

    1926-01-01

    Three questions relating to the technical progress in the utilization of heavy oils are discussed. The first question considers solid injection in high-speed automobile engines, the second concerns the development of the hot-bulb engine, and the third question relates to the need for a more thorough investigation of the processes on which the formatation of combustible, rapidly-burning mixtures depend.

  18. The Effect of Pulsed Injection on Shear Layer Dynamics in a Scramjet Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Smith, Leslie

    One of the greatest problems that scramjet research faces is fuel air mixing. The residence time for a scramjet engine, or the time it takes for a volume of air to completely pass through the engine, is on the order of 0.1 ms. In that extremely short period of time fuel must be injected and fully mirco-mixed at stoichiometric ratios with the combustion chamber airflow. The fuel-air mixture must then be combusted and expanded through the nozzle to produce thrust. The goal of this research is to develop a new more efficient method of fuel air mixing within a scramjet combustion chamber. A possible way to speed up the mixing process of parallel injection without incurring the total pressure losses that would occur in normal injection is to inject the fuel from the rear side of a backward facing step. Backward facing steps in supersonic flow produce a Prandtl-Meyer expansion fan followed by a shear layer. The instabilities in this shear layer have dominant resonant frequencies. It is believed that if fuel is injected in pulses that impinge on the shear layer at these dominant resonant frequencies that the shear layer will resonate. When the shear layer resonates the vortices that form in the shear layer will grow in magnitude, thus mixing the injected fuel with the air. To test this hypothesis a new test section was designed and built that features a one inch step under which an injector can be housed. This new test section was installed in the supersonic facility at the University of Kansas. Two injectors were also designed that each feature a face plate, one with eight injection ports arranged in a ring and one with 5 injection ports. Between the face plate and a back plate there is a cavity that houses a rotating valve that is powered by a pneumatic motor. Five valves were built: one with 8 teeth, one with 16 teeth, one with 5 teeth that are the same size as the gaps between the teeth, one with 5 teeth where the teeth are 50% larger than the gaps, and one with 5

  19. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  20. Lacosamide Injection

    MedlinePlus

    ... may be prescribed for other uses; ask your doctor or pharmacist for more information. ... Before using lacosamide injection,tell your doctor and pharmacist if you are allergic to lacosamide, any other medications, or any of the ingredients in lacosamide injection. Ask your pharmacist for a ...

  1. Dexamethasone Injection

    MedlinePlus

    ... lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body inappropriate happiness difficulty falling asleep or staying asleep extreme ... increased appetite injection site pain or redness Some side effects can ...

  2. Pralatrexate Injection

    MedlinePlus

    ... you that you will need to receive a vitamin B12 injection no more than 10 weeks before your first ... tests to check your body's response to pralatrexate injection.Ask your ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  3. Leucovorin Injection

    MedlinePlus

    ... lack of vitamin B12 or inability to absorb vitamin B12. Your doctor will not prescribe leucovorin injection to treat this type of anemia.tell your ... tests to check your body's response to leucovorin injection.It is ... such as vitamins, minerals, or other dietary supplements. You should bring ...

  4. Etanercept Injection

    MedlinePlus

    ... and colorless. The liquid may contain small white particles, but should not contain large or colored particles. Do not use a syringe or dosing pen ... liquid is cloudy or contains large or colored particles.The best place to inject etanercept injection is ...

  5. Musculoskeletal Injection

    PubMed Central

    Wittich, Christopher M.; Ficalora, Robert D.; Mason, Thomas G.; Beckman, Thomas J.

    2009-01-01

    Patients commonly present to primary care physicians with musculoskeletal symptoms. Clinicians certified in internal medicine must be knowledgeable about the diagnosis and management of musculoskeletal diseases, yet they often receive inadequate postgraduate training on this topic. The musculoskeletal problems most frequently encountered in our busy injection practice involve, in decreasing order, the knees, trochanteric bursae, and glenohumeral joints. This article reviews the clinical presentations of these problems. It also discusses musculoskeletal injections for these problems in terms of medications, indications, injection technique, and supporting evidence from the literature. Experience with joint injection and the pharmacological principles described in this article should allow primary care physicians to become comfortable and proficient with musculoskeletal injections. PMID:19720781

  6. Fluid dynamics in a Rotating-Detonation-Engine with micro-injectors

    NASA Astrophysics Data System (ADS)

    Schwer, Douglas

    2011-11-01

    Rotating detonation engines (RDE's) represent a natural extension of the extensively studied pulse detonation engines (PDE's) for obtaining propulsion from the high efficiency detonation cycle. RDE's require fuel and oxidizer under high pressure to be injected through micro-nozzles from one or two plenums (for premixed and non-premixed). This injection process is critically important to the stability and performance of the RDE. This paper studies the effect of this injection process on the detonation wave within the combustion chamber, with an emphasis on how the fluid dynamics are affected. Both two-dimensional and three-dimensional simulations are done using well proven numerical methods for both the combustion chamber and mixture plenums of an idealized RDE. This work is supported through NRL 6.1 Computational Physics Task Area

  7. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  8. Reforming of fuel inside fuel cell generator

    DOEpatents

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  9. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  10. Rotation Measurement

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In aircraft turbine engine research, certain investigations require extremely precise measurement of the position of a rotating part, such as the rotor, a disc-like part of the engine's compressor which revolves around a shaft at extremely high speeds. For example, in studies of airflow velocity within a compressor, researchers need to know-for data correlation the instantaneous position of a given spot on the rotor each time a velocity measurement is made. Earlier methods of measuring rotor shaft angle required a physical connection to the shaft, which limited the velocity of the rotating object.

  11. Twin-Screw Extruder Development for the ITER Pellet Injection System

    SciTech Connect

    Meitner, Steven J; Baylor, Larry R; Combs, Stephen Kirk; Fehling, Dan T; McGill, James M; Rasmussen, David A; Leachman, J. W.

    2009-01-01

    The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pellets used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ≈5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ≈15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype.

  12. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  13. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  14. Certolizumab Injection

    MedlinePlus

    ... has not improved when treated with other medications, rheumatoid arthritis (a condition in which the body attacks its ... continues. When certolizumab injection is used to treat rheumatoid arthritis, it is usually given every other week and ...

  15. Ramucirumab Injection

    MedlinePlus

    ... dose of ramucirumab injection. Tell your doctor or nurse if you experience any of the following while you receive ramucirumab: uncontrollable shaking of a part of the body; back pain or spasms; chest pain and tightness; chills; flushing; ...

  16. Topotecan Injection

    MedlinePlus

    ... organs where eggs are formed) and small cell lung cancer (a type of cancer that begins in the ... topotecan injection is used to treat ovarian or lung cancer, it is usually given once a day for ...

  17. Colistimethate Injection

    MedlinePlus

    ... antibiotic, to help treat your infection. The drug will be either injected directly into a vein through ... catheter or added to an intravenous fluid that will drip through a needle or catheter into a ...

  18. Mitoxantrone Injection

    MedlinePlus

    ... medications to relieve pain in people with advanced prostate cancer who did not respond to other medications. Mitoxantrone ... doses). When mitoxantrone injection is used to treat prostate cancer, it is usually given once every 21 days. ...

  19. Palivizumab Injection

    MedlinePlus

    ... this medicine each month during RSV season. Your health care provider will let you know when the monthly injections are no longer needed.Your child's health care provider (doctor, nurse, or pharmacist) may measure ...

  20. Terbutaline Injection

    MedlinePlus

    Terbutaline injection is used to treat wheezing, shortness of breath, coughing, and chest tightness caused by asthma, chronic bronchitis, and emphysema. Terbutaline is in a class of medications called beta ...

  1. Leuprolide Injection

    MedlinePlus

    ... of the body and causes pain, heavy or irregular menstruation [periods], and other symptoms). Leuprolide injection (Lupron ... mention any of the following: certain medications for irregular heartbeat such as amiodarone (Cordarone), disopyramide (Norpace), procainamide ( ...

  2. Sumatriptan Injection

    MedlinePlus

    ... accompanied by nausea and sensitivity to sound and light). Sumatriptan injection is also used to treat the ... children. Store it at room temperature, away from light, excess heat, and moisture (not in the bathroom). ...

  3. Insulin Injection

    MedlinePlus

    ... contraceptives (birth control pills, patches, rings, injections, or implants); niacin (Niacor, Niaspan, Slo-Niacin); octreotide (Sandostatin);oral ... cramps abnormal heartbeat large weight gain in a short period of time swelling of the arms, hands, ...

  4. Fondaparinux Injection

    MedlinePlus

    ... had a serious allergic reaction (difficulty breathing or swallowing or swelling of the face, throat, tongue, lips, ... the face, throat, tongue, lips, or eyes difficulty swallowing or breathing Fondaparinux injection may cause other side ...

  5. Daclizumab Injection

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... injections. Before you use daclizumab yourself the first time, read the written instructions that come with it. ...

  6. Haloperidol Injection

    MedlinePlus

    ... emotions). Haloperidol injection is also used to control motor tics (uncontrollable need to repeat certain body movements) ... people who have Tourette's disorder (condition characterized by motor or verbal tics). Haloperidol is in a class ...

  7. Certolizumab Injection

    MedlinePlus

    ... causes pain, swelling, and damage) including the following: Crohn's disease (a condition in which the body attacks the ... home. When certolizumab injection is used to treat Crohn's disease, it is usually given every two weeks for ...

  8. Natalizumab Injection

    MedlinePlus

    ... prevent episodes of symptoms in people who have Crohn's disease (a condition in which the body attacks the ... If you are receiving natalizumab injection to treat Crohn's disease, your symptoms should improve during the first few ...

  9. Daptomycin Injection

    MedlinePlus

    ... blood infections or serious skin infections caused by bacteria. Daptomycin injection is in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria. Antibiotics will not work for treating colds, flu, ...

  10. Ciprofloxacin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria. Ciprofloxacin injection is also used to prevent or ... of antibiotics called fluoroquinolones. It works by killing bacteria that cause infections. Antibiotics will not work for ...

  11. Gentamicin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as gentamicin injection will not work ...

  12. Ertapenem Injection

    MedlinePlus

    ... abdominal (stomach area) infections, that are caused by bacteria. It is also used for the prevention of ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work ...

  13. Cefepime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia, and skin, urinary tract, and kidney ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work ...

  14. Ceftriaxone Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria such as gonorrhea (a sexually transmitted disease), pelvic ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftriaxone injection will not work ...

  15. Moxifloxacin Injection

    MedlinePlus

    ... skin, and abdominal (stomach area) infections caused by bacteria. Moxifloxacin injection is in a class of antibiotics called fluoroquinolones. It works by killing the bacteria that cause infections. Antibiotics will not work against ...

  16. Ceftaroline Injection

    MedlinePlus

    ... infections and pneumonia (lung infection) caused by certain bacteria. Ceftaroline is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work ...

  17. Tobramycin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as tobramycin injection will not work ...

  18. Cefazolin Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including skin, bone, joint, genital, blood, heart valve, ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work ...

  19. Cefotaxime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work ...

  20. Amikacin Injection

    MedlinePlus

    ... treat certain serious infections that are caused by bacteria such as meningitis (infection of the membranes that ... medications called aminoglycoside antibiotics. It works by killing bacteria.Antibiotics such as amikacin injection will not work ...

  1. Ampicillin Injection

    MedlinePlus

    ... to treat certain infections that are caused by bacteria such as meningitis (infection of the membranes that ... of medications called penicillins. It works by killing bacteria.Antibiotics such as ampicillin injection will not work ...

  2. Cefuroxime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work ...

  3. Vancomycin Injection

    MedlinePlus

    ... medications called glycopeptide antibiotics. It works by killing bacteria that cause infections.Antibiotics such as vancomycin injection ... infection may not be completely treated and the bacteria may become resistant to antibiotics.

  4. Ceftazidime Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work ...

  5. Telavancin Injection

    MedlinePlus

    ... serious skin infections caused by certain types of bacteria. Telavancin injection is in a class of medications ... antibiotics. It works by stopping the growth of bacteria. Antibiotics will not work for colds, flu, or ...

  6. Teduglutide Injection

    MedlinePlus

    ... injection, prefilled syringes containing diluent (liquid to be mixed with teduglutide powder), needles to attach to the diluent syringe, dosing syringes with needles attached, and alcohol swab pads. Throw away needles, syringes, and vials ...

  7. Cefoxitin Injection

    MedlinePlus

    ... is in a class of medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  8. Nafcillin Injection

    MedlinePlus

    ... medications called penicillins. It works by killing bacteria.Antibiotics such as nafcillin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  9. Cefepime Injection

    MedlinePlus

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work for colds, flu, or other viral infections. Using antibiotics when they are not needed increases your risk ...

  10. Oxacillin Injection

    MedlinePlus

    ... medications called penicillins. It works by killing bacteria.Antibiotics such as oxacillin injection will not work for colds, flu, or other viral infections. Taking antibiotics when they are not needed increases your risk ...

  11. Dexamethasone Injection

    MedlinePlus

    ... severe allergic reactions. It is used in the management of certain types of edema (fluid retention and ... needed for normal body functioning) and in the management of certain types of shock. Dexamethasone injection is ...

  12. Pembrolizumab Injection

    MedlinePlus

    ... treat a certain type of non-small-cell lung cancer that has spread to nearby tissues or to ... successfully with other medications for non-small-cell lung cancer. Pembrolizumab injection is in a class of medications ...

  13. Ibandronate Injection

    MedlinePlus

    ... Ibandronate is in a class of medications called bisphosphonates. It works by preventing bone breakdown and increasing ... while receiving this medication.Being treated with a bisphosphonate medication such as ibandronate injection for osteoporosis may ...

  14. Omalizumab Injection

    MedlinePlus

    ... asthma attacks (sudden episodes of wheezing, shortness of breath, and trouble breathing) in people with allergic asthma ( ... receiving a dose of omalizumab injection shortness of breath coughing up blood skin sores severe pain, numbness ...

  15. Necitumumab Injection

    MedlinePlus

    ... chest pain; shortness of breath; dizziness; loss of consciousness; or fast, irregular, or pounding heartbeat.Keep all appointments with your doctor and the laboratory.Talk to your doctor about the risks of receiving necitumumab injection.

  16. Dolasetron Injection

    MedlinePlus

    ... receiving cancer chemotherapy medications. Dolasetron is in a class of medications called serotonin 5-HT3 receptor antagonists. ... stiff or twitching muscles seizures coma (loss of consciousness) Dolasetron injection may cause other side effects. Call ...

  17. Topotecan Injection

    MedlinePlus

    ... also used together with other medications to treat cervical cancer (cancer that begins in the opening of the ... days. When topotecan injection is used to treat cervical cancer, it is usually given once a day for ...

  18. Ertapenem Injection

    MedlinePlus

    Ertapenem injection is used to treat certain serious infections, including pneumonia and urinary tract, skin, diabetic foot, ... for the prevention of infections following colorectal surgery. Ertapenem is in a class of medications called carbapenem ...

  19. Octreotide Injection

    MedlinePlus

    ... immediate-release injection is also used to control diarrhea and flushing caused by carcinoid tumors (slow-growing ... symptoms are severe or do not go away: diarrhea constipation pale, bulky, foul-smelling stools constantly feeling ...

  20. Infliximab Injection

    MedlinePlus

    ... injection may cause serious allergic reactions during an infusion and for 2 hours afterward. A doctor or ... the following symptoms during or shortly after your infusion: hives; rash; itching; swelling of the face, eyes, ...

  1. Vedolizumab Injection

    MedlinePlus

    ... injection may cause serious allergic reactions during an infusion and for several hours afterward. A doctor or ... of the following symptoms during or after your infusion: rash; itching; swelling of the face, eyes, mouth, ...

  2. Panitumumab Injection

    MedlinePlus

    ... as a solution (liquid) to be given by infusion (injected into a vein). It is usually given ... doctor or nurse in a doctor's office or infusion center. Panitumumab is usually given once every 2 ...

  3. Tositumomab Injection

    MedlinePlus

    ... is in a class of medications called monoclonal antibodies with radioisotopes. It works by attaching to cancer ... you receive tositumomab injection, your body may develop antibodies (substances in the blood that help the immune ...

  4. Ibritumomab Injection

    MedlinePlus

    ... is in a class of medications called monoclonal antibodies with radioisotopes. It works by attaching to cancer ... you receive ibritumomab injection, your body may develop antibodies (substances in the blood that help the immune ...

  5. Temozolomide Injection

    MedlinePlus

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called ... injected once a day. For some types of brain tumors, temozolomide is given daily for 42 to 49 ...

  6. Tigecycline Injection

    MedlinePlus

    ... to treat certain serious infections including community acquired pneumonia (a lung infection that developed in a person ... Tigecycline injection should not be used to treat pneumonia that developed in people who were in a ...

  7. Acetaminophen Injection

    MedlinePlus

    ... injection is also used in combination with opioid (narcotic) medications to relieve moderate to severe pain. Acetaminophen is in a class of medications called analgesics (pain relievers) and antipyretics (fever reducers). It works by changing ...

  8. Dexrazoxane Injection

    MedlinePlus

    ... certain side effects that may be caused by chemotherapy medications. Dexrazoxane injection (Zinecard) is used to prevent ... tissues that may be caused when an anthracycline chemotherapy medication such as daunorubicin (Daunoxome, Cerubidine), doxorubicin (Doxil), ...

  9. Denosumab Injection

    MedlinePlus

    ... menstrual periods), who have an increased risk for fractures (broken bones) or who cannot take or did ... receiving certain treatments that increase their risk for fractures. Denosumab injection (Xgeva) is used to reduce fractures ...

  10. Mitoxantrone Injection

    MedlinePlus

    ... of disability in patients with certain forms of multiple sclerosis (MS). Mitoxantrone injection is also used together with steroid ... a class of medications called anthracenediones. Mitoxantrone treats MS by stopping certain cells of the immune system ...

  11. Dexrazoxane Injection

    MedlinePlus

    ... and pharmacist if you are allergic to dexrazoxane injection or any other medications.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  12. Oritavancin Injection

    MedlinePlus

    ... for at least 5 days after receiving oritavancin injection.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  13. Ferumoxytol Injection

    MedlinePlus

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in adults with chronic kidney disease (damage to the kidneys which may worsen over ...

  14. Exenatide Injection

    MedlinePlus

    ... month. Exenatide extended-release solution is injected once weekly at any time of day without regard to ... you remember it and then continue your regular weekly schedule. However, if there are less than 3 ...

  15. Fluconazole Injection

    MedlinePlus

    ... injection is used to treat fungal infections, including yeast infections of the mouth, throat, esophagus (tube leading from ... by fungus. Fluconazole is also used to prevent yeast infections in patients who are likely to become infected ...

  16. Mipomersen Injection

    MedlinePlus

    Mipomersen injection is used to decrease levels of cholesterol and other fatty substances in the blood in people who have homozygous familial hypercholesterolemia (HoFH; a rare inherited condition that ...

  17. Cefuroxime Injection

    MedlinePlus

    ... pneumonia and other lower respiratory tract (lung) infections; meningitis (infection of the membranes that surround the brain ... hearing loss, if you are being treated for meningitis Cefuroxime injection may cause other side effects. Call ...

  18. Busulfan Injection

    MedlinePlus

    ... cancer cells in preparation for a bone marrow transplant. Busulfan is in a class of medications called ... a total of 16 doses) before bone marrow transplant.Busulfan injection may cause seizures during therapy with ...

  19. Methylnaltrexone Injection

    MedlinePlus

    ... injection is used to treat constipation caused by opioid (narcotic) pain medications in patients with advanced illnesses ... a class of medications called peripherally acting mu-opioid receptor antagonists. It works by protecting the bowel ...

  20. Methylprednisolone Injection

    MedlinePlus

    ... treatment.You may receive methylprednisolone injection in a hospital or medical facility, or you may be given ... doctor or if you are admitted to a hospital. It is also important information to carry with ...

  1. Ampicillin Injection

    MedlinePlus

    ... have.You may receive ampicillin injection in a hospital or you may administer the medication at home. ... doctor or if you are admitted to a hospital. It is also important information to carry with ...

  2. Romidepsin Injection

    MedlinePlus

    ... bleeding fever, cough, flu-like symptoms, muscle aches, burning on urination, worsening skin problems, and other signs of infection rash blistering or peeling skin Romidepsin injection may cause other side effects. Call your doctor if you have any unusual ...

  3. Ranitidine Injection

    MedlinePlus

    ... the pancreas and small intestine that caused increased production of stomach acid). Ranitidine injection is in a ... your doctor and the laboratory. Your doctor may order certain lab tests to check your body's response ...

  4. Ganciclovir Injection

    MedlinePlus

    ... injection is for intravenous (into a vein) use only. Giving ganciclovir through intramuscular (into a muscle) or ... the storage of ganciclovir solution. Store your medication only as directed. Make sure you understand what you ...

  5. Teduglutide Injection

    MedlinePlus

    ... syndrome in people who need additional nutrition or fluids from intravenous (IV) therapy. Teduglutide injection is in ... analogs. It works by improving the absorption of fluids and nutrients in the intestines.

  6. Olanzapine Injection

    MedlinePlus

    Olanzapine extended-release injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... treat episodes of agitation in people who have schizophrenia or in people who have bipolar I disorder ( ...

  7. Risperidone Injection

    MedlinePlus

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... do not already have diabetes. If you have schizophrenia, you are more likely to develop diabetes than ...

  8. Aripiprazole Injection

    MedlinePlus

    ... injections (Abilify Maintena, Aristada) are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... treat episodes of agitation in people who have schizophrenia or in people who have bipolar I disorder ( ...

  9. Secukinumab Injection

    MedlinePlus

    ... to see if you need to receive any vaccinations. It is important to have all vaccines appropriate ... treatment with secukinumab injection. Do not have any vaccinations during your treatment without talking to your doctor. ...

  10. Tesamorelin Injection

    MedlinePlus

    ... fat in the stomach area in adults with human immunodeficiency virus (HIV) who have lipodystrophy (increased body ... injection is in a class of medications called human growth hormone-releasing factor (GRF) analogs. It works ...

  11. Naloxone Injection

    MedlinePlus

    ... emergency medical treatment to reverse the life-threatening effects of a known or suspected opiate (narcotic) overdose. ... is also used after surgery to reverse the effects of opiates given during surgery. Naloxone injection is ...

  12. Methotrexate Injection

    MedlinePlus

    ... Methotrexate injection is also used to treat severe psoriasis (a skin disease in which red, scaly patches ... slowing the growth of cancer cells. Methotrexate treats psoriasis by slowing the growth of skin cells to ...

  13. Sumatriptan Injection

    MedlinePlus

    ... sometimes are accompanied by nausea and sensitivity to sound and light). Sumatriptan injection is also used to ... stomach pain sudden weight loss paleness or blue color of the fingers and toes shortness of breath ...

  14. Denosumab Injection

    MedlinePlus

    ... injection is in a class of medications called RANK ligand inhibitors. It works by decreasing bone breakdown ... medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. ...

  15. Omacetaxine Injection

    MedlinePlus

    ... for CML and can no longer benefit from these medications or cannot take these medications due to side effects. Omacetaxine injection is ... side effects. Tell your doctor if any of these symptoms are severe or do not go away: ...

  16. Basiliximab Injection

    MedlinePlus

    ... is used with other medications to prevent immediate transplant rejection (attack of the transplanted organ by the immune system of the person receiving the organ) in people who are receiving kidney transplants. Basiliximab injection is in a class of medications ...

  17. Metoclopramide Injection

    MedlinePlus

    ... is used to relieve symptoms caused by slow stomach emptying in people who have diabetes. These symptoms include ... When metoclopramide injection is used to treat slowed stomach emptying due to diabetes, it may be given up ...

  18. Intrathymic Injection.

    PubMed

    Manna, Sugata; Bhandoola, Avinash

    2016-01-01

    Intrathymic injection is used in several T cell-associated immunological studies to deliver cells or other substances directly into the thymus. Here, we describe the intrathymic injection procedure involving surgical incision of the mouse with or without a thoracotomy. Though this procedure can result in poor recovery, postsurgical complications, and distress to the animal, it is actually a simple procedure that can be carried out relatively easily and quickly with experience. PMID:26294410

  19. Parametric study of injection rates with solenoid injectors in an injection quantity and rate measuring device

    SciTech Connect

    Busch, Stephen; Miles, Paul C.

    2015-03-31

    A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot–main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. Furthermore, a comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for a single injection but dramatically different for multiple injections with short dwells.

  20. Parametric study of injection rates with solenoid injectors in an injection quantity and rate measuring device

    DOE PAGESBeta

    Busch, Stephen; Miles, Paul C.

    2015-03-31

    A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot–main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. Furthermore, a comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for amore » single injection but dramatically different for multiple injections with short dwells.« less

  1. Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.

    2014-10-01

    Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.

  2. Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer

    NASA Astrophysics Data System (ADS)

    Frolov, S. M.; Dubrovskii, A. V.; Ivanov, V. S.

    2016-07-01

    The possibility of integrating the Continuous Detonation Chamber (CDC) in a gas turbine engine (GTE) is demonstrated by means of three-dimensional (3D) numerical simulations, i. e., the feasibility of the operation process in the annular combustion chamber with a wide gap and with separate feeding of fuel (hydrogen) and oxidizer (air) is proved computationally. The CDC with an upstream isolator damping pressure disturbances propagating towards the compressor is shown to exhibit a gain in the total pressure of 15% as compared with the same combustion chamber operating in the deflagration mode.

  3. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-09-23

    This patent describes a distillate fuel for indirect injection compression ignition engines containing at least the combination of (i) organic nitrate ignition accelerator, and (ii) an additive selected from the group consisting of alkenyl substituted succinimide, alkenyl substituted succinamide and mixtures thereof. The alkenyl substituent contains about 12-36 carbon atoms, the additive being made by the process comprising (a) isomerizing the double bond of an ..cap alpha..-olefin containing about 12-36 carbon atoms to obtain a mixture of internal olefins, (b) reacting the mixture of internal olefins with maleic acid, anhydride or ester to obtain an intermediate alkenyl substituted succinic acid, anhydride or ester, and (c) reacting the intermediate with ammonia to form a succinimide, succinamide or mixture thereof. The combination is present in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel.

  4. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  5. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect

    Mather, Daniel

    2000-08-20

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  6. Modeling Ignition and Combustion in Direct Injection Compression Ignition Engines Employing Very Early Injection Timing

    NASA Astrophysics Data System (ADS)

    Miyamoto, Takeshi; Tsurushima, Tadashi; Shimazaki, Naoki; Harada, Akira; Sasaki, Satoru; Hayashi, Koichi; Asaumi, Yasuo; Aoyagi, Yuzo

    An ignition and combustion model has been developed to predict the heat release rate in direct injection compression ignition engines employing very early injection timing. The model describes the chemical reactions, including low-temperature oxidation. The KIVA II computer code was modified with the present ignition and combustion model. The numerical results indicate that the model developed in this work reproduces major features of two-stage autoignition, as well as experimentally observed trends in NOx and unburned fuel emissions. The computational results show that fuel injection timing significantly influences NOx emissions. Results also indicate that fuel droplets that enter the squish region possibly become unburned fuel emissions. Some graphical results demonstrate the relationships among the in-cylinder fuel spray distributions, fuel-air equivalence ratio, temperature, and mass fractions of NO and unburned fuel.

  7. Aflibercept Injection

    MedlinePlus

    ... injection is used to treat wet age-related macular degeneration (AMD; an ongoing disease of the eye that causes loss of the ability to see straight ahead and may make it more ... used to treat macular edema after retinal vein occlusion (an eye disease ...

  8. Cabazitaxel Injection

    MedlinePlus

    ... prednisone to treat prostate cancer (cancer of a male reproductive organ) that has already been treated with other medications. Cabazitaxel injection is in a class of medications called microtubule inhibitors. It works by slowing or stopping the growth of cancer cells.

  9. Hydrocortisone Injection

    MedlinePlus

    ... purple blotches or lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body difficulty falling asleep or staying asleep inappropriate happiness extreme ... increased sweating muscle weakness joint pain dizziness irregular ...

  10. Methylprednisolone Injection

    MedlinePlus

    ... purple blotches or lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body difficulty falling asleep or staying asleep inappropriate happiness extreme ... increased sweating muscle weakness joint pain dizziness irregular ...

  11. Triptorelin Injection

    MedlinePlus

    ... a sudden wave of mild or intense body heat) decreased sexual ability or desire leg or joint pain breast pain pain, itching, swelling, or redness at the place where injection was given difficulty falling asleep or staying asleep Some side effects can be serious. If you experience any of ...

  12. Eribulin Injection

    MedlinePlus

    ... tests to check your body's response to eribulin injection.It is important for you to keep a written list of all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  13. Pegaptanib Injection

    MedlinePlus

    ... to 7 days after you receive each pegaptanib injection.It is important for you to keep a written list of all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any products such as vitamins, minerals, or other dietary supplements. You should bring ...

  14. Omalizumab Injection

    MedlinePlus

    ... and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or plan to take. Be sure to mention any of the following: allergy shots (a series of injections given regularly to prevent the body from developing ...

  15. Famotidine Injection

    MedlinePlus

    ... treat ulcers (sores in the lining of the stomach or intestine) that were not successfully treated with other medications. ... Ellison syndrome (tumors in the pancreas and small intestine that caused increased production of stomach acid). Famotidine injection is in a class of ...

  16. Ranitidine Injection

    MedlinePlus

    ... treat ulcers (sores in the lining of the stomach or intestine) that were not successfully treated with other medications. ... Ellison syndrome (tumors in the pancreas and small intestine that caused increased production of stomach acid). Ranitidine injection is in a class of ...

  17. Oxytocin Injection

    MedlinePlus

    ... provider immediately: chest pain or difficulty breathing confusion fast or irregular heartbeat severe headache irritation at the injection site If you experience a serious side effect, you or your doctor may send a report to the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...

  18. Ganciclovir Injection

    MedlinePlus

    ... will be given to you two times a day for 2 to 3 weeks, and then once a day, 5 to 7 days of each week.Your dose of ganciclovir will ... may give you several doses (enough for a day's supply) of premixed ganciclovir injection solution at one ...

  19. Ibritumomab Injection

    MedlinePlus

    ... have received ibritumomab injection.do not have any vaccinations without talking to your doctor.you should know ... cells) and myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  20. Tositumomab Injection

    MedlinePlus

    ... have received tositumomab injection.do not have any vaccinations without talking to your doctor.you should know ... blood cells), myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  1. Dulaglutide Injection

    MedlinePlus

    ... other body tissues where it is used for energy. Dulaglutide injection also works by slowing the movement ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call local emergency services at ...

  2. Liraglutide Injection

    MedlinePlus

    ... other body tissues where it is used for energy. Liraglutide injection also slows the emptying of the ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call local emergency services at ...

  3. Albiglutide Injection

    MedlinePlus

    ... other body tissues where it is used for energy. Albiglutide injection also works by slowing the movement ... In case of overdose, call your local poison control center at 1-800-222-1222. If the victim has collapsed or is not breathing, call local emergency services at ...

  4. Worldwide Injection Technique Questionnaire Study: Injecting Complications and the Role of the Professional.

    PubMed

    Frid, Anders H; Hirsch, Laurence J; Menchior, Astrid R; Morel, Didier R; Strauss, Kenneth W

    2016-09-01

    From February 1, 2014, through June 30, 2015, 13,289 insulin-injecting patients from 423 centers in 42 countries participated in one of the largest surveys ever performed in diabetes. The first results of this survey are published elsewhere in this issue. Herein we report that the most common complication of injecting insulin is lipohypertrophy (LH), which was self-reported by 29.0% of patients and found by physical examination in 30.8% by health care professionals (HCPs). Patients with LH consumed a mean of 10.1 IU more insulin daily than patients without LH. Glycated hemoglobin levels averaged 0.55% higher in patients with vs without LH. Lipohypertrophy was associated with higher rates of unexplained hypoglycemia and glycemic variability as well as more frequent diabetic ketoacidosis, incorrect rotation of injection sites, use of smaller injection zones, longer duration of insulin use, and reuse of pen needles (each P<.05). Routine inspection of injection sites by the HCP was associated with lower glycated hemoglobin levels, less LH, and more correct injection site rotation. Patients were also more likely to rotate correctly if they received injection instructions from their HCP in the past 6 months. Fewer than 40% of patients claimed to have gotten such instructions in the past 6 months, and 10% said that they have never received training on how to inject correctly despite injecting for a mean of nearly 9 years. Use of these data should stimulate renewed commitment to optimizing insulin injection practices. PMID:27594186

  5. Injectors for Multipoint Injection

    NASA Technical Reports Server (NTRS)

    Prociw, Lev Alexander (Inventor); Ryon, Jason (Inventor)

    2015-01-01

    An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage.

  6. Helpful tips for performing musculoskeletal injections.

    PubMed

    Metz, John P

    2010-01-01

    Injections are valuable procedures for managing musculoskeletal conditions commonly encountered by family physicians. Corticosteroid injections into articular, periarticular, or soft tissue structures relieve pain, reduce inflammation, and improve mobility. Injections can provide diagnostic information and are commonly used for postoperative pain control. Local anesthetics may be injected with corticosteroids to provide additional, rapid pain relief. Steroid injection is the preferred and definitive treatment for de Quervain tenosynovitis and trochanteric bursitis. Steroid injections can also be helpful in controlling pain during physical rehabilitation from rotator cuff syndrome and lateral epicondylitis. Intra-articular steroid injection provides pain relief in rheumatoid arthritis and osteoarthritis. There is little systematic evidence to guide medication selection for therapeutic injections. The medication used and the frequency of injection should be guided by the goal of the injection (i.e., diagnostic or therapeutic), the underlying musculoskeletal diagnosis, and clinical experience. Complications from steroid injections are rare, but physicians should understand the potential risks and counsel patients appropriately. Patients with diabetes who receive periarticular or soft tissue steroid injections should closely monitor their blood glucose for two weeks following injection. PMID:20052957

  7. Musculoskeletal injections: a review of the evidence.

    PubMed

    Stephens, Mark B; Beutler, Anthony I; O'Connor, Francis G

    2008-10-15

    Injections are valuable procedures for managing musculoskeletal conditions commonly encountered by family physicians. Corticosteroid injections into articular, periarticular, or soft tissue structures relieve pain, reduce inflammation, and improve mobility. Injections can provide diagnostic information and are commonly used for postoperative pain control. Local anesthetics may be injected with corticosteroids to provide additional, rapid pain relief. Steroid injection is the preferred and definitive treatment for de Quervain tenosynovitis and trochanteric bursitis. Steroid injections can also be helpful in controlling pain during physical rehabilitation from rotator cuff syndrome and lateral epicondylitis. Intra-articular steroid injection provides pain relief in rheumatoid arthritis and osteoarthritis. There is little systematic evidence to guide medication selection for therapeutic injections. The medication used and the frequency of injection should be guided by the goal of the injection (i.e., diagnostic or therapeutic), the underlying musculoskeletal diagnosis, and clinical experience. Complications from steroid injections are rare, but physicians should understand the potential risks and counsel patients appropriately. Patients with diabetes who receive periarticular or soft tissue steroid injections should closely monitor their blood glucose for two weeks following injection. PMID:18953975

  8. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  9. Fuel combustion exhibiting low NO.sub.x and CO levels

    DOEpatents

    Keller, Jay O.; Bramlette, T. Tazwell; Barr, Pamela K.

    1996-01-01

    Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).

  10. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  11. Vortex dynamics studies in supersonic flow: Merging of co-rotating streamwise vortices

    NASA Astrophysics Data System (ADS)

    Maddalena, L.; Vergine, F.; Crisanti, M.

    2014-04-01

    For air-breathing propulsion systems intended for flight at very high Mach numbers, combustion is carried out at supersonic velocities and the process is mixing limited. Substantial increase in mixing rates can be obtained by fuel injection strategies centered on generating selected modes of supersonic, streamwise vortex interactions. Despite the recognized importance, and potential of the role of streamwise vortices for supersonic mixing enhancement, only few fundamental studies on their dynamics and interactions have been conducted, leaving the field largely unexplored. A reduced order model that allows the dynamics of complex, interacting, supersonic vortical structures to be investigated, is presented in this work. The prediction of the evolution of mutually interacting streamwise vortices represents an enabling element for the initiation of an effective, systematic experimental study of selected cases of interest, and is an important step toward the design of new fuel injection strategies for supersonic combustors. The case presented in this work is centered on a merging process of co-rotating vortices, and the subsequent evolution of a system composed of two counter-rotating vortex pairs. This interaction was studied, initially, with the proposed model, and was chosen for the peculiarity of the resulting morphology of the vorticity field. These results were used to design an experimental investigation with the intent to target the same specific complex flow physics. The experiment revealed the same peculiar features encountered in the simulation.

  12. Propagating substorm injection fronts

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Arnoldy, R. L.; Feynman, J.; Hardy, D. A.

    1981-01-01

    It is argued that a series of two-satellite observations leads to a clarification of substorm plasma injection, in which boundary motion plays a major role. Emphasis is put on a type of event characterized by abrupt, dispersionless changes in electron intensity and a coincident perturbation that consists of both a field magnitude increase and a small rotation toward more dipolar orientation. Comparing plasma observations at two points, it is found that in active, preinjection conditions the two most important features of the plasma sheet are: (1) the low-energy convection boundary for near-zero energy particles, determined by the magnitude of the large-scale convection electric field; and (2) the precipitation-flow boundary layer between the hot plasma sheet and the atmospherically contaminated inner plasma sheet.

  13. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  14. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  15. Rotator Cuff Tears

    MedlinePlus

    ... doctors because of a rotator cuff problem. A torn rotator cuff will weaken your shoulder. This means ... or more of the rotator cuff tendons is torn, the tendon no longer fully attaches to the ...

  16. Rotator Cuff Injuries

    MedlinePlus

    ... others can be very painful. Treatment for a torn rotator cuff depends on age, health, how severe ... is, and how long you've had the torn rotator cuff. Treatment for torn rotator cuff includes: ...

  17. Rotator cuff problems

    MedlinePlus

    ... days, such as in painting and carpentry Poor posture over many years Aging Rotator cuff tears TEARS ... also help prevent rotator cuff problems. Practice good posture to keep your rotator cuff tendons and muscles ...

  18. Epidural Steroid Injections

    MedlinePlus

    ... Assessment Tools Injection Treatments for Spinal Pain Epidural Steroid Injections Lumbar Zygapophysial (Facet) Joint Injections Surgical Options Nonsurgical Treatments Alternative Medicine Epidural Steroid Injections General Information Why Get an Epidural Steroid ...

  19. Nuclear fuel pin scanner

    DOEpatents

    Bramblett, Richard L.; Preskitt, Charles A.

    1987-03-03

    Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

  20. Atomization of liquid fuels. Part II

    NASA Technical Reports Server (NTRS)

    Kuehn, R

    1925-01-01

    This report describes the design and operation of a nozzle to inject fuel into an engine. The design of the nozzle is open, without any compulsory or automatic stop-valve. The fuel injection is regulated simply by the pressure and the adjustment of the fuel pump.

  1. Pressure Feedback in Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Schwer, Douglas; Kailasanath, K.

    2012-11-01

    Rotating detonation engines (RDEs) represent a unique method for obtaining propulsion from the high efficiency detonation cycle. In order for the RDE to be a practical propulsive device, engines must be capable of running efficiently at low pressure ratios, however, this type of injection typically results in a large amount of pressure feedback into the injection system. This paper examines different aspects of the pressure feedback phenomena, and investigates approaches to injecting fresh mixture that reduce the amount of feedback. This work is supported by the Office of Naval Research through NRL 6.1 Computational Physics Task Area.

  2. Radial flow fuel nozzle for a combustor of a gas turbine

    DOEpatents

    Means, Gregory Scott; Boardman, Gregory Allen; Berry, Jonathan Dwight

    2016-07-05

    A combustor for a gas turbine generally includes a radial flow fuel nozzle having a fuel distribution manifold, and a fuel injection manifold axially separated from the fuel distribution manifold. The fuel injection manifold generally includes an inner side portion, an outer side portion, and a plurality of circumferentially spaced fuel ports that extend through the outer side portion. A plurality of tubes provides axial separation between the fuel distribution manifold and the fuel injection manifold. Each tube defines a fluid communication path between the fuel distribution manifold and the fuel injection manifold.

  3. CONSTRUCTION OF NUCLEAR FUEL ELEMENTS

    DOEpatents

    Weems, S.J.

    1963-09-24

    >A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

  4. Modeling the Effects of Turbulence in Rotating Detonation Engines

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Smith, Katherine; Hamlington, Peter; van Schoor, Marthinus; TESLa Team; Midé Team

    2014-03-01

    Propulsion systems based on detonation waves, such as rotating and pulsed detonation engines, have the potential to substantially improve the efficiency and power density of gas turbine engines. Numerous technical challenges remain to be solved in such systems, however, including obtaining more efficient injection and mixing of air and fuels, more reliable detonation initiation, and better understanding of the flow in the ejection nozzle. These challenges can be addressed using numerical simulations. Such simulations are enormously challenging, however, since accurate descriptions of highly unsteady turbulent flow fields are required in the presence of combustion, shock waves, fluid-structure interactions, and other complex physical processes. In this study, we performed high-fidelity three dimensional simulations of a rotating detonation engine and examined turbulent flow effects on the operation, performance, and efficiency of the engine. Along with experimental data, these simulations were used to test the accuracy of commonly-used Reynolds averaged and subgrid-scale turbulence models when applied to detonation engines. The authors gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA).

  5. Fuel flexible fuel injector

    SciTech Connect

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  6. Diesel Fuel Systems. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Clark, Elton; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains six instructional units that cover the following topics: (1) introduction to fuel injection systems and components; (2) injection nozzles; (3) distributor type injection pumps; (4) unit injectors; (5) in-line injection pumps; and (6) pressure timed…

  7. Apparatus and method for mixing fuel in a gas turbine nozzle

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight

    2014-08-12

    A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.

  8. Helicity Injected Torus Program Overview

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Jarboe, T. R.; Aboulhosn, R. Z.; Akcay, C.; Hamp, W. T.; Marklin, G.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Sieck, P. E.; Smith, R. J.; Sutphin, G. L.; Wrobel, J. S.; Mueller, D.; Roquemore, L.

    2006-10-01

    The Helicity Injected Torus with Steady Inductive Helicity Injection (HIT--SI) spheromak experiment [Sieck, Nucl. Fusion v.46, p.254 (2006)] addresses critical issues for spheromaks, including current drive, high-beta operation, confinement quality and efficient steady-state operation. HIT--SI has a ``bow-tie'' shaped axisymmetric confinement region (major radius R=0.33 m, axial extent of 0.57 m) and two half-torus helicity injectors, one mounted on each end of the flux conserver. HIT--SI has produced spheromaks with up to 30 kA of toroidal current, using less than 4 MW of applied power, demonstrating that Steady Inductive Helicity Injection can generate and sustain discharges with modest power requirements. Fast camera images of HIT--SI discharges indicate a toroidally rotating n=1 structure, driven by the helicity injectors. The direction of the toroidal current is determined by the direction of rotation of the driven n=1. Measured surface and internal magnetic fields in HIT--SI discharges are consistent with that of the true 3D Taylor state, including the injectors. Recent HIT--SI physics studies, diagnostic improvements and machine upgrades will also be summarized.

  9. Rotating Detonation Combustion: A Computational Study for Stationary Power Generation

    NASA Astrophysics Data System (ADS)

    Escobar, Sergio

    The increased availability of gaseous fossil fuels in The US has led to the substantial growth of stationary Gas Turbine (GT) usage for electrical power generation. In fact, from 2013 to 2104, out of the 11 Tera Watts-hour per day produced from fossil fuels, approximately 27% was generated through the combustion of natural gas in stationary GT. The thermodynamic efficiency for simple-cycle GT has increased from 20% to 40% during the last six decades, mainly due to research and development in the fields of combustion science, material science and machine design. However, additional improvements have become more costly and more difficult to obtain as technology is further refined. An alternative to improve GT thermal efficiency is the implementation of a combustion regime leading to pressure-gain; rather than pressure loss across the combustor. One concept being considered for such purpose is Rotating Detonation Combustion (RDC). RDC refers to a combustion regime in which a detonation wave propagates continuously in the azimuthal direction of a cylindrical annular chamber. In RDC, the fuel and oxidizer, injected from separated streams, are mixed near the injection plane and are then consumed by the detonation front traveling inside the annular gap of the combustion chamber. The detonation products then expand in the azimuthal and axial direction away from the detonation front and exit through the combustion chamber outlet. In the present study Computational Fluid Dynamics (CFD) is used to predict the performance of Rotating Detonation Combustion (RDC) at operating conditions relevant to GT applications. As part of this study, a modeling strategy for RDC simulations was developed. The validation of the model was performed using benchmark cases with different levels of complexity. First, 2D simulations of non-reactive shock tube and detonation tubes were performed. The numerical predictions that were obtained using different modeling parameters were compared with

  10. Probabilistic stellar rotation periods with Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Aigrain, Suzanne; Foreman-Mackey, Daniel

    2015-08-01

    Stellar rotation has many applications in the field of exoplanets. High-precision photometry from space-based missions like Kepler and K2 allows us to measure stellar rotation periods directly from light curves. Stellar variability produced by rotation is usually not sinusoidal or perfectly periodic, therefore sine-fitting periodograms are not well suited to rotation period measurement. Autocorrelation functions are often used to extract periodic information from light curves, however uncertainties on rotation periods measured by autocorrelation are difficult to define. A ‘by eye’ check, or a set of heuristic criteria are used to validate measurements and rotation periods are only reported for stars that pass this vetting process. A probabilistic rotation period measurement method, with a suitable generative model bypasses the need for a validation stage and can produce realistic uncertainties. The physics driving the production of variability in stellar light curves is still poorly understood and difficult to model. We therefore use an effective model for stellar variability: a Gaussian process with a quasi-periodic covariance function. By injecting fake signals into Kepler light curves we show that the GP model is well suited to quasi-periodic, non-sinusoidal signals, is capable of modelling noise and physical signals simultaneously and provides probabilistic rotation period measurements with realistic uncertainties.

  11. Spontaneous generation of rotation in tokamak plasmas

    SciTech Connect

    Parra Diaz, Felix

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  12. Air/fuel ratio controller

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1980-12-23

    An internal combustion engine has a fuel injection pump and an air/fuel ratio controller. The controller has a lever that is connected to the pump lever. An aneroid moves the controller lever as a function of changes in intake manifold vacuum to maintain a constant air/fuel ratio to the mixture charge. A fuel enrichment linkage is provided that modifies the movement of the fuel flow control lever by the aneroid in response to changes in manifold gas temperature levels and exhaust gas recirculation to maintain the constant air/fuel ratio. A manual override is provided to obtain a richer air/fuel ratio for maximum acceleration.

  13. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  14. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    SciTech Connect

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  15. Monolithic fuel injector and related manufacturing method

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; York, William David; Stevenson, Christian Xavier

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  16. Experiments on the Distribution of Fuel in Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1932-01-01

    The distribution of the fuel in sprays for compression-ignition engines was investigated by taking high-speed spark photographs of fuel sprays produced under a wide variety of conditions, and also by injecting them against pieces of Plasticine. A photographic study was made of sprays injected into evacuated chambers, into the atmosphere, into compressed air, and into transparent liquids. Pairs of identical sprays were injected counter to each other and their behavior analyzed. Small high-velocity air jets were directed normally to the axes of fuel sprays, with the result that the envelope of spray which usually obscures the core was blown aside, leaving the core exposed on one side.

  17. Rotational preference in gymnastics.

    PubMed

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  18. Rotational Preference in Gymnastics

    PubMed Central

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M.; Velentzas, Konstantinos

    2012-01-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast’s rotational preference. Therefore, we sought to explore relationships in gymnast’s rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  19. Measurements of droplet velocity and size downstream of the moving valves of a four-valve engine with manifold injection, operated under isothermal steady suction conditions

    SciTech Connect

    Posylkin, M.; Taylor, A.M.K.P.; Whitelaw, J.H.; Ishii, K.; Miyano, M.

    1997-01-01

    The four-valve head of a VTEC engine was mounted on an open cylinder and the valves and fuel injection system operated as in the engine with a rotational speed of 1,200 rpm. Local measurements of droplet characteristics were obtained with a phase-Doppler velocimeter and iso-octane injected over 5 ms intervals, corresponding to 36 crank angle degrees, with manifold depression of 20 mbar. The results show that most of the fuel droplets were located close to the liner and on the side of the cylinder adjacent to the exhaust valves. In the plane of the measurement, 10 mm below TDC, the liquid flux diminished as the initiation of injection was advanced before opening of the inlet valves. With injection with the inlet valves closed, there were two waves of droplets, one from each of the two valves and separated by 60 deg CA and both with the Sauter mean diameter of about 120 {micro}m. With injection with the inlet valves open, most of the droplets emerged from the main inlet valve and with Sauter mean diameters of about 50 {micro}m, smaller than those of the unconfined spray.

  20. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Lacey, Benjamin Paul; York, William David; Stevenson, Christian Xavier

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  1. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  2. An experimental investigation of dyke injection under regional extensional stress

    NASA Astrophysics Data System (ADS)

    Daniels, K. A.; Menand, T.

    2015-03-01

    Dyke injection is a fundamental process of magma transport in the crust, occurring in all tectonic settings. The effect of extensional stress regimes on dyke injections is particularly important to understanding a wide spectrum of processes including continental rifting and volcanic activity. Yet dyke injection in extensional regimes has been relatively understudied. In addition, the effect of dyke-dyke interaction modifying the surrounding stress field and leading to dyke rotation about the vertical axis has not been addressed. We present the results from 23 laboratory analogue experiments investigating lateral dyke injections in a remote extensional stress field. This study is unique in that it addresses the effect of both extension and dyke-dyke interaction on the lateral propagation and rotation of dykes. The experiments study the interrelationship between successive lateral dyke injections by examining dyke injection thickness, injection spacing, injection orientation, extension, and structural relationship. A relationship between the rotation angle between two successive intrusions and the distance separating them under given extensional stress conditions is established. The rotation angle depends on two dimensionless numbers: the ratio of fluid overpressure of the first injection and remote tensile stress, and the ratio of the spacing between injections and the height of the first intrusion. The experiments show how the stress field is perturbed by an intrusion and how the remote stress field is locally relieved by this intrusion. The results show furthermore that measuring or estimating the rotation angles between successive intrusions within rift zones allows the spatial distribution of these intrusions to be estimated. In the case of the actively spreading Red Sea rift in Afar, Ethiopia, we find that the vast majority of the dykes are predicted to intrude within 10 km of each other and most frequently between 4 and 5 km, in good agreement with independent

  3. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  4. Mechanism of rotational relaxation.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    A model is presented which describes the characteristic pattern of relaxation of a nonthermal rotational distribution of hydrogen halide, peaked initially at high rotational quantum number J, to a thermal distribution without generating a peak at intermediate J. A method for correcting infrared chemiluminiscence data for modest rotational relaxation is also suggested.

  5. Beam Injection into RHIC

    NASA Astrophysics Data System (ADS)

    Fischer, W.; Hahn, H.; Mackay, W. W.; Tsoupas, N.

    1997-05-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. We describe the injection zone and its bottlenecks, the application program to steer the beam and the injection kickers. We report on the commissioning of the injection systems and on measurements of the kickers.

  6. SEAL FOR ROTATING SHAFT

    DOEpatents

    Coffman, R.T.

    1957-12-10

    A seal is described for a rotatable shaft that must highly effective when the shaft is not rotating but may be less effective while the shaft is rotating. Weights distributed about a sealing disk secured to the shaft press the sealing disk against a tubular section into which the shiilt extends, and whem the shaft rotates, the centrifugal forces on the weights relieve the pressurc of the sealing disk against the tubular section. This action has the very desirible result of minimizing the wear of the rotating disk due to contact with the tubular section, while affording maximum sealing action when it is needed.

  7. Preventing CO poisoning in fuel cells

    DOEpatents

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  8. Nitric Oxide PLIF Visualization of Simulated Fuel-Air Mixing in a Dual-Mode Scramjet

    NASA Technical Reports Server (NTRS)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Bathel, Brett F.; Danehy, Paul M.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2015-01-01

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature.

  9. Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Clark, J Denny

    1939-01-01

    The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.

  10. Automated fuel pin loading system

    DOEpatents

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  11. Automated fuel pin loading system

    DOEpatents

    Christiansen, David W.; Brown, William F.; Steffen, Jim M.

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  12. Toroidal rotation induced by asymmetric cyclotron resonance absorption in minority ICRF-heated tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, S.; Zhang, D.

    2016-04-01

    A new mechanism of ion cyclotron range of frequency (ICRF)-induced rotation is proposed to explain the toroidal rotation with minority ICRF heating without net momentum injection. For ICRF waves launched with the symmetric spectrum, a nonlinear toroidal force can be generated through the asymmetric absorption of the toroidal wave momentum, which is due to the finite toroidal rotation of minority ions. This ICRF-induced toroidal force can drive a significant toroidal rotation of bulk ions.

  13. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  14. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  15. Global Rotation of Non-Rotating Origin

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2001-11-01

    At its 24th General Assembly held at Manchester last year, the IAU has adopted the Celestial Ephemeris Origin (CEO) as a new longitude origin of the celestial coordinate system (Capitaine et al. 2000, IAU 2001). The CEO is the application of Guinot's non-rotating origin (NRO) to the Earth's equator (Guinot 1979, Capitaine et al. 1986, Capitaine 1990). By using the current IAU precession/nutation theory, we integrated the global orbit of CEO. It is a slightly curved zigzag pattern of the amplitude of around 23o moving secularly along the ecliptic. Among its kinematical features, we note that CEO has a large secular component of rotation with respect to the inertial reference frame. The current speed of this global rotation is as large as around -4.15 ''/yr. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north celestial pole. Unfortunately this is a general property of NROs. On the other hand, such secular rotation does not exist for some geometrically-defined longitude origins like K, H, and Σ already discussed in Kovalevsky and McCarthy (1998). We think that the existence of a global secular rotaion means that the CEO, and NROs in general, is not appropriate to be specified as the x-axis of celestial coordinate systems.

  16. Association of American Railroads Alternative Fuels Program

    SciTech Connect

    Furber, C.P.

    1985-01-01

    Alternative fuels can be used in locomotive diesel engines as a means to reduce fuel costs or as fuel extenders when sufficient quantities of suitable lower cost fuels are not available. Broadened fuel purchasing guidelines, based on engine fuel tolerance limitation tests, offer a potential for reducing fuel costs. Fuels such as alcohols, certain vegetable oils, shale oils, and heavy oil blends can be used to extend fuel supplies. Fuel tolerance limitations of existing engines can be increased through modifications such as staged injection or the use of ceramic coatings. This paper describes the methods used by the Association of American Railroads Alternative Fuels Research Program to determine engine fuel tolerance limitations and extend engine fuel tolerance limits.

  17. New type of rotating disk singlet oxygen generator

    NASA Astrophysics Data System (ADS)

    Schall, Wolfgang O.; Duschek, Frank R.

    1997-04-01

    A small rotating disk generator, particularly suited for closed cycle operation has been built and operated successfully. The generator has no external drive for the disks, but is rather driven by the momentum of the injected basic hydrogen peroxide. The rotation rate and the submergence of the disks in the liquid pool can be adjusted independently by the liquid flow rate, the size of the injection nozzle, the height of the outlet for the liquid, and also by the amount of injected gas. The closed cycle comprises a liquid reservoir for the cooling of the liquid and for the sedimentation of crystallized salt, and a gear pump for circulation of the liquid. First results for utilization and yield have been gained as a function of total pressure, rotation rate, and gas flow rate and composition. The performance of the generator shows a remarkable improvement over a Sparger type generator for equal flow rates.

  18. Variable volume combustor with center hub fuel staging

    DOEpatents

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  19. The spatial rotator.

    PubMed

    Rasmusson, A; Hahn, U; Larsen, J O; Gundersen, H J G; Jensen, E B Vedel; Nyengaard, J R

    2013-05-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases where over- and underprojection phenomena are not negligible, they should therefore be corrected for if the spatial rotator is to be applied. If such a correction is not possible, it is needed to avoid these phenomena by using microscopy with increased resolution in the focal plane. PMID:23488880

  20. Impact de l'utilisation des strategies d'injection multiple et de biodiesel sur un moteur diesel a rampe commune d'injection

    NASA Astrophysics Data System (ADS)

    Plamondon, Etienne

    Using biodiesel/diesel fuel blends and multiple injection strategies in diesel engines have shown promising results in improving the trade-off relationship between nitrous oxides and particulate matters, but their effects are still not completely understood. In this context, this thesis focuses on the characterization of the multiple injection strategies and biodiesel impacts on pollutant emissions, performances and injection system behavior. To reach this goal, an experimental campaign on a diesel engine was performed and a model simulating the injection process was developed. The engine tests at low load with pilot injection allowed the reduction of NOx emissions up to 27% and those of PM up to 22.3% compared to single injection, provided that a precise tuning of the injection parameters was previously realized. This simultaneous reduction is explained by the reduction of the premixed combustion phase and injected fuel quantity during principal injection when a pilot injection is used. With triple injection for the tested engine load, the post-injection did not result in PM reduction since it contributes by itself to the PM production while the preinjection occurred too soon to burn conveniently and caused perturbations in the injection system as well. Using B20 blend in single injection caused a PM increase and a NOx reduction which might be explained by the poorer fuel atomization. However, pilot injection with B20 allowed to get a simultaneous reduction of NOx and PM, as observed with diesel. An injection simulation model was also developed and experimentally validated for different injection pressures as well as different energizing times and dwell times. When comparing the use of biodiesel with diesel, simulation showed that there was a critical energizing time for which both fuels yielded the same injection duration. For shorter energizing times, the biodiesel injection duration was shorter than for diesel, while longer energizing times presented the

  1. Corticotropin, Repository Injection

    MedlinePlus

    ... age; episodes of symptoms in people who have multiple sclerosis (MS; a disease in which the nerves do ... When corticotropin repository injection is used to treat multiple sclerosis, it is usually injected once a day for ...

  2. Urinary incontinence - injectable implant

    MedlinePlus

    Injectable implants are injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a ... into the tissue next to the sphincter. The implant procedure is usually done in the hospital. Or ...

  3. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to treat Paget's disease ...

  4. OnabotulinumtoxinA Injection

    MedlinePlus

    Botox® Cosmetic ... OnabotulinumtoxinA injection (Botox, Botox Cosmetic) is used to treat a number of conditions.OnabotulinumtoxinA injection (Botox) is used to relieve the symptoms of cervical dystonia ( ...

  5. Hip joint injection

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007633.htm Hip joint injection To use the sharing features on this ... injection is a shot of medicine into the hip joint. The medicine helps relieve pain and inflammation. It ...

  6. Deoxycholic Acid Injection

    MedlinePlus

    ... severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a ... as a liquid to be injected subcutaneously (just under the skin) by a doctor. Your doctor will ...

  7. RimabotulinumtoxinB Injection

    MedlinePlus

    (rim a bott' you lye num bee)RimabotulinumtoxinB injection may spread from the area of injection and ... Event Reporting program online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  8. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  9. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  10. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  11. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  12. IncobotulinumtoxinA Injection

    MedlinePlus

    ... injection is used to relieve the symptoms of cervical dystonia (spasmodic torticollis; uncontrollable tightening of the neck ... is injected into a muscle, it blocks the nerve signals that cause uncontrollable tightening and movements of ...

  13. Influence of water injection on performance and emissions of a direct-injection hydrogen research engine.

    SciTech Connect

    Nande, A. M.; Wallner, T.; Naber, J.

    2008-10-06

    The application of hydrogen (H{sub 2}) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for IC engines and hence it is widely regarded as the energy carrier of the future. Direct injection of hydrogen allows optimizing this potential as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently engine efficiency and exhaust emissions.

  14. 40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... if I use water or steam injection? 60.4335 Section 60.4335 Protection of Environment ENVIRONMENTAL... compliance for NOX if I use water or steam injection? (a) If you are using water or steam injection...

  15. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  16. Subacromial Injection Results in Further Scapular Dyskinesis

    PubMed Central

    Ettinger, Luke; Shapiro, Matthew; Karduna, Andrew

    2014-01-01

    Background: Scapular kinematic movement patterns between patients with subacromial impingement and healthy controls have been extensively investigated. However, a high degree of variability has been reported in the literature pertaining to differences between these 2 groups. Purpose: To investigate the influence of subacromial pain on scapular kinematics. Study Design: Controlled laboratory study. Methods: A total of 21 patients with stage 2 subacromial impingement who received local anesthetic injections as part of their normal treatment were recruited for this study. The postinjection kinematic data from these patients were compared with those of healthy age-, sex-, and arm dominance–matched controls. Results: Subacromial injections of anesthetics resulted in increased scapular anterior tilting; however, no changes were noted in upward or internal rotation. When compared with healthy controls, patients had greater anterior tilting and upward rotation of the scapula. Conclusion: The study findings indicate that the removal of pain in patients with impingement results in further dyskinesis of the scapula. Clinical Relevance: Pain may be causing patients with subacromial impingement to limit scapular tilt and upward rotation, and movement limitations may continue after an anesthetic injection. PMID:26535353

  17. Beam injection into RHIC

    SciTech Connect

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  18. Diesel Mechanics: Fuel Systems.

    ERIC Educational Resources Information Center

    Foutes, William

    This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…

  19. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  20. Modeling rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Rieutord, M.

    2006-06-01

    We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.